Image formation in diffusion MRI: A review of recent technical developments
Miller, Karla L.
2017-01-01
Diffusion magnetic resonance imaging (MRI) is a standard imaging tool in clinical neurology, and is becoming increasingly important for neuroscience studies due to its ability to depict complex neuroanatomy (eg, white matter connectivity). Single‐shot echo‐planar imaging is currently the predominant formation method for diffusion MRI, but suffers from blurring, distortion, and low spatial resolution. A number of methods have been proposed to address these limitations and improve diffusion MRI acquisition. Here, the recent technical developments for image formation in diffusion MRI are reviewed. We discuss three areas of advance in diffusion MRI: improving image fidelity, accelerating acquisition, and increasing the signal‐to‐noise ratio. Level of Evidence: 5 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:646–662 PMID:28194821
Basic concepts of MR imaging, diffusion MR imaging, and diffusion tensor imaging.
de Figueiredo, Eduardo H M S G; Borgonovi, Arthur F N G; Doring, Thomas M
2011-02-01
MR image contrast is based on intrinsic tissue properties and specific pulse sequences and parameter adjustments. A growing number of MRI imaging applications are based on diffusion properties of water. To better understand MRI diffusion-weighted imaging, a brief overview of MR physics is presented in this article followed by physics of the evolving techniques of diffusion MR imaging and diffusion tensor imaging. Copyright © 2011. Published by Elsevier Inc.
Single-shot turbo spin echo acquisition for in vivo cardiac diffusion MRI.
Edalati, Masoud; Lee, Gregory R; Hui Wang; Taylor, Michael D; Li, Yu Y
2016-08-01
Diffusion MRI offers the ability to noninvasively characterize the microstructure of myocardium tissue and detect disease related pathology in cardiovascular examination. This study investigates the feasibility of in vivo cardiac diffusion MRI under free-breathing condition. A high-speed imaging technique, correlation imaging, is used to enable single-shot turbo spin echo for free-breathing cardiac data acquisition. The obtained in vivo cardiac diffusion-weighted images illustrate robust image quality and minor geometry distortions. The resultant diffusion scalar maps show reliable quantitative values consistent with those previously published in the literature. It is demonstrated that this technique has the potential for in vivo free-breathing cardiac diffusion MRI.
Various diffusion magnetic resonance imaging techniques for pancreatic cancer
Tang, Meng-Yue; Zhang, Xiao-Ming; Chen, Tian-Wu; Huang, Xiao-Hua
2015-01-01
Pancreatic cancer is one of the most common malignant tumors and remains a treatment-refractory cancer with a poor prognosis. Currently, the diagnosis of pancreatic neoplasm depends mainly on imaging and which methods are conducive to detecting small lesions. Compared to the other techniques, magnetic resonance imaging (MRI) has irreplaceable advantages and can provide valuable information unattainable with other noninvasive or minimally invasive imaging techniques. Advances in MR hardware and pulse sequence design have particularly improved the quality and robustness of MRI of the pancreas. Diffusion MR imaging serves as one of the common functional MRI techniques and is the only technique that can be used to reflect the diffusion movement of water molecules in vivo. It is generally known that diffusion properties depend on the characterization of intrinsic features of tissue microdynamics and microstructure. With the improvement of the diffusion models, diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique to the more complex. In this review, the various diffusion MRI techniques for pancreatic cancer are discussed, including conventional diffusion weighted imaging (DWI), multi-b DWI based on intra-voxel incoherent motion theory, diffusion tensor imaging and diffusion kurtosis imaging. The principles, main parameters, advantages and limitations of these techniques, as well as future directions for pancreatic diffusion imaging are also discussed. PMID:26753059
Complementary aspects of diffusion imaging and fMRI; I: structure and function.
Mulkern, Robert V; Davis, Peter E; Haker, Steven J; Estepar, Raul San Jose; Panych, Lawrence P; Maier, Stephan E; Rivkin, Michael J
2006-05-01
Studying the intersection of brain structure and function is an important aspect of modern neuroscience. The development of magnetic resonance imaging (MRI) over the last 25 years has provided new and powerful tools for the study of brain structure and function. Two tools in particular, diffusion imaging and functional MRI (fMRI), are playing increasingly important roles in elucidating the complementary aspects of brain structure and function. In this work, we review basic technical features of diffusion imaging and fMRI for studying the integrity of white matter structural components and for determining the location and extent of cortical activation in gray matter, respectively. We then review a growing body of literature in which the complementary aspects of diffusion imaging and fMRI, applied as separate examinations but analyzed in tandem, have been exploited to enhance our knowledge of brain structure and function.
MRI diffusion tensor reconstruction with PROPELLER data acquisition.
Cheryauka, Arvidas B; Lee, James N; Samsonov, Alexei A; Defrise, Michel; Gullberg, Grant T
2004-02-01
MRI diffusion imaging is effective in measuring the diffusion tensor in brain, cardiac, liver, and spinal tissue. Diffusion tensor tomography MRI (DTT MRI) method is based on reconstructing the diffusion tensor field from measurements of projections of the tensor field. Projections are obtained by appropriate application of rotated diffusion gradients. In the present paper, the potential of a novel data acquisition scheme, PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction), is examined in combination with DTT MRI for its capability and sufficiency for diffusion imaging. An iterative reconstruction algorithm is used to reconstruct the diffusion tensor field from rotated diffusion weighted blades by appropriate rotated diffusion gradients. DTT MRI with PROPELLER data acquisition shows significant potential to reduce the number of weighted measurements, avoid ambiguity in reconstructing diffusion tensor parameters, increase signal-to-noise ratio, and decrease the influence of signal distortion.
Clinical utility for diffusion MRI sequence in emergency and inpatient spine protocols.
Hoch, Michael J; Rispoli, Joanne; Bruno, Mary; Wauchope, Mervin; Lui, Yvonne W; Shepherd, Timothy M
Diffusion imaging of the spine has the potential to change clinical management, but is challenging due to the small size of the cord and susceptibility artifacts from adjacent structures. Reduced field-of-view (rFOV) diffusion can improve image quality by decreasing the echo train length. Over the past 2 years, we have acquired a rFOV diffusion sequence for MRI spine protocols on most inpatients and emergency room patients. We provide selected imaging diagnoses to illustrate the utility of including diffusion spine MRI in clinical practice. Our experiences support using diffusion MRI to improve diagnostic certainty and facilitate prompt treatment or clinical management. Copyright © 2017 Elsevier Inc. All rights reserved.
Removal of intensity bias in magnitude spin-echo MRI images by nonlinear diffusion filtering
NASA Astrophysics Data System (ADS)
Samsonov, Alexei A.; Johnson, Chris R.
2004-05-01
MRI data analysis is routinely done on the magnitude part of complex images. While both real and imaginary image channels contain Gaussian noise, magnitude MRI data are characterized by Rice distribution. However, conventional filtering methods often assume image noise to be zero mean and Gaussian distributed. Estimation of an underlying image using magnitude data produces biased result. The bias may lead to significant image errors, especially in areas of low signal-to-noise ratio (SNR). The incorporation of the Rice PDF into a noise filtering procedure can significantly complicate the method both algorithmically and computationally. In this paper, we demonstrate that inherent image phase smoothness of spin-echo MRI images could be utilized for separate filtering of real and imaginary complex image channels to achieve unbiased image denoising. The concept is demonstrated with a novel nonlinear diffusion filtering scheme developed for complex image filtering. In our proposed method, the separate diffusion processes are coupled through combined diffusion coefficients determined from the image magnitude. The new method has been validated with simulated and real MRI data. The new method has provided efficient denoising and bias removal in conventional and black-blood angiography MRI images obtained using fast spin echo acquisition protocols.
Nitkunan, Arani; Barrick, Tom R; Charlton, Rebecca A; Clark, Chris A; Markus, Hugh S
2008-07-01
Cerebral small vessel disease is the most common cause of vascular dementia. Interest in using MRI parameters as surrogate markers of disease to assess therapies is increasing. In patients with symptomatic sporadic small vessel disease, we determined which MRI parameters best correlated with cognitive function on cross-sectional analysis and which changed over a period of 1 year. Thirty-five patients with lacunar stroke and leukoaraiosis were recruited. They underwent multimodal MRI (brain volume, fluid-attenuated inversion recovery lesion load, lacunar infarct number, fractional anisotropy, and mean diffusivity from diffusion tensor imaging) and neuropsychological testing. Twenty-seven agreed to reattend for repeat MRI and neuropsychology at 1 year. An executive function score correlated most strongly with diffusion tensor imaging (fractional anisotropy histogram, r=-0.640, P=0.004) and brain volume (r=0.501, P=0.034). Associations with diffusion tensor imaging were stronger than with all other MRI parameters. On multiple regression of all imaging parameters, a model that contained brain volume and fractional anisotropy, together with age, gender, and premorbid IQ, explained 74% of the variance of the executive function score (P=0.0001). Changes in mean diffusivity and fractional anisotropy were detectable over the 1-year follow-up; in contrast, no change in other MRI parameters was detectable over this time period. A multimodal MRI model explains a large proportion of the variation in executive function in cerebral small vessel disease. In particular, diffusion tensor imaging correlates best with executive function and is the most sensitive to change. This supports the use of MRI, in particular diffusion tensor imaging, as a surrogate marker in treatment trials.
Diffusion MRI and its role in neuropsychology
Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin
2015-01-01
Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain’s white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition. PMID:26255305
Salama, Gayle R; Heier, Linda A; Patel, Praneil; Ramakrishna, Rohan; Magge, Rajiv; Tsiouris, Apostolos John
2017-01-01
In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes.
Salama, Gayle R.; Heier, Linda A.; Patel, Praneil; Ramakrishna, Rohan; Magge, Rajiv; Tsiouris, Apostolos John
2018-01-01
In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes. PMID:29403420
Hayakawa, Katsumi; Koshino, Sachiko; Tanda, Koichi; Nishimura, Akira; Sato, Osamu; Morishita, Hiroyuki; Ito, Takaaki
2018-06-01
Pseudonormalization of diffusion-weighted magnetic resonance imaging (MRI) can lead to underestimation of brain injury in newborns with hypoxic-ischemic encephalopathy (HIE), posing a significant problem. We have noticed that some neonates show pseudonormalization negativity on diffusion-weighted imaging. To compare pseudonormalization negativity with clinical outcomes. Seventeen term neonates with moderate or severe HIE underwent therapeutic hypothermia. They were examined by MRI twice at mean ages of 3 days and 10 days. We evaluated the presence of restricted diffusion, and also the presence or absence of pseudonormalization, by diffusion-weighted imaging at the time of the second MRI, and correlated the results with clinical outcome. DWI demonstrated no abnormality in seven neonates. Among the 10 neonates with abnormal diffusion-weighted imaging findings, 2 were positive for pseudonormalization and 8 were negative. Among neonates with normal diffusion-weighted imaging findings and with positivity for pseudonormalization, none had major disability. Among the eight neonates with pseudonormalization negativity, all but one, who was lost to follow-up, had major disability. Abnormal diffusion-weighted imaging with pseudonormalization negativity might be predictive of severe brain injury and major disability. The second-week MRI is important for the judgment of pseudonormalization.
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4–8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic). PMID:21243106
Guo, Lu; Wang, Gang; Feng, Yuanming; Yu, Tonggang; Guo, Yu; Bai, Xu; Ye, Zhaoxiang
2016-09-21
Accurate target volume delineation is crucial for the radiotherapy of tumors. Diffusion and perfusion magnetic resonance imaging (MRI) can provide functional information about brain tumors, and they are able to detect tumor volume and physiological changes beyond the lesions shown on conventional MRI. This review examines recent studies that utilized diffusion and perfusion MRI for tumor volume definition in radiotherapy of brain tumors, and it presents the opportunities and challenges in the integration of multimodal functional MRI into clinical practice. The results indicate that specialized and robust post-processing algorithms and tools are needed for the precise alignment of targets on the images, and comprehensive validations with more clinical data are important for the improvement of the correlation between histopathologic results and MRI parameter images.
Morozov, Darya; Tal, Iris; Pisanty, Odelia; Shani, Eilon
2017-01-01
Abstract As sessile organisms, plants must respond to the environment by adjusting their growth and development. Most of the plant body is formed post-embryonically by continuous activity of apical and lateral meristems. The development of lateral adventitious roots is a complex process, and therefore the development of methods that can visualize, non-invasively, the plant microstructure and organ initiation that occur during growth and development is of paramount importance. In this study, relaxation-based and advanced diffusion magnetic resonance imaging (MRI) methods including diffusion tensor (DTI), q-space diffusion imaging (QSI), and double-pulsed-field-gradient (d-PFG) MRI, at 14.1 T, were used to characterize the hypocotyl microstructure and the microstructural changes that occurred during the development of lateral adventitious roots in tomato. Better contrast was observed in relaxation-based MRI using higher in-plane resolution but this also resulted in a significant reduction in the signal-to-noise ratio of the T2-weighted MR images. Diffusion MRI revealed that water diffusion is highly anisotropic in the vascular cylinder. QSI and d-PGSE MRI showed that in the vascular cylinder some of the cells have sizes in the range of 6–10 μm. The MR images captured cell reorganization during adventitious root formation in the periphery of the primary vascular bundles, adjacent to the xylem pole that broke through the cortex and epidermis layers. This study demonstrates that MRI and diffusion MRI methods allow the non-invasive study of microstructural features of plants, and enable microstructural changes associated with adventitious root formation to be followed. PMID:28398563
Detailed magnetic resonance imaging features of a case series of primary gliosarcoma.
Sampaio, Luísa; Linhares, Paulo; Fonseca, José
2017-12-01
Objective We aimed to characterise the magnetic resonance imaging (MRI) features of a case series of primary gliosarcoma, with the inclusion of diffusion-weighted imaging and perfusion imaging with dynamic susceptibility contrast MRI. Materials and methods We conducted a retrospective study of cases of primary gliosarcoma from the Pathology Department database from January 2006 to December 2014. Clinical and demographic data were obtained. Two neuroradiologists, blinded to diagnosis, assessed tumour location, signal intensity in T1 and T2-weighted images, pattern of enhancement, diffusion-weighted imaging and dynamic susceptibility contrast MRI studies on preoperative MRI. Results Seventeen patients with primary gliosarcomas had preoperative MRI study: seven men and 10 women, with a mean age of 59 years (range 27-74). All lesions were well demarcated, supratentorial and solitary (frontal n = 5, temporal n = 4, parietal n = 3); 13 tumours abutted the dural surface (8/13 with dural enhancement); T1 and T2-weighted imaging patterns were heterogeneous and the majority of lesions (12/17) showed a rim-like enhancement pattern with focal nodularities/irregular thickness. Restricted diffusion (mean apparent diffusion coefficient values 0.64 × 10 -3 mm 2 /s) in the more solid/thick components was present in eight out of 11 patients with diffusion-weighted imaging study. Dynamic susceptibility contrast MRI study ( n = 8) consistently showed hyperperfusion in non-necrotic/cystic components on relative cerebral volume maps. Conclusions The main distinguishing features of primary gliosarcoma are supratentorial and peripheral location, well-defined boundaries and a rim-like pattern of enhancement with an irregular thick wall. Diffusion-weighted imaging and relative cerebral volume map analysis paralleled primary gliosarcoma with high-grade gliomas, thus proving helpful in differential diagnosis.
Diffusion MRI: literature review in salivary gland tumors.
Attyé, A; Troprès, I; Rouchy, R-C; Righini, C; Espinoza, S; Kastler, A; Krainik, A
2017-07-01
Surgical resection is currently the best treatment for salivary gland tumors. A reliable magnetic resonance imaging mapping, encompassing tumor grade, location, and extension may assist safe and effective tumor resection and provide better information for patients regarding potential risks and morbidity after surgical intervention. However, direct examination of the tumor grade and extension using conventional morphological MRI remains difficult, often requiring contrast media injection and complex algorithms on perfusion imaging to estimate the degree of malignancy. In addition, contrast-enhanced MRI technique may be problematic due to the recently demonstrated gadolinium accumulation in the dentate nucleus of the cerebellum. Significant developments in magnetic resonance diffusion imaging, involving voxel-based quantitative analysis through the measurement of the apparent diffusion coefficient, have enhanced our knowledge on the different histopathological salivary tumor grades. Other diffusion imaging-derived techniques, including high-order tractography models, have recently demonstrated their usefulness in assessing the facial nerve location in parotid tumor context. All of these imaging techniques do not require contrast media injection. Our review starts by outlining the physical basis of diffusion imaging, before discussing findings from diagnostic studies testing its usefulness in assessing salivary glands tumors with diffusion MRI. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mulkern, Robert V; Haker, Steven J; Maier, Stephan E
2007-07-01
Tissue water molecules reside in different biophysical compartments. For example, water molecules in the vasculature reside for variable periods of time within arteries, arterioles, capillaries, venuoles and veins, and may be within blood cells or blood plasma. Water molecules outside of the vasculature, in the extravascular space, reside, for a time, either within cells or within the interstitial space between cells. Within these different compartments, different types of microscopic motion that water molecules may experience have been identified and discussed. These range from Brownian diffusion to more coherent flow over the time scales relevant to functional magnetic resonance imaging (fMRI) experiments, on the order of several 10s of milliseconds. How these different types of motion are reflected in magnetic resonance imaging (MRI) methods developed for "diffusion" imaging studies has been an ongoing and active area of research. Here we briefly review the ideas that have developed regarding these motions within the context of modern "diffusion" imaging techniques and, in particular, how they have been accessed in attempts to further our understanding of the various contributions to the fMRI signal changes sought in studies of human brain activation.
[From Brownian motion to mind imaging: diffusion MRI].
Le Bihan, Denis
2006-11-01
The success of diffusion MRI, which was introduced in the mid 1980s is deeply rooted in the powerful concept that during their random, diffusion-driven movements water molecules probe tissue structure at a microscopic scale well beyond the usual image resolution. The observation of these movements thus provides valuable information on the structure and the geometric organization of tissues. The most successful application of diffusion MRI has been in brain ischemia, following the discovery that water diffusion drops at a very early stage of the ischemic event. Diffusion MRI provides some patients with the opportunity to receive suitable treatment at a very acute stage when brain tissue might still be salvageable. On the other hand, diffusion is modulated by the spatial orientation of large bundles of myelinated axons running in parallel through in brain white matter. This feature can be exploited to map out the orientation in space of the white matter tracks and to visualize the connections between different parts of the brain on an individual basis. Furthermore, recent data suggest that diffusion MRI may also be used to visualize rapid dynamic tissue changes, such as neuronal swelling, associated with cortical activation, offering a new and direct approach to brain functional imaging.
Joint 6D k-q Space Compressed Sensing for Accelerated High Angular Resolution Diffusion MRI.
Cheng, Jian; Shen, Dinggang; Basser, Peter J; Yap, Pew-Thian
2015-01-01
High Angular Resolution Diffusion Imaging (HARDI) avoids the Gaussian. diffusion assumption that is inherent in Diffusion Tensor Imaging (DTI), and is capable of characterizing complex white matter micro-structure with greater precision. However, HARDI methods such as Diffusion Spectrum Imaging (DSI) typically require significantly more signal measurements than DTI, resulting in prohibitively long scanning times. One of the goals in HARDI research is therefore to improve estimation of quantities such as the Ensemble Average Propagator (EAP) and the Orientation Distribution Function (ODF) with a limited number of diffusion-weighted measurements. A popular approach to this problem, Compressed Sensing (CS), affords highly accurate signal reconstruction using significantly fewer (sub-Nyquist) data points than required traditionally. Existing approaches to CS diffusion MRI (CS-dMRI) mainly focus on applying CS in the q-space of diffusion signal measurements and fail to take into consideration information redundancy in the k-space. In this paper, we propose a framework, called 6-Dimensional Compressed Sensing diffusion MRI (6D-CS-dMRI), for reconstruction of the diffusion signal and the EAP from data sub-sampled in both 3D k-space and 3D q-space. To our knowledge, 6D-CS-dMRI is the first work that applies compressed sensing in the full 6D k-q space and reconstructs the diffusion signal in the full continuous q-space and the EAP in continuous displacement space. Experimental results on synthetic and real data demonstrate that, compared with full DSI sampling in k-q space, 6D-CS-dMRI yields excellent diffusion signal and EAP reconstruction with low root-mean-square error (RMSE) using 11 times less samples (3-fold reduction in k-space and 3.7-fold reduction in q-space).
Diffusion tensor imaging, white matter lesions, the corpus callosum, and gait in the elderly
USDA-ARS?s Scientific Manuscript database
Gait impairment is common in the elderly, especially affected by stroke and white matter hyper intensities found in conventional brain magnetic resonance imaging (MRI). Diffusion tensor imaging (DTI) is more sensitive to white matter damage than conventional MRI. The relationship between DTI measure...
Diffusion-weighted Breast MRI: Clinical Applications and Emerging Techniques
Partridge, Savannah C.; Nissan, Noam; Rahbar, Habib; Kitsch, Averi E.; Sigmund, Eric E.
2016-01-01
Diffusion weighted MRI (DWI) holds potential to improve the detection and biological characterization of breast cancer. DWI is increasingly being incorporated into breast MRI protocols to address some of the shortcomings of routine clinical breast MRI. Potential benefits include improved differentiation of benign and malignant breast lesions, assessment and prediction of therapeutic efficacy, and non-contrast detection of breast cancer. The breast presents a unique imaging environment with significant physiologic and inter-subject variations, as well as specific challenges to achieving reliable high quality diffusion weighted MR images. Technical innovations are helping to overcome many of the image quality issues that have limited widespread use of DWI for breast imaging. Advanced modeling approaches to further characterize tissue perfusion, complexity, and glandular organization may expand knowledge and yield improved diagnostic tools. PMID:27690173
Imširović, Bilal; Zerem, Enver; Efendić, Alma; Mekić Abazović, Alma; Zerem, Omar; Djedović, Muhamed
2018-08-01
Aim To determine capabilities and potential of contrast enhanced magnetic resonance imaging (MRI) enterography in order to establish the diagnosis and to evaluate severity and activity of intestinal inflammation. Methods Fifty-five patients with suspicion for presence of Crohn's disease were evaluated. All patients underwent contrast enhanced MRI enterography and diffusion weighted imaging (DWI), and subsequently endoscopic examination or surgical treatment. Four parameters were analysed: thickening of the bowel wall, and presence of abscess, fistula and lymphadenopathy. Results Comparing results of DWI and contrast enhanced MRI enterography a significant difference between results given through diffusion and histopathological test was found, e.g. a significant difference between results obtained through diffusion and MRI enterography was found. MRI enterography sensitiveness for bowel wall thickening was 97.7% and specificity 70%, whilst DWI sensitivity for bowel wall thickening was 84% and specificity 100%. The diagnostics of abscess and fistula showed no significant difference between DWI and MRI, while in lymphadenopathy significant difference between contrast enhanced MRI enterography and DWI was found. Conclusion Contrast enhanced MRI enterography in combination with DWI allows for excellent evaluation of disease activity, but also problems or complications following it. The examination can be repeated, controlled, and it can contribute to monitoring of patients with this disease. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.
The use of Polyvinyl Pyrrolidone (PVP) solutions of varying concentrations as phantoms for diffusion MRI calibration and quality control is disclosed. This diffusion MRI phantom material is already being adopted by radiologists for quality control and assurance in clinical studies.
Farrar, Danielle; Budson, Andrew E
2017-04-01
While the relationship between diffusion tensor imaging (DTI) measurements and training effects is explored by Voelker et al. (this issue), a cursory discussion of functional magnetic resonance imaging (fMRI) measurements categorizes increased activation with findings of greater white matter integrity. Evidence of the relationship between fMRI activation and white matter integrity is conflicting, as is the relationship between fMRI activation and training effects. An examination of the changes in fMRI activation in response to training is helpful, but the relationship between DTI and fMRI activation, particularly in the context of white matter changes, must be examined further before general conclusions can be drawn.
Koh, D-M; Collins, D J; Wallace, T; Chau, I; Riddell, A M
2012-07-01
To compare the diagnostic accuracy of gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI, diffusion-weighted MRI (DW-MRI) and a combination of both techniques for the detection of colorectal hepatic metastases. 72 patients with suspected colorectal liver metastases underwent Gd-EOB-DTPA MRI and DW-MRI. Images were retrospectively reviewed with unenhanced T(1) and T(2) weighted images as Gd-EOB-DTPA image set, DW-MRI image set and combined image set by two independent radiologists. Each lesion detected was scored for size, location and likelihood of metastasis, and compared with surgery and follow-up imaging. Diagnostic accuracy was compared using receiver operating characteristics and interobserver agreement by kappa statistics. 417 lesions (310 metastases, 107 benign) were found in 72 patients. For both readers, diagnostic accuracy using the combined image set was higher [area under the curve (Az)=0.96, 0.97] than Gd-EOB-DTPA image set (Az=0.86, 0.89) or DW-MRI image set (Az=0.93, 0.92). Using combined image set improved identification of liver metastases compared with Gd-EOB-DTPA image set (p<0.001) or DW-MRI image set (p<0.001). There was very good interobserver agreement for lesion classification (κ=0.81-0.88). Combining DW-MRI with Gd-EOB-DTPA-enhanced T(1) weighted MRI significantly improved the detection of colorectal liver metastases.
Jabeen, S A; Cherukuri, Pavankumar; Mridula, Rukmini; Harshavardhana, K R; Gaddamanugu, Padmaja; Sarva, Sailaja; Meena, A K; Borgohain, Rupam; Jyotsna Rani, Y
2017-04-01
To study the frequency, imaging characteristics, and clinical predictors for development of periictal diffusion weighted MRI abnormalities. We prospectively analyzed electro clinical and imaging characteristic of adult patients with cluster of seizures or status epilepticus between November 2013 and November 2015, in whom the diffusion weighted imaging was done within 24h after the end of last seizure (clinical or electrographic). There were thirty patients who fulfilled the inclusion and exclusion criteria. Twenty patients (66%) had periictal MRI abnormalities. Nine patients (34%) did not have any MRI abnormality. All the patients with PMA had abnormalities on diffusion weighted imaging (DWI). Hippocampal abnormalities were seen in nine (53%), perisylvian in two (11.7%), thalamic in five (30%), splenium involvement in two (11.7%) and cortical involvement (temporo-occipital, parieto-occipital, temporo-parietal, fronto-parietal and fronto-temporal) in sixteen (94.1%) patients. Complete reversal of DWI changes was noted in sixteen (80%) patients and four (20%) patients showed partial resolution of MRI abnormalities. Mean duration of seizures was significantly higher among patients with PMA (59.11+20.97h) compared to those without MRI changes (27.33+9.33h) (p<0.001). Diffusion abnormalities on MRI are common in patients with cluster of seizures and status epilepticus and were highly concordant with clinical semiology and EEG activity. Patients with longer duration of seizures/status were more likely to have PMA. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Luk, Alex T.; Lin, Yuting; Grimmond, Brian; Sood, Anup; Uzgiris, Egidijus E.; Nalcioglu, Orhan; Gulsen, Gultekin
2013-03-01
Since diffuse optical tomography (DOT) is a low spatial resolution modality, it is desirable to validate its quantitative accuracy with another well-established imaging modality, such as magnetic resonance imaging (MRI). In this work, we have used a polymer based bi-functional MRI-optical contrast agent (Gd-DTPA-polylysine-IR800) in collaboration with GE Global Research. This multi-modality contrast agent provided not only co-localization but also the same kinetics, to cross-validate two imaging modalities. Bi-functional agents are injected to the rats and pharmacokinetics at the bladder are recovered using both optical and MR imaging. DOT results are validated using MRI results as "gold standard"
Hurley, Samuel A.; Samsonov, Alexey A.; Adluru, Nagesh; Hosseinbor, Ameer Pasha; Mossahebi, Pouria; Tromp, Do P.M.; Zakszewski, Elizabeth; Field, Aaron S.
2011-01-01
Abstract The image contrast in magnetic resonance imaging (MRI) is highly sensitive to several mechanisms that are modulated by the properties of the tissue environment. The degree and type of contrast weighting may be viewed as image filters that accentuate specific tissue properties. Maps of quantitative measures of these mechanisms, akin to microstructural/environmental-specific tissue stains, may be generated to characterize the MRI and physiological properties of biological tissues. In this article, three quantitative MRI (qMRI) methods for characterizing white matter (WM) microstructural properties are reviewed. All of these measures measure complementary aspects of how water interacts with the tissue environment. Diffusion MRI, including diffusion tensor imaging, characterizes the diffusion of water in the tissues and is sensitive to the microstructural density, spacing, and orientational organization of tissue membranes, including myelin. Magnetization transfer imaging characterizes the amount and degree of magnetization exchange between free water and macromolecules like proteins found in the myelin bilayers. Relaxometry measures the MRI relaxation constants T1 and T2, which in WM have a component associated with the water trapped in the myelin bilayers. The conduction of signals between distant brain regions occurs primarily through myelinated WM tracts; thus, these methods are potential indicators of pathology and structural connectivity in the brain. This article provides an overview of the qMRI stain mechanisms, acquisition and analysis strategies, and applications for these qMRI stains. PMID:22432902
Assessing the sensitivity of diffusion MRI to detect neuronal activity directly.
Bai, Ruiliang; Stewart, Craig V; Plenz, Dietmar; Basser, Peter J
2016-03-22
Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity.
Assessing the sensitivity of diffusion MRI to detect neuronal activity directly
Bai, Ruiliang; Stewart, Craig V.; Plenz, Dietmar; Basser, Peter J.
2016-01-01
Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity. PMID:26941239
Thomas, Andrew J; Wiggins, Richard H; Gurgel, Richard K
2017-08-01
To describe a case of metastatic renal cell carcinoma (RCC) masquerading as a jugular foramen paraganglioma (JP). To compare imaging findings between skull base metastatic RCC and histologically proven paraganglioma. A case of unexpected metastatic skull base RCC is reviewed. Computed tomography (CT) and magnetic resonance imaging (MRI) were compared between 3 confirmed cases of JP and our case of metastatic RCC. Diffusion-weighted MRI (DW-MRI) sequences and computed apparent diffusion coefficient (ADC) values were compared between these entities. A 55-year-old man presents with what appears clinically and radiographically to be JP. The tumor was resected, then discovered on postoperative pathology to be metastatic RCC. Imaging was retrospectively compared between 3 histologically confirmed cases of JP and our case of skull base RCC. The RCC metastasis was indistinguishable from JP on CT and traditional MRI but distinct by ADC values calculated from DW-MRI. Metastatic RCC at the skull base may mimic the clinical presentation and radiographic appearance of JP. The MRI finding of flow voids is seen in both paraganglioma and metastatic RCC. Diffusion-weighted MRI is able to distinguish these entities, highlighting its potential utility in distinguishing skull base lesions.
Terada, Yukinori; Toda, Hiroki; Okumura, Ryosuke; Ikeda, Naokado; Yuba, Yoshiaki; Katayama, Toshiro; Iwasaki, Koichi
2018-03-01
Microcystic meningioma, a rare meningioma subtype, can present diagnostic difficulty. We aimed to investigate the historadiological properties of microcystic meningioma using conventional magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) analysis. We retrospectively analyzed conventional MRI and DWI results of six microcystic meningioma cases by examining their appearance and determining their apparent diffusion coefficient (ADC) values. The ADC values of the intratumoral components were normalized with ADC values of the cerebrospinal fluid in the lateral ventricle (ADC ratios). As cystic formations are frequently associated with microcystic meningiomas, their MRI characteristics were compared with the imaging data from 11 cystic meningiomas of non-microcystic subtypes. We found that cysts in microcystic meningioma tended to have a reticular appearance on DWI, as they did on gadolinium-enhanced T1-weighted imaging. Additionally, these reticular cysts had significantly lower ADC ratios than microcystic non-reticular and non-microcystic cysts. These DWI characteristics likely reflect the histological properties of microcystic meningioma. A reticular appearance on gadolinium-enhanced T1-weighted MRI and DWI, and cyst formation with relatively low ADC values can be diagnostic markers of microcystic meningiomas.
Albayrak, Eda; Sonmezgoz, Fitnet; Ozmen, Zafer; Aktas, Fatma; Altunkas, Aysegul
2017-01-01
A 26-year-old female patient with Type 1 Gaucher’s disease (GD) was admitted to our clinic with complaints of stomachache and signs of anemia. The patient underwent ultrasonography (US), computerised tomography (CT), and magnetic resonance imaging (MRI) scan. Imaging studies revealed massive hepatosplenomegaly, choledocolithiasis, and six nodules in the spleen with a mean size of 14 mm. The nodules appeared hyperechoic, hypoechoic, and of mixed echogenicity on the US and hypodense on the CT. While the nodules were observed to be iso-hypointense in T1-weighted (T1WI) images, they appeared to be hyperintense in the T2-weighted (T2WI) images. There were no diffusion restrictions in these nodules that appeared on the diffusion-weighted magnetic resonance imaging (DWI). A nodule located at the lower pole was observed to be hypointense in the T2WI images. The nodule located at the lower pole, which appeared hypointense in T2WI series, had restricted diffusion upon DWI. In this study, we aimed to present the properties of splenic GD nodules using US, CT, and conventional MRI, together with DWI. This case report is the first to apply US, CT, and conventional MRI, together with DWI, to the splenic nodules associated with Gaucher’s disease. PMID:29386979
Non-invasive imaging using reporter genes altering cellular water permeability
NASA Astrophysics Data System (ADS)
Mukherjee, Arnab; Wu, Di; Davis, Hunter C.; Shapiro, Mikhail G.
2016-12-01
Non-invasive imaging of gene expression in live, optically opaque animals is important for multiple applications, including monitoring of genetic circuits and tracking of cell-based therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high spatiotemporal resolution. However, existing MRI reporter genes based on metalloproteins or chemical exchange probes are limited by their reliance on metals or relatively low sensitivity. Here we introduce a new class of MRI reporters based on the human water channel aquaporin 1. We show that aquaporin overexpression produces contrast in diffusion-weighted MRI by increasing tissue water diffusivity without affecting viability. Low aquaporin levels or mixed populations comprising as few as 10% aquaporin-expressing cells are sufficient to produce MRI contrast. We characterize this new contrast mechanism through experiments and simulations, and demonstrate its utility in vivo by imaging gene expression in tumours. Our results establish an alternative class of sensitive, metal-free reporter genes for non-invasive imaging.
A brain MRI atlas of the common squirrel monkey, Saimiri sciureus
NASA Astrophysics Data System (ADS)
Gao, Yurui; Schilling, Kurt G.; Khare, Shweta P.; Panda, Swetasudha; Choe, Ann S.; Stepniewska, Iwona; Li, Xia; Ding, Zhoahua; Anderson, Adam; Landman, Bennett A.
2014-03-01
The common squirrel monkey, Saimiri sciureus, is a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. It is one of the most commonly used South American primates in biomedical research. Unlike its Old World macaque cousins, no digital atlases have described the organization of the squirrel monkey brain. Here, we present a multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. In vivo MRI acquisitions include high resolution T2 structural imaging and low resolution diffusion tensor imaging. Ex vivo MRI acquisitions include high resolution T2 structural imaging and high resolution diffusion tensor imaging. Cortical regions were manually annotated on the co-registered volumes based on published histological sections.
Li, Chunmei; Chen, Min; Li, Saying; Zhao, Xuna; Zhang, Chen; Luo, Xiaojie; Zhou, Cheng
2014-03-01
Previous studies have shown that the diagnostic accuracy for prostate cancer improved with diffusion tensor imaging (DTI) or quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) only. However, the efficacy of combined DTI and quantitative DCE-MRI in detecting prostate cancer at 3.0 T is still indeterminate. To investigate the utility of diffusion tensor imaging (DTI), quantitative DCE-MRI, and the two techniques combined at 3.0 T in detecting prostate cancer of the peripheral zone (PZ). DTI and DCE-MRI of 33 patients was acquired prior to prostate biopsy. Regions of interest (ROIs) were drawn according to biopsy zones which were apex, mid-gland, and base on each side of the PZ. Apparent diffusion coefficient (ADC), fractional anisotropy (FA), volume transfer constant (K(trans)), and rate constant (kep) values of cancerous sextants and non-cancerous sextants in PZ were calculated. Logistic regression models were generated for DTI, DCE-MRI, and DTI + DCE-MRI. Receiver-operating characteristic (ROC) curves were used to compare the ability of these models to differentiate cancerous sextants from non-cancerous sextants of PZ. There were significant differences in the ADC, FA, K(trans), and kep values between cancerous sextants and non-cancerous sextants in PZ (P < 0.0001, P < 0.0001, P < 0.0001, and P < 0.0001, respectively). The area under curve (AUC) for DTI + DCE-MRI was significantly greater than that for either DTI (0.93 vs. 0.86, P = 0.0017) or DCE-MRI (0.93 vs. 0.84, P = 0.0034) alone. The combination of DTI and quantitative DCE-MRI has better diagnostic performance in detecting prostate cancer of the PZ than either technique alone.
Dipy, a library for the analysis of diffusion MRI data.
Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian
2014-01-01
Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing.
Dipy, a library for the analysis of diffusion MRI data
Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian
2014-01-01
Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing. PMID:24600385
Pitfalls of diffusion-weighted imaging of the female pelvis
Duarte, Ana Luisa; Dias, João Lopes; Cunha, Teresa Margarida
2018-01-01
Diffusion-weighted imaging (DWI) is widely used in protocols for magnetic resonance imaging (MRI) of the female pelvis. It provides functional and structural information about biological tissues, without the use of ionizing radiation or intravenous administration of contrast medium. High signal intensity on DWI with simultaneous low signal intensity on apparent diffusion coefficient maps is usually associated with malignancy. However, that pattern can also be seen in many benign lesions, a fact that should be recognized by radiologists. Correlating DWI findings with those of conventional (T1- and T2-weighted) MRI sequences and those of contrast-enhanced MRI sequences is mandatory in order to avoid potential pitfalls. The aim of this review article is the description of the most relevant physiological and benign pathological conditions of the female pelvis that can show restricted diffusion on DWI. PMID:29559764
Magnetic Resonance Imaging of Liver Metastasis.
Karaosmanoglu, Ali Devrim; Onur, Mehmet Ruhi; Ozmen, Mustafa Nasuh; Akata, Deniz; Karcaaltincaba, Musturay
2016-12-01
Liver magnetic resonance imaging (MRI) is becoming the gold standard in liver metastasis detection and treatment response assessment. The most sensitive magnetic resonance sequences are diffusion-weighted images and hepatobiliary phase images after Gd-EOB-DTPA. Peripheral ring enhancement, diffusion restriction, and hypointensity on hepatobiliary phase images are hallmarks of liver metastases. In patients with normal ultrasonography, computed tomography (CT), and positron emission tomography (PET)-CT findings and high clinical suspicion of metastasis, MRI should be performed for diagnosis of unseen metastasis. In melanoma, colon cancer, and neuroendocrine tumor metastases, MRI allows confident diagnosis of treatment-related changes in liver and enables differential diagnosis from primary liver tumors. Focal nodular hyperplasia-like nodules in patients who received platinum-based chemotherapy, hypersteatosis, and focal fat can mimic metastasis. In cancer patients with fatty liver, MRI should be preferred to CT. Although the first-line imaging for metastases is CT, MRI can be used as a problem-solving method. MRI may be used as the first-line method in patients who would undergo curative surgery or metastatectomy. Current limitation of MRI is low sensitivity for metastasis smaller than 3mm. MRI fingerprinting, glucoCEST MRI, and PET-MRI may allow simpler and more sensitive diagnosis of liver metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.
Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-11-01
Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes.
Design of Multishell Sampling Schemes with Uniform Coverage in Diffusion MRI
Caruyer, Emmanuel; Lenglet, Christophe; Sapiro, Guillermo; Deriche, Rachid
2017-01-01
Purpose In diffusion MRI, a technique known as diffusion spectrum imaging reconstructs the propagator with a discrete Fourier transform, from a Cartesian sampling of the diffusion signal. Alternatively, it is possible to directly reconstruct the orientation distribution function in q-ball imaging, providing so-called high angular resolution diffusion imaging. In between these two techniques, acquisitions on several spheres in q-space offer an interesting trade-off between the angular resolution and the radial information gathered in diffusion MRI. A careful design is central in the success of multishell acquisition and reconstruction techniques. Methods The design of acquisition in multishell is still an open and active field of research, however. In this work, we provide a general method to design multishell acquisition with uniform angular coverage. This method is based on a generalization of electrostatic repulsion to multishell. Results We evaluate the impact of our method using simulations, on the angular resolution in one and two bundles of fiber configurations. Compared to more commonly used radial sampling, we show that our method improves the angular resolution, as well as fiber crossing discrimination. Discussion We propose a novel method to design sampling schemes with optimal angular coverage and show the positive impact on angular resolution in diffusion MRI. PMID:23625329
Tao, Ran; Fletcher, P Thomas; Gerber, Samuel; Whitaker, Ross T
2009-01-01
This paper presents a method for correcting the geometric and greyscale distortions in diffusion-weighted MRI that result from inhomogeneities in the static magnetic field. These inhomogeneities may due to imperfections in the magnet or to spatial variations in the magnetic susceptibility of the object being imaged--so called susceptibility artifacts. Echo-planar imaging (EPI), used in virtually all diffusion weighted acquisition protocols, assumes a homogeneous static field, which generally does not hold for head MRI. The resulting distortions are significant, sometimes more than ten millimeters. These artifacts impede accurate alignment of diffusion images with structural MRI, and are generally considered an obstacle to the joint analysis of connectivity and structure in head MRI. In principle, susceptibility artifacts can be corrected by acquiring (and applying) a field map. However, as shown in the literature and demonstrated in this paper, field map corrections of susceptibility artifacts are not entirely accurate and reliable, and thus field maps do not produce reliable alignment of EPIs with corresponding structural images. This paper presents a new, image-based method for correcting susceptibility artifacts. The method relies on a variational formulation of the match between an EPI baseline image and a corresponding T2-weighted structural image but also specifically accounts for the physics of susceptibility artifacts. We derive a set of partial differential equations associated with the optimization, describe the numerical methods for solving these equations, and present results that demonstrate the effectiveness of the proposed method compared with field-map correction.
Brunelle, S.; Bertucci, F.; Chetaille, B.; Lelong, B.; Piana, G.; Sarran, A.
2013-01-01
Introduction Aggressive angiomyxoma (AA) is a rare benign soft tissue tumour usually affecting the pelvis and perineum of young women. Magnetic resonance imaging (MRI) is crucial in the management of AA patients for its diagnostic contribution and for the preoperative assessment of the actual tumour extension. Given the current development of less aggressive therapeutics associated with a higher risk of recurrence, close follow-up with MRI is fundamental after treatment. In this context, diffusion-weighted (DW) imaging has already shown high efficacy in the detection of early small relapses in prostate or rectal cancer. Case Report We report here a case of pelvic AA in a 51-year-old woman examined with dynamic contrast enhancement and DW-MRI, including apparent diffusion coefficient mapping and calculation. Conclusion To our knowledge, this is the first description of DW-MRI in AA reported in the literature. Here, knowledge about imaging features of AA will be reviewed and expanded. PMID:23904848
Brunelle, S; Bertucci, F; Chetaille, B; Lelong, B; Piana, G; Sarran, A
2013-05-01
Aggressive angiomyxoma (AA) is a rare benign soft tissue tumour usually affecting the pelvis and perineum of young women. Magnetic resonance imaging (MRI) is crucial in the management of AA patients for its diagnostic contribution and for the preoperative assessment of the actual tumour extension. Given the current development of less aggressive therapeutics associated with a higher risk of recurrence, close follow-up with MRI is fundamental after treatment. In this context, diffusion-weighted (DW) imaging has already shown high efficacy in the detection of early small relapses in prostate or rectal cancer. We report here a case of pelvic AA in a 51-year-old woman examined with dynamic contrast enhancement and DW-MRI, including apparent diffusion coefficient mapping and calculation. To our knowledge, this is the first description of DW-MRI in AA reported in the literature. Here, knowledge about imaging features of AA will be reviewed and expanded.
Individual classification of Alzheimer's disease with diffusion magnetic resonance imaging.
Schouten, Tijn M; Koini, Marisa; Vos, Frank de; Seiler, Stephan; Rooij, Mark de; Lechner, Anita; Schmidt, Reinhold; Heuvel, Martijn van den; Grond, Jeroen van der; Rombouts, Serge A R B
2017-05-15
Diffusion magnetic resonance imaging (MRI) is a powerful non-invasive method to study white matter integrity, and is sensitive to detect differences in Alzheimer's disease (AD) patients. Diffusion MRI may be able to contribute towards reliable diagnosis of AD. We used diffusion MRI to classify AD patients (N=77), and controls (N=173). We use different methods to extract information from the diffusion MRI data. First, we use the voxel-wise diffusion tensor measures that have been skeletonised using tract based spatial statistics. Second, we clustered the voxel-wise diffusion measures with independent component analysis (ICA), and extracted the mixing weights. Third, we determined structural connectivity between Harvard Oxford atlas regions with probabilistic tractography, as well as graph measures based on these structural connectivity graphs. Classification performance for voxel-wise measures ranged between an AUC of 0.888, and 0.902. The ICA-clustered measures ranged between an AUC of 0.893, and 0.920. The AUC for the structural connectivity graph was 0.900, while graph measures based upon this graph ranged between an AUC of 0.531, and 0.840. All measures combined with a sparse group lasso resulted in an AUC of 0.896. Overall, fractional anisotropy clustered into ICA components was the best performing measure. These findings may be useful for future incorporation of diffusion MRI into protocols for AD classification, or as a starting point for early detection of AD using diffusion MRI. Copyright © 2017 Elsevier Inc. All rights reserved.
Whole-body diffusion-weighted MR image stitching and alignment to anatomical MRI
NASA Astrophysics Data System (ADS)
Ceranka, Jakub; Polfliet, Mathias; Lecouvet, Frederic; Michoux, Nicolas; Vandemeulebroucke, Jef
2017-02-01
Whole-body diffusion-weighted (WB-DW) MRI in combination with anatomical MRI has shown a great poten- tial in bone and soft tissue tumour detection, evaluation of lymph nodes and treatment response assessment. Because of the vast body coverage, whole-body MRI is acquired in separate stations, which are subsequently combined into a whole-body image. However, inter-station and inter-modality image misalignments can occur due to image distortions and patient motion during acquisition, which may lead to inaccurate representations of patient anatomy and hinder visual assessment. Automated and accurate whole-body image formation and alignment of the multi-modal MRI images is therefore crucial. We investigated several registration approaches for the formation or stitching of the whole-body image stations, followed by a deformable alignment of the multi- modal whole-body images. We compared a pairwise approach, where diffusion-weighted (DW) image stations were sequentially aligned to a reference station (pelvis), to a groupwise approach, where all stations were simultaneously mapped to a common reference space while minimizing the overall transformation. For each, a choice of input images and corresponding metrics was investigated. Performance was evaluated by assessing the quality of the obtained whole-body images, and by verifying the accuracy of the alignment with whole-body anatomical sequences. The groupwise registration approach provided the best compromise between the formation of WB- DW images and multi-modal alignment. The fully automated method was found to be robust, making its use in the clinic feasible.
MGH-USC Human Connectome Project Datasets with Ultra-High b-Value Diffusion MRI
Fan, Qiuyun; Witzel, Thomas; Nummenmaa, Aapo; Van Dijk, Koene R.A.; Van Horn, John D.; Drews, Michelle K.; Somerville, Leah H.; Sheridan, Margaret A.; Santillana, Rosario M.; Snyder, Jenna; Hedden, Trey; Shaw, Emily E.; Hollinshead, Marisa O.; Renvall, Ville; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R.; Tisdall, Dylan; Buckner, Randy L.; Wedeen, Van J.; Wald, Lawrence L.; Toga, Arthur W.; Rosen, Bruce R.
2015-01-01
The MGH-USC CONNECTOM MRI scanner housed at the Massachusetts General Hospital (MGH) is a major hardware innovation of the Human Connectome Project (HCP). The 3T CONNECTOM scanner is capable of producing magnetic field gradient of up to 300 mT/m strength for in vivo human brain imaging, which greatly shortens the time spent on diffusion encoding, and decreases the signal loss due to T2 decay. To demonstrate the capability of the novel gradient system, data of healthy adult participants were acquired for this MGH-USC Adult Diffusion Dataset (N=35), minimally preprocessed, and shared through the Laboratory of Neuro Imaging Image Data Archive (LONI IDA) and the WU-Minn Connectome Database (ConnecomeDB). Another purpose of sharing the data is to facilitate methodological studies of diffusion MRI (dMRI) analyses utilizing high diffusion contrast, which perhaps is not easily feasible with standard MR gradient system. In addition, acquisition of the MGH-Harvard-USC Lifespan Dataset is currently underway to include 120 healthy participants ranging from 8 to 90 years old, which will also be shared through LONI IDA and ConnectomeDB. Here we describe the efforts of the MGH-USC HCP consortium in acquiring and sharing the ultra-high b-value diffusion MRI data and provide a report on data preprocessing and access. We conclude with a demonstration of the example data, along with results of standard diffusion analyses, including q-ball Orientation Distribution Function (ODF) reconstruction and tractography. PMID:26364861
Carlbom, Lina; Caballero-Corbalán, José; Granberg, Dan; Sörensen, Jens; Eriksson, Barbro; Ahlström, Håkan
2017-01-01
Aim We wanted to explore if whole-body magnetic resonance imaging (MRI) including diffusion-weighted (DW) and liver-specific contrast agent-enhanced imaging could be valuable in lesion detection of neuroendocrine tumors (NET). [11C]-5-Hydroxytryptophan positron emission tomography/computed tomography (5-HTP PET/CT) was used for comparison. Materials and methods Twenty-one patients with NET were investigated with whole-body MRI, including DW imaging (DWI) and contrast-enhanced imaging of the liver, and whole-body 5-HTP PET/CT. Seven additional patients underwent upper abdomen MRI including DWI, liver-specific contrast agent-enhanced imaging, and 5-HTP PET/CT. Results There was a patient-based concordance of 61% and a lesion-based concordance of 53% between the modalities. MRI showed good concordance with PET in detecting bone metastases but was less sensitive in detecting metastases in mediastinal lymph nodes. MRI detected more liver metastases than 5-HTP PET/CT. Conclusion Whole-body MRI with DWI did not detect all NET lesions found with whole-body 5-HTP PET/CT. Our findings indicate that MRI of the liver including liver-specific contrast agent-enhanced imaging and DWI could be a useful complement to whole-body 5-HTP PET/CT. PMID:27894208
Klenk, Christopher; Gawande, Rakhee; Uslu, Lebriz; Khurana, Aman; Qiu, Deqiang; Quon, Andrew; Donig, Jessica; Rosenberg, Jarrett; Luna-Fineman, Sandra; Moseley, Michael; Daldrup-Link, Heike E
2014-03-01
Imaging tests are essential for staging of children with cancer. However, CT and radiotracer-based imaging procedures are associated with substantial exposure to ionising radiation and risk of secondary cancer development later in life. Our aim was to create a highly effective, clinically feasible, ionising radiation-free staging method based on whole-body diffusion-weighted MRI and the iron supplement ferumoxytol, used off-label as a contrast agent. We compared whole-body diffusion-weighted MRI with standard clinical (18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT scans in children and young adults with malignant lymphomas and sarcomas. Whole-body diffusion-weighted magnetic resonance images were generated by coregistration of colour-encoded ferumoxytol-enhanced whole-body diffusion-weighted MRI scans for tumour detection with ferumoxytol-enhanced T1-weighted MRI scans for anatomical orientation, similar to the concept of integrated (18)F-FDG PET/CT scans. Tumour staging results were compared using Cohen's κ statistics. Histopathology and follow-up imaging served as the standard of reference. Data was assessed in the per-protocol population. This study is registered with ClinicalTrials.gov, number NCT01542879. 22 of 23 recruited patients were analysed because one patient discontinued before completion of the whole-body scan. Mean exposure to ionising radiation was 12·5 mSv (SD 4·1) for (18)F-FDG PET/CT compared with zero for whole-body diffusion-weighted MRI. (18)F-FDG PET/CT detected 163 of 174 malignant lesions at 1325 anatomical regions and whole-body diffusion-weighted MRI detected 158. Comparing (18)F-FDG PET/CT to whole-body diffusion-weighted MRI, sensitivities were 93·7% (95% CI 89·0-96·8) versus 90·8% (85·5-94·7); specificities 97·7% (95% CI 96·7-98·5) versus 99·5% (98·9-99·8); and diagnostic accuracies 97·2% (93·6-99·4) versus 98·3% (97·4-99·2). Tumour staging results showed very good agreement between both imaging modalities with a κ of 0·93 (0·81-1·00). No adverse events after administration of ferumoxytol were recorded. Ferumoxytol-enhanced whole-body diffusion-weighted MRI could be an alternative to (18)F-FDG PET/CT for staging of children and young adults with cancer that is free of ionising radiation. This new imaging test might help to prevent long-term side-effects from radiographic staging procedures. Thrasher Research Fund and Clinical Health Research Institute at Stanford University. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Tai-Yuan; Wu, Te-Chang; Tsui, Yu-Kun; Chen, Hou-Hsun; Lin, Chien-Jen; Lee, Huey-Jen; Wu, Tai-Ching
2015-01-01
Though diffusion-weighted (DW) magnetic resonance imaging (MRI) is useful for diagnosing many pathologies, its use in infectious spondylodiscitis is unclear. We aimed to evaluate the use of DW MRI and apparent diffusion coefficient (ADC) mapping for the diagnosis of infectious spondylodiscitis. In this retrospective study, 17 patients with confirmed infectious spondylodiscitis were matched by age and level of infected disc with 17 patients with degenerative disc disease (DDD) and 17 healthy controls. All patients received conventional MRI and diffusion-weighted imaging (DWI) in the same imaging session. ADC values of the 3 groups of patients were compared. The mean age of each group was 67.4 ± 11.6 years. The mean ADCs of the normal control, DDD, and infectious spondylodiscitis groups were 1.76 ± 0.19 × 10(-3) , 1.12 ± 0.22 × 10(-3) , and 1.27 ± 0.38 × 10(-3) mm2 /second, respectively. The ADCs of the DDD and infectious spondylodiscitis groups were both significantly lower than that of the normal control group (both, P < 0.001). These data suggest that DWI/ADC MRI may be useful in the early diagnosis of infectious spondylodiscitis. © 2014 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.
b matrix errors in echo planar diffusion tensor imaging
Boujraf, Saïd; Luypaert, Robert; Osteaux, Michel
2001-01-01
Diffusion‐weighted magnetic resonance imaging (DW‐MRI) is a recognized tool for early detection of infarction of the human brain. DW‐MRI uses the signal loss associated with the random thermal motion of water molecules in the presence of magnetic field gradients to derive parameters that reflect the translational mobility of the water molecules in tissues. If diffusion‐weighted images with different values of b matrix are acquired during one individual investigation, it is possible to calculate apparent diffusion coefficient maps that are the elements of the diffusion tensor. The diffusion tensor elements represent the apparent diffusion coefficient of protons of water molecules in each pixel in the corresponding sample. The relation between signal intensity in the diffusion‐weighted images, diffusion tensor, and b matrix is derived from the Bloch equations. Our goal is to establish the magnitude of the error made in the calculation of the elements of the diffusion tensor when the imaging gradients are ignored. PACS number(s): 87.57. –s, 87.61.–c PMID:11602015
Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Yoon, Ra Gyoung; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Baek, Jung Hwan; Lee, Jeong Hyun
2016-01-01
To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D(*)), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D(*) and model-free parameters from the DCE-MRI (wash-in, Tmax, Emax, initial AUC60, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D(*) and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D(*) (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.
Malyarenko, Dariya; Newitt, David; Wilmes, Lisa; Tudorica, Alina; Helmer, Karl G.; Arlinghaus, Lori R.; Jacobs, Michael A.; Jajamovich, Guido; Taouli, Bachir; Yankeelov, Thomas E.; Huang, Wei; Chenevert, Thomas L.
2015-01-01
Purpose Characterize system-specific bias across common magnetic resonance imaging (MRI) platforms for quantitative diffusion measurements in multicenter trials. Methods Diffusion weighted imaging (DWI) was performed on an ice-water phantom along the superior-inferior (SI) and right-left (RL) orientations spanning ±150 mm. The same scanning protocol was implemented on 14 MRI systems at seven imaging centers. The bias was estimated as a deviation of measured from known apparent diffusion coefficient (ADC) along individual DWI directions. The relative contributions of gradient nonlinearity, shim errors, imaging gradients and eddy currents were assessed independently. The observed bias errors were compared to numerical models. Results The measured systematic ADC errors scaled quadratically with offset from isocenter, and ranged between −55% (SI) and 25% (RL). Nonlinearity bias was dependent on system design and diffusion gradient direction. Consistent with numerical models, minor ADC errors (±5%) due to shim, imaging and eddy currents were mitigated by double echo DWI and image co-registration of individual gradient directions. Conclusion The analysis confirms gradient nonlinearity as a major source of spatial DW bias and variability in off-center ADC measurements across MRI platforms, with minor contributions from shim, imaging gradients and eddy currents. The developed protocol enables empiric description of systematic bias in multicenter quantitative DWI studies. PMID:25940607
Malyarenko, Dariya I; Newitt, David; J Wilmes, Lisa; Tudorica, Alina; Helmer, Karl G; Arlinghaus, Lori R; Jacobs, Michael A; Jajamovich, Guido; Taouli, Bachir; Yankeelov, Thomas E; Huang, Wei; Chenevert, Thomas L
2016-03-01
Characterize system-specific bias across common magnetic resonance imaging (MRI) platforms for quantitative diffusion measurements in multicenter trials. Diffusion weighted imaging (DWI) was performed on an ice-water phantom along the superior-inferior (SI) and right-left (RL) orientations spanning ± 150 mm. The same scanning protocol was implemented on 14 MRI systems at seven imaging centers. The bias was estimated as a deviation of measured from known apparent diffusion coefficient (ADC) along individual DWI directions. The relative contributions of gradient nonlinearity, shim errors, imaging gradients, and eddy currents were assessed independently. The observed bias errors were compared with numerical models. The measured systematic ADC errors scaled quadratically with offset from isocenter, and ranged between -55% (SI) and 25% (RL). Nonlinearity bias was dependent on system design and diffusion gradient direction. Consistent with numerical models, minor ADC errors (± 5%) due to shim, imaging and eddy currents were mitigated by double echo DWI and image coregistration of individual gradient directions. The analysis confirms gradient nonlinearity as a major source of spatial DW bias and variability in off-center ADC measurements across MRI platforms, with minor contributions from shim, imaging gradients and eddy currents. The developed protocol enables empiric description of systematic bias in multicenter quantitative DWI studies. © 2015 Wiley Periodicals, Inc.
Sparse and optimal acquisition design for diffusion MRI and beyond
Koay, Cheng Guan; Özarslan, Evren; Johnson, Kevin M.; Meyerand, M. Elizabeth
2012-01-01
Purpose: Diffusion magnetic resonance imaging (MRI) in combination with functional MRI promises a whole new vista for scientists to investigate noninvasively the structural and functional connectivity of the human brain—the human connectome, which had heretofore been out of reach. As with other imaging modalities, diffusion MRI data are inherently noisy and its acquisition time-consuming. Further, a faithful representation of the human connectome that can serve as a predictive model requires a robust and accurate data-analytic pipeline. The focus of this paper is on one of the key segments of this pipeline—in particular, the development of a sparse and optimal acquisition (SOA) design for diffusion MRI multiple-shell acquisition and beyond. Methods: The authors propose a novel optimality criterion for sparse multiple-shell acquisition and quasimultiple-shell designs in diffusion MRI and a novel and effective semistochastic and moderately greedy combinatorial search strategy with simulated annealing to locate the optimum design or configuration. The goal of the optimality criteria is threefold: first, to maximize uniformity of the diffusion measurements in each shell, which is equivalent to maximal incoherence in angular measurements; second, to maximize coverage of the diffusion measurements around each radial line to achieve maximal incoherence in radial measurements for multiple-shell acquisition; and finally, to ensure maximum uniformity of diffusion measurement directions in the limiting case when all the shells are coincidental as in the case of a single-shell acquisition. The approach taken in evaluating the stability of various acquisition designs is based on the condition number and the A-optimal measure of the design matrix. Results: Even though the number of distinct configurations for a given set of diffusion gradient directions is very large in general—e.g., in the order of 10232 for a set of 144 diffusion gradient directions, the proposed search strategy was found to be effective in finding the optimum configuration. It was found that the square design is the most robust (i.e., with stable condition numbers and A-optimal measures under varying experimental conditions) among many other possible designs of the same sample size. Under the same performance evaluation, the square design was found to be more robust than the widely used sampling schemes similar to that of 3D radial MRI and of diffusion spectrum imaging (DSI). Conclusions: A novel optimality criterion for sparse multiple-shell acquisition and quasimultiple-shell designs in diffusion MRI and an effective search strategy for finding the best configuration have been developed. The results are very promising, interesting, and practical for diffusion MRI acquisitions. PMID:22559620
Jones, D K; Alexander, D C; Bowtell, R; Cercignani, M; Dell'Acqua, F; McHugh, D J; Miller, K L; Palombo, M; Parker, G J M; Rudrapatna, U S; Tax, C M W
2018-05-22
The key component of a microstructural diffusion MRI 'super-scanner' is a dedicated high-strength gradient system that enables stronger diffusion weightings per unit time compared to conventional gradient designs. This can, in turn, drastically shorten the time needed for diffusion encoding, increase the signal-to-noise ratio, and facilitate measurements at shorter diffusion times. This review, written from the perspective of the UK National Facility for In Vivo MR Imaging of Human Tissue Microstructure, an initiative to establish a shared 300 mT/m-gradient facility amongst the microstructural imaging community, describes ten advantages of ultra-strong gradients for microstructural imaging. Specifically, we will discuss how the increase of the accessible measurement space compared to a lower-gradient systems (in terms of Δ, b-value, and TE) can accelerate developments in the areas of 1) axon diameter distribution mapping; 2) microstructural parameter estimation; 3) mapping micro-vs macroscopic anisotropy features with gradient waveforms beyond a single pair of pulsed-gradients; 4) multi-contrast experiments, e.g. diffusion-relaxometry; 5) tractography and high-resolution imaging in vivo and 6) post mortem; 7) diffusion-weighted spectroscopy of metabolites other than water; 8) tumour characterisation; 9) functional diffusion MRI; and 10) quality enhancement of images acquired on lower-gradient systems. We finally discuss practical barriers in the use of ultra-strong gradients, and provide an outlook on the next generation of 'super-scanners'. Copyright © 2018. Published by Elsevier Inc.
Yang, Yingli; Cao, Minsong; Sheng, Ke; Gao, Yu; Chen, Allen; Kamrava, Mitch; Lee, Percy; Agazaryan, Nzhde; Lamb, James; Thomas, David; Low, Daniel; Hu, Peng
2016-03-01
To demonstrate the preliminary feasibility of a longitudinal diffusion magnetic resonance imaging (MRI) strategy for assessing patient response to radiotherapy at 0.35 T using an MRI-guided radiotherapy system (ViewRay). Six patients (three head and neck cancer, three sarcoma) who underwent fractionated radiotherapy were enrolled in this study. A 2D multislice spin echo single-shot echo planar imaging diffusion pulse sequence was implemented on the ViewRay system and tested in phantom studies. The same pulse sequence was used to acquire longitudinal diffusion data (every 2-5 fractions) on the six patients throughout the entire course of radiotherapy. The reproducibility of the apparent diffusion coefficient (ADC) measurements was assessed using reference regions and the temporal variations of the tumor ADC values were evaluated. In diffusion phantom studies, the ADC values measured on the ViewRay system matched well with reference ADC values with <5% error for a range of ground truth diffusion coefficients of 0.4-1.1 × 10(-3) mm(2)/s. The remote reference regions (i.e., brainstem in head and neck patients) had consistent ADC values throughout the therapy for all three head and neck patients, indicating acceptable reproducibility of the diffusion imaging sequence. The tumor ADC values changed throughout therapy, with the change differing between patients, ranging from a 40% drop in ADC within the first week of therapy to gradually increasing throughout therapy. For larger tumors, intratumoral heterogeneity was observed. For one sarcoma patient, postradiotherapy biopsy showed less than 10% necrosis score, which correlated with the observed 40% decrease in ADC from the fifth fraction to the eighth treatment fraction. This pilot study demonstrated that longitudinal diffusion MRI is feasible using the 0.35 T ViewRay MRI. Larger patient cohort studies are warranted to correlate the longitudinal diffusion measurements to patient outcomes. Such an approach may enable response-guided adaptive radiotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Y; Yang, Y; Rangwala, N
Purpose: To develop a reliable, 3D distortion-free diffusion MRI technique for longitudinal tumor response assessment and MRI-guided adaptive radiotherapy(RT). Methods: A diffusion prepared 3D turbo spin echo readout (DP-TSE) sequence was developed and compared with the conventional diffusion-weighted single-shot echo-planar-imaging (DW-ssEPI) sequence in a commercially available diffusion phantom, and one head-and-neck and one brain cancer patient on an MRI-guided RT system (ViewRay). In phantom study, the geometric fidelity was quantified as the ratio between the left-right (RL) and anterior-posterior (AP) dimension. Ten slices were measured on DP-TSE, DW-ssEPI and standard TSE images where the later was used as the geometricmore » reference. ADC accuracy was verified at both 0°C (reference ADC available) and room temperature with a range of diffusivity between 0.35 and 2.0*10{sup −3}mm{sup 2}/s. The ADC reproducibility was assessed based on 8 room-temperature measurements on 6 different days. In the pilot single-slice in-vivo study, CT images were used as the geometric reference, and ADC maps from both diffusion sequences were compared. Results: Distortion and susceptive-related artifact were severe in DW-ssEPI, with significantly lower RL/AP ratio (0.9579±0.0163) than DP-TSE (0.9990±0.0031) and TSE (0.9995±0.0031). ADCs from the two diffusion sequences both matched well with the vendor-provided values at 0°C; however DW-ssEPI fails to provide accurate ADC for high diffusivity vials at room temperature due to high noise level (10 times higher than DP-TSE). The DP-TSE sequence had excellent ADC reproducibility with <4% ADC variation among 8 separate measurements. In patient study, DP-TSE exhibited substantially improved geometric reliability. ROI analysis in ADC maps generated from DP-TSE and DW-ssEPI showed <5% difference where high b-value images were excluded from the latter approach due to excessive noise level. Conclusion: A diffusion MRI sequence with excellent geometric fidelity, accurate and highly reproducible ADC measurements was proposed for longitudinal tumor response assessment using an MRI-guided RT system. Yu Gao acknowledges research support from ViewRay.« less
Neurocognitive Effects of Radiotherapy
2013-11-05
tensor imaging ( DTI ), perfusion and diffusion. The majority of patients have completed baseline and at least two additional time-points in regards...completed a 1 hour standard MRI as well as additional testing including diffuse tensor imaging ( DTI ), perfusion and diffusion. The majority of...including diffuse tensor imaging ( DTI ), perfusion and diffusion. The majority of patients have completed baseline and at least two additional time
Hoffman, Matthew P; Taylor, Erik N; Aninwene, George E; Sadayappan, Sakthivel; Gilbert, Richard J
2018-02-01
Contraction of muscular tissue requires the synchronized shortening of myofibers arrayed in complex geometrical patterns. Imaging such myofiber patterns with diffusion-weighted MRI reveals architectural ensembles that underlie force generation at the organ scale. Restricted proton diffusion is a stochastic process resulting from random translational motion that may be used to probe the directionality of myofibers in whole tissue. During diffusion-weighted MRI, magnetic field gradients are applied to determine the directional dependence of proton diffusion through the analysis of a diffusional probability distribution function (PDF). The directions of principal (maximal) diffusion within the PDF are associated with similarly aligned diffusion maxima in adjacent voxels to derive multivoxel tracts. Diffusion-weighted MRI with tractography thus constitutes a multiscale method for depicting patterns of cellular organization within biological tissues. We provide in this review, details of the method by which generalized Q-space imaging is used to interrogate multidimensional diffusion space, and thereby to infer the organization of muscular tissue. Q-space imaging derives the lowest possible angular separation of diffusion maxima by optimizing the conditions by which magnetic field gradients are applied to a given tissue. To illustrate, we present the methods and applications associated with Q-space imaging of the multiscale myoarchitecture associated with the human and rodent tongues. These representations emphasize the intricate and continuous nature of muscle fiber organization and suggest a method to depict structural "blueprints" for skeletal and cardiac muscle tissue. © 2016 Wiley Periodicals, Inc.
Magnetic resonance imaging in active surveillance—a modern approach
Moore, Caroline M.
2018-01-01
In recent years, active surveillance has been increasingly adopted as a conservative management approach to low and sometimes intermediate risk prostate cancer, to avoid or delay treatment until there is evidence of higher risk disease. A number of studies have investigated the role of multiparametric magnetic resonance imaging (mpMRI) in this setting. MpMRI refers to the use of multiple MRI sequences (T2-weighted anatomical and functional imaging which can include diffusion-weighted imaging, dynamic contrast enhanced imaging, spectroscopy). Each of the parameters investigates different aspects of the prostate gland (anatomy, cellularity, vascularity, etc.). In addition to a qualitative assessment, the radiologist can also extrapolate quantitative imaging biomarkers from these sequences, for example the apparent diffusion coefficient from diffusion-weighted imaging. There are many different types of articles (e.g., reviews, commentaries, consensus meetings, etc.) that address the use of mpMRI in men on active surveillance for prostate cancer. In this paper, we compare original articles that investigate the role of the different mpMRI sequences in men on active surveillance for prostate cancer, in order to discuss the relative utility of the different sequences, and combinations of sequences. We searched MEDLINE/PubMed for manuscripts published from inception to 1st December 2017. The search terms used were (prostate cancer or prostate adenocarcinoma or prostatic carcinoma or prostate carcinoma or prostatic adenocarcinoma) and (MRI or NMR or magnetic resonance imaging or mpMRI or multiparametric MRI) and active surveillance. Overall, 425 publications were found. All abstracts were reviewed to identify papers with original data. Twenty-five papers were analysed and summarised. Some papers based their analysis only on one mpMRI sequence, while others assessed two or more. The evidence from this review suggests that qualitative assessments and quantitative data from different mpMRI sequences hold promise in the management of men on active surveillance for prostate cancer. Both qualitative and quantitative approaches should be considered when assessing mpMRI of the prostate. There is a need for robust studies assessing the relative utility of different combinations of sequences in a systematic manner to determine the most efficient use of mpMRI in men on active surveillance. PMID:29594026
Islim, Filiz; Salik, Aysun Erbahceci; Bayramoglu, Sibel; Guven, Koray; Alis, Halil; Turhan, Ahmet Nuray
2014-06-01
The purpose of this study was to evaluate the contribution of diffusion-weighted magnetic resonance imaging (DW-MRI) to the detection of infection in acute pancreatitis-related collections. A total of 21 DW-MRI, and computed tomography (CT) were performed on 20 patients diagnosed as acute pancreatitis with acute peri-pancreatic fluid or necrotic collections. Collections were classified as infected or sterile according to the culture and follow-up results. Collections with gas bubbles on CT images were considered to be infected. Collections with peripheral bright signals on DW-MRI images were considered to be positive, whereas those without signals were considered to be negative. Apparent diffusion coefficient (ADC) values of the peripheral and central parts of the collections were measured. Student's t test was used to compare the means of ADC values of independent groups. Apart from one false positive result, the presence of infection was detected by DW-MRI with 95.2% accuracy. The sensitivity and accuracy of DW-MRI were higher than CT for the detection of infection. The ADC values in the central parts of the collections were significantly different between the infected and sterile groups. DW-MRI can be used as a non-invasive technique for the detection of infection in acute pancreatitis-associated collections.
Li, Xiulei; Wang, Ling; Li, Yong; Song, Peiji
2017-10-01
This study aimed to investigate the value of diffusion-weighted imaging (DWI) in combination with conventional magnetic resonance imaging (MRI) for improving tumor detection in young patients treated with fertility-sparing surgery because of early cervical carcinoma. Fifty-four patients with stage Ia or Ib1 cervical carcinoma were enrolled into this study. Magnetic resonance examinations were performed for these patients using conventional MRI (including T1-weighted imaging, T2-weighted imaging, and dynamic contrast-enhanced MRI) and DWI. The apparent diffusion coefficient (ADC) values of cervical carcinoma were analyzed quantitatively and compared with that of adjacent epithelium. Sensitivity, positive predictive value, and accuracy of 2 sets of MRI sequences were calculated on the basis of histologic results, and the diagnostic ability of conventional MRI/DWI combinations was compared with that of conventional MRI. The mean ADC value from cervical carcinoma (mean, 786 × 10 mm/s ± 100) was significantly lower than that from adjacent epithelium (mean, 1352 × 10 mm/s ± 147) (P = 0.01). When the threshold ADC value set as 1010 × 10 mm/s, the sensitivity and specificity for differentiating cervical carcinoma from nontumor epithelium were 78.2% and 67.2%, respectively. The sensitivity and accuracy of conventional MRI for tumor detection were 76.0% and 70.4%, whereas the sensitivity and accuracy of conventional MRI/DWI combinations were 91.7% and 90.7%, respectively. Conventional MRI/DWI combinations revealed a positive predictive value of 97.8% and only 4 false-negative findings. The addition of DWI to conventional MRI considerably improves the sensitivity and accuracy of tumor detection in young patients treated with fertility-sparing surgery, which supports the inclusion quantitative analysis of ADC value in routine MRI protocol before fertility-sparing surgery.
Abascal, Juan F P J; Desco, Manuel; Parra-Robles, Juan
2018-02-01
Diffusion MRI data are generally acquired using hyperpolarized gases during patient breath-hold, which yields a compromise between achievable image resolution, lung coverage, and number of -values. In this paper, we propose a novel method that accelerates the acquisition of diffusion MRI data by undersampling in both the spatial and -value dimensions and incorporating knowledge about signal decay into the reconstruction (SIDER). SIDER is compared with total variation (TV) reconstruction by assessing its effect on both the recovery of ventilation images and the estimated mean alveolar dimensions (MADs). Both methods are assessed by retrospectively undersampling diffusion data sets ( =8) of healthy volunteers and patients with Chronic Obstructive Pulmonary Disease (COPD) for acceleration factors between x2 and x10. TV led to large errors and artifacts for acceleration factors equal to or larger than x5. SIDER improved TV, with a lower solution error and MAD histograms closer to those obtained from fully sampled data for acceleration factors up to x10. SIDER preserved image quality at all acceleration factors, although images were slightly smoothed and some details were lost at x10. In conclusion, we developed and validated a novel compressed sensing method for lung MRI imaging and achieved high acceleration factors, which can be used to increase the amount of data acquired during breath-hold. This methodology is expected to improve the accuracy of estimated lung microstructure dimensions and provide more options in the study of lung diseases with MRI.
Sreedharan, Ruma Madhu; Menon, Amitha C; James, Jija S; Kesavadas, Chandrasekharan; Thomas, Sanjeev V
2015-03-01
Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms--visual verb generation and word pair task--were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm(3)) as compared to the right (1824.11 ± 582.81 mm(3)) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities.
Diffusion imaging quality control via entropy of principal direction distribution.
Farzinfar, Mahshid; Oguz, Ipek; Smith, Rachel G; Verde, Audrey R; Dietrich, Cheryl; Gupta, Aditya; Escolar, Maria L; Piven, Joseph; Pujol, Sonia; Vachet, Clement; Gouttard, Sylvain; Gerig, Guido; Dager, Stephen; McKinstry, Robert C; Paterson, Sarah; Evans, Alan C; Styner, Martin A
2013-11-15
Diffusion MR imaging has received increasing attention in the neuroimaging community, as it yields new insights into the microstructural organization of white matter that are not available with conventional MRI techniques. While the technology has enormous potential, diffusion MRI suffers from a unique and complex set of image quality problems, limiting the sensitivity of studies and reducing the accuracy of findings. Furthermore, the acquisition time for diffusion MRI is longer than conventional MRI due to the need for multiple acquisitions to obtain directionally encoded Diffusion Weighted Images (DWI). This leads to increased motion artifacts, reduced signal-to-noise ratio (SNR), and increased proneness to a wide variety of artifacts, including eddy-current and motion artifacts, "venetian blind" artifacts, as well as slice-wise and gradient-wise inconsistencies. Such artifacts mandate stringent Quality Control (QC) schemes in the processing of diffusion MRI data. Most existing QC procedures are conducted in the DWI domain and/or on a voxel level, but our own experiments show that these methods often do not fully detect and eliminate certain types of artifacts, often only visible when investigating groups of DWI's or a derived diffusion model, such as the most-employed diffusion tensor imaging (DTI). Here, we propose a novel regional QC measure in the DTI domain that employs the entropy of the regional distribution of the principal directions (PD). The PD entropy quantifies the scattering and spread of the principal diffusion directions and is invariant to the patient's position in the scanner. High entropy value indicates that the PDs are distributed relatively uniformly, while low entropy value indicates the presence of clusters in the PD distribution. The novel QC measure is intended to complement the existing set of QC procedures by detecting and correcting residual artifacts. Such residual artifacts cause directional bias in the measured PD and here called dominant direction artifacts. Experiments show that our automatic method can reliably detect and potentially correct such artifacts, especially the ones caused by the vibrations of the scanner table during the scan. The results further indicate the usefulness of this method for general quality assessment in DTI studies. Copyright © 2013 Elsevier Inc. All rights reserved.
Diffusion imaging quality control via entropy of principal direction distribution
Oguz, Ipek; Smith, Rachel G.; Verde, Audrey R.; Dietrich, Cheryl; Gupta, Aditya; Escolar, Maria L.; Piven, Joseph; Pujol, Sonia; Vachet, Clement; Gouttard, Sylvain; Gerig, Guido; Dager, Stephen; McKinstry, Robert C.; Paterson, Sarah; Evans, Alan C.; Styner, Martin A.
2013-01-01
Diffusion MR imaging has received increasing attention in the neuroimaging community, as it yields new insights into the microstructural organization of white matter that are not available with conventional MRI techniques. While the technology has enormous potential, diffusion MRI suffers from a unique and complex set of image quality problems, limiting the sensitivity of studies and reducing the accuracy of findings. Furthermore, the acquisition time for diffusion MRI is longer than conventional MRI due to the need for multiple acquisitions to obtain directionally encoded Diffusion Weighted Images (DWI). This leads to increased motion artifacts, reduced signal-to-noise ratio (SNR), and increased proneness to a wide variety of artifacts, including eddy-current and motion artifacts, “venetian blind” artifacts, as well as slice-wise and gradient-wise inconsistencies. Such artifacts mandate stringent Quality Control (QC) schemes in the processing of diffusion MRI data. Most existing QC procedures are conducted in the DWI domain and/or on a voxel level, but our own experiments show that these methods often do not fully detect and eliminate certain types of artifacts, often only visible when investigating groups of DWI's or a derived diffusion model, such as the most-employed diffusion tensor imaging (DTI). Here, we propose a novel regional QC measure in the DTI domain that employs the entropy of the regional distribution of the principal directions (PD). The PD entropy quantifies the scattering and spread of the principal diffusion directions and is invariant to the patient's position in the scanner. High entropy value indicates that the PDs are distributed relatively uniformly, while low entropy value indicates the presence of clusters in the PD distribution. The novel QC measure is intended to complement the existing set of QC procedures by detecting and correcting residual artifacts. Such residual artifacts cause directional bias in the measured PD and here called dominant direction artifacts. Experiments show that our automatic method can reliably detect and potentially correct such artifacts, especially the ones caused by the vibrations of the scanner table during the scan. The results further indicate the usefulness of this method for general quality assessment in DTI studies. PMID:23684874
MR Scanner Systems Should Be Adequately Characterized in Diffusion-MRI of the Breast
Giannelli, Marco; Sghedoni, Roberto; Iacconi, Chiara; Iori, Mauro; Traino, Antonio Claudio; Guerrisi, Maria; Mascalchi, Mario; Toschi, Nicola; Diciotti, Stefano
2014-01-01
Breast imaging represents a relatively recent and promising field of application of quantitative diffusion-MRI techniques. In view of the importance of guaranteeing and assessing its reliability in clinical as well as research settings, the aim of this study was to specifically characterize how the main MR scanner system-related factors affect quantitative measurements in diffusion-MRI of the breast. In particular, phantom acquisitions were performed on three 1.5 T MR scanner systems by different manufacturers, all equipped with a dedicated multi-channel breast coil as well as acquisition sequences for diffusion-MRI of the breast. We assessed the accuracy, inter-scan and inter-scanner reproducibility of the mean apparent diffusion coefficient measured along the main orthogonal directions (
MGH-USC Human Connectome Project datasets with ultra-high b-value diffusion MRI.
Fan, Qiuyun; Witzel, Thomas; Nummenmaa, Aapo; Van Dijk, Koene R A; Van Horn, John D; Drews, Michelle K; Somerville, Leah H; Sheridan, Margaret A; Santillana, Rosario M; Snyder, Jenna; Hedden, Trey; Shaw, Emily E; Hollinshead, Marisa O; Renvall, Ville; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R; Tisdall, Dylan; Buckner, Randy L; Wedeen, Van J; Wald, Lawrence L; Toga, Arthur W; Rosen, Bruce R
2016-01-01
The MGH-USC CONNECTOM MRI scanner housed at the Massachusetts General Hospital (MGH) is a major hardware innovation of the Human Connectome Project (HCP). The 3T CONNECTOM scanner is capable of producing a magnetic field gradient of up to 300 mT/m strength for in vivo human brain imaging, which greatly shortens the time spent on diffusion encoding, and decreases the signal loss due to T2 decay. To demonstrate the capability of the novel gradient system, data of healthy adult participants were acquired for this MGH-USC Adult Diffusion Dataset (N=35), minimally preprocessed, and shared through the Laboratory of Neuro Imaging Image Data Archive (LONI IDA) and the WU-Minn Connectome Database (ConnectomeDB). Another purpose of sharing the data is to facilitate methodological studies of diffusion MRI (dMRI) analyses utilizing high diffusion contrast, which perhaps is not easily feasible with standard MR gradient system. In addition, acquisition of the MGH-Harvard-USC Lifespan Dataset is currently underway to include 120 healthy participants ranging from 8 to 90 years old, which will also be shared through LONI IDA and ConnectomeDB. Here we describe the efforts of the MGH-USC HCP consortium in acquiring and sharing the ultra-high b-value diffusion MRI data and provide a report on data preprocessing and access. We conclude with a demonstration of the example data, along with results of standard diffusion analyses, including q-ball Orientation Distribution Function (ODF) reconstruction and tractography. Copyright © 2015 Elsevier Inc. All rights reserved.
Beaujoin, Justine; Palomero-Gallagher, Nicola; Boumezbeur, Fawzi; Axer, Markus; Bernard, Jeremy; Poupon, Fabrice; Schmitz, Daniel; Mangin, Jean-François; Poupon, Cyril
2018-06-01
The human hippocampus plays a key role in memory management and is one of the first structures affected by Alzheimer's disease. Ultra-high magnetic resonance imaging provides access to its inner structure in vivo. However, gradient limitations on clinical systems hinder access to its inner connectivity and microstructure. A major target of this paper is the demonstration of diffusion MRI potential, using ultra-high field (11.7 T) and strong gradients (750 mT/m), to reveal the extra- and intra-hippocampal connectivity in addition to its microstructure. To this purpose, a multiple-shell diffusion-weighted acquisition protocol was developed to reach an ultra-high spatio-angular resolution with a good signal-to-noise ratio. The MRI data set was analyzed using analytical Q-Ball Imaging, Diffusion Tensor Imaging (DTI), and Neurite Orientation Dispersion and Density Imaging models. High Angular Resolution Diffusion Imaging estimates allowed us to obtain an accurate tractography resolving more complex fiber architecture than DTI models, and subsequently provided a map of the cross-regional connectivity. The neurite density was akin to that found in the histological literature, revealing the three hippocampal layers. Moreover, a gradient of connectivity and neurite density was observed between the anterior and the posterior part of the hippocampus. These results demonstrate that ex vivo ultra-high field/ultra-high gradients diffusion-weighted MRI allows the mapping of the inner connectivity of the human hippocampus, its microstructure, and to accurately reconstruct elements of the polysynaptic intra-hippocampal pathway using fiber tractography techniques at very high spatial/angular resolutions.
PANDA: a pipeline toolbox for analyzing brain diffusion images.
Cui, Zaixu; Zhong, Suyu; Xu, Pengfei; He, Yong; Gong, Gaolang
2013-01-01
Diffusion magnetic resonance imaging (dMRI) is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named "Pipeline for Analyzing braiN Diffusion imAges" (PANDA) for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL), Pipeline System for Octave and Matlab (PSOM), Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics [e.g., fractional anisotropy (FA) and mean diffusivity (MD)] that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS)-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI), allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies.
NASA Astrophysics Data System (ADS)
Cao, Ning; Liang, Xuwei; Zhuang, Qi; Zhang, Jun
2009-02-01
Magnetic Resonance Imaging (MRI) techniques have achieved much importance in providing visual and quantitative information of human body. Diffusion MRI is the only non-invasive tool to obtain information of the neural fiber networks of the human brain. The traditional Diffusion Tensor Imaging (DTI) is only capable of characterizing Gaussian diffusion. High Angular Resolution Diffusion Imaging (HARDI) extends its ability to model more complex diffusion processes. Spherical harmonic series truncated to a certain degree is used in recent studies to describe the measured non-Gaussian Apparent Diffusion Coefficient (ADC) profile. In this study, we use the sampling theorem on band-limited spherical harmonics to choose a suitable degree to truncate the spherical harmonic series in the sense of Signal-to-Noise Ratio (SNR), and use Monte Carlo integration to compute the spherical harmonic transform of human brain data obtained from icosahedral schema.
Imaging laminar structures in the gray matter with diffusion MRI.
Assaf, Yaniv
2018-01-05
The cortical layers define the architecture of the gray matter and its neuroanatomical regions and are essential for brain function. Abnormalities in cortical layer development, growth patterns, organization, or size can affect brain physiology and cognition. Unfortunately, while large population studies are underway that will greatly increase our knowledge about these processes, current non-invasive techniques for characterizing the cortical layers remain inadequate. For decades, high-resolution T1 and T2 Weighted Magnetic Resonance Imaging (MRI) have been the method-of-choice for gray matter and layer characterization. In the past few years, however, diffusion MRI has shown increasing promise for its unique insights into the fine structure of the cortex. Several different methods, including surface analysis, connectivity exploration, and sub-voxel component modeling, are now capable of exploring the diffusion characteristics of the cortex. In this review, we will discuss current advances in the application of diffusion imaging for cortical characterization and its unique features, with a particular emphasis on its spatial resolution, arguably its greatest limitation. In addition, we will explore the relationship between the diffusion MRI signal and the cellular components of the cortex, as visualized by histology. While the obstacles facing the widespread application of cortical diffusion imaging remain daunting, the information it can reveal may prove invaluable. Within the next few years, we predict a surge in the application of this technique and a concomitant expansion of our knowledge of cortical layers. Copyright © 2018 Elsevier Inc. All rights reserved.
Ianuş, Andrada; Shemesh, Noam
2018-04-01
Diffusion MRI is confounded by the need to acquire at least two images separated by a repetition time, thereby thwarting the detection of rapid dynamic microstructural changes. The issue is exacerbated when diffusivity variations are accompanied by rapid changes in T 2 . The purpose of the present study is to accelerate diffusion MRI acquisitions such that both reference and diffusion-weighted images necessary for quantitative diffusivity mapping are acquired in a single-shot experiment. A general methodology termed incomplete initial nutation diffusion imaging (INDI), capturing two diffusion contrasts in a single shot, is presented. This methodology creates a longitudinal magnetization reservoir that facilitates the successive acquisition of two images separated by only a few milliseconds. The theory behind INDI is presented, followed by proof-of-concept studies in water phantom, ex vivo, and in vivo experiments at 16.4 and 9.4 T. Mean diffusivities extracted from INDI were comparable with diffusion tensor imaging and the two-shot isotropic diffusion encoding in the water phantom. In ex vivo mouse brain tissues, as well as in the in vivo mouse brain, mean diffusivities extracted from conventional isotropic diffusion encoding and INDI were in excellent agreement. Simulations for signal-to-noise considerations identified the regimes in which INDI is most beneficial. The INDI method accelerates diffusion MRI acquisition to single-shot mode, which can be of great importance for mapping dynamic microstructural properties in vivo without T 2 bias. Magn Reson Med 79:2198-2204, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Sauer, Alexander; Li, Mengxia; Holl-Wieden, Annette; Pabst, Thomas; Neubauer, Henning
2017-10-12
Diffusion-weighted MRI has been proposed as a new technique for imaging synovitis without intravenous contrast application. We investigated diagnostic utility of multi-shot readout-segmented diffusion-weighted MRI (multi-shot DWI) for synovial imaging of the knee joint in patients with juvenile idiopathic arthritis (JIA). Thirty-two consecutive patients with confirmed or suspected JIA (21 girls, median age 13 years) underwent routine 1.5 T MRI with contrast-enhanced T1w imaging (contrast-enhanced MRI) and with multi-shot DWI (RESOLVE, b-values 0-50 and 800 s/mm 2 ). Contrast-enhanced MRI, representing the diagnostic standard, and diffusion-weighted images at b = 800 s/mm 2 were separately rated by three independent blinded readers at different levels of expertise for the presence and the degree of synovitis on a modified 5-item Likert scale along with the level of subjective diagnostic confidence. Fourteen (44%) patients had active synovitis and joint effusion, nine (28%) patients showed mild synovial enhancement not qualifying for arthritis and another nine (28%) patients had no synovial signal alterations on contrast-enhanced imaging. Ratings by the 1st reader on contrast-enhanced MRI and on DWI showed substantial agreement (κ = 0.74). Inter-observer-agreement was high for diagnosing, or ruling out, active arthritis of the knee joint on contrast-enhanced MRI and on DWI, showing full agreement between 1st and 2nd reader and disagreement in one case (3%) between 1st and 3rd reader. In contrast, ratings in cases of absent vs. little synovial inflammation were markedly inconsistent on DWI. Diagnostic confidence was lower on DWI, compared to contrast-enhanced imaging. Multi-shot DWI of the knee joint is feasible in routine imaging and reliably diagnoses, or rules out, active arthritis of the knee joint in paediatric patients without the need of gadolinium-based i.v. contrast injection. Possibly due to "T2w shine-through" artifacts, DWI does not reliably differentiate non-inflamed joints from knee joints with mild synovial irritation.
Suo-Palosaari, M; Rantala, H; Lehtinen, S; Kumpulainen, T; Salokorpi, N
2016-06-01
We describe a unique case of expansive diffuse brainstem lesion diagnosed prenatally by magnetic resonance imaging (MRI) with long-term survival. Findings of fetal and postpartum MRI were highly consistent with the characteristics of diffuse brainstem glioma. Diagnosis was based on the features of MRI, and histopathology was not confirmed by biopsy. Although the prognosis of diffuse brainstem tumor is usually poor, this child was asymptomatic at birth and the neurological condition is still normal at 4 years of age without any treatment. During routine imaging follow-up, diameters of the expansion have remained stable, while the size of the lesion compared to the posterior fossa size has diminished. In addition to brainstem tumor, a skin lesion of the back was observed and MRI of the thoracic spine showed a large asymptomatic extradural cystic lesion suggesting an arachnoid cyst. The pontine tumor of this infant, in agreement with a few previously reported cases, suggests a subgroup of beneficial outcome of expansive diffuse brainstem lesions, particularly in the neonatal period. In this article, we discuss the prognosis and characteristics of pediatric brainstem tumors and differential diagnosis of neonatal brainstem lesions.
Diffusion MRI at 25: Exploring brain tissue structure and function
Bihan, Denis Le; Johansen-Berg, Heidi
2013-01-01
Diffusion MRI (or dMRI) came into existence in the mid-1980s. During the last 25 years, diffusion MRI has been extraordinarily successful (with more than 300,000 entries on Google Scholar for diffusion MRI). Its main clinical domain of application has been neurological disorders, especially for the management of patients with acute stroke. It is also rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fiber structure and provide outstanding maps of brain connectivity. The ability to visualize anatomical connections between different parts of the brain, non-invasively and on an individual basis, has emerged as a major breakthrough for neurosciences. The driving force of dMRI is to monitor microscopic, natural displacements of water molecules that occur in brain tissues as part of the physical diffusion process. Water molecules are thus used as a probe that can reveal microscopic details about tissue architecture, either normal or in a diseased state. PMID:22120012
Froeling, Martijn; Tax, Chantal M W; Vos, Sjoerd B; Luijten, Peter R; Leemans, Alexander
2017-05-01
In this work, we present the MASSIVE (Multiple Acquisitions for Standardization of Structural Imaging Validation and Evaluation) brain dataset of a single healthy subject, which is intended to facilitate diffusion MRI (dMRI) modeling and methodology development. MRI data of one healthy subject (female, 25 years) were acquired on a clinical 3 Tesla system (Philips Achieva) with an eight-channel head coil. In total, the subject was scanned on 18 different occasions with a total acquisition time of 22.5 h. The dMRI data were acquired with an isotropic resolution of 2.5 mm 3 and distributed over five shells with b-values up to 4000 s/mm 2 and two Cartesian grids with b-values up to 9000 s/mm 2 . The final dataset consists of 8000 dMRI volumes, corresponding B 0 field maps and noise maps for subsets of the dMRI scans, and ten three-dimensional FLAIR, T 1 -, and T 2 -weighted scans. The average signal-to-noise-ratio of the non-diffusion-weighted images was roughly 35. This unique set of in vivo MRI data will provide a robust framework to evaluate novel diffusion processing techniques and to reliably compare different approaches for diffusion modeling. The MASSIVE dataset is made publically available (both unprocessed and processed) on www.massive-data.org. Magn Reson Med 77:1797-1809, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Polarized Helium to Image the Lung
NASA Astrophysics Data System (ADS)
Leduc, Michèle; Nacher, Pierre Jean
2005-05-01
The main findings of the european PHIL project (Polarised Helium to Image the Lung) are reported. State of the art optical pumping techniques for polarising 3He gas are described. MRI methodological improvements allow dynamical ventilation images with a good resolution, ultimately limited by gas diffusion. Diffusion imaging appears as a robust method of lung diagnosis. A discussion of the potential advantage of low field MRI is presented. Selected PHIL results for emphysema are given, with the perspectives that this joint work opens up for the future of respiratory medicine.
Uğurbil, Kamil; Xu, Junqian; Auerbach, Edward J.; Moeller, Steen; Vu, An; Duarte-Carvajalino, Julio M.; Lenglet, Christophe; Wu, Xiaoping; Schmitter, Sebastian; Van de Moortele, Pierre Francois; Strupp, John; Sapiro, Guillermo; De Martino, Federico; Wang, Dingxin; Harel, Noam; Garwood, Michael; Chen, Liyong; Feinberg, David A.; Smith, Stephen M.; Miller, Karla L.; Sotiropoulos, Stamatios N; Jbabdi, Saad; Andersson, Jesper L; Behrens, Timothy EJ; Glasser, Matthew F.; Van Essen, David; Yacoub, Essa
2013-01-01
The human connectome project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce ‘functional connectivity’; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 Tesla, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 second for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 Tesla magnetic field are also presented, targeting higher resolution, specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields and power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure. PMID:23702417
Quantitative characterization of the imaging limits of diffuse low-grade oligodendrogliomas.
Gerin, Chloé; Pallud, Johan; Deroulers, Christophe; Varlet, Pascale; Oppenheim, Catherine; Roux, Francois-Xavier; Chrétien, Fabrice; Thomas, Stephen R; Grammaticos, Basile; Badoual, Mathilde
2013-10-01
Supratentorial diffuse low-grade gliomas in adults extend beyond maximal visible MRI-defined abnormalities, and a gap exists between the imaging signal changes and the actual tumor margins. Direct quantitative comparisons between imaging and histological analyses are lacking to date. However, they are of the utmost importance if one wishes to develop realistic models for diffuse glioma growth. In this study, we quantitatively compared the cell concentration and the edema fraction from human histological biopsy samples (BSs) performed inside and outside imaging abnormalities during serial imaging-based stereotactic biopsy of diffuse low-grade gliomas. The cell concentration was significantly higher in BSs located inside (1189 ± 378 cell/mm(2)) than outside (740 ± 124 cell/mm(2)) MRI-defined abnormalities (P = .0003). The edema fraction was significantly higher in BSs located inside (mean, 45% ± 23%) than outside (mean, 5 %± 9%) MRI-defined abnormalities (P < .0001). At borders of the MRI-defined abnormalities, 20% of the tissue surface area was occupied by edema and only 3% by tumor cells. The cycling cell concentration was significantly higher in BSs located inside (10 ± 12 cell/mm(2)), compared with outside (0.5 ± 0.9 cell/mm(2)), MRI-defined abnormalities (P = .0001). We showed that the margins of T2-weighted signal changes are mainly correlated with the edema fraction. In 62.5% of patients, the cycling tumor cell fraction (defined as the ratio of the cycling tumor cell concentration to the total number of tumor cells) was higher at the limits of the MRI-defined abnormalities than closer to the center of the tumor. In the remaining patients, the cycling tumor cell fraction increased towards the center of the tumor.
Multiparametric Magnetic Resonance Imaging for Active Surveillance of Prostate Cancer.
An, Julie Y; Sidana, Abhinav; Choyke, Peter L; Wood, Bradford J.; Pinto, Peter A; Türkbey, İsmail Barış
2017-09-29
Active surveillance has gained popularity as an acceptable management option for men with low-risk prostate cancer. Successful utilization of this strategy can delay or prevent unnecessary interventions - thereby reducing morbidity associated with overtreatment. The usefulness of active surveillance primarily depends on correct identification of patients with low-risk disease. However, current population-wide algorithms and tools do not adequately exclude high-risk disease, thereby limiting the confidence of clinicians and patients to go on active surveillance. Novel imaging tools such as mpMRI provide information about the size and location of potential cancers enabling more informed treatment decisions. The term "multiparametric" in prostate mpMRI refers to the summation of several MRI series into one examination whose initial goal is to identify potential clinically-significant lesions suitable for targeted biopsy. The main advantages of MRI are its superior anatomic resolution and the lack of ionizing radiation. Recently, the Prostate Imaging-Reporting and Data System has been instituted as an international standard for unifying mpMRI results. The imaging sequences in mpMRI defined by Prostate Imaging Reporting and Data System version 2 includes: T2-weighted MRI, diffusion-weighted MRI, derived apparent-diffusion coefficient from diffusion-weighted MRI, and dynamic contrast-enhanced MRI. The use of mpMRI prior to starting active surveillance could prevent those with missed, high-grade lesions from going on active surveillance, and reassure those with minimal disease who may be hesitant to take part in active surveillance. Although larger validation studies are still necessary, preliminary results suggest mpMRI has a role in selecting patients for active surveillance. Less certain is the role of mpMRI in monitoring patients on active surveillance, as data on this will take a long time to mature. The biggest obstacles to routine use of prostate MRI are quality control, cost, reproducibility, and access. Nevertheless, there is great a potential for mpMRI to improve outcomes and quality of treatment. The major roles of MRI will continue to expand and its emerging use in standard of care approaches becomes more clearly defined and supported by increasing levels of data.
Wong, Alex M; Toh, Cheng-Hong; Lien, Reyin; Chao, An-Shine; Wong, Ho-Fai; Ng, Koon-Kwan
2006-11-01
Meconium pseudocyst results from a loculated inflammation occurring in response to spillage of meconium into the peritoneal cavity after a bowel perforation. Certain cystic lesions, such as abscesses and dermoid and epidermoid cysts, are known to show reduced water diffusion on DWI. MRI has recently become a valuable adjunct to ultrasonography for fetal gastrointestinal anomalies. Complementary to ultrasonography, prenatal MRI can help further characterize the lesion and can clearly demonstrate the anatomical relationship between the lesion and adjacent organs. We report a case of meconium pseudocyst that was prenatally imaged with ultrasonography and MRI, postnatally complicated by pneumoperitoneum, and proved by postnatal surgery and histopathology. We emphasize the MRI of the pseudocyst, particularly T1-weighted and diffusion-weighted imaging.
Diffusion-Weighted Imaging Outside the Brain: Consensus Statement From an ISMRM-Sponsored Workshop
Taouli, Bachir; Beer, Ambros J.; Chenevert, Thomas; Collins, David; Lehman, Constance; Matos, Celso; Padhani, Anwar R.; Rosenkrantz, Andrew B.; Shukla-Dave, Amita; Sigmund, Eric; Tanenbaum, Lawrence; Thoeny, Harriet; Thomassin-Naggara, Isabelle; Barbieri, Sebastiano; Corcuera-Solano, Idoia; Orton, Matthew; Partridge, Savannah C.; Koh, Dow-Mu
2016-01-01
The significant advances in magnetic resonance imaging (MRI) hardware and software, sequence design, and postprocessing methods have made diffusion-weighted imaging (DWI) an important part of body MRI protocols and have fueled extensive research on quantitative diffusion outside the brain, particularly in the oncologic setting. In this review, we summarize the most up-to-date information on DWI acquisition and clinical applications outside the brain, as discussed in an ISMRM-sponsored symposium held in April 2015. We first introduce recent advances in acquisition, processing, and quality control; then review scientific evidence in major organ systems; and finally describe future directions. PMID:26892827
[Effect of vibration caused by time-varying magnetic fields on diffusion-weighted MRI].
Ogura, Akio; Maeda, Fumie; Miyai, Akira; Hayashi, Kohji; Hongoh, Takaharu
2006-04-20
Diffusion-weighted images (DWIs) with high b-factor in the body are often used to detect and diagnose cancer at MRI. The echo planar imaging (EPI) sequence and high motion probing gradient pulse are used at diffusion weighted imaging, causing high table vibration. The purpose of this study was to assess whether the diffusion signal and apparent diffusion coefficient (ADC) values are influenced by this vibration because of time-varying magnetic fields. Two DWIs were compared. In one, phantoms were fixed on the MRI unit's table transmitting the vibration. In the other, phantoms were supported in air, in the absence of vibration. The phantoms called "solution phantoms" were made from agarose of a particular density. The phantoms called "jelly phantoms" were made from agarose that was heated. The diffusion signal and ADC value of each image were compared. The results showed that the signal of DWI units using the solution phantom was not affected by vibration. However, the signal of DWI and ADC were increased in the low-density jelly phantom as a result of vibration, causing the jelly phantom to vibrate. The DWIs of vibrating regions such as the breast maybe be subject to error. A countermeasure seems to be to support the region adequately.
The Potential for an Enhanced Role for MRI in Radiation-therapy Treatment Planning
Metcalfe, P.; Liney, G. P.; Holloway, L.; Walker, A.; Barton, M.; Delaney, G. P.; Vinod, S.; Tomé, W.
2013-01-01
The exquisite soft-tissue contrast of magnetic resonance imaging (MRI) has meant that the technique is having an increasing role in contouring the gross tumor volume (GTV) and organs at risk (OAR) in radiation therapy treatment planning systems (TPS). MRI-planning scans from diagnostic MRI scanners are currently incorporated into the planning process by being registered to CT data. The soft-tissue data from the MRI provides target outline guidance and the CT provides a solid geometric and electron density map for accurate dose calculation on the TPS computer. There is increasing interest in MRI machine placement in radiotherapy clinics as an adjunct to CT simulators. Most vendors now offer 70 cm bores with flat couch inserts and specialised RF coil designs. We would refer to these devices as MR-simulators. There is also research into the future application of MR-simulators independent of CT and as in-room image-guidance devices. It is within the background of this increased interest in the utility of MRI in radiotherapy treatment planning that this paper is couched. The paper outlines publications that deal with standard MRI sequences used in current clinical practice. It then discusses the potential for using processed functional diffusion maps (fDM) derived from diffusion weighted image sequences in tracking tumor activity and tumor recurrence. Next, this paper reviews publications that describe the use of MRI in patient-management applications that may, in turn, be relevant to radiotherapy treatment planning. The review briefly discusses the concepts behind functional techniques such as dynamic contrast enhanced (DCE), diffusion-weighted (DW) MRI sequences and magnetic resonance spectroscopic imaging (MRSI). Significant applications of MR are discussed in terms of the following treatment sites: brain, head and neck, breast, lung, prostate and cervix. While not yet routine, the use of apparent diffusion coefficient (ADC) map analysis indicates an exciting future application for functional MRI. Although DW-MRI has not yet been routinely used in boost adaptive techniques, it is being assessed in cohort studies for sub-volume boosting in prostate tumors. PMID:23617289
MRI Features of Hepatocellular Carcinoma Related to Biologic Behavior
Cho, Eun-Suk
2015-01-01
Imaging studies including magnetic resonance imaging (MRI) play a crucial role in the diagnosis and staging of hepatocellular carcinoma (HCC). Several recent studies reveal a large number of MRI features related to the prognosis of HCC. In this review, we discuss various MRI features of HCC and their implications for the diagnosis and prognosis as imaging biomarkers. As a whole, the favorable MRI findings of HCC are small size, encapsulation, intralesional fat, high apparent diffusion coefficient (ADC) value, and smooth margins or hyperintensity on the hepatobiliary phase of gadoxetic acid-enhanced MRI. Unfavorable findings include large size, multifocality, low ADC value, non-smooth margins or hypointensity on hepatobiliary phase images. MRI findings are potential imaging biomarkers in patients with HCC. PMID:25995679
Park, Hyun Jeong; Kim, Seong Hyun; Jang, Kyung Mi; Choi, Seo-youn; Lee, Soon Jin; Choi, Dongil
2014-04-01
To assess the added value of diffusion-weighted imaging (DWI) to conventional magnetic resonance imaging (MRI) for differentiating benign from malignant bile duct strictures. Twenty-seven patients with a benign stricture and 42 patients with a malignant stricture who had undergone gadoxetic acid-enhanced MRI with DWI were enrolled. Qualitative (signal intensity, dynamic enhancement pattern) and quantitative (wall thickness and length) analyses were performed. Two observers independently reviewed a set of conventional MRI and a combined set of conventional MRI and DWI, and receiver operating characteristic (ROC) curve analysis was assessed. Benign strictures showed isointensity (18.5-70.4 %) and a similar enhancement pattern (22.2 %) to that of normal bile duct more frequently than malignant strictures (0-40.5 % and 0 %) on conventional MRI (P < 0.05). Malignant strictures (90.5-92.9 %) showed hypervascularity on arterial and portal venous phase images more frequently than benign strictures (37.0-70.4 %) (P < 0.01) On DWI, all malignant strictures showed hyperintensity compared with benign cases (70.4 %) (P < 0.001). Malignant strictures were significantly thicker and longer than benign strictures (P < 0.001). The diagnostic performance of both observers improved significantly after additional review of DWI. Adding DWI to conventional MRI is more helpful for differentiating benign from malignant bile duct strictures than conventional MRI alone. • Accurate diagnosis and exclusion of benign strictures of bile duct are important. • Diffusion-weighted MRI helps to distinguish benign from malignant bile duct strictures. • DWI plus conventional MRI provides superior diagnostic accuracy to conventional MRI alone.
Fink, Ericka L; Panigrahy, A; Clark, R S B; Fitz, C R; Landsittel, D; Kochanek, P M; Zuccoli, G
2013-08-01
To assess regional brain injury on magnetic resonance imaging (MRI) after pediatric cardiac arrest (CA) and to associate regional injury with patient outcome and effects of hypothermia therapy for neuroprotection. We performed a retrospective chart review with prospective imaging analysis. Children between 1 week and 17 years of age who had a brain MRI in the first 2 weeks after CA without other acute brain injury between 2002 and 2008 were included. Brain MRI (1.5 T General Electric, Milwaukee, WI, USA) images were analyzed by 2 blinded neuroradiologists with adjudication; images were visually graded. Brain lobes, basal ganglia, thalamus, brain stem, and cerebellum were analyzed using T1, T2, and diffusion-weighted images (DWI). We examined 28 subjects with median age 1.9 years (IQR 0.4-13.0) and 19 (68 %) males. Increased intensity on T2 in the basal ganglia and restricted diffusion in the brain lobes were associated with unfavorable outcome (all P < 0.05). Therapeutic hypothermia had no effect on regional brain injury. Repeat brain MRI was infrequently performed but demonstrated evolution of lesions. Children with lesions in the basal ganglia on conventional MRI and brain lobes on DWI within the first 2 weeks after CA represent a group with increased risk of poor outcome. These findings may be important for developing neuroprotective strategies based on regional brain injury and for evaluating response to therapy in interventional clinical trials.
Van Steenkiste, Gwendolyn; Jeurissen, Ben; Veraart, Jelle; den Dekker, Arnold J; Parizel, Paul M; Poot, Dirk H J; Sijbers, Jan
2016-01-01
Diffusion MRI is hampered by long acquisition times, low spatial resolution, and a low signal-to-noise ratio. Recently, methods have been proposed to improve the trade-off between spatial resolution, signal-to-noise ratio, and acquisition time of diffusion-weighted images via super-resolution reconstruction (SRR) techniques. However, during the reconstruction, these SRR methods neglect the q-space relation between the different diffusion-weighted images. An SRR method that includes a diffusion model and directly reconstructs high resolution diffusion parameters from a set of low resolution diffusion-weighted images was proposed. Our method allows an arbitrary combination of diffusion gradient directions and slice orientations for the low resolution diffusion-weighted images, optimally samples the q- and k-space, and performs motion correction with b-matrix rotation. Experiments with synthetic data and in vivo human brain data show an increase of spatial resolution of the diffusion parameters, while preserving a high signal-to-noise ratio and low scan time. Moreover, the proposed SRR method outperforms the previous methods in terms of the root-mean-square error. The proposed SRR method substantially increases the spatial resolution of MRI that can be obtained in a clinically feasible scan time. © 2015 Wiley Periodicals, Inc.
Tajima, Taku; Akahane, Masaaki; Takao, Hidemasa; Akai, Hiroyuki; Kiryu, Shigeru; Imamura, Hiroshi; Watanabe, Yasushi; Kokudo, Norihiro; Ohtomo, Kuni
2012-10-01
We compared diagnostic ability for detecting hepatic metastases between gadolinium ethoxy benzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) on a 1.5-T system, and determined whether DWI is necessary in Gd-EOB-DTPA-enhanced MRI for diagnosing colorectal liver metastases. We assessed 29 consecutive prospectively enrolled patients with suspected metachronous colorectal liver metastases; all patients underwent surgery and had preoperative Gd-EOB-DTPA-enhanced MRI. Overall detection rate, sensitivity for detecting metastases and benign lesions, positive predictive value, and diagnostic accuracy (Az value) were compared among three image sets [unenhanced MRI (DWI set), Gd-EOB-DTPA-enhanced MRI excluding DWI (EOB set), and combined set]. Gd-EOB-DTPA-enhanced MRI yielded better overall detection rate (77.8-79.0 %) and sensitivity (87.1-89.4 %) for detecting metastases than the DWI set (55.9 % and 64.7 %, respectively) for one observer (P < 0.001). No statistically significant difference was seen between the EOB and combined sets, although several metastases were newly detected on additional DWI. Gd-EOB-DTPA-enhanced MRI yielded a better overall detection rate and higher sensitivity for detecting metastases compared with unenhanced MRI. Additional DWI may be able to reduce oversight of lesions in Gd-EOB-DTPA-enhanced 1.5-T MRI for detecting colorectal liver metastases.
Evaluating Kurtosis-based Diffusion MRI Tissue Models for White Matter with Fiber Ball Imaging
Jensen, Jens H.; McKinnon, Emilie T.; Glenn, G. Russell; Helpern, Joseph A.
2018-01-01
In order to quantify well-defined microstructural properties of brain tissue from diffusion MRI (dMRI) data, tissue models are typically employed that relate biological features, such as cell morphology and cell membrane permeability, to the diffusion dynamics. A variety of such models have been proposed for white matter, and their validation is a topic of active interest. In this paper, three different tissue models are tested by comparing their predictions for a specific microstructural parameter to the value measured independently with a recently proposed dMRI method known as fiber ball imaging (FBI). The three tissue models are all constructed with the diffusion and kurtosis tensors, and they are hence compatible with diffusional kurtosis imaging (DKI). Nevertheless, the models differ significantly in their details and predictions. For voxels with fractional anisotropies (FA) exceeding 0.5, all three are reasonably consistent with FBI. However, for lower FA values, one of these, called the white matter tract integrity (WMTI) model, is found to be in much better accord with FBI than the other two, suggesting that the WMTI model has a broader range of applicability. PMID:28085211
Ferradal, Silvina L; Eggebrecht, Adam T; Hassanpour, Mahlega; Snyder, Abraham Z; Culver, Joseph P
2014-01-15
Diffuse optical imaging (DOI) is increasingly becoming a valuable neuroimaging tool when fMRI is precluded. Recent developments in high-density diffuse optical tomography (HD-DOT) overcome previous limitations of sparse DOI systems, providing improved image quality and brain specificity. These improvements in instrumentation prompt the need for advancements in both i) realistic forward light modeling for accurate HD-DOT image reconstruction, and ii) spatial normalization for voxel-wise comparisons across subjects. Individualized forward light models derived from subject-specific anatomical images provide the optimal inverse solutions, but such modeling may not be feasible in all situations. In the absence of subject-specific anatomical images, atlas-based head models registered to the subject's head using cranial fiducials provide an alternative solution. In addition, a standard atlas is attractive because it defines a common coordinate space in which to compare results across subjects. The question therefore arises as to whether atlas-based forward light modeling ensures adequate HD-DOT image quality at the individual and group level. Herein, we demonstrate the feasibility of using atlas-based forward light modeling and spatial normalization methods. Both techniques are validated using subject-matched HD-DOT and fMRI data sets for visual evoked responses measured in five healthy adult subjects. HD-DOT reconstructions obtained with the registered atlas anatomy (i.e. atlas DOT) had an average localization error of 2.7mm relative to reconstructions obtained with the subject-specific anatomical images (i.e. subject-MRI DOT), and 6.6mm relative to fMRI data. At the group level, the localization error of atlas DOT reconstruction was 4.2mm relative to subject-MRI DOT reconstruction, and 6.1mm relative to fMRI. These results show that atlas-based image reconstruction provides a viable approach to individual head modeling for HD-DOT when anatomical imaging is not available. Copyright © 2013. Published by Elsevier Inc.
Is contrast enhancement needed for diagnostic prostate MRI?
Rondoni, Valeria; Aisa, Maria Cristina; Martorana, Eugenio; D’Andrea, Alfredo; Malaspina, Corrado Maria; Orlandi, Agostino; Galassi, Giorgio; Orlandi, Emanuele; Scialpi, Pietro; Dragone, Michele; Palladino, Diego; Simeone, Annalisa; Amenta, Michele; Bianchi, Giampaolo
2017-01-01
Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) provides clinical guidelines for multiparametric magnetic resonance imaging (mpMRI) [T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)] of prostate. However, DCE-MRI seems to show a limited contribution in prostate cancer (PCa) detection and management. In our experience, DCE-MRI, did not show significant change in diagnostic performance in addition to DWI and T2WI [biparametric MRI (bpMRI)] which represent the predominant sequences to detect suspected lesions in peripheral and transitional zone (TZ). In this article we reviewed the role of DCE-MRI also indicating the potential contribute of bpMRI approach (T2WI and DWI) and lesion volume evaluation in the diagnosis and management of suspected PCa. PMID:28725592
Is contrast enhancement needed for diagnostic prostate MRI?
Scialpi, Michele; Rondoni, Valeria; Aisa, Maria Cristina; Martorana, Eugenio; D'Andrea, Alfredo; Malaspina, Corrado Maria; Orlandi, Agostino; Galassi, Giorgio; Orlandi, Emanuele; Scialpi, Pietro; Dragone, Michele; Palladino, Diego; Simeone, Annalisa; Amenta, Michele; Bianchi, Giampaolo
2017-06-01
Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) provides clinical guidelines for multiparametric magnetic resonance imaging (mpMRI) [T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)] of prostate. However, DCE-MRI seems to show a limited contribution in prostate cancer (PCa) detection and management. In our experience, DCE-MRI, did not show significant change in diagnostic performance in addition to DWI and T2WI [biparametric MRI (bpMRI)] which represent the predominant sequences to detect suspected lesions in peripheral and transitional zone (TZ). In this article we reviewed the role of DCE-MRI also indicating the potential contribute of bpMRI approach (T2WI and DWI) and lesion volume evaluation in the diagnosis and management of suspected PCa.
Fan, Qiuyun; Nummenmaa, Aapo; Wichtmann, Barbara; Witzel, Thomas; Mekkaoui, Choukri; Schneider, Walter; Wald, Lawrence L; Huang, Susie Y
2018-06-01
We provide a comprehensive diffusion MRI dataset acquired with a novel biomimetic phantom mimicking human white matter. The fiber substrates in the diffusion phantom were constructed from hollow textile axons ("taxons") with an inner diameter of 11.8±1.2 µm and outer diameter of 33.5±2.3 µm. Data were acquired on the 3 T CONNECTOM MRI scanner with multiple diffusion times and multiple q-values per diffusion time, which is a dedicated acquisition for validation of microstructural imaging methods, such as compartment size and volume fraction mapping. Minimal preprocessing was performed to correct for susceptibility and eddy current distortions. Data were deposited in the XNAT Central database (project ID: dMRI_Phant_MGH).
Jeon, Ji Young; Lee, Min Hee; Lee, Sang Hoon; Shin, Myung Jin
2016-01-01
Objective: To evaluate the usefulness of adding diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping to conventional 3.0-T MRI to differentiate between benign and malignant superficial soft-tissue masses (SSTMs). Methods: The institutional review board approved this study and informed consent was waived. The authors retrospectively analyzed conventional MR images including diffusion-weighted images (b-values: 0, 400, 800 s mm−2) in 60 histologically proven SSTMs (35 benign and 25 malignant) excluding lipomas. Two radiologists independently evaluated the conventional MRI alone and again with the additional DWI for the evaluation of malignant masses. The mean ADC values measured within an entire mass and the contrast-enhancing solid portion were used for quantitative analysis. Diagnostic performances were compared using receiver-operating characteristic analysis. Results: For an inexperienced reader, using only conventional MRI, the sensitivity, specificity and accuracy were 84%, 80% and 81.6%, respectively. When combining conventional MRI and DWI, the sensitivity, specificity and accuracy were 96%, 85.7% and 90%, respectively. Additional DWI influenced the improvement of the rate of correct diagnosis by 8.3% (5/60). For an experienced reader, additional DWI revealed the same accuracy of 86.7% without added value on the correct diagnosis. The group mean ADCs of malignant SSTMs were significantly lower than that of benign SSTMs (p < 0.001). The best diagnostic performance with respect to differentiation of SSTMs could be obtained when conventional MRI was assessed in combination with DWI. Conclusion: Adding qualitative and quantitative DWI to conventional MRI can improve the diagnostic performance for the differentiation between benign and malignant SSTMs. Advances in knowledge: Because the imaging characteristics of many malignant superficial soft-tissue lesions overlap with those of benign ones, inadequate surgical resection due to misinterpretation of MRI often occurs. Adding DWI to conventional MRI yields greater diagnostic performances [area under the receiver-operating characteristic curve (AUC), 0.83–0.99] than does the use of conventional MRI alone (AUC, 0.71–0.93) in the evaluation of malignant superficial masses by inexperienced readers. PMID:26892266
Arab, Anas; Wojna-Pelczar, Anna; Khairnar, Amit; Szabó, Nikoletta; Ruda-Kucerova, Jana
2018-05-01
Pathology of neurodegenerative diseases can be correlated with intra-neuronal as well as extracellular changes which lead to neuronal degeneration. The central nervous system (CNS) is a complex structure comprising of many biological barriers. These microstructural barriers might be affected by a variety of pathological processes. Specifically, changes in the brain tissue's microstructure affect the diffusion of water which can be assessed non-invasively by diffusion weighted (DW) magnetic resonance imaging (MRI) techniques. Diffusion tensor imaging (DTI) is a diffusion MRI technique that considers diffusivity as a Gaussian process, i.e. does not account for any diffusion hindrance. However, environment of the brain tissues is characterized by a non-Gaussian diffusion. Therefore, diffusion kurtosis imaging (DKI) was developed as an extension of DTI method in order to quantify the non-Gaussian distribution of water diffusion. This technique represents a promising approach for early diagnosis of neurodegenerative diseases when the neurodegenerative process starts. Hence, the purpose of this article is to summarize the ongoing clinical and preclinical research on Parkinson's, Alzheimer's and Huntington diseases, using DKI and to discuss the role of this technique as an early stage biomarker of neurodegenerative conditions. Copyright © 2018 Elsevier Inc. All rights reserved.
Özarslan, Evren; Koay, Cheng Guan; Shepherd, Timothy M; Komlosh, Michal E; İrfanoğlu, M Okan; Pierpaoli, Carlo; Basser, Peter J
2013-09-01
Diffusion-weighted magnetic resonance (MR) signals reflect information about underlying tissue microstructure and cytoarchitecture. We propose a quantitative, efficient, and robust mathematical and physical framework for representing diffusion-weighted MR imaging (MRI) data obtained in "q-space," and the corresponding "mean apparent propagator (MAP)" describing molecular displacements in "r-space." We also define and map novel quantitative descriptors of diffusion that can be computed robustly using this MAP-MRI framework. We describe efficient analytical representation of the three-dimensional q-space MR signal in a series expansion of basis functions that accurately describes diffusion in many complex geometries. The lowest order term in this expansion contains a diffusion tensor that characterizes the Gaussian displacement distribution, equivalent to diffusion tensor MRI (DTI). Inclusion of higher order terms enables the reconstruction of the true average propagator whose projection onto the unit "displacement" sphere provides an orientational distribution function (ODF) that contains only the orientational dependence of the diffusion process. The representation characterizes novel features of diffusion anisotropy and the non-Gaussian character of the three-dimensional diffusion process. Other important measures this representation provides include the return-to-the-origin probability (RTOP), and its variants for diffusion in one- and two-dimensions-the return-to-the-plane probability (RTPP), and the return-to-the-axis probability (RTAP), respectively. These zero net displacement probabilities measure the mean compartment (pore) volume and cross-sectional area in distributions of isolated pores irrespective of the pore shape. MAP-MRI represents a new comprehensive framework to model the three-dimensional q-space signal and transform it into diffusion propagators. Experiments on an excised marmoset brain specimen demonstrate that MAP-MRI provides several novel, quantifiable parameters that capture previously obscured intrinsic features of nervous tissue microstructure. This should prove helpful for investigating the functional organization of normal and pathologic nervous tissue. Copyright © 2013 Elsevier Inc. All rights reserved.
Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project
2011-10-01
promising technology on the horizon is the Diffusion Tensor Imaging ( DTI ). Diffusion tensor imaging ( DTI ) is a magnetic resonance imaging (MRI)-based...in the brain. The potential for DTI to improve our understanding of TBI has not been fully explored and challenges associated with non-existent...processing tools, quality control standards, and a shared image repository. The recommendations will be disseminated and pilot tested. A DTI of TBI
[See the thinking brain: a story about water].
Le Bihan, D
2008-01-01
Among the astonishing Einstein's papers from 1905, there is one which unexpectedly gave birth to a powerful method to explore the brain. Molecular diffusion was explained by Einstein on the basis of the random translational motion of molecules which results from their thermal energy. In the mid 1980s it was shown that water diffusion in the brain could be imaged using MRI. During their random displacements water molecules probe tissue structure at a microscopic scale, interacting with cell membranes and, thus, providing unique information on the functional architecture of tissues. A dramatic application of diffusion MRI has been brain ischemia, following the discovery that water diffusion drops immediately after the onset of an ischemic event, when brain cells undergo swelling through cytotoxic edema. On the other hand, water diffusion is anisotropic in white matter, because axon membranes limit molecular movement perpendicularly to the fibers. This feature can be exploited to map out the orientation in space of the white matter tracks and image brain connections. More recently, it has been shown that diffusion MRI could accurately detect cortical activation. As the diffusion response precedes by several seconds the hemodynamic response captured by BOLD fMRI, it has been suggested that water diffusion could reflect early neuronal events, such as the transient swelling of activated cortical cells. If confirmed, this discovery will represent a significant breakthrough, allowing non invasive access to a direct physiological marker of brain activation. This approach will bridge the gap between invasive optical imaging techniques in neuronal cell cultures, and current functional neuroimaging approaches in humans, which are based on indirect and remote blood flow changes.
Fusion of MRIs and CT scans for surgical treatment of cholesteatoma of the middle ear in children.
Plouin-Gaudon, Isabelle; Bossard, Denis; Ayari-Khalfallah, Sonia; Froehlich, Patrick
2010-09-01
To evaluate the efficiency of diffusion-weighted magnetic resonance imaging (MRI) and high-resolution computed tomographic (CT) scan coregistration in predicting and adequately locating primary or recurrent cholesteatoma in children. Prospective study. Tertiary care university hospital. Ten patients aged 2 to 17 years (mean age, 8.5 years) with cholesteatoma of the middle ear, some of which were previously treated, were included for follow-up with systematic CT scanning and MRI between 2007 and 2008. Computed tomographic scanning was performed on a Siemens Somaton 128 (0.5/0.2-mm slices reformatted in 0.5/0.3-mm images). Fine cuts were obtained parallel and perpendicular to the lateral semicircular canal in each ear (100 × 100-mm field of view). Magnetic resonance imaging was undertaken on a Siemens Avanto 1.5T unit, with a protocol adapted for young children. Diffusion-weighted imaging was acquired using a single-shot turbo spin-echo mode. To allow for diagnosis and localization of the cholesteatoma, CT and diffusion-weighted MRIs were fused for each case. In 10 children, fusion technique allowed for correct diagnosis and precise localization (hypotympanum, epitympanum, mastoid recess, and attical space) as confirmed by subsequent standard surgery (positive predictive value, 100%). In 3 cases, the surgical approach was adequately determined from the fusion results. Lesion sizes on the CT-MRI fusion corresponded with perioperative findings. Recent developments in imaging techniques have made diffusion-weighted MRI more effective for detecting recurrent cholesteatoma. The major drawback of this technique, however, has been its poor anatomical and spatial discrimination. Fusion imaging using high-resolution CT and diffusion-weighted MRI appears to be a promising technique for both the diagnosis and precise localization of cholesteatomas. It provides useful information for surgical planning and, furthermore, is easy to use in pediatric cases.
Real Diffusion-Weighted MRI Enabling True Signal Averaging and Increased Diffusion Contrast
Eichner, Cornelius; Cauley, Stephen F; Cohen-Adad, Julien; Möller, Harald E; Turner, Robert; Setsompop, Kawin; Wald, Lawrence L
2015-01-01
This project aims to characterize the impact of underlying noise distributions on diffusion-weighted imaging. The noise floor is a well-known problem for traditional magnitude-based diffusion-weighted MRI (dMRI) data, leading to biased diffusion model fits and inaccurate signal averaging. Here, we introduce a total-variation-based algorithm to eliminate shot-to-shot phase variations of complex-valued diffusion data with the intention to extract real-valued dMRI datasets. The obtained real-valued diffusion data are no longer superimposed by a noise floor but instead by a zero-mean Gaussian noise distribution, yielding dMRI data without signal bias. We acquired high-resolution dMRI data with strong diffusion weighting and, thus, low signal-to-noise ratio. Both the extracted real-valued and traditional magnitude data were compared regarding signal averaging, diffusion model fitting and accuracy in resolving crossing fibers. Our results clearly indicate that real-valued diffusion data enables idealized conditions for signal averaging. Furthermore, the proposed method enables unbiased use of widely employed linear least squares estimators for model fitting and demonstrates an increased sensitivity to detect secondary fiber directions with reduced angular error. The use of phase-corrected, real-valued data for dMRI will therefore help to clear the way for more detailed and accurate studies of white matter microstructure and structural connectivity on a fine scale. PMID:26241680
Recovery of White Matter following Pediatric Traumatic Brain Injury Depends on Injury Severity.
Genc, Sila; Anderson, Vicki; Ryan, Nicholas P; Malpas, Charles B; Catroppa, Cathy; Beauchamp, Miriam H; Silk, Timothy J
2017-02-15
Previous studies in pediatric traumatic brain injury (TBI) have been variable in describing the effects of injury severity on white-matter development. The present study used diffusion tensor imaging to investigate prospective sub-acute and longitudinal relationships between early clinical indicators of injury severity, diffusion metrics, and neuropsychological outcomes. Pediatric patients with TBI underwent magnetic resonance imaging (MRI) (n = 78, mean [M] = 10.56, standard deviation [SD] = 2.21 years) at the sub-acute stage after injury (M = 5.55, SD = 3.05 weeks), and typically developing children were also included and imaged (n = 30, M = 10.60, SD = 2.88 years). A sub-set of the patients with TBI (n = 15) was followed up with MRI 2 years post-injury. Diffusion MRI images were acquired at sub-acute and 2-year follow-up time points and analyzed using Tract-Based Spatial Statistics. At the sub-acute stage, mean diffusivity and axial diffusivity were significantly higher in the TBI group compared with matched controls (p < 0.05). TBI severity significantly predicted diffusion profiles at the sub-acute and 2-year post-injury MRI. Patients with more severe TBI also exhibited poorer information processing speed at 6-months post-injury, which in turn correlated with their diffusion metrics. These findings highlight that the severity of the injury not only has an impact on white-matter microstructure, it also impacts its recovery over time. Moreover, findings suggest that sub-acute microstructural changes may represent a useful prognostic marker to identify children at elevated risk for longer term deficits.
PANDA: a pipeline toolbox for analyzing brain diffusion images
Cui, Zaixu; Zhong, Suyu; Xu, Pengfei; He, Yong; Gong, Gaolang
2013-01-01
Diffusion magnetic resonance imaging (dMRI) is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named “Pipeline for Analyzing braiN Diffusion imAges” (PANDA) for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL), Pipeline System for Octave and Matlab (PSOM), Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics [e.g., fractional anisotropy (FA) and mean diffusivity (MD)] that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS)-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI), allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies. PMID:23439846
Barnea-Goraly, Naama; Weinzimer, Stuart A.; Mauras, Nelly; Beck, Roy W.; Marzelli, Matt J.; Mazaika, Paul K.; Aye, Tandy; White, Neil H.; Tsalikian, Eva; Fox, Larry; Kollman, Craig; Cheng, Peiyao; Reiss, Allan L.
2013-01-01
Background The ability to lie still in an MRI scanner is essential for obtaining usable image data. To reduce motion, young children are often sedated, adding significant cost and risk. Objective We assessed the feasibility of using a simple and affordable behavioral desensitization program to yield high-quality brain MRI scans in sedation-free children. Materials and methods 222 children (4–9.9 years), 147 with type 1 diabetes and 75 age-matched non-diabetic controls, participated in a multi-site study focused on effects of type 1 diabetes on the developing brain. T1-weighted and diffusion-weighted imaging (DWI) MRI scans were performed. All children underwent behavioral training and practice MRI sessions using either a commercial MRI simulator or an inexpensive mock scanner consisting of a toy tunnel, vibrating mat, and video player to simulate the sounds and feel of the MRI scanner. Results 205 children (92.3%), mean age 7±1.7 years had high-quality T1-W scans and 174 (78.4%) had high-quality diffusion-weighted scans after the first scan session. With a second scan session, success rates were 100% and 92.5% for T1-and diffusion-weighted scans, respectively. Success rates did not differ between children with type 1 diabetes and children without diabetes, or between centers using a commercial MRI scan simulator and those using the inexpensive mock scanner. Conclusion Behavioral training can lead to a high success rate for obtaining high-quality T1-and diffusion-weighted brain images from a young population without sedation. PMID:24096802
The physical and biological basis of quantitative parameters derived from diffusion MRI
2012-01-01
Diffusion magnetic resonance imaging is a quantitative imaging technique that measures the underlying molecular diffusion of protons. Diffusion-weighted imaging (DWI) quantifies the apparent diffusion coefficient (ADC) which was first used to detect early ischemic stroke. However this does not take account of the directional dependence of diffusion seen in biological systems (anisotropy). Diffusion tensor imaging (DTI) provides a mathematical model of diffusion anisotropy and is widely used. Parameters, including fractional anisotropy (FA), mean diffusivity (MD), parallel and perpendicular diffusivity can be derived to provide sensitive, but non-specific, measures of altered tissue structure. They are typically assessed in clinical studies by voxel-based or region-of-interest based analyses. The increasing recognition of the limitations of the diffusion tensor model has led to more complex multi-compartment models such as CHARMED, AxCaliber or NODDI being developed to estimate microstructural parameters including axonal diameter, axonal density and fiber orientations. However these are not yet in routine clinical use due to lengthy acquisition times. In this review, I discuss how molecular diffusion may be measured using diffusion MRI, the biological and physical bases for the parameters derived from DWI and DTI, how these are used in clinical studies and the prospect of more complex tissue models providing helpful micro-structural information. PMID:23289085
Bickelhaupt, Sebastian; Paech, Daniel; Kickingereder, Philipp; Steudle, Franziska; Lederer, Wolfgang; Daniel, Heidi; Götz, Michael; Gählert, Nils; Tichy, Diana; Wiesenfarth, Manuel; Laun, Frederik B; Maier-Hein, Klaus H; Schlemmer, Heinz-Peter; Bonekamp, David
2017-08-01
To assess radiomics as a tool to determine how well lesions found suspicious on breast cancer screening X-ray mammography can be categorized into malignant and benign with unenhanced magnetic resonance (MR) mammography with diffusion-weighted imaging and T 2 -weighted sequences. From an asymptomatic screening cohort, 50 women with mammographically suspicious findings were examined with contrast-enhanced breast MRI (ceMRI) at 1.5T. Out of this protocol an unenhanced, abbreviated diffusion-weighted imaging protocol (ueMRI) including T 2 -weighted, (T 2 w), diffusion-weighted imaging (DWI), and DWI with background suppression (DWIBS) sequences and corresponding apparent diffusion coefficient (ADC) maps were extracted. From ueMRI-derived radiomic features, three Lasso-supervised machine-learning classifiers were constructed and compared with the clinical performance of a highly experienced radiologist: 1) univariate mean ADC model, 2) unconstrained radiomic model, 3) constrained radiomic model with mandatory inclusion of mean ADC. The unconstrained and constrained radiomic classifiers consisted of 11 parameters each and achieved differentiation of malignant from benign lesions with a .632 + bootstrap receiver operating characteristics (ROC) area under the curve (AUC) of 84.2%/85.1%, compared to 77.4% for mean ADC and 95.9%/95.9% for the experienced radiologist using ceMRI/ueMRI. In this pilot study we identified two ueMRI radiomics classifiers that performed well in the differentiation of malignant from benign lesions and achieved higher performance than the mean ADC parameter alone. Classification was lower than the almost perfect performance of a highly experienced breast radiologist. The potential of radiomics to provide a training-independent diagnostic decision tool is indicated. A performance reaching the human expert would be highly desirable and based on our results is considered possible when the concept is extended in larger cohorts with further development and validation of the technique. 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:604-616. © 2017 International Society for Magnetic Resonance in Medicine.
Theilmann, Rebecca J; Borders, Rebecca; Trouard, Theodore P; Xia, Guowei; Outwater, Eric; Ranger-Moore, James; Gillies, Robert J; Stopeck, Alison
2004-01-01
Abstract A goal of oncology is the individualization of patient care to optimize therapeutic responses and minimize toxicities. Achieving this will require noninvasive, quantifiable, and early markers of tumor response. Preclinical data from xenografted tumors using a variety of antitumor therapies have shown that magnetic resonance imaging (MRI)-measured mobility of tissue water (apparent diffusion coefficient of water, or ADCw) is a biomarker presaging cell death in the tumor. This communication tests the hypothesis that changes in water mobility will quantitatively presage tumor responses in patients with metastatic liver lesions from breast cancer. A total of 13 patients with metastatic breast cancer and 60measurable liver lesionsweremonitored by diffusion MRI after initiation of new courses of chemotherapy. MR images were obtained prior to, and at 4, 11, and 39 days following the initiation of therapy for determination of volumes and ADCw values. The data indicate that diffusion MRI can predict response by 4 or 11 days after commencement of therapy, depending on the analytic method. The highest concordance was observed in tumor lesions that were less than 8 cm3 in volume at presentation. These results suggest that diffusion MRI can be useful to predict the response of liver metastases to effective chemotherapy. PMID:15720810
Wu, Wenchuan; Fang, Sheng; Guo, Hua
2014-06-01
Aiming at motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging (MRI), we proposed a joint correction method in this paper to correct the two kinds of artifacts simultaneously without additional acquisition of navigation data and field map. We utilized the proposed method using multi-shot variable density spiral sequence to acquire MRI data and used auto-focusing technique for image deblurring. We also used direct method or iterative method to correct motion induced phase errors in the process of deblurring. In vivo MRI experiments demonstrated that the proposed method could effectively suppress motion artifacts and off-resonance artifacts and achieve images with fine structures. In addition, the scan time was not increased in applying the proposed method.
Mapping immune cell infiltration using restricted diffusion MRI.
Yeh, Fang-Cheng; Liu, Li; Hitchens, T Kevin; Wu, Yijen L
2017-02-01
Diffusion MRI provides a noninvasive way to assess tissue microstructure. Based on diffusion MRI, we propose a model-free method called restricted diffusion imaging (RDI) to quantify restricted diffusion and correlate it with cellularity. An analytical relation between q-space signals and the density of restricted spins was derived to quantify restricted diffusion. A phantom study was conducted to investigate the performance of RDI, and RDI was applied to an animal study to assess immune cell infiltration in myocardial tissues with ischemia-reperfusion injury. Our phantom study showed a correlation coefficient of 0.998 between cell density and the restricted diffusion quantified by RDI. The animal study also showed that the high-value regions in RDI matched well with the macrophage infiltration areas in the H&E stained slides. In comparison with diffusion tensor imaging (DTI), RDI exhibited its outperformance to detect macrophage infiltration and delineate inflammatory myocardium. RDI can be used to reveal cell density and detect immune cell infiltration. RDI exhibits better specificity than the diffusivity measurement derived from DTI. Magn Reson Med 77:603-612, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Holleran, Laurena; Kim, Joong Hee; Gangolli, Mihika; Stein, Thor; Alvarez, Victor; McKee, Ann; Brody, David L
2017-03-01
Chronic traumatic encephalopathy (CTE) is a progressive degenerative disorder associated with repetitive traumatic brain injury. One of the primary defining neuropathological lesions in CTE, based on the first consensus conference, is the accumulation of hyperphosphorylated tau in gray matter sulcal depths. Post-mortem CTE studies have also reported myelin loss, axonal injury and white matter degeneration. Currently, the diagnosis of CTE is restricted to post-mortem neuropathological analysis. We hypothesized that high spatial resolution advanced diffusion MRI might be useful for detecting white matter microstructural changes directly adjacent to gray matter tau pathology. To test this hypothesis, formalin-fixed post-mortem tissue blocks from the superior frontal cortex of ten individuals with an established diagnosis of CTE were obtained from the Veterans Affairs-Boston University-Concussion Legacy Foundation brain bank. Advanced diffusion MRI data was acquired using an 11.74 T MRI scanner at Washington University with 250 × 250 × 500 µm 3 spatial resolution. Diffusion tensor imaging, diffusion kurtosis imaging and generalized q-sampling imaging analyses were performed in a blinded fashion. Following MRI acquisition, tissue sections were tested for phosphorylated tau immunoreactivity in gray matter sulcal depths. Axonal disruption in underlying white matter was assessed using two-dimensional Fourier transform analysis of myelin black gold staining. A robust image co-registration method was applied to accurately quantify the relationship between diffusion MRI parameters and histopathology. We found that white matter underlying sulci with high levels of tau pathology had substantially impaired myelin black gold Fourier transform power coherence, indicating axonal microstructural disruption (r = -0.55, p = 0.0015). Using diffusion tensor MRI, we found that fractional anisotropy (FA) was modestly (r = 0.53) but significantly (p = 0.0012) correlated with axonal disruption, where lower FA was associated with greater axonal disruption in white matter directly adjacent to hyperphosphorylated tau positive sulci. In summary, our findings indicate that axonal disruption and tau pathology are closely associated, and high spatial resolution ex vivo diffusion MRI has the potential to detect microstructural alterations observed in CTE tissue. Future studies will be required to determine whether this approach can be applied to living people.
Andersson, Jesper L.R.; Sotiropoulos, Stamatios N.
2015-01-01
Diffusion MRI offers great potential in studying the human brain microstructure and connectivity. However, diffusion images are marred by technical problems, such as image distortions and spurious signal loss. Correcting for these problems is non-trivial and relies on having a mechanism that predicts what to expect. In this paper we describe a novel way to represent and make predictions about diffusion MRI data. It is based on a Gaussian process on one or several spheres similar to the Geostatistical method of “Kriging”. We present a choice of covariance function that allows us to accurately predict the signal even from voxels with complex fibre patterns. For multi-shell data (multiple non-zero b-values) the covariance function extends across the shells which means that data from one shell is used when making predictions for another shell. PMID:26236030
Whole-body MR imaging, bone diffusion imaging: how and why?
Jaramillo, Diego
2010-06-01
Whole-body MRI (W-B MRI) and diffusion-weighted imaging (DWI) are two novel techniques that greatly facilitate the evaluation of many disorders of childhood. In the musculoskeletal system, these techniques primarily aid in the evaluation of the marrow, although there is increasing interest in the study of soft-tissue abnormalities with W-B MRI and of cartilage with DWI.The normal pattern of marrow transformation affects both modalities throughout childhood. Haematopoietic marrow has a much higher signal intensity than fatty marrow on W-B MRI short tau inversion recovery (STIR) images (Darge et al. Eur J Radiol 68:289-298, 2008). Diffusion is greater in haematopoietic marrow than in fatty marrow and decreases in the skeleton with age (Jaramillo et al. Pediatr Radiol 34:S48, 2004). It is important therefore to remember that the entire skeleton is haematopoietic at birth and that there is a process of marrow transformation to fatty marrow. Marrow conversion proceeds from the fingers to the shoulders and from the toes to the hips. Within each bone, fatty marrow transformation begins in the epiphyses, and within the shaft of the long bones fatty marrow transformation begins at the diaphysis and proceeds towards the metaphyses.
Wada, Masae; Hasegawa, Daisuke; Hamamoto, Yuji; Yu, Yoshihiko; Fujiwara-Igarashi, Aki; Fujita, Michio
2017-07-01
Although MRI has become widely used in small animal practice, little is known about the validity of advanced MRI techniques such as diffusion-weighted imaging and diffusion tensor imaging. The aim of this retrospective analytical observational study was to investigate the characteristics of diffusion parameters, that is the apparent diffusion coefficient and fractional anisotropy, in dogs with a solitary intracranial meningioma or histiocytic sarcoma. Dogs were included based on the performance of diffusion MRI and histological confirmation. Statistical analyses were performed to compare apparent diffusion coefficient and fractional anisotropy for the two types of tumor in the intra- and peritumoral regions. Eleven cases with meningioma and six with histiocytic sarcoma satisfied the inclusion criteria. Significant differences in apparent diffusion coefficient value (× 10 -3 mm 2 /s) between meningioma vs. histiocytic sarcoma were recognized in intratumoral small (1.07 vs. 0.76) and large (1.04 vs. 0.77) regions of interest, in the peritumoral margin (0.93 vs. 1.08), and in the T2 high region (1.21 vs. 1.41). Significant differences in fractional anisotropy values were found in the peritumoral margin (0.29 vs. 0.24) and the T2 high region (0.24 vs. 0.17). The current study identified differences in measurements of apparent diffusion coefficient and fractional anisotropy for meningioma and histiocytic sarcoma in a small sample of dogs. In addition, we observed that all cases of intracranial histiocytic sarcoma showed leptomeningeal enhancement and/or mass formation invading into the sulci in the contrast study. Future studies are needed to determine the sensitivity of these imaging characteristics for differentiating between these tumor types. © 2017 American College of Veterinary Radiology.
[Imaging and quantitative measurement of brain extracellular space using MRI Gd-DTPA tracer method].
He, Qing-yuan; Han, Hong-bin; Xu, Fang-jing-wei; Yan, Jun-hao; Zeng, Jin-jin; Li, Xiao-gang; Fu, Yu; Peng, Yun; Chen, He; Hou, Chao; Xu, Xiao-juan
2010-04-18
To observe the diffusion of Gd-DTPA in brain extracellular space (ECS) by magnetic resonance imaging(MRI) and investigate the feasibility of ECS measurement by using MRI tracer method in vivo. 2 microL Gd-DTPA was introduced into ECS by caudate nucleus according to stereotaxic atlas in 8 Sprague Dawley(SD) rats (male, 280-320 g). The MRI scans were performed at 1 h, 3 h, 6 h, 9 h and 12 h respectively after administration. MRI appearances of Gd-DTPA diffusion and distribution was observed and compared. The MRI signal enhancement was measured at each time point. The neuroethology assessment was performed after MRI scanning at 12 h. The injection was accurate at the center of the caudate nucleus in 6 rats, while, at the capsula externa in other 2 rats. Gd-DTPA diffused isotropically after it was introduced into caudate nucleus, which spread into lateral cortex at 3 h. The MRI signal enhancement distributed mainly in the middle cerebral artery territory. A significant difference was found between the signal enhancement ratio at 1 h and that at 3 h in the original point of caudate nucleus (t=95.63, P<0.01), and the signal enhancement attenuated following the exponential power function y=1.7886x(-0.1776) (R2=0.94). In 2 rats with the injection point at capsula externa, Gd-DTPA diffused anisotropically along the fiber track of white matter during 1 h to 3 h, and spread into the lateral cortex at 6 h. The diffusion and clearance of Gd-DTPA in brain ECS could be monitored and measured quantitatively in vivo by MRI tracer method.
Diffusion MRI in early cancer therapeutic response assessment
Galbán, C. J.; Hoff, B. A.; Chenevert, T. L.; Ross, B. D.
2016-01-01
Imaging biomarkers for the predictive assessment of treatment response in patients with cancer earlier than standard tumor volumetric metrics would provide new opportunities to individualize therapy. Diffusion-weighted MRI (DW-MRI), highly sensitive to microenvironmental alterations at the cellular level, has been evaluated extensively as a technique for the generation of quantitative and early imaging biomarkers of therapeutic response and clinical outcome. First demonstrated in a rodent tumor model, subsequent studies have shown that DW-MRI can be applied to many different solid tumors for the detection of changes in cellularity as measured indirectly by an increase in the apparent diffusion coefficient (ADC) of water molecules within the lesion. The introduction of quantitative DW-MRI into the treatment management of patients with cancer may aid physicians to individualize therapy, thereby minimizing unnecessary systemic toxicity associated with ineffective therapies, saving valuable time, reducing patient care costs and ultimately improving clinical outcome. This review covers the theoretical basis behind the application of DW-MRI to monitor therapeutic response in cancer, the analytical techniques used and the results obtained from various clinical studies that have demonstrated the efficacy of DW-MRI for the prediction of cancer treatment response. PMID:26773848
Vellmer, Sebastian; Tonoyan, Aram S; Suter, Dieter; Pronin, Igor N; Maximov, Ivan I
2018-02-01
Diffusion magnetic resonance imaging (dMRI) is a powerful tool in clinical applications, in particular, in oncology screening. dMRI demonstrated its benefit and efficiency in the localisation and detection of different types of human brain tumours. Clinical dMRI data suffer from multiple artefacts such as motion and eddy-current distortions, contamination by noise, outliers etc. In order to increase the image quality of the derived diffusion scalar metrics and the accuracy of the subsequent data analysis, various pre-processing approaches are actively developed and used. In the present work we assess the effect of different pre-processing procedures such as a noise correction, different smoothing algorithms and spatial interpolation of raw diffusion data, with respect to the accuracy of brain glioma differentiation. As a set of sensitive biomarkers of the glioma malignancy grades we chose the derived scalar metrics from diffusion and kurtosis tensor imaging as well as the neurite orientation dispersion and density imaging (NODDI) biophysical model. Our results show that the application of noise correction, anisotropic diffusion filtering, and cubic-order spline interpolation resulted in the highest sensitivity and specificity for glioma malignancy grading. Thus, these pre-processing steps are recommended for the statistical analysis in brain tumour studies. Copyright © 2017. Published by Elsevier GmbH.
Rocky Mountain spotted fever: 'starry sky' appearance with diffusion-weighted imaging in a child.
Crapp, Seth; Harrar, Dana; Strother, Megan; Wushensky, Curtis; Pruthi, Sumit
2012-04-01
We present a case of Rocky Mountain spotted fever encephalitis in a child imaged utilizing diffusion-weighted MRI. Although the imaging and clinical manifestations of this entity have been previously described, a review of the literature did not reveal any such cases reported in children utilizing diffusion-weighted imaging. The imaging findings and clinical history are presented as well as a brief review of this disease.
Maiwald, Bettina; Lobsien, Donald; Kahn, Thomas; Stumpp, Patrick
2014-01-01
Objectives To compare 64-slice contrast-enhanced computed tomography (CT) with 3-Tesla magnetic resonance imaging (MRI) using Gd-EOB-DTPA for the diagnosis of hepatocellular carcinoma (HCC) and evaluate the utility of diffusion-weighted imaging (DWI) in this setting. Methods 3-phase-liver-CT was performed in fifty patients (42 male, 8 female) with suspected or proven HCC. The patients were subjected to a 3-Tesla-MRI-examination with Gd-EOB-DTPA and diffusion weighted imaging (DWI) at b-values of 0, 50 and 400 s/mm2. The apparent diffusion coefficient (ADC)-value was determined for each lesion detected in DWI. The histopathological report after resection or biopsy of a lesion served as the gold standard, and a surrogate of follow-up or complementary imaging techniques in combination with clinical and paraclinical parameters was used in unresected lesions. Diagnostic accuracy, sensitivity, specificity, and positive and negative predictive values were evaluated for each technique. Results MRI detected slightly more lesions that were considered suspicious for HCC per patient compared to CT (2.7 versus 2.3, respectively). ADC-measurements in HCC showed notably heterogeneous values with a median of 1.2±0.5×10−3 mm2/s (range from 0.07±0.1 to 3.0±0.1×10−3 mm2/s). MRI showed similar diagnostic accuracy, sensitivity, and positive and negative predictive values compared to CT (AUC 0.837, sensitivity 92%, PPV 80% and NPV 90% for MRI vs. AUC 0.798, sensitivity 85%, PPV 79% and NPV 82% for CT; not significant). Specificity was 75% for both techniques. Conclusions Our study did not show a statistically significant difference in detection in detection of HCC between MRI and CT. Gd-EOB-DTPA-enhanced MRI tended to detect more lesions per patient compared to contrast-enhanced CT; therefore, we would recommend this modality as the first-choice imaging method for the detection of HCC and therapeutic decisions. However, contrast-enhanced CT was not inferior in our study, so that it can be a useful image modality for follow-up examinations. PMID:25375778
A quantitative comparison of two methods to correct eddy current-induced distortions in DT-MRI.
Muñoz Maniega, Susana; Bastin, Mark E; Armitage, Paul A
2007-04-01
Eddy current-induced geometric distortions of single-shot, diffusion-weighted, echo-planar (DW-EP) images are a major confounding factor to the accurate determination of water diffusion parameters in diffusion tensor MRI (DT-MRI). Previously, it has been suggested that these geometric distortions can be removed from brain DW-EP images using affine transformations determined from phantom calibration experiments using iterative cross-correlation (ICC). Since this approach was first described, a number of image-based registration methods have become available that can also correct eddy current-induced distortions in DW-EP images. However, as yet no study has investigated whether separate eddy current calibration or image-based registration provides the most accurate way of removing these artefacts from DT-MRI data. Here we compare how ICC phantom calibration and affine FLIRT (http://www.fmrib.ox.ac.uk), a popular image-based multi-modal registration method that can correct both eddy current-induced distortions and bulk subject motion, perform when registering DW-EP images acquired with different slice thicknesses (2.8 and 5 mm) and b-values (1000 and 3000 s/mm(2)). With the use of consistency testing, it was found that ICC was a more robust algorithm for correcting eddy current-induced distortions than affine FLIRT, especially at high b-value and small slice thickness. In addition, principal component analysis demonstrated that the combination of ICC phantom calibration (to remove eddy current-induced distortions) with rigid body FLIRT (to remove bulk subject motion) provided a more accurate registration of DT-MRI data than that achieved by affine FLIRT.
Theys, Catherine; Wouters, Jan; Ghesquière, Pol
2014-01-01
Advanced Magnetic Resonance Imaging (MRI) techniques such as Diffusion Tensor Imaging (DTI) and resting-state functional MRI (rfMRI) are widely used to study structural and functional neural connectivity. However, as these techniques are highly sensitive to motion artifacts and require a considerable amount of time for image acquisition, successful acquisition of these images can be challenging to complete with certain populations. This is especially true for young children. This paper describes a new approach termed the ‘submarine protocol’, designed to prepare 5- and 6-year-old children for advanced MRI scanning. The submarine protocol aims to ensure that successful scans can be acquired in a time- and resource-efficient manner, without the need for sedation. This manuscript outlines the protocol and details its outcomes, as measured through the number of children who completed the scanning procedure and analysis of the degree of motion present in the acquired images. Seventy-six children aged between 5.8 and 6.9 years were trained using the submarine protocol and subsequently underwent DTI and rfMRI scanning. After completing the submarine protocol, 75 of the 76 children (99%) completed their DTI-scan and 72 children (95%) completed the full 35-minute scan session. Results of diffusion data, acquired in 75 children, showed that the motion in 60 of the scans (80%) did not exceed the threshold for excessive motion. In the rfMRI scans, this was the case for 62 of the 71 scans (87%). When placed in the context of previous studies, the motion data of the 5- and 6-year-old children reported here were as good as, or better than those previously reported for groups of older children (i.e., 8-year-olds). Overall, this study shows that the submarine protocol can be used successfully to acquire DTI and rfMRI scans in 5 and 6-year-old children, without the need for sedation or lengthy training procedures. PMID:24718364
Bural, Gonca G; Torigian, Drew A; Burke, Anne; Houseni, Mohamed; Alkhawaldeh, Khaled; Cucchiara, Andrew; Basu, Sandip; Alavi, Abass
2010-06-01
The aim of this study was to compare hepatic standardized uptake values (SUVs) and hepatic metabolic volumetric products (HMVP) between patients of diffuse hepatic steatosis and control subjects with normal livers. Twenty-seven subjects were included in the study (13 men and 14 women; age range, 34-72 years). All had 18F-2-fluoro-2-D-deoxyglucose-positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) scans with an interscan interval of 0-5 months. Twelve of 27 subjects had diffuse hepatic steatosis on MRI. The remaining 15 were selected as age-matched controls based on normal liver parenchyma on MRI. Mean and maximum hepatic SUVs were calculated for both patient groups on FDG-PET images. Hepatic volumes were measured from MRI. HMVP in each subject was subsequently calculated by multiplication of hepatic volume by mean hepatic SUV. HMVPs as well as mean and maximum hepatic SUVs were compared between the two study groups. HMVPs, mean hepatic SUVs, and maximum hepatic SUVs were greater (statistically significant, p < 0.05) in subjects with diffuse hepatic steatosis compared to those in the control group. The increase in HMVP is the result of increased hepatic metabolic activity likely related to the diffuse hepatic steatosis. The active inflammatory process related to the diffuse hepatic steatosis is the probable explanation for the increase in hepatic metabolic activity on FDG-PET study.
NASA Astrophysics Data System (ADS)
Scherrer, Benoit; Afacan, Onur; Stamm, Aymeric; Singh, Jolene; Warfield, Simon K.
2015-03-01
Diffusion-weighted magnetic resonance imaging (DW-MRI) provides a novel insight into the brain to facilitate our understanding of the brain connectivity and microstructure. While in-vivo DW-MRI enables imaging of living patients and longitudinal studies of brain changes, post-mortem ex-vivo DW-MRI has numerous advantages. Ex-vivo imaging benefits from greater resolution and sensitivity due to the lack of imaging time constraints; the use of tighter fitting coils; and the lack of movement artifacts. This allows characterization of normal and abnormal tissues with unprecedented resolution and sensitivity, facilitating our ability to investigate anatomical structures that are inaccessible in-vivo. This also offers the opportunity to develop today novel imaging biomarkers that will, with tomorrow's MR technology, enable improved in-vivo assessment of the risk of disease in an individual. Post-mortem studies, however, generally rely on the fixation of specimen to inhibit tissue decay which starts as soon as tissue is deprived from its blood supply. Unfortunately, fixation of tissues substantially alters tissue diffusivity profiles. In addition, ex-vivo DW-MRI requires particular care when packaging the specimen because the presence of microscopic air bubbles gives rise to geometric and intensity image distortion. In this work, we considered the specific requirements of post-mortem imaging and designed an optimized protocol for ex-vivo whole brain DW-MRI using a human clinical 3T scanner. Human clinical 3T scanners are available to a large number of researchers and, unlike most animal scanners, have a bore diameter large enough to image a whole human brain. Our optimized protocol will facilitate widespread ex-vivo investigations of large specimen.
Mekkaoui, Choukri; Reese, Timothy G.; Jackowski, Marcel P.; Bhat, Himanshu
2015-01-01
Diffusion MRI provides unique information on the structure, organization, and integrity of the myocardium without the need for exogenous contrast agents. Diffusion MRI in the heart, however, has proven technically challenging because of the intrinsic non‐rigid deformation during the cardiac cycle, displacement of the myocardium due to respiratory motion, signal inhomogeneity within the thorax, and short transverse relaxation times. Recently developed accelerated diffusion‐weighted MR acquisition sequences combined with advanced post‐processing techniques have improved the accuracy and efficiency of diffusion MRI in the myocardium. In this review, we describe the solutions and approaches that have been developed to enable diffusion MRI of the heart in vivo, including a dual‐gated stimulated echo approach, a velocity‐ (M 1) or an acceleration‐ (M 2) compensated pulsed gradient spin echo approach, and the use of principal component analysis filtering. The structure of the myocardium and the application of these techniques in ischemic heart disease are also briefly reviewed. The advent of clinical MR systems with stronger gradients will likely facilitate the translation of cardiac diffusion MRI into clinical use. The addition of diffusion MRI to the well‐established set of cardiovascular imaging techniques should lead to new and complementary approaches for the diagnosis and evaluation of patients with heart disease. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26484848
NASA Astrophysics Data System (ADS)
Lützkendorf, Ralf; Hertel, Frank; Heidemann, Robin; Thiel, Andreas; Luchtmann, Michael; Plaumann, Markus; Stadler, Jörg; Baecke, Sebastian; Bernarding, Johannes
2013-03-01
Diffusion tensor imaging (DTI) allows characterizing and exploiting diffusion anisotropy effects, thereby providing important details about tissue microstructure. A major application in neuroimaging is the so-called fiber tracking where neuronal connections between brain regions are determined non-invasively by DTI. Combining these neural pathways within the human brain with the localization of activated brain areas provided by functional MRI offers important information about functional connectivity of brain regions. However, DTI suffers from severe signal reduction due to the diffusion-weighting. Ultra-high field (UHF) magnetic resonance imaging (MRI) should therefore be advantageous to increase the intrinsic signal-to-noise ratio (SNR). This in turn enables to acquire high quality data with increased resolution, which is beneficial for tracking more complex fiber structures. However, UHF MRI imposes some difficulties mainly due to the larger B1 inhomogeneity compared to 3T MRI. We therefore optimized the parameters to perform DTI at a 7 Tesla whole body MR scanner equipped with a high performance gradient system and a 32-channel head receive coil. A Stesjkal Tanner spin-echo EPI sequence was used, to acquire 110 slices with an isotropic voxel-size of 1.2 mm covering the whole brain. 60 diffusion directions were scanned which allows calculating the principal direction components of the diffusion vector in each voxel. The results prove that DTI can be performed with high quality at UHF and that it is possible to explore the SNT benefit of the higher field strength. Combining UHF fMRI data with UHF DTI results will therefore be a major step towards better neuroimaging methods.
Zhang, Li; Tang, Min; Min, Zhiqian; Lu, Jun; Lei, Xiaoyan; Zhang, Xiaoling
2016-06-01
Magnetic resonance imaging (MRI) is increasingly being used to examine patients with suspected breast cancer. To determine the diagnostic performance of combined dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) for breast cancer detection. A comprehensive search of the PUBMED, EMBASE, Web of Science, and Cochrane Library databases was performed up to September 2014. Statistical analysis included pooling of sensitivity and specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and diagnostic accuracy using the summary receiver operating characteristic (SROC). All analyses were conducted using STATA (version 12.0), RevMan (version 5.2), and Meta-Disc 1.4 software programs. Fourteen studies were analyzed, which included a total of 1140 patients with 1276 breast lesions. The pooled sensitivity and specificity of combined DCE-MRI and DWI were 91.6% and 85.5%, respectively. The pooled sensitivity and specificity of DWI-MRI were 86.0% and 75.6%, respectively. The pooled sensitivity and specificity of DCE-MRI were 93.2% and 71.1%. The area under the SROC curve (AUC-SROC) of combined DCE-MRI and DWI was 0.94, the DCE-MRI of 0.85. Deeks testing confirmed no significant publication bias in all studies. Combined DCE-MRI and DWI had superior diagnostic accuracy than either DCE-MRI or DWI alone for the diagnosis of breast cancer. © The Foundation Acta Radiologica 2015.
NASA Astrophysics Data System (ADS)
Mériaux, Sébastien; Conti, Allegra; Larrat, Benoît
2018-05-01
The characterization of extracellular space (ECS) architecture represents valuable information for the understanding of transport mechanisms occurring in brain parenchyma. ECS tortuosity reflects the hindrance imposed by cell membranes to molecular diffusion. Numerous strategies have been proposed to measure the diffusion through ECS and to estimate its tortuosity. The first method implies the perfusion for several hours of a radiotracer which effective diffusion coefficient D* is determined after post mortem processing. The most well-established techniques are real-time iontophoresis that measures the concentration of a specific ion at known distance from its release point, and integrative optical imaging that relies on acquiring microscopy images of macromolecules labelled with fluorophore. After presenting these methods, we focus on a recent Magnetic Resonance Imaging (MRI)-based technique that consists in acquiring concentration maps of a contrast agent diffusing within ECS. Thanks to MRI properties, molecular diffusion and tortuosity can be estimated in 3D for deep brain regions. To further discuss the reliability of this technique, we point out the influence of the delivery method on the estimation of D*. We compare the value of D* for a contrast agent intracerebrally injected, with its value when the agent is delivered to the brain after an ultrasound-induced blood-brain barrier (BBB) permeabilization. Several studies have already shown that tortuosity may be modified in pathological conditions. Therefore, we believe that MRI-based techniques could be useful in a clinical context for characterizing the diffusion properties of pathological ECS and thus predicting the drug biodistribution into the targeted area.
Ramanan, B.; Holmes, W. M.; Sloan, W. T.; Phoenix, V. R.
2010-01-01
Molecules become readily visible by magnetic resonance imaging (MRI) when labeled with a paramagnetic tag. Consequently, MRI can be used to image their transport through porous media. In this study, we demonstrated that this method could be applied to image mass transport processes in biofilms. The transport of a complex of gadolinium and diethylenetriamine pentaacetic acid (Gd-DTPA), a commercially available paramagnetic molecule, was imaged both in agar (as a homogeneous test system) and in a phototrophic biofilm. The images collected were T1 weighted, where T1 is an MRI property of the biofilm and is dependent on Gd-DTPA concentration. A calibration protocol was applied to convert T1 parameter maps into concentration maps, thus revealing the spatially resolved concentrations of this tracer at different time intervals. Comparing the data obtained from the agar experiment with data from a one-dimensional diffusion model revealed that transport of Gd-DTPA in agar was purely via diffusion, with a diffusion coefficient of 7.2 × 10−10 m2 s−1. In contrast, comparison of data from the phototrophic biofilm experiment with data from a two-dimensional diffusion model revealed that transport of Gd-DTPA inside the biofilm was by both diffusion and advection, equivalent to a diffusion coefficient of 1.04 × 10−9 m2 s−1. This technology can be used to further explore mass transport processes in biofilms, either by using the wide range of commercially available paramagnetically tagged molecules and nanoparticles or by using bespoke tagged molecules. PMID:20435773
Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H.; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H.; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra
2016-01-01
Objectives To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Materials and Methods Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. Results All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05–0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. Conclusion MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT. PMID:27167829
Pinker, Katja; Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra
2016-01-01
To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05-0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT.
Assessment of the Focal Hepatic Lesions Using Diffusion Tensor Magnetic Resonance Imaging
Oussous, Siham Ait; Boujraf, Saïd; Kamaoui, Imane
2016-01-01
The goal is assessing the diffusion magnetic resonance imaging (dMRI) method efficiency in characterizing focal hepatic lesions (FHLs). About 28-FHL patients were studied in Radiology and Clinical Imaging Department of our University Hospital using 1.5 Tesla MRI system between January 2010 and June 2011. Patients underwent hepatic MRI consisting of dynamic T1- and T2-weighted imaging. The dMRI was performed with b-values of 200 s/mm2 and 600 s/mm2. About 42 lesions measuring more than 1 cm were studied including the variation of the signal according to the b-value and the apparent diffusion coefficient (ADC). The diagnostic imaging reference was based on standard MRI techniques data for typical lesions and on histology after surgical biopsy for atypical lesions. About 38 lesions were assessed including 13 benign lesions consisting of 1 focal nodular hyperplasia, 8 angiomas, and 4 cysts. About 25 malignant lesions included 11 hepatocellular carcinoma, 9 hepatic metastases, 1 cholangiocarcinoma, and 4 lymphomas. dMRI of soft lesions demonstrated higher ADC of 2.26 ± 0.75 mm2/s, whereas solid lesions showed lower ADC 1.19 ± 0.33 mm2/s with significant difference (P = 0.05). Discrete values collections were noticed. These results were correlated to standard MRI and histological findings. Sensitivity of 93% and specificity of 84% were found in diagnoses of malignant tumors with an ADC threshold of 1.6 × 10−3 mm2/s. dMRI is important characterization method of FHL. However, it should not be used as single criteria of hepatic lesions malignity. MRI, clinical, and biological data must be correlated. Significant difference was found between benign and solid malignant lesions without threshold ADC values. Hence, it is difficult to confirm ADC threshold differentiating the lesion classification. PMID:27186537
Williams, Rebecca J; Reutens, David C; Hocking, Julia
2015-11-01
Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.
Advanced MRI Methods for Assessment of Chronic Liver Disease
Taouli, Bachir; Ehman, Richard L.; Reeder, Scott B.
2010-01-01
MRI plays an increasingly important role for assessment of patients with chronic liver disease. MRI has numerous advantages, including lack of ionizing radiation and the possibility of performing multiparametric imaging. With recent advances in technology, advanced MRI methods such as diffusion-, perfusion-weighted MRI, MR elastography, chemical shift based fat-water separation and MR spectroscopy can now be applied to liver imaging. We will review the respective roles of these techniques for assessment of chronic liver disease. PMID:19542391
The potential of multiparametric MRI of the breast
Pinker, Katja; Helbich, Thomas H
2017-01-01
MRI is an essential tool in breast imaging, with multiple established indications. Dynamic contrast-enhanced MRI (DCE-MRI) is the backbone of any breast MRI protocol and has an excellent sensitivity and good specificity for breast cancer diagnosis. DCE-MRI provides high-resolution morphological information, as well as some functional information about neoangiogenesis as a tumour-specific feature. To overcome limitations in specificity, several other functional MRI parameters have been investigated and the application of these combined parameters is defined as multiparametric MRI (mpMRI) of the breast. MpMRI of the breast can be performed at different field strengths (1.5–7 T) and includes both established (diffusion-weighted imaging, MR spectroscopic imaging) and novel MRI parameters (sodium imaging, chemical exchange saturation transfer imaging, blood oxygen level-dependent MRI), as well as hybrid imaging with positron emission tomography (PET)/MRI and different radiotracers. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the underlying oncogenic processes of cancer development and progression and can provide additional specificity. This article will review the current and emerging functional parameters for mpMRI of the breast for improved diagnostic accuracy in breast cancer. PMID:27805423
Single-shot ADC imaging for fMRI.
Song, Allen W; Guo, Hua; Truong, Trong-Kha
2007-02-01
It has been suggested that apparent diffusion coefficient (ADC) contrast can be sensitive to cerebral blood flow (CBF) changes during brain activation. However, current ADC imaging techniques have an inherently low temporal resolution due to the requirement of multiple acquisitions with different b-factors, as well as potential confounds from cross talk between the deoxyhemoglobin-induced background gradients and the externally applied diffusion-weighting gradients. In this report a new method is proposed and implemented that addresses these two limitations. Specifically, a single-shot pulse sequence that sequentially acquires one gradient-echo (GRE) and two diffusion-weighted spin-echo (SE) images was developed. In addition, the diffusion-weighting gradient waveform was numerically optimized to null the cross terms with the deoxyhemoglobin-induced background gradients to fully isolate the effect of diffusion weighting from that of oxygenation-level changes. The experimental results show that this new single-shot method can acquire ADC maps with sufficient signal-to-noise ratio (SNR), and establish its practical utility in functional MRI (fMRI) to complement the blood oxygenation level-dependent (BOLD) technique and provide differential sensitivity for different vasculatures to better localize neural activity originating from the small vessels. Copyright (c) 2007 Wiley-Liss, Inc.
Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi
2015-01-01
We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639
Winter, René M; Leibfarth, Sara; Schmidt, Holger; Zwirner, Kerstin; Mönnich, David; Welz, Stefan; Schwenzer, Nina F; la Fougère, Christian; Nikolaou, Konstantin; Gatidis, Sergios; Zips, Daniel; Thorwarth, Daniela
2018-05-07
Functional PET/MRI has great potential to improve radiotherapy planning (RTP). However, data integration requires imaging with radiotherapy-specific patient positioning. Here, we investigated the feasibility and image quality of radiotherapy-customized PET/MRI in head-and-neck cancer (HNC) patients using a dedicated hardware setup. Ten HNC patients were examined with simultaneous PET/MRI before treatment, with radiotherapy and diagnostic scan setup, respectively. We tested feasibility of radiotherapy-specific patient positioning and compared the image quality between both setups by pairwise image analysis of 18 F-FDG-PET, T1/T2-weighted and diffusion-weighted MRI. For image quality assessment, similarity measures including average symmetric surface distance (ASSD) of PET and MR-based tumor contours, MR signal-to-noise ratio (SNR) and mean apparent diffusion coefficient (ADC) value were used. PET/MRI in radiotherapy position was feasible - all patients were successfully examined. ASSD (median/range) of PET and MR contours was 0.6 (0.4-1.2) and 0.9 (0.5-1.3) mm, respectively. For T2-weighted MRI, a reduced SNR of -26.2% (-39.0--11.7) was observed with radiotherapy setup. No significant difference in mean ADC was found. Simultaneous PET/MRI in HNC patients using radiotherapy positioning aids is clinically feasible. Though SNR was reduced, the image quality obtained with a radiotherapy setup meets RTP requirements and the data can thus be used for personalized RTP. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
Diffusion and ideal MRI techniques to characterize limb-girdle muscular dystrophy
NASA Astrophysics Data System (ADS)
Hernández-Salazar, G.; Hidalgo-Tobon, S.; Vargas-Cañas, S.; Marrufo-Melendez, O.; Solis-Najera, S.; Taboada-Barajas, J.; Rodríguez, A. O.; Delgado-Hernández, R.
2012-10-01
Limb-girdle muscular dystrophies (LGMD) are a group of autosomal dominantly or recessively inherited muscular dystrophies that also present with primary proximal (limb-girdle) muscle weakness. In the thigh, muscles at the back are affected, with a tendency to preserve the tibialis anterior and gastrocnemius. The aim of this study was to compare quantitative MRI measurements from IDEAL-based imaging and DW imaging in the thigh muscles of adults with LGMDs and healthy volunteers(HC). Six women (three patients and three healthy volunteers) were examined. Imaging experiments were conducted on a 1.5T GE scanner (General Electric Medical Systems. Milwaukee). T1 IDEAL 2D images and diffusion images were acquired. Results demonstrated that the use of noninvasive MRI techniques may provide the means to characterize the muscle through quantitative methods to determine the percentage of fat and ADC values.
Bi, Qiu; Xiao, Zhibo; Lv, Fajin; Liu, Yao; Zou, Chunxia; Shen, Yiqing
2018-02-05
The objective of this study was to find clinical parameters and qualitative and quantitative magnetic resonance imaging (MRI) features for differentiating uterine sarcoma from atypical leiomyoma (ALM) preoperatively and to calculate predictive values for uterine sarcoma. Data from 60 patients with uterine sarcoma and 88 patients with ALM confirmed by surgery and pathology were collected. Clinical parameters, qualitative MRI features, diffusion-weighted imaging with apparent diffusion coefficient values, and quantitative parameters of dynamic contrast-enhanced MRI of these two tumor types were compared. Predictive values for uterine sarcoma were calculated using multivariable logistic regression. Patient clinical manifestations, tumor locations, margins, T2-weighted imaging signals, mean apparent diffusion coefficient values, minimum apparent diffusion coefficient values, and time-signal intensity curves of solid tumor components were obvious significant parameters for distinguishing between uterine sarcoma and ALM (all P <.001). Abnormal vaginal bleeding, tumors located mainly in the uterine cavity, ill-defined tumor margins, and mean apparent diffusion coefficient values of <1.272 × 10 -3 mm 2 /s were significant preoperative predictors of uterine sarcoma. When the overall scores of these four predictors were greater than or equal to 7 points, the sensitivity, the specificity, the accuracy, and the positive and negative predictive values were 88.9%, 99.9%, 95.7%, 97.0%, and 95.1%, respectively. The use of clinical parameters and multiparametric MRI as predictive factors was beneficial for diagnosing uterine sarcoma preoperatively. These findings could be helpful for guiding treatment decisions. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Salman Shahid, Syed; Gaul, Robert T.; Kerskens, Christian; Flamini, Vittoria; Lally, Caitríona
2017-12-01
Diffusion magnetic resonance imaging (dMRI) can provide insights into the microstructure of intact arterial tissue. The current study employed high magnetic field MRI to obtain ultra-high resolution dMRI at an isotropic voxel resolution of 117 µm3 in less than 2 h of scan time. A parameter selective single shell (128 directions) diffusion-encoding scheme based on Stejskel-Tanner sequence with echo-planar imaging (EPI) readout was used. EPI segmentation was used to reduce the echo time (TE) and to minimise the susceptibility-induced artefacts. The study utilised the dMRI analysis with diffusion tensor imaging (DTI) framework to investigate structural heterogeneity in intact arterial tissue and to quantify variations in tissue composition when the tissue is cut open and flattened. For intact arterial samples, the region of interest base comparison showed significant differences in fractional anisotropy and mean diffusivity across the media layer (p < 0.05). For open cut flat samples, DTI based directionally invariant indices did not show significant differences across the media layer. For intact samples, fibre tractography based indices such as calculated helical angle and fibre dispersion showed near circumferential alignment and a high degree of fibre dispersion, respectively. This study demonstrates the feasibility of fast dMRI acquisition with ultra-high spatial and angular resolution at 7 T. Using the optimised sequence parameters, this study shows that DTI based markers are sensitive to local structural changes in intact arterial tissue samples and these markers may have clinical relevance in the diagnosis of atherosclerosis and aneurysm.
NASA Astrophysics Data System (ADS)
Matsuda, Kant M.; Lopes-Calcas, Ana; Magyar, Thalia; O'Brien-Moran, Zoe; Buist, Richard; Martin, Melanie
2017-03-01
Recent advancement in MRI established multi-parametric imaging for in vivo characterization of pathologic changes in brain cancer, which is expected to play a role in imaging biomarker development. Diffusion Tensor Imaging (DTI) is a prime example, which has been deployed for assessment of therapeutic response via analysis of apparent diffusion coefficient (ADC) / mean diffusivity (MD) values. They have been speculated to reflect apoptosis/necrosis. As newer medical imaging emerges, it is essential to verify that apparent abnormal features in imaging correlate with histopathology. Furthermore, the feasibility of imaging correlation with molecular profile should be explored in order to enhance the potential of biomedical imaging as a reliable biomarker. We focus on glioblastoma, which is an aggressive brain cancer. Despite the increased number of studies involving DTI in glioblastoma; however, little has been explored to bridge the gap between the molecular biomarkers and DTI data. Due to spatial heterogeneity in, MRI signals, pathologic change and protein expression, precise correlation is required between DTI, pathology and proteomics data in a histoanatomically identical manner. The challenge is obtaining an identical plane from in vivo imaging data that exactly matches with histopathology section. Thus, we propose to incorporate ex vivo tissue imaging to bridge between in vivo imaging data and histopathology. With ex vivo scan of removed tissue, it is feasible to use high-field 7T MRI scanner, which can achieve microscopic resolution. Once histology section showing the identical plane, it is feasible to correlate protein expression by a unique technology, "multiplex tissue immunoblotting".
Efficient gradient calibration based on diffusion MRI.
Teh, Irvin; Maguire, Mahon L; Schneider, Jürgen E
2017-01-01
To propose a method for calibrating gradient systems and correcting gradient nonlinearities based on diffusion MRI measurements. The gradient scaling in x, y, and z were first offset by up to 5% from precalibrated values to simulate a poorly calibrated system. Diffusion MRI data were acquired in a phantom filled with cyclooctane, and corrections for gradient scaling errors and nonlinearity were determined. The calibration was assessed with diffusion tensor imaging and independently validated with high resolution anatomical MRI of a second structured phantom. The errors in apparent diffusion coefficients along orthogonal axes ranged from -9.2% ± 0.4% to + 8.8% ± 0.7% before calibration and -0.5% ± 0.4% to + 0.8% ± 0.3% after calibration. Concurrently, fractional anisotropy decreased from 0.14 ± 0.03 to 0.03 ± 0.01. Errors in geometric measurements in x, y and z ranged from -5.5% to + 4.5% precalibration and were likewise reduced to -0.97% to + 0.23% postcalibration. Image distortions from gradient nonlinearity were markedly reduced. Periodic gradient calibration is an integral part of quality assurance in MRI. The proposed approach is both accurate and efficient, can be setup with readily available materials, and improves accuracy in both anatomical and diffusion MRI to within ±1%. Magn Reson Med 77:170-179, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. © 2016 Wiley Periodicals, Inc.
Efficient gradient calibration based on diffusion MRI
Teh, Irvin; Maguire, Mahon L.
2016-01-01
Purpose To propose a method for calibrating gradient systems and correcting gradient nonlinearities based on diffusion MRI measurements. Methods The gradient scaling in x, y, and z were first offset by up to 5% from precalibrated values to simulate a poorly calibrated system. Diffusion MRI data were acquired in a phantom filled with cyclooctane, and corrections for gradient scaling errors and nonlinearity were determined. The calibration was assessed with diffusion tensor imaging and independently validated with high resolution anatomical MRI of a second structured phantom. Results The errors in apparent diffusion coefficients along orthogonal axes ranged from −9.2% ± 0.4% to + 8.8% ± 0.7% before calibration and −0.5% ± 0.4% to + 0.8% ± 0.3% after calibration. Concurrently, fractional anisotropy decreased from 0.14 ± 0.03 to 0.03 ± 0.01. Errors in geometric measurements in x, y and z ranged from −5.5% to + 4.5% precalibration and were likewise reduced to −0.97% to + 0.23% postcalibration. Image distortions from gradient nonlinearity were markedly reduced. Conclusion Periodic gradient calibration is an integral part of quality assurance in MRI. The proposed approach is both accurate and efficient, can be setup with readily available materials, and improves accuracy in both anatomical and diffusion MRI to within ±1%. Magn Reson Med 77:170–179, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:26749277
Bucy, Daniel S; Brown, Mark S; Bielefeldt-Ohmann, Helle; Thompson, Jesse; Bachand, Annette M; Morges, Michelle; Elder, John H; Vandewoude, Sue; Kraft, Susan L
2011-08-01
HIV infection results in a highly prevalent syndrome of cognitive and motor disorders designated as HIV-associated dementia (HAD). Neurologic dysfunction resembling HAD has been documented in cats infected with strain PPR of the feline immunodeficiency virus (FIV), whereas another highly pathogenic strain (C36) has not been known to cause neurologic signs. Animals experimentally infected with equivalent doses of FIV-C36 or FIV-PPR, and uninfected controls were evaluated by magnetic resonance diffusion-weighted imaging (DW-MRI) and spectroscopy (MRS) at 17.5-18 weeks post-infection, as part of a study of viral clade pathogenesis in FIV-infected cats. The goals of the MR imaging portion of the project were to determine whether this methodology was capable of detecting early neuropathophysiology in the absence of outward manifestation of neurological signs and to compare the MR imaging results for the two viral strains expected to have differing degrees of neurologic effects. We hypothesized that there would be increased diffusion, evidenced by the apparent diffusion coefficient as measured by DW-MRI, and altered metabolite ratios measured by MRS, in the brains of FIV-PPR-infected cats relative to C36-infected cats and uninfected controls. Increased apparent diffusion coefficients were seen in the white matter, gray matter, and basal ganglia of both the PPR and C36-infected (asymptomatic) cats. Thalamic MRS metabolite ratios did not differ between groups. The equivalently increased diffusion by DW-MRI suggests similar indirect neurotoxicity mechanisms for the two viral genotypes. DW-MRI is a sensitive tool to detect neuropathophysiological changes in vivo that could be useful during longitudinal studies of FIV.
Tensor Based Representation and Analysis of Diffusion-Weighted Magnetic Resonance Images
ERIC Educational Resources Information Center
Barmpoutis, Angelos
2009-01-01
Cartesian tensor bases have been widely used to model spherical functions. In medical imaging, tensors of various orders can approximate the diffusivity function at each voxel of a diffusion-weighted MRI data set. This approximation produces tensor-valued datasets that contain information about the underlying local structure of the scanned tissue.…
Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey
Ismail, Marwa M. T.; Keynton, Robert S.; Mostapha, Mahmoud M. M. O.; ElTanboly, Ahmed H.; Casanova, Manuel F.; Gimel'farb, Georgy L.; El-Baz, Ayman
2016-01-01
Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. Multiple MRI modalities, such as different types of the sMRI and DTI, have been employed to investigate facets of ASD in order to better understand this complex syndrome. This paper reviews recent applications of structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI), to study autism spectrum disorder (ASD). Main reported findings are sometimes contradictory due to different age ranges, hardware protocols, population types, numbers of participants, and image analysis parameters. The primary anatomical structures, such as amygdalae, cerebrum, and cerebellum, associated with clinical-pathological correlates of ASD are highlighted through successive life stages, from infancy to adulthood. This survey demonstrates the absence of consistent pathology in the brains of autistic children and lack of research investigations in patients under 2 years of age in the literature. The known publications also emphasize advances in data acquisition and analysis, as well as significance of multimodal approaches that combine resting-state, task-evoked, and sMRI measures. Initial results obtained with the sMRI and DTI show good promise toward the early and non-invasive ASD diagnostics. PMID:27242476
Mekkaoui, Choukri; Reese, Timothy G; Jackowski, Marcel P; Bhat, Himanshu; Sosnovik, David E
2017-03-01
Diffusion MRI provides unique information on the structure, organization, and integrity of the myocardium without the need for exogenous contrast agents. Diffusion MRI in the heart, however, has proven technically challenging because of the intrinsic non-rigid deformation during the cardiac cycle, displacement of the myocardium due to respiratory motion, signal inhomogeneity within the thorax, and short transverse relaxation times. Recently developed accelerated diffusion-weighted MR acquisition sequences combined with advanced post-processing techniques have improved the accuracy and efficiency of diffusion MRI in the myocardium. In this review, we describe the solutions and approaches that have been developed to enable diffusion MRI of the heart in vivo, including a dual-gated stimulated echo approach, a velocity- (M 1 ) or an acceleration- (M 2 ) compensated pulsed gradient spin echo approach, and the use of principal component analysis filtering. The structure of the myocardium and the application of these techniques in ischemic heart disease are also briefly reviewed. The advent of clinical MR systems with stronger gradients will likely facilitate the translation of cardiac diffusion MRI into clinical use. The addition of diffusion MRI to the well-established set of cardiovascular imaging techniques should lead to new and complementary approaches for the diagnosis and evaluation of patients with heart disease. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Bible, Ellen; Dell’Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter; Badylak, Stephen F.; Ahrens, Eric T.; Modo, Michel
2012-01-01
Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based 1H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a 19F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on 1H-MRI scans. Twenty percent of cells labeled with the 19F-agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T2- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. PMID:22244696
Idiopathic granulomatous mastitis: magnetic resonance imaging findings with diffusion MRI.
Aslan, Hulya; Pourbagher, Aysin; Colakoglu, Tamer
2016-07-01
Idiopathic granulomatous mastitis (IGM) is a rare benign breast disease with unknown etiology which can mimic breast carcinoma, both clinically and radiologically. Magnetic resonance imaging (MRI) findings of IGM have been previously described; however there is no study evaluating diffusion-weighted MRI findings of IGM. To analyze conventional, dynamic contrast-enhanced, and diffusion-weighted MRI signal characteristics of IGM by comparing it with the contralateral normal breast parenchyma. A total of 39 patients were included in the study. On dynamic contrast-enhanced MRI, the distribution and enhancement patterns of the lesions were evaluated. We also detected the frequencies of involving quadrants, retroareolar involvement, accompanying abscess, and skin edema. T2-weighted (T2W) and STIR signal intensities and both mean and minimum apparent diffusion coefficient (ADC) values were compared with the contralateral normal parenchyma. IGM showed significantly lower mean and minimum ADC values when compared with the normal parenchyma. Signal intensities on T2W and STIR sequences of the lesion were significantly higher than the normal parenchyma. On dynamic contrast-enhanced MRI, 7.7% of the patients had mass-like contrast enhancement, 92.3% of the patients had non-mass-like contrast enhancement. Abscess was positive in 33.3% of the patients. As a result, IGM showed commonly non-mass-like lesions with restricted diffusion. Although it is a benign pathology, it may show clustered ring-like enhancement like malignant lesions. © The Foundation Acta Radiologica 2015.
Advanced magnetic resonance imaging in glioblastoma: a review.
Shukla, Gaurav; Alexander, Gregory S; Bakas, Spyridon; Nikam, Rahul; Talekar, Kiran; Palmer, Joshua D; Shi, Wenyin
2017-08-01
Glioblastoma, the most common and most rapidly progressing primary malignant tumor of the central nervous system, continues to portend a dismal prognosis, despite improvements in diagnostic and therapeutic strategies over the last 20 years. The standard of care radiographic characterization of glioblastoma is magnetic resonance imaging (MRI), which is a widely utilized examination in the diagnosis and post-treatment management of patients with glioblastoma. Basic MRI modalities available from any clinical scanner, including native T1-weighted (T1w) and contrast-enhanced (T1CE), T2-weighted (T2w), and T2-fluid-attenuated inversion recovery (T2-FLAIR) sequences, provide critical clinical information about various processes in the tumor environment. In the last decade, advanced MRI modalities are increasingly utilized to further characterize glioblastomas more comprehensively. These include multi-parametric MRI sequences, such as dynamic susceptibility contrast (DSC), dynamic contrast enhancement (DCE), higher order diffusion techniques such as diffusion tensor imaging (DTI), and MR spectroscopy (MRS). Significant efforts are ongoing to implement these advanced imaging modalities into improved clinical workflows and personalized therapy approaches. Functional MRI (fMRI) and tractography are increasingly being used to identify eloquent cortices and important tracts to minimize postsurgical neuro-deficits. A contemporary review of the application of standard and advanced MRI in clinical neuro-oncologic practice is presented here.
Lucas, Rita; Lopes Dias, João; Cunha, Teresa Margarida
2015-01-01
We aimed to evaluate the added value of diffusion-weighted imaging (DWI) to standard magnetic resonance imaging (MRI) for detecting post-treatment cervical cancer recurrence. The detection accuracy of T2-weighted (T2W) images was compared with that of T2W MRI combined with either dynamic contrast-enhanced (DCE) MRI or DWI. Thirty-eight women with clinically suspected uterine cervical cancer recurrence more than six months after treatment completion were examined with 1.5 Tesla MRI including T2W, DCE, and DWI sequences. Disease was confirmed histologically and correlated with MRI findings. The diagnostic performance of T2W imaging and its combination with either DCE or DWI were analyzed. Sensitivity, positive predictive value, and accuracy were calculated. Thirty-six women had histologically proven recurrence. The accuracy for recurrence detection was 80% with T2W/DCE MRI and 92.1% with T2W/DWI. The addition of DCE sequences did not significantly improve the diagnostic ability of T2W imaging, and this sequence combination misclassified two patients as falsely positive and seven as falsely negative. The T2W/DWI combination revealed a positive predictive value of 100% and only three false negatives. The addition of DWI to T2W sequences considerably improved the diagnostic ability of MRI. Our results support the inclusion of DWI in the initial MRI protocol for the detection of cervical cancer recurrence, leaving DCE sequences as an option for uncertain cases.
Distortion correction for diffusion-weighted MRI tractography and fMRI in the temporal lobes.
Embleton, Karl V; Haroon, Hamied A; Morris, David M; Ralph, Matthew A Lambon; Parker, Geoff J M
2010-10-01
Single shot echo-planar imaging (EPI) sequences are currently the most commonly used sequences for diffusion-weighted imaging (DWI) and functional magnetic resonance imaging (fMRI) as they allow relatively high signal to noise with rapid acquisition time. A major drawback of EPI is the substantial geometric distortion and signal loss that can occur due to magnetic field inhomogeneities close to air-tissue boundaries. If DWI-based tractography and fMRI are to be applied to these regions, then the distortions must be accurately corrected to achieve meaningful results. We describe robust acquisition and processing methods for correcting such distortions in spin echo (SE) EPI using a variant of the reversed direction k space traversal method with a number of novel additions. We demonstrate that dual direction k space traversal with maintained diffusion-encoding gradient strength and direction results in correction of the great majority of eddy current-associated distortions in DWI, in addition to those created by variations in magnetic susceptibility. We also provide examples to demonstrate that the presence of severe distortions cannot be ignored if meaningful tractography results are desired. The distortion correction routine was applied to SE-EPI fMRI acquisitions and allowed detection of activation in the temporal lobe that had been previously found using PET but not conventional fMRI. © 2010 Wiley-Liss, Inc.
Ma, Wanling; Li, Na; Zhao, Weiwei; Ren, Jing; Wei, Mengqi; Yang, Yong; Wang, Yingmei; Fu, Xin; Zhang, Zhuoli; Larson, Andrew C; Huan, Yi
2016-01-01
To clarify diffusion and perfusion abnormalities and evaluate correlation between apparent diffusion coefficient (ADC), MR perfusion and histopathologic parameters of pancreatic cancer (PC). Eighteen patients with PC underwent diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Parameters of DCE-MRI and ADC of cancer and non-cancerous tissue were compared. Correlation between the rate constant that represents transfer of contrast agent from the arterial blood into the extravascular extracellular space (K, volume of the extravascular extracellular space per unit volume of tissue (Ve), and ADC of PC and histopathologic parameters were analyzed. The rate constant that represents transfer of contrast agent from the extravascular extracellular space into blood plasma, K, tissue volume fraction occupied by vascular space, and ADC of PC were significantly lower than nontumoral pancreases. Ve of PC was significantly higher than that of nontumoral pancreas. Apparent diffusion coefficient and K values of PC were negatively correlated to fibrosis content and fibroblast activation protein staining score. Fibrosis content was positively correlated to Ve. Apparent diffusion coefficient values and parameters of DCE-MRI can differentiate PC from nontumoral pancreases. There are correlations between ADC, K, Ve, and fibrosis content of PC. Fibroblast activation protein staining score of PC is negatively correlated to ADC and K. Apparent diffusion coefficient, K, and Ve may be feasible to predict prognosis of PC.
ERIC Educational Resources Information Center
Familiari, Giuseppe; Relucenti, Michela; Heyn, Rosemarie; Baldini, Rossella; D'Andrea, Giancarlo; Familiari, Pietro; Bozzao, Alessandro; Raco, Antonino
2013-01-01
Neuroanatomy is considered to be one of the most difficult anatomical subjects for students. To provide motivation and improve learning outcomes in this area, clinical cases and neurosurgical images from diffusion tensor imaging (DTI) tractographies produced using an intraoperative magnetic resonance imaging apparatus (MRI/DTI) were presented and…
Turkbey, Baris; Xu, Sheng; Kruecker, Jochen; Locklin, Julia; Pang, Yuxi; Shah, Vijay; Bernardo, Marcelino; Baccala, Angelo; Rastinehad, Ardeshir; Benjamin, Compton; Merino, Maria J; Wood, Bradford J; Choyke, Peter L; Pinto, Peter A
2011-03-29
During transrectal ultrasound (TRUS)-guided prostate biopsies, the actual location of the biopsy site is rarely documented. Here, we demonstrate the capability of TRUS-magnetic resonance imaging (MRI) image fusion to document the biopsy site and correlate biopsy results with multi-parametric MRI findings. Fifty consecutive patients (median age 61 years) with a median prostate-specific antigen (PSA) level of 5.8 ng/ml underwent 12-core TRUS-guided biopsy of the prostate. Pre-procedural T2-weighted magnetic resonance images were fused to TRUS. A disposable needle guide with miniature tracking sensors was attached to the TRUS probe to enable fusion with MRI. Real-time TRUS images during biopsy and the corresponding tracking information were recorded. Each biopsy site was superimposed onto the MRI. Each biopsy site was classified as positive or negative for cancer based on the results of each MRI sequence. Sensitivity, specificity, and receiver operating curve (ROC) area under the curve (AUC) values were calculated for multi-parametric MRI. Gleason scores for each multi-parametric MRI pattern were also evaluated. Six hundred and 5 systemic biopsy cores were analyzed in 50 patients, of whom 20 patients had 56 positive cores. MRI identified 34 of 56 positive cores. Overall, sensitivity, specificity, and ROC area values for multi-parametric MRI were 0.607, 0.727, 0.667, respectively. TRUS-MRI fusion after biopsy can be used to document the location of each biopsy site, which can then be correlated with MRI findings. Based on correlation with tracked biopsies, T2-weighted MRI and apparent diffusion coefficient maps derived from diffusion-weighted MRI are the most sensitive sequences, whereas the addition of delayed contrast enhancement MRI and three-dimensional magnetic resonance spectroscopy demonstrated higher specificity consistent with results obtained using radical prostatectomy specimens.
CT and MRI Findings in Cerebral Aspergilloma.
Gärtner, Friederike; Forstenpointner, Julia; Ertl-Wagner, Birgit; Hooshmand, Babak; Riedel, Christian; Jansen, Olav
2017-11-20
Purpose Invasive aspergillosis usually affects immunocompromised patients. It carries a high risk of morbidity and mortality and usually has a nonspecific clinical presentation. Early diagnosis is essential in order to start effective treatment and improve clinical outcome. Materials and Methods In a retrospective search of the PACS databases from two medical centers, we identified 9 patients with histologically proven cerebral aspergilloma. We systematically analyzed CT and MRI imaging findings to identify typical imaging appearances of cerebral aspergilloma. Results CT did not show a typical appearance of the aspergillomas. In 100 % (9/9) there was a rim-attenuated diffusion restriction on MRI imaging. Multiple hypointense layers in the aspergillus wall, especially on the internal side, were detected in 100 % on T2-weighted imaging (9/9). Aspergillomas were T1-hypointense in 66 % of cases (6/9) and partly T1-hyperintense in 33 % (3/9). In 78 % (7/9) of cases, a rim-attenuated diffusion restriction was detected after contrast agent application. Conclusion Nine cases were identified. Whereas CT features were less typical, we observed the following imaging features on MRI: A strong, rim-attenuated diffusion restriction (9/9); onion layer-like hypointense zones, in particular in the innermost part of the abscess wall on T2-weighted images (9/9). Enhancement of the lesion border was present in the majority of the cases (7/9). Key points · There are typical MRI imaging features of aspergillomas.. · However, these findings could be affected by the immune status of the patient.. · Swift identification of aspergilloma imaging patterns is essential to allow for adequate therapeutic decision making.. Citation Format · Gärtner F, Forstenpointner J, Ertl-Wagner B et al. CT and MRI Findings in Cerebral Aspergilloma. Fortschr Röntgenstr 2017; DOI: 10.1055/s-0043-120766. © Georg Thieme Verlag KG Stuttgart · New York.
Advanced MRI in Multiple Sclerosis: Current Status and Future Challenges
Fox, Robert J.; Beall, Erik; Bhattacharyya, Pallab; Chen, Jacqueline; Sakaie, Ken
2011-01-01
Synopsis Magnetic resonance imaging (MRI) has rapidly become a leading research tool in the study of multiple sclerosis (MS). Conventional imaging is useful in diagnosis and management of the inflammatory stages of MS, but has limitations in describing the degree of tissue injury as well as the cause of progressive disability seen in the later stages of disease. Advanced MRI techniques hold promise to fill this void. Magnetization transfer imaging is a widely available technique that can characterize demyelination and may be useful in measuring putative remyelinating therapies. Diffusion tensor imaging describes the three-dimensional diffusion of water and holds promise in characterizing neurodegeneration and putative neuroprotective therapies. Spectroscopy measures the imbalance of cellular metabolites and could help unravel the pathogenesis of neurodegeneration in MS. Functional (f) MRI can be used to understand the functional consequences of MS injury, including the impact on cortical function and compensatory mechanisms. These imaging tools hold great promise to increase our understanding of MS pathogenesis and provide greater insight into the efficacy of new MS therapies. PMID:21439446
Zhang, Guangwen; Wang, Shuangshuang; Wen, Didi; Zhang, Jing; Wei, Xiaocheng; Ma, Wanling; Zhao, Weiwei; Wang, Mian; Wu, Guosheng; Zhang, Jinsong
2016-12-09
Water molecular diffusion in vivo tissue is much more complicated. We aimed to compare non-Gaussian diffusion models of diffusion-weighted imaging (DWI) including intra-voxel incoherent motion (IVIM), stretched-exponential model (SEM) and Gaussian diffusion model at 3.0 T MRI in patients with rectal cancer, and to determine the optimal model for investigating the water diffusion properties and characterization of rectal carcinoma. Fifty-nine consecutive patients with pathologically confirmed rectal adenocarcinoma underwent DWI with 16 b-values at a 3.0 T MRI system. DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models (IVIM-mono, IVIM-bi and SEM) on primary tumor and adjacent normal rectal tissue. Parameters of standard apparent diffusion coefficient (ADC), slow- and fast-ADC, fraction of fast ADC (f), α value and distributed diffusion coefficient (DDC) were generated and compared between the tumor and normal tissues. The SEM exhibited the best fitting results of actual DWI signal in rectal cancer and the normal rectal wall (R 2 = 0.998, 0.999 respectively). The DDC achieved relatively high area under the curve (AUC = 0.980) in differentiating tumor from normal rectal wall. Non-Gaussian diffusion models could assess tissue properties more accurately than the ADC derived Gaussian diffusion model. SEM may be used as a potential optimal model for characterization of rectal cancer.
2013-10-01
AD_________________ Award Number: W81XWH-12-1-0597 TITLE: Parametric PET /MR Fusion Imaging to...Parametric PET /MR Fusion Imaging to Differentiate Aggressive from Indolent Primary Prostate Cancer with Application for Image-Guided Prostate Cancer Biopsies...The study investigates whether fusion PET /MRI imaging with 18F-choline PET /CT and diffusion-weighted MRI can be successfully applied to target prostate
Irfanoglu, M. Okan; Walker, Lindsay; Sarlls, Joelle; Marenco, Stefano; Pierpaoli, Carlo
2013-01-01
In this work we investigate the effects of echo planar imaging (EPI) distortions on diffusion tensor imaging (DTI) based fiber tractography results. We propose a simple experimental framework that would enable assessing the effects of EPI distortions on the accuracy and reproducibility of fiber tractography from a pilot study on a few subjects. We compare trajectories computed from two diffusion datasets collected on each subject that are identical except for the orientation of phase encode direction, either right–left (RL) or anterior–posterior (AP). We define metrics to assess potential discrepancies between RL and AP trajectories in association, commissural, and projection pathways. Results from measurements on a 3 Tesla clinical scanner indicated that the effects of EPI distortions on computed fiber trajectories are statistically significant and large in magnitude, potentially leading to erroneous inferences about brain connectivity. The correction of EPI distortion using an image-based registration approach showed a significant improvement in tract consistency and accuracy. Although obtained in the context of a DTI experiment, our findings are generally applicable to all EPI-based diffusion MRI tractography investigations, including high angular resolution (HARDI) methods. On the basis of our findings, we recommend adding an EPI distortion correction step to the diffusion MRI processing pipeline if the output is to be used for fiber tractography. PMID:22401760
Mosavi, Firas; Laurell, Anna; Ahlström, Håkan
2015-11-01
Whole body (WB) magnetic resonance imaging (MRI), including diffusion-weighted imaging (DWI) has become increasingly utilized in cancer imaging, yet the clinical utility of these techniques in follow-up of testicular cancer patients has not been evaluated. The purpose of this study was to evaluate the feasibility of WB MRI with continuous table movement (CTM) technique, including multistep DWI in follow-up of patients with testicular cancer. WB MRI including DWI was performed in follow-up of 71 consecutive patients (median age, 37 years; range 19-84) with histologically confirmed testicular cancer. WB MRI protocol included axial T1-Dixon and T2-BLADE sequences using CTM technique. Furthermore, multi-step DWI was performed using b-value 50 and 1000 s/mm(2). One criterion for feasibility was patient tolerance and satisfactory image quality. Another criterion was the accuracy in detection of any pathological mass, compared to standard of reference. Signal intensity in DWI was used for evaluation of residual mass activity. Clinical, laboratory and imaging follow-up were applied as standard of reference for the evaluation of WB MRI. WB MRI was tolerated in nearly all patients (69/71 patients, 97%) and the image quality was satisfactory. Metal artifacts deteriorated the image quality in six patients, but it did not influence the overall results. No case of clinical relapse was observed during the follow-up time. There was a good agreement between conventional WB MRI and standard of reference in all patients. Three patients showed residual masses and DWI signal was not restricted in these patients. Furthermore, DWI showed abnormally high signal intensity in a normal-sized retroperitoneal lymph node indicating metastasis. The subsequent (18)F-FDG PET/CT could verify the finding. WB MRI with CTM technique including multi-step DWI is feasible in follow-up of patients with testicular cancer. DWI may contribute to important added-value data to conventional MRI sequences regarding the activity of residual masses.
MRI of articular cartilage at microscopic resolution
Xia, Y.
2013-01-01
This review briefly summarises some of the definitive studies of articular cartilage by microscopic MRI (µMRI) that were conducted with the highest spatial resolutions. The article has four major sections. The first section introduces the cartilage tissue, MRI and µMRI, and the concept of image contrast in MRI. The second section describes the characteristic profiles of three relaxation times (T1, T2 and T1ρ) and self-diffusion in healthy articular cartilage. The third section discusses several factors that can influence the visualisation of articular cartilage and the detection of cartilage lesion by MRI and µMRI. These factors include image resolution, image analysis strategies, visualisation of the total tissue, topographical variations of the tissue properties, surface fibril ambiguity, deformation of the articular cartilage, and cartilage lesion. The final section justifies the values of multidisciplinary imaging that correlates MRI with other technical modalities, such as optical imaging. Rather than an exhaustive review to capture all activities in the literature, the studies cited in this review are merely illustrative. PMID:23610697
Ultra-high field upper extremity peripheral nerve and non-contrast enhanced vascular imaging
Raval, Shailesh B.; Britton, Cynthia A.; Zhao, Tiejun; Krishnamurthy, Narayanan; Santini, Tales; Gorantla, Vijay S.; Ibrahim, Tamer S.
2017-01-01
Objective The purpose of this study was to explore the efficacy of Ultra-high field [UHF] 7 Tesla [T] MRI as compared to 3T MRI in non-contrast enhanced [nCE] imaging of structural anatomy in the elbow, forearm, and hand [upper extremity]. Materials and method A wide range of sequences including T1 weighted [T1] volumetric interpolate breath-hold exam [VIBE], T2 weighted [T2] double-echo steady state [DESS], susceptibility weighted imaging [SWI], time-of-flight [TOF], diffusion tensor imaging [DTI], and diffusion spectrum imaging [DSI] were optimized and incorporated with a radiofrequency [RF] coil system composed of a transverse electromagnetic [TEM] transmit coil combined with an 8-channel receive-only array for 7T upper extremity [UE] imaging. In addition, Siemens optimized protocol/sequences were used on a 3T scanner and the resulting images from T1 VIBE and T2 DESS were compared to that obtained at 7T qualitatively and quantitatively [SWI was only qualitatively compared]. DSI studio was utilized to identify nerves based on analysis of diffusion weighted derived fractional anisotropy images. Images of forearm vasculature were extracted using a paint grow manual segmentation method based on MIPAV [Medical Image Processing, Analysis, and Visualization]. Results High resolution and high quality signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]—images of the hand, forearm, and elbow were acquired with nearly homogeneous 7T excitation. Measured [performed on the T1 VIBE and T2 DESS sequences] SNR and CNR values were almost doubled at 7T vs. 3T. Cartilage, synovial fluid and tendon structures could be seen with higher clarity in the 7T T1 and T2 weighted images. SWI allowed high resolution and better quality imaging of large and medium sized arteries and veins, capillary networks and arteriovenous anastomoses at 7T when compared to 3T. 7T diffusion weighted sequence [not performed at 3T] demonstrates that the forearm nerves are clearly delineated by fiber tractography. The proper digital palmar arteries and superficial palmar arch could also be clearly visualized using TOF nCE 7T MRI. Conclusion Ultra-high resolution neurovascular imaging in upper extremities is possible at 7T without use of renal toxic intravenous contrast. 7T MRI can provide superior peripheral nerve [based on fiber anisotropy and diffusion coefficient parameters derived from diffusion tensor/spectrum imaging] and vascular [nCE MRA and vessel segmentation] imaging. PMID:28662061
MRI in local staging of rectal cancer: an update
Tapan, Ümit; Özbayrak, Mustafa; Tatlı, Servet
2014-01-01
Preoperative imaging for staging of rectal cancer has become an important aspect of current approach to rectal cancer management, because it helps to select suitable patients for neoadjuvant chemoradiotherapy and determine the appropriate surgical technique. Imaging modalities such as endoscopic ultrasonography, computed tomography, and magnetic resonance imaging (MRI) play an important role in assessing the depth of tumor penetration, lymph node involvement, mesorectal fascia and anal sphincter invasion, and presence of distant metastatic diseases. Currently, there is no consensus on a preferred imaging technique for preoperative staging of rectal cancer. However, high-resolution phased-array MRI is recommended as a standard imaging modality for preoperative local staging of rectal cancer, with excellent soft tissue contrast, multiplanar capability, and absence of ionizing radiation. This review will mainly focus on the role of MRI in preoperative local staging of rectal cancer and discuss recent advancements in MRI technique such as diffusion-weighted imaging and dynamic contrast-enhanced MRI. PMID:25010367
Integrating histology and MRI in the first digital brain of common squirrel monkey, Saimiri sciureus
NASA Astrophysics Data System (ADS)
Sun, Peizhen; Parvathaneni, Prasanna; Schilling, Kurt G.; Gao, Yurui; Janve, Vaibhav; Anderson, Adam; Landman, Bennett A.
2015-03-01
This effort is a continuation of development of a digital brain atlas of the common squirrel monkey, Saimiri sciureus, a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. Here, we present the integration of histology with multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. The central concept of this work is to use block face photography to establish an intermediate common space in coordinate system which preserves the high resolution in-plane resolution of histology while enabling 3-D correspondence with MRI. In vivo MRI acquisitions include high resolution T2 structural imaging (300 μm isotropic) and low resolution diffusion tensor imaging (600 um isotropic). Ex vivo MRI acquisitions include high resolution T2 structural imaging and high resolution diffusion tensor imaging (both 300 μm isotropic). Cortical regions were manually annotated on the co-registered volumes based on published histological sections in-plane. We describe mapping of histology and MRI based data of the common squirrel monkey and construction of a viewing tool that enable online viewing of these datasets. The previously descried atlas MRI is used for its deformation to provide accurate conformation to the MRI, thus adding information at the histological level to the MRI volume. This paper presents the mapping of single 2D image slice in block face as a proof of concept and this can be extended to map the atlas space in 3D coordinate system as part of the future work and can be loaded to an XNAT system for further use.
Ream, Justin M; Dillman, Jonathan R; Adler, Jeremy; Khalatbari, Shokoufeh; McHugh, Jonathan B; Strouse, Peter J; Dhanani, Muhammad; Shpeen, Benjamin; Al-Hawary, Mahmoud M
2013-09-01
Restricted diffusion on diffusion-weighted imaging (DWI) sequences during magnetic resonance enterography (MRE) has been shown in segments of bowel affected by Crohn disease. However, the exact meaning of this finding, particularly within the pediatric Crohn disease population, is poorly understood. The purpose of this study was to determine the significance of bowel wall restricted diffusion in children with small bowel Crohn disease by correlating apparent diffusion coefficient (ADC) values with other MRI markers of disease activity. A retrospective review of pediatric patients (≤ 18 years of age) with Crohn disease terminal ileitis who underwent MRE with DWI at our institution between May 1, 2009 and May 31, 2011 was undertaken. All of the children had either biopsy-proven Crohn disease terminal ileitis or clinically diagnosed Crohn disease, including terminal ileal involvement by imaging. The mean minimum ADC value within the wall of the terminal ileum was determined for each examination. ADC values were tested for correlation/association with other MRI findings to determine whether a relationship exists between bowel wall restricted diffusion and disease activity. Forty-six MRE examinations with DWI in children with terminal ileitis were identified (23 girls and 23 boys; mean age, 14.3 years). There was significant negative correlation or association between bowel wall minimum ADC value and established MRI markers of disease activity, including degree of bowel wall thickening (R = (-)0.43; P = 0.003), striated pattern of arterial enhancement (P = 0.01), degree of arterial enhancement (P = 0.01), degree of delayed enhancement (P = 0.045), amount of mesenteric inflammatory changes (P < 0.0001) and presence of a stricture (P = 0.02). ADC values were not significantly associated with bowel wall T2-weighted signal intensity, length of disease involvement or mesenteric fibrofatty proliferation. Increasing bowel wall restricted diffusion (lower ADC values) is associated with multiple MRI findings that are traditionally associated with active inflammation in pediatric small bowel Crohn disease.
Xiao, Hua-Feng; Lou, Xin; Liu, Meng-Yu; Wang, Yu-Lin; Wang, Yan; Chen, Zhi-Ye; Shi, Kai-Ning; Ma, Lin
2014-08-01
To evaluate the diagnostic value of magnetic resonance diffusion-weighted imaging (DWI) and three-dimensional arterial spin labelling perfusion imaging (3D-ASL) in distinguishing cavernous haemangioma from parasellar meningioma, using histological data as a reference standard. Patients with parasellar meningioma or parasellar cavernous haemangioma underwent conventional T1- and T2-weighted magnetic resonance imaging (MRI) followed by DWI and 3D-ASL using a 3.0 Tesla MRI. The minimum apparent diffusion coefficient (minADC) from DWI and the maximal normalized cerebral blood flow (nCBF) from 3D-ASL were measured in each tumour. Diagnosis was confirmed by histology. MinADC was significantly lower and nCBF significantly higher in meningioma (n = 19) than cavernous haemangioma (n = 15). There was a significant negative correlation between minADC and nCBF (r = -0.605). DWI and 3D-ASL are useful in differentiating cavernous haemangiomas from parasellar meningiomas, particularly in situations when the appearance on conventional MRI sequences is otherwise ambiguous. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Ameliorating slice gaps in multislice magnetic resonance images: an interpolation scheme.
Kashou, Nasser H; Smith, Mark A; Roberts, Cynthia J
2015-01-01
Standard two-dimension (2D) magnetic resonance imaging (MRI) clinical acquisition protocols utilize orthogonal plane images which contain slice gaps (SG). The purpose of this work is to introduce a novel interpolation method for these orthogonal plane MRI 2D datasets. Three goals can be achieved: (1) increasing the resolution based on a priori knowledge of scanning protocol, (2) ameliorating the loss of data as a result of SG and (3) reconstructing a three-dimension (3D) dataset from 2D images. MRI data was collected using a 3T GE scanner and simulated using Matlab. The procedure for validating the MRI data combination algorithm was performed using a Shepp-Logan and a Gaussian phantom in both 2D and 3D of varying matrix sizes (64-512), as well as on one MRI dataset of a human brain and on an American College of Radiology magnetic resonance accreditation phantom. The squared error and mean squared error were computed in comparing this scheme to common interpolating functions employed in MR consoles and workstations. The mean structure similarity matrix was computed in 2D as a means of qualitative image assessment. Additionally, MRI scans were used for qualitative assessment of the method. This new scheme was consistently more accurate than upsampling each orientation separately and averaging the upsampled data. An efficient new interpolation approach to resolve SG was developed. This scheme effectively fills in the missing data points by using orthogonal plane images. To date, there have been few attempts to combine the information of three MRI plane orientations using brain images. This has specific applications for clinical MRI, functional MRI, diffusion-weighted imaging/diffusion tensor imaging and MR angiography where 2D slice acquisition are used. In these cases, the 2D data can be combined using our method in order to obtain 3D volume.
Loh, K B; Ramli, N; Tan, L K; Roziah, M; Rahmat, K; Ariffin, H
2012-07-01
The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. Diffusion tensor imaging outperforms conventional MRI in depicting white matter maturation. • DTI will become an important clinical tool for diagnosing paediatric neurological diseases. • DTI appears especially helpful for developmental abnormalities, tumours and white matter disease. • An automated processing pipeline assists quantitative analysis of high throughput DTI data.
Henry, Roland G; Berman, Jeffrey I; Nagarajan, Srikantan S; Mukherjee, Pratik; Berger, Mitchel S
2004-02-01
The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain.
Henry, Roland G.; Berman, Jeffrey I.; Nagarajan, Srikantan S.; Mukherjee, Pratik; Berger, Mitchel S.
2014-01-01
The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain. PMID:14980564
Heidemann, Robin M; Anwander, Alfred; Feiweier, Thorsten; Knösche, Thomas R; Turner, Robert
2012-04-02
There is ongoing debate whether using a higher spatial resolution (sampling k-space) or a higher angular resolution (sampling q-space angles) is the better way to improve diffusion MRI (dMRI) based tractography results in living humans. In both cases, the limiting factor is the signal-to-noise ratio (SNR), due to the restricted acquisition time. One possible way to increase the spatial resolution without sacrificing either SNR or angular resolution is to move to a higher magnetic field strength. Nevertheless, dMRI has not been the preferred application for ultra-high field strength (7 T). This is because single-shot echo-planar imaging (EPI) has been the method of choice for human in vivo dMRI. EPI faces several challenges related to the use of a high resolution at high field strength, for example, distortions and image blurring. These problems can easily compromise the expected SNR gain with field strength. In the current study, we introduce an adapted EPI sequence in conjunction with a combination of ZOOmed imaging and Partially Parallel Acquisition (ZOOPPA). We demonstrate that the method can produce high quality diffusion-weighted images with high spatial and angular resolution at 7 T. We provide examples of in vivo human dMRI with isotropic resolutions of 1 mm and 800 μm. These data sets are particularly suitable for resolving complex and subtle fiber architectures, including fiber crossings in the white matter, anisotropy in the cortex and fibers entering the cortex. Copyright © 2011 Elsevier Inc. All rights reserved.
Advanced structural multimodal imaging of a patient with subcortical band heterotopia.
Kini, Lohith G; Nasrallah, Ilya M; Coto, Carlos; Ferraro, Lindsay C; Davis, Kathryn A
2016-12-01
Subcortical band heterotopia (SBH) is a disorder of neuronal migration most commonly due to mutations of the Doublecortin (DCX) gene. A range of phenotypes is seen, with most patients having some degree of epilepsy and intellectual disability. Advanced diffusion and structural magnetic resonance imaging (MRI) sequences may be useful in identifying heterotopias and dysplasias of different sizes in drug-resistant epilepsy. We describe a patient with SBH and drug-resistant epilepsy and investigate neurite density, neurite dispersion, and diffusion parameters as compared to a healthy control through the use of multiple advanced MRI modalities. Neurite density and dispersion in heterotopia was found to be more similar to white matter than gray matter. Neurite density and dispersion maps obtained using diffusion imaging may be able to better characterize different subtypes of heterotopia.
NASA Astrophysics Data System (ADS)
Schilling, Kurt G.; Nath, Vishwesh; Blaber, Justin; Harrigan, Robert L.; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.
2017-02-01
High-angular-resolution diffusion-weighted imaging (HARDI) MRI acquisitions have become common for use with higher order models of diffusion. Despite successes in resolving complex fiber configurations and probing microstructural properties of brain tissue, there is no common consensus on the optimal b-value and number of diffusion directions to use for these HARDI methods. While this question has been addressed by analysis of the diffusion-weighted signal directly, it is unclear how this translates to the information and metrics derived from the HARDI models themselves. Using a high angular resolution data set acquired at a range of b-values, and repeated 11 times on a single subject, we study how the b-value and number of diffusion directions impacts the reproducibility and precision of metrics derived from Q-ball imaging, a popular HARDI technique. We find that Q-ball metrics associated with tissue microstructure and white matter fiber orientation are sensitive to both the number of diffusion directions and the spherical harmonic representation of the Q-ball, and often are biased when under sampled. These results can advise researchers on appropriate acquisition and processing schemes, particularly when it comes to optimizing the number of diffusion directions needed for metrics derived from Q-ball imaging.
Single-shot spiral imaging enabled by an expanded encoding model: Demonstration in diffusion MRI.
Wilm, Bertram J; Barmet, Christoph; Gross, Simon; Kasper, Lars; Vannesjo, S Johanna; Haeberlin, Max; Dietrich, Benjamin E; Brunner, David O; Schmid, Thomas; Pruessmann, Klaas P
2017-01-01
The purpose of this work was to improve the quality of single-shot spiral MRI and demonstrate its application for diffusion-weighted imaging. Image formation is based on an expanded encoding model that accounts for dynamic magnetic fields up to third order in space, nonuniform static B 0 , and coil sensitivity encoding. The encoding model is determined by B 0 mapping, sensitivity mapping, and concurrent field monitoring. Reconstruction is performed by iterative inversion of the expanded signal equations. Diffusion-tensor imaging with single-shot spiral readouts is performed in a phantom and in vivo, using a clinical 3T instrument. Image quality is assessed in terms of artefact levels, image congruence, and the influence of the different encoding factors. Using the full encoding model, diffusion-weighted single-shot spiral imaging of high quality is accomplished both in vitro and in vivo. Accounting for actual field dynamics, including higher orders, is found to be critical to suppress blurring, aliasing, and distortion. Enhanced image congruence permitted data fusion and diffusion tensor analysis without coregistration. Use of an expanded signal model largely overcomes the traditional vulnerability of spiral imaging with long readouts. It renders single-shot spirals competitive with echo-planar readouts and thus deploys shorter echo times and superior readout efficiency for diffusion imaging and further prospective applications. Magn Reson Med 77:83-91, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Shimada, Kotaro; Isoda, Hiroyoshi; Hirokawa, Yuusuke; Arizono, Shigeki; Shibata, Toshiya; Togashi, Kaori
2010-11-01
To compare the accuracy of gadolinium ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI with that of diffusion-weighted MRI (DWI) in the detection of small hepatic metastases (2 cm or smaller). Forty-five patients underwent abdominal MRI at 3 T, including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), heavily T2WI (HASTE), DWI with a b-value of 500 s/mm(2) and contrast-enhanced MRI with Gd-EOB-DTPA. Two groups were assigned and compared: group A (T1WI, T2WI, HASTE and contrast-enhanced study with Gd-EOB-DTPA), and group B (T1WI, T2WI, HASTE and DWI). Two observers independently interpreted the images obtained in a random order. For all hepatic metastases, the diagnostic performance using each imaging set was evaluated by receiver-operating characteristic (ROC) curve analysis. A total of 51 hepatic metastases were confirmed. The area under the ROC curve (Az) of group A was larger than that of group B, and the difference in the mean Az values between the two image sets was statistically significant, whereas, there were three metastases that lay near thin vessels or among multiple cysts and were better visualised in group B than in group A. Gd-EOB-DTPA-enhanced MRI showed higher accuracy in the detection of small metastases than DWI.
Mardor, Yael; Roth, Yiftach; Ocherashvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael
2004-01-01
Abstract Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm2 to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, RD, reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and RD were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P < .002 and r = 0.77, P < .001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy. PMID:15140402
Mardor, Yael; Roth, Yiftach; Ochershvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael
2004-01-01
Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm(2) to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, R(D), reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and R(D) were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P <.002 and r = 0.77, P <.001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy.
Neurocognitive Effects of Radiotherapy
2014-10-01
patients have completed a 4-5 hour neurocognitive testing assessment at baseline by Dr. Carol Armstrong. In addition , all patients have completed a 1...hour standard MRI as well as additional testing including diffuse tensor imaging (DTI), perfusion and diffusion. The majority of patients have...completed baseline and at least two additional time-points in regards to both neurocognitive testing and MRI. Eight patients have completed
Clarke, Sharon E; Mistry, Dipan; AlThubaiti, Talal; Khan, M Naeem; Morris, David; Bance, Manohar
2017-05-01
The purpose of this study was to evaluate the sensitivity, specificity, and positive and negative predictive values of the diffusion-weighted periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique in the detection of cholesteatoma at our institution with surgical confirmation in all cases. A retrospective review of 21 consecutive patients who underwent diffusion-weighted PROPELLER magnetic resonance imaging (MRI) on a 1.5T MRI scanner prior to primary or revision/second-look surgery for suspected cholesteatoma from 2009-2012 was performed. Diffusion-weighted PROPELLER had a sensitivity of 75%, specificity of 60%, positive predictive value of 86%, and negative predictive value of 43%. In the 15 patients for whom the presence or absence of cholesteatoma was correctly predicted, there were 2 cases where the reported locations of diffusion restriction did not correspond to the location of the cholesteatoma observed at surgery. On the basis of our retrospective study, we conclude that diffusion-weighted PROPELLER MRI is not sufficiently accurate to replace second look surgery at our institution. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
Gottlieb, Josh; Princenthal, Robert; Cohen, Martin I
2017-07-01
To evaluate the multi-parametric MRI (mpMRI) findings in patients with biopsy-proven granulomatous prostatitis and prior Bacillus Calmette-Guérin (BCG) exposure. MRI was performed in six patients with pathologically proven granulomatous prostatitis and a prior history of bladder cancer treated with intravesical BCG therapy. Multi-parametric prostate MRI images were recorded on a GE 750W or Philips Achieva 3.0 Tesla MRI scanner with high-resolution, small-field-of-view imaging consisting of axial T2, axial T1, coronal T2, sagittal T2, axial multiple b-value diffusion (multiple values up to 1200 or 1400), and dynamic contrast-enhanced 3D axial T1 with fat suppression sequence. Two different patterns of MR findings were observed. Five of the six patients had a low mean ADC value <1000 (decreased signal on ADC map images) and isointense signal on high-b-value imaging (b = 1200 or 1400), consistent with nonspecific granulomatous prostatitis. The other pattern seen in one of the six patients was decreased signal on the ADC map images with increased signal on the high-b-value sequence, revealing true restricted diffusion indistinguishable from aggressive prostate cancer. This patient had biopsy-confirmed acute BCG prostatitis. Our study suggests that patients with known BCG exposure and PI-RADS v2 scores ≤3, showing similar mpMRI findings as demonstrated, may not require prostate biopsy.
Breschi, Gian Luca; Librizzi, Laura; Pastori, Chiara; Zucca, Ileana; Mastropietro, Alfonso; Cattalini, Alessandro; de Curtis, Marco
2010-08-01
Magnetic resonance imaging (MRI) during the acute phase of a stroke contributes to recognize ischemic regions and is potentially useful to predict clinical outcome. Yet, the functional significance of early MRI alterations during brain ischemia is not clearly understood. We achieved an experimental study to interpret MRI signals in a novel model of focal ischemia in the in vitro isolated guinea pig brain. By combining neurophysiological and morphological analysis with MR-imaging, we evaluated the suitability of MR to identify ischemic and peri-ischemic regions. Extracellular recordings demonstrated depolarizations in the ischemic core, but not in adjacent areas, where evoked activity was preserved and brief peri-infarct depolarizations occurred. Diffusion-weighted MRI and immunostaining performed after neurophysiological characterization showed changes restricted to the core region. Diffusion-weighted MR alterations did not include the penumbra region characterized by peri-infarct depolarizations. Therefore, by comparing neurophysiological, imaging and anatomical data, we can conclude that DW-MRI underestimates the extension of the tissue damage involved in brain ischemia.
Stanzione, Arnaldo; Imbriaco, Massimo; Cocozza, Sirio; Fusco, Ferdinando; Rusconi, Giovanni; Nappi, Carmela; Mirone, Vincenzo; Mangiapia, Francesco; Brunetti, Arturo; Ragozzino, Alfonso; Longo, Nicola
2016-12-01
To prospectively determine the diagnostic accuracy of a biparametric 3T magnetic resonance imaging protocol (BP-MRI) for prostatic cancer detection, compared to a multiparametric MRI protocol (MP-MRI), in a biopsy naïve patient population. Eighty-two untreated patients (mean age 65±7.6years) with clinical suspicion of prostate cancer and/or altered prostate-specific antigen (PSA) levels underwent a MP-MRI, including T2-weighted imaging, diffusion-weighted imaging (with the correspondent apparent diffusion coefficient maps) and dynamic contrast enhanced sequence, followed by prostate biopsy. Two radiologists reviewed both the BP-MRI and the MP-MRI protocols to establish a radiological diagnosis. Receiver operating characteristics curves were obtained to determine the diagnostic performance of the two protocols. The mean PSA level was 8.8±8.1ng/ml. A total of 34 prostatic tumors were identified, with a Gleason score that ranged from 3+3 to 5+4. Of these 34 tumors, 29 were located within the peripheral zone and 5 in the transitional zone. BP-MRI and MP-MRI showed a similar performance in terms of overall diagnostic accuracy, with an area under the curve of 0.91 and 0.93, respectively (p=n.s.). BP-MRI prostate protocol is feasible for prostatic cancer detection compared to a standard MP-MRI protocol, requiring a shorter acquisition and interpretation time, with comparable diagnostic accuracy to the conventional protocol, without the administration of gadolinium-based contrast agent. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Miyazaki, Keiko; Jerome, Neil P; Collins, David J; Orton, Matthew R; d'Arcy, James A; Wallace, Toni; Moreno, Lucas; Pearson, Andrew D J; Marshall, Lynley V; Carceller, Fernando; Leach, Martin O; Zacharoulis, Stergios; Koh, Dow-Mu
2015-09-01
The objectives are to examine the reproducibility of functional MR imaging in children with solid tumours using quantitative parameters derived from diffusion-weighted (DW-) and dynamic contrast enhanced (DCE-) MRI. Patients under 16-years-of age with confirmed diagnosis of solid tumours (n = 17) underwent free-breathing DW-MRI and DCE-MRI on a 1.5 T system, repeated 24 hours later. DW-MRI (6 b-values, 0-1000 sec/mm(2)) enabled monoexponential apparent diffusion coefficient estimation using all (ADC0-1000) and only ≥100 sec/mm(2) (ADC100-1000) b-values. DCE-MRI was used to derive the transfer constant (K(trans)), the efflux constant (kep), the extracellular extravascular volume (ve), and the plasma fraction (vp), using a study cohort arterial input function (AIF) and the extended Tofts model. Initial area under the gadolinium enhancement curve and pre-contrast T1 were also calculated. Percentage coefficients of variation (CV) of all parameters were calculated. The most reproducible cohort parameters were ADC100-1000 (CV = 3.26%), pre-contrast T1 (CV = 6.21%), and K(trans) (CV = 15.23%). The ADC100-1000 was more reproducible than ADC0-1000, especially extracranially (CV = 2.40% vs. 2.78%). The AIF (n = 9) derived from this paediatric population exhibited sharper and earlier first-pass and recirculation peaks compared with the literature's adult population average. Free-breathing functional imaging protocols including DW-MRI and DCE-MRI are well-tolerated in children aged 6 - 15 with good to moderate measurement reproducibility. • Diffusion MRI protocol is feasible and well-tolerated in a paediatric oncology population. • DCE-MRI for pharmacokinetic evaluation is feasible and well tolerated in a paediatric oncology population. • Paediatric arterial input function (AIF) shows systematic differences from the adult population-average AIF. • Variation of quantitative parameters from paired functional MRI measurements were within 20%.
Epilepsy Surgery for Individuals with TSC
... tomography (PET), single-photon emission tomography (SPECT), magnetoencephalography (MEG), Diffusion Tensor Imaging (DTI), and functional MRI (fMRI). ... sclerosis: a comparison of high resolution EEG and MEG. Epilepsia 47:108-114 Jansen FE, Huffelen ACV, ...
NASA Astrophysics Data System (ADS)
Freidlin, R. Z.; Kakareka, J. W.; Pohida, T. J.; Komlosh, M. E.; Basser, P. J.
2012-08-01
In vivo MRI data can be corrupted by motion. Motion artifacts are particularly troublesome in Diffusion Weighted MRI (DWI), since the MR signal attenuation due to Brownian motion can be much less than the signal loss due to dephasing from other types of complex tissue motion, which can significantly degrade the estimation of self-diffusion coefficients, diffusion tensors, etc. This paper describes a snapshot DWI sequence, which utilizes a novel single-sided bipolar diffusion sensitizing gradient pulse within a spin echo sequence. The proposed method shortens the diffusion time by applying a single refocused bipolar diffusion gradient on one side of a refocusing RF pulse, instead of a set of diffusion sensitizing gradients, separated by a refocusing RF pulse, while reducing the impact of magnetic field inhomogeneity by using a spin echo sequence. A novel MRI phantom that can exhibit a range of complex motions was designed to demonstrate the robustness of the proposed DWI sequence.
Song, Y; Yoon, Y C; Chong, Y; Seo, S W; Choi, Y-L; Sohn, I; Kim, M-J
2017-08-01
To compare the abilities of conventional magnetic resonance imaging (MRI) and apparent diffusion coefficient (ADC) in differentiating between benign and malignant soft-tissue tumours (STT). A total of 123 patients with STT who underwent 3 T MRI, including diffusion-weighted imaging (DWI), were retrospectively analysed using variate conventional MRI parameters, ADC mean and ADC min . For the all-STT group, the correlation between the malignant STT conventional MRI parameters, except deep compartment involvement, compared to those of benign STT were statistically significant with univariate analysis. Maximum diameter of the tumour (p=0.001; odds ratio [OR], 8.97) and ADC mean (p=0.020; OR, 4.30) were independent factors with multivariate analysis. For the non-myxoid non-haemosiderin STT group, signal heterogeneity on axial T1-weighted imaging (T1WI; p=0.017), ADC mean , and ADC min (p=0.001, p=0.001), showed significant differences with univariate analysis between malignancy and benignity. Signal heterogeneity in axial T1WI (p=0.025; OR, 12.64) and ADC mean (p=0.004; OR, 33.15) were independent factors with multivariate analysis. ADC values as well as conventional MRI parameters were useful in differentiating between benign and malignant STT. The ADC mean was the most powerful diagnostic parameter in non-myxoid non-haemosiderin STT. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Edlow, Brian L; Giacino, Joseph T; Hirschberg, Ronald E; Gerrard, Jason; Wu, Ona; Hochberg, Leigh R
2013-12-01
Prognostication in the early stage of traumatic coma is a common challenge in the neuro-intensive care unit. We report the unexpected recovery of functional milestones (i.e., consciousness, communication, and community reintegration) in a 19-year-old man who sustained a severe traumatic brain injury. The early magnetic resonance imaging (MRI) findings, at the time, suggested a poor prognosis. During the first year of the patient's recovery, MRI with diffusion tensor imaging and T2*-weighted imaging was performed on day 8 (coma), day 44 (minimally conscious state), day 198 (post-traumatic confusional state), and day 366 (community reintegration). Mean apparent diffusion coefficient (ADC) and fractional anisotropy values in the corpus callosum, cerebral hemispheric white matter, and thalamus were compared with clinical assessments using the Disability Rating Scale (DRS). Extensive diffusion restriction in the corpus callosum and bihemispheric white matter was observed on day 8, with ADC values in a range typically associated with neurotoxic injury (230-400 × 10(-6 )mm(2)/s). T2*-weighted MRI revealed widespread hemorrhagic axonal injury in the cerebral hemispheres, corpus callosum, and brainstem. Despite the presence of severe axonal injury on early MRI, the patient regained the ability to communicate and perform activities of daily living independently at 1 year post-injury (DRS = 8). MRI data should be interpreted with caution when prognosticating for patients in traumatic coma. Recovery of consciousness and community reintegration are possible even when extensive traumatic axonal injury is demonstrated by early MRI.
Lee, So-Yeon; Jee, Won-Hee; Jung, Joon-Yong; Park, Michael Y; Kim, Sun-Ki; Jung, Chan-Kwon; Chung, Yang-Guk
2016-03-01
To determine the added value of diffusion-weighted imaging (DWI) to standard magnetic resonance imaging (MRI) to differentiate malignant from benign soft tissue tumours at 3.0 T. 3.0 T MR images including DWI in 63 patients who underwent surgery for soft tissue tumours were retrospectively analyzed. Two readers independently interpreted MRI for the presence of malignancy in two steps: standard MRI alone, standard MRI and DWI with qualitative and quantitative analysis combined. There were 34 malignant and 29 non-malignant soft tissue tumours. In qualitative analysis, hyperintensity relative to skeletal muscle was more frequent in malignant than benign tumours on DWI (P=0.003). In quantitative analysis, ADCs of malignant tumours were significantly lower than those of non-malignant tumours (P≤0.002): 759±385 vs. 1188±423 μm(2)/sec minimum ADC value, 941±440 vs. 1310±440 μm(2)/sec average ADC value. The mean sensitivity, specificity and accuracy of both readers were 96%, 72%, and 85% on standard MRI alone and 97%, 90%, and 94% on standard MRI with DWI. The addition of DWI to standard MRI improves the diagnostic accuracy for differentiation of malignant from benign soft tissue tumours at 3.0 T. DWI has added value for differentiating malignant from benign soft tissue tumours. Addition of DWI to standard MRI at 3.0 T improves the diagnostic accuracy. Measurements of both ADC min within solid portion and ADC av are helpful.
Duning, Thomas; Kellinghaus, Christoph; Mohammadi, Siawoosh; Schiffbauer, Hagen; Keller, Simon; Ringelstein, E Bernd; Knecht, Stefan; Deppe, Michael
2010-02-01
Conventional structural MRI fails to identify a cerebral lesion in 25% of patients with cryptogenic partial epilepsy (CPE). Diffusion tensor imaging is an MRI technique sensitive to microstructural abnormalities of cerebral white matter (WM) by quantification of fractional anisotropy (FA). The objectives of the present study were to identify focal FA abnormalities in patients with CPE who were deemed MRI negative during routine presurgical evaluation. Diffusion tensor imaging at 3 T was performed in 12 patients with CPE and normal conventional MRI and in 67 age matched healthy volunteers. WM integrity was compared between groups on the basis of automated voxel-wise statistics of FA maps using an analysis of covariance. Volumetric measurements from high resolution T1-weighted images were also performed. Significant FA reductions in WM regions encompassing diffuse areas of the brain were observed when all patients as a group were compared with controls. On an individual basis, voxel based analyses revealed widespread symmetrical FA reduction in CPE patients. Furthermore, asymmetrical temporal lobe FA reduction was consistently ipsilateral to the electroclinical focus. No significant correlations were found between FA alterations and clinical data. There were no differences in brain volumes of CPE patients compared with controls. Despite normal conventional MRI, WM integrity abnormalities in CPE patients extend far beyond the epileptogenic zone. Given that unilateral temporal lobe FA abnormalities were consistently observed ipsilateral to the seizure focus, analysis of temporal FA may provide an informative in vivo investigation into the localisation of the epileptogenic zone in MRI negative patients.
Multi-Objective Memetic Search for Robust Motion and Distortion Correction in Diffusion MRI.
Hering, Jan; Wolf, Ivo; Maier-Hein, Klaus H
2016-10-01
Effective image-based artifact correction is an essential step in the analysis of diffusion MR images. Many current approaches are based on retrospective registration, which becomes challenging in the realm of high b -values and low signal-to-noise ratio, rendering the corresponding correction schemes more and more ineffective. We propose a novel registration scheme based on memetic search optimization that allows for simultaneous exploitation of different signal intensity relationships between the images, leading to more robust registration results. We demonstrate the increased robustness and efficacy of our method on simulated as well as in vivo datasets. In contrast to the state-of-art methods, the median target registration error (TRE) stayed below the voxel size even for high b -values (3000 s ·mm -2 and higher) and low SNR conditions. We also demonstrate the increased precision in diffusion-derived quantities by evaluating Neurite Orientation Dispersion and Density Imaging (NODDI) derived measures on a in vivo dataset with severe motion artifacts. These promising results will potentially inspire further studies on metaheuristic optimization in diffusion MRI artifact correction and image registration in general.
Thomalla, Götz; Boutitie, Florent; Fiebach, Jochen B; Simonsen, Claus Z; Nighoghossian, Norbert; Pedraza, Salvador; Lemmens, Robin; Roy, Pascal; Muir, Keith W; Ebinger, Martin; Ford, Ian; Cheng, Bastian; Galinovic, Ivana; Cho, Tae-Hee; Puig, Josep; Thijs, Vincent; Endres, Matthias; Fiehler, Jens; Gerloff, Christian
2017-03-01
We describe clinical and magnetic resonance imaging (MRI) characteristics of stroke patients with unknown time of symptom onset potentially eligible for thrombolysis from a large prospective cohort. We analyzed baseline data from WAKE-UP (Efficacy and Safety of MRI-Based Thrombolysis in Wake-Up Stroke: A Randomized, Doubleblind, Placebo-Controlled Trial), an investigator-initiated, randomized, placebo-controlled trial of MRI-based thrombolysis in stroke patients with unknown time of symptom onset. MRI judgment included assessment of the mismatch between visibility of the acute ischemic lesion on diffusion-weighted imaging and fluid-attenuated inversion recovery. Of 1005 patients included, diffusion-weighted imaging and fluid-attenuated inversion recovery mismatch was present in 479 patients (48.0%). Patients with daytime-unwitnessed stroke (n=138, 13.7%) had a shorter delay between symptom recognition and hospital arrival (1.5 versus 1.8 hours; P =0.002), a higher National Institutes of Stroke Scale score on admission (8 versus 6; P <0.001), and more often aphasia (72.5% versus 34.0%; P <0.001) when compared with stroke patients waking up from nighttime sleep. Frequency of diffusion-weighted imaging and fluid-attenuated inversion recovery mismatch was comparable between both groups (43.7% versus 48.7%; P =0.30). Almost half of the patients with unknown time of symptom onset stroke otherwise eligible for thrombolysis had MRI findings making them likely to be within a time window for safe and effective thrombolysis. Patients with daytime onset unwitnessed stroke differ from wake-up stroke patients with regards to clinical characteristics but are comparable in terms of MRI characteristics of lesion age. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01525290. URL: https://www.clinicaltrialsregister.eu. Unique identifier: 2011-005906-32. © 2017 American Heart Association, Inc.
Magnetic resonance imaging of granular materials
NASA Astrophysics Data System (ADS)
Stannarius, Ralf
2017-05-01
Magnetic Resonance Imaging (MRI) has become one of the most important tools to screen humans in medicine; virtually every modern hospital is equipped with a Nuclear Magnetic Resonance (NMR) tomograph. The potential of NMR in 3D imaging tasks is by far greater, but there is only "a handful" of MRI studies of particulate matter. The method is expensive, time-consuming, and requires a deep understanding of pulse sequences, signal acquisition, and processing. We give a short introduction into the physical principles of this imaging technique, describe its advantages and limitations for the screening of granular matter, and present a number of examples of different application purposes, from the exploration of granular packing, via the detection of flow and particle diffusion, to real dynamic measurements. Probably, X-ray computed tomography is preferable in most applications, but fast imaging of single slices with modern MRI techniques is unmatched, and the additional opportunity to retrieve spatially resolved flow and diffusion profiles without particle tracking is a unique feature.
Tu, Zhanhai; Xiao, Zebin; Zheng, Yingyan; Huang, Hongjie; Yang, Libin; Cao, Dairong
2018-01-01
Background Little is known about the value of computed tomography (CT) and magnetic resonance imaging (MRI) combined with diffusion-weighted imaging (DWI) in distinguishing malignant from benign skull-involved lesions. Purpose To evaluate the discriminative value of DWI combined with conventional CT and MRI for differentiating between benign and malignant skull-involved lesions. Material and Methods CT and MRI findings of 58 patients with pathologically proven skull-involved lesions (43 benign and 15 malignant) were retrospectively reviewed. Conventional CT and MRI characteristics and apparent diffusion coefficient (ADC) value of the two groups were evaluated and compared. Multivariate logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the differential performance of each parameter separately and together. Results The presence of cortical defects or break-through and ill-defined margins were associated with malignant skull-involved lesions (both P < 0.05). Malignant skull-involved lesions demonstrated a significantly lower ADC ( P = 0.016) than benign lesions. ROC curve analyses indicated that a combination of CT, MRI, and DWI with an ADC ≤ 0.703 × 10 -3 mm 2 /s showed optimal sensitivity, while DWI along showed optimal specificity of 88.4% in differentiating between benign and malignant skull-involved lesions. Conclusion The combination of CT, MRI, and DWI can help to differentiate malignant from benign skull-involved lesions. CT + MRI + DWI offers optimal sensitivity, while DWI offers optimal specificity.
Cumulant expansions for measuring water exchange using diffusion MRI
NASA Astrophysics Data System (ADS)
Ning, Lipeng; Nilsson, Markus; Lasič, Samo; Westin, Carl-Fredrik; Rathi, Yogesh
2018-02-01
The rate of water exchange across cell membranes is a parameter of biological interest and can be measured by diffusion magnetic resonance imaging (dMRI). In this work, we investigate a stochastic model for the diffusion-and-exchange of water molecules. This model provides a general solution for the temporal evolution of dMRI signal using any type of gradient waveform, thereby generalizing the signal expressions for the Kärger model. Moreover, we also derive a general nth order cumulant expansion of the dMRI signal accounting for water exchange, which has not been explored in earlier studies. Based on this analytical expression, we compute the cumulant expansion for dMRI signals for the special case of single diffusion encoding (SDE) and double diffusion encoding (DDE) sequences. Our results provide a theoretical guideline on optimizing experimental parameters for SDE and DDE sequences, respectively. Moreover, we show that DDE signals are more sensitive to water exchange at short-time scale but provide less attenuation at long-time scale than SDE signals. Our theoretical analysis is also validated using Monte Carlo simulations on synthetic structures.
2015-10-01
that includes physical and neuropsychological evaluations, neuroimaging (MRI, fMRI , DTI), adrenal function tests, and diverse immune, inflammatory...characterized by a profile of concurrent symptoms that typically includes persistent headaches, memory and cognitive difficulties, widespread pain, unexplained...includes physical examinations, neuroimaging (MRI volumetric assessments, fMRI , diffusion tensor imaging), neuropsychological evaluations, assessment
Assili, S.; Fathi Kazerooni, A.; Aghaghazvini, L.; Saligheh Rad, H.R.; Pirayesh Islamian, J.
2015-01-01
Background Salivary gland tumors form nearly 3% of head and neck tumors. Due to their large histological variety and vicinity to facial nerves, pre-operative diagnosis and differentiation of benign and malignant parotid tumors are a major challenge for radiologists. Objective The majority of these tumors are benign; however, sometimes they tend to transform into a malignant form. Functional MRI techniques, namely dynamic contrast enhanced (DCE-) MRI and diffusion-weighted MRI (DWI) can indicate the characteristics of tumor tissue. Methods DCE-MRI analysis is based on the parameters of time intensity curve (TIC) before and after contrast agent injection. This method has the potential to identify the angiogenesis of tumors. DWI analysis is performed according to diffusion of water molecules in a tissue for determination of the cellularity of tumors. Conclusion According to the literature, these methods cannot be used individually to differentiate benign from malignant salivary gland tumors. An effective approach could be to combine the aforementioned methods to increase the accuracy of discrimination between different tumor types. The main objective of this study is to explore the application of DCE-MRI and DWI for assessment of salivary gland tumor types. PMID:26688794
MRI-negative refractory partial epilepsy: role for diffusion tensor imaging in high field MRI.
Chen, Qin; Lui, Su; Li, Chun-Xiao; Jiang, Li-Jun; Ou-Yang, Luo; Tang, He-Han; Shang, Hui-Fang; Huang, Xiao-Qi; Gong, Qi-Yong; Zhou, Dong
2008-07-01
Our aim is to use the high field MR scanner (3T) to verify whether diffusion tensor imaging (DTI) could help in locating the epileptogenic zone in patients with MRI-negative refractory partial epilepsy. Fifteen patients with refractory partial epilepsy who had normal conventional MRI, and 40 healthy volunteers were recruited for the study. DTI was performed on a 3T MR scanner, individual maps of mean diffusivity (MD) and fractional anisotropy (FA) were calculated, and Voxel-Based Analysis (VBA) was performed for individual comparison between patients and controls. Voxel-based analysis revealed significant MD increase in variant regions in 13 patients. The electroclinical seizure localization was concurred to seven patients. No patient exhibited regions of significant decreased MD. Regions of significant reduced FA were observed in five patients, with two of these concurring with electroclinical seizure localization. Two patients had regions of significant increase in FA, which were distinct from electroclinical seizure localization. Our study's results revealed that DTI is a responsive neuroradiologic technique that provides information about the epileptogenic areas in patients with MRI-negative refractory partial epilepsy. This technique may also helpful in pre-surgical evaluation.
Increased working memory related fMRI signal in children following Tick Borne Encephalitis.
Henrik, Ullman; Åsa, Fowler; Ronny, Wickström
2016-01-01
Tick Borne Encephalitis (TBE) is a viral infection in the central nervous system endemic in Europe and Asia. While pediatric infection may carry a lower risk for serious neurological sequelae compared to adults, a large proportion of children experience long term cognitive problems, most markedly decreased working memory capacity. We explored whether task related functional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) could reveal a biological correlate of status-post TBE in children. We examined 11 serologically verified pediatric TBE patients with central nervous system involvement with 55 healthy controls with working memory tests and MRI. The TBE patients showed a prominent deficit in working memory capacity and an increased task related functional MRI signal in working memory related cortical areas during a spatial working memory task performed without sedation. No diffusion differences could be found with DTI, in line with the reported paucity of anatomical abnormalities. This study is the first to demonstrate functional MRI abnormalities in TBE patients that bears similarity to other patient groups with diffuse neuronal damage. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Gao, Yu; Han, Fei; Zhou, Ziwu; Cao, Minsong; Kaprealian, Tania; Kamrava, Mitchell; Wang, Chenyang; Neylon, John; Low, Daniel A; Yang, Yingli; Hu, Peng
2017-10-01
Monitoring tumor response during the course of treatment and adaptively modifying treatment plan based on tumor biological feedback may represent a new paradigm for radiotherapy. Diffusion MRI has shown great promises in assessing and predicting tumor response to radiotherapy. However, the conventional diffusion-weighted single-shot echo-planar-imaging (DW-ssEPI) technique suffers from limited resolution, severe distortion, and possibly inaccurate ADC at low field strength. The purpose of this work was to develop a reliable, accurate and distortion-free diffusion MRI technique that is practicable for longitudinal tumor response evaluation and adaptive radiotherapy on a 0.35 T MRI-guided radiotherapy system. A diffusion-prepared turbo spin echo readout (DP-TSE) sequence was developed and compared with the conventional diffusion-weighted single-shot echo-planar-imaging sequence on a 0.35 T MRI-guided radiotherapy system (ViewRay). A spatial integrity phantom was used to quantitate and compare the geometric accuracy of the two diffusion sequences for three orthogonal orientations. The apparent diffusion coefficient (ADC) accuracy was evaluated on a diffusion phantom under both 0 °C and room temperature to cover a diffusivity range between 0.40 × 10 -3 and 2.10 × 10 -3 mm 2 /s. Ten room temperature measurements repeated on five different days were conducted to assess the ADC reproducibility of DP-TSE. Two glioblastoma (GBM) and six sarcoma patients were included to examine the in vivo feasibility. The target registration error (TRE) was calculated to quantitate the geometric accuracy where structural CT or MR images were co-registered to the diffusion images as references. ADC maps from DP-TSE and DW-ssEPI were calculated and compared. A tube phantom was placed next to patients not treated on ViewRay, and ADCs of this reference tube were also compared. The proposed DP-TSE passed the spatial integrity test (< 1 mm within 100 mm radius and < 2 mm within 175 mm radius) under the three orthogonal orientations. The detected errors were 0.474 ± 0.355 mm, 0.475 ± 0.287 mm, and 0.546 ± 0.336 mm in the axial, coronal, and sagittal plane. DW-ssEPI, however, failed the tests due to severe distortion and low signal intensity. Noise correction must be performed for the DW-ssEPI to avoid ADC quantitation errors, whereas it is optional for DP-TSE. At 0 °C, the two sequences provided accurate quantitation with < 3% variation with the reference. In the room temperature study, discrepancies between ADCs from DP-TSE and the reference were within 4%, but could be as high as 8% for DW-ssEPI after the noise correction. Excellent ADC reproducibility with a coefficient of variation < 5% was observed among the 10 measurements of DP-TSE, indicating desirable robustness for ADC-based tumor response assessment. In vivo TRE in DP-TSE was less than 1.6 mm overall, whereas it could be greater than 12 mm in DW-ssEPI. For GBM patients, the CSF and brain tissue ADCs from DP-TSE were within the ranges found in literature. ADC differences between the two techniques were within 8% among the six sarcoma patients. For the reference tube that had a relatively low diffusivity, the two diffusion sequences provided matched measurements. A diffusion technique with excellent geometric fidelity, accurate, and reproducible ADC measurement was demonstrated for longitudinal tumor response assessment using a low-field MRI-guided radiotherapy system. © 2017 American Association of Physicists in Medicine.
Brain structural changes in spasmodic dysphonia: A multimodal magnetic resonance imaging study.
Kostic, Vladimir S; Agosta, Federica; Sarro, Lidia; Tomić, Aleksandra; Kresojević, Nikola; Galantucci, Sebastiano; Svetel, Marina; Valsasina, Paola; Filippi, Massimo
2016-04-01
The pathophysiology of spasmodic dysphonia is poorly understood. This study evaluated patterns of cortical morphology, basal ganglia, and white matter microstructural alterations in patients with spasmodic dysphonia relative to healthy controls. T1-weighted and diffusion tensor magnetic resonance imaging (MRI) scans were obtained from 13 spasmodic dysphonia patients and 30 controls. Tract-based spatial statistics was applied to compare diffusion tensor MRI indices (i.e., mean, radial and axial diffusivities, and fractional anisotropy) between groups on a voxel-by-voxel basis. Cortical measures were analyzed using surface-based morphometry. Basal ganglia were segmented on T1-weighted images, and volumes and diffusion tensor MRI metrics of nuclei were measured. Relative to controls, patients with spasmodic dysphonia showed increased cortical surface area of the primary somatosensory cortex bilaterally in a region consistent with the buccal sensory representation, as well as right primary motor cortex, left superior temporal, supramarginal and superior frontal gyri. A decreased cortical area was found in the rolandic operculum bilaterally, left superior/inferior parietal and lingual gyri, as well as in the right angular gyrus. Compared to controls, spasmodic dysphonia patients showed increased diffusivities and decreased fractional anisotropy of the corpus callosum and major white matter tracts, in the right hemisphere. Altered diffusion tensor MRI measures were found in the right caudate and putamen nuclei with no volumetric changes. Multi-level alterations in voice-controlling networks, that included regions devoted not only to sensorimotor integration, motor preparation and motor execution, but also processing of auditory and visual information during speech, might have a role in the pathophysiology of spasmodic dysphonia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Choi, Moon Hyung; Oh, Soon Nam; Rha, Sung Eun; Choi, Joon-Il; Lee, Sung Hak; Jang, Hong Seok; Kim, Jun-Gi; Grimm, Robert; Son, Yohan
2016-07-01
To investigate the usefulness of apparent diffusion coefficient (ADC) values derived from histogram analysis of the whole rectal cancer as a quantitative parameter to evaluate pathologic complete response (pCR) on preoperative magnetic resonance imaging (MRI). We enrolled a total of 86 consecutive patients who had undergone surgery for rectal cancer after neoadjuvant chemoradiotherapy (CRT) at our institution between July 2012 and November 2014. Two radiologists who were blinded to the final pathological results reviewed post-CRT MRI to evaluate tumor stage. Quantitative image analysis was performed using T2 -weighted and diffusion-weighted images independently by two radiologists using dedicated software that performed histogram analysis to assess the distribution of ADC in the whole tumor. After surgery, 16 patients were confirmed to have achieved pCR (18.6%). All parameters from pre- and post-CRT ADC histogram showed good or excellent agreement between two readers. The minimum, 10th, 25th, 50th, and 75th percentile and mean ADC from post-CRT ADC histogram were significantly higher in the pCR group than in the non-pCR group for both readers. The 25th percentile value from ADC histogram in post-CRT MRI had the best diagnostic performance for detecting pCR, with an area under the receiver operating characteristic curve of 0.796. Low percentile values derived from the ADC histogram analysis of rectal cancer on MRI after CRT showed a significant difference between pCR and non-pCR groups, demonstrating the utility of the ADC value as a quantitative and objective marker to evaluate complete pathologic response to preoperative CRT in rectal cancer. J. Magn. Reson. Imaging 2016;44:212-220. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y; Cao, M; Kamrava, M
Purpose: Diffusion weighted MRI (DWI) is a promising imaging technique for early prediction of tumor response to radiation therapy. A recently proposed longitudinal DWI strategy using a Co-60 MRI guided RT system (MRIgRT) may bring functional MRI guided adaptive radiation therapy closer to clinical utility. We report our preliminary results of using this longitudinal DWI approach performed on the MRIgRT system for predicting the response of sarcoma patient to preop RT. Methods: Three sarcoma patients who underwent fractionated IMRT were recruited in this study. For all three patients DWI images were acquired immediately following his/her treatment. For each imaging session,more » ten slices were acquired interleaved with the b values covering the gross tumor volume (GTV). The diffusion images were processed to obtain the ADC maps using standard exponential fitting for each voxel. Regions of interest were drawn in the tumor on the diffusion images based on each patient’s clinical GTV contours. Each patient subsequently underwent surgery and the tumor necrosis score was available from standard pathology. The ADC values for each patient were compared to the necrosis scores to assess the predictive value of our longitudinal DWI for tumor response. Results: Each patient underwent 3 to 5 diffusion MRI scans depending on their treatment length. Patient 1 had a relatively unchanged ADC during the course of RT and a necrosis score of 30% at surgery. For patient 2, the mean ADC values decreased from 1.56 × 10-3 to 1.12 × 10-3 mm2/s and the patient’s necrosis score was less than 10%. Patient 3 had a slight increase in the ADC values from 0.59 × 10-3 to 0.71 × 10-3 mm2/s and patient’s necrosis score was 50%. Conclusion: Based on limited data from 3 patients, our longitudinal changes in tumor ADC assessed using the MRIgRT system correlated well with pathology results.« less
The importance of correcting for signal drift in diffusion MRI.
Vos, Sjoerd B; Tax, Chantal M W; Luijten, Peter R; Ourselin, Sebastien; Leemans, Alexander; Froeling, Martijn
2017-01-01
To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift. We investigated the signal magnitude of non-diffusion-weighted EPI volumes in a series of diffusion-weighted imaging experiments to determine whether signal magnitude changes over time. Different scan protocols and scanners from multiple vendors were used to verify this on phantom data, and the effects on diffusion kurtosis tensor estimation in phantom and in vivo data were quantified. Scalar metrics (eigenvalues, fractional anisotropy, mean diffusivity, mean kurtosis) and directional information (first eigenvectors and tractography) were investigated. Signal drift, a global signal decrease with subsequently acquired images in the scan, was observed in phantom data on all three scanners, with varying magnitudes up to 5% in a 15-min scan. The signal drift has a noticeable effect on the estimation of diffusion parameters. All investigated quantitative parameters as well as tractography were affected by this artifactual signal decrease during the scan. By interspersing the non-diffusion-weighted images throughout the session, the signal decrease can be estimated and compensated for before data analysis; minimizing the detrimental effects on subsequent MRI analyses. Magn Reson Med 77:285-299, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
MRI in multiple sclerosis: current status and future prospects
Bakshi, Rohit; Thompson, Alan J; Rocca, Maria A; Pelletier, Daniel; Dousset, Vincent; Barkhof, Frederik; Inglese, Matilde; Guttmann, Charles R G; Horsfield, Mark A; Filippi, Massimo
2008-01-01
Many promising MRI approaches for research or clinical management of multiple sclerosis (MS) have recently emerged, or are under development or refinement. Advanced MRI methods need to be assessed to determine whether they allow earlier diagnosis or better identification of phenotypes. Improved post-processing should allow more efficient and complete extraction of information from images. Magnetic resonance spectroscopy should improve in sensitivity and specificity with higher field strengths and should enable the detection of a wider array of metabolites. Diffusion imaging is moving closer to the goal of defining structural connectivity and, thereby, determining the functional significance of lesions at specific locations. Cell-specific imaging now seems feasible with new magnetic resonance contrast agents. The imaging of myelin water fraction brings the hope of providing a specific measure of myelin content. Ultra-high-field MRI increases sensitivity, but also presents new technical challenges. Here, we review these recent developments in MRI for MS, and also look forward to refinements in spinal-cord imaging, optic-nerve imaging, perfusion MRI, and functional MRI. Advances in MRI should improve our ability to diagnose, monitor, and understand the pathophysiology of MS. PMID:18565455
Assessing White Matter Microstructure in Brain Regions with Different Myelin Architecture Using MRI.
Groeschel, Samuel; Hagberg, Gisela E; Schultz, Thomas; Balla, Dávid Z; Klose, Uwe; Hauser, Till-Karsten; Nägele, Thomas; Bieri, Oliver; Prasloski, Thomas; MacKay, Alex L; Krägeloh-Mann, Ingeborg; Scheffler, Klaus
2016-01-01
We investigate how known differences in myelin architecture between regions along the cortico-spinal tract and frontal white matter (WM) in 19 healthy adolescents are reflected in several quantitative MRI parameters that have been proposed to non-invasively probe WM microstructure. In a clinically feasible scan time, both conventional imaging sequences as well as microstructural MRI parameters were assessed in order to quantitatively characterise WM regions that are known to differ in the thickness of their myelin sheaths, and in the presence of crossing or parallel fibre organisation. We found that diffusion imaging, MR spectroscopy (MRS), myelin water fraction (MWF), Magnetization Transfer Imaging, and Quantitative Susceptibility Mapping were myelin-sensitive in different ways, giving complementary information for characterising WM microstructure with different underlying fibre architecture. From the diffusion parameters, neurite density (NODDI) was found to be more sensitive than fractional anisotropy (FA), underlining the limitation of FA in WM crossing fibre regions. In terms of sensitivity to different myelin content, we found that MWF, the mean diffusivity and chemical-shift imaging based MRS yielded the best discrimination between areas. Multimodal assessment of WM microstructure was possible within clinically feasible scan times using a broad combination of quantitative microstructural MRI sequences. By assessing new microstructural WM parameters we were able to provide normative data and discuss their interpretation in regions with different myelin architecture, as well as their possible application as biomarker for WM disorders.
Thomsen, Felix Sebastian Leo; Delrieux, Claudio Augusto; de Luis-García, Rodrigo
2017-03-01
Descriptors extracted from magnetic resonance imaging (MRI) of the brain can be employed to locate and characterize a wide range of pathologies. Scalar measures are typically derived within a single-voxel unit, but neighborhood-based texture measures can also be applied. In this work, we propose a new set of descriptors to compute local texture characteristics from scalar measures of diffusion tensor imaging (DTI), such as mean and radial diffusivity, and fractional anisotropy. We employ weighted rotational invariant local operators, namely standard deviation, inter-quartile range, coefficient of variation, quartile coefficient of variation and skewness. Sensitivity and specificity of those texture descriptors were analyzed with tract-based spatial statistics of the white matter on a diffusion MRI group study of elderly healthy controls, patients with mild cognitive impairment (MCI), and mild or moderate Alzheimer's disease (AD). In addition, robustness against noise has been assessed with a realistic diffusion-weighted imaging phantom and the contamination of the local neighborhood with gray matter has been measured. The new texture operators showed an increased ability for finding formerly undetected differences between groups compared to conventional DTI methods. In particular, the coefficient of variation, quartile coefficient of variation, standard deviation and inter-quartile range of the mean and radial diffusivity detected significant differences even between previously not significantly discernible groups, such as MCI versus moderate AD and mild versus moderate AD. The analysis provided evidence of low contamination of the local neighborhood with gray matter and high robustness against noise. The local operators applied here enhance the identification and localization of areas of the brain where cognitive impairment takes place and thus indicate them as promising extensions in diffusion MRI group studies.
Sigmund, E E; Baete, S H; Luo, T; Patel, K; Wang, D; Rossi, I; Duarte, A; Bruno, M; Mossa, D; Femia, A; Ramachandran, S; Stoffel, D; Babb, J S; Franks, A; Bencardino, J
2018-06-04
Dermatomyositis (DM) is an idiopathic inflammatory myopathy involving severe debilitation in need of diagnostics. We evaluated the proximal lower extremity musculature with diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM) and dynamic DTI in DM patients and controls and compared with standard clinical workup. METHODS: In this IRB-approved, HIPAA-compliant study with written informed consent, anatomical, Dixon fat/water and diffusion imaging were collected in bilateral thigh MRI of 22 controls and 27 DM patients in a 3T scanner. Compartments were scored on T1/T2 scales. Single voxel dynamic DTI metrics in quadriceps before and after 3-min leg exercise were measured. Spearman rank correlation and mixed model analysis of variance/covariance (ANOVA/ANCOVA) were used to correlate with T1 and T2 scores and to compare patients with controls. DM patients showed significantly lower pseudo-diffusion and volume in quadriceps than controls. All subjects showed significant correlation between T1 score and signal-weighted fat fraction; tissue diffusion and pseudo-diffusion varied significantly with T1 and T2 score in patients. Radial and mean diffusion exercise response in patients was significantly higher than controls. Static and dynamic diffusion imaging metrics show correlation with conventional imaging scores, reveal spatial heterogeneity, and provide means to differentiate dermatomyositis patients from controls. • Diffusion imaging shows regional differences between thigh muscles of dermatomyositis patients and controls. • Signal-weighted fat fraction and diffusion metrics correlate with T1/T2 scores of disease severity. • Dermatomyositis patients show significantly higher radial diffusion exercise response than controls.
Notohamiprodjo, Mike; Staehler, Michael; Steiner, Nicole; Schwab, Felix; Sourbron, Steven P; Michaely, Henrik J; Helck, Andreas D; Reiser, Maximilian F; Nikolaou, Konstantin
2013-06-01
To investigate a multiparametric magnetic resonance imaging (MRI) approach comprising diffusion-weighted imaging (DWI), blood oxygen-dependent (BOLD), and dynamic contrast-enhanced (DCE) MRI for characterization and differentiation of primary renal cell carcinoma (RCC). Fourteen patients with clear-cell carcinoma and four patients with papillary RCC were examined with DWI, BOLD MRI, and DCE MRI at 1.5T. The apparent diffusion coefficient (ADC) was calculated with a monoexponential decay. The spin-dephasing rate R2* was derived from parametric R2* maps. DCE-MRI was analyzed using a two-compartment exchange model allowing separation of perfusion (plasma flow [FP] and plasma volume [VP]), permeability (permeability surface area product [PS]), and extravascular extracellular volume (VE). Statistical analysis was performed with Wilcoxon signed-rank test, Pearson's correlation coefficient, and receiver operating characteristic curve analysis. Clear-cell RCC showed higher ADC and lower R2* compared to papillary subtypes, but differences were not significant. FP of clear-cell subtypes was significantly higher than in papillary RCC. Perfusion parameters showed moderate but significant inverse correlation with R2*. VE showed moderate inverse correlation with ADC. Fp and Vp showed best sensitivity for histological differentiation. Multiparametric MRI comprising DWI, BOLD, and DCE MRI is feasible for assessment of primary RCC. BOLD moderately correlates to DCE MRI-derived perfusion. ADC shows moderate correlation to the extracellular volume, but does not correlate to tumor oxygenation or perfusion. In this preliminary study DCE-MRI appeared superior to BOLD and DWI for histological differentiation. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.
Orczyk, C; Rusinek, H; Rosenkrantz, A B; Mikheev, A; Deng, F-M; Melamed, J; Taneja, S S
2013-12-01
To assess a novel method of three-dimensional (3D) co-registration of prostate cancer digital histology and in-vivo multiparametric magnetic resonance imaging (mpMRI) image sets for clinical usefulness. A software platform was developed to achieve 3D co-registration. This software was prospectively applied to three patients who underwent radical prostatectomy. Data comprised in-vivo mpMRI [T2-weighted, dynamic contrast-enhanced weighted images (DCE); apparent diffusion coefficient (ADC)], ex-vivo T2-weighted imaging, 3D-rebuilt pathological specimen, and digital histology. Internal landmarks from zonal anatomy served as reference points for assessing co-registration accuracy and precision. Applying a method of deformable transformation based on 22 internal landmarks, a 1.6 mm accuracy was reached to align T2-weighted images and the 3D-rebuilt pathological specimen, an improvement over rigid transformation of 32% (p = 0.003). The 22 zonal anatomy landmarks were more accurately mapped using deformable transformation than rigid transformation (p = 0.0008). An automatic method based on mutual information, enabled automation of the process and to include perfusion and diffusion MRI images. Evaluation of co-registration accuracy using the volume overlap index (Dice index) met clinically relevant requirements, ranging from 0.81-0.96 for sequences tested. Ex-vivo images of the specimen did not significantly improve co-registration accuracy. This preliminary analysis suggests that deformable transformation based on zonal anatomy landmarks is accurate in the co-registration of mpMRI and histology. Including diffusion and perfusion sequences in the same 3D space as histology is essential further clinical information. The ability to localize cancer in 3D space may improve targeting for image-guided biopsy, focal therapy, and disease quantification in surveillance protocols. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI
Farooq, Hamza; Xu, Junqian; Nam, Jung Who; Keefe, Daniel F.; Yacoub, Essa; Georgiou, Tryphon; Lenglet, Christophe
2016-01-01
Diffusion MRI (dMRI) reveals microstructural features of the brain white matter by quantifying the anisotropic diffusion of water molecules within axonal bundles. Yet, identifying features such as axonal orientation dispersion, density, diameter, etc., in complex white matter fiber configurations (e.g. crossings) has proved challenging. Besides optimized data acquisition and advanced biophysical models, computational procedures to fit such models to the data are critical. However, these procedures have been largely overlooked by the dMRI microstructure community and new, more versatile, approaches are needed to solve complex biophysical model fitting problems. Existing methods are limited to models assuming single fiber orientation, relevant to limited brain areas like the corpus callosum, or multiple orientations but without the ability to extract detailed microstructural features. Here, we introduce a new and versatile optimization technique (MIX), which enables microstructure imaging of crossing white matter fibers. We provide a MATLAB implementation of MIX, and demonstrate its applicability to general microstructure models in fiber crossings using synthetic as well as ex-vivo and in-vivo brain data. PMID:27982056
Bible, Ellen; Dell'Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter M; Badylak, Stephen F; Ahrens, Eric T; Modo, Michel
2012-04-01
Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based (1)H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a (19)F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on (1)H-MRI scans. Twenty percent of cells labeled with the (19)F agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T(2)- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. Copyright © 2011 Elsevier Ltd. All rights reserved.
Min, Qinghua; Shao, Kangwei; Zhai, Lulan; Liu, Wei; Zhu, Caisong; Yuan, Lixin; Yang, Jun
2015-02-07
Diffusion-weighted magnetic resonance imaging (DW-MRI) is different from conventional diagnostic methods and has the potential to delineate the microscopic anatomy of a target tissue or organ. The purpose of our study was to evaluate the value of DW-MRI in the diagnosis of benign and malignant breast masses, which would help the clinical surgeon to decide the scope and pattern of operation. A total of 52 female patients with palpable solid breast masses received breast MRI scans using routine sequences, dynamic contrast-enhanced imaging, and diffusion-weighted echo-planar imaging at b values of 400, 600, and 800 s/mm(2), respectively. Two regions of interest (ROIs) were plotted, with a smaller ROI for the highest signal and a larger ROI for the overall lesion. Apparent diffusion coefficient (ADC) values were calculated at three different b values for all detectable lesions and from two different ROIs. The sensitivity, specificity, positive predictive value, and positive likelihood ratio of DW-MRI were determined for comparison with histological results. A total of 49 (49/52, 94.2%) lesions were detected using DW-MRI, including 20 benign lesions (two lesions detected in the same patient) and 29 malignant lesions. Benign lesion had a higher mean ADC value than their malignant counterparts, regardless of b value. According to the receiver operating characteristic (ROC) curve, the smaller-range ROI was more effective in differentiation between benign and malignant lesions. The area under the ROC curve was the largest at a b value of 800 s/mm(2). With a threshold ADC value at 1.23 × 10(-3) mm(2)/s, DW-MRI achieved a sensitivity of 82.8%, specificity of 90.0%, positive predictive value of 92.3%, and positive likelihood ratio of 8.3 for differentiating benign and malignant lesions. DW-MRI is an accurate diagnostic tool for differentiation between benign and malignant breast lesions, with an optimal b value of 800 s/mm(2). A smaller-range ROI focusing on the highest signal has a better differential value.
Nair, Shalini Rajandran; Tan, Li Kuo; Mohd Ramli, Norlisah; Lim, Shen Yang; Rahmat, Kartini; Mohd Nor, Hazman
2013-06-01
To develop a decision tree based on standard magnetic resonance imaging (MRI) and diffusion tensor imaging to differentiate multiple system atrophy (MSA) from Parkinson's disease (PD). 3-T brain MRI and DTI (diffusion tensor imaging) were performed on 26 PD and 13 MSA patients. Regions of interest (ROIs) were the putamen, substantia nigra, pons, middle cerebellar peduncles (MCP) and cerebellum. Linear, volumetry and DTI (fractional anisotropy and mean diffusivity) were measured. A three-node decision tree was formulated, with design goals being 100 % specificity at node 1, 100 % sensitivity at node 2 and highest combined sensitivity and specificity at node 3. Nine parameters (mean width, fractional anisotropy (FA) and mean diffusivity (MD) of MCP; anteroposterior diameter of pons; cerebellar FA and volume; pons and mean putamen volume; mean FA substantia nigra compacta-rostral) showed statistically significant (P < 0.05) differences between MSA and PD with mean MCP width, anteroposterior diameter of pons and mean FA MCP chosen for the decision tree. Threshold values were 14.6 mm, 21.8 mm and 0.55, respectively. Overall performance of the decision tree was 92 % sensitivity, 96 % specificity, 92 % PPV and 96 % NPV. Twelve out of 13 MSA patients were accurately classified. Formation of the decision tree using these parameters was both descriptive and predictive in differentiating between MSA and PD. • Parkinson's disease and multiple system atrophy can be distinguished on MR imaging. • Combined conventional MRI and diffusion tensor imaging improves the accuracy of diagnosis. • A decision tree is descriptive and predictive in differentiating between clinical entities. • A decision tree can reliably differentiate Parkinson's disease from multiple system atrophy.
MRI Evaluation and Safety in the Developing Brain
Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok
2015-01-01
Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582
MRI evaluation and safety in the developing brain.
Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J; Panigrahy, Ashok
2015-03-01
Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences, such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility-weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5-T and 3-T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges, and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, and sedation considerations, and a discussion of current technologies such as MRI conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. Copyright © 2015 Elsevier Inc. All rights reserved.
Schmidt, Rita; Seginer, Amir; Frydman, Lucio
2016-05-01
Single-shot imaging by spatiotemporal encoding (SPEN) can provide higher immunity to artifacts than its echo planar imaging-based counterparts. Further improvements in resolution and signal-to-noise ratio could be made by rescinding the sequence's single-scan nature. To explore this option, an interleaved SPEN version was developed that was capable of delivering optimized images due to its use of a referenceless correction algorithm. A characteristic element of SPEN encoding is the absence of aliasing when its signals are undersampled along the low-bandwidth dimension. This feature was exploited in this study to segment a SPEN experiment into a number of interleaved shots whose inaccuracies were automatically compared and corrected as part of a navigator-free image reconstruction analysis. This could account for normal phase noises, as well as for object motions during the signal collection. The ensuing interleaved SPEN method was applied to phantoms and human volunteers and delivered high-quality images even in inhomogeneous or mobile environments. Submillimeter functional MRI activation maps confined to gray matter regions as well as submillimeter diffusion coefficient maps of human brains were obtained. We have developed an interleaved SPEN approach for the acquisition of high-definition images that promises a wider range of functional and diffusion MRI applications even in challenging environments. © 2015 Wiley Periodicals, Inc.
Lee, Minsu; Shin, Su-Jin; Oh, Young Taik; Jung, Dae Chul; Cho, Nam Hoon; Choi, Young Deuk; Park, Sung Yoon
2017-09-01
To investigate the utility of fused high b value diffusion-weighted imaging (DWI) and T2-weighted imaging (T2WI) for evaluating depth of invasion in bladder cancer. We included 62 patients with magnetic resonance imaging (MRI) and surgically confirmed urothelial carcinoma in the urinary bladder. An experienced genitourinary radiologist analysed the depth of invasion (T stage <2 or ≥2) using T2WI, DWI, T2WI plus DWI, and fused DWI and T2WI (fusion MRI). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were investigated. Area under the curve (AUC) was analysed to identify T stage ≥2. The rate of patients with surgically confirmed T stage ≥2 was 41.9% (26/62). Sensitivity, specificity, PPV, NPV and accuracy were 50.0%, 55.6%, 44.8%, 60.6% and 53.2%, respectively, with T2WI; 57.7%, 77.8%, 65.2%, 71.8% and 69.4%, respectively, with DWI; 65.4%, 80.6%, 70.8%, 76.3% and 74.2%, respectively, with T2WI plus DWI and 80.8%, 77.8%, 72.4%, 84.9% and 79.0%, respectively, with fusion MRI. AUC was 0.528 with T2WI, 0.677 with DWI, 0.730 with T2WI plus DWI and 0.793 with fusion MRI for T stage ≥2. Fused high b value DWI and T2WI may be a promising non-contrast MRI technique for assessing depth of invasion in bladder cancer. • Accuracy of fusion MRI was 79.0% for T stage ≥2 in bladder cancer. • AUC of fusion MRI was 0.793 for T stage ≥2 in bladder cancer. • Diagnostic performance of fusion MRI was comparable with T2WI plus DWI. • As a non-contrast MRI technique, fusion MRI is useful for bladder cancer.
Hagmann, Cornelia; Singer, Jitka; Latal, Beatrice; Knirsch, Walter; Makki, Malek
2016-03-01
The purpose of the study is to investigate the structural development of the corpus callosum in term neonates with congenital heart defect before and after surgery using diffusion tensor imaging and 3-dimensional T1-weighted magnetic resonance imaging (MRI). We compared parallel and radial diffusions, apparent diffusion coefficient (ADC), fractional anisotropy, and volume of 5 substructures of the corpus callosum: genu, rostral body, body, isthmus, and splenium. Compared to healthy controls, we found a significantly lower volume of the splenium and total corpus callosum and a higher radial diffusion and lower fractional anisotropy in the splenium of patients presurgery; a lower volume in all substructures in the postsurgery group; higher radial diffusion in the rostral body, body, and splenium; and a higher apparent diffusion coefficient in the splenium of postsurgery patients. Similar fractional anisotropy changes in congenital heart defect patients were reported in preterm infants. Our findings in apparent diffusion coefficient in the splenium of these patients (pre and postsurgery) are comparable to findings in preterm neonates with psychomotor delay. Delayed maturation of the isthmus was also reported in preterm infants. © The Author(s) 2015.
Comparison of block and event-related experimental designs in diffusion-weighted functional MRI.
Williams, Rebecca J; McMahon, Katie L; Hocking, Julia; Reutens, David C
2014-08-01
To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s(2)) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 ± 0.88 sec). The hemodynamic contribution to DfMRI may increase with the use of block designs. © 2013 Wiley Periodicals, Inc.
Marcuzzo, Stefania; Bonanno, Silvia; Padelli, Francesco; Moreno-Manzano, Victoria; García-Verdugo, José Manuel; Bernasconi, Pia; Mantegazza, Renato; Bruzzone, Maria Grazia; Zucca, Ileana
2016-01-01
Diffusion-weighted Magnetic Resonance Imaging (dMRI) has relevant applications in the microstructural characterization of the spinal cord, especially in neurodegenerative diseases. Animal models have a pivotal role in the study of such diseases; however, in vivo spinal dMRI of small animals entails additional challenges that require a systematical investigation of acquisition parameters. The purpose of this study is to compare three acquisition protocols and identify the scanning parameters allowing a robust estimation of the main diffusion quantities and a good sensitivity to neurodegeneration in the mouse spinal cord. For all the protocols, the signal-to-noise and contrast-to noise ratios and the mean value and variability of Diffusion Tensor metrics were evaluated in healthy controls. For the estimation of fractional anisotropy less variability was provided by protocols with more diffusion directions, for the estimation of mean, axial and radial diffusivity by protocols with fewer diffusion directions and higher diffusion weighting. Intermediate features (12 directions, b = 1200 s/mm2) provided the overall minimum inter- and intra-subject variability in most cases. In order to test the diagnostic sensitivity of the protocols, 7 G93A-SOD1 mice (model of amyotrophic lateral sclerosis) at 10 and 17 weeks of age were scanned and the derived diffusion parameters compared with those estimated in age-matched healthy animals. The protocols with an intermediate or high number of diffusion directions provided the best differentiation between the two groups at week 17, whereas only few local significant differences were highlighted at week 10. According to our results, a dMRI protocol with an intermediate number of diffusion gradient directions and a relatively high diffusion weighting is optimal for spinal cord imaging. Further work is needed to confirm these results and for a finer tuning of acquisition parameters. Nevertheless, our findings could be important for the optimization of acquisition protocols for preclinical and clinical dMRI studies on the spinal cord. PMID:27560686
Nilsson, Markus; van Westen, Danielle; Ståhlberg, Freddy; Sundgren, Pia C; Lätt, Jimmy
2013-08-01
Biophysical models that describe the outcome of white matter diffusion MRI experiments have various degrees of complexity. While the simplest models assume equal-sized and parallel axons, more elaborate ones may include distributions of axon diameters and axonal orientation dispersions. These microstructural features can be inferred from diffusion-weighted signal attenuation curves by solving an inverse problem, validated in several Monte Carlo simulation studies. Model development has been paralleled by microscopy studies of the microstructure of excised and fixed nerves, confirming that axon diameter estimates from diffusion measurements agree with those from microscopy. However, results obtained in vivo are less conclusive. For example, the amount of slowly diffusing water is lower than expected, and the diffusion-encoded signal is apparently insensitive to diffusion time variations, contrary to what may be expected. Recent understandings of the resolution limit in diffusion MRI, the rate of water exchange, and the presence of microscopic axonal undulation and axonal orientation dispersions may, however, explain such apparent contradictions. Knowledge of the effects of biophysical mechanisms on water diffusion in tissue can be used to predict the outcome of diffusion tensor imaging (DTI) and of diffusion kurtosis imaging (DKI) studies. Alterations of DTI or DKI parameters found in studies of pathologies such as ischemic stroke can thus be compared with those predicted by modelling. Observations in agreement with the predictions strengthen the credibility of biophysical models; those in disagreement could provide clues of how to improve them. DKI is particularly suited for this purpose; it is performed using higher b-values than DTI, and thus carries more information about the tissue microstructure. The purpose of this review is to provide an update on the current understanding of how various properties of the tissue microstructure and the rate of water exchange between microenvironments are reflected in diffusion MRI measurements. We focus on the use of biophysical models for extracting tissue-specific parameters from data obtained with single PGSE sequences on clinical MRI scanners, but results obtained with animal MRI scanners are also considered. While modelling of white matter is the central theme, experiments on model systems that highlight important aspects of the biophysical models are also reviewed.
Neural and Behavioral Sequelae of Blast-Related Traumatic Brain Injury
2012-11-01
testing and advanced MRI techniques [task-activated functional MRI (fMRI) and diffusion tensor imaging ( DTI )] to gain a comprehensive understanding of... DTI fiber tracking) and neurobehavioral testing (computerized assessment and standard neuropsychological testing) on 60 chronic trauma patients: 15...data analysis. 15. SUBJECT TERMS Blast-related traumatic brain injury (TBI), fMRI, DTI , cognition 16. SECURITY CLASSIFICATION OF: 17. LIMITATION
Winfield, Jessica M.; Payne, Geoffrey S.; Weller, Alex; deSouza, Nandita M.
2016-01-01
Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice. PMID:27748710
Lodygensky, Gregory A; Kunz, Nicolas; Perroud, Elodie; Somm, Emmanuel; Mlynarik, Vladimir; Hüppi, Petra S; Gruetter, Rolf; Sizonenko, Stéphane V
2014-03-01
Lipopolysaccharide (LPS) injection in the corpus callosum (CC) of rat pups results in diffuse white matter injury similar to the main neuropathology of preterm infants. The aim of this study was to characterize the structural and metabolic markers of acute inflammatory injury by high-field magnetic resonance imaging (MRI) magnetic resonance spectroscopy (MRS) in vivo. Twenty-four hours after a 1-mg/kg injection of LPS in postnatal day 3 rat pups, diffusion tensor imaging and proton nuclear magnetic spectroscopy ((1)H NMR) were analyzed in conjunction to determine markers of cell death and inflammation using immunohistochemistry and gene expression. MRI and MRS in the CC revealed an increase in lactate and free lipids and a decrease of the apparent diffusion coefficient. Detailed evaluation of the CC showed a marked apoptotic response assessed by fractin expression. Interestingly, the degree of reduction in the apparent diffusion coefficient correlated strongly with the natural logarithm of fractin expression, in the same region of interest. LPS injection further resulted in increased activated microglia clustered in the cingulum, widespread astrogliosis, and increased expression of genes for interleukin (IL)-1, IL-6, and tumor necrosis factor. This model was able to reproduce the typical MRI hallmarks of acute diffuse white matter injury seen in preterm infants and allowed the evaluation of in vivo biomarkers of acute neuropathology after inflammatory challenge.
Sepehrband, Farshid; O'Brien, Kieran; Barth, Markus
2017-12-01
Several diffusion-weighted MRI techniques have been developed and validated during the past 2 decades. While offering various neuroanatomical inferences, these techniques differ in their proposed optimal acquisition design, preventing clinicians and researchers benefiting from all potential inference methods, particularly when limited time is available. This study reports an optimal design that enables for a time-efficient diffusion-weighted MRI acquisition scheme at 7 Tesla. The primary audience of this article is the typical end user, interested in diffusion-weighted microstructural imaging at 7 Tesla. We tested b-values in the range of 700 to 3000 s/mm 2 with different number of angular diffusion-encoding samples, against a data-driven "gold standard." The suggested design is a protocol with b-values of 1000 and 2500 s/mm 2 , with 25 and 50 samples, uniformly distributed over two shells. We also report a range of protocols in which the results of fitting microstructural models to the diffusion-weighted data had high correlation with the gold standard. We estimated minimum acquisition requirements that enable diffusion tensor imaging, higher angular resolution diffusion-weighted imaging, neurite orientation dispersion, and density imaging and white matter tract integrity across whole brain with isotropic resolution of 1.8 mm in less than 11 min. Magn Reson Med 78:2170-2184, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Rapid resolution of diffusion weighted MRI abnormality in a patient with a stuttering stroke
Peters, Jurriaan M; MacLean, Ainsley V; Young, Geoffrey S
2010-01-01
We report the unusually rapid and spontaneous normalisation of low diffusivity that accompanied resolution of acute neurological deficits in a stroke patient who underwent two magnetic resonance imaging examinations within 24 h of symptom onset. Diffusion weighted imaging obtained within hours of onset of left sided weakness demonstrated a focal right capsular area of low diffusivity that resolved within 24 h, coinciding with resolution of the patient’s symptoms. PMID:22315635
Miao, Wen; Man, Fengyuan; Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A; He, Huiguang; Jiao, Yonghong
2015-01-01
To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender-matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1.
2014-10-01
Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The study investigates whether fusion PET/MRI imaging with 18F- choline PET/CT and...imaging with 18F- choline PET/CT and diffusion-weighted MRI can be successfully applied to target prostate cancer using image-guided prostate...Completed task. The 18F- choline synthesis was implemented and optimized for routine radiotracer production. RDRC committee approval as part of the IRB
Tetsuka, Syuichi; Nonaka, Hiroaki
2017-05-25
Severe haemolysis, elevated liver enzyme levels, and low platelet count (HELLP) syndrome in pregnancy are possible underlying trigger factors for posterior reversible encephalopathy syndrome (PRES). Magnetic resonance imaging (MRI) shows diffuse signal abnormalities involving the subcortical white matter in the parieto-occipital lobes. Although the diagnosis of RPES was clearly established by the distinctive reversibility of clinical and radiological abnormalities, it is difficult to distinguish from differential diagnosis. Thus, it is important to correctly interpret MRI. We describe a case of HELLP syndrome with PRES. A 38-year-old pregnant woman was admitted to our hospital as an emergency case with a complaint of upper abdominal pain and headache at 29 weeks of pregnancy and the development of HELLP syndrome. An emergency caesarean section was immediately performed. After the operation, the patient received intravenous corticosteroids, and her blood pressure was controlled. Thereafter, she showed an altered mental status. MRI showed hypersignal intense lesions in the cortical and subcortical white matter in the occipital lobes, basal ganglia and callosal splenium in both the fluid-attenuated inversion recovery (FLAIR) sequence and apparent diffusion coefficient (ADC), but these lesions were not recognized in diffusion-weighted imaging (DWI). These images were suggestive of PRES. The patient was kept in the hospital and received the appropriate treatment, after which the patient's level of consciousness improved and all laboratory tests and imaging examinations returned normal. The MRI findings were useful for the prompt diagnosis of PRES, characterized by hypersignals in FLAIR and ADC, but not in DWI. Additionally, there was an "atypical" MRI appearance of basal ganglial and callosal splenial involvement in this case, which may mistakenly lead clinicians to diagnose other aetiologies than typical PRES. It is considered that vasogenic oedema is the main pathology of PRES according to the MRI image findings. MRI is the gold standard for diagnosing PRES because it can provide information about cerebral involvement earlier than CT; further, it can be a useful tool in the differential diagnosis. This technique facilitated the prompt diagnosis and treatment of the said patient, ultimately resulting in a good outcome.
Hernández-Martin, Estefania; Marcano, Francisco; Casanova, Oscar; Modroño, Cristian; Plata-Bello, Julio; González-Mora, Jose Luis
2017-01-01
Abstract. Diffuse optical tomography (DOT) measures concentration changes in both oxy- and deoxyhemoglobin providing three-dimensional images of local brain activations. A pilot study, which compares both DOT and functional magnetic resonance imaging (fMRI) volumes through t-maps given by canonical statistical parametric mapping (SPM) processing for both data modalities, is presented. The DOT series were processed using a method that is based on a Bayesian filter application on raw DOT data to remove physiological changes and minimum description length application index to select a number of singular values, which reduce the data dimensionality during image reconstruction and adaptation of DOT volume series to normalized standard space. Therefore, statistical analysis is performed with canonical SPM software in the same way as fMRI analysis is done, accepting DOT volumes as if they were fMRI volumes. The results show the reproducibility and ruggedness of the method to process DOT series on group analysis using cognitive paradigms on the prefrontal cortex. Difficulties such as the fact that scalp–brain distances vary between subjects or cerebral activations are difficult to reproduce due to strategies used by the subjects to solve arithmetic problems are considered. T-images given by fMRI and DOT volume series analyzed in SPM show that at the functional level, both DOT and fMRI measures detect the same areas, although DOT provides complementary information to fMRI signals about cerebral activity. PMID:28386575
Locketz, Garrett D; Li, Peter M M C; Fischbein, Nancy J; Holdsworth, Samantha J; Blevins, Nikolas H
2016-10-01
A method to optimize imaging of cholesteatoma by combining the strengths of available modalities will improve diagnostic accuracy and help to target treatment. To assess whether fusing Periodically Rotated Overlapping Parallel Lines With Enhanced Reconstruction (PROPELLER) diffusion-weighted magnetic resonance imaging (DW-MRI) with corresponding temporal bone computed tomography (CT) images could increase cholesteatoma diagnostic and localization accuracy across 6 distinct anatomical regions of the temporal bone. Case series and preliminary technology evaluation of adults with preoperative temporal bone CT and PROPELLER DW-MRI scans who underwent surgery for clinically suggested cholesteatoma at a tertiary academic hospital. When cholesteatoma was encountered surgically, the precise location was recorded in a diagram of the middle ear and mastoid. For each patient, the 3 image data sets (CT, PROPELLER DW-MRI, and CT-MRI fusion) were reviewed in random order for the presence or absence of cholesteatoma by an investigator blinded to operative findings. If cholesteatoma was deemed present on review of each imaging modality, the location of the lesion was mapped presumptively. Image analysis was then compared with surgical findings. Twelve adults (5 women and 7 men; median [range] age, 45.5 [19-77] years) were included. The use of CT-MRI fusion had greater diagnostic sensitivity (0.88 vs 0.75), positive predictive value (0.88 vs 0.86), and negative predictive value (0.75 vs 0.60) than PROPELLER DW-MRI alone. Image fusion also showed increased overall localization accuracy when stratified across 6 distinct anatomical regions of the temporal bone (localization sensitivity and specificity, 0.76 and 0.98 for CT-MRI fusion vs 0.58 and 0.98 for PROPELLER DW-MRI). For PROPELLER DW-MRI, there were 15 true-positive, 45 true-negative, 1 false-positive, and 11 false-negative results; overall accuracy was 0.83. For CT-MRI fusion, there were 20 true-positive, 45 true-negative, 1 false-positive, and 6 false-negative results; overall accuracy was 0.90. The poor anatomical spatial resolution of DW-MRI makes precise localization of cholesteatoma within the middle ear and mastoid a diagnostic challenge. This study suggests that the bony anatomic detail obtained via CT coupled with the excellent sensitivity and specificity of PROPELLER DW-MRI for cholesteatoma can improve both preoperative identification and localization of disease over DW-MRI alone.
Bickelhaupt, Sebastian; Tesdorff, Jana; Laun, Frederik Bernd; Kuder, Tristan Anselm; Lederer, Wolfgang; Teiner, Susanne; Maier-Hein, Klaus; Daniel, Heidi; Stieber, Anne; Delorme, Stefan; Schlemmer, Heinz-Peter
2017-02-01
The aim of this study was to evaluate the accuracy and applicability of solitarily reading fused image series of T2-weighted and high-b-value diffusion-weighted sequences for lesion characterization as compared to sequential or combined image analysis of these unenhanced sequences and to contrast- enhanced breast MRI. This IRB-approved study included 50 female participants with suspicious breast lesions detected in screening X-ray mammograms, all of which provided written informed consent. Prior to biopsy, all women underwent MRI including diffusion-weighted imaging (DWIBS, b = 1500s/mm 2 ). Images were analyzed as follows: prospective image fusion of DWIBS and T2-weighted images (FU), side-by-side analysis of DWIBS and T2-weighted series (CO), combination of the first two methods (CO+FU), and full contrast-enhanced diagnostic protocol (FDP). Diagnostic indices, confidence, and image quality of the protocols were compared by two blinded readers. Reading the CO+FU (accuracy 0.92; NPV 96.1 %; PPV 87.6 %) and the CO series (0.90; 96.1 %; 83.7 %) provided a diagnostic performance similar to the FDP (0.95; 96.1 %; 91.3 %; p > 0.05). FU reading alone significantly reduced the diagnostic accuracy (0.82; 93.3 %; 73.4 %; p = 0.023). MR evaluation of suspicious BI-RADS 4 and 5 lesions detected on mammography by using a non-contrast-enhanced T2-weighted and DWIBS sequence protocol is most accurate if MR images were read using the CO+FU protocol. • Unenhanced breast MRI with additional DWIBS/T2w-image fusion allows reliable lesion characterization. • Abbreviated reading of fused DWIBS/T2w-images alone decreases diagnostic confidence and accuracy. • Reading fused DWIBS/T2w-images as the sole diagnostic method should be avoided.
Noristani, Harun N.; Boukhaddaoui, Hassan; Saint-Martin, Guillaume; Auzer, Pauline; Sidiboulenouar, Rahima; Lonjon, Nicolas; Alibert, Eric; Tricaud, Nicolas; Goze-Bac, Christophe; Coillot, Christophe; Perrin, Florence E.
2017-01-01
Central nervous system (CNS) injury has been observed to lead to microglia activation and monocytes infiltration at the lesion site. Ex vivo diffusion magnetic resonance imaging (diffusion MRI or DWI) allows detailed examination of CNS tissues, and recent advances in clearing procedures allow detailed imaging of fluorescent-labeled cells at high resolution. No study has yet combined ex vivo diffusion MRI and clearing procedures to establish a possible link between microglia/monocytes response and diffusion coefficient in the context of spinal cord injury (SCI). We carried out ex vivo MRI of the spinal cord at different time-points after spinal cord transection followed by tetrahydrofuran based clearing and examined the density and morphology of microglia/monocytes using two-photon microscopy. Quantitative analysis revealed an early marked increase in microglial/monocytes density that is associated with an increase in the extension of the lesion measured using diffusion MRI. Morphological examination of microglia/monocytes somata at the lesion site revealed a significant increase in their surface area and volume as early as 72 hours post-injury. Time-course analysis showed differential microglial/monocytes response rostral and caudal to the lesion site. Microglia/monocytes showed a decrease in reactivity over time caudal to the lesion site, but an increase was observed rostrally. Direct comparison of microglia/monocytes morphology, obtained through multiphoton, and the longitudinal apparent diffusion coefficient (ADC), measured with diffusion MRI, highlighted that axonal integrity does not correlate with the density of microglia/monocytes or their somata morphology. We emphasize that differential microglial/monocytes reactivity rostral and caudal to the lesion site may thus coincide, at least partially, with reported temporal differences in debris clearance. Our study demonstrates that the combination of ex vivo diffusion MRI and two-photon microscopy may be used to follow structural tissue alteration. Lesion extension coincides with microglia/monocytes density; however, a direct relationship between ADC and microglia/monocytes density and morphology was not observed. We highlighted a differential rostro-caudal microglia/monocytes reactivity that may correspond to a temporal difference in debris clearance and axonal integrity. Thus, potential therapeutic strategies targeting microglia/monocytes after SCI may need to be adjusted not only with the time after injury but also relative to the location to the lesion site. PMID:28769787
Acute hepatic encephalopathy presenting as cortical laminar necrosis: case report.
Choi, Jong Mun; Kim, Yoon Hee; Roh, Sook Young
2013-01-01
We report on a 55-year-old man with alcoholic liver cirrhosis who presented with status epilepticus. Laboratory analysis showed markedly elevated blood ammonia. Brain magnetic resonance imaging (MRI) showed widespread cortical signal changes with restricted diffusion, involving both temporo-fronto-parietal cortex, while the perirolandic regions and occipital cortex were uniquely spared. A follow-up brain MRI demonstrated diffuse cortical atrophy with increased signals on T1-weighted images in both the basal ganglia and temporal lobe cortex, representing cortical laminar necrosis. We suggest that the brain lesions, in our case, represent a consequence of toxic effect of ammonia.
Unal, Emre; Idilman, Ilkay Sedakat; Karçaaltıncaba, Muşturay
2017-02-01
New advances in liver magnetic resonance imaging (MRI) may enable diagnosis of unseen pathologies by conventional techniques. Normal T1 (550-620 ms for 1.5 T and 700-850 ms for 3 T), T2, T2* (>20 ms), T1rho (40-50 ms) mapping, proton density fat fraction (PDFF) (≤5%) and stiffness (2-3kPa) values can enable differentiation of a normal liver from chronic liver and diffuse diseases. Gd-EOB-DTPA can enable assessment of liver function by using postcontrast hepatobiliary phase or T1 reduction rate (normally above 60%). T1 mapping can be important for the assessment of fibrosis, amyloidosis and copper overload. T1rho mapping is promising for the assessment of liver collagen deposition. PDFF can allow objective treatment assessment in NAFLD and NASH patients. T2 and T2* are used for iron overload determination. MR fingerprinting may enable single slice acquisition and easy implementation of multiparametric MRI and follow-up of patients. Areas covered: T1, T2, T2*, PDFF and stiffness, diffusion weighted imaging, intravoxel incoherent motion imaging (ADC, D, D* and f values) and function analysis are reviewed. Expert commentary: Multiparametric MRI can enable biopsyless diagnosis and more objective staging of diffuse liver disease, cirrhosis and predisposing diseases. A comprehensive approach is needed to understand and overcome the effects of iron, fat, fibrosis, edema, inflammation and copper on MR relaxometry values in diffuse liver disease.
Reginelli, Alfonso; Granata, Vincenza; Fusco, Roberta; Granata, Francesco; Rega, Daniela; Roberto, Luca; Pellino, Gianluca; Rotondo, Antonio; Selvaggi, Francesco; Izzo, Francesco; Petrillo, Antonella; Grassi, Roberto
2017-04-04
We compared Magnetic Resonance Imaging (MRI) and 3D Endoanal Ultrasound (EAUS) imaging performance to confirm anal carcinoma and to monitor treatment response.58 patients with anal cancer were retrospectively enrolled. All patients underwent clinical examination, anoscopic examination; EAUS and contrast-enhanced MRI study before and after treatment. Four radiologists evaluated the presence of lesions, using a 4-point confidence scale, features of the lesion and nodes on EAUS images, T1-weighted (T1-W), T2-weighted (T2-W) and diffusion-weighted images (DWI) signal intensity (SI), the apparent diffusion coefficient (ADC) map for nodes and lesion, as well as enhancement pattern during dynamic MRI were assessed.All lesions were detected by EAUS while MRI detected 93.1% of anal cancer. MRI showed a good correlation with EAUS, anoscopy and clinical examination. The residual tissue not showed significant difference in EAUS assessment and T2-W SI in pre and post treatment. We found significant difference in dynamic study, in SI of DWI, in ADC map and values among responder's patients in pre and post treatment. The neoplastic nodes were hypoecoic on EAUS, with hyperintense signal on T2-W sequences and hypointense signal on T1-W. The neoplastic nodes showed SI on DWI sequences and ADC value similar to anal cancer. We found significant difference in nodes status in pre and post therapy on DWI data.3D EAUS and MRI are accurate techniques in anal cancer staging, although EAUS is more accurate than MRI for T1 stage. MRI allows correct detection of neoplastic nodes and can properly stratify patients into responders or non responders.
Skeletal muscle metastases on magnetic resonance imaging: analysis of 31 cases.
Li, Qi; Wang, Lei; Pan, Shinong; Shu, Hong; Ma, Ying; Lu, Zaiming; Fu, Xihu; Jiang, Bo; Guo, Qiyong
2016-01-01
To investigate the magnetic resonance imaging (MRI) features of skeletal muscle metastases (SMM). The records of 31 patients with proven SMM were retrospectively reviewed. Clinical history, type of primary malignancy, location of metastases, and MRI features of SMM were evaluated. Based on MRI findings, SMM were divided into three MRI types. The correlation between MRI types with ages and pathology category, between MRI types of SMM and ages, as well as MRI types of SMM and pathology category were analysed with Spearman's rho. The most common primary tumour was genital tumour (25.8%) and bronchial carcinoma (19.4%), and the most common cell type was adenocarcinoma (58.1%). SMM were located in the iliopsoas muscle (26.3%), paravertebral muscles (21.1%), and upper extremity muscles (18.4%). MRI features: (1) Type-I localised lesions (12.90%), round-like mass limited to local regions with heterogeneous iso-signal intensity in T1WI and heterogeneous hyper-intensity in T2WI; (2) Type-II diffuse lesions without bone destruction (35.48%), abnormal diffuse swelling of the muscle with irregular boundaries and slightly hypo- to iso-intensity in T1WI and hyper-intensity in T2WI; and (3) Type-III diffuse lesions with bone destruction (51.61%), distinct irregular lump with iso-intensity in T1WI and heterogeneous hyper-intensity in T2WI with adjacent bone invasion. There was positive correlation between MRI types and ages (r = 0.431, p < 0.05). There were no significant differences of MRI types with pathology category (p > 0.05). SMM features on MRI can be broadly used to classify lesions, which is beneficial for SMM diagnosis.
Skeletal muscle metastases on magnetic resonance imaging: analysis of 31 cases
Li, Qi; Wang, Lei; Shu, Hong; Ma, Ying; Lu, Zaiming; Fu, Xihu; Jiang, Bo; Guo, Qiyong
2016-01-01
Aim of the study To investigate the magnetic resonance imaging (MRI) features of skeletal muscle metastases (SMM). Material and methods The records of 31 patients with proven SMM were retrospectively reviewed. Clinical history, type of primary malignancy, location of metastases, and MRI features of SMM were evaluated. Based on MRI findings, SMM were divided into three MRI types. The correlation between MRI types with ages and pathology category, between MRI types of SMM and ages, as well as MRI types of SMM and pathology category were analysed with Spearman's rho. Results The most common primary tumour was genital tumour (25.8%) and bronchial carcinoma (19.4%), and the most common cell type was adenocarcinoma (58.1%). SMM were located in the iliopsoas muscle (26.3%), paravertebral muscles (21.1%), and upper extremity muscles (18.4%). MRI features: (1) Type-I localised lesions (12.90%), round-like mass limited to local regions with heterogeneous iso-signal intensity in T1WI and heterogeneous hyper-intensity in T2WI; (2) Type-II diffuse lesions without bone destruction (35.48%), abnormal diffuse swelling of the muscle with irregular boundaries and slightly hypo- to iso-intensity in T1WI and hyper-intensity in T2WI; and (3) Type-III diffuse lesions with bone destruction (51.61%), distinct irregular lump with iso-intensity in T1WI and heterogeneous hyper-intensity in T2WI with adjacent bone invasion. There was positive correlation between MRI types and ages (r = 0.431, p < 0.05). There were no significant differences of MRI types with pathology category (p > 0.05). Conclusions SMM features on MRI can be broadly used to classify lesions, which is beneficial for SMM diagnosis. PMID:27647989
Modeling fluid diffusion in cerebral white matter with random walks in complex environments
NASA Astrophysics Data System (ADS)
Levy, Amichai; Cwilich, Gabriel; Buldyrev, Sergey V.; Weeden, Van J.
2012-02-01
Recent studies with diffusion MRI have shown new aspects of geometric order in the brain, including complex path coherence within the cerebral cortex, and organization of cerebral white matter and connectivity across multiple scales. The main assumption of these studies is that water molecules diffuse along myelin sheaths of neuron axons in the white matter and thus the anisotropy of their diffusion tensor observed by MRI can provide information about the direction of the axons connecting different parts of the brain. We model the diffusion of particles confined in the space of between the bundles of cylindrical obstacles representing fibrous structures of various orientations. We have investigated the directional properties of the diffusion, by studying the angular distribution of the end point of the random walks as a function of their length, to understand the scale over which the distribution randomizes. We will show evidence of qualitative change in the behavior of the diffusion for different volume fractions of obstacles. Comparisons with three-dimensional MRI images will be illustrated.
Schmid-Tannwald, C; Schmid-Tannwald, C M; Morelli, J N; Neumann, R; Reiser, M F; Nikolaou, K; Rist, C
2014-07-01
To evaluate the role of diffusion-weighted magnetic resonance imaging (DW-MRI) in the differentiation of hepatic abscesses from non-infected fluid collections. In this retrospective study, 22 hepatic abscesses and 27 non-infected hepatic fluid collections were examined in 27 patients who underwent abdominal MRI including DW-MRI. Two independent observers reviewed T2-weighted + DW-MRI and T2-weighted + contrast-enhanced T1-weighted (CET1W) images in two sessions. Detection rates and confidence levels were calculated and compared using McNemar's and Wilcoxon's signed rank tests, respectively. Apparent diffusion coefficient (ADC) values of abscesses and non-infected fluid collections were compared using the t-test. Receiver operating characteristic (ROC) curves were constructed. There was no statistically significant difference in the accuracy of detecting abscesses using T2-weighted + DW-MRI (both observers: 21/22, 95.5%) versus T2-weighted + CET1W images (observer 1: 21/22, 95.5%; observer 2: 22/22, 100%; p < 0.01). Mean ADC values were significantly lower with abscesses versus non-infected fluid collections (0.83 ± 0.24 versus 2.25 ± 0.61 × 10(-3) mm(2)/s; p < 0.001). With ROC analysis there was good discrimination of abscess from non-infected fluid collections at a threshold ADC value of 1.36 × 10(-3) mm(2)/s. DW-MRI allows qualitative and quantitative differentiation of abscesses from non-infected fluid collections in the liver. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Focal Cortical Dysplasia (FCD) lesion analysis with complex diffusion approach.
Rajan, Jeny; Kannan, K; Kesavadas, C; Thomas, Bejoy
2009-10-01
Identification of Focal Cortical Dysplasia (FCD) can be difficult due to the subtle MRI changes. Though sequences like FLAIR (fluid attenuated inversion recovery) can detect a large majority of these lesions, there are smaller lesions without signal changes that can easily go unnoticed by the naked eye. The aim of this study is to improve the visibility of focal cortical dysplasia lesions in the T1 weighted brain MRI images. In the proposed method, we used a complex diffusion based approach for calculating the FCD affected areas. Based on the diffused image and thickness map, a complex map is created. From this complex map; FCD areas can be easily identified. MRI brains of 48 subjects selected by neuroradiologists were given to computer scientists who developed the complex map for identifying the cortical dysplasia. The scientists were blinded to the MRI interpretation result of the neuroradiologist. The FCD could be identified in all the patients in whom surgery was done, however three patients had false positive lesions. More lesions were identified in patients in whom surgery was not performed and lesions were seen in few of the controls. These were considered as false positive. This computer aided detection technique using complex diffusion approach can help detect focal cortical dysplasia in patients with epilepsy.
Diffuse Optical Tomography for Brain Imaging: Theory
NASA Astrophysics Data System (ADS)
Yuan, Zhen; Jiang, Huabei
Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.
Baehring, J; Henchcliffe, C; Ledezma, C; Fulbright, R; Hochberg, F
2005-01-01
Background: Intravascular lymphoma (IVL) is a rare non-Hodgkin's lymphoma with relative predilection for the central nervous system. In the absence of extraneural manifestations, the disease is not recognised until autopsy in the majority of cases underlining the need for new clinical markers. Methods: This is a retrospective series of five patients with IVL seen at a single institution over three years. An advanced magnetic resonance imaging (MRI) protocol was performed at various time points prior to diagnosis and during treatment. Results: MRI revealed multiple lesions scattered throughout the cerebral hemispheres; the brainstem, cerebellum, and spinal cord were less frequently involved. On initial presentation, hyperintense lesions were seen on diffusion weighted images suggestive of ischaemia in three of four patients in whom the images were obtained at that time point. In four patients lesions were also identifiable as hyperintense areas on fluid attenuated inversion recovery (FLAIR) sequences. Initial contrast enhancement was encountered in three cases. Diffusion weighted imaging lesions either vanished or followed the typical pattern of an ischaemic small vessel stroke with evolution of abnormal FLAIR signal followed by enhancement with gadolinium in the subacute stage and tissue loss in the chronic stage. Diffusion weighted imaging and FLAIR abnormalities proved to be partially reversible, correlating with the response to chemotherapy. Conclusion: We provide the first detailed description of the dynamic pattern of diffusion weighted MRI in IVL. These patterns in combination with systemic findings may facilitate early diagnosis and serve as a new tool to monitor treatment response. PMID:15774442
Rasova, Kamila; Prochazkova, Marie; Tintera, Jaroslav; Ibrahim, Ibrahim; Zimova, Denisa; Stetkarova, Ivana
2015-03-01
There is still little scientific evidence for the efficacy of neurofacilitation approaches and their possible influence on brain plasticity and adaptability. In this study, the outcome of a new kind of neurofacilitation approach, motor programme activating therapy (MPAT), was evaluated on the basis of a set of clinical functions and with MRI. Eighteen patients were examined four times with standardized clinical tests and diffusion tensor imaging to monitor changes without therapy, immediately after therapy and 1 month after therapy. Moreover, the strength of effective connectivity was analysed before and after therapy. Patients underwent a 1-h session of MPAT twice a week for 2 months. The data were analysed by nonparametric tests of association and were subsequently statistically evaluated. The therapy led to significant improvement in clinical functions, significant increment of fractional anisotropy and significant decrement of mean diffusivity, and decrement of effective connectivity at supplementary motor areas was observed immediately after the therapy. Changes in clinical functions and diffusion tensor images persisted 1 month after completing the programme. No statistically significant changes in clinical functions and no differences in MRI-diffusion tensor images were observed without physiotherapy. Positive immediate and long-term effects of MPAT on clinical and brain functions, as well as brain microstructure, were confirmed.
Balachandar, R; John, J P; Saini, J; Kumar, K J; Joshi, H; Sadanand, S; Aiyappan, S; Sivakumar, P T; Loganathan, S; Varghese, M; Bharath, S
2015-05-01
Alzheimer's disease (AD) is a progressive neurodegenerative condition where in early diagnosis and interventions are key policy priorities in dementia services and research. We studied the functional and structural connectivity in mild AD to determine the nature of connectivity changes that coexist with neurocognitive deficits in the early stages of AD. Fifteen mild AD subjects and 15 cognitively healthy controls (CHc) matched for age and gender, underwent detailed neurocognitive assessment and magnetic resonance imaging (MRI) of resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI). Rest fMRI was analyzed using dual regression approach and DTI by voxel wise statistics. Patients with mild AD had significantly lower functional connectivity (FC) within the default mode network and increased FC within the executive network. The mild AD group scored significantly lower in all domains of cognition compared with CHc. But fractional anisotropy did not significantly (p < 0.05) differ between the groups. Resting state functional connectivity alterations are noted during initial stages of cognitive decline in AD, even when there are no significant white matter microstructural changes. Copyright © 2014 John Wiley & Sons, Ltd.
Tamada, Tsutomu; Ream, Justin M; Doshi, Ankur M; Taneja, Samir S; Rosenkrantz, Andrew B
The purpose of this study was to compare image quality and tumor assessment at prostate magnetic resonance imaging (MRI) between reduced field-of-view diffusion-weighted imaging (rFOV-DWI) and standard DWI (st-DWI). A total of 49 patients undergoing prostate MRI and MRI/ultrasound fusion-targeted biopsy were included. Examinations included st-DWI (field of view [FOV], 200 × 200 mm) and rFOV-DWI (FOV, 140 × 64 mm) using a 2-dimensional (2D) spatially-selective radiofrequency pulse and parallel transmission. Two readers performed qualitative assessments; a third reader performed quantitative evaluation. Overall image quality, anatomic distortion, visualization of capsule, and visualization of peripheral/transition zone edge were better for rFOV-DWI for reader 1 (P ≤ 0.002), although not for reader 2 (P ≥ 0.567). For both readers, sensitivity, specificity, and accuracy for tumor with a Gleason Score (GS) of 3 + 4 or higher were not different (P ≥ 0.289). Lesion clarity was higher for st-DWI for reader 2 (P = 0.008), although similar for reader 1 (P = 0.409). Diagnostic confidence was not different for either reader (P ≥ 0.052). Tumor-to-benign apparent diffusion coefficient ratio was not different (P = 0.675). Potentially improved image quality of rFOV-DWI did not yield improved tumor assessment. Continued optimization is warranted.
Can we develop pathology-specific MRI contrast for "MR-negative" epilepsy?
Feindel, Kirk W
2013-05-01
Recent improvements in magnetic resonance imaging (MRI) hardware, software, and analysis routines are helping to put cases of "MR-negative" epilepsy on the decline. However, most standard-of-care MRI relies on careful manipulation and presentation of T1, T2, and diffusion-weighted contrast, which characterize the behavior of water in "bulk" tissue rather than providing pathology-specific contrast. Research efforts in MR physics continue to identify and develop novel theory, and methods such as diffusional kurtosis imaging (DKI) and temporal diffusion spectroscopy that can better characterize tissue substructure, and chemical exchange saturation transfer (CEST) that can target underlying biochemical processes. The potential role of each technique in targeting pathologies implicated in "MR-negative" epilepsy is outlined herein. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Optical/MRI Multimodality Molecular Imaging
NASA Astrophysics Data System (ADS)
Ma, Lixin; Smith, Charles; Yu, Ping
2007-03-01
Multimodality molecular imaging that combines anatomical and functional information has shown promise in development of tumor-targeted pharmaceuticals for cancer detection or therapy. We present a new multimodality imaging technique that combines fluorescence molecular tomography (FMT) and magnetic resonance imaging (MRI) for in vivo molecular imaging of preclinical tumor models. Unlike other optical/MRI systems, the new molecular imaging system uses parallel phase acquisition based on heterodyne principle. The system has a higher accuracy of phase measurements, reduced noise bandwidth, and an efficient modulation of the fluorescence diffuse density waves. Fluorescent Bombesin probes were developed for targeting breast cancer cells and prostate cancer cells. Tissue phantom and small animal experiments were performed for calibration of the imaging system and validation of the targeting probes.
Imaging brain microstructure with diffusion MRI: practicality and applications.
Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus; Zhang, Hui
2017-11-29
This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term. Copyright © 2017 John Wiley & Sons, Ltd.
Neural and Behavioral Sequelae of Blast-Related Traumatic Brain Injury
2012-09-01
fMRI, DTI , cognition 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a...techniques [task-activated functional MRI (fMRI) and diffusion tensor imaging ( DTI )] to gain a comprehensive understanding of the neural changes...orthopedic injuries. We accomplished this goal by conducting advanced neuroimaging (task-activated fMRI and DTI fiber tracking) and neurobehavioral
Higher-Order Motion-Compensation for In Vivo Cardiac Diffusion Tensor Imaging in Rats
Welsh, Christopher L.; DiBella, Edward V. R.; Hsu, Edward W.
2015-01-01
Motion of the heart has complicated in vivo applications of cardiac diffusion MRI and diffusion tensor imaging (DTI), especially in small animals such as rats where ultra-high-performance gradient sets are currently not available. Even with velocity compensation via, for example, bipolar encoding pulses, the variable shot-to-shot residual motion-induced spin phase can still give rise to pronounced artifacts. This study presents diffusion-encoding schemes that are designed to compensate for higher-order motion components, including acceleration and jerk, which also have the desirable practical features of minimal TEs and high achievable b-values. The effectiveness of these schemes was verified numerically on a realistic beating heart phantom, and demonstrated empirically with in vivo cardiac diffusion MRI in rats. Compensation for acceleration, and lower motion components, was found to be both necessary and sufficient for obtaining diffusion-weighted images of acceptable quality and SNR, which yielded the first in vivo cardiac DTI demonstrated in the rat. These findings suggest that compensation for higher order motion, particularly acceleration, can be an effective alternative solution to high-performance gradient hardware for improving in vivo cardiac DTI. PMID:25775486
Afacan, Onur; Gholipour, Ali; Mulkern, Robert V; Barnewolt, Carol E; Estroff, Judy A; Connolly, Susan A; Parad, Richard B; Bairdain, Sigrid; Warfield, Simon K
2016-12-01
To evaluate the feasibility of using diffusion-weighted magnetic resonance imaging (DW-MRI) to assess the fetal lung apparent diffusion coefficient (ADC) at 3 Tesla (T). Seventy-one pregnant women (32 second trimester, 39 third trimester) were scanned with a twice-refocused Echo-planar diffusion-weighted imaging sequence with 6 different b-values in 3 orthogonal diffusion orientations at 3T. After each scan, a region-of-interest (ROI) mask was drawn to select a region in the fetal lung and an automated robust maximum likelihood estimation algorithm was used to compute the ADC parameter. The amount of motion in each scan was visually rated. When scans with unacceptable levels of motion were eliminated, the lung ADC values showed a strong association with gestational age (P < 0.01), increasing dramatically between 16 and 27 weeks and then achieving a plateau around 27 weeks. We show that to get reliable estimates of ADC values of fetal lungs, a multiple b-value acquisition, where motion is either corrected or considered, can be performed. J. Magn. Reson. Imaging 2016;44:1650-1655. © 2016 International Society for Magnetic Resonance in Medicine.
Wallerian Degeneration Beyond the Corticospinal Tracts: Conventional and Advanced MRI Findings.
Chen, Yin Jie; Nabavizadeh, Seyed Ali; Vossough, Arastoo; Kumar, Sunil; Loevner, Laurie A; Mohan, Suyash
2017-05-01
Wallerian degeneration (WD) is defined as progressive anterograde disintegration of axons and accompanying demyelination after an injury to the proximal axon or cell body. Since the 1980s and 1990s, conventional magnetic resonance imaging (MRI) sequences have been shown to be sensitive to changes of WD in the subacute to chronic phases. More recently, advanced MRI techniques, such as diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI), have demonstrated some of earliest changes attributed to acute WD, typically on the order of days. In addition, there is increasing evidence on the value of advanced MRI techniques in providing important prognostic information related to WD. This article reviews the utility of conventional and advanced MRI techniques for assessing WD, by focusing not only on the corticospinal tract but also other neural tracts less commonly thought of, including corticopontocerebellar tract, dentate-rubro-olivary pathway, posterior column of the spinal cord, corpus callosum, limbic circuit, and optic pathway. The basic anatomy of these neural pathways will be discussed, followed by a comprehensive review of existing literature supported by instructive clinical examples. The goal of this review is for readers to become more familiar with both conventional and advanced MRI findings of WD involving important neural pathways, as well as to illustrate increasing utility of advanced MRI techniques in providing important prognostic information for various pathologies. Copyright © 2016 by the American Society of Neuroimaging.
NASA Astrophysics Data System (ADS)
Song, Yongchen; Hao, Min; Zhao, Yuechao; Zhang, Liang
2014-12-01
In this study, the dual-chamber pressure decay method and magnetic resonance imaging (MRI) were used to dynamically visualize the gas diffusion process in liquid-saturated porous media, and the relationship of concentration-distance for gas diffusing into liquid-saturated porous media at different times were obtained by MR images quantitative analysis. A non-iterative finite volume method was successfully applied to calculate the local gas diffusion coefficient in liquid-saturated porous media. The results agreed very well with the conventional pressure decay method, thus it demonstrates that the method was feasible of determining the local diffusion coefficient of gas in liquid-saturated porous media at different times during diffusion process.
Diffusion Weighted MRI and MRS to Differentiate Radiation Necrosis and Recurrent Disease in Gliomas
NASA Astrophysics Data System (ADS)
Ewell, Lars
2006-03-01
A difficulty encountered in the diagnosis of patients with gliomas is the differentiation between recurrent disease and Radiation Induced Necrosis (RIN). Both can appear as ‘enhancing lesions’ on a typical T2 weighted MRI scan. Magnetic Resonance Spectroscopy (MRS) and Diffusion Weighted MRI (DWMRI) have the potential to be helpful regarding this differentiation. MRS has the ability to measure the concentration of brain metabolites, such as Choline, Creatin and N- Acetyl Aspartate, the ratios of which have been shown to discriminate between RIN and recurrent disease. DWMRI has been linked via a rise in the Apparent Diffusion Coefficient (ADC) to successful treatment of disease. Using both of these complimentary non-invasive imaging modalities, we intend to initiate an imaging protocol whereby we will study how best to combine metabolite ratios and ADC values to obtain the most useful information in the least amount of scan time. We will look for correlations over time between ADC values, and MRS, among different sized voxels.
In vivo High Angular Resolution Diffusion-Weighted Imaging of Mouse Brain at 16.4 Tesla
Alomair, Othman I.; Brereton, Ian M.; Smith, Maree T.; Galloway, Graham J.; Kurniawan, Nyoman D.
2015-01-01
Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T 1 and shorter T 2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/mm2) and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI) derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white matter (WM) diseases. PMID:26110770
Medulloblastoma with Atypical Dynamic Imaging Changes: Case Report with Literature Review.
Song, Shuang-Shuang; Wang, Jian-Hong; Fu, Wei-Wei; Li, Ying; Sui, Qing-Lan; Liu, Xue-Jun
2017-09-01
We analyzed a case of medulloblastoma with atypical dynamic imaging changes retrospectively to summarize the atypical magnetic resonance imaging (MRI) features of medulloblastoma by reviewing the literature. An atypical case of medulloblastoma in the cerebellar hemisphere confirmed by pathology was analyzed retrospectively, and the literature about it was reviewed. The radiologic findings of the patient were based on 3 examinations. The first examination showed that the cortex of the bilateral cerebellar hemisphere had diffuse nodular thickening, with a high signal on diffusion-weighted imaging and significant enhancement. Contrast enhancement MRI 1 year later showed the signal of cerebellar hemisphere returned to normal but revealed an enhanced nodule. A reexamination 6 months later showed an irregular mass with a high-density shadow in the cerebellar vermis on CT scan. The T2-weighted image revealed multiple degenerative cysts, and the mass had significant enhancement. The radiologic characteristics of atypical medulloblastomas vary in adults and children. Understanding the radiologic characteristics of medulloblastomas, such as MRI features, age of onset, and location of atypical medulloblastomas, can help improve the diagnosis of medulloblastomas. Copyright © 2017. Published by Elsevier Inc.
Samardzic, Dejan; Thamburaj, Krishnamoorthy
2015-01-01
To report the brain imaging features on magnetic resonance imaging (MRI) in inadvertent intrathecal gadolinium administration. A 67-year-old female with gadolinium encephalopathy from inadvertent high dose intrathecal gadolinium administration during an epidural steroid injection was studied with multisequence 3T MRI. T1-weighted imaging shows pseudo-T2 appearance with diffusion of gadolinium into the brain parenchyma, olivary bodies, and membranous labyrinth. Nulling of cerebrospinal fluid (CSF) signal is absent on fluid attenuation recovery (FLAIR). Susceptibility-weighted imaging (SWI) demonstrates features similar to subarachnoid hemorrhage. CT may demonstrate a pseudo-cerebral edema pattern given the high attenuation characteristics of gadolinium. Intrathecal gadolinium demonstrates characteristic imaging features on MRI of the brain and may mimic subarachnoid hemorrhage on susceptibility-weighted imaging. Identifying high dose gadolinium within the CSF spaces on MRI is essential to avoid diagnostic and therapeutic errors. Copyright © 2013 by the American Society of Neuroimaging.
Ponrartana, Skorn; Andrade, Kristine E; Wren, Tishya A L; Ramos-Platt, Leigh; Hu, Houchun H; Bluml, Stefan; Gilsanz, Vicente
2014-06-01
The purpose of this study was to assess the repeatability of water-fat MRI and diffusion-tensor imaging (DTI) as quantitative biomarkers of pediatric lower extremity skeletal muscle. MRI at 3 T of a randomly selected thigh and lower leg of seven healthy children was studied using water-fat separation and DTI techniques. Muscle-fat fraction, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) values were calculated. Test-retest and interrater repeatability were assessed by calculating the Pearson correlation coefficient, intraclass correlation coefficient, and Bland-Altman analysis. Bland-Altman plots show that the mean difference between test-retest and interrater measurements of muscle-fat fraction, ADC, and FA was near 0. The correlation coefficients and intraclass correlation coefficients were all between 0.88 and 0.99 (p < 0.05), suggesting excellent reliability of the measurements. Muscle-fat fraction measurements from water-fat MRI exhibited the highest intraclass correlation coefficient. Interrater agreement was consistently better than test-retest comparisons. Water-fat MRI and DTI measurements in lower extremity skeletal muscles are objective repeatable biomarkers in children. This knowledge should aid in the understanding of the number of participants needed in clinical trials when using these determinations as an outcome measure to noninvasively monitor neuromuscular disease.
Joint reconstruction of PET-MRI by exploiting structural similarity
NASA Astrophysics Data System (ADS)
Ehrhardt, Matthias J.; Thielemans, Kris; Pizarro, Luis; Atkinson, David; Ourselin, Sébastien; Hutton, Brian F.; Arridge, Simon R.
2015-01-01
Recent advances in technology have enabled the combination of positron emission tomography (PET) with magnetic resonance imaging (MRI). These PET-MRI scanners simultaneously acquire functional PET and anatomical or functional MRI data. As function and anatomy are not independent of one another the images to be reconstructed are likely to have shared structures. We aim to exploit this inherent structural similarity by reconstructing from both modalities in a joint reconstruction framework. The structural similarity between two modalities can be modelled in two different ways: edges are more likely to be at similar positions and/or to have similar orientations. We analyse the diffusion process generated by minimizing priors that encapsulate these different models. It turns out that the class of parallel level set priors always corresponds to anisotropic diffusion which is sometimes forward and sometimes backward diffusion. We perform numerical experiments where we jointly reconstruct from blurred Radon data with Poisson noise (PET) and under-sampled Fourier data with Gaussian noise (MRI). Our results show that both modalities benefit from each other in areas of shared edge information. The joint reconstructions have less artefacts and sharper edges compared to separate reconstructions and the ℓ2-error can be reduced in all of the considered cases of under-sampling.
Schouten, Tijn M; Koini, Marisa; de Vos, Frank; Seiler, Stephan; van der Grond, Jeroen; Lechner, Anita; Hafkemeijer, Anne; Möller, Christiane; Schmidt, Reinhold; de Rooij, Mark; Rombouts, Serge A R B
2016-01-01
Magnetic resonance imaging (MRI) is sensitive to structural and functional changes in the brain caused by Alzheimer's disease (AD), and can therefore be used to help in diagnosing the disease. Improving classification of AD patients based on MRI scans might help to identify AD earlier in the disease's progress, which may be key in developing treatments for AD. In this study we used an elastic net classifier based on several measures derived from the MRI scans of mild to moderate AD patients (N = 77) from the prospective registry on dementia study and controls (N = 173) from the Austrian Stroke Prevention Family Study. We based our classification on measures from anatomical MRI, diffusion weighted MRI and resting state functional MRI. Our unimodal classification performance ranged from an area under the curve (AUC) of 0.760 (full correlations between functional networks) to 0.909 (grey matter density). When combining measures from multiple modalities in a stepwise manner, the classification performance improved to an AUC of 0.952. This optimal combination consisted of grey matter density, white matter density, fractional anisotropy, mean diffusivity, and sparse partial correlations between functional networks. Classification performance for mild AD as well as moderate AD also improved when using this multimodal combination. We conclude that different MRI modalities provide complementary information for classifying AD. Moreover, combining multiple modalities can substantially improve classification performance over unimodal classification.
PCA-based groupwise image registration for quantitative MRI.
Huizinga, W; Poot, D H J; Guyader, J-M; Klaassen, R; Coolen, B F; van Kranenburg, M; van Geuns, R J M; Uitterdijk, A; Polfliet, M; Vandemeulebroucke, J; Leemans, A; Niessen, W J; Klein, S
2016-04-01
Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to the image intensities. Image registration is often necessary to compensate for misalignments due to subject motion and/or geometric distortions caused by the acquisition. However, large differences in image appearance make accurate image registration challenging. In this work, we propose a groupwise image registration method for compensating misalignment in qMRI. The groupwise formulation of the method eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowledge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1 and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain, and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acquisition model. The method is compared to a mutual information-based pairwise registration method and four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of the precision of the estimated qMRI parameters, overlap of segmented structures, distance between corresponding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method performed better than or equally well as competing methods, while avoiding the need to choose a reference image. It is also shown that the results of the conventional pairwise approach do depend on the choice of this reference image. We therefore conclude that our groupwise registration method with a similarity measure based on PCA is the preferred technique for compensating misalignments in qMRI. Copyright © 2015 Elsevier B.V. All rights reserved.
Lee, E J; Kim, K K; Lee, E K; Lee, J E
2016-12-01
To describe characteristic magnetic resonance imaging (MRI) abnormalities in hyperglycaemia-induced seizures, and evaluate the diagnostic value of contrast-enhanced fluid-attenuated inversion recovery (FLAIR) imaging. Possible underlying mechanisms of this condition are also discussed. Eleven patients with hyperglycaemia-induced seizures and MRI abnormalities were retrospectively studied. Clinical manifestations, laboratory findings, MRI findings, and clinical outcomes were analysed. All patients, except one, presented with focal seizures, simple or complex partial seizures, or negative motor seizures. All patients had long-standing uncontrolled diabetes mellitus. The MRI abnormalities observed acutely were focal subcortical hypointensities on T2-weighted imaging and FLAIR imaging in all patients with overlying cortical gyral T2 hyperintensities in five. Focal overlying cortical or leptomeningeal enhancement on contrast-enhanced T1-weighted imaging or contrast-enhanced FLAIR imaging was observed in all patients. Contrast-enhanced FLAIR imaging was superior to contrast-enhanced T1-weighted imaging for detecting characteristic cortical or leptomeningeal enhancement. Diffusion-weighted imaging showed mildly restricted diffusion in four of five patients with cortical gyral T2 hyperintensity. In nine patients, the lesions were localised in the parietal or parieto-occipital lobes. The other two patients showed localised precentral gyral lesions. After treatment, the neurological symptoms, including the seizures, improved in all patients. On clinical recovery, the subcortical T2 hypointensity, gyral or leptomeningeal enhancement, and overlying cortical T2 hyperintensities resolved. Recognition of these radiological abnormalities in patients with hyperglycaemia-induced seizures is important in restricting unwarranted investigations and initiating early therapy. These patients generally have a good prognosis. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
[Optimization of diagnosis indicator selection and inspection plan by 3.0T MRI in breast cancer].
Jiang, Zhongbiao; Wang, Yunhua; He, Zhong; Zhang, Lejun; Zheng, Kai
2013-08-01
To optimize 3.0T MRI diagnosis indicator in breast cancer and to select the best MRI scan program. Totally 45 patients with breast cancers were collected, and another 35 patients with benign breast tumor served as the control group. All patients underwent 3.0T MRI, including T1- weighted imaging (T1WI), fat suppression of the T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), 1H magnetic resonance spectroscopy (1H-MRS) and dynamic contrast enhanced (DCE) sequence. With operation pathology results as the gold standard in the diagnosis of breast diseases, the pathological results of benign and malignant served as dependent variables, and the diagnostic indicators of MRI were taken as independent variables. We put all the indicators of MRI examination under Logistic regression analysis, established the Logistic model, and optimized the diagnosis indicators of MRI examination to further improve MRI scan of breast cancer. By Logistic regression analysis, some indicators were selected in the equation, including the edge feature of the tumor, the time-signal intensity curve (TIC) type and the apparent diffusion coefficient (ADC) value when b=500 s/mm2. The regression equation was Logit (P)=-21.936+20.478X6+3.267X7+ 21.488X3. Valuable indicators in the diagnosis of breast cancer are the edge feature of the tumor, the TIC type and the ADC value when b=500 s/mm2. Combining conventional MRI scan, DWI and dynamic enhanced MRI is a better examination program, while MRS is the complementary program when diagnosis is difficult.
Whole body MRI: Improved Lesion Detection and Characterization With Diffusion Weighted Techniques
Attariwala, Rajpaul; Picker, Wayne
2013-01-01
Diffusion-weighted imaging (DWI) is an established functional imaging technique that interrogates the delicate balance of water movement at the cellular level. Technological advances enable this technique to be applied to whole-body MRI. Theory, b-value selection, common artifacts and target to background for optimized viewing will be reviewed for applications in the neck, chest, abdomen, and pelvis. Whole-body imaging with DWI allows novel applications of MRI to aid in evaluation of conditions such as multiple myeloma, lymphoma, and skeletal metastases, while the quantitative nature of this technique permits evaluation of response to therapy. Persisting signal at high b-values from restricted hypercellular tissue and viscous fluid also permits applications of DWI beyond oncologic imaging. DWI, when used in conjunction with routine imaging, can assist in detecting hemorrhagic degradation products, infection/abscess, and inflammation in colitis, while aiding with discrimination of free fluid and empyema, while limiting the need for intravenous contrast. DWI in conjunction with routine anatomic images provides a platform to improve lesion detection and characterization with findings rivaling other combined anatomic and functional imaging techniques, with the added benefit of no ionizing radiation. PMID:23960006
Yang, Rui-Meng; Li, Long; Wei, Xin-Hua; Guo, Yong-Mei; Huang, Yun-Hai; Lai, Li-Sha; Chen, A-Mei; Liu, Guo-Shun; Xiong, Wei-Feng; Luo, Liang-Ping; Jiang, Xin-Qing
2013-01-01
Objective Prospectively assess the performance of diffusion-weighted magnetic resonance imaging (DW-MRI) for differentiation of central lung cancer from atelectasis. Materials and Methods 38 consecutive lung cancer patients (26 males, 12 females; age range: 28–71 years; mean age: 49 years) who were referred for thoracic MR imaging examinations were enrolled. MR examinations were performed using a 1.5-T clinical scanner and scanning sequences of T1WI, T2WI, and DWI. Cancers and atelectasis were measured by mapping of the apparent diffusion coefficients (ADCs) obtained with a b-value of 500 s/mm2. Results PET/CT and DW-MR allowed differentiation of tumor and atelectasis in all 38 cases, but T2WI did not allow differentiation in 9 cases. Comparison of conventional T2WI and DW-MRI indicated a higher contrast noise ratio of the central lung carcinoma than the atelectasis by DW-MRI. ADC maps indicated significantly lower mean ADC in the central lung carcinoma than in the atelectasis (1.83±0.58 vs. 2.90±0.26 mm2/s, p<0.0001). ADC values of small cell lung carcinoma were significantly greater than those from squamous cell carcinoma and adenocarcinoma (p<0.0001 for both). Conclusions DW-MR imaging provides valuable information not obtained by conventional MR and may be useful for differentiation of central lung carcinoma from atelectasis. Future developments may allow DW-MR imaging to be used as an alternative to PET-CT in imaging of patients with lung cancer. PMID:23593186
Dada, Michael O; Jayeoba, Babatunde; Awojoyogbe, Bamidele O; Uno, Uno E; Awe, Oluseyi E
2017-09-13
Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) is a tagged image analysis method that can measure myocardial motion and strain in near real-time and is considered a potential candidate to make magnetic resonance tagging clinically viable. However, analytical expressions of radially tagged transverse magnetization in polar coordinates (which is required to appropriately describe the shape of the heart) have not been explored because the physics required to directly connect myocardial deformation of tagged Nuclear Magnetic Resonance (NMR) transverse magnetization in polar geometry and the appropriate harmonic phase parameters are not yet available. The analytical solution of Bloch NMR diffusion equation in spherical geometry with appropriate spherical wave tagging function is important for proper analysis and monitoring of heart systolic and diastolic deformation with relevant boundary conditions. In this study, we applied Harmonic Phase MRI method to compute the difference between tagged and untagged NMR transverse magnetization based on the Bloch NMR diffusion equation and obtained radial wave tagging function for analysis of myocardial motion. The analytical solution of the Bloch NMR equations and the computational simulation of myocardial motion as developed in this study are intended to significantly improve healthcare for accurate diagnosis, prognosis and treatment of cardiovascular related deceases at the lowest cost because MRI scan is still one of the most expensive anywhere. The analysis is fundamental and significant because all Magnetic Resonance Imaging techniques are based on the Bloch NMR flow equations.
Magnetic resonance imaging of mass transport and structure inside a phototrophic biofilm.
Ramanan, Baheerathan; Holmes, William M; Sloan, William T; Phoenix, Vernon R
2013-05-01
The aim of this study was to utilize magnetic resonance imaging (MRI) to image structural heterogeneity and mass transport inside a biofilm which was too thick for photon based imaging. MRI was used to map water diffusion and image the transport of the paramagnetically tagged macromolecule, Gd-DTPA, inside a 2.5 mm thick cyanobacterial biofilm. The structural heterogeneity of the biofilm was imaged at resolutions down to 22 × 22 μm, enabling the impact of biofilm architecture on the mass transport of both water and Gd-DTPA to be investigated. Higher density areas of the biofilm correlated with areas exhibiting lower relative water diffusion coefficients and slower transport of Gd-DTPA, highlighting the impact of biofilm structure on mass transport phenomena. This approach has potential for shedding light on heterogeneous mass transport of a range of molecular mass molecules in biofilms.
Miura, Akiko; Kumabe, Yuri; Kimura, En; Yamashita, Satoshi; Ueda, Akihiko; Hirano, Teruyuki; Uchino, Makoto
2010-01-01
Adult-onset metachromatic leukodystrophy (MLD) often shows schizophrenia- or encephalopathy-like symptoms at an early stage, such as behavioural abnormalities, cognitive impairment, mood disorders and hallucinations. The authors report the case of an adult woman with MLD who had been given antipsychotic medication for schizophrenia. In the differential diagnosis, screening of auto-antibodies was important for ruling out other encephalopathies as she had a euthyroid Hashimoto thyroiditis. Diagnosis was based the results of MRI, nerve conduction velocity, sensory evoked potential, motor evoked potential, lysosomal enzyme activity and gene analysis studies. Brain MRI showed diffuse demyelination spreading from the deep white matter to subcortical area as high signals at the edges of these lesions in diffusion and apparent diffusion coefficient-map images with the U-fibres conserved. The authors diagnosed adult-onset MLD coexisting with euthyroid autoimmune Hashimoto thyroiditis. PMID:22798296
Imaging brain tumour microstructure.
Nilsson, Markus; Englund, Elisabet; Szczepankiewicz, Filip; van Westen, Danielle; Sundgren, Pia C
2018-05-08
Imaging is an indispensable tool for brain tumour diagnosis, surgical planning, and follow-up. Definite diagnosis, however, often demands histopathological analysis of microscopic features of tissue samples, which have to be obtained by invasive means. A non-invasive alternative may be to probe corresponding microscopic tissue characteristics by MRI, or so called 'microstructure imaging'. The promise of microstructure imaging is one of 'virtual biopsy' with the goal to offset the need for invasive procedures in favour of imaging that can guide pre-surgical planning and can be repeated longitudinally to monitor and predict treatment response. The exploration of such methods is motivated by the striking link between parameters from MRI and tumour histology, for example the correlation between the apparent diffusion coefficient and cellularity. Recent microstructure imaging techniques probe even more subtle and specific features, providing parameters associated to cell shape, size, permeability, and volume distributions. However, the range of scenarios in which these techniques provide reliable imaging biomarkers that can be used to test medical hypotheses or support clinical decisions is yet unknown. Accurate microstructure imaging may moreover require acquisitions that go beyond conventional data acquisition strategies. This review covers a wide range of candidate microstructure imaging methods based on diffusion MRI and relaxometry, and explores advantages, challenges, and potential pitfalls in brain tumour microstructure imaging. Copyright © 2018. Published by Elsevier Inc.
Li, Hai Ming; Liu, Jia; Qiang, Jin Wei; Gu, Wei Yong; Zhang, Guo Fu; Ma, Feng Hua
2017-11-01
This study aimed to investigate the conventional magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) features of endometrial stromal sarcoma (ESS) including a preliminary investigation of the correlation between the apparent diffusion coefficient (ADC) value and Ki-67 expression. The clinical and MRI data of 15 patients with ESS confirmed by surgery and pathology were analyzed retrospectively. The conventional MR morphological features, signal intensity on DWI, ADC value (n = 14), and clinicopathological marker Ki-67 (n = 13) were evaluated. Of 15 patients with ESS, 13 tumors were low-grade ESS (LGESS), and the remaining 2 were high-grade ESS (HGESS); 9 tumors were located in the myometrium, 5 were located in the endometrium and/or cervical canal, and 1 was located in extrauterine. Thirteen (87%) of 15 tumors showed a homo- or heterogeneous isointensity on T1-weighted imaging and a heterogeneous hyperintensity on T2-weighted imaging. The hypointense bands were observed in 11 tumors (73%) on T2-weighted imaging. The degenerations (cystic/necrosis/hemorrhage) were observed in 7 LGESS tumors and 2 HGESS tumors. The DWI hyperintensity was observed in 13 tumors (93%) and isointensity in remaining 1. The mean ADC value of the solid components in 14 ESSs was (1.05 ± 0.20) × 10mm/s. The contrast-enhanced MRI showed an obvious enhancement in 14 tumors (93%) (heterogeneous in 7 LGESSs and 2 HGESSs; homogeneous in 5 LGESSs). The ADC value was inversely correlated with the Ki-67 expression (r = -0.613, P = 0.026). Patients with ESS showed some characteristics on conventional MRI and DWI, and there was an inverse correlation between the ADC value and Ki-67 expression.
High-fidelity meshes from tissue samples for diffusion MRI simulations.
Panagiotaki, Eleftheria; Hall, Matt G; Zhang, Hui; Siow, Bernard; Lythgoe, Mark F; Alexander, Daniel C
2010-01-01
This paper presents a method for constructing detailed geometric models of tissue microstructure for synthesizing realistic diffusion MRI data. We construct three-dimensional mesh models from confocal microscopy image stacks using the marching cubes algorithm. Random-walk simulations within the resulting meshes provide synthetic diffusion MRI measurements. Experiments optimise simulation parameters and complexity of the meshes to achieve accuracy and reproducibility while minimizing computation time. Finally we assess the quality of the synthesized data from the mesh models by comparison with scanner data as well as synthetic data from simple geometric models and simplified meshes that vary only in two dimensions. The results support the extra complexity of the three-dimensional mesh compared to simpler models although sensitivity to the mesh resolution is quite robust.
Iima, Mami; Kataoka, Masako; Kanao, Shotaro; Kawai, Makiko; Onishi, Natsuko; Koyasu, Sho; Murata, Katsutoshi; Ohashi, Akane; Sakaguchi, Rena; Togashi, Kaori
2018-01-01
We prospectively examined the variability of non-Gaussian diffusion magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) measurements with different numbers of b-values and excitations in normal breast tissue and breast lesions. Thirteen volunteers and fourteen patients with breast lesions (seven malignant, eight benign; one patient had bilateral lesions) were recruited in this prospective study (approved by the Internal Review Board). Diffusion-weighted MRI was performed with 16 b-values (0-2500 s/mm2 with one number of excitations [NEX]) and five b-values (0-2500 s/mm2, 3 NEX), using a 3T breast MRI. Intravoxel incoherent motion (flowing blood volume fraction [fIVIM] and pseudodiffusion coefficient [D*]) and non-Gaussian diffusion (theoretical apparent diffusion coefficient [ADC] at b value of 0 sec/mm2 [ADC0] and kurtosis [K]) parameters were estimated from IVIM and Kurtosis models using 16 b-values, and synthetic apparent diffusion coefficient (sADC) values were obtained from two key b-values. The variabilities between and within subjects and between different diffusion acquisition methods were estimated. There were no statistical differences in ADC0, K, or sADC values between the different b-values or NEX. A good agreement of diffusion parameters was observed between 16 b-values (one NEX), five b-values (one NEX), and five b-values (three NEX) in normal breast tissue or breast lesions. Insufficient agreement was observed for IVIM parameters. There were no statistical differences in the non-Gaussian diffusion MRI estimated values obtained from a different number of b-values or excitations in normal breast tissue or breast lesions. These data suggest that a limited MRI protocol using a few b-values might be relevant in a clinical setting for the estimation of non-Gaussian diffusion MRI parameters in normal breast tissue and breast lesions.
Kataoka, Masako; Kanao, Shotaro; Kawai, Makiko; Onishi, Natsuko; Koyasu, Sho; Murata, Katsutoshi; Ohashi, Akane; Sakaguchi, Rena; Togashi, Kaori
2018-01-01
We prospectively examined the variability of non-Gaussian diffusion magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) measurements with different numbers of b-values and excitations in normal breast tissue and breast lesions. Thirteen volunteers and fourteen patients with breast lesions (seven malignant, eight benign; one patient had bilateral lesions) were recruited in this prospective study (approved by the Internal Review Board). Diffusion-weighted MRI was performed with 16 b-values (0–2500 s/mm2 with one number of excitations [NEX]) and five b-values (0–2500 s/mm2, 3 NEX), using a 3T breast MRI. Intravoxel incoherent motion (flowing blood volume fraction [fIVIM] and pseudodiffusion coefficient [D*]) and non-Gaussian diffusion (theoretical apparent diffusion coefficient [ADC] at b value of 0 sec/mm2 [ADC0] and kurtosis [K]) parameters were estimated from IVIM and Kurtosis models using 16 b-values, and synthetic apparent diffusion coefficient (sADC) values were obtained from two key b-values. The variabilities between and within subjects and between different diffusion acquisition methods were estimated. There were no statistical differences in ADC0, K, or sADC values between the different b-values or NEX. A good agreement of diffusion parameters was observed between 16 b-values (one NEX), five b-values (one NEX), and five b-values (three NEX) in normal breast tissue or breast lesions. Insufficient agreement was observed for IVIM parameters. There were no statistical differences in the non-Gaussian diffusion MRI estimated values obtained from a different number of b-values or excitations in normal breast tissue or breast lesions. These data suggest that a limited MRI protocol using a few b-values might be relevant in a clinical setting for the estimation of non-Gaussian diffusion MRI parameters in normal breast tissue and breast lesions. PMID:29494639
Sauwen, N; Acou, M; Van Cauter, S; Sima, D M; Veraart, J; Maes, F; Himmelreich, U; Achten, E; Van Huffel, S
2016-01-01
Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI) is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI) approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets.
Zacharzewska-Gondek, Anna; Maksymowicz, Hanna; Szymczyk, Małgorzata; Sąsiadek, Marek; Bladowska, Joanna
2017-01-01
Restricted diffusion that is found on magnetic resonance diffusion-weighted imaging (DWI) typically indicates acute ischaemic stroke. However, restricted diffusion can also occur in other diseases, like metastatic brain tumours, which we describe in this case report. A 57-year-old male, with a diagnosis of small-cell cancer of the right lung (microcellular anaplastic carcinoma), was admitted with focal neurological symptoms. Initial brain MRI revealed multiple, disseminated lesions that were hyperintense on T2-weighted images and did not enhance after contrast administration; notably, some lesions manifested restricted diffusion on DWI images. Based on these findings, disseminated ischaemic lesions were diagnosed. On follow-up MRI that was performed after 2 weeks, we observed enlargement of the lesions; there were multiple, disseminated, sharply outlined, contrast-enhancing, oval foci with persistent restriction of diffusion. We diagnosed the lesions as disseminated brain metastases due to lung cancer. To our knowledge, this is the first description of a patient with brain metastases that were characterised by restricted diffusion and no contrast enhancement. Multiple, disseminated brain lesions, that are characterised by restricted diffusion on DWI, typically indicate acute or hyperacute ischemic infarcts; however, they can also be due to hypercellular metastases, even if no contrast enhancement is observed. This latter possibility should be considered particularly in patients with cancer.
2016-10-01
including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...SUBJECT TERMS Gulf war illness; magnetic resonance imaging; dopamine; diffusion tensor imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...nigra, basal ganglia and cortex as markers of integrity of the nigro-striatal dopaminergic pathway using high resolution diffusion tensor imaging (DTI
Müller, Uta; Kubik-Huch, Rahel A; Ares, Carmen; Hug, Eugen B; Löw, Roland; Valavanis, Antonios; Ahlhelm, Frank J
2016-02-01
Chordoma and chondrosarcoma are locally invasive skull base tumors with similar clinical symptoms and anatomic imaging features as reported in the literature. To determine differentiation of chordoma and chondrosarcoma of the skull base with conventional magnetic resonance imaging (cMRI) and diffusion-weighted MR imaging (DWI) in comparison to histopathological diagnosis. This retrospective study comprised 96 (chordoma, n = 64; chondrosarcoma, n = 32) patients with skull base tumors referred to the Paul Scherrer Institute (PSI) for proton therapy. cMRI signal intensities of all tumors were investigated. In addition, median apparent diffusion coefficient (ADC) values were measured in a subgroup of 19 patients (chordoma, n = 11; chondrosarcoma, n = 8). The majority 81.2% (26/32) of chondrosarcomas displayed an off-midline growth pattern, 18.8% (6/32) showed clival invasion, 18.8% (6/32) were located more centrally. Only 4.7% (3/64) of chordomas revealed a lateral clival origin. Using cMRI no significant differences in MR signal intensities were observed in contrast to significantly different ADC values (subgroup of 19/96 patients examined by DWI), with the highest mean value of 2017.2 × 10(-6 )mm(2)/s (SD, 139.9( )mm(2)/s) for chondrosarcoma and significantly lower value of 1263.5 × 10(-6 )mm(2)/s (SD, 100.2 × 10(-6 )mm(2)/s) for chordoma (P = 0.001/median test). An off-midline growth pattern can differentiate chondrosarcoma from chordoma on cMRI in a majority of patients. Additional DWI is a promising tool for the differentiation of these skull base tumors. © The Foundation Acta Radiologica 2015.
Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A.; He, Huiguang; Jiao, Yonghong
2015-01-01
Purpose To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. Methods T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender- matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Results Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. Conclusions CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1. PMID:26186732
Comparison of cumulant expansion and q-space imaging estimates for diffusional kurtosis in brain.
Mohanty, Vaibhav; McKinnon, Emilie T; Helpern, Joseph A; Jensen, Jens H
2018-05-01
To compare estimates for the diffusional kurtosis in brain as obtained from a cumulant expansion (CE) of the diffusion MRI (dMRI) signal and from q-space (QS) imaging. For the CE estimates of the kurtosis, the CE was truncated to quadratic order in the b-value and fit to the dMRI signal for b-values from 0 up to 2000s/mm 2 . For the QS estimates, b-values ranging from 0 up to 10,000s/mm 2 were used to determine the diffusion displacement probability density function (dPDF) via Stejskal's formula. The kurtosis was then calculated directly from the second and fourth order moments of the dPDF. These two approximations were studied for in vivo human data obtained on a 3T MRI scanner using three orthogonal diffusion encoding directions. The whole brain mean values for the CE and QS kurtosis estimates differed by 16% or less in each of the considered diffusion encoding directions, and the Pearson correlation coefficients all exceeded 0.85. Nonetheless, there were large discrepancies in many voxels, particularly those with either very high or very low kurtoses relative to the mean values. Estimates of the diffusional kurtosis in brain obtained using CE and QS approximations are strongly correlated, suggesting that they encode similar information. However, for the choice of b-values employed here, there may be substantial differences, depending on the properties of the diffusion microenvironment in each voxel. Copyright © 2018 Elsevier Inc. All rights reserved.
The VALiDATe29 MRI Based Multi-Channel Atlas of the Squirrel Monkey Brain.
Schilling, Kurt G; Gao, Yurui; Stepniewska, Iwona; Wu, Tung-Lin; Wang, Feng; Landman, Bennett A; Gore, John C; Chen, Li Min; Anderson, Adam W
2017-10-01
We describe the development of the first digital atlas of the normal squirrel monkey brain and present the resulting product, VALiDATe29. The VALiDATe29 atlas is based on multiple types of magnetic resonance imaging (MRI) contrast acquired on 29 squirrel monkeys, and is created using unbiased, nonlinear registration techniques, resulting in a population-averaged stereotaxic coordinate system. The atlas consists of multiple anatomical templates (proton density, T1, and T2* weighted), diffusion MRI templates (fractional anisotropy and mean diffusivity), and ex vivo templates (fractional anisotropy and a structural MRI). In addition, the templates are combined with histologically defined cortical labels, and diffusion tractography defined white matter labels. The combination of intensity templates and image segmentations make this atlas suitable for the fundamental atlas applications of spatial normalization and label propagation. Together, this atlas facilitates 3D anatomical localization and region of interest delineation, and enables comparisons of experimental data across different subjects or across different experimental conditions. This article describes the atlas creation and its contents, and demonstrates the use of the VALiDATe29 atlas in typical applications. The atlas is freely available to the scientific community.
Diffusion, Perfusion, and Histopathologic Characteristics of Desmoplastic Infantile Ganglioglioma.
Ho, Chang Y; Gener, Melissa; Bonnin, Jose; Kralik, Stephen F
2016-07-01
We present a case series of a rare tumor, the desmoplastic infantile ganglioglioma (DIG) with MRI diffusion and perfusion imaging quantification as well as histopathologic characterization. Four cases with pathologically-proven DIG had diffusion weighted imaging (DWI) and two of the four had dynamic susceptibility contrast imaging. All four tumors demonstrate DWI findings compatible with low-grade pediatric tumors. For the two cases with perfusion imaging, a higher relative cerebral blood volume was associated with higher proliferation index on histopathology for one of the cases. Our results are discussed in conjunction with a literature review.
Diffusion, Perfusion, and Histopathologic Characteristics of Desmoplastic Infantile Ganglioglioma
Ho, Chang Y; Gener, Melissa; Bonnin, Jose; Kralik, Stephen F
2016-01-01
We present a case series of a rare tumor, the desmoplastic infantile ganglioglioma (DIG) with MRI diffusion and perfusion imaging quantification as well as histopathologic characterization. Four cases with pathologically-proven DIG had diffusion weighted imaging (DWI) and two of the four had dynamic susceptibility contrast imaging. All four tumors demonstrate DWI findings compatible with low-grade pediatric tumors. For the two cases with perfusion imaging, a higher relative cerebral blood volume was associated with higher proliferation index on histopathology for one of the cases. Our results are discussed in conjunction with a literature review. PMID:27761184
Moschetta, Marco; Telegrafo, Michele; Rella, Leonarda; Capolongo, Arcangela; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe
2014-07-01
Diffusion imaging represents a new imaging tool for the diagnosis of breast cancer. This study aims to investigate the role of diffusion-weighted MRI with background body signal suppression (DWIBS) for evaluating breast lesions. 90 patients were prospectively evaluated by MRI with STIR, TSE-T2, contrast enhanced THRIVE-T1 and DWIBS sequences. DWIBS were analyzed searching for the presence of breast lesions and calculating the ADC value. ADC values of ≤1.44×10(-3)mm(2)/s were considered suspicious for malignancy. This analysis was then compared with the histological findings. Sensitivity, specificity, diagnostic accuracy (DA), positive predictive value (PPV) and negative (NPV) were calculated. In 53/90 (59%) patients, DWIBS indicated the presence of breast lesions, 16 (30%) with ADC values of >1.44 and 37 (70%) with ADC≤1.44. The comparison with histology showed 25 malignant and 28 benign lesions. DWIBS sequences obtained sensitivity, specificity, DA, PPV and NPV values of 100, 82, 87, 68 and 100%, respectively. DWIBS can be proposed in the MRI breast protocol representing an accurate diagnostic complement. Copyright © 2014 Elsevier Inc. All rights reserved.
Delineation of early brain development from fetuses to infants with diffusion MRI and beyond.
Ouyang, Minhui; Dubois, Jessica; Yu, Qinlin; Mukherjee, Pratik; Huang, Hao
2018-04-12
Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating structural changes of the brain during early development provides new insights into the complicated processes of both typical development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional maturation gradients in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders. Copyright © 2018 Elsevier Inc. All rights reserved.
Ultra high spatial and temporal resolution breast imaging at 7T.
van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J
2013-04-01
There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.
Bouts, Mark J R J; Möller, Christiane; Hafkemeijer, Anne; van Swieten, John C; Dopper, Elise; van der Flier, Wiesje M; Vrenken, Hugo; Wink, Alle Meije; Pijnenburg, Yolande A L; Scheltens, Philip; Barkhof, Frederik; Schouten, Tijn M; de Vos, Frank; Feis, Rogier A; van der Grond, Jeroen; de Rooij, Mark; Rombouts, Serge A R B
2018-01-01
Overlapping clinical symptoms often complicate differential diagnosis between patients with Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). Magnetic resonance imaging (MRI) reveals disease specific structural and functional differences that aid in differentiating AD from bvFTD patients. However, the benefit of combining structural and functional connectivity measures to-on a subject-basis-differentiate these dementia-types is not yet known. Anatomical, diffusion tensor (DTI), and resting-state functional MRI (rs-fMRI) of 30 patients with early stage AD, 23 with bvFTD, and 35 control subjects were collected and used to calculate measures of structural and functional tissue status. All measures were used separately or selectively combined as predictors for training an elastic net regression classifier. Each classifier's ability to accurately distinguish dementia-types was quantified by calculating the area under the receiver operating characteristic curves (AUC). Highest AUC values for AD and bvFTD discrimination were obtained when mean diffusivity, full correlations between rs-fMRI-derived independent components, and fractional anisotropy (FA) were combined (0.811). Similarly, combining gray matter density (GMD), FA, and rs-fMRI correlations resulted in highest AUC of 0.922 for control and bvFTD classifications. This, however, was not observed for control and AD differentiations. Classifications with GMD (0.940) and a GMD and DTI combination (0.941) resulted in similar AUC values (p = 0.41). Combining functional and structural connectivity measures improve dementia-type differentiations and may contribute to more accurate and substantiated differential diagnosis of AD and bvFTD patients. Imaging protocols for differential diagnosis may benefit from also including DTI and rs-fMRI.
Early effects of low dose bevacizumab treatment assessed by magnetic resonance imaging.
Gaustad, Jon-Vidar; Simonsen, Trude G; Smistad, Ragnhild; Wegner, Catherine S; Andersen, Lise Mari K; Rofstad, Einar K
2015-11-14
Antiangiogenic treatments have been shown to increase blood perfusion and oxygenation in some experimental tumors, and to reduce blood perfusion and induce hypoxia in others. The purpose of this preclinical study was to investigate the potential of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) and diffusion weighted MRI (DW-MRI) in assessing early effects of low dose bevacizumab treatment, and to investigate intratumor heterogeneity in this effect. A-07 and R-18 human melanoma xenografts, showing high and low expression of VEGF-A, respectively, were used as tumor models. Untreated and bevacizumab-treated tumors were subjected to DCE-MRI and DW-MRI before treatment, and twice during a 7-days treatment period. Tumor images of Ktrans (the volume transfer constant of Gd-DOTA) and ve (the fractional distribution volume of Gd-DOTA) were produced by pharmacokinetic analysis of the DCE-MRI data, and tumor images of ADC (the apparent diffusion coefficient) were produced from DW-MRI data. Untreated A-07 tumors showed higher Ktrans, v e, and ADC values than untreated R-18 tumors. Untreated tumors showed radial heterogeneity in Ktrans, i.e., Ktrans was low in central tumor regions and increased gradually towards the tumor periphery. After the treatment, bevacizumab-treated A-07 tumors showed lower Ktrans values than untreated A-07 tumors. Peripherial tumor regions showed substantial reductions in Ktrans, whereas little or no effect was seen in central regions. Consequently, the treatment altered the radial heterogeneity in Ktrans. In R-18 tumors, significant changes in Ktrans were not observed. Treatment induced changes in tumor size, v e, and ADC were not seen in any of the tumor lines. Early effects of low dose bevacizumab treatment may be highly heterogeneous within tumors and can be detected with DCE-MRI.
[Cavernous sinus thrombosis as a rare cause of exophthalmos in childhood : A case report].
Kamawal, A; Schmidt, M A; Rompel, O; Gusek-Schneider, G C; Mardin, C Y; Trollmann, R
2017-05-01
Complications of acute bacterial sinusitis mostly occur in children and adolescents. In particular, intracranial spread of the infection can lead to severe even fatal courses of the disease. This article is a case report about a 13-year-old boy suffering from left-sided headache, meningismus and exophthalmos as presenting symptoms. Cranial magnetic resonance imaging (MRI) showed merely right-sided sphenoid sinusitis; however, the diffusion-weighted MRI sequence indicated a left-sided cavernous sinus thrombosis, which could be confirmed by computed tomography (CT) angiography. Cerebrospinal fluid diagnostics showed significant leukocytosis confirming secondary meningitis. Finally, exophthalmos was explained by parainfectious cavernous sinus thrombosis and periorbital edema. This case report highlights the importance of extended and specific diagnostic imaging in cases of clinically suspected complications in children and adolescents with sinusitis and the diagnostic significance of diffusion-weighted MRI.
Simultaneous in vivo positron emission tomography and magnetic resonance imaging.
Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R
2008-03-11
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.
Sahara, Naruhiko; Perez, Pablo D.; Lin, Wen-Lang; Dickson, Dennis W.; Ren, Yan; Zeng, Huadong; Lewis, Jada; Febo, Marcelo
2016-01-01
Elevated expression of human hyperphosphorylated tau is associated with neuronal loss and white matter (WM) pathology in Alzheimer’s disease (AD) and related neurodegenerative disorders. Using in vivo diffusion tensor magnetic resonance imaging (DT-MRI) at 11.1 Tesla we measured age-related alterations in WM diffusion anisotropy indices in a mouse model of human tauopathy (rTg4510) and nontransgenic (nonTg) control mice at the age of 2.5, 4.5, and 8 months. Similar to previous DT-MRI studies in AD subjects, 8-month-old rTg4510 mice showed lower fractional anisotropy (FA) values in WM structures than nonTg. The low WM FA in rTg4510 mice was observed in the genu and splenium of the corpus callosum, anterior commissure, fimbria, and internal capsule and was associated with a higher radial diffusivity than nonTg. Interestingly, rTg4510 mice showed lower estimates for the mode of anisotropy than controls at 2.5 months suggesting that changes in this diffusivity metric are detectable at an early stage preceding severe tauopathy. Immunogold electron microscopy partly supports our diffusion tensor imaging findings. At the age of 4 months, rTg4510 mice show axonal tau inclusions and unmyelinated processes. At later ages (12 months and 14 months) we observed inclusions in myelin sheath, axons, and unmyelinated processes, and a “disorganized” pattern of myelinated fiber arrangement with enlarged inter-axonal spaces in rTg4510 but not in nonTg mice. Our data support a role for the progression of tau pathology in reduced WM integrity measured by DT-MRI. Further in vivo DT-MRI studies in the rTg4510 mouse should help better discern the detailed mechanisms of reduced FA and anisotropy mode, and the specific role of tau during neurodegeneration. PMID:24411290
Magnetic resonance imaging based clinical research in Alzheimer's disease.
Fayed, Nicolás; Modrego, Pedro J; Salinas, Gulillermo Rojas; Gazulla, José
2012-01-01
Alzheimer's disease (AD) is the most common cause of dementia in elderly people in western countries. However important goals are unmet in the issue of early diagnosis and the development of new drugs for treatment. Magnetic resonance imaging (MRI) and volumetry of the medial temporal lobe structures are useful tools for diagnosis. Positron emission tomography is one of the most sensitive tests for making an early diagnosis of AD but the cost and limited availability are important caveats for its utilization. The importance of magnetic resonance techniques has increased gradually to the extent that most clinical works based on AD use these techniques as the main aid to diagnosis. However, the accuracy of structural MRI as biomarker of early AD generally reaches an accuracy of 80%, so additional biomarkers should be used to improve predictions. Other structural MRI (diffusion weighted, diffusion-tensor MRI) and functional MRI have also added interesting contribution to the understanding of the pathophysiology of AD. Magnetic resonance spectroscopy has proven useful to monitor progression and response to treatment in AD, as well as a biomarker of early AD in mild cognitive impairment.
MRI and clinical features of maple syrup urine disease: preliminary results in 10 cases.
Cheng, Ailan; Han, Lianshu; Feng, Yun; Li, Huimin; Yao, Rong; Wang, Dengbin; Jin, Biao
2017-01-01
We aimed to evaluate the magnetic resonance imaging (MRI) and clinical features of maple syrup urine disease (MSUD). This retrospective study consisted of 10 MSUD patients confirmed by genetic testing. All patients underwent brain MRI. Phenotype, genotype, and areas of brain injury on MRI were retrospectively reviewed. Six patients (60%) had the classic form of MSUD with BCKDHB mutation, three patients (30%) had the intermittent form (two with BCKDHA mutations and one with DBT mutation), and one patient (10%) had the thiamine-responsive form with DBT mutation. On diffusion-weighted imaging, nine cases presented restricted diffusion in myelinated areas, and one intermittent case with DBT mutation was normal. The classic form of MSUD involved the basal ganglia in six cases; the cerebellum, mesencephalon, pons, and supratentorial area in five cases; and the thalamus in four cases, respectively. The intermittent form involved the cerebellum, pons, and supratentorial area in two cases. The thiamine-responsive form involved the basal ganglia and supratentorial area. Our preliminary results indicate that patients with MSUD presented more commonly in classic form with BCKDHB mutation and displayed extensive brain injury on MRI.
Zhang, Yuxin; Holmes, James; Rabanillo, Iñaki; Guidon, Arnaud; Wells, Shane; Hernando, Diego
2018-09-01
To evaluate the reproducibility of quantitative diffusion measurements obtained with reduced Field of View (rFOV) and Multi-shot EPI (msEPI) acquisitions, using single-shot EPI (ssEPI) as a reference. Diffusion phantom experiments, and prostate diffusion-weighted imaging in healthy volunteers and patients with known or suspected prostate cancer were performed across the three different sequences. Quantitative diffusion measurements of apparent diffusion coefficient, and diffusion kurtosis parameters (healthy volunteers), were obtained and compared across diffusion sequences (rFOV, msEPI, and ssEPI). Other possible confounding factors like b-value combinations and acquisition parameters were also investigated. Both msEPI and rFOV have shown reproducible quantitative diffusion measurements relative to ssEPI; no significant difference in ADC was observed across pulse sequences in the standard diffusion phantom (p = 0.156), healthy volunteers (p ≥ 0.12) or patients (p ≥ 0.26). The ADC values within the non-cancerous central gland and peripheral zone of patients were 1.29 ± 0.17 × 10 -3 mm 2 /s and 1.74 ± 0.23 × 10 -3 mm 2 /s respectively. However, differences in quantitative diffusion parameters were observed across different number of averages for rFOV, and across b-value groups and diffusion models for all the three sequences. Both rFOV and msEPI have the potential to provide high image quality with reproducible quantitative diffusion measurements in prostate diffusion MRI. Copyright © 2018 Elsevier Inc. All rights reserved.
Yu, Xue; Lee, Elaine Yuen Phin; Lai, Vincent; Chan, Queenie
2014-07-01
To evaluate the correlation between standardized uptake value (SUV) (tissue metabolism) and apparent diffusion coefficient (ADC) (water diffusivity) in peritoneal metastases. Patients with peritoneal dissemination detected on (18)F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDG-PET/CT) were prospectively recruited for MRI examinations with informed consent and the study was approved by the local Institutional Review Board. FDG-PET/CT, diffusion-weighted imaging (DWI), MRI, and DWI/MRI images were independently reviewed by two radiologists based on visual analysis. SUVmax/SUVmean and ADCmin/ADCmean were obtained manually by drawing ROIs over the peritoneal metastases on FDG-PET/CT and DWI, respectively. Diagnostic characteristics of each technique were evaluated. Pearson's coefficient and McNemar and Kappa tests were used for statistical analysis. Eight patients were recruited for this prospective study and 34 peritoneal metastases were evaluated. ADCmean was significantly and negatively correlated with SUVmax (r = -0.528, P = 0.001) and SUVmean (r = -0.548, P = 0.001). ADCmin had similar correlation with SUVmax (r = -0.508, P = 0.002) and SUVmean (r = -0.513, P = 0.002). DWI/MRI had high diagnostic performance (accuracy = 98%) comparable to FDG-PET/CT, in peritoneal metastasis detection. Kappa values were excellent for all techniques. There was a significant inverse correlation between SUV and ADC. © 2013 Wiley Periodicals, Inc.
The Human Connectome Project: A data acquisition perspective
Van Essen, D.C.; Ugurbil, K.; Auerbach, E.; Barch, D.; Behrens, T.E.J.; Bucholz, R.; Chang, A.; Chen, L.; Corbetta, M.; Curtiss, S.W.; Della Penna, S.; Feinberg, D.; Glasser, M.F.; Harel, N.; Heath, A.C.; Larson-Prior, L.; Marcus, D.; Michalareas, G.; Moeller, S.; Oostenveld, R.; Petersen, S.E.; Prior, F.; Schlaggar, B.L.; Smith, S.M.; Snyder, A.Z.; Xu, J.; Yacoub, E.
2012-01-01
The Human Connectome Project (HCP) is an ambitious 5-year effort to characterize brain connectivity and function and their variability in healthy adults. This review summarizes the data acquisition plans being implemented by a consortium of HCP investigators who will study a population of 1200 subjects (twins and their non-twin siblings) using multiple imaging modalities along with extensive behavioral and genetic data. The imaging modalities will include diffusion imaging (dMRI), resting-state fMRI (R-fMRI), task-evoked fMRI (T-fMRI), T1- and T2-weighted MRI for structural and myelin mapping, plus combined magnetoencephalography and electroencephalography (MEG/EEG). Given the importance of obtaining the best possible data quality, we discuss the efforts underway during the first two years of the grant (Phase I) to refine and optimize many aspects of HCP data acquisition, including a new 7T scanner, a customized 3T scanner, and improved MR pulse sequences. PMID:22366334
Clinical applications of advanced magnetic resonance imaging techniques for arthritis evaluation
Martín Noguerol, Teodoro; Luna, Antonio; Gómez Cabrera, Marta; Riofrio, Alexie D
2017-01-01
Magnetic resonance imaging (MRI) has allowed a comprehensive evaluation of articular disease, increasing the detection of early cartilage involvement, bone erosions, and edema in soft tissue and bone marrow compared to other imaging techniques. In the era of functional imaging, new advanced MRI sequences are being successfully applied for articular evaluation in cases of inflammatory, infectious, and degenerative arthropathies. Diffusion weighted imaging, new fat suppression techniques such as DIXON, dynamic contrast enhanced-MRI, and specific T2 mapping cartilage sequences allow a better understanding of the physiopathological processes that underlie these different arthropathies. They provide valuable quantitative information that aids in their differentiation and can be used as potential biomarkers of articular disease course and treatment response. PMID:28979849
Kim, Jinna
2010-01-01
Purpose Diffusion tensor imaging provides better understanding of pathophysiology of congenital anomalies, involving central nervous system. This study was aimed to specify the pathogenetic mechanism of heterotopia, proved by diffusion tensor imaging, and establish new findings of heterotopia on fractional anisotropy maps. Materials and Methods Diffusion-weighted imaging data from 11 patients (M : F = 7 : 4, aged from 1 to 22 years, mean = 12.3 years) who visited the epilepsy clinic and received a routine seizure protocol MRI exam were retrospectively analyzed. Fractional anisotropy (FA) maps were generated from diffusion tensor imaging of 11 patients with heterotopia. Regions of interests (ROI) were placed in cerebral cortex, heterotopic gray matter and deep gray matter, including putamen. ANOVA analysis was performed for comparison of different gray matter tissues. Results Heterotopic gray matter showed signal intensities similar to normal gray matter on T1 and T2 weighted MRI. The measured FA of heterotopic gray matter was higher than that of cortical gray matter (0.236 ± 0.011 vs. 0.169 ± 0.015, p < 0.01, one way ANOVA), and slightly lower than that of deep gray matter (0.236 ± 0.011 vs. 0.259 ± 0.016, p < 0.01). Conclusion Increased FA of heterotopic gray matter suggests arrested neuron during radial migration and provides better understanding of neurodevelopment. PMID:20499428
Iannicelli, Elsa; Di Pietropaolo, Marco; Pilozzi, Emanuela; Osti, Mattia Falchetto; Valentino, Maria; Masoni, Luigi; Ferri, Mario
2016-10-01
The aim of our study was to assess the performance value of magnetic resonance imaging (MRI) in the restaging of locally advanced rectal cancer after neoadjuvant chemoradiotherapy (CRT) and in the identification of good vs. poor responders to neoadjuvant therapy. A total of 34 patients with locally advanced rectal cancer underwent MRI prior to and after CRT. T stage and tumor regression grade (TRG) on post-CRT MRI was compared with the pathological staging ypT and TRG. Tumor volume and the apparent diffusion coefficient (ADC) were measured using diffusion-weighted imaging (DWI) before and after neoadjuvant CRT; the percentage of tumor volume reduction and the change of ADC (ΔADC) was also calculated. ADC parameters and the percentage of tumor volume reduction were correlated to histopathological results. The diagnostic performance of ADC and volume reduction to assess tumor response was evaluated by calculating the area under the ROC curve and the optimal cut-off values. A significant correlation between the T stage and the TRG defined in DW-MRI after CRT and the ypT and the TRG observed on the surgical specimens was found (p = 0.001; p < 0.001). The mean post-CRT ADC and ΔADC in responder patients was significantly higher compared to non-responder ones (p = 0.001; p = 0.01). Furthermore, the mean post-CRT ADC values were significantly higher in tumors with T-downstage (p = 0.01). DW-MRI may have a significant role in the restaging and in the evaluation of post-CRT response of locally advanced rectal cancer. Quantitative analysis of DWI through ADC map may result in a promising noninvasive tool to evaluate the response to therapy.
Competitive Advantage of PET/MRI
Jadvar, Hossein; Colletti, Patrick M.
2013-01-01
Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. PMID:23791129
Competitive advantage of PET/MRI.
Jadvar, Hossein; Colletti, Patrick M
2014-01-01
Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Jovicich, Jorge; Marizzoni, Moira; Bosch, Beatriz; Bartrés-Faz, David; Arnold, Jennifer; Benninghoff, Jens; Wiltfang, Jens; Roccatagliata, Luca; Picco, Agnese; Nobili, Flavio; Blin, Oliver; Bombois, Stephanie; Lopes, Renaud; Bordet, Régis; Chanoine, Valérie; Ranjeva, Jean-Philippe; Didic, Mira; Gros-Dagnac, Hélène; Payoux, Pierre; Zoccatelli, Giada; Alessandrini, Franco; Beltramello, Alberto; Bargalló, Núria; Ferretti, Antonio; Caulo, Massimo; Aiello, Marco; Ragucci, Monica; Soricelli, Andrea; Salvadori, Nicola; Tarducci, Roberto; Floridi, Piero; Tsolaki, Magda; Constantinidis, Manos; Drevelegas, Antonios; Rossini, Paolo Maria; Marra, Camillo; Otto, Josephin; Reiss-Zimmermann, Martin; Hoffmann, Karl-Titus; Galluzzi, Samantha; Frisoni, Giovanni B
2014-11-01
Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2 × 2 × 2 mm(3), b = 700 s/mm(2), 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test-retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test-retest reproducibility. White matter b0 SNR reproducibility was on average 7 ± 1% with no significant MRI site effects. Whole brain analysis resulted in no significant test-retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2-4% range for FA and AD and 2-6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios. Copyright © 2014 Elsevier Inc. All rights reserved.
Kang, Byeong-Teck; Jang, Dong-Pyo; Gu, Su-Hyun; Lee, Jong-Hwan; Jung, Dong-In; Lim, Chae-Young; Kim, Ha-Jung; Kim, Young-Bo; Kim, Hyung-Joong; Woo, Eung-Je; Cho, Zang-Hee; Park, Hee-Myung
2009-01-01
The purpose of this study was to evaluate the diagnostic value of magnetic resonance imaging (MRI) and assess the correlation between the volume of the ischemic lesion and neurobehavioral status during the subacute stage of ischemic stroke. Ischemic stroke was induced in 6 healthy laboratory beagles through permanent occlusion of the middle cerebral artery (MCAO). T2-weighted and fluid-attenuated inversion recovery (FLAIR) imaging, diffusion-weighted imaging (DWI), measurement of the apparent diffusion coefficient (ADC) ratio, and neurobehavioral evaluation were performed 3 times serially by using a 1.5-T MR system: before and 3 and 10 d after MCAO. Ischemic lesions demonstrated T2 hyperintensity, FLAIR hyperintensity, and DWI hyperintensity. The ADC ratio was decreased initially but then was increased at 10 d after MCAO. Ischemic lesion volumes on T2-weighted and FLAIR imaging were not significantly different from those on DWI. The lesion volume and neurobehavioral score showed strong correlation. Our results suggest that conventional MRI may be a reliable diagnostic tool during the subacute stage of canine ischemic stroke. PMID:19887030
Characterization of diffuse orbital mass using Apparent diffusion coefficient in 3-tesla MRI.
ElKhamary, Sahar M; Galindo-Ferreiro, Alicia; AlGhafri, Laila; Khandekar, Rajiv; Schellini, Silvana Artioli
2018-01-01
To evaluate if the apparent diffusion coefficient (ADC) value in diffusion-weighted magnetic resonance imaging (DW-MRI) improves the diagnostic accuracy of diffuse orbital masses. ADC DW-MRI was used to evaluate cases of diffuse orbital masses at our institution from 2000 to 2015. Lesions were grouped according to histopathologic diagnosis as, benign, pre-malignant and malignant. Lymphoproliferative lesions were further subgrouped as lymphoma or other lymphoproliferative lesions. The validity of the ADC value for the diffuse orbital mass was compared between groups. The area under curve (AUC) was also calculated. Thirty-nine cases of diffuse orbital masses were evaluated. The median ADC was 0.58 (25% quartile 0.48; minimum: 0.45; maximum: 1.72 × 10 (-3) ) for the malignant tumors and 1.19 (25% quartile 0.7; minimum: 0.5; maximum: 1.95 × 10 (-3) mm (2) s (-1) ) for benign lesions. This difference in ADC between lesions was statistically significant (Mann Whitney U test P < 0.001). The median ADC was 0.51 (25% quartile 0.48) for lymphomas and 0.9 (25% quartile 0.7) for other lymphoproliferative lesions. This difference in ADC was statistically significant (Mann Whitney U test P = 0.02). An ADC value of 0.8 × 10 (-3) mm (2) s (-1) was noted as the ideal threshold value for differentiating malignant from benign diffuse orbital masses. The validity of ADC in predicting a malignant or benign diffuse orbital mass had a sensitivity of 87%, specificity of 67% and accuracy of 88%. ADC is a promising imaging metric to characterize malignant and benign diffuse orbital masses and to distinguish lymphomas from other non-lymphoproliferative lesions.
Counsell, Serena J; Shen, Yuji; Boardman, James P; Larkman, David J; Kapellou, Olga; Ward, Philip; Allsop, Joanna M; Cowan, Frances M; Hajnal, Joseph V; Edwards, A David; Rutherford, Mary A
2006-02-01
Diffuse excessive high signal intensity (DEHSI) is observed in the majority of preterm infants at term-equivalent age on conventional MRI, and diffusion-weighted imaging has shown that apparent diffusion coefficient values are elevated in the white matter (WM) in DEHSI. Our aim was to obtain diffusion tensor imaging on preterm infants at term-equivalent age and term control infants to test the hypothesis that radial diffusivity was significantly different in the WM in preterm infants with DEHSI compared with both preterm infants with normal-appearing WM on conventional MRI and term control infants. Diffusion tensor imaging was obtained on 38 preterm infants at term-equivalent age and 8 term control infants. Values for axial (lambda1) and radial [(lambda2 + lambda3)/2] diffusivity were calculated in regions of interest positioned in the central WM at the level of the centrum semiovale, frontal WM, posterior periventricular WM, occipital WM, anterior and posterior portions of the posterior limb of the internal capsule, and the genu and splenium of the corpus callosum. Radial diffusivity was elevated significantly in the posterior portion of the posterior limb of the internal capsule and the splenium of the corpus callosum, and both axial and radial diffusivity were elevated significantly in the WM at the level of the centrum semiovale, the frontal WM, the periventricular WM, and the occipital WM in preterm infants with DEHSI compared with preterm infants with normal-appearing WM and term control infants. There was no significant difference between term control infants and preterm infants with normal-appearing WM in any region studied. These findings suggest that DEHSI represents an oligodendrocyte and/or axonal abnormality that is widespread throughout the cerebral WM.
Domínguez D, Juan F; Egan, Gary F; Gray, Marcus A; Poudel, Govinda R; Churchyard, Andrew; Chua, Phyllis; Stout, Julie C; Georgiou-Karistianis, Nellie
2013-01-01
IMAGE-HD is an Australian based multi-modal longitudinal magnetic resonance imaging (MRI) study in premanifest and early symptomatic Huntington's disease (pre-HD and symp-HD, respectively). In this investigation we sought to determine the sensitivity of imaging methods to detect macrostructural (volume) and microstructural (diffusivity) longitudinal change in HD. We used a 3T MRI scanner to acquire T1 and diffusion weighted images at baseline and 18 months in 31 pre-HD, 31 symp-HD and 29 controls. Volume was measured across the whole brain, and volume and diffusion measures were ascertained for caudate and putamen. We observed a range of significant volumetric and, for the first time, diffusion changes over 18 months in both pre-HD and symp-HD, relative to controls, detectable at the brain-wide level (volume change in grey and white matter) and in caudate and putamen (volume and diffusivity change). Importantly, longitudinal volume change in the caudate was the only measure that discriminated between groups across all stages of disease: far from diagnosis (>15 years), close to diagnosis (<15 years) and after diagnosis. Of the two diffusion metrics (mean diffusivity, MD; fractional anisotropy, FA), only longitudinal FA change was sensitive to group differences, but only after diagnosis. These findings further confirm caudate atrophy as one of the most sensitive and early biomarkers of neurodegeneration in HD. They also highlight that different tissue properties have varying schedules in their ability to discriminate between groups along disease progression and may therefore inform biomarker selection for future therapeutic interventions.
Small-Animal Imaging Using Diffuse Fluorescence Tomography.
Davis, Scott C; Tichauer, Kenneth M
2016-01-01
Diffuse fluorescence tomography (DFT) has been developed to image the spatial distribution of fluorescence-tagged tracers in living tissue. This capability facilitates the recovery of any number of functional parameters, including enzymatic activity, receptor density, blood flow, and gene expression. However, deploying DFT effectively is complex and often requires years of know-how, especially for newer mutlimodal systems that combine DFT with conventional imaging systems. In this chapter, we step through the process of using MRI-DFT imaging of a receptor-targeted tracer in small animals.
Kikuchi, Shingo; Onuki, Yoshinori; Kuribayashi, Hideto; Takayama, Kozo
2012-01-01
We reported previously that sustained release matrix tablets showed zero-order drug release without being affected by pH change. To understand drug release mechanisms more fully, we monitored the swelling and erosion of hydrating tablets using magnetic resonance imaging (MRI). Three different types of tablets comprised of polyion complex-forming materials and a hydroxypropyl methylcellulose (HPMC) were used. Proton density- and diffusion-weighted images of the hydrating tablets were acquired at intervals. Furthermore, apparent self-diffusion coefficient maps were generated from diffusion-weighted imaging to evaluate the state of hydrating tablets. Our findings indicated that water penetration into polyion complex tablets was faster than that into HPMC matrix tablets. In polyion complex tablets, water molecules were dispersed homogeneously and their diffusivity was relatively high, whereas in HPMC matrix tablets, water molecule movement was tightly restricted within the gel. An optimal tablet formulation determined in a previous study had water molecule penetration and diffusivity properties that appeared intermediate to those of polyion complex and HPMC matrix tablets; water molecules were capable of penetrating throughout the tablets and relatively high diffusivity was similar to that in the polyion complex tablet, whereas like the HPMC matrix tablet, it was well swollen. This study succeeded in characterizing the tablet hydration process. MRI provides profound insight into the state of water molecules in hydrating tablets; thus, it is a useful tool for understanding drug release mechanisms at a molecular level.
Conradi, Mark S.; Yablonskiy, Dmitriy A.; Woods, Jason C.; Gierada, David S.; Jacob, Richard E.; Chang, Yulin V.; Choong, Cliff K.; Sukstanskii, Alex L.; Tanoli, Tariq; Lefrak, Stephen S.; Cooper, Joel D.
2007-01-01
Rationale and Objectives MR imaging of the restricted diffusion of laser-polarized 3He gas provides unique insights into the changes in lung microstructure in emphysema. Results We discuss measurements of ventilation (spin density), mean diffusivity, and the anisotropy of diffusion, which yields the mean acinar airway radius. In addition, the use of spatially modulated longitudinal magnetization allows diffusion to be measured over longer distances and times, with sensitivity to collateral ventilation paths. Early results are also presented for spin density and diffusivity maps made with a perfluorinated inert gas, C3F8. Methods Techniques for purging and imaging excised lungs are discussed. PMID:16253852
Gorgolewski, Krzysztof J; Auer, Tibor; Calhoun, Vince D; Craddock, R Cameron; Das, Samir; Duff, Eugene P; Flandin, Guillaume; Ghosh, Satrajit S; Glatard, Tristan; Halchenko, Yaroslav O; Handwerker, Daniel A; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B Nolan; Nichols, Thomas E; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A; Varoquaux, Gaël; Poldrack, Russell A
2016-06-21
The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations.
Gorgolewski, Krzysztof J.; Auer, Tibor; Calhoun, Vince D.; Craddock, R. Cameron; Das, Samir; Duff, Eugene P.; Flandin, Guillaume; Ghosh, Satrajit S.; Glatard, Tristan; Halchenko, Yaroslav O.; Handwerker, Daniel A.; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B. Nolan; Nichols, Thomas E.; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A.; Varoquaux, Gaël; Poldrack, Russell A.
2016-01-01
The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations. PMID:27326542
Diffusion Lung Imaging with Hyperpolarized Gas MRI
Yablonskiy, Dmitriy A; Sukstanskii, Alexander L; Quirk, James D
2015-01-01
Lung imaging using conventional 1H MRI presents great challenges due to low density of lung tissue, lung motion and very fast lung tissue transverse relaxation (typical T2* is about 1-2 ms). MRI with hyperpolarized gases (3He and 129Xe) provides a valuable alternative due to a very strong signal originated from inhaled gas residing in the lung airspaces and relatively slow gas T2* relaxation (typical T2* is about 20-30 ms). Though in vivo human experiments should be done very fast – usually during a single breath-hold. In this review we describe the recent developments in diffusion lung MRI with hyperpolarized gases. We show that a combination of modeling results of gas diffusion in lung airspaces and diffusion measurements with variable diffusion-sensitizing gradients allows extracting quantitative information on the lung microstructure at the alveolar level. This approach, called in vivo lung morphometry, allows from a less than 15-second MRI scan, providing quantitative values and spatial distributions of the same physiological parameters as are measured by means of the “standard” invasive stereology (mean linear intercept, surface-to-volume ratio, density of alveoli, etc.). Besides, the approach makes it possible to evaluate some advanced Weibel parameters characterizing lung microstructure - average radii of alveolar sacs and ducts, as well as the depth of their alveolar sleeves. Such measurements, providing in vivo information on the integrity of pulmonary acinar airways and their changes in different diseases, are of great importance and interest to a broad range of physiologists and clinicians. We also discuss a new type of experiments that are based on the in vivo lung morphometry technique combined with quantitative CT measurements as well as with the Gradient Echo MRI measurements of hyperpolarized gas transverse relaxation in the lung airspaces. Such experiments provide additional information on the blood vessel volume fraction, specific gas volume, the length of acinar airways, and allows evaluation of lung parenchymal and non-parenchymal tissue. PMID:26676342
NASA Astrophysics Data System (ADS)
Mahmood, Faisal; Johannesen, Helle H.; Geertsen, Poul; Hansen, Rasmus H.
2017-04-01
An imaging biomarker for early prediction of treatment response potentially provides a non-invasive tool for better prognostics and individualized management of the disease. Radiotherapy (RT) response is generally related to changes in gross tumor volume manifesting months later. In this prospective study we investigated the apparent diffusion coefficient (ADC), perfusion fraction and pseudo diffusion coefficient derived from diffusion weighted MRI as potential early biomarkers for radiotherapy response of brain metastases. It was a particular aim to assess the optimal time point for acquiring the DW-MRI scan during the course of treatment, since to our knowledge this important question has not been addressed directly in previous studies. Twenty-nine metastases (N = 29) from twenty-one patients, treated with whole-brain fractionated external beam RT were analyzed. Patients were scanned with a 1 T MRI system to acquire DW-, T2*W-, T2W- and T1W scans, before start of RT, at each fraction and at follow up two to three months after RT. The DW-MRI parameters were derived using regions of interest based on high b-value images (b = 800 s mm-2). Both volumetric and RECIST criteria were applied for response evaluation. It was found that in non-responding metastases the mean ADC decreased and in responding metastases it increased. The volume based response proved to be far more consistently predictable by the ADC change found at fraction number 7 and later, compared to the linear response (RECIST). The perfusion fraction and pseudo diffusion coefficient did not show sufficient prognostic value with either response assessment criteria. In conclusion this study shows that the ADC derived using high b-values may be a reliable biomarker for early assessment of radiotherapy response for brain metastases patients. The earliest response stratification can be achieved using two DW-MRI scans, one pre-treatment and one at treatment day 7-9 (equivalent to 21 Gy).
Mass diffusion coefficient measurement for vitreous humor using FEM and MRI
NASA Astrophysics Data System (ADS)
Rattanakijsuntorn, Komsan; Penkova, Anita; Sadha, Satwindar S.
2018-01-01
In early studies, the ‘contour method’ for determining the diffusion coefficient of the vitreous humor was developed. This technique relied on careful injection of an MRI contrast agent (surrogate drug) into the vitreous humor of fresh bovine eyes, and tracking the contours of the contrast agent in time. In addition, an analytical solution was developed for the theoretical contours built on point source model for the injected surrogate drug. The match between theoretical and experimental contours as a least square fit, while floating the diffusion coefficient, led to the value of the diffusion coefficient. This method had its limitation that the initial injection of the surrogate had to be spherical or ellipsoidal because of the analytical result based on the point-source model. With a new finite element model for the analysis in this study, the technique is much less restrictive and handles irregular shapes of the initial bolus. The fresh bovine eyes were used for drug diffusion study in the vitreous and three contrast agents of different molecular masses: gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA, 938 Da), non-ionic gadoteridol (Prohance, 559 Da), and bovine albumin conjugated with gadolinium (Galbumin, 74 kDa) were used as drug surrogates to visualize the diffusion process by MRI. The 3D finite element model was developed to determine the diffusion coefficients of these surrogates with the images from MRI. This method can be used for other types of bioporous media provided the concentration profile can be visualized (by methods such as MRI or fluorescence).
Nissan, Noam; Furman-Haran, Edna; Shapiro-Feinberg, Myra; Grobgeld, Dov; Degani, Hadassa
2017-09-01
Lactation and the return to the pre-conception state during post-weaning are regulated by hormonal induced processes that modify the microstructure of the mammary gland, leading to changes in the features of the ductal / glandular tissue, the stroma and the fat tissue. These changes create a challenge in the radiological workup of breast disorder during lactation and early post-weaning. Here we present non-invasive MRI protocols designed to record in vivo high spatial resolution, T 2 -weighted images and diffusion tensor images of the entire mammary gland. Advanced imaging processing tools enabled tracking the changes in the anatomical and microstructural features of the mammary gland from the time of lactation to post-weaning. Specifically, by using diffusion tensor imaging (DTI) it was possible to quantitatively distinguish between the ductal / glandular tissue distention during lactation and the post-weaning involution. The application of the T 2 -weighted imaging and DTI is completely safe, non-invasive and uses intrinsic contrast based on differences in transverse relaxation rates and water diffusion rates in various directions, respectively. This study provides a basis for further in-vivo monitoring of changes during the mammary developmental stages, as well as identifying changes due to malignant transformation in patients with pregnancy associated breast cancer (PABC).
NASA Astrophysics Data System (ADS)
Jensen, Jens H.; Helpern, Joseph A.
2011-06-01
Hardware constraints typically require the use of extended gradient pulse durations for clinical applications of diffusion-weighted magnetic resonance imaging (DW-MRI), which can potentially influence the estimation of diffusion metrics. Prior studies have examined this effect for the apparent diffusion coefficient. This study employs a two-compartment exchange model in order to assess the gradient pulse duration sensitivity of the apparent diffusional kurtosis (ADK), a quantitative index of diffusional non-Gaussianity. An analytic expression is derived and numerically evaluated for parameter ranges relevant to DW-MRI of brain. It is found that the ADK differs from the true diffusional kurtosis by at most a few percent. This suggests that ADK estimates for brain may be robust with respect to changes in pulse gradient duration.
Decision forests for learning prostate cancer probability maps from multiparametric MRI
NASA Astrophysics Data System (ADS)
Ehrenberg, Henry R.; Cornfeld, Daniel; Nawaf, Cayce B.; Sprenkle, Preston C.; Duncan, James S.
2016-03-01
Objectives: Advances in multiparametric magnetic resonance imaging (mpMRI) and ultrasound/MRI fusion imaging offer a powerful alternative to the typical undirected approach to diagnosing prostate cancer. However, these methods require the time and expertise needed to interpret mpMRI image scenes. In this paper, a machine learning framework for automatically detecting and localizing cancerous lesions within the prostate is developed and evaluated. Methods: Two studies were performed to gather MRI and pathology data. The 12 patients in the first study underwent an MRI session to obtain structural, diffusion-weighted, and dynamic contrast enhanced image vol- umes of the prostate, and regions suspected of being cancerous from the MRI data were manually contoured by radiologists. Whole-mount slices of the prostate were obtained for the patients in the second study, in addition to structural and diffusion-weighted MRI data, for pathology verification. A 3-D feature set for voxel-wise appear- ance description combining intensity data, textural operators, and zonal approximations was generated. Voxels in a test set were classified as normal or cancer using a decision forest-based model initialized using Gaussian discriminant analysis. A leave-one-patient-out cross-validation scheme was used to assess the predictions against the expert manual segmentations confirmed as cancer by biopsy. Results: We achieved an area under the average receiver-operator characteristic curve of 0.923 for the first study, and visual assessment of the probability maps showed 21 out of 22 tumors were identified while a high level of specificity was maintained. In addition to evaluating the model against related approaches, the effects of the individual MRI parameter types were explored, and pathological verification using whole-mount slices from the second study was performed. Conclusions: The results of this paper show that the combination of mpMRI and machine learning is a powerful tool for quantitatively diagnosing prostate cancer.
Quantitative T2 mapping of white matter: applications for ageing and cognitive decline
NASA Astrophysics Data System (ADS)
Knight, Michael J.; McCann, Bryony; Tsivos, Demitra; Dillon, Serena; Coulthard, Elizabeth; Kauppinen, Risto A.
2016-08-01
In MRI, the coherence lifetime T2 is sensitive to the magnetic environment imposed by tissue microstructure and biochemistry in vivo. Here we explore the possibility that the use of T2 relaxometry may provide information complementary to that provided by diffusion tensor imaging (DTI) in ageing of healthy controls (HC), Alzheimer’s disease (AD) and mild cognitive impairment (MCI). T2 and diffusion MRI metrics were quantified in HC and patients with MCI and mild AD using multi-echo MRI and DTI. We used tract-based spatial statistics (TBSS) to evaluate quantitative MRI parameters in white matter (WM). A prolonged T2 in WM was associated with AD, and able to distinguish AD from MCI, and AD from HC. Shorter WM T2 was associated with better cognition and younger age in general. In no case was a reduction in T2 associated with poorer cognition. We also applied principal component analysis, showing that WM volume changes independently of T2, MRI diffusion indices and cognitive performance indices. Our data add to the evidence that age-related and AD-related decline in cognition is in part attributable to WM tissue state, and much less to WM quantity. These observations suggest that WM is involved in AD pathology, and that T2 relaxometry is a potential imaging modality for detecting and characterising WM in cognitive decline and dementia.
Fink, Kathleen R; Fink, James R
2013-01-01
Imaging plays a key role in the diagnosis of central nervous system (CNS) metastasis. Imaging is used to detect metastases in patients with known malignancies and new neurological signs or symptoms, as well as to screen for CNS involvement in patients with known cancer. Computed tomography (CT) and magnetic resonance imaging (MRI) are the key imaging modalities used in the diagnosis of brain metastases. In difficult cases, such as newly diagnosed solitary enhancing brain lesions in patients without known malignancy, advanced imaging techniques including proton magnetic resonance spectroscopy (MRS), contrast enhanced magnetic resonance perfusion (MRP), diffusion weighted imaging (DWI), and diffusion tensor imaging (DTI) may aid in arriving at the correct diagnosis. This image-rich review discusses the imaging evaluation of patients with suspected intracranial involvement and malignancy, describes typical imaging findings of parenchymal brain metastasis on CT and MRI, and provides clues to specific histological diagnoses such as the presence of hemorrhage. Additionally, the role of advanced imaging techniques is reviewed, specifically in the context of differentiating metastasis from high-grade glioma and other solitary enhancing brain lesions. Extra-axial CNS involvement by metastases, including pachymeningeal and leptomeningeal metastases is also briefly reviewed.
NASA Astrophysics Data System (ADS)
Leroy, Henri-Arthur; Vermandel, Maximilien; Tétard, Marie-Charlotte; Lejeune, Jean-Paul; Mordon, Serge; Reyns, Nicolas
2015-03-01
Background Glioblastoma is a high-grade cerebral tumor with local recurrence and poor outcome. Photodynamic therapy (PDT) is a local treatment based on the light activation of a photosensitizer (PS) in the presence of oxygen to form cytotoxic species. Fractionation of light delivery may enhance treatment efficiency by restoring tissue oxygenation. Objectives To evaluate the efficiency of light fractionation using MRI imaging, including diffusion and perfusion, compared to histological data. Materials and Methods Thirty-nine "Nude" rats were grafted with human U87 cells into the right putamen. After PS precursor intake (5-ALA), an optic fiber was introduced into the tumor. The rats were randomized in three groups: without illumination, with monofractionated illumination and the third one with multifractionated light. Treatment effects were assessed with early MRI including diffusion and perfusion sequences. The animals were eventually sacrificed to perform brain histology. Results On MRI, we observed elevated diffusion values in the center of the tumor among treated animals, especially in multifractionated group. Perfusion decreased around the treatment site, all the more in the multifractionated group. Histology confirmed our MRI findings, with a more extensive necrosis and associated with a rarified angiogenic network in the treatment area, after multifractionated PDT. However, we observed more surrounding edema and neovascularization in the peripheral ring after multifractionated PDT. Conclusion Fractionated interstitial PDT induced specific tumoral lesions. The multifractionated scheme was more efficient, inducing increased tumoral necrosis, but it also caused significant peripheral edema and neovascularization. Diffusion and perfusion MRI imaging were able to predict the histological lesions.
Diffusion tensor tracking of neuronal fiber pathways in the living human brain
NASA Astrophysics Data System (ADS)
Lori, Nicolas Francisco
2001-11-01
The technique of diffusion tensor tracking (DTT) is described, in which diffusion tensor magnetic resonance imaging (DT-MRI) data are processed to allow the visualization of white matter (WM) tracts in a living human brain. To illustrate the methods, a detailed description is given of the physics of DT-MRI, the structure of the DT-MRI experiment, the computer tools that were developed to visualize WM tracts, the anatomical consistency of the obtained WM tracts, and the accuracy and precision of DTT using computer simulations. When presenting the physics of DT-MRI, a completely quantum-mechanical view of DT-MRI is given where some of the results are new. Examples of anatomical tracts viewed using DTT are presented, including the genu and the splenium of the corpus callosum, the ventral pathway with its amygdala connection highlighted, the geniculo- calcarine tract separated into anterior and posterior parts, the geniculo-calcarine tract defined using functional magnetic resonance imaging (MRI), and U- fibers. In the simulation, synthetic DT-MRI data were constructed that would be obtained for a cylindrical WM tract with a helical trajectory surrounded by gray matter. Noise was then added to the synthetic DT-MRI data, and DTT trajectories were calculated using the noisy data (realistic tracks). Simulated DTT errors were calculated as the vector distance between the realistic tracks and the ideal trajectory. The simulation tested the effects of a comprehensive set of experimental conditions, including voxel size, data sampling, data averaging, type of tract tissue, tract diameter and type of tract trajectory. Simulated DTT accuracy and precision were typically below the voxel dimension, and precision was compatible with the experimental results.
Spurious group differences due to head motion in a diffusion MRI study
Yendiki, Anastasia; Koldewyn, Kami; Kakunoori, Sita; Kanwisher, Nancy; Fischl, Bruce
2014-01-01
Diffusion-weighted MRI (DW-MRI) has become a popular imaging modality for probing the microstructural properties of white matter and comparing them between populations in vivo. However, the contrast in DW-MRI arises from the microscopic random motion of water molecules in brain tissues, which makes it particularly sensitive to macroscopic head motion. Although this has been known since the introduction of DW-MRI, most studies that use this modality for group comparisons do not report measures of head motion for each group and rely on registration-based correction methods that cannot eliminate the full effects of head motion on the DW-MRI contrast. In this work we use data from children with autism and typically developing children to investigate the effects of head motion on differences in anisotropy and diffusivity measures between groups. We show that group differences in head motion can induce group differences in DW-MRI measures, and that this is the case even when comparing groups that include control subjects only, where no anisotropy or diffusivity differences are expected. We also show that such effects can be more prominent in some white-matter pathways than others, and that they can be ameliorated by including motion as a nuisance regressor in the analyses. Our results demonstrate the importance of taking head motion into account in any population study where one group might exhibit more head motion than the other. PMID:24269273
In-plane "superresolution" MRI with phaseless sub-pixel encoding.
Hennel, Franciszek; Tian, Rui; Engel, Maria; Pruessmann, Klaas P
2018-04-15
Acquisition of high-resolution imaging data using multiple excitations without the sensitivity to fluctuations of the transverse magnetization phase, which is a major problem of multi-shot MRI. The concept of superresolution MRI based on microscopic tagging is analyzed using an analogy with the optical method of structured illumination. Sinusoidal tagging is shown to provide subpixel resolution by mixing of neighboring spatial frequency (k-space) bands. It represents a phaseless modulation added on top of the standard Fourier encoding, which allows the phase fluctuations to be discarded at an intermediate reconstruction step. Improvements are proposed to correct for tag distortions due to magnetic field inhomogeneity and to avoid the propagation of Gibbs ringing from intermediate low-resolution images to the final image. The method was applied to diffusion-weighted EPI. Artifact-free superresolution images can be obtained despite a finite duration of the tagging sequence and related pattern distortions by a field map based phase correction of band-wise reconstructed images. The ringing effect present in the intermediate images can be suppressed by partial overlapping of the mixed k-space bands in combination with an adapted filter. High-resolution diffusion-weighted images of the human head were obtained with a three-shot EPI sequence despite motion-related phase fluctuations between the shots. Due to its phaseless character, tagging-based sub-pixel encoding is an alternative to k-space segmenting in the presence of unknown phase fluctuations, in particular those due to motion under strong diffusion gradients. Proposed improvements render the method practicable in realistic conditions. © 2018 International Society for Magnetic Resonance in Medicine.
Duarte-Carvajalino, Julio M.; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe
2013-01-01
Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis. PMID:23596381
Duarte-Carvajalino, Julio M; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe
2013-01-01
Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis.
Impact of imaging measurements on response assessment in glioblastoma clinical trials
Reardon, David A.; Ballman, Karla V.; Buckner, Jan C.; Chang, Susan M.; Ellingson, Benjamin M.
2014-01-01
We provide historical and scientific guidance on imaging response assessment for incorporation into clinical trials to stimulate effective and expedited drug development for recurrent glioblastoma by addressing 3 fundamental questions: (i) What is the current validation status of imaging response assessment, and when are we confident assessing response using today's technology? (ii) What imaging technology and/or response assessment paradigms can be validated and implemented soon, and how will these technologies provide benefit? (iii) Which imaging technologies need extensive testing, and how can they be prospectively validated? Assessment of T1 +/− contrast, T2/FLAIR, diffusion, and perfusion-imaging sequences are routine and provide important insight into underlying tumor activity. Nonetheless, utility of these data within and across patients, as well as across institutions, are limited by challenges in quantifying measurements accurately and lack of consistent and standardized image acquisition parameters. Currently, there exists a critical need to generate guidelines optimizing and standardizing MRI sequences for neuro-oncology patients. Additionally, more accurate differentiation of confounding factors (pseudoprogression or pseudoresponse) may be valuable. Although promising, diffusion MRI, perfusion MRI, MR spectroscopy, and amino acid PET require extensive standardization and validation. Finally, additional techniques to enhance response assessment, such as digital T1 subtraction maps, warrant further investigation. PMID:25313236
Added Value of Assessing Adnexal Masses with Advanced MRI Techniques
Thomassin-Naggara, I.; Balvay, D.; Rockall, A.; Carette, M. F.; Ballester, M.; Darai, E.; Bazot, M.
2015-01-01
This review will present the added value of perfusion and diffusion MR sequences to characterize adnexal masses. These two functional MR techniques are readily available in routine clinical practice. We will describe the acquisition parameters and a method of analysis to optimize their added value compared with conventional images. We will then propose a model of interpretation that combines the anatomical and morphological information from conventional MRI sequences with the functional information provided by perfusion and diffusion weighted sequences. PMID:26413542
Radhakrishnan, Rupa; Betts, Aaron M; Care, Marguerite M; Serai, Suraj; Zhang, Bin; Jones, Blaise V
2016-05-01
Reduced field of view diffusion-weighted imaging (rFOV DWI) is a more recently described technique in the evaluation of spine pathology. In adults, this technique has been shown to increase clinician confidence in identification of diffusion restricting lesions. In this study, we evaluate the image quality and diagnostic confidence of the rFOV DWI technique in pediatric spine MRI. We included patients with MRI of the lumbar spine for suspected congenital abnormalities who had conventional SS-EPI (single shot echo planar imaging) with full field of view (fFOV) and rFOV DWI performed. Images were graded for image quality and observer confidence for detection of lesions with reduced diffusion. Position of the conus and L3 vertebral body measurements were recorded. Comparisons were made between the fFOV and rFOV scores. Fifty children (30 girls, 20 boys) were included (median 3.6 years). Compared to the fFOV images, the rFOV images scored higher in image quality (P < 0.0001) and for confidence in detecting lesions with reduced diffusion (P < 0.0001). The average spread of identified conus position was smaller for in rFOV compared to fFOV (P = 0.0042). There was no significant difference in the L3 vertebral body measurements between the two methods. In rFOV, the anterior aspects of the vertebral bodies were excluded in a few studies due to narrow FOV. rFOV DWI of the lumbar spine in the pediatric population has qualitatively improved image quality and observer confidence for lesion detection when compared to conventional fFOV SS-EPI DWI. Copyright © 2015 by the American Society of Neuroimaging.
Unusual MRI findings in an immunocompetent patient with EBV encephalitis: a case report
2011-01-01
Blackground It is well-known that Epstein-Barr virus (EBV) can affect the central nervous system (CNS). Case presentation Herein the authors report unusual timely Magnetic Resonance Imaging (MRI) brain scan findings in an immunocompetent patient with EBV encephalitis. Diffusion weighted MRI sequence performed during the acute phase of the disease was normal, whereas the Fast Relaxation Fast Spin Echo T2 image showed diffuse signal intensity changes in white matter. The enhancement pattern suggested an inflammatory response restricted to the brain microcirculation. Acyclovir and corticosteroid therapy was administered. After three weeks, all signal intensities returned to normal and the patient showed clinical recovery. Conclusion This report demonstrates that EBV in an immunocompetent adult can present with diffuse, reversible brain white matter involvement in the acute phase of mononucleosis. Moreover, our case suggests that a negative DWI sequence is associated with a favorable improvement in severe EBV CNS infection. More extensive studies are needed to assess what other instrumental data can help to distinguish viral lesions from other causes in the acute phase of disease. PMID:21435249
Kanmaz, Lutfi; Karavas, Erdal
2018-05-29
The purpose of this study was to evaluate the value of diffusion-weighted MRI (DW-MRI) in differentiating benign and malignant head and neck masses by comparing their apparent diffusion coefficient (ADC) values. The study included 32 patients with a neck mass >1 cm in diameter who were examined with echo planar DW-MRI. Two different diffusion gradients (b values of b = 0 and b = 1000 s/mm²) were applied. DWI and ADC maps of 32 neck masses in 32 patients were obtained. Mean ADC values of benign and malignant neck lesions were measured and compared statistically. A total of 15 (46.9%) malignant masses and 17 (53.1%) benign masses were determined. Of all the neck masses, the ADC value of cystic masses was the highest and that of lymphomas was the lowest. The mean ADC values of benign and malignant neck masses were 1.57 × 10 -3 mm²/s and 0.90 × 10 -3 mm²/s, respectively. The difference between mean ADC values of benign and malignant neck masses was significant ( p < 0.01). Diffusion-weighted MRI with ADC measurements can be useful in the differential diagnosis of neck masses.
Advanced magnetic resonance imaging of neurodegenerative diseases.
Agosta, Federica; Galantucci, Sebastiano; Filippi, Massimo
2017-01-01
Magnetic resonance imaging (MRI) is playing an increasingly important role in the study of neurodegenerative diseases, delineating the structural and functional alterations determined by these conditions. Advanced MRI techniques are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression. This aspect will become crucial when disease-modifying (personalized) therapies will be established. MRI techniques are very diverse and go from the visual inspection of MRI scans to more complex approaches, such as manual and automatic volume measurements, diffusion tensor MRI, and functional MRI. All these techniques allow us to investigate the different features of neurodegeneration. In this review, we summarize the most recent advances concerning the use of MRI in some of the most important neurodegenerative conditions, putting an emphasis on the advanced techniques.
Hosseinbor, Ameer Pasha; Chung, Moo K; Wu, Yu-Chien; Alexander, Andrew L
2011-01-01
The estimation of the ensemble average propagator (EAP) directly from q-space DWI signals is an open problem in diffusion MRI. Diffusion spectrum imaging (DSI) is one common technique to compute the EAP directly from the diffusion signal, but it is burdened by the large sampling required. Recently, several analytical EAP reconstruction schemes for multiple q-shell acquisitions have been proposed. One, in particular, is Diffusion Propagator Imaging (DPI) which is based on the Laplace's equation estimation of diffusion signal for each shell acquisition. Viewed intuitively in terms of the heat equation, the DPI solution is obtained when the heat distribution between temperatuere measurements at each shell is at steady state. We propose a generalized extension of DPI, Bessel Fourier Orientation Reconstruction (BFOR), whose solution is based on heat equation estimation of the diffusion signal for each shell acquisition. That is, the heat distribution between shell measurements is no longer at steady state. In addition to being analytical, the BFOR solution also includes an intrinsic exponential smootheing term. We illustrate the effectiveness of the proposed method by showing results on both synthetic and real MR datasets.
Dianat, Seyed Saeid; Carter, H Ballentine; Schaeffer, Edward M; Hamper, Ulrik M; Epstein, Jonathan I; Macura, Katarzyna J
2015-10-01
Purpose of this pilot study was to correlate quantitative parameters derived from the multiparametric magnetic resonance imaging (MP-MRI) of the prostate with results from MRI guided transrectal ultrasound (MRI/TRUS) fusion prostate biopsy in men with suspected prostate cancer. Thirty-nine consecutive patients who had 3.0T MP-MRI and subsequent MRI/TRUS fusion prostate biopsy were included and 73 MRI-identified targets were sampled by 177 cores. The pre-biopsy MP-MRI consisted of T2-weighted, diffusion weighted (DWI), and dynamic contrast enhanced (DCE) images. The association of quantitative MRI measurements with biopsy histopathology findings was assessed by Mann-Whitney U- test and Kruskal-Wallis test. Of 73 targets, biopsy showed benign prostate tissue in 46 (63%), cancer in 23 (31.5%), and atypia/high grade prostatic intraepithelial neoplasia in four (5.5%) targets. The median volume of cancer-positive targets was 1.3 cm3. The cancer-positive targets were located in the peripheral zone (56.5%), transition zone (39.1%), and seminal vesicle (4.3%). Nine of 23 (39.1%) cancer-positive targets were higher grade cancer (Gleason grade > 6). Higher grade targets and cancer-positive targets compared to benign lesions exhibited lower mean apparent diffusion coefficient (ADC) value (952.7 < 1167.9 < 1278.9), and lower minimal extracellular volume fraction (ECF) (0.13 < 0.185 < 0.213), respectively. The difference in parameters was more pronounced between higher grade cancer and benign lesions. Our findings from a pilot study indicate that quantitative MRI parameters can predict malignant histology on MRI/TRUS fusion prostate biopsy, which is a valuable technique to ensure adequate sampling of MRI-visible suspicious lesions under TRUS guidance and may impact patient management. The DWI-based quantitative measurement exhibits a stronger association with biopsy findings than the other MRI parameters.
[Reversible neurotoxicity secondary to metronidazole: report of one case].
Retamal-Riquelme, Eva; Soto-San Martín, Hernán; Vallejos-Castro, José; Galdames-Poblete, Daniel
2014-03-01
Metronidazole can cause adverse effects both in the central and peripheral nervous system. We report a 34-year-old female who presented a reversible cerebellar syndrome and peripheral neuropathy as an adverse effect associated with the use of metronidazole. Brain magnetic resonance imaging (MRI) showed hyperintense T2 and FLAIR bilateral symmetrical cerebellar lesions, without contrast enhancement or mass effect, isointense in diffusion-weighted imaging and hypointense in apparent diffusion coefficient sequences. Also, electrophysiological evaluation was consistent with axonal polyneuropathy. She had received metronidazole for a liver abscess during 49 days. After discontinuation of metronidazole, she had rapid regression of cerebellar symptoms and normalization of MRI, with subsequent disappearance of peripheral symptoms. The brain MRI, electromyography and nerve conduction studies performed at 35 months later showed complete resolution of the lesions. Although metronidazole neurotoxicity is a rare event, it must be borne in mind because the prognosis is usually favorable after stopping the drug.
Vidić, Igor; Egnell, Liv; Jerome, Neil P; Teruel, Jose R; Sjøbakk, Torill E; Østlie, Agnes; Fjøsne, Hans E; Bathen, Tone F; Goa, Pål Erik
2018-05-01
Diffusion-weighted MRI (DWI) is currently one of the fastest developing MRI-based techniques in oncology. Histogram properties from model fitting of DWI are useful features for differentiation of lesions, and classification can potentially be improved by machine learning. To evaluate classification of malignant and benign tumors and breast cancer subtypes using support vector machine (SVM). Prospective. Fifty-one patients with benign (n = 23) and malignant (n = 28) breast tumors (26 ER+, whereof six were HER2+). Patients were imaged with DW-MRI (3T) using twice refocused spin-echo echo-planar imaging with echo time / repetition time (TR/TE) = 9000/86 msec, 90 × 90 matrix size, 2 × 2 mm in-plane resolution, 2.5 mm slice thickness, and 13 b-values. Apparent diffusion coefficient (ADC), relative enhanced diffusivity (RED), and the intravoxel incoherent motion (IVIM) parameters diffusivity (D), pseudo-diffusivity (D*), and perfusion fraction (f) were calculated. The histogram properties (median, mean, standard deviation, skewness, kurtosis) were used as features in SVM (10-fold cross-validation) for differentiation of lesions and subtyping. Accuracies of the SVM classifications were calculated to find the combination of features with highest prediction accuracy. Mann-Whitney tests were performed for univariate comparisons. For benign versus malignant tumors, univariate analysis found 11 histogram properties to be significant differentiators. Using SVM, the highest accuracy (0.96) was achieved from a single feature (mean of RED), or from three feature combinations of IVIM or ADC. Combining features from all models gave perfect classification. No single feature predicted HER2 status of ER + tumors (univariate or SVM), although high accuracy (0.90) was achieved with SVM combining several features. Importantly, these features had to include higher-order statistics (kurtosis and skewness), indicating the importance to account for heterogeneity. Our findings suggest that SVM, using features from a combination of diffusion models, improves prediction accuracy for differentiation of benign versus malignant breast tumors, and may further assist in subtyping of breast cancer. 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1205-1216. © 2017 International Society for Magnetic Resonance in Medicine.
Impact of time-of-day on diffusivity measures of brain tissue derived from diffusion tensor imaging.
Thomas, Cibu; Sadeghi, Neda; Nayak, Amrita; Trefler, Aaron; Sarlls, Joelle; Baker, Chris I; Pierpaoli, Carlo
2018-06-01
Diurnal fluctuations in MRI measures of structural and functional properties of the brain have been reported recently. These fluctuations may have a physiological origin, since they have been detected using different MRI modalities, and cannot be explained by factors that are typically known to confound MRI measures. While preliminary evidence suggests that measures of structural properties of the brain based on diffusion tensor imaging (DTI) fluctuate as a function of time-of-day (TOD), the underlying mechanism has not been investigated. Here, we used a longitudinal within-subjects design to investigate the impact of time-of-day on DTI measures. In addition to using the conventional monoexponential tensor model to assess TOD-related fluctuations, we used a dual compartment tensor model that allowed us to directly assess if any change in DTI measures is due to an increase in CSF/free-water volume fraction or due to an increase in water diffusivity within the parenchyma. Our results show that Trace or mean diffusivity, as measured using the conventional monoexponential tensor model tends to increase systematically from morning to afternoon scans at the interface of grey matter/CSF, most prominently in the major fissures and the sulci of the brain. Interestingly, in a recent study of the glymphatic system, these same regions were found to show late enhancement after intrathecal injection of a CSF contrast agent. The increase in Trace also impacts DTI measures of diffusivity such as radial and axial diffusivity, but does not affect fractional anisotropy. The dual compartment analysis revealed that the increase in diffusivity measures from PM to AM was driven by an increase in the volume fraction of CSF-like free-water. Taken together, our findings provide important insight into the likely physiological origins of diurnal fluctuations in MRI measurements of structural properties of the brain. Published by Elsevier Inc.
Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank.
Alfaro-Almagro, Fidel; Jenkinson, Mark; Bangerter, Neal K; Andersson, Jesper L R; Griffanti, Ludovica; Douaud, Gwenaëlle; Sotiropoulos, Stamatios N; Jbabdi, Saad; Hernandez-Fernandez, Moises; Vallee, Emmanuel; Vidaurre, Diego; Webster, Matthew; McCarthy, Paul; Rorden, Christopher; Daducci, Alessandro; Alexander, Daniel C; Zhang, Hui; Dragonu, Iulius; Matthews, Paul M; Miller, Karla L; Smith, Stephen M
2018-02-01
UK Biobank is a large-scale prospective epidemiological study with all data accessible to researchers worldwide. It is currently in the process of bringing back 100,000 of the original participants for brain, heart and body MRI, carotid ultrasound and low-dose bone/fat x-ray. The brain imaging component covers 6 modalities (T1, T2 FLAIR, susceptibility weighted MRI, Resting fMRI, Task fMRI and Diffusion MRI). Raw and processed data from the first 10,000 imaged subjects has recently been released for general research access. To help convert this data into useful summary information we have developed an automated processing and QC (Quality Control) pipeline that is available for use by other researchers. In this paper we describe the pipeline in detail, following a brief overview of UK Biobank brain imaging and the acquisition protocol. We also describe several quantitative investigations carried out as part of the development of both the imaging protocol and the processing pipeline. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Hofstetter, Shir; Friedmann, Naama; Assaf, Yaniv
2017-04-01
Human brain imaging revealed that the brain can undergo structural plasticity following new learning experiences. Most magnetic resonance imaging (MRI) uncovered morphometric alternation in cortical density after the long-term training of weeks to months. A recent diffusion tensor imaging (DTI) study has found changes in diffusion indices after 2 h of training, primarily in the hippocampus. However, whether a short learning experience can induce microstructural changes in the neocortex is still unclear. Here, we used diffusion MRI, a method sensitive to tissue microstructure, to study cortical plasticity. To attain cortical involvement, we used a short language task (under 1 h) of introducing new lexical items (flower names) to the lexicon. We have found significant changes in diffusivity in cortical regions involved in language and reading (inferior frontal gyrus, middle temporal gyrus, and inferior parietal lobule). In addition, the difference in the values of diffusivity correlated with the lexical learning rate in the task. Moreover, significant changes were found in white matter tracts near the cortex, and the extent of change correlated with behavioral measures of lexical learning rate. These findings provide first evidence of short-term cortical plasticity in the human brain after a short language learning task. It seems that short training of less than an hour of high cognitive demand can induce microstructural changes in the cortex, suggesting a rapid time scale of neuroplasticity and providing additional evidence of the power of MRI to investigate the temporal and spatial progressions of this process.
Rose, Jessica; Butler, Erin E; Lamont, Lauren E; Barnes, Patrick D; Atlas, Scott W; Stevenson, David K
2009-07-01
The neurological basis of an increased incidence of cerebral palsy (CP) in preterm males is unknown. This study examined neonatal brain structure on magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) at term-equivalent age, sex, and neurodevelopment at 1 year 6 months on the basis of the Amiel-Tison neurological examination, Gross Motor Function Classification System, and Bayley Scales of Infant Development in 78 very-low-birthweight preterm children (41 males, 37 females; mean gestational age 27.6 wks, SD 2.5; mean birthweight 1021 g, SD 339). Brain abnormalities on MRI and DTI were not different between males and females except in the splenium of the corpus callosum, where males had lower DTI fractional anisotropy (p=0.025) and a higher apparent diffusion coefficient (p=0.013), indicating delayed splenium development. In the 26 infants who were at higher risk on the basis of DTI, males had more abnormalities on MRI (p=0.034) and had lower fractional anisotropy and a higher apparent diffusion coefficient in the splenium (p=0.049; p=0.025) and right posterior limb of the internal capsule (PLIC; p=0.003; p=0.033). Abnormal neurodevelopment was more common in males (n=9) than in females (n=2; p=0.036). Children with abnormal neurodevelopment had more abnormalities on MRI (p=0.014) and reduced splenium and right PLIC fractional anisotropy (p=0.001; p=0.035). In children with abnormal neurodevelopment, right PLIC fractional anisotropy was lower than left (p=0.035), whereas in those with normal neurodevelopment right PLIC fractional anisotropy was higher than left (p=0.001). Right PLIC fractional anisotropy correlated to neurodevelopment (rho=0.371, p=0.002). Logistic regression predicted neurodevelopment with 94% accuracy; only right PLIC fractional anisotropy was a significant logistic coefficient. Results indicate that the higher incidence of abnormal neurodevelopment in preterm males relates to greater incidence and severity of brain abnormalities, including reduced PLIC and splenium development.
The Role of Brain MRI in Mitochondrial Neurogastrointestinal Encephalomyopathy
Scarpelli, Mauro; Ricciardi, Giuseppe Kenneth; Beltramello, Alberto; Zocca, Isabella; Calabria, Francesca; Russignan, Anna; Zappini, Francesca; Cotelli, Maria Sofia; Padovani, Alessandro; Tomelleri, Giuliano; Filosto, Massimiliano; Tonin, Paola
2013-01-01
Summary Leukoencephalopathy is a hallmark of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) a devastating disorder characterized by ptosis, ophthalmoparesis, gastrointestinal dysfunction and polyneuropathy. To characterize MNGIE-associated leukoencephalopathy and to correlate it with clinical, biochemical and molecular data, four MNGIE patients with heterogeneous clinical phenotypes (enteropathic arthritis, exercise intolerance, CIDP-like phenotype and typical presentation) were studied by magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). Diffusion weighted imaging (DWI) with apparent diffusion coefficient (ADC) maps were also obtained. In two patients we also investigated the role of brain MRI in monitoring the evolution of leukoencephalopathy by performing follow-up imaging studies at an interval of one and two years. The extension and distribution of leukoencephalopathy were not clearly linked with age, phenotype or disease severity, and did not seem to be related to TYMP mutations, enzyme activity or pyrimidine levels. In the studied patients MRS revealed reduced N-acetyl-aspartate and increased choline signals. Although DWI appeared normal in all patients but one, ADC maps always showed moderate increased diffusivity. Leukoencephalopathy worsened over a two-year period in two patients, regardless of the clinical course, indicating a lack of correlation between clinical phenotype, size and progression of white matter abnormalities during this period. Brain MRI should be considered a very useful tool to diagnose both classical and atypical MNGIE. Serial MRIs in untreated and treated MNGIE patients will help to establish whether the leukoencephalopathy is a reversible condition or not. PMID:24199812
NASA Astrophysics Data System (ADS)
Atuegwu, N. C.; Colvin, D. C.; Loveless, M. E.; Xu, L.; Gore, J. C.; Yankeelov, T. E.
2012-01-01
We build on previous work to show how serial diffusion-weighted MRI (DW-MRI) data can be used to estimate proliferation rates in a rat model of brain cancer. Thirteen rats were inoculated intracranially with 9L tumor cells; eight rats were treated with the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea and five rats were untreated controls. All animals underwent DW-MRI immediately before, one day and three days after treatment. Values of the apparent diffusion coefficient (ADC) were calculated from the DW-MRI data and then used to estimate the number of cells in each voxel and also for whole tumor regions of interest. The data from the first two imaging time points were then used to estimate the proliferation rate of each tumor. The proliferation rates were used to predict the number of tumor cells at day three, and this was correlated with the corresponding experimental data. The voxel-by-voxel analysis yielded Pearson's correlation coefficients ranging from -0.06 to 0.65, whereas the region of interest analysis provided Pearson's and concordance correlation coefficients of 0.88 and 0.80, respectively. Additionally, the ratio of positive to negative proliferation values was used to separate the treated and control animals (p <0.05) at an earlier point than the mean ADC values. These results further illustrate how quantitative measurements of tumor state obtained non-invasively by imaging can be incorporated into mathematical models that predict tumor growth.
Al Faraj, Achraf; Shaik, Abjal Pasha; Shaik, Asma Sultana
2015-01-01
Targeting doxorubicin (DOX) by means of single-walled carbon nanotube (SWCNT) nanocarriers may help improve the clinical utility of this highly active therapeutic agent. Active targeting of SWCNTs using tumor-specific antibody and magnetic attraction by tagging the nanotubes with iron oxide nanoparticles can potentially reduce the unnecessary side effects and provide enhanced theranostics. In the current study, the in vitro and in vivo efficacy of DOX-loaded SWCNTs as theranostic nanoprobes was evaluated in a murine breast cancer model. Iron-tagged SWCNTs conjugated with Endoglin/CD105 antibody with or without DOX were synthetized and extensively characterized. Their biocompatibility was assessed in vitro in luciferase (Luc2)-expressing 4T1 (4T1-Luc2) murine breast cancer cells using TiterTACS™ Colorimetric Apoptosis Detection Kit (apoptosis induction), poly (ADP-ribose) polymerase (marker for DNA damage), and thiobarbituric acid-reactive substances (oxidative stress generation) assays, and the efficacy of DOX-loaded SWCNTs was evaluated by measuring the radiance efficiency using bioluminescence imaging (BLI). Tumor progression and growth were monitored after 4T1-Luc2 cells inoculation using noninvasive BLI and magnetic resonance imaging (MRI) before and after subsequent injection of SWCNT complexes actively and magnetically targeted to tumor sites. Significant increases in apoptosis, DNA damage, and oxidative stress were induced by DOX-loaded SWCNTs. In addition, a tremendous decrease in bioluminescence was observed in a dose- and time-dependent manner. Noninvasive BLI and MRI revealed successful tumor growth and subsequent attenuation along with metastasis inhibition following DOX-loaded SWCNTs injection. Magnetic tagging of SWCNTs was found to produce significant discrepancies in apparent diffusion coefficient values providing a higher contrast to detect treatment-induced variations as noninvasive imaging biomarker. In addition, it allowed their sensitive noninvasive diagnosis using susceptibility-weighted MRI and their magnetic targeting using an externally applied magnet. Enhanced therapeutic efficacy of DOX delivered through antibody-conjugated magnetic SWCNTs was achieved. Further, the superiority of apparent diffusion coefficient measurements using diffusion-weighted MRI was found to be a sensitive imaging biomarker for assessment of treatment-induced changes.
Trans-rectal interventional MRI: initial prostate biopsy experience
NASA Astrophysics Data System (ADS)
Greenwood, Bernadette M.; Behluli, Meliha R.; Feller, John F.; May, Stuart T.; Princenthal, Robert; Winkel, Alex; Kaminsky, David B.
2010-02-01
Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of the prostate gland when evaluated along with T2-weighted images, diffusion-weighted images (DWI) and their corresponding apparent diffusion coefficient (ADC) maps can yield valuable information in patients with rising or elevated serum prostate-specific antigen (PSA) levels1. In some cases, patients present with multiple negative trans-rectal ultrasound (TRUS) biopsies, often placing the patient into a cycle of active surveillance. Recently, more patients are undergoing TRIM for targeted biopsy of suspicious findings with a cancer yield of ~59% compared to 15% for second TRUS biopsy2 to solve this diagnostic dilemma and plan treatment. Patients were imaged in two separate sessions on a 1.5T magnet using a cardiac phased array parallel imaging coil. Automated CAD software was used to identify areas of wash-out. If a suspicious finding was identified on all sequences it was followed by a second imaging session. Under MRI-guidance, cores were acquired from each target region3. In one case the microscopic diagnosis was prostatic intraepithelial neoplasia (PIN), in the other it was invasive adenocarcinoma. Patient 1 had two negative TRUS biopsies and a PSA level of 9ng/mL. Patient 2 had a PSA of 7.2ng/mL. He underwent TRUS biopsy which was negative for malignancy. He was able to go on to treatment for his prostate carcinoma (PCa)4. MRI may have an important role in a subset of patients with multiple negative TRUS biopsies and elevated or rising PSA.
Rakheja, Rajan; Chandarana, Hersh; DeMello, Linda; Jackson, Kimberly; Geppert, Christian; Faul, David; Glielmi, Christopher; Friedman, Kent P
2013-11-01
The purpose of this study was to assess the correlation between standardized uptake value (SUV) and apparent diffusion coefficient (ADC) of neoplastic lesions in the use of a simultaneous PET/MRI hybrid system. Twenty-four patients with known primary malignancies underwent FDG PET/CT. They then underwent whole-body PET/MRI. Diffusion-weighted imaging was performed with free breathing and a single-shot spin-echo echo-planar imaging sequence with b values of 0, 350, and 750 s/mm(2). Regions of interest were manually drawn along the contours of neoplastic lesions larger than 1 cm, which were clearly identified on PET and diffusion-weighted images. Maximum SUV (SUVmax) on PET/MRI and PET/CT images, mean SUV (SUVmean), minimum ADC (ADCmin), and mean ADC (ADCmean) were recorded on PET/MR images for each FDG-avid neoplastic soft-tissue lesion with a maximum of three lesions per patient. Pearson correlation coefficient was used to asses the following relations: SUVmax versus ADCmin on PET/MR and PET/CT images, SUVmean versus ADCmean, and ratio of SUVmax to mean liver SUV (SUV ratio) versus ADCmin. A subanalysis of patients with progressive disease versus partial treatment response was performed with the ratio of SUVmax to ADCmin for the most metabolically active lesion. Sixty-nine neoplastic lesions (52 nonosseous lesions, 17 bone metastatic lesions) were evaluated. The mean SUVmax from PET/MRI was 7.0 ± 6.0; SUVmean, 5.6 ± 4.6; mean ADCmin, 1.10 ± 0.58; and mean ADCmean, 1.48 ± 0.72. A significant inverse Pearson correlation coefficient was found between PET/MRI SUVmax and ADCmin (r = -0.21, p = 0.04), between SUVmean and ADCmean (r = -0.18, p = 0.07), and between SUV ratio and ADCmin (r = -0.27, p = 0.01). A similar inverse Pearson correlation coefficient was found between the PET/CT SUVmax and ADCmin. Twenty of 24 patients had previously undergone PET/CT; five patients had a partial treatment response, and six had progressive disease according to Response Evaluation Criteria in Solid Tumors 1.1. The ratio between SUVmax and ADCmin was higher among patients with progressive disease than those with a partial treatment response. Simultaneous PET/MRI is a promising technology for the detection of neoplastic disease. There are inverse correlations between SUVmax and ADCmin and between SUV ratio and ADCmin. Correlation coefficients between SUVmax and ADCmin from PET/MRI were similar to values obtained with SUVmax from the same-day PET/CT. Given that both SUV and ADC are related to malignancy and that the correlation between the two biomarkers is relatively weak, SUV and ADC values may offer complementary information to aid in determination of prognosis and treatment response. The combined tumoral biomarker, ratio between SUVmax and ADCmin, may be useful for assessing progressive disease versus partial treatment response.
Lessard, Eric; Young, Heather M; Bhalla, Anurag; Pike, Damien; Sheikh, Khadija; McCormack, David G; Ouriadov, Alexei; Parraga, Grace
2017-11-01
Thoracic x-ray computed tomography (CT) and hyperpolarized 3 He magnetic resonance imaging (MRI) provide quantitative measurements of airspace enlargement in patients with emphysema. For patients with panlobular emphysema due to alpha-1 antitrypsin deficiency (AATD), sensitive biomarkers of disease progression and response to therapy have been difficult to develop and exploit, especially those biomarkers that correlate with outcomes like quality of life. Here, our objective was to generate and compare CT and diffusion-weighted inhaled-gas MRI measurements of emphysema including apparent diffusion coefficient (ADC) and MRI-derived mean linear intercept (L m ) in patients with AATD, chronic obstructive pulmonary disease (COPD) ex-smokers, and elderly never-smokers. We enrolled patients with AATD (n = 8; 57 ± 7 years), ex-smokers with COPD (n = 8; 77 ± 6 years), and a control group of never-smokers (n = 5; 64 ± 2 years) who underwent thoracic CT, MRI, spirometry, plethysmography, the St. George's Respiratory Questionnaire, and the 6-minute walk test during a single 2-hour visit. MRI-derived ADC, L m , surface-to-volume ratio, and ventilation defect percent were generated for the apical, basal, and whole lung as was CT lung area ≤-950 Hounsfield units (RA 950 ), low attenuating clusters, and airway count. In patients with AATD, there was a significantly different MRI-derived ADC (P = .03), L m (P < .0001), and surface-to-volume ratio (P < .0001), but not diffusing capacity of carbon monoxide, residual volume or total lung capacity, or CT RA 950 (P > .05) compared to COPD ex-smokers with a significantly different St. George's Respiratory Questionnaire. In this proof-of-concept demonstration, we evaluated CT and MRI lung emphysema measurements and observed significantly worse MRI biomarkers of emphysema in patients with AATD compared to patients with COPD, although CT RA 950 and diffusing capacity of carbon monoxide were not significantly different, underscoring the sensitivity of MRI measurements of AATD emphysema. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Wilkins, Bryce; Lee, Namgyun; Gajawelli, Niharika; Law, Meng; Leporé, Natasha
2015-01-01
Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, and consequently tractography and the ability to recover complex white-matter pathways, as well as differences between results due to choice of analysis method and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment “ball and stick” model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm2) common to clinical studies. We found the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of fibers. Fiber detection rate was found to be the most distinguishing characteristic between the methods, and a significant factor for complete recovery of tractography through complex white-matter pathways. For example, while all methods recovered similar tractography of prominent white matter pathways of limited fiber crossing, CSD (which had the highest fiber detection rate, especially for voxels containing three fibers) recovered the greatest number of fibers and largest fraction of correct tractography for a complex three-fiber crossing region. The synthetic data sets, ground-truth, and tools for quantitative evaluation are publically available on the NITRC website as the project “Simulated DW-MRI Brain Data Sets for Quantitative Evaluation of Estimated Fiber Orientations” at http://www.nitrc.org/projects/sim_dwi_brain PMID:25555998
Wilkins, Bryce; Lee, Namgyun; Gajawelli, Niharika; Law, Meng; Leporé, Natasha
2015-04-01
Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, tractography and the ability to recover complex white-matter pathways, differences between results due to choice of analysis method, and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work, we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment "ball and stick" model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm(2)) common to clinical studies. We found that the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of fibers. Fiber detection rate was found to be the most distinguishing characteristic between the methods, and a significant factor for complete recovery of tractography through complex white-matter pathways. For example, while all methods recovered similar tractography of prominent white matter pathways of limited fiber crossing, CSD (which had the highest fiber detection rate, especially for voxels containing three fibers) recovered the greatest number of fibers and largest fraction of correct tractography for complex three-fiber crossing regions. The synthetic data sets, ground-truth, and tools for quantitative evaluation are publically available on the NITRC website as the project "Simulated DW-MRI Brain Data Sets for Quantitative Evaluation of Estimated Fiber Orientations" at http://www.nitrc.org/projects/sim_dwi_brain. Copyright © 2014 Elsevier Inc. All rights reserved.
Investigating Architectural Issues in Neuromorphic Computing
2009-06-01
An example of this is Diffusion Tensor Imaging ( DTI ), a variant of fMRI, which detects water diffusion. DTI is routinely applied at medical...model computed for a subfield positioned over a section of the silhouette dog’s hind leg . The illustrated angles roughly correspond to orientation
Reduced acoustic noise in diffusion tensor imaging on a compact MRI system.
Tan, Ek T; Hardy, Christopher J; Shu, Yunhong; In, Myung-Ho; Guidon, Arnaud; Huston, John; Bernstein, Matt A; K F Foo, Thomas
2018-06-01
To investigate the feasibility of substantially reducing acoustic noise while performing diffusion tensor imaging (DTI) on a compact 3T (C3T) MRI scanner equipped with a 42-cm inner-diameter asymmetric gradient. A-weighted acoustic measurements were made using 10 mT/m-amplitude sinusoidal waveforms, corresponding to echo-planar imaging (EPI) echo spacing of 0.25 to 5.0 ms, on a conventional, whole-body 3T MRI and on the C3T. Acoustic measurements of DTI with trapezoidal EPI waveforms were then made at peak gradient performance on the C3T (80 mT/m amplitude, 700 T/m/s slew rate) and at derated performance (33 mT/m, 10 to 50 T/m/s) for acoustic noise reduction. DTI was acquired in two different phantoms and in seven human subjects, with and without gradient-derating corresponding to multi- and single-shot acquisitions, respectively. Sinusoidal waveforms on the C3T were quieter by 8.5 to 15.6 A-weighted decibels (dBA) on average as compared to the whole-body MRI. The derated multishot DTI acquisition noise level was only 8.7 dBA (at 13 T/m/s slew rate) above ambient, and was quieter than non-derated, single-shot DTI by 22.3 dBA; however, the scan time was almost quadrupled. Although derating resulted in negligible diffusivity differences in the phantoms, small biases in diffusivity measurements were observed in human subjects (apparent diffusion coefficient = +9.3 ± 8.8%, fractional anisotropy = +3.2 ± 11.2%, radial diffusivity = +9.4 ± 16.8%, parallel diffusivity = +10.3 ± 8.4%). The feasibility of achieving reduced acoustic noise levels with whole-brain DTI on the C3T MRI was demonstrated. Magn Reson Med 79:2902-2911, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, X; Yang, Y; Yang, L
Purpose: To report our initial experience of systematic monitoring treatment response using longitudinal diffusion MR images on a Co-60 MRI-guided radiotherapy system. Methods: Four patients, including 2 head-and-necks, 1 sarcoma and 1 GBM treated on a 0.35 Tesla MRI-guided treatment system, were analyzed. For each patient, 3D TrueFISP MRIs were acquired during CT simulation and before each treatment for treatment planning and patient setup purposes respectively. Additionally, 2D diffusion-weighted MR images (DWI) were acquired weekly throughout the treatment course. The gross target volume (GTV) and brainstem (as a reference structure) were delineated on weekly 3D TrueFISP MRIs to monitor anatomymore » changes, the contours were then transferred onto the corresponding DWI images after fusing with the weekly TrueFISP images. The patient-specific temporal and spatial variations during the entire treatment course, such as anatomic changes, target apparent diffusion coefficient (ADC) distribution were evaluated in a longitudinal pattern. Results: Routine MRI revealed progressive soft-tissue GTV volume changes (up to 53%) for the H&N cases during the treatment course of 5–7 weeks. Within the GTV, the mean ADC values varied from −44% (ADC decrease) to +26% (ADC increase) in a week. The gradual increase of ADC value was inversely associated with target volume variation for one H&N case. The maximal changes of mean ADC values within the brainstem were 5.3% for the H&N cases. For the large size sarcoma and GBM tumors, spatial heterogeneity and temporal variations were observed through longitudinal ADC analysis. Conclusion: In addition to the superior soft-tissue visualization, the 0.35T MR system on ViewRay showed the potential to quantitatively measure the ADC values for both tumor and normal tissues. For normal tissue that is minimally affected by radiation, its ADC values are reproducible. Tumor ADC values show temporal and spatial fluctuation that can be exploited for personalized adaptive therapy.« less
Rosenbaum, Daniel G; Askin, Gulce; Beneck, Debra M; Kovanlikaya, Arzu
2017-10-01
The role of magnetic resonance imaging (MRI) in pediatric appendicitis is increasing; MRI findings predictive of appendiceal perforation have not been specifically evaluated. To assess the performance of MRI in differentiating perforated from non-perforated appendicitis. A retrospective review of pediatric patients undergoing contrast-enhanced MRI and subsequent appendectomy was performed, with surgicopathological confirmation of perforation. Appendiceal diameter and the following 10 MRI findings were assessed: appendiceal restricted diffusion, wall defect, appendicolith, periappendiceal free fluid, remote free fluid, restricted diffusion within free fluid, abscess, peritoneal enhancement, ileocecal wall thickening and ileus. Two-sample t-test and chi-square tests were used to analyze continuous and discrete data, respectively. Sensitivity and specificity for individual MRI findings were calculated and optimal thresholds for measures of accuracy were selected. Seventy-seven patients (mean age: 12.2 years) with appendicitis were included, of whom 22 had perforation. The perforated group had a larger mean appendiceal diameter and mean number of MRI findings than the non-perforated group (12.3 mm vs. 8.6 mm; 5.0 vs. 2.0, respectively). Abscess, wall defect and restricted diffusion within free fluid had the greatest specificity for perforation (1.00, 1.00 and 0.96, respectively) but low sensitivity (0.36, 0.25 and 0.32, respectively). The receiver operator characteristic curve for total number of MRI findings had an area under the curve of 0.92, with an optimal threshold of 3.5. A threshold of any 4 findings had the best ability to accurately discriminate between perforated and non-perforated cases, with a sensitivity of 82% and specificity of 85%. Contrast-enhanced MRI can differentiate perforated from non-perforated appendicitis. The presence of multiple findings increases diagnostic accuracy, with a threshold of any four findings optimally discriminating between perforated and non-perforated cases. These results may help guide management decisions as MRI assumes a greater role in the work-up of pediatric appendicitis.
Parsian, Sana; Giannakopoulos, Nadia V.; Rahbar, Habib; Rendi, Mara H.; Chai, Xiaoyu
2016-01-01
OBJECTIVE To determine the underlying histopathologic features influencing apparent diffusion coefficient (ADC) values of breast fibroadenomas. MATERIALS AND METHODS Biopsy proven fibroadenomas (n=26) initially identified as suspicious on breast MRI were retrospectively evaluated. Histopathological assessments of lesion cellularity and stromal type were compared with ADC measures on diffusion-weighted MRI. RESULTS Presence of epithelial hyperplasia (increased cellularity) and dense collagenous stroma were both significantly associated with lower lesion ADC values (p=0.02 and 0.004, respectively. CONCLUSION Variations in epithelial cellularity and stromal type influence breast lesion ADC values and may explain the wide range of ADC measures observed in benign fibroadenomas. PMID:27379441
Kawashima, Hiroko; Miyati, Tosiaki; Ohno, Naoki; Ohno, Masako; Inokuchi, Masafumi; Ikeda, Hiroko; Gabata, Toshifumi
2018-04-01
To investigate whether the parameters derived from intravoxel incoherent motion (IVIM) MRI could differentiate phyllodes tumours (PTs) from fibroadenomas (FAs) by comparing the apparent diffusion coefficient (ADC) values. This retrospective study included 7 FAs, 10 benign PTs (BPTs), 4 borderline PTs, and one malignant PT. Biexponential analyses of IVIM were performed using a 3 T MRI scanner. Quantitative IVIM parameters [pure diffusion coefficient (D), perfusion-related diffusion coefficient (D*), and fraction (f)] were calculated. The ADC was also calculated using monoexponential fitting. The D and ADC values showed an increasing tendency in the order of FA, BPT, and borderline or malignant PT (BMPT). No significant difference was found in the D value among the three groups. The ADC value of the BMPT group was significantly higher than that of the FA group (p = 0.048). The D* value showed an increasing tendency in the order of BMPT, BPT, and FA, and the D* value of the BMPT group was significantly lower than that of the FA group (p = 0.048). The D* derived from IVIM and the ADC were helpful for differentiating between FA and BMPT. Advances in knowledge: IVIM MRI examination showed that the perfusion-related diffusion coefficient is lower in borderline and malignant PTs than in FAs and the opposite is true for the ADC.
Zhang, Zhongwei; Yuan, Qing; Zhou, Heling; Zhao, Dawen; Li, Li; Gerberich, Jenifer L; Mason, Ralph P
2015-11-01
To assess tumor response to oxygen challenge using quantitative diffusion magnetic resonance imaging (MRI). A well-characterized Dunning R3327-AT1 rat prostate cancer line was implanted subcutaneously in the right thigh of male Copenhagen rats (n = 8). Diffusion-weighted images (DWI) with multiple b values (0, 25, 50, 100, 150, 200, 300, 500, 1000, 1500 s/mm(2) ) in three orthogonal directions were obtained using a multishot FSE-based Stejskal-Tanner DWI sequence (FSE-DWI) at 4.7T, while rats breathed medical air (21% oxygen) and with 100% oxygen challenge. Stretched-exponential and intravoxel incoherent motion (IVIM) models were used to calculate and compare quantitative diffusion parameters: diffusion heterogeneity index (α), intravoxel distribution of diffusion coefficients (DDC), tissue diffusivity (Dt), pseudo-diffusivity (Dp), and perfusion fraction (f) on a voxel-by-voxel basis. A significant increase of α (73.9 ± 4.7% in air vs. 78.1 ± 4.5% in oxygen, P = 0.0198) and a significant decrease of f (13.4 ± 3.7% in air vs. 10.4 ± 2.7% in oxygen, P = 0.0201) were observed to accompany oxygen challenge. Correlations between f and α during both air and oxygen breathing were found; the correlation coefficients (r) were -0.90 and -0.96, respectively. Positive correlations between Dt and DDC with oxygen breathing (r = 0.95, P = 0.0003), f and DDC with air breathing were also observed (r = 0.95, P = 0.0004). Quantitative diffusion MRI demonstrated changes in tumor perfusion in response to oxygen challenge. © 2015 Wiley Periodicals, Inc.
Heusch, Philipp; Köhler, Jens; Wittsack, Hans-Joerg; Heusner, Till A; Buchbender, Christian; Poeppel, Thorsten D; Nensa, Felix; Wetter, Axel; Gauler, Thomas; Hartung, Verena; Lanzman, Rotem S
2013-11-01
To assess the feasibility of non-Gaussian DWI as part of a FDG-PET/MRI protocol in patients with histologically proven non-small cell lung cancer. 15 consecutive patients with histologically proven NSCLC (mean age 61 ± 11 years) were included in this study and underwent whole-body FDG-PET/MRI following whole-body FDG-PET/CT. As part of the whole-body FDG-PET/MRI protocol, an EPI-sequence with 5 b-values (0, 100, 500, 1000 and 2000 s/mm(2)) was acquired for DWI of the thorax during free-breathing. Volume of interest (VOI) measurements were performed to determine the maximum and mean standardized uptake value (SUV(max); SUV(mean)). A region of interest (ROI) was manually drawn around the tumor on b=0 images and then transferred to the corresponding parameter maps to assess ADC(mono), D(app) and K(app). To assess the goodness of the mathematical fit R(2) was calculated for monoexponential and non-Gaussian analysis. Spearman's correlation coefficients were calculated to compare SUV values and diffusion coefficients. A Student's t-test was performed to compare the monoexponential and non-Gaussian diffusion fitting (R(2)). T staging was equal between FDG-PET/CT and FDG-PET/MRI in 12 of 15 patients. For NSCLC, mean ADC(mono) was 2.11 ± 1.24 × 10(-3) mm(2)/s, Dapp was 2.46 ± 1.29 × 10(-3) mm(2)/s and mean Kapp was 0.70 ± 0.21. The non-Gaussian diffusion analysis (R(2)=0.98) provided a significantly better mathematical fitting to the DWI signal decay than the monoexponetial analysis (R(2)=0.96) (p<0.001). SUV(max) and SUV(mean) of NSCLC was 13.5 ± 7.6 and 7.9 ± 4.3 for FDG-PET/MRI. ADC(mono) as well as Dapp exhibited a significant inverse correlation with the SUV(max) (ADC(mono): R=-0.67; p<0.01; Dapp: R=-0.69; p<0.01) as well as with SUV(mean) assessed by FDG-PET/MRI (ADC(mono): R=-0.66; p<0.01; Dapp: R=-0.69; p<0.01). Furthermore, Kapp exhibited a significant correlation with SUV(max) (R=0.72; p<0.05) and SUV(mean) as assessed by FDG-PET/MRI (R=0.71; p<0.005). Simultaneous PET and non-Gaussian diffusion acquisitions are feasible. Non-Gaussian diffusion parameters show a good correlation with SUV and might provide additional information beyond monoexponential ADC, especially as non-Gaussian diffusion exhibits better mathematical fitting to the decay of the diffusion signal than monoexponential DWI. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Irie, Ryusuke; Kamagata, Koji; Kerever, Aurelien; Ueda, Ryo; Yokosawa, Suguru; Otake, Yosuke; Ochi, Hisaaki; Yoshizawa, Hidekazu; Hayashi, Ayato; Tagawa, Kazuhiko; Okazawa, Hitoshi; Takahashi, Kohske; Sato, Kanako; Hori, Masaaki; Arikawa-Hirasawa, Eri; Aoki, Shigeki
2018-01-01
Purpose: Diffusional kurtosis imaging (DKI) enables sensitive measurement of tissue microstructure by quantifying the non-Gaussian diffusion of water. Although DKI is widely applied in many situations, histological correlation with DKI analysis is lacking. The purpose of this study was to determine the relationship between DKI metrics and neurite density measured using confocal microscopy of a cleared mouse brain. Methods: One thy-1 yellow fluorescent protein 16 mouse was deeply anesthetized and perfusion fixation was performed. The brain was carefully dissected out and whole-brain MRI was performed using a 7T animal MRI system. DKI and diffusion tensor imaging (DTI) data were obtained. After the MRI scan, brain sections were prepared and then cleared using aminoalcohols (CUBIC). Confocal microscopy was performed using a two-photon confocal microscope with a laser. Forty-eight ROIs were set on the caudate putamen, seven ROIs on the anterior commissure, and seven ROIs on the ventral hippocampal commissure on the confocal microscopic image and a corresponding MR image. In each ROI, histological neurite density and the metrics of DKI and DTI were calculated. The correlations between diffusion metrics and neurite density were analyzed using Pearson correlation coefficient analysis. Results: Mean kurtosis (MK) (P = 5.2 × 10−9, r = 0.73) and radial kurtosis (P = 2.3 × 10−9, r = 0.74) strongly correlated with neurite density in the caudate putamen. The correlation between fractional anisotropy (FA) and neurite density was moderate (P = 0.0030, r = 0.42). In the anterior commissure and the ventral hippocampal commissure, neurite density and FA are very strongly correlated (P = 1.3 × 10−5, r = 0.90). MK in these areas were very high value and showed no significant correlation (P = 0.48). Conclusion: DKI accurately reflected neurite density in the area with crossing fibers, potentially allowing evaluation of complex microstructures. PMID:29213008
Irie, Ryusuke; Kamagata, Koji; Kerever, Aurelien; Ueda, Ryo; Yokosawa, Suguru; Otake, Yosuke; Ochi, Hisaaki; Yoshizawa, Hidekazu; Hayashi, Ayato; Tagawa, Kazuhiko; Okazawa, Hitoshi; Takahashi, Kohske; Sato, Kanako; Hori, Masaaki; Arikawa-Hirasawa, Eri; Aoki, Shigeki
2018-04-10
Diffusional kurtosis imaging (DKI) enables sensitive measurement of tissue microstructure by quantifying the non-Gaussian diffusion of water. Although DKI is widely applied in many situations, histological correlation with DKI analysis is lacking. The purpose of this study was to determine the relationship between DKI metrics and neurite density measured using confocal microscopy of a cleared mouse brain. One thy-1 yellow fluorescent protein 16 mouse was deeply anesthetized and perfusion fixation was performed. The brain was carefully dissected out and whole-brain MRI was performed using a 7T animal MRI system. DKI and diffusion tensor imaging (DTI) data were obtained. After the MRI scan, brain sections were prepared and then cleared using aminoalcohols (CUBIC). Confocal microscopy was performed using a two-photon confocal microscope with a laser. Forty-eight ROIs were set on the caudate putamen, seven ROIs on the anterior commissure, and seven ROIs on the ventral hippocampal commissure on the confocal microscopic image and a corresponding MR image. In each ROI, histological neurite density and the metrics of DKI and DTI were calculated. The correlations between diffusion metrics and neurite density were analyzed using Pearson correlation coefficient analysis. Mean kurtosis (MK) (P = 5.2 × 10 -9 , r = 0.73) and radial kurtosis (P = 2.3 × 10 -9 , r = 0.74) strongly correlated with neurite density in the caudate putamen. The correlation between fractional anisotropy (FA) and neurite density was moderate (P = 0.0030, r = 0.42). In the anterior commissure and the ventral hippocampal commissure, neurite density and FA are very strongly correlated (P = 1.3 × 10 -5 , r = 0.90). MK in these areas were very high value and showed no significant correlation (P = 0.48). DKI accurately reflected neurite density in the area with crossing fibers, potentially allowing evaluation of complex microstructures.
NASA Astrophysics Data System (ADS)
Masciotti, James M.; Rahim, Shaheed; Grover, Jarrett; Hielscher, Andreas H.
2007-02-01
We present a design for frequency domain instrument that allows for simultaneous gathering of magnetic resonance and diffuse optical tomographic imaging data. This small animal imaging system combines the high anatomical resolution of magnetic resonance imaging (MRI) with the high temporal resolution and physiological information provided by diffuse optical tomography (DOT). The DOT hardware comprises laser diodes and an intensified CCD camera, which are modulated up to 1 GHz by radio frequency (RF) signal generators. An optical imaging head is designed to fit inside the 4 cm inner diameter of a 9.4 T MRI system. Graded index fibers are used to transfer light between the optical hardware and the imaging head within the RF coil. Fiducial markers are integrated into the imaging head to allow the determination of the positions of the source and detector fibers on the MR images and to permit co-registration of MR and optical tomographic images. Detector fibers are arranged compactly and focused through a camera lens onto the photocathode of the intensified CCD camera.
Chen, Nan-kuei; Guidon, Arnaud; Chang, Hing-Chiu; Song, Allen W.
2013-01-01
Diffusion weighted magnetic resonance imaging (DWI) data have been mostly acquired with single-shot echo-planar imaging (EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in single-shot EPI, even when the parallel imaging (usually at an acceleration factor of 2) is incorporated. Multi-shot acquisition strategies could potentially achieve higher spatial resolution and fidelity, but they are generally susceptible to motion-induced phase errors among excitations that are exacerbated by diffusion sensitizing gradients, rendering the reconstructed images unusable. It has been shown that shot-to-shot phase variations may be corrected using navigator echoes, but at the cost of imaging throughput. To address these challenges, a novel and robust multi-shot DWI technique, termed multiplexed sensitivity-encoding (MUSE), is developed here to reliably and inherently correct nonlinear shot-to-shot phase variations without the use of navigator echoes. The performance of the MUSE technique is confirmed experimentally in healthy adult volunteers on 3 Tesla MRI systems. This newly developed technique should prove highly valuable for mapping brain structures and connectivities at high spatial resolution for neuroscience studies. PMID:23370063
Weerakoon, Bimali Sanjeevani; Osuga, Toshiaki
2017-03-01
The observation of molecular diffusion by means of magnetic resonance imaging (MRI) is significant in the evaluation of the metabolic activity of living tissues. Series of MRI examinations were conducted on a diffusion model to study the behaviour of the diffusion process of different-molecular-weight (MW) paramagnetic MRI contrast agents in an isotropic agar hydrogel medium. The model consisted of a solidified 1 % agar gel with an initial concentration of 0.5 mmol/L contrast solution layered on top of the gel. The diffusion process was monitored at pre-determined time intervals of immediately, 1, 6, 9, 23, and 48 h after introduction of the contrast agents onto the agar gel with a T1-weighted spin-echo (SE) pulse sequence. Three types of paramagnetic contrast agents, Gd-DTPA with a MW of 547.57 g/mol, Prohance with a MW of 558.69 g/mol and MnCl 2 with a MW of 125.84 g/mol, resulted in an approximate average diffusional displacement ratio of 1:1:2 per hour, respectively, within 48 h of the experiment. Therefore, the results of this study supported the hypothesis that the rate of the diffusion process of MRI contrast agents in the agar hydrogel medium is inversely related to their MWs. However, more repetitions are necessary under various types of experimental conditions and also with various types of contrast media of different MWs for further confirmation and validation of these results.
Mayer, Andrew R.; Ling, Josef M.; Dodd, Andrew B.; Meier, Timothy B.; Hanlon, Faith M.; Klimaj, Stefan D.
2018-01-01
Although diffusion magnetic resonance imaging (dMRI) has been widely used to characterize the effects of repetitive mild traumatic brain injury (rmTBI), to date no studies have investigated how novel geometric models of microstructure relate to more typical diffusion tensor imaging (DTI) sequences. Moreover, few studies have evaluated the sensitivity of different registration pipelines (non-linear, linear and tract-based spatial statistics) for detecting dMRI abnormalities in clinical populations. Results from single-subject analyses in healthy controls (HC) indicated a strong negative relationship between fractional anisotropy (FA) and orientation dispersion index (ODI) in both white and gray matter. Equally important, only moderate relationships existed between all other estimates of free/intracellular water volume fractions and more traditional DTI metrics (FA, mean, axial and radial diffusivity). These findings suggest that geometric measures provide differential information about the cellular microstructure relative to traditional DTI measures. Results also suggest greater sensitivity for non-linear registration pipelines that maximize the anatomical information available in T1-weighted images. Clinically, rmTBI resulted in a pattern of decreased FA and increased ODI, largely overlapping in space, in conjunction with increased intracellular and free water fractions, highlighting the potential role of edema following repeated head trauma. In summary, current results suggest that geometric models of diffusion can provide relatively unique information regarding potential mechanisms of pathology that contribute to long-term neurological damage. PMID:27071950
Mayer, Andrew R; Ling, Josef M; Dodd, Andrew B; Meier, Timothy B; Hanlon, Faith M; Klimaj, Stefan D
2017-06-01
Although diffusion magnetic resonance imaging (dMRI) has been widely used to characterize the effects of repetitive mild traumatic brain injury (rmTBI), to date no studies have investigated how novel geometric models of microstructure relate to more typical diffusion tensor imaging (DTI) sequences. Moreover, few studies have evaluated the sensitivity of different registration pipelines (non-linear, linear and tract-based spatial statistics) for detecting dMRI abnormalities in clinical populations. Results from single-subject analyses in healthy controls (HC) indicated a strong negative relationship between fractional anisotropy (FA) and orientation dispersion index (ODI) in both white and gray matter. Equally important, only moderate relationships existed between all other estimates of free/intracellular water volume fractions and more traditional DTI metrics (FA, mean, axial and radial diffusivity). These findings suggest that geometric measures provide differential information about the cellular microstructure relative to traditional DTI measures. Results also suggest greater sensitivity for non-linear registration pipelines that maximize the anatomical information available in T 1 -weighted images. Clinically, rmTBI resulted in a pattern of decreased FA and increased ODI, largely overlapping in space, in conjunction with increased intracellular and free water fractions, highlighting the potential role of edema following repeated head trauma. In summary, current results suggest that geometric models of diffusion can provide relatively unique information regarding potential mechanisms of pathology that contribute to long-term neurological damage.
NASA Astrophysics Data System (ADS)
Nakamura, Takako; Ohana, Tsuguyori; Yabuno, Hajime; Kasai, Rumiko; Suzuki, Tetsuya; Hasebe, Terumitsu
2013-01-01
We have developed a simple and useful process for fabricating nanodiamond (ND) particles modified with an organogadolinium moiety by chemical modification for their use as a magnetic resonance imaging (MRI) contrast agent. The introduction of the organogadolinium moiety on the surface of the ND particles was performed by the condensation of ND and diethylenetriaminepentaacetic acid (DTPA) followed by treatment with GdCl3. The modified surfaces were evaluated by X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, mass spectroscopy, and inductively coupled plasma atomic emission spectroscopy analyses. MRI experiments on the Gd-DTPA-ND particles indicated their high signal intensity on T1-weighted images.
Technique of diffusion weighted imaging and its application in stroke
NASA Astrophysics Data System (ADS)
Li, Enzhong; Tian, Jie; Han, Ying; Wang, Huifang; Li, Wu; He, Huiguang
2003-05-01
To study the application of diffusion weighted imaging and image post processing in the diagnosis of stroke, especially in acute stroke, 205 patients were examined by 1.5 T or 1.0 T MRI scanner and the images such as T1, T2 and diffusion weighted images were obtained. Image post processing was done with "3D Med System" developed by our lab to analyze data and acquire the apparent diffusion coefficient (ADC) map. In acute and subacute stage of stroke, the signal in cerebral infarction areas changed to hyperintensity in T2- and diffusion-weighted images, normal or hypointensity in T1-weighted images. In hyperacute stage, however, the signal was hyperintense just in the diffusion weighted imaes; others were normal. In the chronic stage, the signal in T1- and diffusion-weighted imaging showed hypointensity and hyperintensity in T2 weighted imaging. Because ADC declined obviously in acute and subacute stage of stroke, the lesion area was hypointensity in ADC map. With the development of the disease, ADC gradually recovered and then changed to hyperintensity in ADC map in chronic stage. Using diffusion weighted imaging and ADC mapping can make a diagnosis of stroke, especially in the hyperacute stage of stroke, and can differentiate acute and chronic stroke.
Parent, Maxime; Li, Ying; Santhakumar, Vijayalakshmi; Hyder, Fahmeed; Sanganahalli, Basavaraju G; Kannurpatti, Sridhar
2018-06-01
TBI is a leading cause of morbidity in children. To investigate outcome of early developmental TBI during adolescence, a rat model of fluid percussion injury was developed, where previous work reported deficits in sensorimotor behavior and cortical blood flow at adolescence. 1 Based on the non-localized outcome, we hypothesized that multiple neurophysiological components of brain function, namely neuronal connectivity, synapse/axonal microstructural integrity and neurovascular function are altered and magnetic resonance imaging (MRI) methods could be used to determine regional alterations. Adolescent outcomes of developmental TBI were studied 2-months after injury, using functional MRI (fMRI) and Diffusion Tensor Imaging (DTI). fMRI based resting state functional connectivity (RSFC), representing neural connectivity, was significantly altered between sham and TBI. RSFC strength decreased in the cortex, hippocampus and thalamus accompanied by decrease in the spatial extent of their corresponding RSFC networks and inter-hemispheric asymmetry. Cerebrovascular reactivity to arterial CO2 changes diminished after TBI across both hemispheres, with a more pronounced decrease in the ipsilateral hippocampus, thalamus and motor cortex. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient (ADC), reporting on axonal and microstructural integrity of the brain, indicated similar inter-hemispheric asymmetry, with highest change in the ipsilateral hippocampus and regions adjoining the ipsilateral thalamus, hypothalamus and amygdala. TBI-induced corpus callosal microstructural alterations indicated measurable changes in inter-hemispheric structural connectivity. Hippocampus, thalamus and select cortical regions were most consistently affected in multiple imaging markers. The multi-modal MRI results demonstrate cortical and subcortical alterations in neural connectivity, cerebrovascular resistance and parenchymal microstructure in the adolescent brain, indicating the highly diffuse and persistent nature of the lateral fluid percussion TBI early in development.
Hori, Masaaki; Kamiya, Kouhei; Nakanishi, Atsushi; Fukunaga, Issei; Miyajima, Masakazu; Nakajima, Madoka; Suzuki, Michimasa; Suzuki, Yuriko; Irie, Ryusuke; Kamagata, Koji; Arai, Hajime; Aoki, Shigeki
2016-09-01
To prospectively estimate the mean axon diameter (MAD) and extracellular space of the posterior limb of the internal capsule (PLIC) in patients with idiopathic normal pressure hydrocephalus (iNPH) before and after a lumboperitoneal (LP) shunting operation using q-space diffusion MRI analysis. We studied 12 consecutive patients with iNPH and 12 controls at our institution. After conventional magnetic resonance imaging (MRI), q-space image (QSI) data were acquired with a 3-T MRI scanner. The MAD and extra-axonal space of the PLIC before and after LP shunting were calculated using two-component q-space imaging analyses; the before and after values were compared. After LP shunt surgery, the extracellular space of the PLIC was significantly higher than that of the same patients before the operation (one-way analysis of variance (ANOVA) with Scheffé's post-hoc test, P = 0.024). No significant differences were observed in the PLIC axon diameters among normal controls or in patients before and after surgery. Increases in the root mean square displacement in the extra-axonal space of the PLIC in patients with iNPH after an LP shunt procedure are associated with the microstructural changes of white matter and subsequent abatement of patient symptoms. • Q-space diffusion MRI provides information on microstructural changes in the corticospinal tract • Lumboperitoneal (LP) shunting operation is useful for idiopathic normal pressure hydrocephalus • Q-space measurement may be a biomarker for the effect of the LP shunt procedure.
Biparametric MRI of the prostate.
Scialpi, Michele; D'Andrea, Alfredo; Martorana, Eugenio; Malaspina, Corrado Maria; Aisa, Maria Cristina; Napoletano, Maria; Orlandi, Emanuele; Rondoni, Valeria; Scialpi, Pietro; Pacchiarini, Diamante; Palladino, Diego; Dragone, Michele; Di Renzo, Giancarlo; Simeone, Annalisa; Bianchi, Giampaolo; Brunese, Luca
2017-12-01
Biparametric Magnetic Resonance Imaging (bpMRI) of the prostate combining both morphologic T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) is emerging as an alternative to multiparametric MRI (mpMRI) to detect, to localize and to guide prostatic targeted biopsy in patients with suspicious prostate cancer (PCa). BpMRI overcomes some limitations of mpMRI such as the costs, the time required to perform the study, the use of gadolinium-based contrast agents and the lack of a guidance for management of score 3 lesions equivocal for significant PCa. In our experience the optimal and similar clinical results of the bpMRI in comparison to mpMRI are essentially related to the DWI that we consider the dominant sequence for detection suspicious PCa both in transition and in peripheral zone. In clinical practice, the adoption of bpMRI standardized scoring system, indicating the likelihood to diagnose a clinically significant PCa and establishing the management of each suspicious category (from 1 to 4), could represent the rationale to simplify and to improve the current interpretation of mpMRI based on Prostate Imaging and Reporting Archiving Data System version 2 (PI-RADS v2). In this review article we report and describe the current knowledge about bpMRI in the detection of suspicious PCa and a simplified PI-RADS based on bpMRI for management of each suspicious PCa categories to facilitate the communication between radiologists and urologists.
Biparametric MRI of the prostate
Scialpi, Michele; D’Andrea, Alfredo; Martorana, Eugenio; Malaspina, Corrado Maria; Aisa, Maria Cristina; Napoletano, Maria; Orlandi, Emanuele; Rondoni, Valeria; Scialpi, Pietro; Pacchiarini, Diamante; Palladino, Diego; Dragone, Michele; Di Renzo, Giancarlo; Simeone, Annalisa; Bianchi, Giampaolo; Brunese, Luca
2017-01-01
Biparametric Magnetic Resonance Imaging (bpMRI) of the prostate combining both morphologic T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) is emerging as an alternative to multiparametric MRI (mpMRI) to detect, to localize and to guide prostatic targeted biopsy in patients with suspicious prostate cancer (PCa). BpMRI overcomes some limitations of mpMRI such as the costs, the time required to perform the study, the use of gadolinium-based contrast agents and the lack of a guidance for management of score 3 lesions equivocal for significant PCa. In our experience the optimal and similar clinical results of the bpMRI in comparison to mpMRI are essentially related to the DWI that we consider the dominant sequence for detection suspicious PCa both in transition and in peripheral zone. In clinical practice, the adoption of bpMRI standardized scoring system, indicating the likelihood to diagnose a clinically significant PCa and establishing the management of each suspicious category (from 1 to 4), could represent the rationale to simplify and to improve the current interpretation of mpMRI based on Prostate Imaging and Reporting Archiving Data System version 2 (PI-RADS v2). In this review article we report and describe the current knowledge about bpMRI in the detection of suspicious PCa and a simplified PI-RADS based on bpMRI for management of each suspicious PCa categories to facilitate the communication between radiologists and urologists. PMID:29201499
Al Amrani, Fatema; Kwan, Saskia; Gilbert, Guillaume; Saint-Martin, Christine; Shevell, Michael; Wintermark, Pia
2017-08-01
Brain injury can be identified as early as day two of life in asphyxiated newborns treated with hypothermia, when using diffusion magnetic resonance imaging (MRI). However, it remains unclear whether these diffusion changes can predict future neurodevelopment. This study aimed to determine whether abnormal early diffusion changes in newborns treated with hypothermia are associated with adverse neurodevelopmental outcome at age two years. Asphyxiated newborns treated with hypothermia were enrolled prospectively. They underwent magnetic resonance imaging (MRI) at specific time points over the first month of life, including diffusion-weighted imaging and diffusion-tensor imaging. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in different regions of interest. Adverse neurodevelopmental outcome was defined as cerebral palsy, global developmental delay, and/or seizure disorder around age two years. ADC and FA values were compared between the newborns developing or not developing adverse outcome. Twenty-nine asphyxiated newborns treated with hypothermia were included. Among the newborns developing adverse outcome, ADC values were significantly decreased on days two to three of life and increased around day ten of life in the thalamus, posterior limb of the internal capsule, and the lentiform nucleus. FA values decreased in the same regions around day 30 of life. These newborns also had increased ADC around day ten of life and around day 30 of life, and decreased FA around day 30 of life in the anterior and posterior white matter. Diffusion changes that were evident as early as day two of life, when the asphyxiated newborns were still treated with hypothermia, were associated with later abnormal neurodevelopmental outcome. Copyright © 2017 Elsevier Inc. All rights reserved.
Magnetic resonance imaging based functional imaging in paediatric oncology.
Manias, Karen A; Gill, Simrandip K; MacPherson, Lesley; Foster, Katharine; Oates, Adam; Peet, Andrew C
2017-02-01
Imaging is central to management of solid tumours in children. Conventional magnetic resonance imaging (MRI) is the standard imaging modality for tumours of the central nervous system (CNS) and limbs and is increasingly used in the abdomen. It provides excellent structural detail, but imparts limited information about tumour type, aggressiveness, metastatic potential or early treatment response. MRI based functional imaging techniques, such as magnetic resonance spectroscopy, diffusion and perfusion weighted imaging, probe tissue properties to provide clinically important information about metabolites, structure and blood flow. This review describes the role of and evidence behind these functional imaging techniques in paediatric oncology and implications for integrating them into routine clinical practice. Copyright © 2016 Elsevier Ltd. All rights reserved.
q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI Scans.
Golkov, Vladimir; Dosovitskiy, Alexey; Sperl, Jonathan I; Menzel, Marion I; Czisch, Michael; Samann, Philipp; Brox, Thomas; Cremers, Daniel
2016-05-01
Numerous scientific fields rely on elaborate but partly suboptimal data processing pipelines. An example is diffusion magnetic resonance imaging (diffusion MRI), a non-invasive microstructure assessment method with a prominent application in neuroimaging. Advanced diffusion models providing accurate microstructural characterization so far have required long acquisition times and thus have been inapplicable for children and adults who are uncooperative, uncomfortable, or unwell. We show that the long scan time requirements are mainly due to disadvantages of classical data processing. We demonstrate how deep learning, a group of algorithms based on recent advances in the field of artificial neural networks, can be applied to reduce diffusion MRI data processing to a single optimized step. This modification allows obtaining scalar measures from advanced models at twelve-fold reduced scan time and detecting abnormalities without using diffusion models. We set a new state of the art by estimating diffusion kurtosis measures from only 12 data points and neurite orientation dispersion and density measures from only 8 data points. This allows unprecedentedly fast and robust protocols facilitating clinical routine and demonstrates how classical data processing can be streamlined by means of deep learning.
Brown, Anna M; Nagala, Sidhartha; McLean, Mary A; Lu, Yonggang; Scoffings, Daniel; Apte, Aditya; Gonen, Mithat; Stambuk, Hilda E; Shaha, Ashok R; Tuttle, R Michael; Deasy, Joseph O; Priest, Andrew N; Jani, Piyush; Shukla-Dave, Amita; Griffiths, John
2016-04-01
Ultrasound-guided fine needle aspirate cytology fails to diagnose many malignant thyroid nodules; consequently, patients may undergo diagnostic lobectomy. This study assessed whether textural analysis (TA) could noninvasively stratify thyroid nodules accurately using diffusion-weighted MRI (DW-MRI). This multi-institutional study examined 3T DW-MRI images obtained with spin echo echo planar imaging sequences. The training data set included 26 patients from Cambridge, United Kingdom, and the test data set included 18 thyroid cancer patients from Memorial Sloan Kettering Cancer Center (New York, New York, USA). Apparent diffusion coefficients (ADCs) were compared over regions of interest (ROIs) defined on thyroid nodules. TA, linear discriminant analysis (LDA), and feature reduction were performed using the 21 MaZda-generated texture parameters that best distinguished benign and malignant ROIs. Training data set mean ADC values were significantly different for benign and malignant nodules (P = 0.02) with a sensitivity and specificity of 70% and 63%, respectively, and a receiver operator characteristic (ROC) area under the curve (AUC) of 0.73. The LDA model of the top 21 textural features correctly classified 89/94 DW-MRI ROIs with 92% sensitivity, 96% specificity, and an AUC of 0.97. This algorithm correctly classified 16/18 (89%) patients in the independently obtained test set of thyroid DW-MRI scans. TA classifies thyroid nodules with high sensitivity and specificity on multi-institutional DW-MRI data sets. This method requires further validation in a larger prospective study. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
MRI and clinical features of maple syrup urine disease: preliminary results in 10 cases
Cheng, Ailan; Han, Lianshu; Feng, Yun; Li, Huimin; Yao, Rong; Wang, Dengbin; Jin, Biao
2017-01-01
PURPOSE We aimed to evaluate the magnetic resonance imaging (MRI) and clinical features of maple syrup urine disease (MSUD). METHODS This retrospective study consisted of 10 MSUD patients confirmed by genetic testing. All patients underwent brain MRI. Phenotype, genotype, and areas of brain injury on MRI were retrospectively reviewed. RESULTS Six patients (60%) had the classic form of MSUD with BCKDHB mutation, three patients (30%) had the intermittent form (two with BCKDHA mutations and one with DBT mutation), and one patient (10%) had the thiamine-responsive form with DBT mutation. On diffusion-weighted imaging, nine cases presented restricted diffusion in myelinated areas, and one intermittent case with DBT mutation was normal. The classic form of MSUD involved the basal ganglia in six cases; the cerebellum, mesencephalon, pons, and supratentorial area in five cases; and the thalamus in four cases, respectively. The intermittent form involved the cerebellum, pons, and supratentorial area in two cases. The thiamine-responsive form involved the basal ganglia and supratentorial area. CONCLUSION Our preliminary results indicate that patients with MSUD presented more commonly in classic form with BCKDHB mutation and displayed extensive brain injury on MRI. PMID:28830848
Multi-parametric spinal cord MRI as potential progression marker in amyotrophic lateral sclerosis.
El Mendili, Mohamed-Mounir; Cohen-Adad, Julien; Pelegrini-Issac, Mélanie; Rossignol, Serge; Morizot-Koutlidis, Régine; Marchand-Pauvert, Véronique; Iglesias, Caroline; Sangari, Sina; Katz, Rose; Lehericy, Stéphane; Benali, Habib; Pradat, Pierre-François
2014-01-01
To evaluate multimodal MRI of the spinal cord in predicting disease progression and one-year clinical status in amyotrophic lateral sclerosis (ALS) patients. After a first MRI (MRI1), 29 ALS patients were clinically followed during 12 months; 14/29 patients underwent a second MRI (MRI2) at 11±3 months. Cross-sectional area (CSA) that has been shown to be a marker of lower motor neuron degeneration was measured in cervical and upper thoracic spinal cord from T2-weighted images. Fractional anisotropy (FA), axial/radial/mean diffusivities (λ⊥, λ//, MD) and magnetization transfer ratio (MTR) were measured within the lateral corticospinal tract in the cervical region. Imaging metrics were compared with clinical scales: Revised ALS Functional Rating Scale (ALSFRS-R) and manual muscle testing (MMT) score. At MRI1, CSA correlated significantly (P<0.05) with MMT and arm ALSFRS-R scores. FA correlated significantly with leg ALFSRS-R scores. One year after MRI1, CSA predicted (P<0.01) arm ALSFSR-R subscore and FA predicted (P<0.01) leg ALSFRS-R subscore. From MRI1 to MRI2, significant changes (P<0.01) were detected for CSA and MTR. CSA rate of change (i.e. atrophy) highly correlated (P<0.01) with arm ALSFRS-R and arm MMT subscores rate of change. Atrophy and DTI metrics predicted ALS disease progression. Cord atrophy was a better biomarker of disease progression than diffusion and MTR. Our study suggests that multimodal MRI could provide surrogate markers of ALS that may help monitoring the effect of disease-modifying drugs.
de Jong, Antoinette; Kwee, Thomas C; de Klerk, John MH; Adam, Judit A; de Keizer, Bart; Fijnheer, Rob; Kersten, Marie José; Ludwig, Inge; Jauw, Yvonne WS; Zijlstra, Josée M; den Bos, Indra C Pieters - Van; Stoker, Jaap; Hoekstra, Otto S; Nievelstein, Rutger AJ
2014-01-01
The purpose of this study was to determine the correlation between the 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) standardized uptake value (SUV) and the diffusion-weighted magnetic resonance imaging (MRI) apparent diffusion coefficient (ADC) in newly diagnosed diffuse large B-cell lymphoma (DLBCL). Pretreatment FDG-PET and diffusion-weighted MRI of 21 patients with histologically proven DLBCL were prospectively analyzed. In each patient, maximum, mean and peak standardized uptake value (SUV) was measured in the lesion with visually highest FDG uptake and in the largest lesion. Mean ADC (ADCmean, calculated with b-values of 0 and 1000 s/mm2) was measured in the same lesions. Correlations between FDG-PET metrics (SUVmax, SUVmean, SUVpeak) and ADCmean were assessed using Pearson’s correlation coefficients. In the lesions with visually highest FDG uptake, no significant correlations were found between the SUVmax, SUVmean, SUVpeak and the ADCmean (P=0.498, P=0.609 and P=0.595, respectively). In the largest lesions, there were no significant correlations either between the SUVmax, SUVmean, SUVpeak and the ADCmean (P=0.992, P=0.843 and P=0.894, respectively). The results of this study indicate that the glycolytic rate as measured by FDG-PET and changes in water compartmentalization and water diffusion as measured by the ADC are independent biological phenomena in newly diagnosed DLBCL. Further studies are warranted to assess the complementary roles of these different imaging biomarkers in the evaluation and follow-up of DLBCL. PMID:24795837
Simultaneous (68)Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor.
Hope, Thomas A; Pampaloni, Miguel Hernandez; Nakakura, Eric; VanBrocklin, Henry; Slater, James; Jivan, Salma; Aparici, Carina Mari; Yee, Judy; Bergsland, Emily
2015-08-01
To evaluate a simultaneous PET/MRI approach to imaging patients with neuroendocrine tumor using a combination of (68)Ga-DOTA-TOC as a PET contrast agent and gadoxetate disodium as a hepatobiliary MRI contrast agent. Ten patients with neuroendocrine tumor with known or suspected hepatic disease were imaged using a (68)Ga-DOTA-TOC PET/CT immediately followed by a 3.0T time-of-flight PET/MRI, using a combined whole body and liver specific imaging. The presence of lesions and DOTA-TOC avidity were assessed on CT, PET from PET/CT, diffusion weighted imaging, hepatobiliary phase imaging (HBP), and PET from PET/MRI. Maximum standardized uptake values (SUVmax) in hepatic lesions and nodal metastases were compared between PET/CT and PET/MRI, as were detection rates using each imaging approach. A total of 101 hepatic lesions were identified, 47 of which were DOTA-TOC avid and able to be individually measured on both PET/CT and PET/MRI. HBP imaging had a higher sensitivity for detection of hepatic lesions compared to CT or PET (99% vs. 46% and 64%, respectively; p values <0.001). There was a strong correlation between SUVmax of liver lesions obtained with PET/CT compared to PET/MR imaging (Pearson's correlation = 0.91). For nodal disease, CT had a higher sensitivity compared to whole body MRI (p = 0.015), although PET acquired from PET/MRI detected slightly more lesions compared to PET from PET/CT. A simultaneous PET/MRI using both (68)Ga-DOTA-TOC and gadoxetate disodium was successful in whole body staging of patients with neuroendocrine tumor. HBP imaging had an increased detection rate for hepatic metastases.
Computer-Aided Detection of Prostate Cancer with MRI: Technology and Applications
Liu, Lizhi; Tian, Zhiqiang; Zhang, Zhenfeng; Fei, Baowei
2016-01-01
One in six men will develop prostate cancer in his life time. Early detection and accurate diagnosis of the disease can improve cancer survival and reduce treatment costs. Recently, imaging of prostate cancer has greatly advanced since the introduction of multi-parametric magnetic resonance imaging (mp-MRI). Mp-MRI consists of T2-weighted sequences combined with functional sequences including dynamic contrast-enhanced MRI, diffusion-weighted MRI, and MR spectroscopy imaging. Due to the big data and variations in imaging sequences, detection can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. In order to improve quantitative assessment of the disease, various computer-aided detection systems have been designed to help radiologists in their clinical practice. This review paper presents an overview of literatures on computer-aided detection of prostate cancer with mp-MRI, which include the technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:27133005
Early MRI changes in glioblastoma in the period between surgery and adjuvant therapy.
Farace, Paolo; Amelio, Dante; Ricciardi, Giuseppe K; Zoccatelli, Giada; Magon, Stefano; Pizzini, Francesca; Alessandrini, Franco; Sbarbati, Andrea; Amichetti, Maurizio; Beltramello, Alberto
2013-01-01
To investigate the increase in MRI contrast enhancement (CE) occurring in glioblastoma during the period between surgery and initiation of chemo-radiotherapy, thirty-seven patients with newly diagnosed glioblastoma were analyzed by early post-operative magnetic resonance (EPMR) imaging within three days of surgery and by pre-adjuvant magnetic resonance (PAMR) examination before adjuvant therapy. Areas of new CE were investigated by use of EPMR diffusion-weighted imaging and PAMR perfusion imaging (by arterial spin-labeling). PAMR was acquired, on average, 29.9 days later than EPMR (range 20-37 days). During this period an increased area of CE was observed for 17/37 patients. For 3/17 patients these regions were confined to areas of reduced EPMR diffusion, suggesting postsurgical infarct. For the other 14/17 patients, these areas suggested progression. For 11/17 patients the co-occurrence of hyperperfusion in PAMR perfusion suggested progression. PAMR perfusion and EPMR diffusion did not give consistent results for 3/17 patients for whom small new areas of CE were observed, presumably because of the poor spatial resolution of perfusion imaging. Before initiation of adjuvant therapy, areas of new CE of resected glioblastomas are frequently observed. Most of these suggest tumor progression, according to EPMR diffusion and PAMR perfusion criteria.
Bernardin, L; Douglas, N H M; Collins, D J; Giles, S L; O'Flynn, E A M; Orton, M; deSouza, N M
2014-02-01
To establish repeatability of apparent diffusion coefficients (ADCs) acquired from free-breathing diffusion-weighted magnetic resonance imaging (DW-MRI) in malignant lung lesions and investigate effects of lesion size, location and respiratory motion. Thirty-six malignant lung lesions (eight patients) were examined twice (1- to 5-h interval) using T1-weighted, T2-weighted and axial single-shot echo-planar DW-MRI (b = 100, 500, 800 s/mm(2)) during free-breathing. Regions of interest around target lesions on computed b = 800 s/mm(2) images by two independent observers yielded ADC values from maps (pixel-by-pixel fitting using all b values and a mono-exponential decay model). Intra- and inter-observer repeatability was assessed per lesion, per patient and by lesion size (> or <2 cm) or location. ADCs were similar between observers (mean ± SD, 1.15 ± 0.28 × 10(-3) mm(2)/s, observer 1; 1.15 ± 0.29 × 10(-3) mm(2)/s, observer 2). Intra-observer coefficients of variation of the mean [median] ADC per lesion and per patient were 11% [11.4%], 5.7% [5.7%] for observer 1 and 9.2% [9.5%], 3.9% [4.7%] for observer 2 respectively; inter-observer values were 8.9% [9.3%] (per lesion) and 3.0% [3.7%] (per patient). Inter-observer coefficient of variation (CoV) was greater for lesions <2 cm (n = 20) compared with >2 cm (n = 16) (10.8% vs 6.5% ADCmean, 11.3% vs 6.7% ADCmedian) and for mid (n = 14) vs apical (n = 9) or lower zone (n = 13) lesions (13.9%, 2.7%, 3.8% respectively ADCmean; 14.2%, 2.8%, 4.7% respectively ADCmedian). Free-breathing DW-MRI of whole lung achieves good intra- and inter-observer repeatability of ADC measurements in malignant lung tumours. • Diffusion-weighted MRI of the lung can be satisfactorily acquired during free-breathing • DW-MRI demonstrates high contrast between primary and metastatic lesions and normal lung • Apparent diffusion coefficient (ADC) measurements in lung tumours are repeatable and reliable • ADC offers potential in assessing response in lung metastases in clinical trials.
Tóth, Eszter; Szabó, Nikoletta; Csete, Gergõ; Király, András; Faragó, Péter; Spisák, Tamás; Bencsik, Krisztina; Vécsei, László; Kincses, Zsigmond T
2017-01-01
Objective: Cortical pathology, periventricular demyelination, and lesion formation in multiple sclerosis (MS) are related (Hypothesis 1). Factors in the cerebrospinal fluid close to these compartments could possibly drive the parallel processes. Alternatively, the cortical atrophy could be caused by remote axonal transection (Hypothesis 2). Since MRI can differentiate between demyelination and axon loss, we used this imaging modality to investigate the correlation between the pattern of diffusion parameter changes in the periventricular- and deep white matter and the gray matter atrophy. Methods: High-resolution T1-weighted, FLAIR, and diffusion MRI images were acquired in 52 RRMS patients and 50 healthy, age-matched controls. We used EDSS to estimate the clinical disability. We used Tract Based Spatial Statistics to compare diffusion parameters (fractional anisotropy, mean, axial, and radial diffusivity) between groups. We evaluated global brain, white, and gray matter atrophy with SIENAX. Averaged, standard diffusion parameters were calculated in four compartment: periventricular lesioned and normal appearing white matter, non-periventricular lesioned and normal appearing white matter. PLS regression was used to identify which diffusion parameter and in which compartment best predicts the brain atrophy and clinical disability. Results: In our diffusion tensor imaging study compared to controls we found extensive alterations of fractional anisotropy, mean and radial diffusivity and smaller changes of axial diffusivity (maximal p > 0.0002) in patients that suggested demyelination in the lesioned and in the normal appearing white matter. We found significant reduction in total brain, total white, and gray matter (patients: 718.764 ± 14.968, 323.237 ± 7.246, 395.527 ± 8.050 cm 3 , controls: 791.772 ± 22.692, 355.350 ± 10.929, 436.422 ± 12.011 cm 3 ; mean ± SE), ( p < 0.015; p < 0.0001; p < 0.009; respectively) of patients compared to controls. The PLS analysis revealed a combination of demyelination-like diffusion parameters (higher mean and radial diffusivity in patients) in the lesions and in the non-lesioned periventricular white matter, which best predicted the gray matter atrophy ( p < 0.001). Similarly, EDSS was best predicted by the radial diffusivity of the lesions and the non-lesioned periventricular white matter, but axial diffusivity of the periventricular lesions also contributed significantly ( p < 0.0001). Interpretation: Our investigation showed that gray matter atrophy and white matter demyelination are related in MS but white matter axonal loss does not significantly contribute to the gray matter pathology.
Morawski, Markus; Kirilina, Evgeniya; Scherf, Nico; Jäger, Carsten; Reimann, Katja; Trampel, Robert; Gavriilidis, Filippos; Geyer, Stefan; Biedermann, Bernd; Arendt, Thomas; Weiskopf, Nikolaus
2017-11-28
Recent breakthroughs in magnetic resonance imaging (MRI) enabled quantitative relaxometry and diffusion-weighted imaging with sub-millimeter resolution. Combined with biophysical models of MR contrast the emerging methods promise in vivo mapping of cyto- and myelo-architectonics, i.e., in vivo histology using MRI (hMRI) in humans. The hMRI methods require histological reference data for model building and validation. This is currently provided by MRI on post mortem human brain tissue in combination with classical histology on sections. However, this well established approach is limited to qualitative 2D information, while a systematic validation of hMRI requires quantitative 3D information on macroscopic voxels. We present a promising histological method based on optical 3D imaging combined with a tissue clearing method, Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging compatible Tissue hYdrogel (CLARITY), adapted for hMRI validation. Adapting CLARITY to the needs of hMRI is challenging due to poor antibody penetration into large sample volumes and high opacity of aged post mortem human brain tissue. In a pilot experiment we achieved transparency of up to 8 mm-thick and immunohistochemical staining of up to 5 mm-thick post mortem brain tissue by a combination of active and passive clearing, prolonged clearing and staining times. We combined 3D optical imaging of the cleared samples with tailored image processing methods. We demonstrated the feasibility for quantification of neuron density, fiber orientation distribution and cell type classification within a volume with size similar to a typical MRI voxel. The presented combination of MRI, 3D optical microscopy and image processing is a promising tool for validation of MRI-based microstructure estimates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Salinas-Muciño, G.; Torres-García, E.; Hidalgo-Tobon, S.
2012-10-01
The process to produce an MR image includes nuclear alignment, RF excitation, spatial encoding, and image formation. To form an image, it is necessary to perform spatial localization of the MR signals, which is achieved using gradient coils. MRI requires the use of gradient coils that generate magnetic fields, which vary linearly with position over the imaging volume. Safety issues have been a motivation to study deeply the relation between the interaction of gradient magnetic field and the peripheral nerve stimulation. In this work is presented a numerical modeling between the concomitant magnetic fields produced by the gradient coils and the electric field induced in a cube with σ conductivity by the gradient field switching in pulse sequences as Eco planar Imaging (EPI), due to this kind of sequence is the most used in advance applications of magnetic resonance imaging as functional MRI, cardiac imaging or diffusion.
Wang, Xin-Yan; Yan, Fei; Hao, Hui; Wu, Jian-Xing; Chen, Qing-Hua; Xian, Jun-Fang
2015-01-01
Background: Differentiating benign from malignant sinonsal lesions is essential for treatment planning as well as determining the patient's prognosis, but the differentiation is often difficult in clinical practice. The study aimed to determine whether the combination of diffusion-weighted (DW) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can improve the performance in differentiating benign from malignant sinonasal tumors. Methods: This retrospective study included 197 consecutive patients with sinonasal tumors (116 malignant tumors and 81 benign tumors). All patients underwent both DW and DCE-MRI in a 3-T magnetic resonance scanner. Two different settings of b values (0,700 and 0,1000 s/mm2) and two different strategies of region of interest (ROI) including whole slice (WS) and partial slice (PS) were used to calculate apparent diffusion coefficients (ADCs). A DW parameter with WS ADCsb0,1000 and two DCE-MRI parameters (time intensity curve [TIC] and time to peak enhancement [Tpeak]) were finally combined to use in differentiating the benign from the malignant tumors in this study. Results: The mean ADCs of malignant sinonasal tumors (WS ADCsb0,1000 = 1.084 × 10−3 mm2/s) were significantly lower than those of benign tumors (WS ADCsb0,1000 = 1.617 × 10−3 mm2/s, P < 0.001). The accuracy using WS ADCsb0,1000 alone was 83.7% in differentiating the benign from the malignant tumors (85.3% sensitivity, 81.2% specificity, 86.4% positive predictive value [PPV], and 79.5% negative predictive value [NPV]). The accuracy using DCE with Tpeak and TIC alone was 72.1% (69.1% sensitivity, 74.1% specificity, 77.5% PPV, and 65.1% NPV). Using DW-MRI parameter was superior than using DCE parameters in differentiation between benign and malignant sinonasal tumors (P < 0.001). The accuracy was 87.3% (90.5% sensitivity, 82.7% specificity, 88.2% PPV, and 85.9% NPV) using DW-MRI combined with DCE-MRI, which was superior than that using DCE-MRI alone or using DW-MRI alone (both P < 0.001) in differentiating the benign from the malignant tumors. Conclusions: Diffusion-weighted combined with DCE-MRI can improve imaging performance in differentiating benign from malignant sinonasal tumors, which has the potential to improve diagnostic accuracy and to provide added value in the management for these tumors. PMID:25698188
Malkyarenko, Dariya I; Chenevert, Thomas L
2014-12-01
To describe an efficient procedure to empirically characterize gradient nonlinearity and correct for the corresponding apparent diffusion coefficient (ADC) bias on a clinical magnetic resonance imaging (MRI) scanner. Spatial nonlinearity scalars for individual gradient coils along superior and right directions were estimated via diffusion measurements of an isotropicic e-water phantom. Digital nonlinearity model from an independent scanner, described in the literature, was rescaled by system-specific scalars to approximate 3D bias correction maps. Correction efficacy was assessed by comparison to unbiased ADC values measured at isocenter. Empirically estimated nonlinearity scalars were confirmed by geometric distortion measurements of a regular grid phantom. The applied nonlinearity correction for arbitrarily oriented diffusion gradients reduced ADC bias from 20% down to 2% at clinically relevant offsets both for isotropic and anisotropic media. Identical performance was achieved using either corrected diffusion-weighted imaging (DWI) intensities or corrected b-values for each direction in brain and ice-water. Direction-average trace image correction was adequate only for isotropic medium. Empiric scalar adjustment of an independent gradient nonlinearity model adequately described DWI bias for a clinical scanner. Observed efficiency of implemented ADC bias correction quantitatively agreed with previous theoretical predictions and numerical simulations. The described procedure provides an independent benchmark for nonlinearity bias correction of clinical MRI scanners.
Billiet, Thibo; Mädler, Burkhard; D'Arco, Felice; Peeters, Ronald; Deprez, Sabine; Plasschaert, Ellen; Leemans, Alexander; Zhang, Hui; den Bergh, Bea Van; Vandenbulcke, Mathieu; Legius, Eric; Sunaert, Stefan; Emsell, Louise
2014-01-01
The histopathological basis of "unidentified bright objects" (UBOs) (hyperintense regions seen on T2-weighted magnetic resonance (MR) brain scans in neurofibromatosis-1 (NF1)) remains unclear. New in vivo MRI-based techniques (multi-exponential T2 relaxation (MET2) and diffusion MR imaging (dMRI)) provide measures relating to microstructural change. We combined these methods and present previously unreported data on in vivo UBO microstructure in NF1. 3-Tesla dMRI data were acquired on 17 NF1 patients, covering 30 white matter UBOs. Diffusion tensor, kurtosis and neurite orientation and dispersion density imaging parameters were calculated within UBO sites and in contralateral normal appearing white matter (cNAWM). Analysis of MET2 parameters was performed on 24 UBO-cNAWM pairs. No significant alterations in the myelin water fraction and intra- and extracellular (IE) water fraction were found. Mean T2 time of IE water was significantly higher in UBOs. UBOs furthermore showed increased axial, radial and mean diffusivity, and decreased fractional anisotropy, mean kurtosis and neurite density index compared to cNAWM. Neurite orientation dispersion and isotropic fluid fraction were unaltered. Our results suggest that demyelination and axonal degeneration are unlikely to be present in UBOs, which appear to be mainly caused by a shift towards a higher T2-value of the intra- and extracellular water pool. This may arise from altered microstructural compartmentalization, and an increase in 'extracellular-like', intracellular water, possibly due to intramyelinic edema. These findings confirm the added value of combining dMRI and MET2 to characterize the microstructural basis of T2 hyperintensities in vivo.
De Santis, Silvia; Bastiani, Matteo; Droby, Amgad; Kolber, Pierre; Zipp, Frauke; Pracht, Eberhard; Stoecker, Tony; Groppa, Sergiu; Roebroeck, Alard
2018-04-07
The recent introduction of advanced magnetic resonance (MR) imaging techniques to characterize focal and global degeneration in multiple sclerosis (MS), like the Composite Hindered and Restricted Model of Diffusion, or CHARMED, diffusional kurtosis imaging (DKI) and Neurite Orientation Dispersion and Density Imaging (NODDI) made available new tools to image axonal pathology non-invasively in vivo. These methods already showed greater sensitivity and specificity compared to conventional diffusion tensor-based metrics (e.g., fractional anisotropy), overcoming some of its limitations. While previous studies uncovered global and focal axonal degeneration in MS patients compared to healthy controls, here our aim is to investigate and compare different diffusion MRI acquisition protocols in their ability to highlight microstructural differences between MS and control tissue over several much used models. For comparison, we contrasted the ability of fractional anisotropy measurements to uncover differences between lesion, normal-appearing white matter (WM), gray matter and healthy tissue under the same imaging protocols. We show that: (1) focal and diffuse differences in several microstructural parameters are observed under clinical settings; (2) advanced models (CHARMED, DKI and NODDI) have increased specificity and sensitivity to neurodegeneration when compared to fractional anisotropy measurements; and (3) both high (3 T) and ultra-high fields (7 T) are viable options for imaging tissue change in MS lesions and normal appearing WM, while higher b-values are less beneficial under the tested short-time (10 min acquisition) conditions. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Primary Uterine Peripheral T-cell Lymphoma
Gong, Jing; Dong, Aisheng; Wang, Yang; Zhang, Xuefeng; Yang, Panpan; Wang, Li; Jing, Wei
2016-01-01
Abstract Primary uterine non-Hodgkin's lymphoma is extremely rare accounting for <1% of all extranodal non-Hodgkin's lymphomas. Imaging findings of primary uterine lymphoma have rarely been reported before. We present magnetic resonance imaging (MRI) and fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT findings in a patient with primary uterine peripheral T-cell lymphoma. A 27-year-old female presented with intermittent fever with neutropenia for 7 months. MRI showed an ill-defined mass involved both the uterine corpus and cervix, resulting in diffuse enlargement of the uterus. This mass showed inhomogeneous hypointensity on unenhanced T1-weighted images, hyperintensity on diffusion-weighted imaging, relative hypointensity compared to the surrounding myometrium on T2-weighted images and lower enhancement than the surrounding myometrium on enhanced T1-weighted images. FDG PET/CT showed intense FDG uptake in the thickened wall of the uterine corpus and cervix with SUVmax of 26.9. There were multiple hypermetabolic lymph nodes in the pelvis and retroperitoneum. Uterine curettage and CT-guided biopsy of the uterine mass revealed peripheral T-cell lymphoma. Bone marrow biopsy revealed no evidence of lymphomatous involvement. The imaging and pathologic findings were consistent with primary uterine lymphoma. After 3 circles of chemotherapy, follow-up enhanced MRI showed decreased thickness of the uterine wall. Despite its rarity, primary uterine non-Hodgkin's lymphoma should be taken into consideration when a uterine tumor shows large size, relative hypointesity on both T2-weighted images and enhanced T1-weighted images compared to the surrounding myometrium, and intense FDG uptake on PET/CT. MRI may be helpful for describing the relationship between the tumor and adjacent structures. FDG PET/CT may be useful for tumor detection and staging. PMID:27124063
In vivo assessment of peripheral nerve regeneration by diffusion tensor imaging.
Morisaki, Shinsuke; Kawai, Yuko; Umeda, Masahiro; Nishi, Mayumi; Oda, Ryo; Fujiwara, Hiroyoshi; Yamada, Kei; Higuchi, Toshihiro; Tanaka, Chuzo; Kawata, Mitsuhiro; Kubo, Toshikazu
2011-03-01
To evaluate the sensitivity of diffusion tensor imaging (DTI) in assessing peripheral nerve regeneration in vivo. We assessed the changes in the DTI parameters and histological analyses after nerve injury to examine degeneration and regeneration in the rat sciatic nerves. For magnetic resonance imaging (MRI), 16 rats were randomly divided into two groups: group P (permanently crushed; n = 7) and group T (temporally crushed; n = 9). Serial MRI of the right leg was performed before the operation, and then performed at the timepoints of 1, 2, 3, and 4 weeks after the crush injury. The changes in fractional anisotropy (FA), axial diffusivity (λ(∥)), and radial diffusivity (λ(⟂)) were quantified. For histological analyses, the number of axons and the myelinated axon areas were quantified. Decreased FA and increased λ(⟂) were observed in the degenerative phase, and increased FA and decreased λ(⟂) were observed in the regenerative phase. The changes in FA and λ(⟂) were strongly correlated with histological changes, including axonal and myelin regeneration. DTI parameters, especially λ(⟂) , can be good indicators for peripheral nerve regeneration and can be applied as noninvasive diagnostic tools for a variety of neurological diseases. Copyright © 2011 Wiley-Liss, Inc.
Eddy current compensated double diffusion encoded (DDE) MRI.
Mueller, Lars; Wetscherek, Andreas; Kuder, Tristan Anselm; Laun, Frederik Bernd
2017-01-01
Eddy currents might lead to image distortions in diffusion-weighted echo planar imaging. A method is proposed to reduce their effects on double diffusion encoding (DDE) MRI experiments and the thereby derived microscopic fractional anisotropy (μFA). The twice-refocused spin echo scheme was adapted for DDE measurements. To assess the effect of individual diffusion encodings on the image distortions, measurements of a grid of plastic rods in water were performed. The effect of eddy current compensation on μFA measurements was evaluated in the brains of six healthy volunteers. The use of an eddy current compensation reduced the signal variation. As expected, the distortions caused by the second encoding were larger than those of the first encoding, entailing a stronger need to compensate for them. For an optimal result, however, both encodings had to be compensated. The artifact reduction strongly improved the measurement of the μFA in ventricles and gray matter by reducing the overestimation. An effect of the compensation on absolute μFA values in white matter was not observed. It is advisable to compensate both encodings in DDE measurements for eddy currents. Magn Reson Med 77:328-335, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Nicolas, R; Gros-Dagnac, H; Aubry, F; Celsis, P
2017-06-01
The blood oxygen level-dependent (BOLD) effect is extensively used for functional MRI (fMRI) but presents some limitations. Diffusion-weighted fMRI (DfMRI) has been proposed as a method more tightly linked to neuronal activity. This work proposes a protocol of DfMRI acquired for several b-values and diffusion directions that is compared to gradient-echo BOLD (GE-BOLD) and to repeated spin-echo BOLD (SE-BOLD, acquisitions performed with b=0s/mm 2 ), which was also used to ensure the reproducibility of the response. A block stimulation paradigm of the primary visual system (V1) was performed in 12 healthy subjects with checkerboard alternations (2Hz frequency). DfMRI was performed at 3T with 5 b-values (b=1500, 1000, 500, 250, 0s/mm 2 ) with TR/TE=1004/93ms, Δ/δ=45.4ms/30ms, and 6 spatial directions for diffusion measures. GE-BOLD was performed with a similar block stimulation design timing. Apparent Diffusion Coefficient (ADC)-fMRI was computed with all b-values used. An identical Z-score level was used for all fMRI modalities for the comparison of volumes of activation. ADC-fMRI and SE-BOLD fMRI activation locations were compared in a voxel-based analysis to a cytoarchitectural probability map of V1. SE-BOLD activation volumes represented only 55% of the GE-BOLD activation volumes (P<0.0001). DfMRI activation volumes averaged for all b-values acquired represented only 12% of GE-BOLD (P<0.0001) and only 22% of SE-BOLD activation volumes (P<0.005). Compared to SE-BOLD-fMRI, ADC-fMRI activations showed fewer pixels outside of V1 and a higher average probability of belonging to V1. DfMRI and ADC-fMRI acquisition at 3T could be easily post-processed with common neuro-imaging software. DfMRI and ADC-fMRI activation volumes were significantly smaller than those obtained with SE-BOLD. ADC-fMRI activations were more precisely localized in V1 than those of SE-BOLD-fMRI. This validated the increased capability of ADC-fMRI compared to BOLD to enhance the precision of localizing an fMRI activation in the cyto-architectural zone V1, thereby justifying the use of ADC-fMRI for neuro-scientific studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Kelly-Morland, Christian; Rudman, Sarah; Nathan, Paul; Mallett, Susan; Montana, Giovanni; Cook, Gary; Goh, Vicky
2017-06-02
Tyrosine kinase inhibitors are the first line standard of care for treatment of metastatic renal cell carcinoma (RCC). Accurate response assessment in the setting of antiangiogenic therapies remains suboptimal as standard size-related response criteria do not necessarily accurately reflect clinical benefit, as they may be less pronounced or occur later in therapy than devascularisation. The challenge for imaging is providing timely assessment of disease status allowing therapies to be tailored to ensure ongoing clinical benefit. We propose that combined assessment of morphological, physiological and metabolic imaging parameters using 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging ( 18 F-FDG PET/MRI) will better reflect disease behaviour, improving assessment of response/non-response/relapse. The REMAP study is a single-centre prospective observational study. Eligible patients with metastatic renal cell carcinoma, planned for systemic therapy, with at least 2 lesions will undergo an integrated 18 F-FDG PET and MRI whole body imaging with diffusion weighted and contrast-enhanced multiphasic as well as standard anatomical MRI sequences at baseline, 12 weeks and 24 weeks of systemic therapy allowing 18 F-FDG standardised uptake value (SUV), apparent diffusion co-efficient (ADC) and normalised signal intensity (SI) parameters to be obtained. Standard of care contrast-enhanced computed tomography CT scans will be performed at equivalent time-points. CT response categorisation will be performed using RECIST 1.1 and alternative (modified)Choi and MASS criteria. The reference standard for disease status will be by consensus panel taking into account clinical, biochemical and conventional imaging parameters. Intra- and inter-tumoural heterogeneity in vascular, diffusion and metabolic response/non-response will be assessed by image texture analysis. Imaging will also inform the development of computational methods for automated disease status categorisation. The REMAP study will demonstrate the ability of integrated 18 F-FDG PET-MRI to provide a more personalised approach to therapy. We suggest that 18 F-FDG PET/MRI will provide superior sensitivity and specificity in early response/non-response categorisation when compared to standard CT (using RECIST 1.1 and alternative (modified)Choi or MASS criteria) thus facilitating more timely and better informed treatment decisions. The trial is approved by the Southeast London Research Ethics Committee reference 16/LO/1499 and registered on the NIHR clinical research network portfolio ISRCTN12114913 .
NASA Astrophysics Data System (ADS)
Liang, Yingjie; Ye, Allen Q.; Chen, Wen; Gatto, Rodolfo G.; Colon-Perez, Luis; Mareci, Thomas H.; Magin, Richard L.
2016-10-01
Non-Gaussian (anomalous) diffusion is wide spread in biological tissues where its effects modulate chemical reactions and membrane transport. When viewed using magnetic resonance imaging (MRI), anomalous diffusion is characterized by a persistent or 'long tail' behavior in the decay of the diffusion signal. Recent MRI studies have used the fractional derivative to describe diffusion dynamics in normal and post-mortem tissue by connecting the order of the derivative with changes in tissue composition, structure and complexity. In this study we consider an alternative approach by introducing fractal time and space derivatives into Fick's second law of diffusion. This provides a more natural way to link sub-voxel tissue composition with the observed MRI diffusion signal decay following the application of a diffusion-sensitive pulse sequence. Unlike previous studies using fractional order derivatives, here the fractal derivative order is directly connected to the Hausdorff fractal dimension of the diffusion trajectory. The result is a simpler, computationally faster, and more direct way to incorporate tissue complexity and microstructure into the diffusional dynamics. Furthermore, the results are readily expressed in terms of spectral entropy, which provides a quantitative measure of the overall complexity of the heterogeneous and multi-scale structure of biological tissues. As an example, we apply this new model for the characterization of diffusion in fixed samples of the mouse brain. These results are compared with those obtained using the mono-exponential, the stretched exponential, the fractional derivative, and the diffusion kurtosis models. Overall, we find that the order of the fractal time derivative, the diffusion coefficient, and the spectral entropy are potential biomarkers to differentiate between the microstructure of white and gray matter. In addition, we note that the fractal derivative model has practical advantages over the existing models from the perspective of computational accuracy and efficiency.
Absolute calibration for complex-geometry biomedical diffuse optical spectroscopy
NASA Astrophysics Data System (ADS)
Mastanduno, Michael A.; Jiang, Shudong; El-Ghussein, Fadi; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.
2013-03-01
We have presented methodology to calibrate data in NIRS/MRI imaging versus an absolute reference phantom and results in both phantoms and healthy volunteers. This method directly calibrates data to a diffusion-based model, takes advantage of patient specific geometry from MRI prior information, and generates an initial guess without the need for a large data set. This method of calibration allows for more accurate quantification of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration as compared with other, slope-based methods. We found the main source of error in the method to be derived from incorrect assignment of reference phantom optical properties rather than initial guess in reconstruction. We also present examples of phantom and breast images from a combined frequency domain and continuous wave MRI-coupled NIRS system. We were able to recover phantom data within 10% of expected contrast and within 10% of the actual value using this method and compare these results with slope-based calibration methods. Finally, we were able to use this technique to calibrate and reconstruct images from healthy volunteers. Representative images are shown and discussion is provided for comparison with existing literature. These methods work towards fully combining the synergistic attributes of MRI and NIRS for in-vivo imaging of breast cancer. Complete software and hardware integration in dual modality instruments is especially important due to the complexity of the technology and success will contribute to complex anatomical and molecular prognostic information that can be readily obtained in clinical use.
Evaluation of non-Gaussian diffusion in cardiac MRI.
McClymont, Darryl; Teh, Irvin; Carruth, Eric; Omens, Jeffrey; McCulloch, Andrew; Whittington, Hannah J; Kohl, Peter; Grau, Vicente; Schneider, Jürgen E
2017-09-01
The diffusion tensor model assumes Gaussian diffusion and is widely applied in cardiac diffusion MRI. However, diffusion in biological tissue deviates from a Gaussian profile as a result of hindrance and restriction from cell and tissue microstructure, and may be quantified better by non-Gaussian modeling. The aim of this study was to investigate non-Gaussian diffusion in healthy and hypertrophic hearts. Thirteen rat hearts (five healthy, four sham, four hypertrophic) were imaged ex vivo. Diffusion-weighted images were acquired at b-values up to 10,000 s/mm 2 . Models of diffusion were fit to the data and ranked based on the Akaike information criterion. The diffusion tensor was ranked best at b-values up to 2000 s/mm 2 but reflected the signal poorly in the high b-value regime, in which the best model was a non-Gaussian "beta distribution" model. Although there was considerable overlap in apparent diffusivities between the healthy, sham, and hypertrophic hearts, diffusion kurtosis and skewness in the hypertrophic hearts were more than 20% higher in the sheetlet and sheetlet-normal directions. Non-Gaussian diffusion models have a higher sensitivity for the detection of hypertrophy compared with the Gaussian model. In particular, diffusion kurtosis may serve as a useful biomarker for characterization of disease and remodeling in the heart. Magn Reson Med 78:1174-1186, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Magnetic resonance imaging for diagnosis of early Alzheimer's disease.
Colliot, O; Hamelin, L; Sarazin, M
2013-10-01
A major challenge for neuroimaging is to contribute to the early diagnosis of Alzheimer's disease (AD). In particular, magnetic resonance imaging (MRI) allows detecting different types of structural and functional abnormalities at an early stage of the disease. Anatomical MRI is the most widely used technique and provides local and global measures of atrophy. The recent diagnostic criteria of "mild cognitive impairment due to AD" include hippocampal atrophy, which is considered a marker of neuronal injury. Advanced image analysis techniques generate automatic and reproducible measures both in the hippocampus and throughout the whole brain. Recent modalities such as diffusion-tensor imaging and resting-state functional MRI provide additional measures that could contribute to the early diagnosis but require further validation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Stephen, Renu M.; Jha, Abhinav K.; Roe, Denise J.; Trouard, Theodore P.; Galons, Jean-Philippe; Kupinski, Matthew A.; Frey, Georgette; Cui, Haiyan; Squire, Scott; Pagel, Mark D.; Rodriguez, Jeffrey J.; Gillies, Robert J.; Stopeck, Alison T.
2015-01-01
Purpose To assess the value of semi-automated segmentation applied to diffusion MRI for predicting the therapeutic response of liver metastasis. Methods Conventional diffusion weighted magnetic resonance imaging (MRI) was performed using b-values of 0, 150, 300 and 450 s/mm2 at baseline and days 4, 11 and 39 following initiation of a new chemotherapy regimen in a pilot study with 18 women with 37 liver metastases from primary breast cancer. A semi-automated segmentation approach was used to identify liver metastases. Linear regression analysis was used to assess the relationship between baseline values of the apparent diffusion coefficient (ADC) and change in tumor size by day 39. Results A semi-automated segmentation scheme was critical for obtaining the most reliable ADC measurements. A statistically significant relationship between baseline ADC values and change in tumor size at day 39 was observed for minimally treated patients with metastatic liver lesions measuring 2–5 cm in size (p = 0.002), but not for heavily treated patients with the same tumor size range (p = 0.29), or for tumors of smaller or larger sizes. ROC analysis identified a baseline threshold ADC value of 1.33 μm2/ms as 75% sensitive and 83% specific for identifying non-responding metastases in minimally treated patients with 2–5 cm liver lesions. Conclusion Quantitative imaging can substantially benefit from a semi-automated segmentation scheme. Quantitative diffusion MRI results can be predictive of therapeutic outcome in selected patients with liver metastases, but not for all liver metastases, and therefore should be considered to be a restricted biomarker. PMID:26284600
Stephen, Renu M; Jha, Abhinav K; Roe, Denise J; Trouard, Theodore P; Galons, Jean-Philippe; Kupinski, Matthew A; Frey, Georgette; Cui, Haiyan; Squire, Scott; Pagel, Mark D; Rodriguez, Jeffrey J; Gillies, Robert J; Stopeck, Alison T
2015-12-01
To assess the value of semi-automated segmentation applied to diffusion MRI for predicting the therapeutic response of liver metastasis. Conventional diffusion weighted magnetic resonance imaging (MRI) was performed using b-values of 0, 150, 300 and 450s/mm(2) at baseline and days 4, 11 and 39 following initiation of a new chemotherapy regimen in a pilot study with 18 women with 37 liver metastases from primary breast cancer. A semi-automated segmentation approach was used to identify liver metastases. Linear regression analysis was used to assess the relationship between baseline values of the apparent diffusion coefficient (ADC) and change in tumor size by day 39. A semi-automated segmentation scheme was critical for obtaining the most reliable ADC measurements. A statistically significant relationship between baseline ADC values and change in tumor size at day 39 was observed for minimally treated patients with metastatic liver lesions measuring 2-5cm in size (p=0.002), but not for heavily treated patients with the same tumor size range (p=0.29), or for tumors of smaller or larger sizes. ROC analysis identified a baseline threshold ADC value of 1.33μm(2)/ms as 75% sensitive and 83% specific for identifying non-responding metastases in minimally treated patients with 2-5cm liver lesions. Quantitative imaging can substantially benefit from a semi-automated segmentation scheme. Quantitative diffusion MRI results can be predictive of therapeutic outcome in selected patients with liver metastases, but not for all liver metastases, and therefore should be considered to be a restricted biomarker. Copyright © 2015 Elsevier Inc. All rights reserved.
Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhbardeh, Alireza; Jacobs, Michael A.; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
2012-04-15
Purpose: Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), andmore » diffusion maps (DfM), to perform a comparative performance analysis. Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B{sub 1} inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions. Results: The NLDR-based hybrid approach was able to define and segment both synthetic and clinical data. In the synthetic data, the authors demonstrated the performance of the NLDR method compared with conventional linear DR methods. The NLDR approach enabled successful segmentation of the structures, whereas, in most cases, PCA and MDS failed. The NLDR approach was able to segment different breast tissue types with a high accuracy and the embedded image of the breast MRI data demonstrated fuzzy boundaries between the different types of breast tissue, i.e., fatty, glandular, and tissue with lesions (>86%). Conclusions: The proposed hybrid NLDR methods were able to segment clinical breast data with a high accuracy and construct an embedded image that visualized the contribution of different radiological parameters.« less
Diagnostic problems in case of twin pregnancies: US vs. MRI study.
Bekiesinska-Figatowska, Monika; Herman-Sucharska, Izabela; Romaniuk-Doroszewska, Anna; Jaczynska, Renata; Furmanek, Mariusz; Bragoszewska, Hanna
2013-09-01
To present an experience with twin pregnancies underlining the impact of magnetic resonance imaging (MRI) on diagnosis and management. There were 17 cases of twin pregnancies: nine monochorionic [including four monochorionic diamniotic and five monochorionic monoamniotic (conjoined twins)] and eight dichorionic. The MRI examinations were performed between 19 and 39 weeks of gestational age in two centers using 1.5 T scanners (GE Signa Excite and GE Signa HDxt; GE Healthcare, Waukesha, WI, USA), always after ultrasound (US). In the first period of our activity, SSFSE sequence in T2-weighted images (SSFSE/T2WI) was the main diagnostic tool supported by TSE or GRE T1-weighted images (T1WI). After upgrading the scanners, diffusion-weighted imaging (DWI), steady-state free precession (FIESTA), and echoplanar GRE imaging (EPIGRE) became available. In 11 cases (64.7%), MRI was superior to US and supplied additional information, including two cases in which pathology of the second twin suspected on US was ruled out on the basis of MRI. In six cases (35.3%) MRI confirmed US diagnosis and brought no new data. MRI offers more detailed assessment of fetal pathology in cases of twin pregnancies, including conjoined twins, in which sonographic evaluation is more difficult than in single cases.
Fetal MRI: A Technical Update with Educational Aspirations
Gholipour, Ali; Estroff, Judith A.; Barnewolt, Carol E.; Robertson, Richard L.; Grant, P. Ellen; Gagoski, Borjan; Warfield, Simon K.; Afacan, Onur; Connolly, Susan A.; Neil, Jeffrey J.; Wolfberg, Adam; Mulkern, Robert V.
2015-01-01
Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies. PMID:26225129
Connectome imaging for mapping human brain pathways
Shi, Y; Toga, A W
2017-01-01
With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research. PMID:28461700
Mata, Christian; Walker, Paul M; Oliver, Arnau; Brunotte, François; Martí, Joan; Lalande, Alain
2016-01-01
In this paper, we present ProstateAnalyzer, a new web-based medical tool for prostate cancer diagnosis. ProstateAnalyzer allows the visualization and analysis of magnetic resonance images (MRI) in a single framework. ProstateAnalyzer recovers the data from a PACS server and displays all the associated MRI images in the same framework, usually consisting of 3D T2-weighted imaging for anatomy, dynamic contrast-enhanced MRI for perfusion, diffusion-weighted imaging in the form of an apparent diffusion coefficient (ADC) map and MR Spectroscopy. ProstateAnalyzer allows annotating regions of interest in a sequence and propagates them to the others. From a representative case, the results using the four visualization platforms are fully detailed, showing the interaction among them. The tool has been implemented as a Java-based applet application to facilitate the portability of the tool to the different computer architectures and software and allowing the possibility to work remotely via the web. ProstateAnalyzer enables experts to manage prostate cancer patient data set more efficiently. The tool allows delineating annotations by experts and displays all the required information for use in diagnosis. According to the current European Society of Urogenital Radiology guidelines, it also includes the PI-RADS structured reporting scheme.
Quiet echo planar imaging for functional and diffusion MRI
Price, Anthony N.; Cordero‐Grande, Lucilio; Malik, Shaihan; Ferrazzi, Giulio; Gaspar, Andreia; Hughes, Emer J.; Christiaens, Daan; McCabe, Laura; Schneider, Torben; Rutherford, Mary A.; Hajnal, Joseph V.
2017-01-01
Purpose To develop a purpose‐built quiet echo planar imaging capability for fetal functional and diffusion scans, for which acoustic considerations often compromise efficiency and resolution as well as angular/temporal coverage. Methods The gradient waveforms in multiband‐accelerated single‐shot echo planar imaging sequences have been redesigned to minimize spectral content. This includes a sinusoidal read‐out with a single fundamental frequency, a constant phase encoding gradient, overlapping smoothed CAIPIRINHA blips, and a novel strategy to merge the crushers in diffusion MRI. These changes are then tuned in conjunction with the gradient system frequency response function. Results Maintained image quality, SNR, and quantitative diffusion values while reducing acoustic noise up to 12 dB (A) is illustrated in two adult experiments. Fetal experiments in 10 subjects covering a range of parameters depict the adaptability and increased efficiency of quiet echo planar imaging. Conclusion Purpose‐built for highly efficient multiband fetal echo planar imaging studies, the presented framework reduces acoustic noise for all echo planar imaging‐based sequences. Full optimization by tuning to the gradient frequency response functions allows for a maximally time‐efficient scan within safe limits. This allows ambitious in‐utero studies such as functional brain imaging with high spatial/temporal resolution and diffusion scans with high angular/spatial resolution to be run in a highly efficient manner at acceptable sound levels. Magn Reson Med 79:1447–1459, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28653363
MRI assessment of local acute radiation syndrome.
Weber-Donat, G; Amabile, J-C; Lahutte-Auboin, M; Potet, J; Baccialone, J; Bey, E; Teriitehau, C; Laroche, P
2012-12-01
To describe local acute radiation syndrome and its radiological imaging characteristics. We performed a retrospective study of patients who had suffered skin and deeper radiation damage who were investigated by magnetic resonance imaging (MRI). We compared the clinical findings, C-reactive protein (CRP) levels and MRI results. A total of 22 MRI examinations were performed between 2005 and 2010 in 7 patients; 6 patients had increased CRP levels and MRI abnormalities. They were treated by surgery and local cellular therapy. One patient had no CRP or MRI abnormalities, and had a spontaneous good outcome. Eighteen abnormal MR examinations demonstrated high STIR signal and/or abnormal enhancement in the dermis and muscle tissues. Three MRI examinations demonstrated skeletal abnormalities, consistent with radionecrosis. The four normal MRI examinations were associated only with minor clinical manifestations such as pain and pigmentation disorders. MRI seems to be a useful and promising imaging investigation in radiation burns management i.e. initial lesion evaluation, treatment evaluation and complication diagnosis. MRI findings correlated perfectly with clinical stage and no false negative examinations were obtained. In particular, the association between normal MRI and low CRP level seems to be related to good outcome without specific treatment. Local acute radiation syndrome (radioepidermitis) mainly affects the skin and superficial tissues. MRI findings correspond with clinical stage (with a strong negative predictive value). MRI outperformed X-ray examination for the diagnosis of bone radionecrosis. Diffusion-weighted imaging shows low ADC in bone and soft tissue necrosis. Perfusion sequence allows assessment of tissue microcirculation impairment.
Diffusion-weighted magnetic resonance imaging in autoimmune pancreatitis.
Taniguchi, Takao; Kobayashi, Hisato; Nishikawa, Koji; Iida, Etsushi; Michigami, Yoshihiro; Morimoto, Emiko; Yamashita, Rikiya; Miyagi, Ken; Okamoto, Motozumi
2009-04-01
The aim of this study was to investigate the usefulness of diffusion-weighted magnetic resonance imaging (DWI MRI) for the diagnosis and evaluation of autoimmune pancreatitis (AIP). A total of 4 consecutive patients with AIP, 5 patients with chronic alcoholic pancreatitis (CP), and 13 patients without pancreatic disease (controls) were studied. DWI was performed in the axial plane with spin-echo echo-planar imaging single-shot sequence. Apparent diffusion coefficients (ADCs) were measured in circular regions of interest in the pancreas. In AIP patients, abdominal MRI was performed before, and 2-4 weeks after steroid treatment. Follow-up study was performed chronologically for up to 11 months in two patients. The correlation between ADCs of the pancreas and the immunoglobulin G4 (IgG4) index (serum IgG4 value/serum IgG4 value before steroid treatment) was evaluated. In the AIP patients, DWI of the pancreas showed high signal intensity, and the ADCs of the pancreas (mean +/- SD: 0.97 +/- 0.18 x 10(-3) mm(2)/s) were significantly lower than those in patients with CP (1.45 +/- 0.10 x 10(-3) mm(2)/s) or the controls (1.45 +/- 0.16 x 10(-3) mm(2)/s) (Mann-Whitney U-test, P < 0.05). In one AIP patient with focal swelling of the pancreas head that appeared to be a mass, DWI showed high signal intensity throughout the pancreas, indicating diffuse involvement. The ADCs of the pancreas and IgG4 index were significantly inversely correlated (Spearman's rank correlation coefficient, r (s) = -0.80, P < 0.05). Autoimmune pancreatitis showed high signal intensity on DWI, which improved after steroid treatment. ADCs reflected disease activity. Thus, diffusion-weighted MRI might be useful for diagnosing AIP, determining the affected area, and evaluating the effect of treatment.
Nketiah, Gabriel; Selnaes, Kirsten M; Sandsmark, Elise; Teruel, Jose R; Krüger-Stokke, Brage; Bertilsson, Helena; Bathen, Tone F; Elschot, Mattijs
2018-05-01
To evaluate the effect of correction for B 0 inhomogeneity-induced geometric distortion in echo-planar diffusion-weighted imaging on quantitative apparent diffusion coefficient (ADC) analysis in multiparametric prostate MRI. Geometric distortion correction was performed in echo-planar diffusion-weighted images (b = 0, 50, 400, 800 s/mm 2 ) of 28 patients, using two b 0 scans with opposing phase-encoding polarities. Histology-matched tumor and healthy tissue volumes of interest delineated on T 2 -weighted images were mapped to the nondistortion-corrected and distortion-corrected data sets by resampling with and without spatial coregistration. The ADC values were calculated on the volume and voxel level. The effect of distortion correction on ADC quantification and tissue classification was evaluated using linear-mixed models and logistic regression, respectively. Without coregistration, the absolute differences in tumor ADC (range: 0.0002-0.189 mm 2 /s×10 -3 (volume level); 0.014-0.493 mm 2 /s×10 -3 (voxel level)) between the nondistortion-corrected and distortion-corrected were significantly associated (P < 0.05) with distortion distance (mean: 1.4 ± 1.3 mm; range: 0.3-5.3 mm). No significant associations were found upon coregistration; however, in patients with high rectal gas residue, distortion correction resulted in improved spatial representation and significantly better classification of healthy versus tumor voxels (P < 0.05). Geometric distortion correction in DWI could improve quantitative ADC analysis in multiparametric prostate MRI. Magn Reson Med 79:2524-2532, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Bittencourt, Leonardo K; Attenberger, Ulrike I; Lima, Daniel; Strecker, Ralph; de Oliveira, Andre; Schoenberg, Stefan O; Gasparetto, Emerson L; Hausmann, Daniel
2014-01-01
AIM: To evaluate the impact of computed b = 1400 s/mm2 (C-b1400) vs measured b = 1400 s/mm2 (M-b1400) diffusion-weighted images (DWI) on lesion detection rate, image quality and quality of lesion demarcation using a modern 3T-MR system based on a small-field-of-view sequence (sFOV). METHODS: Thirty patients (PSA: 9.5 ± 8.7 ng/mL; 68 ± 12 years) referred for magnetic resonance imaging (MRI) of the prostate were enrolled in this study. All measurements were performed on a 3T MR system. For DWI, a single-shot EPI diffusion sequence (b = 0, 100, 400, 800 s/mm²) was utilized. C-b1400 was calculated voxelwise from the ADC and diffusion images. Additionally, M-b1400 was acquired for evaluation and comparison. Lesion detection rate and maximum lesion diameters were obtained and compared. Image quality and quality of lesion demarcation were rated according to a 5-point Likert-type scale. Ratios of lesion-to-bladder as well as prostate-to-bladder signal intensity (SI) were calculated to estimate the signal-to-noise-ratio (SNR). RESULTS: Twenty-four lesions were detected on M-b1400 images and compared to C-b1400 images. C-b1400 detected three additional cancer suspicious lesions. Overall image quality was rated significantly better and SI ratios were significantly higher on C-b1400 (2.3 ± 0.8 vs 3.1 ± 1.0, P < 0.001; 5.6 ± 1.8 vs 2.8 ± 0.9, P < 0.001). Comparison of lesion size showed no significant differences between C- and M-b1400 (P = 0.22). CONCLUSION: Combination of a high b-value extrapolation and sFOV may contribute to increase diagnostic accuracy of DWI without an increase of acquisition time, which may be useful to guide targeted prostate biopsies and to improve quality of multiparametric MRI (mMRI) especially under economical aspects in a private practice setting. PMID:24976938
Wada, Keizo; Goto, Tomohiro; Takasago, Tomoya; Hamada, Daisuke; Sairyo, Koichi
2017-10-01
Piriformis muscle syndrome (PMS) is difficult to diagnose by objective evaluation of sciatic nerve injury. Here we report a case of PMS diagnosed by diffusion tensor imaging (DTI) and tractography of the sciatic nerve, which can assess and visualize the extent of nerve injury. The patient was a 53-year-old man with a 2-year history of continuous pain and numbness in the left leg. His symptoms worsened when sitting. Physical examination, including sensorimotor neurologic tests, the deep tendon reflex test, and the straight leg raise test, revealed no specific findings. The hip flexion adduction and internal rotation test and resisted contraction maneuvers for the piriformis muscle were positive. There were no abnormal findings on magnetic resonance imaging (MRI) of the lumbar spine. The transverse diameter of piriformis muscle was slightly thicker in affected side on MRI of the pelvis. A single DTI sequence was performed during MRI of the pelvis. Fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) of the sciatic nerve were quantified at three levels using the fiber-tracking method. FA values were significantly lower and ADC values were significantly higher distal to the piriformis muscle. We performed endoscopic-assisted resection of the piriformis tendon. Intraoperatively, the motor-evoked potentials in the left gastrocnemius were improved by resection of the piriformis tendon. The patient's symptoms improved immediately after surgery. There was no significant difference in FA or ADC at any level between the affected side and the unaffected side 3 months postoperatively. MRI-DTI may aid the diagnosis of PMS.
Fattach, Hassan El; Dohan, Anthony; Guerrache, Youcef; Dautry, Raphael; Boudiaf, Mourad; Hoeffel, Christine; Soyer, Philippe
2015-08-01
To qualitatively and quantitatively analyze the presentation of intrahepatic and hilar mass-forming cholangiocarcinoma with diffusion-weighted magnetic resonance imaging (DW-MRI). Twenty-eight patients with histopathologically proven mass-forming cholangiocarcinoma (hilar, n=17; intrahepatic, n=11) underwent hepatic DW-MRI at 1.5-T using free-breathing acquisition and three b-values (0,400,800s/mm(2)). Cholangiocarcinomas were evaluated qualitatively using visual analysis of DW-MR images and quantitatively with conventional ADC and normalized ADC measurements using liver and spleen as reference organs. All cholangiocarcinomas (28/28; 100%) were visible on DW-MR images. DW-MRI yielded best conspicuity of cholangiocarcinomas than the other MRI sequences (P<0.001). Seven cholangiocarcinomas (7/11; 64%) showed hypointense central area on DW-MR images. Conventional ADC value of cholangiocarcinomas (1.042×10(-3)mm(2)/s±0.221×10(-3)mm(2)/s; range: 0.616×10(-3)mm(2)/s to 2.050×10(-3)mm(2)/s) was significantly lower than that of apparently normal hepatic parenchyma (1.362×10(-3)mm(2)/s±0.187×10(-3)mm(2)/s) (P<0.0001), although substantial overlap was found. No significant differences in ADC and normalized ADC values were found between intrahepatic and hilar cholangiocarcinomas. The use of normalized ADC using the liver as reference organ resulted in the most restricted distribution of ADC values of cholangiocarcinomas (variation coefficient=16.6%). There is a trend towards a common appearance of intrahepatic and hilar mass-forming cholangiocarcinomas on DW-MRI but variations may be observed. Familiarity with these variations may improve the diagnosis of mass-forming cholangiocarcinoma. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P.; Johnson, G. Allan
2015-01-01
Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved 3D reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate accurate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. PMID:26043869
Registration of High Angular Resolution Diffusion MRI Images Using 4th Order Tensors⋆
Barmpoutis, Angelos; Vemuri, Baba C.; Forder, John R.
2009-01-01
Registration of Diffusion Weighted (DW)-MRI datasets has been commonly achieved to date in literature by using either scalar or 2nd-order tensorial information. However, scalar or 2nd-order tensors fail to capture complex local tissue structures, such as fiber crossings, and therefore, datasets containing fiber-crossings cannot be registered accurately by using these techniques. In this paper we present a novel method for non-rigidly registering DW-MRI datasets that are represented by a field of 4th-order tensors. We use the Hellinger distance between the normalized 4th-order tensors represented as distributions, in order to achieve this registration. Hellinger distance is easy to compute, is scale and rotation invariant and hence allows for comparison of the true shape of distributions. Furthermore, we propose a novel 4th-order tensor re-transformation operator, which plays an essential role in the registration procedure and shows significantly better performance compared to the re-orientation operator used in literature for DTI registration. We validate and compare our technique with other existing scalar image and DTI registration methods using simulated diffusion MR data and real HARDI datasets. PMID:18051145
Milchenko, Mikhail; Snyder, Abraham Z; LaMontagne, Pamela; Shimony, Joshua S; Benzinger, Tammie L; Fouke, Sarah Jost; Marcus, Daniel S
2016-07-01
Neuroimaging research often relies on clinically acquired magnetic resonance imaging (MRI) datasets that can originate from multiple institutions. Such datasets are characterized by high heterogeneity of modalities and variability of sequence parameters. This heterogeneity complicates the automation of image processing tasks such as spatial co-registration and physiological or functional image analysis. Given this heterogeneity, conventional processing workflows developed for research purposes are not optimal for clinical data. In this work, we describe an approach called Heterogeneous Optimization Framework (HOF) for developing image analysis pipelines that can handle the high degree of clinical data non-uniformity. HOF provides a set of guidelines for configuration, algorithm development, deployment, interpretation of results and quality control for such pipelines. At each step, we illustrate the HOF approach using the implementation of an automated pipeline for Multimodal Glioma Analysis (MGA) as an example. The MGA pipeline computes tissue diffusion characteristics of diffusion tensor imaging (DTI) acquisitions, hemodynamic characteristics using a perfusion model of susceptibility contrast (DSC) MRI, and spatial cross-modal co-registration of available anatomical, physiological and derived patient images. Developing MGA within HOF enabled the processing of neuro-oncology MR imaging studies to be fully automated. MGA has been successfully used to analyze over 160 clinical tumor studies to date within several research projects. Introduction of the MGA pipeline improved image processing throughput and, most importantly, effectively produced co-registered datasets that were suitable for advanced analysis despite high heterogeneity in acquisition protocols.
Chen, Hua-Biao; Wan, Qi; Xu, Qi-Feng; Chen, Yi; Bai, Bo
2016-04-25
Correlating symptoms and physical examination findings with surgical levels based on common imaging results is not reliable. In patients who have no concordance between radiological and clinical symptoms, the surgical levels determined by conventional magnetic resonance imaging (MRI) and neurogenic examination (NE) may lead to a more extensive surgery and significant complications. We aimed to confirm that whether the use of diffusion tensor imaging (DTI) and paraspinal mapping (PM) techniques can further prevent the occurrence of false positives with conventional MRI, distinguish which are clinically relevant from levels of cauda equina and/or nerve root lesions based on MRI, and determine and reduce the decompression levels of lumbar spinal stenosis than MRI + NE, while ensuring or improving surgical outcomes. We compared the data between patients who underwent MRI + (PM or DTI) and patients who underwent conventional MRI + NE to determine levels of decompression for the treatment of lumbar spinal stenosis. Outcome measures were assessed at 2 weeks, 3 months, 6 months, and 12 months postoperatively. One hundred fourteen patients (59 in the control group, 54 in the experimental group) underwent decompression. The levels of decompression determined by MRI + (PM or DTI) in the experimental group were significantly less than that determined by MRI + NE in the control group (p = 0.000). The surgical time, blood loss, and surgical transfusion were significantly less in the experimental group (p = 0.001, p = 0.011, p = 0.001, respectively). There were no differences in improvement of the visual analog scale back and leg pain (VAS-BP, VAS-LP) scores and Oswestry Disability Index (ODI) scores at 2 weeks, 3 months, 6 months, and 12 months after operation between the experimental and control groups. MRI + (PM or DTI) showed clear benefits in determining decompression levels of lumbar spinal stenosis than MRI + NE. In patients with lumbar spinal stenosis, the use of PM and DTI techniques reduces decompression levels and increases safety and benefits of surgery.
NASA Astrophysics Data System (ADS)
Russell, Greg
The work described in this dissertation was motivated by a desire to better understand the cellular pathology of ischemic stroke. Two of the three bodies of research presented herein address and issue directly related to the investigation of ischemic stroke through the use of diffusion weighted magnetic resonance imaging (DWMRI) methods. The first topic concerns the development of a computationally efficient finite difference method, designed to evaluate the impact of microscopic tissue properties on the formation of DWMRI signal. For the second body of work, the effect of changing the intrinsic diffusion coefficient of a restricted sample on clinical DWMRI experiments is explored. The final body of work, while motivated by the desire to understand stroke, addresses the issue of acquiring large amounts of MRI data well suited for quantitative analysis in reduced scan time. In theory, the method could be used to generate quantitative parametric maps, including those depicting information gleaned through the use of DWMRI methods. Chapter 1 provides an introduction to several topics. A description of the use of DWMRI methods in the study of ischemic stroke is covered. An introduction to the fundamental physical principles at work in MRI is also provided. In this section the means by which magnetization is created in MRI experiments, how MRI signal is induced, as well as the influence of spin-spin and spin-lattice relaxation are discussed. Attention is also given to describing how MRI measurements can be sensitized to diffusion through the use of qualitative and quantitative descriptions of the process. Finally, the reader is given a brief introduction to the use of numerical methods for solving partial differential equations. In Chapters 2, 3 and 4, three related bodies of research are presented in terms of research papers. In Chapter 2, a novel computational method is described. The method reduces the computation resources required to simulate DWMRI experiments. In Chapter 3, a detailed study on how changes in the intrinsic intracellular diffusion coefficient may influence clinical DWMRI experiments is described. In Chapter 4, a novel, non-steady state quantitative MRI method is described.
Alvarez Moreno, Elena; Jimenez de la Peña, Mar; Cano Alonso, Raquel
2012-01-01
Recent developments in diagnostic imaging techniques have magnified the role and potential of both MRI and PET-CT in female pelvic imaging. This article reviews the techniques and clinical applications of new functional MRI (fMRI) including diffusion-weighted MRI (DWI), dynamic contrast-enhanced (DCE)-MRI, comparing with PET-CT. These new emerging provide not only anatomic but also functional imaging, allowing detection of small volumes of active tumor at diagnosis and early disease relapse, which may not result in detectable morphological changes at conventional imaging. This information is useful in distinguishing between recurrent/residual tumor and post-treatment changes and assessing treatment response, with a clear impact on patient management. Both PET-CT and now fMRI have proved to be very valuable tools for evaluation of gynecologic tumors. Most papers try to compare these techniques, but in our experience both are complementary in management of these patients. Meanwhile PET-CT is superior in diagnosis of ganglionar disease; fMRI presents higher accuracy in local preoperative staging. Both techniques can be used as biomarkers of tumor response and present high accuracy in diagnosis of local recurrence and peritoneal dissemination, with complementary roles depending on histological type, anatomic location and tumoral volume. PMID:22315683
Noninvasive Localization of Prostate Cancer via Diffusion Sensitive MRI
2008-03-01
sequence, Haker et al and Roebuck et al using a line-scan diffusion sequence, and Vigneron et al using a fast spin-echo diffusion sequence (33,35-37...Mulkern RV, Haker S, Zhang J, Zou KH, Maier SE, Tempany CM. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted...36. Haker SJ, Szot Barnes A, Maier SE, Tempany CM, Mulkern RV. Diffusion Tensor Imaging for Prostate Cancer Detection: Preliminary Results from a
Cerebral involvement in axonal Charcot-Marie-Tooth neuropathy caused by mitofusin2 mutations.
Brockmann, Knut; Dreha-Kulaczewski, Steffi; Dechent, Peter; Bönnemann, Carsten; Helms, Gunther; Kyllerman, Marten; Brück, Wolfgang; Frahm, Jens; Huehne, Kathrin; Gärtner, Jutta; Rautenstrauss, Bernd
2008-07-01
Mutations in the mitofusin 2 (MFN2) gene are a major cause of primary axonal Charcot- Marie-Tooth (CMT) neuropathy. This study aims at further characterization of cerebral white matter alterations observed in patients with MFN2 mutations. Molecular genetic, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and diffusion tensor imaging (DTI) investigations were performed in four unrelated patients aged 7 to 38 years with early onset axonal CMT neuropathy. Three distinct and so far undescribed MFN2 mutations were detected. Two patients had secondary macrocephaly and mild diffuse predominantly periventricular white matter alterations on MRI. In addition, one boy had symmetrical T2-hyperintensities in both thalami. Two patients had optic atrophy, one of them with normal MRI. In three patients proton MRS revealed elevated concentrations of total N-acetyl compounds (neuronal marker), total creatine (found in all cells) and myo-inositol (astrocytic marker) in cerebral white and gray matter though with regional variation. These alterations were most pronounced in the two patients with abnormal MRI. DTI of these patients revealed mild reductions of fractional anisotropy and mild increase of mean diffusivity in white matter. The present findings indicate an enhanced cellular density in cerebral white matter of MFN2 neuropathy which is primarily due to a reactive gliosis without axonal damage and possibly accompanied by mild demyelination.
Broadbent, Amber L; Fell, Rob J; Codd, Sarah L; Lightley, Kim A; Konagurthu, Sanjay; Koehler-King, Dory G; Seymour, Joseph D
2010-09-15
The hydration of 4 mg Cardura XL (Pfizer), a commercially available gastrointestinal therapeutic system (GITS) tablet, was investigated using magnetic resonance imaging (MRI). A short echo time (T(e)=2.81 ms) technique for MRI of the hydration of a GITS tablet was implemented. From the MR images, signal intensity profiles were generated and interpreted in the context of diffusive and osmotic transport mechanisms. A distinct transition from diffusive to osmotic transport was measured at a timescale relevant to the measured drug release time. Diffusion and osmotic rate coefficients for water in the drug and polymer sweller layers of the tablet were quantified. Spin-lattice T(1) and spin-spin T(2) relaxation times of the water signal from within the tablet were measured as a function of hydration time in order to incorporate the effects of relaxation into interpretation of signal intensity and provide unique information on the distribution of water in different physical and chemical environments within the tablet. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jarrett, Angela M.; Hormuth, David A.; Barnes, Stephanie L.; Feng, Xinzeng; Huang, Wei; Yankeelov, Thomas E.
2018-05-01
Clinical methods for assessing tumor response to therapy are largely rudimentary, monitoring only temporal changes in tumor size. Our goal is to predict the response of breast tumors to therapy using a mathematical model that utilizes magnetic resonance imaging (MRI) data obtained non-invasively from individual patients. We extended a previously established, mechanically coupled, reaction-diffusion model for predicting tumor response initialized with patient-specific diffusion weighted MRI (DW-MRI) data by including the effects of chemotherapy drug delivery, which is estimated using dynamic contrast-enhanced (DCE-) MRI data. The extended, drug incorporated, model is initialized using patient-specific DW-MRI and DCE-MRI data. Data sets from five breast cancer patients were used—obtained before, after one cycle, and at mid-point of neoadjuvant chemotherapy. The DCE-MRI data was used to estimate spatiotemporal variations in tumor perfusion with the extended Kety–Tofts model. The physiological parameters derived from DCE-MRI were used to model changes in delivery of therapy drugs within the tumor for incorporation in the extended model. We simulated the original model and the extended model in both 2D and 3D and compare the results for this five-patient cohort. Preliminary results show reductions in the error of model predicted tumor cellularity and size compared to the experimentally-measured results for the third MRI scan when therapy was incorporated. Comparing the two models for agreement between the predicted total cellularity and the calculated total cellularity (from the DW-MRI data) reveals an increased concordance correlation coefficient from 0.81 to 0.98 for the 2D analysis and 0.85 to 0.99 for the 3D analysis (p < 0.01 for each) when the extended model was used in place of the original model. This study demonstrates the plausibility of using DCE-MRI data as a means to estimate drug delivery on a patient-specific basis in predictive models and represents a step toward the goal of achieving individualized prediction of tumor response to therapy.
Kim, Dong Gyu; Kim, Seong Ho; Kim, Oh Lyong; Cho, Yun Woo; Son, Su Min; Jang, Sung Ho
2009-01-01
There have been no studies on motor recovery in severe quadriplegic patients with traumatic brain injury (TBI) resulting from combined causes of weakness; this type of patient is often seen in rehabilitation clinics. We report on a quadriplegic patient who showed long-term motor recovery from severe weakness caused by a diffuse axonal injury (DAI) on the brainstem and a traumatic intracerebral hemorrhage (ICH) on left cerebral peduncle, as evaluated by diffuse tensor imaging (DTI) and functional MRI (fMRI). A 17-year-old male patient presented with quadriparesis at the onset of TBI. Over the 28-month period following the onset of the injury, the motor function of the four extremities slowly recovered to a range that was nearly normal. Two longitudinal DTIs (at 11 and 28 months from onset) and fMRI (at 28 months) were performed. Fractional anisotropy and an apparent diffusion coefficient were measured using the region of interest method, and diffusion tensor tractography was conducted using a DTI/fMRI combination. Fractional anisotrophy values in the brainstem, which were markedly decreased on the 11-month DTI, were increased on the 28-month DTI. On the fMRI performed at 28 months, the contralateral primary sensori-motor cortex was activated by the movement of either the right or left hand. Diffusion tensor tractography showed that fiber tracts originating from the motor-sensory cortex passed through the known corticospinal tract pathway to the pons. It seems that the weakness of this patient recovered due to the recovery of the damaged corticospinal tracts.
Mastropietro, Alfonso; Porcelli, Simone; Cadioli, Marcello; Rasica, Letizia; Scalco, Elisa; Gerevini, Simonetta; Marzorati, Mauro; Rizzo, Giovanna
2018-06-01
The main aim of this paper was to propose triggered intravoxel incoherent motion (IVIM) imaging sequences for the evaluation of perfusion changes in calf muscles before, during and after isometric intermittent exercise. Twelve healthy volunteers were involved in the study. The subjects were asked to perform intermittent isometric plantar flexions inside the MRI bore. MRI of the calf muscles was performed on a 3.0 T scanner and diffusion-weighted (DW) images were obtained using eight different b values (0 to 500 s/mm 2 ). Acquisitions were performed at rest, during exercise and in the subsequent recovery phase. A motion-triggered echo-planar imaging DW sequence was implemented to avoid movement artifacts. Image quality was evaluated using the average edge strength (AES) as a quantitative metric to assess the motion artifact effect. IVIM parameters (diffusion D, perfusion fraction f and pseudo-diffusion D*) were estimated using a segmented fitting approach and evaluated in gastrocnemius and soleus muscles. No differences were observed in quality of IVIM images between resting state and triggered exercise, whereas the non-triggered images acquired during exercise had a significantly lower value of AES (reduction of more than 20%). The isometric intermittent plantar-flexion exercise induced an increase of all IVIM parameters (D by 10%; f by 90%; D* by 124%; fD* by 260%), in agreement with the increased muscle perfusion occurring during exercise. Finally, IVIM parameters reverted to the resting values within 3 min during the recovery phase. In conclusion, the IVIM approach, if properly adapted using motion-triggered sequences, seems to be a promising method to investigate muscle perfusion during isometric exercise. Copyright © 2018 John Wiley & Sons, Ltd.
Ni, Liangping; Liu, Ying
2018-04-01
The present study aimed to assess early-stage nasopharyngeal carcinoma (NPC) with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) at 3.0 T. A total of 44 patients newly diagnosed with NPC were included in the present study. All patients underwent MR examination at 3.0 T using DCE-MRI and DWI. The volume transfer constant ( K trans ), flux rate constant between extravascular extracellular space and plasma ( K ep ), the volume of extravascular extracellular space per unit volume of tissue ( V e ) and the apparent diffusion coefficient (ADC) of tumours were investigated. Furthermore, the correlation between clinical stages and ADC value and K trans were analysed. The diagnostic accuracy of K trans and ADC were estimated using receiver operating characteristic curves. NPC stage correlated positively with K trans and negatively with ADC values. Additionally, tumour K trans negatively correlated with ADC value. The sensitivity and accuracy of combined K trans and ADC in distinguishing between stage II and stage III and stage III and IV were higher than the values of either measurement used separately. The present study suggested that K trans and ADC derived from DCE-MRI and DWI may be useful to detect stage early NPC accurately. K trans and ADC in combination were superior than either alone.
Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest
Mlynash, M.; Campbell, D.M.; Leproust, E.M.; Fischbein, N.J.; Bammer, R.; Eyngorn, I.; Hsia, A.W.; Moseley, M.; Wijman, C.A.C.
2010-01-01
Background and Purpose Diffusion-weighted MRI (DWI) of the brain is a promising technique to help predict functional outcome in comatose survivors of cardiac arrest. We aimed to evaluate prospectively the temporal-spatial profile of brain apparent diffusion coefficient (ADC) changes in comatose survivors during the first 8 days after cardiac arrest. Methods ADC values were measured by two independent and blinded investigators in predefined brain regions in 18 good and 15 poor outcome patients with 38 brain MRIs, and compared with 14 normal controls. The same brain regions were also assessed qualitatively by two other independent and blinded investigators. Results In poor outcome patients, cortical structures, in particular the occipital and temporal lobes, and the putamen exhibited the most profound ADC reductions, which were noted as early as 1.5 days and reached nadir between 3 to 5 days after the arrest. Conversely, when compared to normal controls, good outcome patients exhibited increased diffusivity, in particular in the hippocampus, temporal and occipital lobes, and corona radiata. By the qualitative MRI readings, one or more cortical gray matter structures were read as moderately-to-severely abnormal in all poor outcome patients imaged beyond 54 hours after the arrest, but not in the three patients imaged earlier. Conclusions Brain DWI changes in comatose post-cardiac arrest survivors in the first week after the arrest are region- and time-dependent and differ between good and poor outcome patients. With the increasing use of MRI in this context, it is important to be aware of these relationships. PMID:20595666
A phenome-wide examination of neural and cognitive function.
Poldrack, R A; Congdon, E; Triplett, W; Gorgolewski, K J; Karlsgodt, K H; Mumford, J A; Sabb, F W; Freimer, N B; London, E D; Cannon, T D; Bilder, R M
2016-12-06
This data descriptor outlines a shared neuroimaging dataset from the UCLA Consortium for Neuropsychiatric Phenomics, which focused on understanding the dimensional structure of memory and cognitive control (response inhibition) functions in both healthy individuals (130 subjects) and individuals with neuropsychiatric disorders including schizophrenia (50 subjects), bipolar disorder (49 subjects), and attention deficit/hyperactivity disorder (43 subjects). The dataset includes an extensive set of task-based fMRI assessments, resting fMRI, structural MRI, and high angular resolution diffusion MRI. The dataset is shared through the OpenfMRI project, and is formatted according to the Brain Imaging Data Structure (BIDS) standard.
Uptake of divalent ions (Mn+2 and Ca+2) by heat-set whey protein gels.
Oztop, Mecit H; McCarthy, Kathryn L; McCarthy, Michael J; Rosenberg, Moshe
2012-02-01
Divalent salts are used commonly for gelation of polymer molecules. Calcium, Ca(+2), is one of the most common divalent ions that is used in whey protein gels. Manganese, Mn(+2), is also divalent, but paramagnetic, enhancing relaxation decay rates in magnetic resonance imaging (MRI) and can be used as a probe to understand the behavior of Ca(+2) in whey protein gels. The objective of this study was to investigate the diffusion of Ca(+2) and Mn(+2) ions in heat-set whey protein gels by using MRI and nuclear magnetic resonance (NMR) relaxometry. Whey protein gels were immersed in solutions containing MnCl(2) and CaCl(2) at neutral pH. Images obtained with gels immersed in MnCl(2) solution revealed a relaxation sink region in the gel's surface and the thickness of the region increased with time. These "no signal" regions in the MR images were attributed to uptake of Mn(+2) by the gel. Results obtained with CaCl(2) solution indicated that since Ca(+2) did not have the paramagnetic effect, the regions where Ca(+2) diffused into the gel exhibited a slight decrease in signal intensity. The relaxation spectrums exhibited 3 populations of protons, for gels immersed in MnCl(2) solution, and 2 populations for gels in CaCl(2) solution. No significant change in T(2) distributions was observed for the gels immersed in CaCl(2) solution. The results demonstrated that MRI and NMR relaxometry can be used to understand the diffusion of ions into the whey protein gel, which is useful for designing gels of different physical properties for controlled release applications. Design of food systems for delivery of bioactive compounds requires knowledge of diffusion rates and structure. Utilizing magnetic resonance imaging the diffusion rates of ions can be measured. Relaxation spectra could yield information concerning molecular interactions. © 2012 Institute of Food Technologists®
Multi-Parametric Spinal Cord MRI as Potential Progression Marker in Amyotrophic Lateral Sclerosis
El Mendili, Mohamed-Mounir; Cohen-Adad, Julien; Pelegrini-Issac, Mélanie; Rossignol, Serge; Morizot-Koutlidis, Régine; Marchand-Pauvert, Véronique; Iglesias, Caroline; Sangari, Sina; Katz, Rose; Lehericy, Stéphane; Benali, Habib; Pradat, Pierre-François
2014-01-01
Objective To evaluate multimodal MRI of the spinal cord in predicting disease progression and one-year clinical status in amyotrophic lateral sclerosis (ALS) patients. Materials and Methods After a first MRI (MRI1), 29 ALS patients were clinically followed during 12 months; 14/29 patients underwent a second MRI (MRI2) at 11±3 months. Cross-sectional area (CSA) that has been shown to be a marker of lower motor neuron degeneration was measured in cervical and upper thoracic spinal cord from T2-weighted images. Fractional anisotropy (FA), axial/radial/mean diffusivities (λ⊥, λ//, MD) and magnetization transfer ratio (MTR) were measured within the lateral corticospinal tract in the cervical region. Imaging metrics were compared with clinical scales: Revised ALS Functional Rating Scale (ALSFRS-R) and manual muscle testing (MMT) score. Results At MRI1, CSA correlated significantly (P<0.05) with MMT and arm ALSFRS-R scores. FA correlated significantly with leg ALFSRS-R scores. One year after MRI1, CSA predicted (P<0.01) arm ALSFSR-R subscore and FA predicted (P<0.01) leg ALSFRS-R subscore. From MRI1 to MRI2, significant changes (P<0.01) were detected for CSA and MTR. CSA rate of change (i.e. atrophy) highly correlated (P<0.01) with arm ALSFRS-R and arm MMT subscores rate of change. Conclusion Atrophy and DTI metrics predicted ALS disease progression. Cord atrophy was a better biomarker of disease progression than diffusion and MTR. Our study suggests that multimodal MRI could provide surrogate markers of ALS that may help monitoring the effect of disease-modifying drugs. PMID:24755826
Bayesian uncertainty quantification in linear models for diffusion MRI.
Sjölund, Jens; Eklund, Anders; Özarslan, Evren; Herberthson, Magnus; Bånkestad, Maria; Knutsson, Hans
2018-03-29
Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Murase, Kenya; Yamazaki, Youichi; Shinohara, Masaaki; Kawakami, Kazunori; Kikuchi, Keiichi; Miki, Hitoshi; Mochizuki, Teruhito; Ikezoe, Junpei
2001-10-01
The purpose of this study was to present an application of a novel denoising technique for improving the accuracy of cerebral blood flow (CBF) images generated from dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI). The method presented in this study was based on anisotropic diffusion (AD). The usefulness of this method was firstly investigated using computer simulations. We applied this method to patient data acquired using a 1.5 T MR system. After a bolus injection of Gd-DTPA, we obtained 40-50 dynamic images with a 1.32-2.08 s time resolution in 4-6 slices. The dynamic images were processed using the AD method, and then the CBF images were generated using pixel-by-pixel deconvolution analysis. For comparison, the CBF images were also generated with or without processing the dynamic images using a median or Gaussian filter. In simulation studies, the standard deviation of the CBF values obtained after processing by the AD method was smaller than that of the CBF values obtained without any processing, while the mean value agreed well with the true CBF value. Although the median and Gaussian filters also reduced image noise, the mean CBF values were considerably underestimated compared with the true values. Clinical studies also suggested that the AD method was capable of reducing the image noise while preserving the quantitative accuracy of CBF images. In conclusion, the AD method appears useful for denoising DSC-MRI, which will make the CBF images generated from DSC-MRI more reliable.
Optical imaging: new tools for arthritis.
Chamberland, David; Jiang, Yebin; Wang, Xueding
2010-10-01
Conventional radiography, ultrasound, CT, MRI, and nuclear imaging are the current imaging modalities used for clinical evaluation of arthritis which is highly prevalent and a leading cause of disability. Some of these types of imaging are also used for monitoring disease progression and treatment response of arthritis. However, their disadvantages limit their utilities, such as ionizing radiation for radiography, CT, and nuclear imaging; suboptimal tissue contrast resolution for radiography, CT, ultrasound, and nuclear imaging; high cost for CT and MRI and nuclear imaging; and long data-acquisition time with ensuing patient discomfort for MRI. Recently, there have been considerable advances in nonionizing noninvasive optical imaging which has demonstrated promise for early diagnosis, monitoring therapeutic interventions and disease progression of arthritis. Optical based molecular imaging modalities such as fluorescence imaging have shown high sensitivity in detection of optical contrast agents and can aid early diagnosis and ongoing evaluation of chronic inflammatory arthritis. Optical transillumination imaging or diffuse optical tomography may differentiate normal joint clear synovial fluid from turbid and pink medium early in the inflammatory process. Fourier transform infrared spectroscopy has been used to evaluate fluid composition from joints affected by arthritis. Hemodynamic changes such as angiogenesis, hypervascularization, and hypoxia in arthritic articular tissue can potentially be observed by diffuse optical tomography and photoacoustic tomography. Optical measurements could also facilitate quantification of hemodynamic properties such as blood volume and oxygenation levels at early stages of inflammatory arthritis. Optical imaging provides methodologies which should contribute to detection of early changes and monitoring of progression in pathological characteristics of arthritis, with relatively simple instrumentation.
Zhang, Xiaodong; Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard
2014-04-01
Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease.
Nketiah, Gabriel; Elschot, Mattijs; Kim, Eugene; Teruel, Jose R; Scheenen, Tom W; Bathen, Tone F; Selnæs, Kirsten M
2017-07-01
To evaluate the diagnostic relevance of T2-weighted (T2W) MRI-derived textural features relative to quantitative physiological parameters derived from diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI in Gleason score (GS) 3+4 and 4+3 prostate cancers. 3T multiparametric-MRI was performed on 23 prostate cancer patients prior to prostatectomy. Textural features [angular second moment (ASM), contrast, correlation, entropy], apparent diffusion coefficient (ADC), and DCE pharmacokinetic parameters (K trans and V e ) were calculated from index tumours delineated on the T2W, DW, and DCE images, respectively. The association between the textural features and prostatectomy GS and the MRI-derived parameters, and the utility of the parameters in differentiating between GS 3+4 and 4+3 prostate cancers were assessed statistically. ASM and entropy correlated significantly (p < 0.05) with both GS and median ADC. Contrast correlated moderately with median ADC. The textural features correlated insignificantly with K trans and V e . GS 4+3 cancers had significantly lower ASM and higher entropy than 3+4 cancers, but insignificant differences in median ADC, K trans , and V e . The combined texture-MRI parameters yielded higher classification accuracy (91%) than the individual parameter sets. T2W MRI-derived textural features could serve as potential diagnostic markers, sensitive to the pathological differences in prostate cancers. • T2W MRI-derived textural features correlate significantly with Gleason score and ADC. • T2W MRI-derived textural features differentiate Gleason score 3+4 from 4+3 cancers. • T2W image textural features could augment tumour characterization.
Figley, Teresa D.; Bhullar, Navdeep; Courtney, Susan M.; Figley, Chase R.
2015-01-01
Diffusion tensor imaging (DTI) is a powerful MRI technique that can be used to estimate both the microstructural integrity and the trajectories of white matter pathways throughout the central nervous system. This fiber tracking (aka, “tractography”) approach is often carried out using anatomically-defined seed points to identify white matter tracts that pass through one or more structures, but can also be performed using functionally-defined regions of interest (ROIs) that have been determined using functional MRI (fMRI) or other methods. In this study, we performed fMRI-guided DTI tractography between all of the previously defined nodes within each of six common resting-state brain networks, including the: dorsal Default Mode Network (dDMN), ventral Default Mode Network (vDMN), left Executive Control Network (lECN), right Executive Control Network (rECN), anterior Salience Network (aSN), and posterior Salience Network (pSN). By normalizing the data from 32 healthy control subjects to a standard template—using high-dimensional, non-linear warping methods—we were able to create probabilistic white matter atlases for each tract in stereotaxic coordinates. By investigating all 198 ROI-to-ROI combinations within the aforementioned resting-state networks (for a total of 6336 independent DTI tractography analyses), the resulting probabilistic atlases represent a comprehensive cohort of functionally-defined white matter regions that can be used in future brain imaging studies to: (1) ascribe DTI or other white matter changes to particular functional brain networks, and (2) compliment resting state fMRI or other functional connectivity analyses. PMID:26578930
Whittaker, Heather T; Zhu, Shenghua; Di Curzio, Domenico L; Buist, Richard; Li, Xin-Min; Noy, Suzanna; Wiseman, Frances K; Thiessen, Jonathan D; Martin, Melanie
2018-07-01
Alzheimer's disease (AD) pathology causes microstructural changes in the brain. These changes, if quantified with magnetic resonance imaging (MRI), could be studied for use as an early biomarker for AD. The aim of our study was to determine if T 1 relaxation, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) metrics could reveal changes within the hippocampus and surrounding white matter structures in ex vivo transgenic mouse brains overexpressing human amyloid precursor protein with the Swedish mutation. Delineation of hippocampal cell layers using DTI color maps allows more detailed analysis of T 1 -weighted imaging, DTI, and qMTI metrics, compared with segmentation of gross anatomy based on relaxation images, and with analysis of DTI or qMTI metrics alone. These alterations are observed in the absence of robust intracellular Aβ accumulation or plaque deposition as revealed by histology. This work demonstrates that multiparametric quantitative MRI methods are useful for characterizing changes within the hippocampal substructures and surrounding white matter tracts of mouse models of AD. Copyright © 2018. Published by Elsevier Inc.
[A case of MM1+2 Creutzfeldt-Jakob disease with a longitudinal study of EEG and MRI].
Katsube, Mizuho; Shiota, Yuri; Harada, Takayuki; Shibata, Hiroshi; Nagai, Atsushi
2013-11-01
We report a case of definite MM1 + 2 sporadic Creutzfeldt-Jakob disease (sCJD). A 66-year-old woman was admitted to our hospital with memory disturbance and disorientation for three months. On admission she presented a progressive cognitive insufficiency. Electroencephalography (EEG) revealed a frontal intermittent rhythmical delta activity (FIRDA) and the brain magnetic resonance imaging (MRI) showed high signal intensities in cerebral cortex on diffusion weighted images (DWI). After four months from the onset, she reached the akinetic mutism state followed by myoclonus. Follow up examination revealed that periodic synchronous discharge (PSD) was found in EEG, and DWI revealed enlargement of high signal intensity lesions in cerebral cortex. At seven months from the onset, PSD and high signal intensities of cortex became unclear with disappearance of myoclonus, and brain white matter lesions were evident on MRI. Serial studies of EEG and MRI revealed that PSD generalized from frontal lobe dominant pattern, while high signal intensity lesions of cortex diffusely increased on DWI. At ten months from the onset patient died. Pathological examination in brain showed moderate and diffuse neuronal cell loss and gliosis in cerebral cortex corresponding with DWI changes. The genotype at codon 129 of the prion protein (PrP) was homozygous methionine (MM) and the type of protease-resistant PrP (PrPres) was the mixed type of 1 and 2 in Western blot analysis. It has been rare to analyze the changes of EEG and MRI in the entire stage and to investigate pathological finding in the case of sCJD-MM1 + 2. A longitudinal examination of EEG and MRI is useful for early diagnosis of CJD. Also we could correlate these findings with clinical and histopathological phenotype.
Fan, Qiuyun; Nummenmaa, Aapo; Witzel, Thomas; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R; Tisdall, Dylan; Van Dijk, Koene R A; Buckner, Randy L; Wedeen, Van J; Rosen, Bruce R; Wald, Lawrence L
2014-11-01
One of the major goals of the NIH Blueprint Human Connectome Project was to map and quantify the white matter connections in the brain using diffusion tractography. Given the prevalence of complex white matter structures, the capability of resolving local white matter geometries with multiple crossings in the diffusion magnetic resonance imaging (dMRI) data is critical. Increasing b-value has been suggested for delineation of the finer details of the orientation distribution function (ODF). Although increased gradient strength and duration increase sensitivity to highly restricted intra-axonal water, gradient strength limitations require longer echo times (TE) to accommodate the increased diffusion encoding times needed to achieve a higher b-value, exponentially lowering the signal-to-noise ratio of the acquisition. To mitigate this effect, the MGH-USC Connectom scanner was built with 300 mT/m gradients, which can significantly reduce the TE of high b-value diffusion imaging. Here we report comparisons performed across b-values based on q-ball ODF metrics to investigate whether high b-value diffusion imaging on the Connectom scanner can improve resolving complex white matter structures. The q-ball ODF features became sharper as the b-value increased, with increased power fraction in higher order spherical harmonic series of the ODF and increased peak heights relative to the overall size of the ODF. Crossing structures were detected in an increasingly larger fraction of white matter voxels and the spatial distribution of two-way and three-way crossing structures was largely consistent with known anatomy. Results indicate that dMRI with high diffusion encoding on the Connectom system is a promising tool to better characterize, and ultimately understand, the underlying structural organization and motifs in the human brain.
Exploring the multiple-hit hypothesis of preterm white matter damage using diffusion MRI.
Barnett, Madeleine L; Tusor, Nora; Ball, Gareth; Chew, Andrew; Falconer, Shona; Aljabar, Paul; Kimpton, Jessica A; Kennea, Nigel; Rutherford, Mary; David Edwards, A; Counsell, Serena J
2018-01-01
Preterm infants are at high risk of diffuse white matter injury and adverse neurodevelopmental outcome. The multiple hit hypothesis suggests that the risk of white matter injury increases with cumulative exposure to multiple perinatal risk factors. Our aim was to test this hypothesis in a large cohort of preterm infants using diffusion weighted magnetic resonance imaging (dMRI). We studied 491 infants (52% male) without focal destructive brain lesions born at < 34 weeks, who underwent structural and dMRI at a specialist Neonatal Imaging Centre. The median (range) gestational age (GA) at birth was 30 + 1 (23 + 2 -33 + 5 ) weeks and median postmenstrual age at scan was 42 + 1 (38-45) weeks. dMRI data were analyzed using tract based spatial statistics and the relationship between dMRI measures in white matter and individual perinatal risk factors was assessed. We tested the hypothesis that increased exposure to perinatal risk factors was associated with lower fractional anisotropy (FA), and higher radial, axial and mean diffusivity (RD, AD, MD) in white matter. Neurodevelopmental performance was investigated using the Bayley Scales of Infant and Toddler Development, Third Edition (BSITD-III) in a subset of 381 infants at 20 months corrected age. We tested the hypothesis that lower FA and higher RD, AD and MD in white matter were associated with poorer neurodevelopmental performance. Identified risk factors for diffuse white matter injury were lower GA at birth, fetal growth restriction, increased number of days requiring ventilation and parenteral nutrition, necrotizing enterocolitis and male sex. Clinical chorioamnionitis and patent ductus arteriosus were not associated with white matter injury. Multivariate analysis demonstrated that fetal growth restriction, increased number of days requiring ventilation and parenteral nutrition were independently associated with lower FA values. Exposure to cumulative risk factors was associated with reduced white matter FA and FA values at term equivalent age were associated with subsequent neurodevelopmental performance. This study suggests multiple perinatal risk factors have an independent association with diffuse white matter injury at term equivalent age and exposure to multiple perinatal risk factors exacerbates dMRI defined, clinically significant white matter injury. Our findings support the multiple hit hypothesis for preterm white matter injury.
The connectome mapper: an open-source processing pipeline to map connectomes with MRI.
Daducci, Alessandro; Gerhard, Stephan; Griffa, Alessandra; Lemkaddem, Alia; Cammoun, Leila; Gigandet, Xavier; Meuli, Reto; Hagmann, Patric; Thiran, Jean-Philippe
2012-01-01
Researchers working in the field of global connectivity analysis using diffusion magnetic resonance imaging (MRI) can count on a wide selection of software packages for processing their data, with methods ranging from the reconstruction of the local intra-voxel axonal structure to the estimation of the trajectories of the underlying fibre tracts. However, each package is generally task-specific and uses its own conventions and file formats. In this article we present the Connectome Mapper, a software pipeline aimed at helping researchers through the tedious process of organising, processing and analysing diffusion MRI data to perform global brain connectivity analyses. Our pipeline is written in Python and is freely available as open-source at www.cmtk.org.
A Diffusion MRI Tractography Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data
Calabrese, Evan; Badea, Alexandra; Cofer, Gary; Qi, Yi; Johnson, G. Allan
2015-01-01
Interest in structural brain connectivity has grown with the understanding that abnormal neural connections may play a role in neurologic and psychiatric diseases. Small animal connectivity mapping techniques are particularly important for identifying aberrant connectivity in disease models. Diffusion magnetic resonance imaging tractography can provide nondestructive, 3D, brain-wide connectivity maps, but has historically been limited by low spatial resolution, low signal-to-noise ratio, and the difficulty in estimating multiple fiber orientations within a single image voxel. Small animal diffusion tractography can be substantially improved through the combination of ex vivo MRI with exogenous contrast agents, advanced diffusion acquisition and reconstruction techniques, and probabilistic fiber tracking. Here, we present a comprehensive, probabilistic tractography connectome of the mouse brain at microscopic resolution, and a comparison of these data with a neuronal tracer-based connectivity data from the Allen Brain Atlas. This work serves as a reference database for future tractography studies in the mouse brain, and demonstrates the fundamental differences between tractography and neuronal tracer data. PMID:26048951
Chen, Xu; Errangi, Bhargav; Li, Longchuan; Glasser, Matthew F.; Westlye, Lars T.; Fjell, Anders M.; Walhovd, Kristine B.; Hu, Xiaoping; Herndon, James G.; Preuss, Todd M.; Rilling, James K.
2013-01-01
Among primates, humans are uniquely vulnerable to many age-related neurodegenerative disorders. We used structural and diffusion magnetic resonance imaging (MRI) to examine the brains of chimpanzees and rhesus monkeys across each species' adult lifespan, and compared these results with published findings in humans. As in humans, gray matter volume decreased with age in chimpanzees and rhesus monkeys. Also like humans, chimpanzees showed a trend for decreased white matter volume with age, but this decrease occurred proportionally later in the chimpanzee lifespan than in humans. Diffusion MRI revealed widespread age-related decreases in fractional anisotropy and increases in radial diffusivity in chimpanzees and macaques. However, both the fractional anisotropy decline and the radial diffusivity increase started at a proportionally earlier age in humans than in chimpanzees. Thus, even though overall patterns of gray and white matter aging are similar in humans and chimpanzees, the longer lifespan of humans provides more time for white matter to deteriorate before death, with the result that some neurological effects of aging may be exacerbated in our species. PMID:23623601
Bloemen, Oswald J N; Deeley, Quinton; Sundram, Fred; Daly, Eileen M; Barker, Gareth J; Jones, Derek K; van Amelsvoort, Therese A M J; Schmitz, Nicole; Robertson, Dene; Murphy, Kieran C; Murphy, Declan G M
2010-10-01
Autistic Spectrum Disorder (ASD), including Asperger syndrome and autism, is a highly genetic neurodevelopmental disorder. There is a consensus that ASD has a biological basis, and it has been proposed that it is a "connectivity" disorder. Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) allows measurement of the microstructural integrity of white matter (a proxy measure of "connectivity"). However, nobody has investigated the microstructural integrity of whole brain white matter in people with Asperger syndrome. We measured the fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD) of white matter, using DT-MRI, in 13 adults with Asperger syndrome and 13 controls. The groups did not differ significantly in overall intelligence and age. FA, MD and RD were assessed using whole brain voxel-based techniques. Adults with Asperger syndrome had a significantly lower FA than controls in 13 clusters. These were largely bilateral and included white matter in the internal capsule, frontal, temporal, parietal and occipital lobes, cingulum and corpus callosum. Adults with Asperger syndrome have widespread significant differences from controls in white matter microstructural integrity.
Modifications of pancreatic diffusion MRI by tissue characteristics: what are we weighting for?
Nissan, Noam
2017-08-01
Diffusion-weighted imaging holds the potential to improve the diagnosis and biological characterization of pancreatic disease, and in particular pancreatic cancer, which exhibits decreased values of the apparent diffusion coefficient (ADC). Yet, variable and overlapping ADC values have been reported for the healthy and the pathological pancreas, including for cancer and other benign conditions. This controversy reflects the complexity of probing the water-diffusion process in the pancreas, which is dependent upon multiple biological factors within this organ's unique physiological environment. In recent years, extensive studies have investigated the correlation between tissue properties including cellularity, vascularity, fibrosis, secretion and microstructure and pancreatic diffusivity. Understanding how the various physiological and pathological features and the underlying functional processes affect the diffusion measurement may serve to optimize the method for improved diagnostic gain. Therefore, the aim of the present review article is to elucidate the relationship between pancreatic tissue characteristics and diffusion MRI measurement. Copyright © 2017 John Wiley & Sons, Ltd.
Functional Imaging of the Lungs with Gas Agents
Kruger, Stanley J.; Nagle, Scott K.; Couch, Marcus J.; Ohno, Yoshiharu; Albert, Mitchell; Fain, Sean B.
2015-01-01
This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI) – hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas – and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multi-detector computed tomography (CT). However, MRI also offers capabilities for fast multi-spectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultra-short echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. Relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF) in both adults and children. PMID:26218920
Multivoxel MR Spectroscopy in Acute Ischemic Stroke:Comparison to the Stroke Protocol MRI
Dani, Krishna A.; An, Li; Henning, Erica C.; Shen, Jun; Warach, Steven
2014-01-01
Background and Purpose Few patients with stroke have been imaged with MR spectroscopy (MRS) within the first few hours after onset. We compared data from current MRI protocols to MRS in subjects with ischemic stroke. Methods MRS was incorporated into the standard clinical MRI stroke protocol for subjects <24 hours after onset. MRI and clinical correlates for the metabolic data from MRS were sought. Results One hundred thirty-six MRS voxels from 32 subjects were analyzed. Lactate preceded the appearance of the lesion on diffusion-weighted imaging in some voxels but in others lagged behind it. Current protocols may predict up to 41% of the variance of MRS metabolites. Serum glucose concentration and time to maximum partially predicted the concentration of all major metabolites. Conclusion MRS may be helpful in acute stroke, especially for lactate detection when perfusion-weighted imaging is unavailable. Current MRI protocols do provide surrogate markers for some indices of metabolic activity. PMID:23091121
Liu, Xiaohang; Zhou, Liangping; Peng, Weijun; Qian, Min
2011-06-01
Post-contrast diffusion-weighted imaging (DWI) is occasionally necessary when the results of the pre-contrast DWI differ from that of the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), however, the effects of contrast material on DWI image and apparent diffusion coefficient (ADC) values have not been fully examined. To assess whether the administration of gadolinium-DTPA (Gd-DTPA) significantly affects the DWI of prostate lesions or normal tissue at the 3.0 Tesla magnetic resonance imaging (3.0 T MRI). Fifty-one patients with 52 prostate lesions, including 32 prostate cancer (25 in the peripheral zone [PZ] and seven that could not be confidently located) and 20 benign lesions (11 in PZ and nine in central grand [CG]), underwent echo-planar imaging (EPI)-DWI with b values of 0, 1000 s/mm(2) before and after administration of Gd-DTPA at 3.0 T MRI. Regions of interest (ROI) were drawn in all lesions, 42 normal PZ, 44 CG tissue and air to calculate the signal-to-noise ratio (SNR) and ADC values of lesions and normal tissue, and contrast-to-noise ratio (CNR) of lesions for pre- and post-contrast images. Statistical differences between pre- and post-contrast data were assessed by use of a paired t test. No significant differences between pre- and post-contrast images were found in the CNR of lesions and SNR of all the tissue except CG, which showed a statistically significant decline (9.6%, p < 0.0001) in SNR after contrast relative to the pre-contrast images. The post-contrast ADC values were statistically significantly lower than pre-contrast for prostate cancer (0.80 ± 0.11 mm(2)/s Vs 0.89 ± 0.12 mm(2)/s, p < 0.0001) and benign lesions (1.14 ± 0.30 mm(2)/s vs. 1.2 ± 0.29 mm(2)/s, p < 0.0001). No significant differences were detected for normal tissue. The administration of Gd-DTPA can slightly affect the DWI image quality of the prostate and reduce the ADC value of lesions at 3.0T MRI. Applications of post-contrast DWI require caution in interpretation.
Song, G; Luo, T; Dong, L; Liu, Q
2017-07-03
Solution reflux and edema hamper the convection-enhanced delivery of the standard treatment for glioma. Therefore, a real-time magnetic resonance imaging (MRI) method was developed to monitor the dosing process, but a quantitative analysis of local diffusion and clearance parameters has not been assessed. The objective of this study was to compare diffusion into the extracellular space (ECS) at different stages of rat C6 gliomas, and analyze the effects of the extracellular matrix (ECM) on the diffusion process. At 10 and 20 days, after successful glioma modeling, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was introduced into the ECS of rat C6 gliomas. Diffusion parameters and half-life of the reagent were then detected using MRI, and quantified according to the mathematical model of diffusion. The main ECM components [chondroitin sulfate proteoglycans (CSPGs), collagen IV, and tenascin C] were detected by immunohistochemical and immunoblot analyses. In 20-day gliomas, Gd-DTPA diffused more slowly and derived higher tortuosity, with lower clearance rate and longer half-life compared to 10-day gliomas. The increased glioma ECM was associated with different diffusion and clearance parameters in 20-day rat gliomas compared to 10-day gliomas. ECS parameters were altered with C6 glioma progression from increased ECM content. Our study might help better understand the glioma microenvironment and provide benefits for interstitial drug delivery to treat brain gliomas.
Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI
2016-04-01
but these delays are nearing resolution and we anticipate the initiation of the neuroimaging portion of the study early in Year 3. The fMRI task...resonance imagining ( fMRI ) and diffusion tensor imaging (DTI) to characterize the extent of functional cortical recruitment and white matter injury...respectively. The inclusion of fMRI and DTI will provide an objective basis for cross-validating the EEG and eye tracking system. Both the EEG and eye
Toyota, Naoyuki; Nakamura, Yuko; Hieda, Masashi; Akiyama, Naoko; Terada, Hiroaki; Matsuura, Noriaki; Nishiki, Masayo; Kono, Hirotaka; Kohno, Hiroshi; Irei, Toshimitsu; Yoshikawa, Yukinobu; Kuraoka, Kazuya; Taniyama, Kiyomi; Awai, Kazuo
2013-09-01
The purpose of this study was to evaluate the diagnostic capability of gadoxetate disodium (Gd-EOB)-MRI for the detection of hepatocellular carcinoma (HCC) compared with multidetector CT (MDCT). Fifty patients with 57 surgically proven HCCs who underwent Gd-EOB-MRI and MDCT from March 2008 to June 2011 were evaluated. Two observers evaluated MR and CT on a lesion-by-lesion basis. We analyzed sensitivity by grading on a 5-point scale, the degree of arterial enhancement and the differences in histological grades in the diffusion-weighted images (DWI). The results showed that the sensitivity of Gd-EOB-MRI was higher than that of MDCT especially for HCCs that were 1 cm in diameter or smaller. The hepatobiliary phase was useful for the detecting of small HCC. We had few cases in which it was difficult to judge HCC in the arterial enhancement between MRI and MDCT. In the diffusion-weighted image, well differentiated HCC tended to show a low signal intensity, and poorly differentiated HCC tended to show a high signal intensity. In moderately differentiated HCC's, the mean diameter of the high signal intensity group was larger than that of the low signal intensity group (24.5 mm vs. 15.8 mm). In conclusion, Gd-EOB-MRI tended to show higher sensitivity compared to MDCT in the detection of HCC.
Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project.
Bastiani, Matteo; Andersson, Jesper L R; Cordero-Grande, Lucilio; Murgasova, Maria; Hutter, Jana; Price, Anthony N; Makropoulos, Antonios; Fitzgibbon, Sean P; Hughes, Emer; Rueckert, Daniel; Victor, Suresh; Rutherford, Mary; Edwards, A David; Smith, Stephen M; Tournier, Jacques-Donald; Hajnal, Joseph V; Jbabdi, Saad; Sotiropoulos, Stamatios N
2018-05-28
The developing Human Connectome Project is set to create and make available to the scientific community a 4-dimensional map of functional and structural cerebral connectivity from 20 to 44 weeks post-menstrual age, to allow exploration of the genetic and environmental influences on brain development, and the relation between connectivity and neurocognitive function. A large set of multi-modal MRI data from fetuses and newborn infants is currently being acquired, along with genetic, clinical and developmental information. In this overview, we describe the neonatal diffusion MRI (dMRI) image processing pipeline and the structural connectivity aspect of the project. Neonatal dMRI data poses specific challenges, and standard analysis techniques used for adult data are not directly applicable. We have developed a processing pipeline that deals directly with neonatal-specific issues, such as severe motion and motion-related artefacts, small brain sizes, high brain water content and reduced anisotropy. This pipeline allows automated analysis of in-vivo dMRI data, probes tissue microstructure, reconstructs a number of major white matter tracts, and includes an automated quality control framework that identifies processing issues or inconsistencies. We here describe the pipeline and present an exemplar analysis of data from 140 infants imaged at 38-44 weeks post-menstrual age. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Computer-aided Detection of Prostate Cancer with MRI: Technology and Applications.
Liu, Lizhi; Tian, Zhiqiang; Zhang, Zhenfeng; Fei, Baowei
2016-08-01
One in six men will develop prostate cancer in his lifetime. Early detection and accurate diagnosis of the disease can improve cancer survival and reduce treatment costs. Recently, imaging of prostate cancer has greatly advanced since the introduction of multiparametric magnetic resonance imaging (mp-MRI). Mp-MRI consists of T2-weighted sequences combined with functional sequences including dynamic contrast-enhanced MRI, diffusion-weighted MRI, and magnetic resonance spectroscopy imaging. Because of the big data and variations in imaging sequences, detection can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. To improve quantitative assessment of the disease, various computer-aided detection systems have been designed to help radiologists in their clinical practice. This review paper presents an overview of literatures on computer-aided detection of prostate cancer with mp-MRI, which include the technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Diffuse diseases of the myocardium: MRI-pathologic review of cardiomyopathies with dilatation.
Giesbrandt, Kirk J; Bolan, Candice W; Shapiro, Brian P; Edwards, William D; Mergo, Patricia J
2013-03-01
In this radiologic-pathologic review of the cardiomyopathies, we present the pertinent imaging findings of diffuse myocardial diseases that are associated with ventricular dilatation, including ischemic cardiomyopathy, nonischemic dilated cardiomyopathy, cardiac sarcoidosis, and iron overload cardiomyopathy. Correlation of the key radiologic findings with gross and microscopic pathologic features is presented, to provide the reader with a focused and in-depth review of the pathophysiology underlying each entity and the basis for the corresponding imaging characteristics.
NASA Astrophysics Data System (ADS)
Cho, Jae-Hwan; Lee, Hae-Kag; Yang, Han-Joon; Lee, Gui-Won; Park, Yong-Soon; Chung, Woon-Kwan
2013-01-01
In this study, the authors investigated whether periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging (DWI) can remove magnetic susceptibility artifacts and compared apparent diffusion coefficient (ADC) values for PROPELLER DWI and the common echo planar (EP) DWI. Twenty patients that underwent brain MRI with a metal dental implant were selected. A 3.0T MR scanner was then used to obtain EP DWI, PROPELLER DWI, and corresponding apparent diffusion coefficient (ADC) maps for a b-value of 0 and 1,000 s/mm2. The frequencies of magnetic susceptibility artifacts in four parts of the brain (bilateral temporal lobes, pons, and orbit) were selected. In the ADC maps, we measured the ADC values of both sides of the temporal lobe and the pons. According to the study results, the frequency of magnetic susceptibility artifacts in PROPELLER DW images was lower than it was in EP DW images. In ADC maps, the ADC values of the bilateral temporal lobes and the pons were all higher in PROPELLER ADC maps than in EP ADC maps. Our findings show that when a high-field MRI machine is used, magnetic susceptibility artifacts can distort anatomical structures and produce high-intensity signals. Furthermore, our findings suggest that in many cases, PROPELLER DWI would be helpful in terms of achieving a correct diagnosis.
Dijkstra, Hildebrand; Dorrius, Monique D; Wielema, Mirjam; Pijnappel, Ruud M; Oudkerk, Matthijs; Sijens, Paul E
2016-12-01
To assess if specificity can be increased when semiautomated breast lesion analysis of quantitative diffusion-weighted imaging (DWI) is implemented after dynamic contrast-enhanced (DCE-) magnetic resonance imaging (MRI) in the workup of BI-RADS 3 and 4 breast lesions larger than 1 cm. In all, 120 consecutive patients (mean-age, 48 years; age range, 23-75 years) with 139 breast lesions (≥1 cm) were examined (2010-2014) with 1.5T DCE-MRI and DWI (b = 0, 50, 200, 500, 800, 1000 s/mm 2 ) and the BI-RADS classification and histopathology were obtained. For each lesion malignancy was excluded using voxelwise semiautomated breast lesion analysis based on previously defined thresholds for the apparent diffusion coefficient (ADC) and the three intravoxel incoherent motion (IVIM) parameters: molecular diffusion (D slow ), microperfusion (D fast ), and the fraction of D fast (f fast ). The sensitivity (Se), specificity (Sp), and negative predictive value (NPV) based on only IVIM parameters combined in parallel (D slow , D fast , and f fast ), or the ADC or the BI-RADS classification by DCE-MRI were compared. Subsequently, the Se, Sp, and NPV of the combination of the BI-RADS classification by DCE-MRI followed by the IVIM parameters in parallel (or the ADC) were compared. In all, 23 of 139 breast lesions were benign. Se and Sp of DCE-MRI was 100% and 30.4% (NPV = 100%). Se and Sp of IVIM parameters in parallel were 92.2% and 52.2% (NPV = 57.1%) and for the ADC 95.7% and 17.4%, respectively (NPV = 44.4%). In all, 26 of 139 lesions were classified as BI-RADS 3 (n = 7) or BI-RADS 4 (n = 19). DCE-MRI combined with ADC (Se = 99.1%, Sp = 34.8%) or IVIM (Se = 99.1%, Sp = 56.5%) did significantly improve (P = 0.016) Sp of DCE-MRI alone for workup of BI-RADS 3 and 4 lesions (NPV = 92.9%). Quantitative DWI has a lower NPV compared to DCE-MRI for evaluation of breast lesions and may therefore not be able to replace DCE-MRI; when implemented after DCE-MRI as problem solver for BI-RADS 3 and 4 lesions, the combined specificity improves significantly. J. Magn. Reson. Imaging 2016;44:1642-1649. © 2016 International Society for Magnetic Resonance in Medicine.
Shang, Liu-Tong; Yang, Jia-Fei; Lu, Jing; Wang, Ting-Ting; Zhou, Ying; Xing, Xin-Bo; Wang, Xin-Kun; Yang, Shu-Hui; Hu, Ming-Yan
2017-10-20
To study the correlation of apparent diffusion coefficient (ADC) measured by diffusion-weighted magnetic resonance imaging (MRI) with the molecular subtypes and biological prognostic factors of invasive breast cancer masses. Breast MRI data (including dynamic enhanced and diffusion-weighted imaging) were collected from 64 patients with pathologically confirmed invasive breast cancer masses (a total of 69 lesions). The mean ADC values of the lesions were calculated and their correlations were analyzed with the 5 molecular subtypes of invasive breast cancer and the biological prognostic factors including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 2 (HER2), and Ki-67 index. The ADC values did not differ significantly among the 5 molecular subtypes of invasive breast cancer masses (P>0.05) or among lesions with different ER, PR, or HER2 status (P>0.05). The mean ADC values were significantly higher in Ki-67-positive lesions than in the negative lesions (P=0.023 and negatively correlated with the expressions of Ki-67 (r=-0.249). ADC value can not be used to identify the molecular subtypes of invasive breast cancer masses or to evaluate the biological prognosis of the lesions, but its correlation with Ki-67 expression may help in prognostic evaluation and guiding clinical therapy of the tumors.
Borri, Marco; Jury, Alexa; Popov, Sergey; Box, Gary; Perryman, Lara; Eccles, Suzanne A.; Jones, Chris; Robinson, Simon P.
2016-01-01
Abstract High grade and metastatic brain tumours exhibit considerable spatial variations in proliferation, angiogenesis, invasion, necrosis and oedema. Vascular heterogeneity arising from vascular co‐option in regions of invasive growth (in which the blood–brain barrier remains intact) and neoangiogenesis is a major challenge faced in the assessment of brain tumours by conventional MRI. A multiparametric MRI approach, incorporating native measurements and both Gd‐DTPA (Magnevist) and ultrasmall superparamagnetic iron oxide (P904)‐enhanced imaging, was used in combination with histogram and unsupervised cluster analysis using a k‐means algorithm to examine the spatial distribution of vascular parameters, water diffusion characteristics and invasion in intracranially propagated rat RG2 gliomas and human MDA‐MB‐231 LM2–4 breast adenocarcinomas in mice. Both tumour models presented with higher ΔR 1 (the change in transverse relaxation rate R 1 induced by Gd‐DTPA), fractional blood volume (fBV) and apparent diffusion coefficient than uninvolved regions of the brain. MDA‐MB‐231 LM2–4 tumours were less densely cellular than RG2 tumours and exhibited substantial local invasion, associated with oedema, whereas invasion in RG2 tumours was minimal. These additional features were reflected in the more heterogeneous appearance of MDA‐MB‐231 LM2–4 tumours on T 2‐weighted images and maps of functional MRI parameters. Unsupervised cluster analysis separated subregions with distinct functional properties; areas with a low fBV and relatively impermeable blood vessels (low ΔR 1) were predominantly located at the tumour margins, regions of MDA‐MB‐231 LM2–4 tumours with relatively high levels of water diffusion and low vascular permeability and/or fBV corresponded to histologically identified regions of invasion and oedema, and areas of mismatch between vascular permeability and blood volume were identified. We demonstrate that dual contrast MRI and evaluation of tissue diffusion properties, coupled with cluster analysis, allows for the assessment of heterogeneity within invasive brain tumours and the designation of functionally diverse subregions that may provide more informative predictive biomarkers. PMID:27671990
Boult, Jessica K R; Borri, Marco; Jury, Alexa; Popov, Sergey; Box, Gary; Perryman, Lara; Eccles, Suzanne A; Jones, Chris; Robinson, Simon P
2016-11-01
High grade and metastatic brain tumours exhibit considerable spatial variations in proliferation, angiogenesis, invasion, necrosis and oedema. Vascular heterogeneity arising from vascular co-option in regions of invasive growth (in which the blood-brain barrier remains intact) and neoangiogenesis is a major challenge faced in the assessment of brain tumours by conventional MRI. A multiparametric MRI approach, incorporating native measurements and both Gd-DTPA (Magnevist) and ultrasmall superparamagnetic iron oxide (P904)-enhanced imaging, was used in combination with histogram and unsupervised cluster analysis using a k-means algorithm to examine the spatial distribution of vascular parameters, water diffusion characteristics and invasion in intracranially propagated rat RG2 gliomas and human MDA-MB-231 LM2-4 breast adenocarcinomas in mice. Both tumour models presented with higher ΔR 1 (the change in transverse relaxation rate R 1 induced by Gd-DTPA), fractional blood volume (fBV) and apparent diffusion coefficient than uninvolved regions of the brain. MDA-MB-231 LM2-4 tumours were less densely cellular than RG2 tumours and exhibited substantial local invasion, associated with oedema, whereas invasion in RG2 tumours was minimal. These additional features were reflected in the more heterogeneous appearance of MDA-MB-231 LM2-4 tumours on T 2 -weighted images and maps of functional MRI parameters. Unsupervised cluster analysis separated subregions with distinct functional properties; areas with a low fBV and relatively impermeable blood vessels (low ΔR 1 ) were predominantly located at the tumour margins, regions of MDA-MB-231 LM2-4 tumours with relatively high levels of water diffusion and low vascular permeability and/or fBV corresponded to histologically identified regions of invasion and oedema, and areas of mismatch between vascular permeability and blood volume were identified. We demonstrate that dual contrast MRI and evaluation of tissue diffusion properties, coupled with cluster analysis, allows for the assessment of heterogeneity within invasive brain tumours and the designation of functionally diverse subregions that may provide more informative predictive biomarkers. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Hölsken, Annett; Schwarz, Marc; Gillmann, Clarissa; Pfister, Christina; Uder, Michael; Doerfler, Arnd; Buchfelder, Michael; Schlaffer, Sven; Fahlbusch, Rudolf; Buslei, Rolf; Bäuerle, Tobias
2018-01-01
Adamantinomatous craniopharyngiomas (ACP) as benign sellar brain tumors are challenging to treat. In order to develop robust in vivo drug testing methodology, the murine orthotopic craniopharyngioma model (PDX) was characterized by magnetic resonance imaging (MRI) and histology in xenografts from three patients (ACP1-3). In ACP PDX, multiparametric MRI was conducted to assess morphologic characteristics such as contrast-enhancing tumor volume (CETV) as well as functional parameters from dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI) including area-under-the-curve (AUC), peak enhancement (PE), time-to-peak (TTP) and apparent diffusion coefficient (ADC). These MRI parameters evaluated in 27 ACP PDX were correlated to histological features and percentage of vital tumor cell content. Qualitative analysis of MRI and histology from PDX revealed a similar phenotype as seen in patients, although the MRI appearance in mice resulted in a more solid tumor growth than in humans. CETV were significantly higher in ACP2 xenografts relative to ACP1 and ACP3 which correspond to respective average vitality of 41%, <10% and 26% determined histologically. Importantly, CETV prove tumor growth of ACP2 PDX as it significantly increases in longitudinal follow-up of 110 days. Furthermore, xenografts from ACP2 revealed a significantly higher AUC, PE and TTP in comparison to ACP3, and significantly increased ADC relative to ACP1 and ACP3 respectively. Overall, DCE-MRI and DWI can be used to distinguish vital from non-vital grafts, when using a cut off value of 15% for vital tumor cell content. MRI enables the assessment of craniopharyngioma PDX vitality in vivo as validated histologically.
Vattimo, A; Burroni, L; Bertelli, P; Volterrani, D; Vella, A
1996-01-01
We performed 99Tcm-ethyl cysteinate dimer (ECD) interictal single photon emission tomography (SPET) in 26 children with severe therapy-resistant epilepsy. All the children underwent a detailed clinical examination, an electroencephalogram (EEG) investigation and brain magnetic resonance imaging (MRI). In 21 of the 26 children, SPET demonstrated brain blood flow abnormalities, in 13 cases in the same territories that showed EEG alterations. MRI showed structural lesions in 6 of the 26 children, while SPET imaging confirmed these abnormalities in only 5 children. The lesion not detected on SPET was shown to be 3 mm thick on MRI. Five symptomatic patients had normal SPET. In one of these patients, the EEG findings were normal and MRI revealed a small calcific nodule (4 mm thick); in the others, the EEG showed non-focal but diffuse abnormalities. These data confirm that brain SPET is sensitive in detecting and localizing hypoperfused areas that could be associated with epileptic foci in this group of patients, even when the MRI image is normal.
Advanced Pediatric Brain Imaging Research and Training Program
2013-10-01
diffusion tensor imaging and perfusion ( arterial spin labeling) MRI data and to relate measures of global and regional brain microstructural organization...AD_________________ Award Number: W81XWH-11-2-0198 TITLE: Advanced Pediatric Brain Imaging...September 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Advanced Pediatric Brain Imaging Research and Training Program 5b. GRANT NUMBER W81XWH
Model-free and analytical EAP reconstruction via spherical polar Fourier diffusion MRI.
Cheng, Jian; Ghosh, Aurobrata; Jiang, Tianzi; Deriche, Rachid
2010-01-01
How to estimate the diffusion Ensemble Average Propagator (EAP) from the DWI signals in q-space is an open problem in diffusion MRI field. Many methods were proposed to estimate the Orientation Distribution Function (ODF) that is used to describe the fiber direction. However, ODF is just one of the features of the EAP. Compared with ODF, EAP has the full information about the diffusion process which reflects the complex tissue micro-structure. Diffusion Orientation Transform (DOT) and Diffusion Spectrum Imaging (DSI) are two important methods to estimate the EAP from the signal. However, DOT is based on mono-exponential assumption and DSI needs a lot of samplings and very large b values. In this paper, we propose Spherical Polar Fourier Imaging (SPFI), a novel model-free fast robust analytical EAP reconstruction method, which almost does not need any assumption of data and does not need too many samplings. SPFI naturally combines the DWI signals with different b-values. It is an analytical linear transformation from the q-space signal to the EAP profile represented by Spherical Harmonics (SH). We validated the proposed methods in synthetic data, phantom data and real data. It works well in all experiments, especially for the data with low SNR, low anisotropy, and non-exponential decay.
NASA Astrophysics Data System (ADS)
Caffini, Matteo; Bergsland, Niels; LaganÃ, Marcella; Tavazzi, Eleonora; Tortorella, Paola; Rovaris, Marco; Baselli, Giuseppe
2014-03-01
Despite advances in the application of nonconventional MRI techniques in furthering the understanding of multiple sclerosis pathogenic mechanisms, there are still many unanswered questions, such as the relationship between gray and white matter damage. We applied a combination of advanced surface-based reconstruction and diffusion tensor imaging techniques to address this issue. We found significant relationships between white matter tract integrity indices and corresponding cortical structures. Our results suggest a direct link between damage in white and gray matter and contribute to the notion of gray matter loss relating to clinical disability.
Imaging transplanted stem cells in real time using an MRI dual-contrast method
Ngen, Ethel J.; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri
2015-01-01
Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies. PMID:26330231
Lehericy, Stéphane; Vaillancourt, David E; Seppi, Klaus; Monchi, Oury; Rektorova, Irena; Antonini, Angelo; McKeown, Martin J; Masellis, Mario; Berg, Daniela; Rowe, James B; Lewis, Simon J G; Williams-Gray, Caroline H; Tessitore, Alessandro; Siebner, Hartwig R
2017-04-01
Historically, magnetic resonance imaging (MRI) has contributed little to the study of Parkinson's disease (PD), but modern MRI approaches have unveiled several complementary markers that are useful for research and clinical applications. Iron- and neuromelanin-sensitive MRI detect qualitative changes in the substantia nigra. Quantitative MRI markers can be derived from diffusion weighted and iron-sensitive imaging or volumetry. Functional brain alterations at rest or during task performance have been captured with functional and arterial spin labeling perfusion MRI. These markers are useful for the diagnosis of PD and atypical parkinsonism, to track disease progression from the premotor stages of these diseases and to better understand the neurobiological basis of clinical deficits. A current research goal using MRI is to generate time-dependent models of the evolution of PD biomarkers that can help understand neurodegeneration and provide reliable markers for therapeutic trials. This article reviews recent advances in MRI biomarker research at high-field (3T) and ultra high field-imaging (7T) in PD and atypical parkinsonism. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Imaging transplanted stem cells in real time using an MRI dual-contrast method.
Ngen, Ethel J; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri
2015-09-02
Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies.
Soltaninejad, Mohammadreza; Yang, Guang; Lambrou, Tryphon; Allinson, Nigel; Jones, Timothy L; Barrick, Thomas R; Howe, Franklyn A; Ye, Xujiong
2018-04-01
Accurate segmentation of brain tumour in magnetic resonance images (MRI) is a difficult task due to various tumour types. Using information and features from multimodal MRI including structural MRI and isotropic (p) and anisotropic (q) components derived from the diffusion tensor imaging (DTI) may result in a more accurate analysis of brain images. We propose a novel 3D supervoxel based learning method for segmentation of tumour in multimodal MRI brain images (conventional MRI and DTI). Supervoxels are generated using the information across the multimodal MRI dataset. For each supervoxel, a variety of features including histograms of texton descriptor, calculated using a set of Gabor filters with different sizes and orientations, and first order intensity statistical features are extracted. Those features are fed into a random forests (RF) classifier to classify each supervoxel into tumour core, oedema or healthy brain tissue. The method is evaluated on two datasets: 1) Our clinical dataset: 11 multimodal images of patients and 2) BRATS 2013 clinical dataset: 30 multimodal images. For our clinical dataset, the average detection sensitivity of tumour (including tumour core and oedema) using multimodal MRI is 86% with balanced error rate (BER) 7%; while the Dice score for automatic tumour segmentation against ground truth is 0.84. The corresponding results of the BRATS 2013 dataset are 96%, 2% and 0.89, respectively. The method demonstrates promising results in the segmentation of brain tumour. Adding features from multimodal MRI images can largely increase the segmentation accuracy. The method provides a close match to expert delineation across all tumour grades, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management. Copyright © 2018 Elsevier B.V. All rights reserved.
A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread.
Swan, Amanda; Hillen, Thomas; Bowman, John C; Murtha, Albert D
2018-05-01
Gliomas are primary brain tumours arising from the glial cells of the nervous system. The diffuse nature of spread, coupled with proximity to critical brain structures, makes treatment a challenge. Pathological analysis confirms that the extent of glioma spread exceeds the extent of the grossly visible mass, seen on conventional magnetic resonance imaging (MRI) scans. Gliomas show faster spread along white matter tracts than in grey matter, leading to irregular patterns of spread. We propose a mathematical model based on Diffusion Tensor Imaging, a new MRI imaging technique that offers a methodology to delineate the major white matter tracts in the brain. We apply the anisotropic diffusion model of Painter and Hillen (J Thoer Biol 323:25-39, 2013) to data from 10 patients with gliomas. Moreover, we compare the anisotropic model to the state-of-the-art Proliferation-Infiltration (PI) model of Swanson et al. (Cell Prolif 33:317-329, 2000). We find that the anisotropic model offers a slight improvement over the standard PI model. For tumours with low anisotropy, the predictions of the two models are virtually identical, but for patients whose tumours show higher anisotropy, the results differ. We also suggest using the data from the contralateral hemisphere to further improve the model fit. Finally, we discuss the potential use of this model in clinical treatment planning.
Kojima, Masazumi; Nakagami, Hiroaki
2002-12-01
The water mobility and diffusivity in the gel-layer of hydrating low-substituted hydroxypropyl cellulose (LH41) tablets with or without a drug were investigated by magnetic resonance imaging (MRI) and compared with those properties in the gel-layer of hydroxypropylmethyl cellulose (HPMC) and hydroxypropyl cellulose (HPC) tablets. For this purpose, a localized image-analysis method was newly developed, and the spin-spin relaxation time (T(2)) and apparent self-diffusion coefficient (ADC) of water in the gel-layer were visualized in one-dimensional maps. Those maps showed that the extent of gel-layer growth in the tablets was in the order of HPC>HPMC>LH41, and there was a water mobility gradient across the gel-layers of all three tablet formulations. The T(2) and ADC in the outer parts of the gel-layers were close to those of free water. In contrast, these values in the inner parts of the gel-layer decreased progressively; suggesting that the water mobility and diffusivity around the core interface were highly restricted. Furthermore, the correlation between the T(2) of (1)H proton in the gel-layer of the tablets and the drug release rate from the tablets was observed.
NASA Astrophysics Data System (ADS)
Marrale, Maurizio; Collura, Giorgio; Gallo, Salvatore; Nici, Stefania; Tranchina, Luigi; Abbate, Boris Federico; Marineo, Sandra; Caracappa, Santo; d'Errico, Francesco
2017-04-01
This work focused on the analysis of the temporal diffusion of ferric ions through PVA-GTA gel dosimeters. PVA-GTA gel samples, partly exposed with 6 MV X-rays in order to create an initial steep gradient, were mapped using magnetic resonance imaging on a 7T MRI scanner for small animals. Multiple images of the gels were acquired over several hours after irradiation and were analyzed to quantitatively extract the signal profile. The spatial resolution achieved is 200 μm and this makes this technique particularly suitable for the analysis of steep gradients of ferric ion concentration. The results obtained with PVA-GTA gels were compared with those achieved with agarose gels, which is a standard dosimetric gel formulation. The analysis showed that the diffusion process is much slower (more than five times) for PVA-GTA gels than for agarose ones. Furthermore, it is noteworthy that the diffusion coefficient value obtained through MRI analysis is significantly consistent with that obtained in separate study Marini et al. (Submitted for publication) using a totally independent method such as spectrophotometry. This is a valuable result highlighting that the good dosimetric features of this gel matrix not only can be reproduced but also can be measured through independent experimental techniques based on different physical principles.
Gangolli, Mihika; Holleran, Laurena; Kim, Joong Hee; Stein, Thor D.; Alvarez, Victor; McKee, Ann C.; Brody, David L.
2017-01-01
Advanced diffusion MRI methods have recently been proposed for detection of pathologies such as traumatic axonal injury and chronic traumatic encephalopathy which commonly affect complex cortical brain regions. However, radiological-pathological correlations in human brain tissue that detail the relationship between the multi-component diffusion signal and underlying pathology are lacking. We present a nonlinear voxel based two dimensional coregistration method that is useful for matching diffusion signals to quantitative metrics of high resolution histological images. When validated in ex vivo human cortical tissue at a 250 × 250 × 500 micron spatial resolution, the method proved robust in correlations between generalized q-sampling imaging and histologically based white matter fiber orientations, with r = 0.94 for the primary fiber direction and r = 0.88 for secondary fiber direction in each voxel. Importantly, however, the correlation was substantially worse with reduced spatial resolution or with fiber orientations derived using a diffusion tensor model. Furthermore, we have detailed a quantitative histological metric of white matter fiber integrity termed power coherence capable of distinguishing between architecturally complex but intact white matter from disrupted white matter regions. These methods may allow for more sensitive and specific radiological-pathological correlations of neurodegenerative diseases affecting complex gray and white matter. PMID:28365421
An implanted 8-channel array coil for high-resolution macaque MRI at 3T
Janssens, T.; Keil, B.; Farivar, R.; McNab, J.A.; Polimeni, J. R.; Gerits, A.; Arsenault, J.T.; Wald, L. L.; Vanduffel, W.
2012-01-01
An 8-channel receive coil array was constructed and implanted adjacent to the skull in a male rhesus monkey in order to improve the sensitivity of (functional) brain imaging. The permanent implant was part of an acrylic headpost assembly and only the coil element loop wires were implanted. The tuning, matching, and preamplifier circuitry was connected via a removable external assembly. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging were compared to a single-, 4-, and 8-channel external receive-only coil routinely used for macaque fMRI. In vivo measurements showed significantly improved SNR within the brain for the implanted versus the external coils. Within a region-of-interest covering the cerebral cortex, we observed a 5.4-, 3.6-fold, and 3.4-fold increase in SNR compared to the external single-, 4-, and 8-channel coil, respectively. In the center of the brain, the implanted array maintained a 2.4×, 2.5×, and 2.1× higher SNR, respectively compared to the external coils. The array performance was evaluated for anatomical, diffusion tensor and functional brain imaging. This study suggests that a stable implanted phased-array coil can be used in macaque MRI to substantially increase the spatial resolution for anatomical, diffusion tensor, and functional imaging. PMID:22609793
Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations.
Wilm, Bertram J; Barmet, Christoph; Pavan, Matteo; Pruessmann, Klaas P
2011-06-01
Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k-space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third-order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate-gradient algorithm that uses explicit matrix-vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration. Copyright © 2011 Wiley-Liss, Inc.
Loggitsi, Dimitra; Gyftopoulos, Anastasios; Economopoulos, Nikolaos; Apostolaki, Aikaterini; Kalogeropoulos, Theodoros; Thanos, Anastasios; Alexopoulou, Efthimia; Kelekis, Nikolaos L
2017-11-01
The study sought to prospectively evaluate which technique among T2-weighted images, dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI), diffusion-weighted (DW) MRI, or a combination of the 2, is best suited for prostate cancer detection and local staging. Twenty-seven consecutive patients with biopsy-proven adenocarcinoma of the prostate underwent MRI on a 1.5T scanner with a surface phased-array coil prior radical prostatectomy. Combined anatomical and functional imaging was performed with the use of T2-weighted sequences, DCE MRI, and DW MRI. We compared the imaging results with whole mount histopathology. For the multiparametric approach, significantly higher sensitivity values, that is, 53% (95% confidence interval [CI]: 41.0-64.1) were obtained as compared with each modality alone or any combination of the 3 modalities (P < .05). The specificity for this multiparametric approach, being 90.3% (95% CI: 86.3-93.3) was not significantly higher (P < .05) as compared with the values of the combination of T2+DCE MRI, DW+DCE MRI, or DCE MRI alone. Among the 3 techniques, DCE had the best performance for tumour detection in both the peripheral and the transition zone. High negative predictive value rates (>86%) were obtained for both tumour detection and local staging. The combination of T2-weighted sequences, DCE MRI, and DW MRI yields higher diagnostic performance for tumour detection and local staging than can any of these techniques alone or even any combination of them. Copyright © 2017 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
Advances in diffusion MRI acquisition and processing in the Human Connectome Project
Sotiropoulos, Stamatios N; Jbabdi, Saad; Xu, Junqian; Andersson, Jesper L; Moeller, Steen; Auerbach, Edward J; Glasser, Matthew F; Hernandez, Moises; Sapiro, Guillermo; Jenkinson, Mark; Feinberg, David A; Yacoub, Essa; Lenglet, Christophe; Ven Essen, David C; Ugurbil, Kamil; Behrens, Timothy EJ
2013-01-01
The Human Connectome Project (HCP) is a collaborative 5-year effort to map human brain connections and their variability in healthy adults. A consortium of HCP investigators will study a population of 1200 healthy adults using multiple imaging modalities, along with extensive behavioral and genetic data. In this overview, we focus on diffusion MRI (dMRI) and the structural connectivity aspect of the project. We present recent advances in acquisition and processing that allow us to obtain very high-quality in-vivo MRI data, while enabling scanning of a very large number of subjects. These advances result from 2 years of intensive efforts in optimising many aspects of data acquisition and processing during the piloting phase of the project. The data quality and methods described here are representative of the datasets and processing pipelines that will be made freely available to the community at quarterly intervals, beginning in 2013. PMID:23702418
Kincses, Zsigmond Tamas; Király, András; Veréb, Dániel; Vécsei, László
2015-01-01
The importance of imaging biomarkers has been acknowledged in the diagnosis and in the follow-up of Alzheimer's disease (AD), one of the major causes of dementia. Next to the molecular biomarkers and PET imaging investigations, structural MRI approaches provide important information about the disease progression and about the pathomechanism. Furthermore,a growing body of literature retranslates these imaging biomarkers to various rodent models of the disease. The goal of this review is to provide an overview of the macro- and microstructural imaging biomarkers of AD, concentrating on atrophy measures and diffusion MRI alterations. A survey is also given of the imaging approaches used in rodent models of dementias that can promote drug development.
Pepe, Pietro; D'Urso, Davide; Garufi, Antonio; Priolo, Giandomenico; Pennisi, Michele; Russo, Giorgio; Sabini, Maria Gabriella; Valastro, Lucia Maria; Galia, Antonio; Fraggetta, Filippo
2017-01-01
To evaluate the accuracy of multiparametric magnetic resonance imaging apparent diffusion coefficient (mpMRI ADC) in the diagnosis of clinically significant prostate cancer (PCa). From January 2016 to December 2016, 44 patients who underwent radical prostatectomy for PCa and mpMRI lesions suggestive of cancer were retrospectively evaluated at definitive specimen. The accuracy of suspicious mpMRI prostate imaging reporting and data system (PI-RADS ≥3) vs. ADC values in the diagnosis of Gleason score ≥7 was evaluated. Receiver operating characteristics (ROC) curve analysis gave back an ADC threshold of 0.747×10 -3 mm 2 /s to separate between Gleason Score 6 and ≥7. The diagnostic accuracy of ADC value (cut-off 0.747×10 -3 mm 2 /s) vs. PI-RADS score ≥3 in diagnosing PCa with Gleason score ≥7 was equal to 84% vs. 63.6% with an area under the curve (AUC) ROC of 0.81 vs. 0.71, respectively. ADC evaluation could support clinicians in decision making of patients with PI-RADS score <3 at risk for PCa. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Ex vivo diffusion MRI of the human brain: Technical challenges and recent advances.
Roebroeck, Alard; Miller, Karla L; Aggarwal, Manisha
2018-06-04
This review discusses ex vivo diffusion magnetic resonance imaging (dMRI) as an important research tool for neuroanatomical investigations and the validation of in vivo dMRI techniques, with a focus on the human brain. We review the challenges posed by the properties of post-mortem tissue, and discuss state-of-the-art tissue preparation methods and recent advances in pulse sequences and acquisition techniques to tackle these. We then review recent ex vivo dMRI studies of the human brain, highlighting the validation of white matter orientation estimates and the atlasing and mapping of large subcortical structures. We also give particular emphasis to the delineation of layered gray matter structure with ex vivo dMRI, as this application illustrates the strength of its mesoscale resolution over large fields of view. We end with a discussion and outlook on future and potential directions of the field. © 2018 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Martel Villagrán, J; Bueno Horcajadas, Á; Pérez Fernández, E; Martín Martín, S
2015-01-01
To determine the ability of MRI to distinguish between benign and malignant vertebral lesions. We included 85 patients and studied a total of 213 vertebrae (both pathologic and normal). For each vertebra, we determined whether the lesion was hypointense in T1-weighted sequences and whether it was hyperintense in STIR and in diffusion-weighted sequences. We calculated the in-phase/out-of-phase quotient and the apparent diffusion coefficient for each vertebra. We combined parameters from T1-weighted, diffusion-weighted, and STIR sequences to devise a formula to distinguish benign from malignant lesions. The group comprised 60 (70.6%) women and 25 (29.4%) men with a mean age of 67±13.5 years (range, 33-90 y). Of the 85 patients, 26 (30.6%) had a known primary tumor. When the lesion was hypointense on T1-weighted sequences, hyperintense on STIR and diffusion-weighted sequences, and had a signal intensity quotient greater than 0.8, the sensitivity was 97.2%, the specificity was 90%, and the diagnostic accuracy was 91.2%. If the patient had a known primary tumor, these values increased to 97.2%, 99.4%, and 99%, respectively. Benign lesions can be distinguished from malignant lesions if we combine the information from T1-weighted, STIR, and diffusion-weighted sequences together with the in-phase/out-of-phase quotient of the lesion detected in the vertebral body on MRI. Copyright © 2013 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Symmetric Positive 4th Order Tensors & Their Estimation from Diffusion Weighted MRI⋆
Barmpoutis, Angelos; Jian, Bing; Vemuri, Baba C.; Shepherd, Timothy M.
2009-01-01
In Diffusion Weighted Magnetic Resonance Image (DW-MRI) processing a 2nd order tensor has been commonly used to approximate the diffusivity function at each lattice point of the DW-MRI data. It is now well known that this 2nd-order approximation fails to approximate complex local tissue structures, such as fibers crossings. In this paper we employ a 4th order symmetric positive semi-definite (PSD) tensor approximation to represent the diffusivity function and present a novel technique to estimate these tensors from the DW-MRI data guaranteeing the PSD property. There have been several published articles in literature on higher order tensor approximations of the diffusivity function but none of them guarantee the positive semi-definite constraint, which is a fundamental constraint since negative values of the diffusivity coefficients are not meaningful. In our methods, we parameterize the 4th order tensors as a sum of squares of quadratic forms by using the so called Gram matrix method from linear algebra and its relation to the Hilbert’s theorem on ternary quartics. This parametric representation is then used in a nonlinear-least squares formulation to estimate the PSD tensors of order 4 from the data. We define a metric for the higher-order tensors and employ it for regularization across the lattice. Finally, performance of this model is depicted on synthetic data as well as real DW-MRI from an isolated rat hippocampus. PMID:17633709
Applications of Molecular Imaging
Galbán, Craig; Galbán, Stefanie; Van Dort, Marcian; Luker, Gary D.; Bhojani, Mahaveer S.; Rehemtualla, Alnawaz; Ross, Brian D.
2015-01-01
Today molecular imaging technologies play a central role in clinical oncology. The use of imaging techniques in early cancer detection, treatment response and new therapy development is steadily growing and has already significantly impacted clinical management of cancer. In this chapter we will overview three different molecular imaging technologies used for the understanding of disease biomarkers, drug development, or monitoring therapeutic outcome. They are (1) optical imaging (bioluminescence and fluorescence imaging) (2) magnetic resonance imaging (MRI), and (3) nuclear imaging (e.g, single photon emission computed tomography (SPECT) and positron emission tomography (PET)). We will review the use of molecular reporters of biological processes (e.g. apoptosis and protein kinase activity) for high throughput drug screening and new cancer therapies, diffusion MRI as a biomarker for early treatment response and PET and SPECT radioligands in oncology. PMID:21075334
Novel Imaging Contrast Methods for Hyperpolarized 13 C Magnetic Resonance Imaging
NASA Astrophysics Data System (ADS)
Reed, Galen Durant
Magnetic resonance imaging using hyperpolarized 13C-labeled small molecules has emerged as an extremely powerful tool for the in vivo monitoring of perfusion and metabolism. This work presents methods for improved imaging, parameter mapping, and image contrast generation for in vivo hyperpolarized 13C MRI. Angiography using hyperpolarized urea was greatly improved with a highly T2-weighted acquisition in combination with 15N labeling of the urea amide groups. This is due to the fact that the T2 of [13C]urea is strongly limited by the scalar coupling to the neighboring quadrupolar 14N. The long in vivo T2 values of [13C, 15N2]urea were utilized for sub-millimeter projection angiography using a contrast agent that could be safely injected in concentrations of 10-100 mM while still tolerated in patients with renal insufficiency. This study also presented the first method for in vivo T2 mapping of hyperpolarized 13C compounds. The in vivo T2 of urea was short in the blood and long within the kidneys. This persistent signal component was isolated to the renal filtrate, thus enabling for the first time direct detection of an imaging contrast agent undergoing glomerular filtration. While highly T2-weighted acquisitions select for molecules with short rotational correlation times, high diffusion weighting selects for those with the long translational correlation times. A specialized spin-echo EPI sequence was developed in order to generate highly diffusion-weighted hyperpolarized 13C images on a clinical MRI system operating within clinical peak- RF and gradient amplitude constraints. Low power adiabatic spin echo pulses were developed in order to generate a sufficiently large refocused bandwidth while maintaining low nominal power. This diffusion weighted acquisition gave enhanced tumor contrast-to-noise ratio when imaging [1-13C]lactate after infusion of [1-13C]pyruvate. Finally, the first in-man hyperpolarized 13C MRI clinical trial is discussed.
Ultrafast Brain MRI: Clinical Deployment and Comparison to Conventional Brain MRI at 3T.
Prakkamakul, Supada; Witzel, Thomas; Huang, Susie; Boulter, Daniel; Borja, Maria J; Schaefer, Pamela; Rosen, Bruce; Heberlein, Keith; Ratai, Eva; Gonzalez, Gilberto; Rapalino, Otto
2016-09-01
To compare an ultrafast brain magnetic resonance imaging (MRI) protocol to the conventional protocol in motion-prone inpatient clinical settings. This retrospective study was HIPAA compliant and approved by the Institutional Review Board with waived inform consent. Fifty-nine inpatients (30 males, 29 females; mean age 55.1, range 23-93 years)who underwent 3-Tesla brain MRI using ultrafast and conventional protocols, both including five sequences, were included in the study. The total scan time for five ultrafast sequences was 4 minutes 59 seconds. The ideal conventional acquisition time was 10 minutes 32 seconds but the actual acquisition took 15-20 minutes. The average scan times for ultrafast localizers, T1-weighted, T2-weighted, fluid-attenuated inversion recovery (FLAIR), diffusion-weighted, T2*-weighted sequences were 14, 41, 62, 96, 80, 6 seconds, respectively. Two blinded neuroradiologists independently assessed three aspects: (1) image quality, (2) gray-white matter (GM-WM) differentiation, and (3) diagnostic concordance for the detection of six clinically relevant imaging findings. Wilcoxon signed-rank test was used to compare image quality and GM-WM scores. Interobserver reproducibility was calculated. The ultrafast T1-weighted sequence demonstrated significantly better image quality (P = .005) and GM-WM differentiation (P < .001) compared to the conventional sequence. There was high agreement (>85%) between both protocols for the detection of mass-like lesion, hemorrhage, diffusion restriction, WM FLAIR hyperintensities, subarachnoid FLAIR hyperintensities, and hydrocephalus. The ultrafast protocol achieved at least comparable image quality and high diagnostic concordance compared to the conventional protocol. This fast protocol can be a viable option to replace the conventional protocol in motion-prone inpatient clinical settings. Copyright © 2016 by the American Society of Neuroimaging.
NASA Astrophysics Data System (ADS)
Skare, Stefan; Hedehus, Maj; Moseley, Michael E.; Li, Tie-Qiang
2000-12-01
Diffusion tensor mapping with MRI can noninvasively track neural connectivity and has great potential for neural scientific research and clinical applications. For each diffusion tensor imaging (DTI) data acquisition scheme, the diffusion tensor is related to the measured apparent diffusion coefficients (ADC) by a transformation matrix. With theoretical analysis we demonstrate that the noise performance of a DTI scheme is dependent on the condition number of the transformation matrix. To test the theoretical framework, we compared the noise performances of different DTI schemes using Monte-Carlo computer simulations and experimental DTI measurements. Both the simulation and the experimental results confirmed that the noise performances of different DTI schemes are significantly correlated with the condition number of the associated transformation matrices. We therefore applied numerical algorithms to optimize a DTI scheme by minimizing the condition number, hence improving the robustness to experimental noise. In the determination of anisotropic diffusion tensors with different orientations, MRI data acquisitions using a single optimum b value based on the mean diffusivity can produce ADC maps with regional differences in noise level. This will give rise to rotational variances of eigenvalues and anisotropy when diffusion tensor mapping is performed using a DTI scheme with a limited number of diffusion-weighting gradient directions. To reduce this type of artifact, a DTI scheme with not only a small condition number but also a large number of evenly distributed diffusion-weighting gradients in 3D is preferable.
XQ-NLM: Denoising Diffusion MRI Data via x-q Space Non-Local Patch Matching.
Chen, Geng; Wu, Yafeng; Shen, Dinggang; Yap, Pew-Thian
2016-10-01
Noise is a major issue influencing quantitative analysis in diffusion MRI. The effects of noise can be reduced by repeated acquisitions, but this leads to long acquisition times that can be unrealistic in clinical settings. For this reason, post-acquisition denoising methods have been widely used to improve SNR. Among existing methods, non-local means (NLM) has been shown to produce good image quality with edge preservation. However, currently the application of NLM to diffusion MRI has been mostly focused on the spatial space (i.e., the x -space), despite the fact that diffusion data live in a combined space consisting of the x -space and the q -space (i.e., the space of wavevectors). In this paper, we propose to extend NLM to both x -space and q -space. We show how patch-matching, as required in NLM, can be performed concurrently in x-q space with the help of azimuthal equidistant projection and rotation invariant features. Extensive experiments on both synthetic and real data confirm that the proposed x-q space NLM (XQ-NLM) outperforms the classic NLM.
Artifact correction in diffusion MRI of non-human primate brains on a clinical 3T scanner.
Zhang, Xiaodong; Kirsch, John E; Zhong, Xiaodong
2016-02-01
Smearing artifacts were observed and investigated in diffusion tensor imaging (DTI) studies of macaque monkeys on a clinical whole-body 3T scanner. Four adult macaques were utilized to evaluate DTI artifacts. DTI images were acquired with a single-shot echo-planar imaging (EPI) sequence using a parallel imaging technique. The smearing artifacts observed on the diffusion-weighted images and fractional anisotropy maps were caused by the incomplete fat suppression due to the irregular macaque frontal skull geometry and anatomy. The artifact can be reduced substantially using a novel three-dimensional (3D) shimming procedure. The smearing artifacts observed on diffusion weighted images and fractional anisotropy (FA) maps of macaque brains can be reduced substantially using a robust 3D shimming approach. The DTI protocol combined with the shimming procedure could be a robust approach to examine brain connectivity and white matter integrity of non-human primates using a conventional clinical setting. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Simulation of brain tumors in MR images for evaluation of segmentation efficacy.
Prastawa, Marcel; Bullitt, Elizabeth; Gerig, Guido
2009-04-01
Obtaining validation data and comparison metrics for segmentation of magnetic resonance images (MRI) are difficult tasks due to the lack of reliable ground truth. This problem is even more evident for images presenting pathology, which can both alter tissue appearance through infiltration and cause geometric distortions. Systems for generating synthetic images with user-defined degradation by noise and intensity inhomogeneity offer the possibility for testing and comparison of segmentation methods. Such systems do not yet offer simulation of sufficiently realistic looking pathology. This paper presents a system that combines physical and statistical modeling to generate synthetic multi-modal 3D brain MRI with tumor and edema, along with the underlying anatomical ground truth, Main emphasis is placed on simulation of the major effects known for tumor MRI, such as contrast enhancement, local distortion of healthy tissue, infiltrating edema adjacent to tumors, destruction and deformation of fiber tracts, and multi-modal MRI contrast of healthy tissue and pathology. The new method synthesizes pathology in multi-modal MRI and diffusion tensor imaging (DTI) by simulating mass effect, warping and destruction of white matter fibers, and infiltration of brain tissues by tumor cells. We generate synthetic contrast enhanced MR images by simulating the accumulation of contrast agent within the brain. The appearance of the the brain tissue and tumor in MRI is simulated by synthesizing texture images from real MR images. The proposed method is able to generate synthetic ground truth and synthesized MR images with tumor and edema that exhibit comparable segmentation challenges to real tumor MRI. Such image data sets will find use in segmentation reliability studies, comparison and validation of different segmentation methods, training and teaching, or even in evaluating standards for tumor size like the RECIST criteria (response evaluation criteria in solid tumors).
Treit, Sarah; Chen, Zhang; Zhou, Dongming; Baugh, Lauren; Rasmussen, Carmen; Andrew, Gail; Pei, Jacqueline; Beaulieu, Christian
2017-01-01
Quantitative magnetic resonance imaging (MRI) has revealed abnormalities in brain volumes, cortical thickness and white matter microstructure in fetal alcohol spectrum disorders (FASD); however, no study has reported all three measures within the same cohort to assess the relative magnitude of deficits, and few studies have examined sex differences. Participants with FASD (n = 70; 30 females; 5-32 years) and healthy controls (n = 74; 35 females; 5-32 years) underwent cognitive testing and MRI to assess cortical thickness, regional brain volumes and fractional anisotropy (FA)/mean diffusivity (MD) of white matter tracts. A significant effect of group, age-by-group, or sex-by-group was found for 9/9 volumes, 7/39 cortical thickness regions, 3/9 white matter tracts, and 9/10 cognitive tests, indicating group differences that in some cases differ by age or sex. Volume reductions for several structures were larger in males than females, despite similar deficits of cognition in both sexes. Correlations between brain structure and cognitive scores were found in females of both groups, but were notably absent in males. Correlations within a given MRI modality (e.g. total brain volume and caudate volume) were prevalent in both the control and FASD groups, and were more numerous than correlations between measurement types (e.g. volumes and diffusion tensor imaging) in either cohort. This multi-modal MRI study finds widespread differences of brain structure in participants with prenatal alcohol exposure, and to a greater extent in males than females which may suggest attenuation of the expected process of sexual dimorphism of brain structure during typical development.
Apparent diffusion coefficient of the normal human brain for various experimental conditions
NASA Astrophysics Data System (ADS)
Moraru, Luminita; Dimitrievici, Lucian
2017-01-01
Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) is being increasingly used to assess both brain tissues and cerebrospinal fluid integrity. In this paper we study inter-site reproducibility of the apparent diffusion coefficient values for the main cerebral tissues such as gray matter, white matter and into cerebrospinal fluid and for three different stacks of slices that were spaced at L = 79.8, 84.9 and 90 mm. We assessed the impact of the attenuation factor and diffusion gradient on the results reproducibility.
Marrale, M; Collura, G; Brai, M; Toschi, N; Midiri, F; La Tona, G; Lo Casto, A; Gagliardo, C
2016-12-01
In recent years many papers about diagnostic applications of diffusion tensor imaging (DTI) have been published. This is because DTI allows to evaluate in vivo and in a non-invasive way the process of diffusion of water molecules in biological tissues. However, the simplified description of the diffusion process assumed in DTI does not permit to completely map the complex underlying cellular components and structures, which hinder and restrict the diffusion of water molecules. These limitations can be partially overcome by means of diffusion kurtosis imaging (DKI). The aim of this paper is the description of the theory of DKI, a new topic of growing interest in radiology. DKI is a higher order diffusion model that is a straightforward extension of the DTI model. Here, we analyze the physics underlying this method, we report our MRI acquisition protocol with the preprocessing pipeline used and the DKI parametric maps obtained on a 1.5 T scanner, and we review the most relevant clinical applications of this technique in various neurological diseases.
Hu, Leland S; Ning, Shuluo; Eschbacher, Jennifer M; Gaw, Nathan; Dueck, Amylou C; Smith, Kris A; Nakaji, Peter; Plasencia, Jonathan; Ranjbar, Sara; Price, Stephen J; Tran, Nhan; Loftus, Joseph; Jenkins, Robert; O'Neill, Brian P; Elmquist, William; Baxter, Leslie C; Gao, Fei; Frakes, David; Karis, John P; Zwart, Christine; Swanson, Kristin R; Sarkaria, Jann; Wu, Teresa; Mitchell, J Ross; Li, Jing
2015-01-01
Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). Multi-parametric MRI and texture analysis can help characterize and visualize GBM's spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.
Lin, Yu; Xing, Zhen; She, Dejun; Yang, Xiefeng; Zheng, Yingyan; Xiao, Zebin; Wang, Xingfu; Cao, Dairong
2017-06-01
Currently, isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion are proven diagnostic biomarkers for both grade II and III oligodendrogliomas (ODs). Non-invasive diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), and dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) are widely used to provide physiological information (cellularity, hemorrhage, calcifications, and angiogenesis) of neoplastic histology and tumor grade. However, it is unclear whether DWI, SWI, and DSC-PWI are able to stratify grades of IDH-mutant and 1p/19q co-deleted ODs. We retrospectively reviewed the conventional MRI (cMRI), DWI, SWI, and DSC-PWI obtained on 33 patients with IDH-mutated and 1p/19q co-deleted ODs. Features of cMRI, normalized ADC (nADC), intratumoral susceptibility signals (ITSSs), normalized maxim CBV (nCBV), and normalized maximum CBF (nCBF) were compared between low-grade ODs (LGOs) and high-grade ODs (HGOs). Receiver operating characteristic curve and logistic regression were applied to determine diagnostic performances. HGOs tended to present with prominent edema and enhancement. nADC, ITSSs, nCBV, and nCBF were significantly different between groups (all P < 0.05). The combination of SWI and DSC-PWI for grading resulted in sensitivity and specificity of 100.00 and 93.33%, respectively. IDH-mutant and 1p/19q co-deleted ODs can be stratified by grades using cMRI and advanced magnetic resonance imaging techniques including DWI, SWI, and DSC-PWI. Combined ITSSs with nCBV appear to be a promising option for grading molecularly defined ODs in clinical practice.
Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T.
Citak-Er, Fusun; Firat, Zeynep; Kovanlikaya, Ilhami; Ture, Ugur; Ozturk-Isik, Esin
2018-06-15
The objective of this study was to assess the contribution of multi-parametric (mp) magnetic resonance imaging (MRI) quantitative features in the machine learning-based grading of gliomas with a multi-region-of-interests approach. Forty-three patients who were newly diagnosed as having a glioma were included in this study. The patients were scanned prior to any therapy using a standard brain tumor magnetic resonance (MR) imaging protocol that included T1 and T2-weighted, diffusion-weighted, diffusion tensor, MR perfusion and MR spectroscopic imaging. Three different regions-of-interest were drawn for each subject to encompass tumor, immediate tumor periphery, and distant peritumoral edema/normal. The normalized mp-MRI features were used to build machine-learning models for differentiating low-grade gliomas (WHO grades I and II) from high grades (WHO grades III and IV). In order to assess the contribution of regional mp-MRI quantitative features to the classification models, a support vector machine-based recursive feature elimination method was applied prior to classification. A machine-learning model based on support vector machine algorithm with linear kernel achieved an accuracy of 93.0%, a specificity of 86.7%, and a sensitivity of 96.4% for the grading of gliomas using ten-fold cross validation based on the proposed subset of the mp-MRI features. In this study, machine-learning based on multiregional and multi-parametric MRI data has proven to be an important tool in grading glial tumors accurately even in this limited patient population. Future studies are needed to investigate the use of machine learning algorithms for brain tumor classification in a larger patient cohort. Copyright © 2018. Published by Elsevier Ltd.
A possible application of magnetic resonance imaging for pharmaceutical research.
Kowalczuk, Joanna; Tritt-Goc, Jadwiga
2011-03-18
Magnetic resonance imaging (MRI) is a non-destructive and non-invasive method, the experiment can be conducted in situ and allows the studying of the sample and the different processes in vitro or in vivo. 1D, 2D or 3D imaging can be undertaken. MRI is nowadays most widely used in medicine as a clinical diagnostic tool, but has still seen limited application in the food and pharmaceutical sciences. The different imaging pulse sequences of MRI allow to image the processes that take place in a wide scale range from ms (dissolution of compact tablets) to hours (hydration of drug delivery systems) for mobile as well as for rigid spins, usually protons. The paper gives examples of MRI application of in vitro imaging of pharmaceutical dosage based on hydroxypropyl methylcellulose which have focused on water-penetration, diffusion, polymer swelling, and drug release, characterized with respect to other physical parameters such as pH and the molecular weight of polymer. Tetracycline hydrochloride was used as a model drug. NMR imaging of density distributions and fast kinetics of the dissolution behavior of compact tablets is presented for paracetamol tablets. Copyright © 2010 Elsevier B.V. All rights reserved.
[The Role of Imaging in Central Nervous System Infections].
Yokota, Hajime; Tazoe, Jun; Yamada, Kei
2015-07-01
Many infections invade the central nervous system. Magnetic resonance imaging (MRI) is the main tool that is used to evaluate infectious lesions of the central nervous system. The useful sequences on MRI are dependent on the locations, such as intra-axial, extra-axial, and spinal cord. For intra-axial lesions, besides the fundamental sequences, including T1-weighted images, T2-weighted images, and fluid-attenuated inversion recovery (FLAIR) images, advanced sequences, such as diffusion-weighted imaging, diffusion tensor imaging, susceptibility-weighted imaging, and MR spectroscopy, can be applied. They are occasionally used as determinants for quick and correct diagnosis. For extra-axial lesions, understanding the differences among 2D-conventional T1-weighted images, 2D-fat-saturated T1-weighted images, 3D-Spin echo sequences, and 3D-Gradient echo sequence after the administration of gadolinium is required to avoid wrong interpretations. FLAIR plus gadolinium is a useful tool for revealing abnormal enhancement on the brain surface. For the spinal cord, the sequences are limited. Evaluating the distribution and time course of the spinal cord are essential for correct diagnoses. We summarize the role of imaging in central nervous system infections and show the pitfalls, key points, and latest information in them on clinical practices.
Viehweger, Adrian; Riffert, Till; Dhital, Bibek; Knösche, Thomas R; Anwander, Alfred; Stepan, Holger; Sorge, Ina; Hirsch, Wolfgang
2014-10-01
Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm(2). Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R(2) = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state.
Karayanidis, Frini; Keuken, Max C; Wong, Aaron; Rennie, Jaime L; de Hollander, Gilles; Cooper, Patrick S; Ross Fulham, W; Lenroot, Rhoshel; Parsons, Mark; Phillips, Natalie; Michie, Patricia T; Forstmann, Birte U
2016-01-01
Our understanding of the complex interplay between structural and functional organisation of brain networks is being advanced by the development of novel multi-modal analyses approaches. The Age-ility Project (Phase 1) data repository offers open access to structural MRI, diffusion MRI, and resting-state fMRI scans, as well as resting-state EEG recorded from the same community participants (n=131, 15-35 y, 66 male). Raw imaging and electrophysiological data as well as essential demographics are made available via the NITRC website. All data have been reviewed for artifacts using a rigorous quality control protocol and detailed case notes are provided. Copyright © 2015. Published by Elsevier Inc.