Sample records for imaging mri visualization

  1. Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy.

    PubMed

    Noel, Camille E; Parikh, Parag J; Spencer, Christopher R; Green, Olga L; Hu, Yanle; Mutic, Sasa; Olsen, Jeffrey R

    2015-01-01

    Onboard magnetic resonance imaging (OB-MRI) for daily localization and adaptive radiotherapy has been under development by several groups. However, no clinical studies have evaluated whether OB-MRI improves visualization of the target and organs at risk (OARs) compared to standard onboard computed tomography (OB-CT). This study compared visualization of patient anatomy on images acquired on the MRI-(60)Co ViewRay system to those acquired with OB-CT. Fourteen patients enrolled on a protocol approved by the Institutional Review Board (IRB) and undergoing image-guided radiotherapy for cancer in the thorax (n = 2), pelvis (n = 6), abdomen (n = 3) or head and neck (n = 3) were imaged with OB-MRI and OB-CT. For each of the 14 patients, the OB-MRI and OB-CT datasets were displayed side-by-side and independently reviewed by three radiation oncologists. Each physician was asked to evaluate which dataset offered better visualization of the target and OARs. A quantitative contouring study was performed on two abdominal patients to assess if OB-MRI could offer improved inter-observer segmentation agreement for adaptive planning. In total 221 OARs and 10 targets were compared for visualization on OB-MRI and OB-CT by each of the three physicians. The majority of physicians (two or more) evaluated visualization on MRI as better for 71% of structures, worse for 10% of structures, and equivalent for 14% of structures. 5% of structures were not visible on either. Physicians agreed unanimously for 74% and in majority for > 99% of structures. Targets were better visualized on MRI in 4/10 cases, and never on OB-CT. Low-field MR provides better anatomic visualization of many radiotherapy targets and most OARs as compared to OB-CT. Further studies with OB-MRI should be pursued.

  2. Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla.

    PubMed

    Vergara, Gaston R; Vijayakumar, Sathya; Kholmovski, Eugene G; Blauer, Joshua J E; Guttman, Mike A; Gloschat, Christopher; Payne, Gene; Vij, Kamal; Akoum, Nazem W; Daccarett, Marcos; McGann, Christopher J; Macleod, Rob S; Marrouche, Nassir F

    2011-02-01

    Magnetic resonance imaging (MRI) allows visualization of location and extent of radiofrequency (RF) ablation lesion, myocardial scar formation, and real-time (RT) assessment of lesion formation. In this study, we report a novel 3-Tesla RT -RI based porcine RF ablation model and visualization of lesion formation in the atrium during RF energy delivery. The purpose of this study was to develop a 3-Tesla RT MRI-based catheter ablation and lesion visualization system. RF energy was delivered to six pigs under RT MRI guidance. A novel MRI-compatible mapping and ablation catheter was used. Under RT MRI, this catheter was safely guided and positioned within either the left or right atrium. Unipolar and bipolar electrograms were recorded. The catheter tip-tissue interface was visualized with a T1-weighted gradient echo sequence. RF energy was then delivered in a power-controlled fashion. Myocardial changes and lesion formation were visualized with a T2-weighted (T2W) half Fourier acquisition with single-shot turbo spin echo (HASTE) sequence during ablation. RT visualization of lesion formation was achieved in 30% of the ablations performed. In the other cases, either the lesion was formed outside the imaged region (25%) or the lesion was not created (45%) presumably due to poor tissue-catheter tip contact. The presence of lesions was confirmed by late gadolinium enhancement MRI and macroscopic tissue examination. MRI-compatible catheters can be navigated and RF energy safely delivered under 3-Tesla RT MRI guidance. Recording electrograms during RT imaging also is feasible. RT visualization of lesion as it forms during RF energy delivery is possible and was demonstrated using T2W HASTE imaging. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  3. Initial experience of using an iron-containing fiducial marker for radiotherapy of prostate cancer: Advantages in the visualization of markers in Computed Tomography and Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Tanaka, Osamu; Iida, Takayoshi; Komeda, Hisao; Tamaki, Masayoshi; Seike, Kensaku; Kato, Daiki; Yokoyama, Takamasa; Hirose, Shigeki; Kawaguchi, Daisuke

    2016-12-01

    Visualization of markers is critical for imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). However, the size of the marker varies according to the imaging technique. While a large-sized marker is more useful for visualization in MRI, it results in artifacts on CT and causes substantial pain on administration. In contrast, a small-sized marker reduces the artifacts on CT but hampers MRI detection. Herein, we report a new ironcontaining marker and compare its utility with that of non-iron-containing markers. Five patients underwent CT/MRI fusion-based intensity-modulated radiotherapy, and the markers were placed by urologists. A Gold Anchor™ (GA; diameter, 0.28 mm; length, 10 mm) was placed using a 22G needle on the right side of the prostate. A VISICOIL™ (VIS; diameter, 0.35 mm; length, 10 mm) was placed using a 19G needle on the left side. MRI was performed using T2*-weighted imaging. Three observers evaluated and scored the visual qualities of the acquired images. The mean score of visualization was almost identical between the GA and VIS in radiography and cone-beam CT (Novalis Tx). The artifacts in planning CT were slightly larger using the GA than using the VIS. The visualization of the marker on MRI using the GA was superior to that using the VIS. In conclusion, the visualization quality of radiography, conebeam CT, and planning CT was roughly equal between the GA and VIS. However, the GA was more strongly visualized than was the VIS on MRI due to iron containing.

  4. MR imaging of the fetal musculoskeletal system.

    PubMed

    Nemec, Stefan Franz; Nemec, Ursula; Brugger, Peter C; Bettelheim, Dieter; Rotmensch, Siegfried; Graham, John M; Rimoin, David L; Prayer, Daniela

    2012-03-01

    Magnetic resonance imaging (MRI) appears to be increasingly used, in addition to standard ultrasonography for the diagnosis of abnormalities in utero. Previous studies have recently drawn attention to the technical refinement of MRI to visualize the fetal bones and muscles. Beyond commonly used T2-weighted MRI, echoplanar, thick-slab T2-weighted and dynamic sequences, and three-dimensional MRI techniques, are about to provide new imaging insights into the normal and the pathological musculoskeletal system of the fetus. This review emphasizes the potential significance of MRI in the visualization of the fetal musculoskeletal system. © 2012 John Wiley & Sons, Ltd.

  5. REAL TIME MRI GUIDED RADIOFREQUENCY ATRIAL ABLATION AND VISUALIZATION OF LESION FORMATION AT 3-TESLA

    PubMed Central

    Vergara, Gaston R.; Vijayakumar, Sathya; Kholmovski, Eugene G.; Blauer, Joshua J.E.; Guttman, Mike A.; Gloschat, Christopher; Payne, Gene; Vij, Kamal; Akoum, Nazem W.; Daccarett, Marcos; McGann, Christopher J.; MacLeod, Rob S.; Marrouche, Nassir F.

    2011-01-01

    Background MRI allows visualization of location and extent of RF ablation lesion, myocardial scar formation, and real-time (RT) assessment of lesion formation. In this study, we report a novel 3-Tesla RT-MRI based porcine RF ablation model and visualization of lesion formation in the atrium during RF energy delivery. Objective To develop of a 3-Tesla RT-MRI based catheter ablation and lesion visualization system. Methods RF energy was delivered to six pigs under RT-MRI guidance. A novel MRI compatible mapping and ablation catheter was used. Under RT-MRI this catheter was safely guided and positioned within either the left or right atrium. Unipolar and bi-polar electrograms were recorded. The catheter tip-tissue interface was visualized with a T1-weighted gradient echo sequence. RF energy was then delivered in a power-controlled fashion. Myocardial changes and lesion formation were visualized with a T2-weighted (T2w) HASTE sequence during ablation. Results Real-time visualization of lesion formation was achieved in 30% of the ablations performed. In the other cases, either the lesion was formed outside the imaged region (25%) or lesion was not created (45%) presumably due to poor tissue-catheter tip contact. The presence of lesions was confirmed by late gadolinium enhancement (LGE) MRI and macroscopic tissue examination. Conclusion MRI compatible catheters can be navigated and RF energy safely delivered under 3-Tesla RT-MRI guidance. It is also feasible to record electrograms during RT imaging. Real-time visualization of lesion as it forms during delivery of RF energy is possible and was demonstrated using T2w HASTE imaging. PMID:21034854

  6. Color-coded visualization of magnetic resonance imaging multiparametric maps

    NASA Astrophysics Data System (ADS)

    Kather, Jakob Nikolas; Weidner, Anja; Attenberger, Ulrike; Bukschat, Yannick; Weis, Cleo-Aron; Weis, Meike; Schad, Lothar R.; Zöllner, Frank Gerrit

    2017-01-01

    Multiparametric magnetic resonance imaging (mpMRI) data are emergingly used in the clinic e.g. for the diagnosis of prostate cancer. In contrast to conventional MR imaging data, multiparametric data typically include functional measurements such as diffusion and perfusion imaging sequences. Conventionally, these measurements are visualized with a one-dimensional color scale, allowing only for one-dimensional information to be encoded. Yet, human perception places visual information in a three-dimensional color space. In theory, each dimension of this space can be utilized to encode visual information. We addressed this issue and developed a new method for tri-variate color-coded visualization of mpMRI data sets. We showed the usefulness of our method in a preclinical and in a clinical setting: In imaging data of a rat model of acute kidney injury, the method yielded characteristic visual patterns. In a clinical data set of N = 13 prostate cancer mpMRI data, we assessed diagnostic performance in a blinded study with N = 5 observers. Compared to conventional radiological evaluation, color-coded visualization was comparable in terms of positive and negative predictive values. Thus, we showed that human observers can successfully make use of the novel method. This method can be broadly applied to visualize different types of multivariate MRI data.

  7. Intraoperative magnetic resonance imaging assessment of non-functioning pituitary adenomas during transsphenoidal surgery.

    PubMed

    Patel, Kunal S; Yao, Yong; Wang, Renzhi; Carter, Bob S; Chen, Clark C

    2016-04-01

    To review the utility of intraoperative imaging in facilitating maximal resection of non-functioning pituitary adenomas (NFAs). We performed an exhaustive MEDLINE search, which yielded 5598 articles. Upon careful review of these studies, 31 were pertinent to the issue of interest. Nine studies examined whether intraoperative MRI (iMRI) findings correlated with the presence of residual tumor on MRI taken 3 months after surgical resection. All studies using iMRI of >0.15T showed a ≥90% concordance between iMRI and 3-month post-operative MRI findings. 24 studies (22 iMRI and 2 intraoperative CT) examined whether intraoperative imaging improved the surgeon's ability to achieve a more complete resection. The resections were carried out under microscopic magnification in 17 studies and under endoscopic visualization in 7 studies. All studies support the value of intraoperative imaging in this regard, with improved resection in 15-83% of patients. Two studies examined whether iMRI (≥0.3T) improved visualization of residual NFA when compared to endoscopic visualization. Both studies demonstrated the value of iMRI in this regard, particularly when the tumor is located lateral of the sella, in the cavernous sinus, and in the suprasellar space. The currently available literature supports the utility of intraoperative imaging in facilitating increased NFA resection, without compromising safety.

  8. Real-time Magnetic Resonance Imaging Guidance for Cardiovascular Procedures

    PubMed Central

    Horvath, Keith A.; Li, Ming; Mazilu, Dumitru; Guttman, Michael A.; McVeigh, Elliot R.

    2008-01-01

    Magnetic resonance imaging (MRI) of the cardiovascular system has proven to be an invaluable diagnostic tool. Given the ability to allow for real-time imaging, MRI guidance of intraoperative procedures can provide superb visualization which can facilitate a variety of interventions and minimize the trauma of the operations as well. In addition to the anatomic detail, MRI can provide intraoperative assessment of organ and device function. Instruments and devices can be marked to enhance visualization and tracking. All of which is an advance over standard x-ray or ultrasonic imaging. PMID:18395633

  9. Rapid sequence magnetic resonance imaging in the assessment of children with hydrocephalus.

    PubMed

    O'Neill, Brent R; Pruthi, Sumit; Bains, Harmanjeet; Robison, Ryan; Weir, Keiko; Ojemann, Jeff; Ellenbogen, Richard; Avellino, Anthony; Browd, Samuel R

    2013-12-01

    Recent reports have shown the utility of rapid-acquisition magnetic resonance imaging (MRI) in the evaluation of children with hydrocephalus. Rapid sequence MRI (RS-MRI) acquires clinically useful images in seconds without exposing children to the risks of ionizing radiation or sedation. We review our experience with RS-MRI in children with shunts. Overall image quality, cost, catheter visualization, motion artifact, and ventricular size were reviewed for all RS-MRI studies obtained at Seattle Children's Hospital during a 2-year period. Image acquisition time was 12-19 seconds, with sessions usually lasting less than 3 minutes. Image quality was very good or excellent in 94% of studies, whereas only one was graded as poor. Significant motion artifact was noted in 7%, whereas 77% had little or no motion artifact. Catheter visualization was good or excellent in 57%, poor in 36%, and misleading in 7%. Small ventricular size was correlated with poor catheter visualization (Spearman's ρ = 0.586; P < 0.00001). RS-MRI imaging cost ∼$650 more than conventional computed tomography (CT). Our study supports that RS-MRI is an adequate substitute that allows reduced use of CT imaging and resultant exposure to ionizing radiation. Catheter position visualization remains suboptimal when ventricles are small, but shunt malfunction can be adequately determined in most cases. The cost is significantly more than CT, but the potential for lifetime reduction in radiation exposure may justify this expense in children. Limitations include the risk of valve malfunction after repeated exposure to high magnetic fields and the need for reprogramming with many types of adjustable valves. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. MRI and CBCT image registration of temporomandibular joint: a systematic review.

    PubMed

    Al-Saleh, Mohammed A Q; Alsufyani, Noura A; Saltaji, Humam; Jaremko, Jacob L; Major, Paul W

    2016-05-10

    The purpose of the present review is to systematically and critically analyze the available literature regarding the importance, applicability, and practicality of (MRI), computerized tomography (CT) or cone-beam CT (CBCT) image registration for TMJ anatomy and assessment. A systematic search of 4 databases; MEDLINE, EMBASE, EBM reviews and Scopus, was conducted by 2 reviewers. An additional manual search of the bibliography was performed. All articles discussing the magnetic resonance imaging MRI and CT or CBCT image registration for temporomandibular joint (TMJ) visualization or assessment were included. Only 3 articles satisfied the inclusion criteria. All included articles were published within the last 7 years. Two articles described MRI to CT multimodality image registration as a complementary tool to visualize TMJ. Both articles used images of one patient only to introduce the complementary concept of MRI-CT fused image. One article assessed the reliability of using MRI-CBCT registration to evaluate the TMJ disc position and osseous pathology for 10 temporomandibular disorder (TMD) patients. There are very limited studies of MRI-CT/CBCT registration to reach a conclusion regarding its accuracy or clinical use in the temporomandibular joints.

  11. Three-dimensional contrasted visualization of pancreas in rats using clinical MRI and CT scanners.

    PubMed

    Yin, Ting; Coudyzer, Walter; Peeters, Ronald; Liu, Yewei; Cona, Marlein Miranda; Feng, Yuanbo; Xia, Qian; Yu, Jie; Jiang, Yansheng; Dymarkowski, Steven; Huang, Gang; Chen, Feng; Oyen, Raymond; Ni, Yicheng

    2015-01-01

    The purpose of this work was to visualize the pancreas in post-mortem rats with local contrast medium infusion by three-dimensional (3D) magnetic resonance imaging (MRI) and computed tomography (CT) using clinical imagers. A total of 16 Sprague Dawley rats of about 300 g were used for the pancreas visualization. Following the baseline imaging, a mixed contrast medium dye called GadoIodo-EB containing optimized concentrations of Gd-DOTA, iomeprol and Evens blue was infused into the distally obstructed common bile duct (CBD) for post-contrast imaging with 3.0 T MRI and 128-slice CT scanners. Images were post-processed with the MeVisLab software package. MRI findings were co-registered with CT scans and validated with histomorphology, with relative contrast ratios quantified. Without contrast enhancement, the pancreas was indiscernible. After infusion of GadoIodo-EB solution, only the pancreatic region became outstandingly visible, as shown by 3D rendering MRI and CT and proven by colored dissection and histological examinations. The measured volume of the pancreas averaged 1.12 ± 0.04 cm(3) after standardization. Relative contrast ratios were 93.28 ± 34.61% and 26.45 ± 5.29% for MRI and CT respectively. We have developed a multifunctional contrast medium dye to help clearly visualize and delineate rat pancreas in situ using clinical MRI and CT scanners. The topographic landmarks thus created with 3D demonstration may help to provide guidelines for the next in vivo pancreatic MRI research in rodents. Copyright © 2015 John Wiley & Sons, Ltd.

  12. fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI.

    PubMed

    Niranjan, Arun; Christie, Isabel N; Solomon, Samuel G; Wells, Jack A; Lythgoe, Mark F

    2016-10-01

    The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Visual cortex in dementia with Lewy bodies: magnetic resonance imaging study

    PubMed Central

    Taylor, John-Paul; Firbank, Michael J.; He, Jiabao; Barnett, Nicola; Pearce, Sarah; Livingstone, Anthea; Vuong, Quoc; McKeith, Ian G.; O’Brien, John T.

    2012-01-01

    Background Visual hallucinations and visuoperceptual deficits are common in dementia with Lewy bodies, suggesting that cortical visual function may be abnormal. Aims To investigate: (1) cortical visual function using functional magnetic resonance imaging (fMRI); and (2) the nature and severity of perfusion deficits in visual areas using arterial spin labelling (ASL)-MRI. Method In total, 17 participants with dementia with Lewy bodies (DLB group) and 19 similarly aged controls were presented with simple visual stimuli (checkerboard, moving dots, and objects) during fMRI and subsequently underwent ASL-MRI (DLB group n = 15, control group n = 19). Results Functional activations were evident in visual areas in both the DLB and control groups in response to checkerboard and objects stimuli but reduced visual area V5/MT (middle temporal) activation occurred in the DLB group in response to motion stimuli. Posterior cortical perfusion deficits occurred in the DLB group, particularly in higher visual areas. Conclusions Higher visual areas, particularly occipito-parietal, appear abnormal in dementia with Lewy bodies, while there is a preservation of function in lower visual areas (V1 and V2/3). PMID:22500014

  14. Surgical Accuracy of 3-Tesla Versus 7-Tesla Magnetic Resonance Imaging in Deep Brain Stimulation for Parkinson Disease.

    PubMed

    van Laar, Peter Jan; Oterdoom, D L Marinus; Ter Horst, Gert J; van Hulzen, Arjen L J; de Graaf, Eva K L; Hoogduin, Hans; Meiners, Linda C; van Dijk, J Marc C

    2016-09-01

    In deep brain stimulation (DBS), accurate placement of the lead is critical. Target definition is highly dependent on visual recognition on magnetic resonance imaging (MRI). We prospectively investigated whether the 7-T MRI enabled better visualization of targets and led to better placement of leads compared with the 1.5-T and the 3-T MRI. Three patients with PD (mean, 55 years) were scanned on 1.5-, 3-, and 7-T MRI before surgery. Tissue contrast and signal-to-noise ratio were measured. Target coordinates were noted on MRI and during surgery. Differences were analyzed with post-hoc analysis of variance. The 7-T MRI demonstrated a significant improvement in tissue visualization (P < 0.005) and signal-to-noise ratio (P < 0.005). However, no difference in the target coordinates was found between the 7-T and the 3-T MRI. Although the 7-T MRI enables a significant better visualization of the DBS target in patients with PD, we found no clinical benefit for the placement of the DBS leads. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Model–Free Visualization of Suspicious Lesions in Breast MRI Based on Supervised and Unsupervised Learning

    PubMed Central

    Twellmann, Thorsten; Meyer-Baese, Anke; Lange, Oliver; Foo, Simon; Nattkemper, Tim W.

    2008-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition techniques for computing enhanced visualizations of suspicious lesions in breast MRI data. These techniques represent an important component of future sophisticated computer-aided diagnosis (CAD) systems and support the visual exploration of spatial and temporal features of DCE-MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogeneity of cancerous tissue, these techniques reveal signals with malignant, benign and normal kinetics. They also provide a regional subclassification of pathological breast tissue, which is the basis for pseudo-color presentations of the image data. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging. PMID:19255616

  16. A novel anisotropic fast marching method and its application to blood flow computation in phase-contrast MRI.

    PubMed

    Schwenke, M; Hennemuth, A; Fischer, B; Friman, O

    2012-01-01

    Phase-contrast MRI (PC MRI) can be used to assess blood flow dynamics noninvasively inside the human body. The acquired images can be reconstructed into flow vector fields. Traditionally, streamlines can be computed based on the vector fields to visualize flow patterns and particle trajectories. The traditional methods may give a false impression of precision, as they do not consider the measurement uncertainty in the PC MRI images. In our prior work, we incorporated the uncertainty of the measurement into the computation of particle trajectories. As a major part of the contribution, a novel numerical scheme for solving the anisotropic Fast Marching problem is presented. A computing time comparison to state-of-the-art methods is conducted on artificial tensor fields. A visual comparison of healthy to pathological blood flow patterns is given. The comparison shows that the novel anisotropic Fast Marching solver outperforms previous schemes in terms of computing time. The visual comparison of flow patterns directly visualizes large deviations of pathological flow from healthy flow. The novel anisotropic Fast Marching solver efficiently resolves even strongly anisotropic path costs. The visualization method enables the user to assess the uncertainty of particle trajectories derived from PC MRI images.

  17. Subthalamic Nucleus Visualization on Routine Clinical Preoperative MRI Scans: A Retrospective Study of Clinical and Image Characteristics Predicting Its Visualization.

    PubMed

    Ranjan, Manish; Boutet, Alexandre; Xu, David S; Lozano, Christopher S; Kumar, Rajeev; Fasano, Alfonso; Kucharczyk, Walter; Lozano, Andres M

    2018-05-30

    The visualization of the subthalamic nucleus (STN) on magnetic resonance imaging (MRI) is variable. Studies of the contribution of patient-related factors and intrinsic brain volumetrics to STN visualization have not been reported previously. To assess the visualization of the STN during deep brain stimulation (DBS) surgery in a clinical setting. Eighty-two patients undergoing pre-operative MRI to plan for STN DBS for Parkinson disease were retrospectively studied. The visualization of the STN and its borders was assessed and scored by 3 independent observers using a 4-point ordinal scale (from 0 = not seen to 3 = excellent visualization). This measure was then correlated with the patients' clinical information and brain volumes. The mean STN visualization scores were 1.68 and 1.63 for the right and left STN, respectively, with a good interobserver reliability (intraclass correlation coefficient: 0.744). Older age and decreased white matter volume were negatively correlated with STN visualization (p < 0.05). STN visualization is only fair to good on routine MRI with good concordance of interindividual rating. Advancing age and decreased white matter are associated with poor visualization of the STN. Knowledge about factors contributing to poor visualization of the STN could alert a surgeon to modify the imaging strategy to optimize surgical targeting. © 2018 S. Karger AG, Basel.

  18. Effect of pulse sequence parameter selection on signal strength in positive-contrast MRI markers for MRI-based prostate postimplant assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Tze Yee

    Purpose: For postimplant dosimetric assessment, computed tomography (CT) is commonly used to identify prostate brachytherapy seeds, at the expense of accurate anatomical contouring. Magnetic resonance imaging (MRI) is superior to CT for anatomical delineation, but identification of the negative-contrast seeds is challenging. Positive-contrast MRI markers were proposed to replace spacers to assist seed localization on MRI images. Visualization of these markers under varying scan parameters was investigated. Methods: To simulate a clinical scenario, a prostate phantom was implanted with 66 markers and 86 seeds, and imaged on a 3.0T MRI scanner using a 3D fast radiofrequency-spoiled gradient recalled echo acquisitionmore » with various combinations of scan parameters. Scan parameters, including flip angle, number of excitations, bandwidth, field-of-view, slice thickness, and encoding steps were systematically varied to study their effects on signal, noise, scan time, image resolution, and artifacts. Results: The effects of pulse sequence parameter selection on the marker signal strength and image noise were characterized. The authors also examined the tradeoff between signal-to-noise ratio, scan time, and image artifacts, such as the wraparound artifact, susceptibility artifact, chemical shift artifact, and partial volume averaging artifact. Given reasonable scan time and managable artifacts, the authors recommended scan parameter combinations that can provide robust visualization of the MRI markers. Conclusions: The recommended MRI pulse sequence protocol allows for consistent visualization of the markers to assist seed localization, potentially enabling MRI-only prostate postimplant dosimetry.« less

  19. Cervical soft tissue imaging using a mobile CBCT scanner with a flat panel detector in comparison with corresponding CT and MRI data sets.

    PubMed

    Heiland, Max; Pohlenz, Philipp; Blessmann, Marco; Habermann, Christian R; Oesterhelweg, Lars; Begemann, Philipp C; Schmidgunst, Christian; Blake, Felix A S; Püschel, Klaus; Schmelzle, Rainer; Schulze, Dirk

    2007-12-01

    The aim of this study was to evaluate soft tissue image quality of a mobile cone-beam computed tomography (CBCT) scanner with an integrated flat-panel detector. Eight fresh human cadavers were used in this study. For evaluation of soft tissue visualization, CBCT data sets and corresponding computed tomography (CT) and magnetic resonance imaging (MRI) data sets were acquired. Evaluation was performed with the help of 10 defined cervical anatomical structures. The statistical analysis of the scoring results of 3 examiners revealed the CBCT images to be of inferior quality regarding the visualization of most of the predefined structures. Visualization without a significant difference was found regarding the demarcation of the vertebral bodies and the pyramidal cartilages, the arteriosclerosis of the carotids (compared with CT), and the laryngeal skeleton (compared with MRI). Regarding arteriosclerosis of the carotids compared with MRI, CBCT proved to be superior. The integration of a flat-panel detector improves soft tissue visualization using a mobile CBCT scanner.

  20. Enabling Real-Time Volume Rendering of Functional Magnetic Resonance Imaging on an iOS Device.

    PubMed

    Holub, Joseph; Winer, Eliot

    2017-12-01

    Powerful non-invasive imaging technologies like computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI) are used daily by medical professionals to diagnose and treat patients. While 2D slice viewers have long been the standard, many tools allowing 3D representations of digital medical data are now available. The newest imaging advancement, functional MRI (fMRI) technology, has changed medical imaging from viewing static to dynamic physiology (4D) over time, particularly to study brain activity. Add this to the rapid adoption of mobile devices for everyday work and the need to visualize fMRI data on tablets or smartphones arises. However, there are few mobile tools available to visualize 3D MRI data, let alone 4D fMRI data. Building volume rendering tools on mobile devices to visualize 3D and 4D medical data is challenging given the limited computational power of the devices. This paper describes research that explored the feasibility of performing real-time 3D and 4D volume raycasting on a tablet device. The prototype application was tested on a 9.7" iPad Pro using two different fMRI datasets of brain activity. The results show that mobile raycasting is able to achieve between 20 and 40 frames per second for traditional 3D datasets, depending on the sampling interval, and up to 9 frames per second for 4D data. While the prototype application did not always achieve true real-time interaction, these results clearly demonstrated that visualizing 3D and 4D digital medical data is feasible with a properly constructed software framework.

  1. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta.

    PubMed

    Ghaghada, Ketan B; Starosolski, Zbigniew A; Bhayana, Saakshi; Stupin, Igor; Patel, Chandreshkumar V; Bhavane, Rohan C; Gao, Haijun; Bednov, Andrey; Yallampalli, Chandrasekhar; Belfort, Michael; George, Verghese; Annapragada, Ananth V

    2017-09-01

    Non-invasive 3D imaging that enables clear visualization of placental margins is of interest in the accurate diagnosis of placental pathologies. This study investigated if contrast-enhanced MRI performed using a liposomal gadolinium blood-pool contrast agent (liposomal-Gd) enables clear visualization of the placental margins and the placental-myometrial interface (retroplacental space). Non-contrast MRI and contrast-enhanced MRI using a clinically approved conventional contrast agent were used as comparators. Studies were performed in pregnant rats under an approved protocol. MRI was performed at 1T using a permanent magnet small animal scanner. Pre-contrast and post-liposomal-Gd contrast images were acquired using T1-weighted and T2-weighted sequences. Dynamic Contrast enhanced MRI (DCE-MRI) was performed using gadoterate meglumine (Gd-DOTA, Dotarem ® ). Visualization of the retroplacental clear space, a marker of normal placentation, was judged by a trained radiologist. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both single and averaged acquisitions. Images were reviewed by a radiologist and scored for the visualization of placental features. Contrast-enhanced CT (CE-CT) imaging using a liposomal CT agent was performed for confirmation of the MR findings. Transplacental transport of liposomal-Gd was evaluated by post-mortem elemental analysis of tissues. Ex-vivo studies in perfused human placentae from normal, GDM, and IUGR pregnancies evaluated the transport of liposomal agent across the human placental barrier. Post-contrast T1w images acquired with liposomal-Gd demonstrated significantly higher SNR (p = 0.0002) in the placenta compared to pre-contrast images (28.0 ± 4.7 vs. 6.9 ± 1.8). No significant differences (p = 0.39) were noted between SNR in pre-contrast and post-contrast liposomal-Gd images of the amniotic fluid, indicating absence of transplacental passage of the agent. The placental margins were significantly (p < 0.001) better visualized on post-contrast liposomal-Gd images. DCE-MRI with the conventional Gd agent demonstrated retrograde opacification of the placenta from fetal edge to the myometrium, consistent with the anatomy of the rat placenta. However, no consistent and reproducible visualization of the retroplacental space was demonstrated on the conventional Gd-enhanced images. The retroplacental space was only visualized on post-contrast T1w images acquired using the liposomal agent (SNR = 15.5 ± 3.4) as a sharply defined, hypo-enhanced interface. The retroplacental space was also visible as a similar hypo-enhancing interface on CE-CT images acquired using a liposomal CT contrast agent. Tissue analysis demonstrated undetectably low transplacental permeation of liposomal-Gd, and was confirmed by lack of permeation through a perfused human placental model. Contrast-enhanced T1w-MRI performed using liposomal-Gd enabled clear visualization of placental margins and delineation of the retroplacental space from the rest of the placenta; the space is undetectable on non-contrast imaging and on post-contrast T1w images acquired using a conventional, clinically approved Gd chelate contrast agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Image segmentation and 3D visualization for MRI mammography

    NASA Astrophysics Data System (ADS)

    Li, Lihua; Chu, Yong; Salem, Angela F.; Clark, Robert A.

    2002-05-01

    MRI mammography has a number of advantages, including the tomographic, and therefore three-dimensional (3-D) nature, of the images. It allows the application of MRI mammography to breasts with dense tissue, post operative scarring, and silicon implants. However, due to the vast quantity of images and subtlety of difference in MR sequence, there is a need for reliable computer diagnosis to reduce the radiologist's workload. The purpose of this work was to develop automatic breast/tissue segmentation and visualization algorithms to aid physicians in detecting and observing abnormalities in breast. Two segmentation algorithms were developed: one for breast segmentation, the other for glandular tissue segmentation. In breast segmentation, the MRI image is first segmented using an adaptive growing clustering method. Two tracing algorithms were then developed to refine the breast air and chest wall boundaries of breast. The glandular tissue segmentation was performed using an adaptive thresholding method, in which the threshold value was spatially adaptive using a sliding window. The 3D visualization of the segmented 2D slices of MRI mammography was implemented under IDL environment. The breast and glandular tissue rendering, slicing and animation were displayed.

  3. A feature-based approach to combine functional MRI, structural MRI and EEG brain imaging data.

    PubMed

    Calhoun, V; Adali, T; Liu, J

    2006-01-01

    The acquisition of multiple brain imaging types for a given study is a very common practice. However these data are typically examined in separate analyses, rather than in a combined model. We propose a novel methodology to perform joint independent component analysis across image modalities, including structural MRI data, functional MRI activation data and EEG data, and to visualize the results via a joint histogram visualization technique. Evaluation of which combination of fused data is most useful is determined by using the Kullback-Leibler divergence. We demonstrate our method on a data set composed of functional MRI data from two tasks, structural MRI data, and EEG data collected on patients with schizophrenia and healthy controls. We show that combining data types can improve our ability to distinguish differences between groups.

  4. Inter- and intra-observer agreement of BI-RADS-based subjective visual estimation of amount of fibroglandular breast tissue with magnetic resonance imaging: comparison to automated quantitative assessment.

    PubMed

    Wengert, G J; Helbich, T H; Woitek, R; Kapetas, P; Clauser, P; Baltzer, P A; Vogl, W-D; Weber, M; Meyer-Baese, A; Pinker, Katja

    2016-11-01

    To evaluate the inter-/intra-observer agreement of BI-RADS-based subjective visual estimation of the amount of fibroglandular tissue (FGT) with magnetic resonance imaging (MRI), and to investigate whether FGT assessment benefits from an automated, observer-independent, quantitative MRI measurement by comparing both approaches. Eighty women with no imaging abnormalities (BI-RADS 1 and 2) were included in this institutional review board (IRB)-approved prospective study. All women underwent un-enhanced breast MRI. Four radiologists independently assessed FGT with MRI by subjective visual estimation according to BI-RADS. Automated observer-independent quantitative measurement of FGT with MRI was performed using a previously described measurement system. Inter-/intra-observer agreements of qualitative and quantitative FGT measurements were assessed using Cohen's kappa (k). Inexperienced readers achieved moderate inter-/intra-observer agreement and experienced readers a substantial inter- and perfect intra-observer agreement for subjective visual estimation of FGT. Practice and experience reduced observer-dependency. Automated observer-independent quantitative measurement of FGT was successfully performed and revealed only fair to moderate agreement (k = 0.209-0.497) with subjective visual estimations of FGT. Subjective visual estimation of FGT with MRI shows moderate intra-/inter-observer agreement, which can be improved by practice and experience. Automated observer-independent quantitative measurements of FGT are necessary to allow a standardized risk evaluation. • Subjective FGT estimation with MRI shows moderate intra-/inter-observer agreement in inexperienced readers. • Inter-observer agreement can be improved by practice and experience. • Automated observer-independent quantitative measurements can provide reliable and standardized assessment of FGT with MRI.

  5. Student Perceptions of Sectional CT/MRI Use in Teaching Veterinary Anatomy and the Correlation with Visual Spatial Ability: A Student Survey and Mental Rotations Test.

    PubMed

    Delisser, Peter J; Carwardine, Darren

    2017-11-29

    Diagnostic imaging technology is becoming more advanced and widely available to veterinary patients with the growing popularity of veterinary-specific computed tomography (CT) and magnetic resonance imaging (MRI). Veterinary students must, therefore, be familiar with these technologies and understand the importance of sound anatomic knowledge for interpretation of the resultant images. Anatomy teaching relies heavily on visual perception of structures and their function. In addition, visual spatial ability (VSA) positively correlates with anatomy test scores. We sought to assess the impact of including more diagnostic imaging, particularly CT/MRI, in the teaching of veterinary anatomy on the students' perceived level of usefulness and ease of understanding content. Finally, we investigated survey answers' relationship to the students' inherent baseline VSA, measured by a standard Mental Rotations Test. Students viewed diagnostic imaging as a useful inclusion that provided clear links to clinical relevance, thus improving the students' perceived benefits in its use. Use of CT and MRI images was not viewed as more beneficial, more relevant, or more useful than the use of radiographs. Furthermore, students felt that the usefulness of CT/MRI inclusion was mitigated by the lack of prior formal instruction on the basics of CT/MRI image generation and interpretation. To be of significantly greater use, addition of learning resources labeling relevant anatomy in tomographical images would improve utility of this novel teaching resource. The present study failed to find any correlation between student perceptions of diagnostic imaging in anatomy teaching and their VSA.

  6. Normal pelvic ultrasound or MRI does not rule out neoplasm in patients with gonadal dysgenesis and Y chromosome material.

    PubMed

    Ebert, Kristin M; Hewitt, Geri D; Indyk, Justin A; McCracken, Katherine A; Nahata, Leena; Jayanthi, Venkata R

    2018-04-01

    Patients with gonadal dysgenesis (GD) with a Y chromosome have an increased risk of gonadal neoplasm. Few data exist on the ability of imaging to detect malignancy in intra-abdominal gonads in these patients. We aimed to determine the correlation between preoperative imaging findings and gonadal pathology in GD patients with Y chromosome material. A retrospective review was performed of patients with XY or XO/XY GD who underwent gonadectomy at our institution from 2003 to 2017. Patients were assessed preoperatively with ultrasonography; some additionally underwent MRI. The series consisted of 10 patients, all with female gender and non-palpable gonads. Median age was 13.1 years (range 2.4-18.3 years). Overall, four of the ten patients (40%) had a tumor (gonadoblastoma or dysgerminoma) on final pathology. Four patients had a gonad or gonads that were definitively seen on ultrasonography. All visualized gonads were described as "normal" or "small" with the exception of one patient, who had a normal MRI. Three of the four patients in this group had a tumor on final pathology. The remaining six patients had a gonad or gonads that were not definitively visualized on ultrasound; one patient in this group had a tumor on final pathology. Overall, five of seven gonads (71%) definitively visualized on ultrasound had tumor on final pathology, and two of thirteen gonads (15%) not visualized on ultrasound had tumor on final pathology; this difference was statistically significant (p = 0.012). Three patients were imaged with MRI. Of the gonads that could be visualized on MRI, no definitive abnormalities were seen. All patients imaged with MRI had tumors on final pathology. Both ultrasound and MRI are relatively poor at identifying and characterizing intra-abdominal gonads in GD patients. The majority of patients who had a neoplasm had normal imaging findings. Gonads that were definitively visualized on ultrasound were more likely to contain neoplasms that could not be visualized, which perhaps because of tumor growth. No other consistent imaging findings of malignancy were found. Our study included ultrasound evaluations that were completed over 10 years ago and not performed by pediatric ultrasonographers, which may have biased the results. However, results suggest that when discussing gonadectomy with GD patients, one should not be reassured by "normal" imaging findings. Neither ultrasound nor MRI should be relied on for surveillance in GD patients who decide against gonadectomy. A normal ultrasound or MRI does not rule out neoplasm in GD patients with intra-abdominal gonads. Copyright © 2017 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  7. Navigation-supported diagnosis of the substantia nigra by matching midbrain sonography and MRI

    NASA Astrophysics Data System (ADS)

    Salah, Zein; Weise, David; Preim, Bernhard; Classen, Joseph; Rose, Georg

    2012-03-01

    Transcranial sonography (TCS) is a well-established neuroimaging technique that allows for visualizing several brainstem structures, including the substantia nigra, and helps for the diagnosis and differential diagnosis of various movement disorders, especially in Parkinsonian syndromes. However, proximate brainstem anatomy can hardly be recognized due to the limited image quality of B-scans. In this paper, a visualization system for the diagnosis of the substantia nigra is presented, which utilizes neuronavigated TCS to reconstruct tomographical slices from registered MRI datasets and visualizes them simultaneously with corresponding TCS planes in realtime. To generate MRI tomographical slices, the tracking data of the calibrated ultrasound probe are passed to an optimized slicing algorithm, which computes cross sections at arbitrary positions and orientations from the registered MRI dataset. The extracted MRI cross sections are finally fused with the region of interest from the ultrasound image. The system allows for the computation and visualization of slices at a near real-time rate. Primary tests of the system show an added value to the pure sonographic imaging. The system also allows for reconstructing volumetric (3D) ultrasonic data of the region of interest, and thus contributes to enhancing the diagnostic yield of midbrain sonography.

  8. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons.

    PubMed

    Kalia, Vivek; Fritz, Benjamin; Johnson, Rory; Gilson, Wesley D; Raithel, Esther; Fritz, Jan

    2017-09-01

    To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p < 0.001), whereas 3D images had substantially less partial volume, chemical shift and no pulsatile-flow artifacts (p < 0.001). Oblique and curved planar 3D images resulted in mildly-to-substantially improved visualization of joints, spring, bifurcate, syndesmotic, collateral and sinus tarsi ligaments, and tendons (p < 0.001, respectively). 3D TSE MRI with CAIPIRINHA acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. • High-resolution 3D TSE MRI improves visualization of ankle structures. • Limitations of current 3D TSE MRI include long scan times. • 3D CAIPIRINHA SPACE allows now a fourfold-accelerated data acquisition. • 3D CAIPIRINHA SPACE enables high-spatial-resolution ankle MRI within 10 min. • 10-min 3D CAIPIRINHA SPACE produces equal-or-better quality than 20-min 2D TSE.

  9. Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, F., E-mail: f.werner@uke.de; Hofmann, M.; Them, K.

    Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and usedmore » in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.« less

  10. Visibility of an iron-containing fiducial marker in magnetic resonance imaging for high-precision external beam prostate radiotherapy.

    PubMed

    Tanaka, Osamu; Komeda, Hisao; Hirose, Shigeki; Taniguchi, Takuya; Ono, Kousei; Matsuo, Masayuki

    2017-11-29

    Visualization of fiducial gold markers is critical for registration on computed tomography (CT) and magnetic resonance imaging (MRI) for imaging-guided radiotherapy. Although larger markers provide better visualization on MRI, they tend to generate artifacts on CT. MRI is strongly influenced by the presence of metals, such as iron, in the body. Here we compared efficacies of a 0.5% iron-containing gold marker (GM) and a traditional non-iron-containing marker. Twenty-seven patients underwent CT/MRI fusion-based intensity-modulated radiotherapy. Markers were placed by urologists under local anesthesia. Gold Anchor (GA; diameter: 0.28 mm; length: 10 mm), an iron-containing marker, was placed on the right side of the prostate using a 22-G needle and VISICOIL (VIS; diameter: 0.35 mm; length: 10 mm), a non-iron-containing marker, was placed on the left side using a 19-G needle. T2*-weighted images MRI sequences were obtained. Two radiation oncologists and a radiation technologist evaluated and assigned scores for visual quality on a five-point scale (1, poor; 5, best visibility). Artifact generation on CT was slightly greater with GA than with VIS. The mean marker visualization scores on MRI of all three observers were significantly superior for GA than for VIS (3.5 vs 3.2, 3.9 vs 3.2, and 4.0 vs 2.9). The actual size of the spherical GA was about 2 mm in diameter, but the signal void on MRI was approximately 5 mm. Although both markers were well visualized and can be recommended clinically, the results suggest that GA has some subtle advantages for quantitative visualization that could prove useful in certain situations of stereotactic body radiotherapy and intensity-modulated radiotherapy. © 2017 John Wiley & Sons Australia, Ltd.

  11. 7 Tesla compatible in-bore display for functional magnetic resonance imaging.

    PubMed

    Groebner, Jens; Berger, Moritz Cornelius; Umathum, Reiner; Bock, Michael; Rauschenberg, Jaane

    2013-08-01

    A liquid crystal display was modified for use inside a 7 T MR magnet. SNR measurements were performed using different imaging sequences with the monitor absent, present, or activated. fMRI with a volunteer was conducted using a visual stimulus. SNR was reduced by 3.7%/7.9% in echo planar/fast-spin echo images when the monitor was on which can be explained by the limited shielding of the coated front window (40 dB). In the fMRI experiments, activated regions in the visual cortex were clearly visible. The monitor provided excellent resolution at minor SNR reduction in EPI images, and is thus suitable for fMRI at ultra-high field.

  12. High-resolution STIR for 3-T MRI of the posterior fossa: visualization of the lower cranial nerves and arteriovenous structures related to neurovascular compression.

    PubMed

    Hiwatashi, Akio; Yoshiura, Takashi; Yamashita, Koji; Kamano, Hironori; Honda, Hiroshi

    2012-09-01

    Preoperative evaluation of small vessels without contrast material is sometimes difficult in patients with neurovascular compression disease. The purpose of this retrospective study was to evaluate whether 3D STIR MRI could simultaneously depict the lower cranial nerves--fifth through twelfth--and the blood vessels in the posterior fossa. The posterior fossae of 47 adults (26 women, 21 men) without gross pathologic changes were imaged with 3D STIR and turbo spin-echo heavily T2-weighted MRI sequences and with contrast-enhanced turbo field-echo MR angiography (MRA). Visualization of the cranial nerves on STIR images was graded on a 4-point scale and compared with visualization on T2-weighted images. Visualization of the arteries on STIR images was evaluated according to the segments in each artery and compared with that on MRA images. Visualization of the veins on STIR images was also compared with that on MRA images. Statistical analysis was performed with the Mann-Whitney U test. There were no significant differences between STIR and T2-weighted images with respect to visualization of the cranial nerves (p > 0.05). Identified on STIR and MRA images were 94 superior cerebellar arteries, 81 anteroinferior cerebellar arteries, and 79 posteroinferior cerebellar arteries. All veins evaluated were seen on STIR and MRA images. There were no significant differences between STIR and MRA images with respect to visualization of arteries and veins (p > 0.05). High-resolution STIR is a feasible method for simultaneous evaluation of the lower cranial nerves and the vessels in the posterior fossa without the use of contrast material.

  13. Concurrent multiscale imaging with magnetic resonance imaging and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liang, Chia-Pin; Yang, Bo; Kim, Il Kyoon; Makris, George; Desai, Jaydev P.; Gullapalli, Rao P.; Chen, Yu

    2013-04-01

    We develop a novel platform based on a tele-operated robot to perform high-resolution optical coherence tomography (OCT) imaging under continuous large field-of-view magnetic resonance imaging (MRI) guidance. Intra-operative MRI (iMRI) is a promising guidance tool for high-precision surgery, but it may not have sufficient resolution or contrast to visualize certain small targets. To address these limitations, we develop an MRI-compatible OCT needle probe, which is capable of providing microscale tissue architecture in conjunction with macroscale MRI tissue morphology in real time. Coregistered MRI/OCT images on ex vivo chicken breast and human brain tissues demonstrate that the complementary imaging scales and contrast mechanisms have great potential to improve the efficiency and the accuracy of iMRI procedure.

  14. Multimode intravascular RF coil for MRI-guided interventions.

    PubMed

    Kurpad, Krishna N; Unal, Orhan

    2011-04-01

    To demonstrate the feasibility of using a single intravascular radiofrequency (RF) probe connected to the external magnetic resonance imaging (MRI) system via a single coaxial cable to perform active tip tracking and catheter visualization and high signal-to-noise ratio (SNR) intravascular imaging. A multimode intravascular RF coil was constructed on a 6F balloon catheter and interfaced to a 1.5T MRI scanner via a decoupling circuit. Bench measurements of coil impedances were followed by imaging experiments in saline and phantoms. The multimode coil behaves as an inductively coupled transmit coil. The forward-looking capability of 6 mm was measured. A greater than 3-fold increase in SNR compared to conventional imaging using optimized external coil was demonstrated. Simultaneous active tip tracking and catheter visualization was demonstrated. It is feasible to perform 1) active tip tracking, 2) catheter visualization, and 3) high SNR imaging using a single multimode intravascular RF coil that is connected to the external system via a single coaxial cable. Copyright © 2011 Wiley-Liss, Inc.

  15. Visual assessment of brain magnetic resonance imaging detects injury to cognitive regulatory sites in patients with heart failure.

    PubMed

    Pan, Alan; Kumar, Rajesh; Macey, Paul M; Fonarow, Gregg C; Harper, Ronald M; Woo, Mary A

    2013-02-01

    Heart failure (HF) patients exhibit depression and executive function impairments that contribute to HF mortality. Using specialized magnetic resonance imaging (MRI) analysis procedures, brain changes appear in areas regulating these functions (mammillary bodies, hippocampi, and frontal cortex). However, specialized MRI procedures are not part of standard clinical assessment for HF (which is usually a visual evaluation), and it is unclear whether visual MRI examination can detect changes in these structures. Using brain MRI, we visually examined the mammillary bodies and frontal cortex for global and hippocampi for global and regional tissue changes in 17 HF and 50 control subjects. Significantly global changes emerged in the right mammillary body (HF 1.18 ± 1.13 vs control 0.52 ± 0.74; P = .024), right hippocampus (HF 1.53 ± 0.94 vs control 0.80 ± 0.86; P = .005), and left frontal cortex (HF 1.76 ± 1.03 vs control 1.24 ± 0.77; P = .034). Comparison of the visual method with specialized MRI techniques corroborates right hippocampal and left frontal cortical, but not mammillary body, tissue changes. Visual examination of brain MRI can detect damage in HF in areas regulating depression and executive function, including the right hippocampus and left frontal cortex. Visual MRI assessment in HF may facilitate evaluation of injury to these structures and the assessment of the impact of potential treatments for this damage. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Image Statistics and the Representation of Material Properties in the Visual Cortex

    PubMed Central

    Baumgartner, Elisabeth; Gegenfurtner, Karl R.

    2016-01-01

    We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images. PMID:27582714

  17. Image Statistics and the Representation of Material Properties in the Visual Cortex.

    PubMed

    Baumgartner, Elisabeth; Gegenfurtner, Karl R

    2016-01-01

    We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images.

  18. An asymmetrical relationship between verbal and visual thinking: converging evidence from behavior and fMRI

    PubMed Central

    Amit, Elinor; Hoeflin, Caitlyn; Hamzah, Nada; Fedorenko, Evelina

    2017-01-01

    Humans rely on at least two modes of thought: verbal (inner speech) and visual (imagery). Are these modes independent, or does engaging in one entail engaging in the other? To address this question, we performed a behavioral and an fMRI study. In the behavioral experiment, participants received a prompt and were asked to either silently generate a sentence or create a visual image in their mind. They were then asked to judge the vividness of the resulting representation, and of the potentially accompanying representation in the other format. In the fMRI experiment, participants had to recall sentences or images (that they were familiarized with prior to the scanning session) given prompts, or read sentences and view images, in the control, perceptual, condition. An asymmetry was observed between inner speech and visual imagery. In particular, inner speech was engaged to a greater extent during verbal than visual thought, but visual imagery was engaged to a similar extent during both modes of thought. Thus, it appears that people generate more robust verbal representations during deliberate inner speech compared to when their intent is to visualize. However, they generate visual images regardless of whether their intent is to visualize or to think verbally. One possible interpretation of these results is that visual thinking is somehow primary, given the relatively late emergence of verbal abilities during human development and in the evolution of our species. PMID:28323162

  19. An asymmetrical relationship between verbal and visual thinking: Converging evidence from behavior and fMRI.

    PubMed

    Amit, Elinor; Hoeflin, Caitlyn; Hamzah, Nada; Fedorenko, Evelina

    2017-05-15

    Humans rely on at least two modes of thought: verbal (inner speech) and visual (imagery). Are these modes independent, or does engaging in one entail engaging in the other? To address this question, we performed a behavioral and an fMRI study. In the behavioral experiment, participants received a prompt and were asked to either silently generate a sentence or create a visual image in their mind. They were then asked to judge the vividness of the resulting representation, and of the potentially accompanying representation in the other format. In the fMRI experiment, participants had to recall sentences or images (that they were familiarized with prior to the scanning session) given prompts, or read sentences and view images, in the control, perceptual, condition. An asymmetry was observed between inner speech and visual imagery. In particular, inner speech was engaged to a greater extent during verbal than visual thought, but visual imagery was engaged to a similar extent during both modes of thought. Thus, it appears that people generate more robust verbal representations during deliberate inner speech compared to when their intent is to visualize. However, they generate visual images regardless of whether their intent is to visualize or to think verbally. One possible interpretation of these results is that visual thinking is somehow primary, given the relatively late emergence of verbal abilities during human development and in the evolution of our species. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Assessment of gunshot bullet injuries with the use of magnetic resonance imaging.

    PubMed

    Hess, U; Harms, J; Schneider, A; Schleef, M; Ganter, C; Hannig, C

    2000-10-01

    Magnetic resonance imaging (MRI) is rarely used for preoperative assessment of shotgun injuries because of concerns of displacing the possibly ferromagnetic foreign body within the surrounding tissue. A total of 56 different projectiles underwent MRI testing for ferromagnetism and imaging quality in vitro and in pig carcasses with a commercially available 1.5-MRI scan. Image quality was compared with that of computed tomographic scans. Projectiles with ferromagnetic properties can be distinguished easily from nonferromagnetic ones by pretesting the motion of an identical projectile within the MRI coil. When ferromagnetic projectiles were excluded, MRI yielded the more precise images compared with other imaging techniques. Projectile localization and associated soft tissue injuries were visualized without artifacts in all cases. When ferromagnetic foreign bodies are excluded by pretesting their properties within the MRI with a comparative projectile, MRI portends an excellent imaging procedure for assessing the extent of injury and planning the removal by surgery.

  1. Interobserver variability in the radiological assessment of magnetic resonance imaging (MRI) including perfusion MRI in glioblastoma multiforme.

    PubMed

    Kerkhof, M; Hagenbeek, R E; van der Kallen, B F W; Lycklama À Nijeholt, G J; Dirven, L; Taphoorn, M J B; Vos, M J

    2016-10-01

    Conventional magnetic resonance imaging (MRI) has limited value for differentiation of true tumor progression and pseudoprogression in treated glioblastoma multiforme (GBM). Perfusion weighted imaging (PWI) may be helpful in the differentiation of these two phenomena. Here interobserver variability in routine radiological evaluation of GBM patients is assessed using MRI, including PWI. Three experienced neuroradiologists evaluated MR scans of 28 GBM patients during temozolomide chemoradiotherapy at three time points: preoperative (MR1) and postoperative (MR2) MR scan and the follow-up MR scan after three cycles of adjuvant temozolomide (MR3). Tumor size was measured both on T1 post-contrast and T2 weighted images according to the Response Assessment in Neuro-Oncology criteria. PW images of MR3 were evaluated by visual inspection of relative cerebral blood volume (rCBV) color maps and by quantitative rCBV measurements of enhancing areas with highest rCBV. Image interpretability of PW images was also scored. Finally, the neuroradiologists gave a conclusion on tumor status, based on the interpretation of both T1 and T2 weighted images (MR1, MR2 and MR3) in combination with PWI (MR3). Interobserver agreement on visual interpretation of rCBV maps was good (κ = 0.63) but poor on quantitative rCBV measurements and on interpretability of perfusion images (intraclass correlation coefficient 0.37 and κ = 0.23, respectively). Interobserver agreement on the overall conclusion of tumor status was moderate (κ = 0.48). Interobserver agreement on the visual interpretation of PWI color maps was good. However, overall interpretation of MR scans (using both conventional and PW images) showed considerable interobserver variability. Therefore, caution should be applied when interpreting MRI results during chemoradiation therapy. © 2016 EAN.

  2. Visual imagery and functional connectivity in blindness: a single-case study

    PubMed Central

    Boucard, Christine C.; Rauschecker, Josef P.; Neufang, Susanne; Berthele, Achim; Doll, Anselm; Manoliu, Andrej; Riedl, Valentin; Sorg, Christian; Wohlschläger, Afra; Mühlau, Mark

    2016-01-01

    We present a case report on visual brain plasticity after total blindness acquired in adulthood. SH lost her sight when she was 27. Despite having been totally blind for 43 years, she reported to strongly rely on her vivid visual imagery. Three-Tesla magnetic resonance imaging (MRI) of SH and age-matched controls was performed. The MRI sequence included anatomical MRI, resting-state functional MRI, and task-related functional MRI where SH was instructed to imagine colours, faces, and motion. Compared to controls, voxel-based analysis revealed white matter loss along SH's visual pathway as well as grey matter atrophy in the calcarine sulci. Yet we demonstrated activation in visual areas, including V1, using functional MRI. Of the four identified visual resting-state networks, none showed alterations in spatial extent; hence, SH's preserved visual imagery seems to be mediated by intrinsic brain networks of normal extent. Time courses of two of these networks showed increased correlation with that of the inferior posterior default mode network, which may reflect adaptive changes supporting SH's strong internal visual representations. Overall, our findings demonstrate that conscious visual experience is possible even after years of absence of extrinsic input. PMID:25690326

  3. Visual imagery and functional connectivity in blindness: a single-case study.

    PubMed

    Boucard, Christine C; Rauschecker, Josef P; Neufang, Susanne; Berthele, Achim; Doll, Anselm; Manoliu, Andrej; Riedl, Valentin; Sorg, Christian; Wohlschläger, Afra; Mühlau, Mark

    2016-05-01

    We present a case report on visual brain plasticity after total blindness acquired in adulthood. SH lost her sight when she was 27. Despite having been totally blind for 43 years, she reported to strongly rely on her vivid visual imagery. Three-Tesla magnetic resonance imaging (MRI) of SH and age-matched controls was performed. The MRI sequence included anatomical MRI, resting-state functional MRI, and task-related functional MRI where SH was instructed to imagine colours, faces, and motion. Compared to controls, voxel-based analysis revealed white matter loss along SH's visual pathway as well as grey matter atrophy in the calcarine sulci. Yet we demonstrated activation in visual areas, including V1, using functional MRI. Of the four identified visual resting-state networks, none showed alterations in spatial extent; hence, SH's preserved visual imagery seems to be mediated by intrinsic brain networks of normal extent. Time courses of two of these networks showed increased correlation with that of the inferior posterior default mode network, which may reflect adaptive changes supporting SH's strong internal visual representations. Overall, our findings demonstrate that conscious visual experience is possible even after years of absence of extrinsic input.

  4. Creating 3D visualizations of MRI data: A brief guide.

    PubMed

    Madan, Christopher R

    2015-01-01

    While magnetic resonance imaging (MRI) data is itself 3D, it is often difficult to adequately present the results papers and slides in 3D. As a result, findings of MRI studies are often presented in 2D instead. A solution is to create figures that include perspective and can convey 3D information; such figures can sometimes be produced by standard functional magnetic resonance imaging (fMRI) analysis packages and related specialty programs. However, many options cannot provide functionality such as visualizing activation clusters that are both cortical and subcortical (i.e., a 3D glass brain), the production of several statistical maps with an identical perspective in the 3D rendering, or animated renderings. Here I detail an approach for creating 3D visualizations of MRI data that satisfies all of these criteria. Though a 3D 'glass brain' rendering can sometimes be difficult to interpret, they are useful in showing a more overall representation of the results, whereas the traditional slices show a more local view. Combined, presenting both 2D and 3D representations of MR images can provide a more comprehensive view of the study's findings.

  5. Creating 3D visualizations of MRI data: A brief guide

    PubMed Central

    Madan, Christopher R.

    2015-01-01

    While magnetic resonance imaging (MRI) data is itself 3D, it is often difficult to adequately present the results papers and slides in 3D. As a result, findings of MRI studies are often presented in 2D instead. A solution is to create figures that include perspective and can convey 3D information; such figures can sometimes be produced by standard functional magnetic resonance imaging (fMRI) analysis packages and related specialty programs. However, many options cannot provide functionality such as visualizing activation clusters that are both cortical and subcortical (i.e., a 3D glass brain), the production of several statistical maps with an identical perspective in the 3D rendering, or animated renderings. Here I detail an approach for creating 3D visualizations of MRI data that satisfies all of these criteria. Though a 3D ‘glass brain’ rendering can sometimes be difficult to interpret, they are useful in showing a more overall representation of the results, whereas the traditional slices show a more local view. Combined, presenting both 2D and 3D representations of MR images can provide a more comprehensive view of the study’s findings. PMID:26594340

  6. Multi-mode Intravascular RF Coil for MRI-guided Interventions

    PubMed Central

    Kurpad, Krishna N.; Unal, Orhan

    2011-01-01

    Purpose To demonstrate the feasibility of using a single intravascular RF probe connected to the external MRI system via a single coaxial cable to perform active tip tracking and catheter visualization, and high SNR intravascular imaging. Materials and Methods A multi-mode intravascular RF coil was constructed on a 6F balloon catheter and interfaced to a 1.5T MRI scanner via a decoupling circuit. Bench measurements of coil impedances were followed by imaging experiments in saline and phantoms. Results The multi-mode coil behaves as an inductively-coupled transmit coil. Forward looking capability of 6mm is measured. Greater than 3-fold increase in SNR compared to conventional imaging using optimized external coil is demonstrated. Simultaneous active tip tracking and catheter visualization is demonstrated. Conclusions It is feasible to perform 1) active tip tracking, 2) catheter visualization, and 3) high SNR imaging using a single multi-mode intravascular RF coil that is connected to the external system via a single coaxial cable. PMID:21448969

  7. Instrumentation in molecular imaging.

    PubMed

    Wells, R Glenn

    2016-12-01

    In vivo molecular imaging is a challenging task and no single type of imaging system provides an ideal solution. Nuclear medicine techniques like SPECT and PET provide excellent sensitivity but have poor spatial resolution. Optical imaging has excellent sensitivity and spatial resolution, but light photons interact strongly with tissues and so only small animals and targets near the surface can be accurately visualized. CT and MRI have exquisite spatial resolution, but greatly reduced sensitivity. To overcome the limitations of individual modalities, molecular imaging systems often combine individual cameras together, for example, merging nuclear medicine cameras with CT or MRI to allow the visualization of molecular processes with both high sensitivity and high spatial resolution.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, S; Krauss, D; Yan, D

    Purpose: Unlike on the daily CBCT used for the image-guided radiation therapy, the visualization of an implantable metallic fiducial marker on the planning MRI images has been a challenge due to the inherent insensitivity of metal in MRI, and very thin (∼ 1 mm or less) diameter. Here, an MRI technique to visualize a marker used for prostate cancer radiotherapy is reported. Methods: During the MRI acquisitions, a multi-shot turbo spin echo (TSE) technique (TR=3500 ms, TE=8.6 ms, ETL=17, recon voxel=0.42x0.42x3.5 mm3) was acquired in Philips 3T Ingenia together with a T2-weighted multi-shot TSE (TR=5381 ms, TE=110 ms, ETL=17, reconmore » voxel=0.47×0.47×3 mm3) and a balanced turbo field echo (bTFE, flip angle 60, TR=2.76 ms, TE=1.3 ms, 0.85×0.85×3 mm3, NSA=4). In acquiring the MRI to visualize the fiducial marker, a particular emphasis was made to improve the spatial resolution and visibility in the generally dark, inhomogeneous prostate area by adjusting the slice profile ordering and TE values of TSE acquisition (in general, the lower value of TE in TSE acquisition generates a brighter signal but at the cost of high spatial resolution since the k-space, responsible for high spatial resolution, is filled with noisier data). Results: While clearly visible in CT, the marker was not visible in either T2-weighted TSE or bTFE, although the image qualities of both images were superior. In the new TSE acquisition (∼ a proton-density weighted image) adjusted by changing the profile ordering and the TE value, the marker was visible as a negative (but clear) contrast in the magnitude MRI, and as a positive contrast in the imaginary image of the phase-sensitive MRI. Conclusion: A metallic fiducial marker used for image guidance before prostate cancer radiotherapy can be made visible in MRI, which may facilitate more use of MRI in planning and guiding such radiation therapy.« less

  9. Magnetic resonance imaging of the inner ear by using a hybrid radiofrequency coil at 7 T

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Nam; Heo, Phil; Kim, Young-Bo; Han, Gyu-Cheol

    2015-01-01

    Visualization of the membranous structures of the inner ear has been limited to the detection of the normal fluid signal intensity within the bony labyrinth by using magnetic resonance imaging (MRI) equipped with a 1.5 Tesla (T) magnet. High-field (HF) MRI has been available for more than a decade, and numerous studies have documented its significant advantages over conventional MRI with regards to its use in basic scientific research and routine clinical assessments. No previous studies of the inner ear by using HF MRI have been reported, in part because high-quality resolution of mastoid pneumatization is challenging due to artifacts generated in the HF environment and insufficient performance of radiofrequency (RF) coils. Therefore, a hybrid RF coil with integrated circuitry was developed at 7 T and was targeted for anatomical imaging to achieve a high resolution image of the structure of the human inner ear, excluding the bony portion. The inner-ear's structure is composed of soft tissues containing hydrogen ions and includes the membranous labyrinth, endolymphatic space, perilymphatic space, and cochlear-vestibular nerves. Visualization of the inner-ear's anatomy was performed in-vivo with a custom-designed hybrid RF coil and a specific imaging protocol based on an interpolated breath-held examination sequence. The comparative signal intensity value at 30-mm away from the phantom side was 88% higher for the hybrid RF coil and 24% higher for the 8-channel transmit/receive (Tx/Rx) coil than for the commercial birdcage coil. The optimized MRI protocol employed a hybrid RF coil because it enabled high-resolution imaging of the inner-ear's anatomy and accurate mapping of structures including the cochlea and the semicircular canals. These results indicate that 7 T MRI achieves high spatial resolution visualization of the inner-ear's anatomy. Therefore, MRI imaging using a hybrid RF coil at 7 T could provide a powerful tool for clinical investigations of petrous pathologies of the inner ear.

  10. BOLD fMRI and DTI in strabismic amblyopes following occlusion therapy.

    PubMed

    Gupta, Shikha; Kumaran, Senthil S; Saxena, Rohit; Gudwani, Sunita; Menon, Vimala; Sharma, Pradeep

    2016-08-01

    Evaluation of brain cluster activation using the functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) was sought in strabismic amblyopes. In this hospital-based case-control cross-sectional study, fMRI and DTI were conducted in strabismic amblyopes before initiation of any therapy and after visual recovery following the administration of occlusion therapy. FMRI was performed in 10 strabismic amblyopic subjects (baseline group) and in 5 left strabismic amblyopic children post-occlusion therapy after two-line visual improvement. Ten age-matched healthy children with right ocular dominance formed control group. Structural and functional MRI was carried out on 1.5T MR scanner. The visual task consisted of 8 Hz flickering checkerboard with red dot and occasional green dot. Blood-oxygen-level-dependent (BOLD) fMRI was analyzed using statistical parametric mapping and DTI on NordicIce (NordicNeuroLab) softwares. Reduced occipital activation was elicited when viewing with the amblyopic eye in amblyopes. An 'ipsilateral to viewing eye' pattern of calcarine BOLD activation was observed in controls and left amblyopes. Activation of cortical areas associated with visual processing differed in relation to the viewing eye. Following visual recovery on occlusion therapy, enhanced activity in bilateral hemispheres in striate as well as extrastriate regions when viewing with either eye was seen. Improvement in visual acuity following occlusion therapy correlates with hemodynamic activity in amblyopes.

  11. Can the Diagnostics of Triangular Fibrocartilage Complex Lesions Be Improved by MRI-Based Soft-Tissue Reconstruction? An Imaging-Based Workup and Case Presentation.

    PubMed

    Hammer, Niels; Hirschfeld, Ulrich; Strunz, Hendrik; Werner, Michael; Wolfskämpf, Thomas; Löffler, Sabine

    2017-01-01

    Introduction . The triangular fibrocartilage complex (TFCC) provides both mobility and stability of the radiocarpal joint. TFCC lesions are difficult to diagnose due to the complex anatomy. The standard treatment for TFCC lesions is arthroscopy, posing surgery-related risks onto the patients. This feasibility study aimed at developing a workup for soft-tissue reconstruction using clinical imaging, to verify these results in retrospective patient data. Methods . Microcomputed tomography ( μ -CT), 3 T magnetic resonance imaging (MRI), and plastination were used to visualize the TFCC in cadaveric specimens applying segmentation-based 3D reconstruction. This approach further trialed the MRI dataset of a patient with minor radiological TFCC alterations but persistent pain. Results . TFCC reconstruction was impossible using μ -CT only but feasible using MRI, resulting in an appreciation of its substructures, as seen in the plastinates. Applying this approach allowed for visualizing a Palmer 2C lesion in a patient, confirming ex postum the arthroscopy findings, being markedly different from MRI (Palmer 1B). Discussion . This preliminary study showed that image-based TFCC reconstruction may help to identify pathologies invisible in standard MRI. The combined approach of μ -CT, MRI, and plastination allowed for a three-dimensional appreciation of the TFCC. Image quality and time expenditure limit the approach's usefulness as a diagnostic tool.

  12. Can the Diagnostics of Triangular Fibrocartilage Complex Lesions Be Improved by MRI-Based Soft-Tissue Reconstruction? An Imaging-Based Workup and Case Presentation

    PubMed Central

    Hirschfeld, Ulrich; Strunz, Hendrik; Werner, Michael; Wolfskämpf, Thomas; Löffler, Sabine

    2017-01-01

    Introduction. The triangular fibrocartilage complex (TFCC) provides both mobility and stability of the radiocarpal joint. TFCC lesions are difficult to diagnose due to the complex anatomy. The standard treatment for TFCC lesions is arthroscopy, posing surgery-related risks onto the patients. This feasibility study aimed at developing a workup for soft-tissue reconstruction using clinical imaging, to verify these results in retrospective patient data. Methods. Microcomputed tomography (μ-CT), 3 T magnetic resonance imaging (MRI), and plastination were used to visualize the TFCC in cadaveric specimens applying segmentation-based 3D reconstruction. This approach further trialed the MRI dataset of a patient with minor radiological TFCC alterations but persistent pain. Results. TFCC reconstruction was impossible using μ-CT only but feasible using MRI, resulting in an appreciation of its substructures, as seen in the plastinates. Applying this approach allowed for visualizing a Palmer 2C lesion in a patient, confirming ex postum the arthroscopy findings, being markedly different from MRI (Palmer 1B). Discussion. This preliminary study showed that image-based TFCC reconstruction may help to identify pathologies invisible in standard MRI. The combined approach of μ-CT, MRI, and plastination allowed for a three-dimensional appreciation of the TFCC. Image quality and time expenditure limit the approach's usefulness as a diagnostic tool. PMID:28246600

  13. Monkey cortex through fMRI glasses

    PubMed Central

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A.

    2015-01-01

    In 1998 several groups reported the feasibility of functional magnetic resonance imaging (fMRI) experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category and feature selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. PMID:25102559

  14. MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement.

    PubMed

    Fischer, Gregory S; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Dimaio, Simon P; Tempany, Clare M; Hata, Nobuhiko; Fichtinger, Gabor

    2008-06-01

    Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system.

  15. Strain Rate Tensor Estimation in Cine Cardiac MRI Based on Elastic Image Registration

    NASA Astrophysics Data System (ADS)

    Sánchez-Ferrero, Gonzalo Vegas; Vega, Antonio Tristán; Grande, Lucilio Cordero; de La Higuera, Pablo Casaseca; Fernández, Santiago Aja; Fernández, Marcos Martín; López, Carlos Alberola

    In this work we propose an alternative method to estimate and visualize the Strain Rate Tensor (SRT) in Magnetic Resonance Images (MRI) when Phase Contrast MRI (PCMRI) and Tagged MRI (TMRI) are not available. This alternative is based on image processing techniques. Concretely, image registration algorithms are used to estimate the movement of the myocardium at each point. Additionally, a consistency checking method is presented to validate the accuracy of the estimates when no golden standard is available. Results prove that the consistency checking method provides an upper bound of the mean squared error of the estimate. Our experiments with real data show that the registration algorithm provides a useful deformation field to estimate the SRT fields. A classification between regional normal and dysfunctional contraction patterns, as compared with experts diagnosis, points out that the parameters extracted from the estimated SRT can represent these patterns. Additionally, a scheme for visualizing and analyzing the local behavior of the SRT field is presented.

  16. Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma.

    PubMed

    Hu, Leland S; Ning, Shuluo; Eschbacher, Jennifer M; Gaw, Nathan; Dueck, Amylou C; Smith, Kris A; Nakaji, Peter; Plasencia, Jonathan; Ranjbar, Sara; Price, Stephen J; Tran, Nhan; Loftus, Joseph; Jenkins, Robert; O'Neill, Brian P; Elmquist, William; Baxter, Leslie C; Gao, Fei; Frakes, David; Karis, John P; Zwart, Christine; Swanson, Kristin R; Sarkaria, Jann; Wu, Teresa; Mitchell, J Ross; Li, Jing

    2015-01-01

    Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). Multi-parametric MRI and texture analysis can help characterize and visualize GBM's spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.

  17. Feasibility of imaging superficial palmar arch using micro-ultrasound, 7T and 3T magnetic resonance imaging.

    PubMed

    Pruzan, Alison N; Kaufman, Audrey E; Calcagno, Claudia; Zhou, Yu; Fayad, Zahi A; Mani, Venkatesh

    2017-02-28

    To demonstrate feasibility of vessel wall imaging of the superficial palmar arch using high frequency micro-ultrasound, 7T and 3T magnetic resonance imaging (MRI). Four subjects (ages 22-50 years) were scanned on a micro-ultrasound system with a 45-MHz transducer (Vevo 2100, VisualSonics). Subjects' hands were then imaged on a 3T clinical MR scanner (Siemens Biograph MMR) using an 8-channel special purpose phased array carotid coil. Lastly, subjects' hands were imaged on a 7T clinical MR scanner (Siemens Magnetom 7T Whole Body Scanner) using a custom built 8-channel transmit receive carotid coil. All three imaging modalities were subjectively analyzed for image quality and visualization of the vessel wall. Results of this very preliminary study indicated that vessel wall imaging of the superficial palmar arch was feasible with a whole body 7T and 3T MRI in comparison with micro-ultrasound. Subjective analysis of image quality (1-5 scale, 1: poorest, 5: best) from B mode, ultrasound, 3T SPACE MRI and 7T SPACE MRI indicated that the image quality obtained at 7T was superior to both 3T MRI and micro-ultrasound. The 3D SPACE sequence at both 7T and 3T MRI with isotropic voxels allowed for multi-planar reformatting of images and allowed for less operator dependent results as compared to high frequency micro-ultrasound imaging. Although quantitative analysis revealed that there was no significant difference between the three methods, the 7T Tesla trended to have better visibility of the vessel and its wall. Imaging of smaller arteries at the 7T is feasible for evaluating atherosclerosis burden and may be of clinical relevance in multiple diseases.

  18. Evaluation of Blalock-Taussig shunts in newborns: value of oblique MRI planes.

    PubMed

    Kastler, B; Livolsi, A; Germain, P; Zöllner, G; Dietemann, J L

    1991-01-01

    Eight infants with systemic-pulmonary Blalock-Taussig shunts were evaluated by spin-echo ECG-gated MRI. Contrary to Echocardiography, MRI using coronal oblique projections successfully visualized all palliative shunts entirely in one single plane (including one carried out on a right aberrant subclavian artery). MRI allowed assessment of size, course and patency of the shunt, including pulmonary and subclavian insertion. The proximal portion of the pulmonary and subclavian arteries were also visualized. We conclude that MRI with axial scans completed by coronal oblique planes is a promising, non invasive method for imaging the anatomical features of Blalock-Taussig shunts.

  19. The Utility of Magnetic Resonance Imaging in Assessing Patients With Pituitary Tumors Compressing the Anterior Visual Pathway.

    PubMed

    Ryu, Won Hyung A; Starreveld, Yves; Burton, Jodie M; Liu, Junjie; Costello, Fiona

    2017-09-01

    Pituitary tumors are one of the most common types of intracranial neoplasms, and can cause progressive visual loss. An ongoing challenge in the management of patients with pituitary tumors is the cost, availability, and reliability of current magnetic resonance imaging (MRI) techniques to capture clinically significant incremental tumor growth. The purpose of this study was to evaluate the various MRI-based structural analyses and to explore the relationship between measures of structure and function in the afferent visual pathway of patients with pituitary tumors. We performed a critical review of literature on MRI-based structural analyses of pituitary adenomas using PubMed, Embase, Cochrane Library, and Google Scholar. In addition, preoperative structural characteristics of the optic apparatus, optic nerve compression, and optic chiasm elevation identified as important in the literature review, were examined in 18 of our patients from October 2010 to January 2014. In our review of literature, a total of 443 citations were obtained from our search strategy and review of bibliographies. Eight of these studies met inclusion/exclusion criteria and were retrieved for critical review. Of the 8 included studies, only 2 studies examined the relationship between MRI-based structural measurements and postoperative visual recovery. In our small case-series, MRI analysis of chiasm elevation, severity of optic nerve compression, chiasm position, height of chiasm, tumor height, and tumor volume failed to differentiate patients with postoperative visual dysfunction vs those with visual recovery (P > 0.05). Although MRI-based structural analysis is an important and useful tool for managing patients with pituitary tumors, there are limited objective measures shown to be predictive of postoperative visual recovery.

  20. Human immunodeficiency virus atropy induces modification of subcutaneous adipose tissue architecture: in vivo visualization by high-resolution magnetic resonance imaging.

    PubMed

    Josse, G; Gensanne, D; Aquilina, C; Bernard, J; Saint-Martory, C; Lagarde, J M; Schmitt, A M

    2009-04-01

    Human immunodeficiency virus (HIV) infection generally induces lipodystrophy. For targeted treatment a better understanding of its development is necessary. The utility of high-resolution magnetic resonance imaging (MRI) is explored. The present study presents a way to visualize the adipose tissue architecture in vivo and to inspect modifications associated with the atrophy. High-resolution MRI scans with surface coils were performed on the calf and at the lumbar region of three groups of patients: HIV patients with lipoatrophy, HIV patients without lipoatrophy and healthy volunteers. All patients underwent a clinical examination. In addition, dual energy X-ray absorptiometry (DEXA) measurements were taken. On the MRI scans adipose tissue thickness and adipose nodule size were measured. Results High-resolution MRI enabled identification of a clear disorganization of adipose tissue in patients with lipoatrophy. In addition, these patients presented a very small adipose tissue thickness on the calf and a very small nodule size. led to the hypothesis that adipose tissue disorganization appears before changes in DEXA measurements or clinically visible modifications. High-resolution MRI enabled visualization in vivo of precise changes in tissue organization due to HIV lipoatrophy. This imaging technique should be very informative for better monitoring of the atrophy.

  1. MRI Segmentation of the Human Brain: Challenges, Methods, and Applications

    PubMed Central

    Despotović, Ivana

    2015-01-01

    Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain's anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations. To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain MRI segmentation. PMID:25945121

  2. Enhancement of Temporal Resolution and BOLD Sensitivity in Real-Time fMRI using Multi-Slab Echo-Volumar Imaging

    PubMed Central

    Posse, Stefan; Ackley, Elena; Mutihac, Radu; Rick, Jochen; Shane, Matthew; Murray-Krezan, Cristina; Zaitsev, Maxim; Speck, Oliver

    2012-01-01

    In this study, a new approach to high-speed fMRI using multi-slab echo-volumar imaging (EVI) is developed that minimizes geometrical image distortion and spatial blurring, and enables nonaliased sampling of physiological signal fluctuation to increase BOLD sensitivity compared to conventional echo-planar imaging (EPI). Real-time fMRI using whole brain 4-slab EVI with 286 ms temporal resolution (4 mm isotropic voxel size) and partial brain 2-slab EVI with 136 ms temporal resolution (4×4×6 mm3 voxel size) was performed on a clinical 3 Tesla MRI scanner equipped with 12-channel head coil. Four-slab EVI of visual and motor tasks significantly increased mean (visual: 96%, motor: 66%) and maximum t-score (visual: 263%, motor: 124%) and mean (visual: 59%, motor: 131%) and maximum (visual: 29%, motor: 67%) BOLD signal amplitude compared with EPI. Time domain moving average filtering (2 s width) to suppress physiological noise from cardiac and respiratory fluctuations further improved mean (visual: 196%, motor: 140%) and maximum (visual: 384%, motor: 200%) t-scores and increased extents of activation (visual: 73%, motor: 70%) compared to EPI. Similar sensitivity enhancement, which is attributed to high sampling rate at only moderately reduced temporal signal-to-noise ratio (mean: − 52%) and longer sampling of the BOLD effect in the echo-time domain compared to EPI, was measured in auditory cortex. Two-slab EVI further improved temporal resolution for measuring task-related activation and enabled mapping of five major resting state networks (RSNs) in individual subjects in 5 min scans. The bilateral sensorimotor, the default mode and the occipital RSNs were detectable in time frames as short as 75 s. In conclusion, the high sampling rate of real-time multi-slab EVI significantly improves sensitivity for studying the temporal dynamics of hemodynamic responses and for characterizing functional networks at high field strength in short measurement times. PMID:22398395

  3. Magnetic resonance imaging (MRI) of PEM dehydration and gas manifold flooding during continuous fuel cell operation

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Viswanathan, Vilayanur V.; Majors, Paul D.; Wang, Li-Qiong; Rieke, Peter C.

    Magnetic resonance imaging (MRI) was employed for visualizing water inside a proton exchange membrane (PEM) fuel cell during 11.4 h of continuous operation with a constant load. Two-dimensional images acquired every 128 s revealed the formation of a dehydration front that propagated slowly over the surface of the fuel cell membrane-starting from gas inlets and progressing toward gas outlets. After traversing the entire PEM surface, channels in the gas manifold began to flood on the cathode side. To establish a qualitative understanding of these observations, acquired images were correlated to the current output and the operating characteristics of the fuel cell. Results demonstrate the power of MRI for visualizing changing water distributions during PEM fuel cell operation, and highlight its potential utility for studying the causes of cell failure and/or strategies of water management.

  4. MRI of the hip at 7T: feasibility of bone microarchitecture, high-resolution cartilage, and clinical imaging.

    PubMed

    Chang, Gregory; Deniz, Cem M; Honig, Stephen; Egol, Kenneth; Regatte, Ravinder R; Zhu, Yudong; Sodickson, Daniel K; Brown, Ryan

    2014-06-01

    To demonstrate the feasibility of performing bone microarchitecture, high-resolution cartilage, and clinical imaging of the hip at 7T. This study had Institutional Review Board approval. Using an 8-channel coil constructed in-house, we imaged the hips of 15 subjects on a 7T magnetic resonance imaging (MRI) scanner. We applied: 1) a T1-weighted 3D fast low angle shot (3D FLASH) sequence (0.23 × 0.23 × 1-1.5 mm(3) ) for bone microarchitecture imaging; 2) T1-weighted 3D FLASH (water excitation) and volumetric interpolated breath-hold examination (VIBE) sequences (0.23 × 0.23 × 1.5 mm(3) ) with saturation or inversion recovery-based fat suppression for cartilage imaging; 3) 2D intermediate-weighted fast spin-echo (FSE) sequences without and with fat saturation (0.27 × 0.27 × 2 mm) for clinical imaging. Bone microarchitecture images allowed visualization of individual trabeculae within the proximal femur. Cartilage was well visualized and fat was well suppressed on FLASH and VIBE sequences. FSE sequences allowed visualization of cartilage, the labrum (including cartilage and labral pathology), joint capsule, and tendons. This is the first study to demonstrate the feasibility of performing a clinically comprehensive hip MRI protocol at 7T, including high-resolution imaging of bone microarchitecture and cartilage, as well as clinical imaging. Copyright © 2013 Wiley Periodicals, Inc.

  5. Simultaneous Multi-Slice fMRI using Spiral Trajectories

    PubMed Central

    Zahneisen, Benjamin; Poser, Benedikt A.; Ernst, Thomas; Stenger, V. Andrew

    2014-01-01

    Parallel imaging methods using multi-coil receiver arrays have been shown to be effective for increasing MRI acquisition speed. However parallel imaging methods for fMRI with 2D sequences show only limited improvements in temporal resolution because of the long echo times needed for BOLD contrast. Recently, Simultaneous Multi-Slice (SMS) imaging techniques have been shown to increase fMRI temporal resolution by factors of four and higher. In SMS fMRI multiple slices can be acquired simultaneously using Echo Planar Imaging (EPI) and the overlapping slices are un-aliased using a parallel imaging reconstruction with multiple receivers. The slice separation can be further improved using the “blipped-CAIPI” EPI sequence that provides a more efficient sampling of the SMS 3D k-space. In this paper a blipped-spiral SMS sequence for ultra-fast fMRI is presented. The blipped-spiral sequence combines the sampling efficiency of spiral trajectories with the SMS encoding concept used in blipped-CAIPI EPI. We show that blipped spiral acquisition can achieve almost whole brain coverage at 3 mm isotropic resolution in 168 ms. It is also demonstrated that the high temporal resolution allows for dynamic BOLD lag time measurement using visual/motor and retinotopic mapping paradigms. The local BOLD lag time within the visual cortex following the retinotopic mapping stimulation of expanding flickering rings is directly measured and easily translated into an eccentricity map of the cortex. PMID:24518259

  6. A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T.

    PubMed

    Sengupta, Shubharthi; Roebroeck, Alard; Kemper, Valentin G; Poser, Benedikt A; Zimmermann, Jan; Goebel, Rainer; Adriany, Gregor

    2016-01-01

    To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using [Formula: see text] mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was ∼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Kenji; Fuma, Kazuya; Tabata, Kaori

    Magnetic resonance imaging (MRI) is a minimally invasive way to provide high spatial resolution tomograms. However, MRI has been considered to be useless for gene expression imaging compared to optical imaging. In this study, we used a ferritin reporter, binding with biogenic iron, to make it a powerful tool for gene expression imaging in MRI studies. GL261 mouse glioma cells were over-expressed with dual-reporter ferritin-DsRed under {beta}-actin promoter, then gene expression was observed by optical imaging and MRI in a brain tumor model. GL261 cells expressing ferritin-DsRed fusion protein showed enhanced visualizing effect by reducing T2-weighted signal intensity for inmore » vitro and in vivo MRI studies, as well as DsRed fluorescence for optical imaging. Furthermore, a higher contrast was achieved on T2-weighted images when permeating the plasma membrane of ferritin-DsRed-expressing GL261. Thus, a ferritin expression vector can be used as an MRI reporter to monitor in vivo gene expression.« less

  8. Fast periodic stimulation (FPS): a highly effective approach in fMRI brain mapping.

    PubMed

    Gao, Xiaoqing; Gentile, Francesco; Rossion, Bruno

    2018-06-01

    Defining the neural basis of perceptual categorization in a rapidly changing natural environment with low-temporal resolution methods such as functional magnetic resonance imaging (fMRI) is challenging. Here, we present a novel fast periodic stimulation (FPS)-fMRI approach to define face-selective brain regions with natural images. Human observers are presented with a dynamic stream of widely variable natural object images alternating at a fast rate (6 images/s). Every 9 s, a short burst of variable face images contrasting with object images in pairs induces an objective face-selective neural response at 0.111 Hz. A model-free Fourier analysis achieves a twofold increase in signal-to-noise ratio compared to a conventional block-design approach with identical stimuli and scanning duration, allowing to derive a comprehensive map of face-selective areas in the ventral occipito-temporal cortex, including the anterior temporal lobe (ATL), in all individual brains. Critically, periodicity of the desired category contrast and random variability among widely diverse images effectively eliminates the contribution of low-level visual cues, and lead to the highest values (80-90%) of test-retest reliability in the spatial activation map yet reported in imaging higher level visual functions. FPS-fMRI opens a new avenue for understanding brain function with low-temporal resolution methods.

  9. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-01-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG–fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50–80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG–fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099

  10. Ultrafast dynamic contrast-enhanced mri of the breast using compressed sensing: breast cancer diagnosis based on separate visualization of breast arteries and veins.

    PubMed

    Onishi, Natsuko; Kataoka, Masako; Kanao, Shotaro; Sagawa, Hajime; Iima, Mami; Nickel, Marcel Dominik; Toi, Masakazu; Togashi, Kaori

    2018-01-01

    To evaluate the feasibility of ultrafast dynamic contrast-enhanced (UF-DCE) magnetic resonance imaging (MRI) with compressed sensing (CS) for the separate identification of breast arteries/veins and perform temporal evaluations of breast arteries and veins with a focus on the association with ipsilateral cancers. Our Institutional Review Board approved this study with retrospective design. Twenty-five female patients who underwent UF-DCE MRI at 3T were included. UF-DCE MRI consisting of 20 continuous frames was acquired using a prototype 3D gradient-echo volumetric interpolated breath-hold sequence including a CS reconstruction: temporal resolution, 3.65 sec/frame; spatial resolution, 0.9 × 1.3 × 2.5 mm. Two readers analyzed 19 maximum intensity projection images reconstructed from subtracted images, separately identified breast arteries/veins and the earliest frame in which they were respectively visualized, and calculated the time interval between arterial and venous visualization (A-V interval) for each breast. In total, 49 breasts including 31 lesions (breast cancer, 16; benign lesion, 15) were identified. In 39 of the 49 breasts (breasts with cancers, 16; breasts with benign lesions, 10; breasts with no lesions, 13), both breast arteries and veins were separately identified. The A-V intervals for breasts with cancers were significantly shorter than those for breasts with benign lesions (P = 0.043) and no lesions (P = 0.007). UF-DCE MRI using CS enables the separate identification of breast arteries/veins. Temporal evaluations calculating the time interval between arterial and venous visualization might be helpful in the differentiation of ipsilateral breast cancers from benign lesions. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:97-104. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Longer-Term Investigation of the Value of 18F-FDG-PET and Magnetic Resonance Imaging for Predicting the Conversion of Mild Cognitive Impairment to Alzheimer's Disease: A Multicenter Study.

    PubMed

    Inui, Yoshitaka; Ito, Kengo; Kato, Takashi

    2017-01-01

    The value of fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and magnetic resonance imaging (MRI) for predicting conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD) in longer-term is unclear. To evaluate longer-term prediction of MCI to AD conversion using 18F-FDG-PET and MRI in a multicenter study. One-hundred and fourteen patients with MCI were followed for 5 years. They underwent clinical and neuropsychological examinations, 18F-FDG-PET, and MRI at baseline. PET images were visually classified into predefined dementia patterns. PET scores were calculated as a semi quantitative index. For structural MRI, z-scores in medial temporal area were calculated by automated volume-based morphometry (VBM). Overall, 72% patients with amnestic MCI progressed to AD during the 5-year follow-up. The diagnostic accuracy of PET scores over 5 years was 60% with 53% sensitivity and 84% specificity. Visual interpretation of PET images predicted conversion to AD with an overall 82% diagnostic accuracy, 94% sensitivity, and 53% specificity. The accuracy of VBM analysis presented little fluctuation through 5 years and it was highest (73%) at the 5-year follow-up, with 79% sensitivity and 63% specificity. The best performance (87.9% diagnostic accuracy, 89.8% sensitivity, and 82.4% specificity) was with a combination identified using multivariate logistic regression analysis that included PET visual interpretation, educational level, and neuropsychological tests as predictors. 18F-FDG-PET visual assessment showed high performance for predicting conversion to AD from MCI, particularly in combination with neuropsychological tests. PET scores showed high diagnostic specificity. Structural MRI focused on the medial temporal area showed stable predictive value throughout the 5-year course.

  12. Visual stimulus presentation using fiber optics in the MRI scanner.

    PubMed

    Huang, Ruey-Song; Sereno, Martin I

    2008-03-30

    Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.

  13. Magnetic resonance imaging of optic nerve

    PubMed Central

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822

  14. Pharmacological imaging as a tool to visualise dopaminergic neurotoxicity.

    PubMed

    Schrantee, A; Reneman, L

    2014-09-01

    Dopamine abnormalities underlie a wide variety of psychopathologies, including ADHD and schizophrenia. A new imaging technique, pharmacological magnetic resonance imaging (phMRI), is a promising non-invasive technique to visualize the dopaminergic system in the brain. In this review we explore the clinical potential of phMRI in detecting dopamine dysfunction or neurotoxicity, assess its strengths and weaknesses and identify directions for future research. Preclinically, phMRI is able to detect severe dopaminergic abnormalities quite similar to conventional techniques such as PET and SPECT. phMRI benefits from its high spatial resolution and the possibility to visualize both local and downstream effects of dopaminergic neurotransmission. In addition, it allows for repeated measurements and assessments in vulnerable populations. The major challenge is the complex interpretation of phMRI results. Future studies in patients with dopaminergic abnormalities need to confirm the currently reviewed preclinical findings to validate the technique in a clinical setting. Eventually, based on the current review we expect that phMRI can be of use in a clinical setting involving vulnerable populations (such as children and adolescents) for diagnosis and monitoring treatment efficacy. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement

    PubMed Central

    Fischer, Gregory S.; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; DiMaio, Simon P.; Tempany, Clare M.; Hata, Nobuhiko; Fichtinger, Gabor

    2010-01-01

    Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system. PMID:21057608

  16. Ex vivo MRI evaluation of breast tumors: a novel tool for verifying resection of nonpalpable only MRI detected lesions.

    PubMed

    Agresti, Roberto; Trecate, Giovanna; Ferraris, Cristina; Valeri, Barbara; Maugeri, Ilaria; Pellitteri, Cristina; Martelli, Gabriele; Migliavacca, Silvana; Carcangiu, Maria Luisa; Bohm, Silvia; Maffioli, Lorenzo; Vergnaghi, Daniele; Panizza, Pietro

    2013-01-01

    A fundamental question in surgery of only magnetic resonance imaging (MRI)-detected breast lesions is to ensure their removal when they are not palpable by clinical examination and surgical exploration. This is especially relevant in the case of small tumors, carcinoma in situ or lobular carcinoma. Thirty-nine patients were enrolled in the study, 21 patients with breast lesions detected by both conventional imaging and breast MRI (bMRI) and 18 patients with bMRI findings only. Preoperative bMRI allowed staging the disease and localizing the lesion. In the operating theater, contrast medium was injected 1 minute before skin incision. After removal, surgical specimens were submitted to ex vivo MRI, performed using a dedicated surface coil and Spair inversion recovery sequences for suppression of fat signal intensity. All MRI enhancing lesions were completely included within the surgical specimen and visualized by ex vivo MRI. In the first 21 patients, bMRI was able to visualize branching margins or satellite nodules around the core lesion, and allowed for better staging of the surrounding in situ carcinoma; in the last 18 patients, eight of whom were breast cancer type 1 susceptibility protein (BRCA) mutation carriers, bMRI identified 12 malignant tumors, otherwise undetectable, that were all visualized by ex vivo MRI. This is the first description of a procedure that re-enhances breast lesions within a surgical specimen, demonstrating the surgical removal of nonpalpable breast lesions diagnosed only with bMRI. This new strategy reproduces the morphology and the entire extension of the primary lesion on the specimen, with potentially better local surgical control, reducing additional unplanned surgery. © 2013 Wiley Periodicals, Inc.

  17. Transferring cognitive tasks between brain imaging modalities: implications for task design and results interpretation in FMRI studies.

    PubMed

    Warbrick, Tracy; Reske, Martina; Shah, N Jon

    2014-09-22

    As cognitive neuroscience methods develop, established experimental tasks are used with emerging brain imaging modalities. Here transferring a paradigm (the visual oddball task) with a long history of behavioral and electroencephalography (EEG) experiments to a functional magnetic resonance imaging (fMRI) experiment is considered. The aims of this paper are to briefly describe fMRI and when its use is appropriate in cognitive neuroscience; illustrate how task design can influence the results of an fMRI experiment, particularly when that task is borrowed from another imaging modality; explain the practical aspects of performing an fMRI experiment. It is demonstrated that manipulating the task demands in the visual oddball task results in different patterns of blood oxygen level dependent (BOLD) activation. The nature of the fMRI BOLD measure means that many brain regions are found to be active in a particular task. Determining the functions of these areas of activation is very much dependent on task design and analysis. The complex nature of many fMRI tasks means that the details of the task and its requirements need careful consideration when interpreting data. The data show that this is particularly important in those tasks relying on a motor response as well as cognitive elements and that covert and overt responses should be considered where possible. Furthermore, the data show that transferring an EEG paradigm to an fMRI experiment needs careful consideration and it cannot be assumed that the same paradigm will work equally well across imaging modalities. It is therefore recommended that the design of an fMRI study is pilot tested behaviorally to establish the effects of interest and then pilot tested in the fMRI environment to ensure appropriate design, implementation and analysis for the effects of interest.

  18. Functional Imaging of Audio-Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    PubMed

    Rinne, Teemu; Muers, Ross S; Salo, Emma; Slater, Heather; Petkov, Christopher I

    2017-06-01

    The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio-visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio-visual selective attention modulates the primate brain, identify sources for "lost" attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. © The Author 2017. Published by Oxford University Press.

  19. Functional Imaging of Audio–Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    PubMed Central

    Muers, Ross S.; Salo, Emma; Slater, Heather; Petkov, Christopher I.

    2017-01-01

    Abstract The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio–visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio–visual selective attention modulates the primate brain, identify sources for “lost” attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. PMID:28419201

  20. Local contrast-enhanced MR images via high dynamic range processing.

    PubMed

    Chandra, Shekhar S; Engstrom, Craig; Fripp, Jurgen; Neubert, Ales; Jin, Jin; Walker, Duncan; Salvado, Olivier; Ho, Charles; Crozier, Stuart

    2018-09-01

    To develop a local contrast-enhancing and feature-preserving high dynamic range (HDR) image processing algorithm for multichannel and multisequence MR images of multiple body regions and tissues, and to evaluate its performance for structure visualization, bias field (correction) mitigation, and automated tissue segmentation. A multiscale-shape and detail-enhancement HDR-MRI algorithm is applied to data sets of multichannel and multisequence MR images of the brain, knee, breast, and hip. In multisequence 3T hip images, agreement between automatic cartilage segmentations and corresponding synthesized HDR-MRI series were computed for mean voxel overlap established from manual segmentations for a series of cases. Qualitative comparisons between the developed HDR-MRI and standard synthesis methods were performed on multichannel 7T brain and knee data, and multisequence 3T breast and knee data. The synthesized HDR-MRI series provided excellent enhancement of fine-scale structure from multiple scales and contrasts, while substantially reducing bias field effects in 7T brain gradient echo, T 1 and T 2 breast images and 7T knee multichannel images. Evaluation of the HDR-MRI approach on 3T hip multisequence images showed superior outcomes for automatic cartilage segmentations with respect to manual segmentation, particularly around regions with hyperintense synovial fluid, across a set of 3D sequences. The successful combination of multichannel/sequence MR images into a single-fused HDR-MR image format provided consolidated visualization of tissues within 1 omnibus image, enhanced definition of thin, complex anatomical structures in the presence of variable or hyperintense signals, and improved tissue (cartilage) segmentation outcomes. © 2018 International Society for Magnetic Resonance in Medicine.

  1. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhbardeh, Alireza; Jacobs, Michael A.; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

    2012-04-15

    Purpose: Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), andmore » diffusion maps (DfM), to perform a comparative performance analysis. Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B{sub 1} inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions. Results: The NLDR-based hybrid approach was able to define and segment both synthetic and clinical data. In the synthetic data, the authors demonstrated the performance of the NLDR method compared with conventional linear DR methods. The NLDR approach enabled successful segmentation of the structures, whereas, in most cases, PCA and MDS failed. The NLDR approach was able to segment different breast tissue types with a high accuracy and the embedded image of the breast MRI data demonstrated fuzzy boundaries between the different types of breast tissue, i.e., fatty, glandular, and tissue with lesions (>86%). Conclusions: The proposed hybrid NLDR methods were able to segment clinical breast data with a high accuracy and construct an embedded image that visualized the contribution of different radiological parameters.« less

  2. Diagnostic Performance of a Rapid Magnetic Resonance Imaging Method of Measuring Hepatic Steatosis

    PubMed Central

    House, Michael J.; Gan, Eng K.; Adams, Leon A.; Ayonrinde, Oyekoya T.; Bangma, Sander J.; Bhathal, Prithi S.; Olynyk, John K.; St. Pierre, Tim G.

    2013-01-01

    Objectives Hepatic steatosis is associated with an increased risk of developing serious liver disease and other clinical sequelae of the metabolic syndrome. However, visual estimates of steatosis from histological sections of biopsy samples are subjective and reliant on an invasive procedure with associated risks. The aim of this study was to test the ability of a rapid, routinely available, magnetic resonance imaging (MRI) method to diagnose clinically relevant grades of hepatic steatosis in a cohort of patients with diverse liver diseases. Materials and Methods Fifty-nine patients with a range of liver diseases underwent liver biopsy and MRI. Hepatic steatosis was quantified firstly using an opposed-phase, in-phase gradient echo, single breath-hold MRI methodology and secondly, using liver biopsy with visual estimation by a histopathologist and by computer-assisted morphometric image analysis. The area under the receiver operating characteristic (ROC) curve was used to assess the diagnostic performance of the MRI method against the biopsy observations. Results The MRI approach had high sensitivity and specificity at all hepatic steatosis thresholds. Areas under ROC curves were 0.962, 0.993, and 0.972 at thresholds of 5%, 33%, and 66% liver fat, respectively. MRI measurements were strongly associated with visual (r2 = 0.83) and computer-assisted morphometric (r2 = 0.84) estimates of hepatic steatosis from histological specimens. Conclusions This MRI approach, using a conventional, rapid, gradient echo method, has high sensitivity and specificity for diagnosing liver fat at all grades of steatosis in a cohort with a range of liver diseases. PMID:23555650

  3. Cortical phase changes in Alzheimer's disease at 7T MRI: a novel imaging marker.

    PubMed

    van Rooden, Sanneke; Versluis, Maarten J; Liem, Michael K; Milles, Julien; Maier, Andrea B; Oleksik, Ania M; Webb, Andrew G; van Buchem, Mark A; van der Grond, Jeroen

    2014-01-01

    Postmortem studies have indicated the potential of high-field magnetic resonance imaging (MRI) to visualize amyloid depositions in the cerebral cortex. The aim of this study is to test this hypothesis in patients with Alzheimer's disease (AD). T2*-weighted MRI was performed in 16 AD patients and 15 control subjects. All magnetic resonance images were scored qualitatively by visual assessment, and quantitatively by measuring phase shifts in the cortical gray matter and hippocampus. Statistical analysis was performed to assess differences between groups. Patients with AD demonstrated an increased phase shift in the cortex in the temporoparietal, frontal, and parietal regions (P < .005), and this was associated with individual Mini-Mental State Examination scores (r = -0.54, P < .05). Increased cortical phase shift in AD patients demonstrated on 7-tesla T2*-weighted MRI is a potential new biomarker for AD, which may reflect amyloid pathology in the early stages. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  4. In-situ visual observation for the formation and dissociation of methane hydrates in porous media by magnetic resonance imaging.

    PubMed

    Zhao, Jiafei; Lv, Qin; Li, Yanghui; Yang, Mingjun; Liu, Weiguo; Yao, Lei; Wang, Shenglong; Zhang, Yi; Song, Yongchen

    2015-05-01

    In this work, magnetic resonance imaging (MRI) was employed to observe the in-situ formation and dissociation of methane hydrates in porous media. Methane hydrate was formed in a high-pressure cell with controlled temperature, and then the hydrate was dissociated by thermal injection. The process was photographed by the MRI, and the pressure was recorded. The images confirmed that the direct visual observation was achieved; these were then employed to provide detailed information of the nucleation, growth, and decomposition of the hydrate. Moreover, the saturation of methane hydrate during the dissociation was obtained from the MRI intensity data. Our results showed that the hydrate saturation initially decreased rapidly, and then slowed down; this finding is in line with predictions based only on pressure. The study clearly showed that MRI is a useful technique to investigate the process of methane hydrate formation and dissociation in porous media. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Is Broca's Area Involved in the Processing of Passive Sentences? An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Yokoyama, Satoru; Watanabe, Jobu; Iwata, Kazuki; Ikuta, Naho; Haji, Tomoki; Usui, Nobuo; Taira, Masato; Miyamoto, Tadao; Nakamura, Wataru; Sato, Shigeru; Horie, Kaoru; Kawashima, Ryuta

    2007-01-01

    We used functional magnetic resonance imaging (fMRI) to investigate whether activation in Broca's area is greater during the processing of passive versus active sentences in the brains of healthy subjects. Twenty Japanese native speakers performed a visual sentence comprehension task in which they were asked to read a visually presented sentence…

  6. Direct visualization of in vitro drug mobilization from Lescol XL tablets using two-dimensional (19)F and (1)H magnetic resonance imaging.

    PubMed

    Chen, Chen; Gladden, Lynn F; Mantle, Michael D

    2014-02-03

    This article reports the application of in vitro multinuclear ((19)F and (1)H) two-dimensional magnetic resonance imaging (MRI) to study both dissolution media ingress and drug egress from a commercial Lescol XL extended release tablet in a United States Pharmacopeia Type IV (USP-IV) dissolution cell under pharmacopoeial conditions. Noninvasive spatial maps of tablet swelling and dissolution, as well as the mobilization and distribution of the drug are quantified and visualized. Two-dimensional active pharmaceutical ingredient (API) mobilization and distribution maps were obtained via (19)F MRI. (19)F API maps were coregistered with (1)H T2-relaxation time maps enabling the simultaneous visualization of drug distribution and gel layer dynamics within the swollen tablet. The behavior of the MRI data is also discussed in terms of its relationship to the UV drug release behavior.

  7. [11C]Flumazenil PET in patients with epilepsy with dual pathology.

    PubMed

    Juhász, C; Nagy, F; Muzik, O; Watson, C; Shah, J; Chugani, H T

    1999-05-01

    Coexistence of hippocampal sclerosis and a potentially epileptogenic cortical lesion is referred to as dual pathology and can be responsible for poor surgical outcome in patients with medically intractable partial epilepsy. [11C]Flumazenil (FMZ) positron emission tomography (PET) is a sensitive method for visualizing epileptogenic foci. In this study of 12 patients with dual pathology, we addressed the sensitivity of FMZ PET to detect hippocampal abnormalities and compared magnetic resonance imaging (MRI) with visual as well as quantitative FMZ PET findings. All patients underwent volumetric MRI, prolonged video-EEG monitoring, and glucose metabolism PET before the FMZ PET. MRI-coregistered partial volume-corrected PET images were used to measure FMZ-binding asymmetries by using asymmetry indices (AIs) in the whole hippocampus and in three (anterior, middle, and posterior) hippocampal subregions. Cortical sites of decreased FMZ binding also were evaluated by using AIs for regions with MRI-verified cortical lesions as well as for non-lesional areas with visually detected asymmetry. Abnormally decreased FMZ binding could be detected by quantitative analysis in the atrophic hippocampus of all 12 patients, including three patients with discordant or inconclusive EEG findings. Decreased FMZ binding was restricted to only one subregion of the hippocampus in three patients. Areas of decreased cortical FMZ binding were obvious visually in all patients. Decreased FMZ binding was detected visually in nonlesional cortical areas in four patients. The AIs for these nonlesional regions with visual asymmetry were significantly lower than those for regions showing MRI lesions (paired t test, p = 0.0075). Visual as well as quantitative analyses of FMZ-binding asymmetry are sensitive methods to detect decreased benzodiazepine-receptor binding in the hippocampus and neocortex of patients with dual pathology. MRI-defined hippocampal atrophy is always associated with decreased FMZ binding, although the latter may be localized to only one sub-region within the hippocampus. FMZ PET abnormalities can occur in areas with normal appearance on MRI, but FMZ-binding asymmetry of these regions is lower when compared with that of lesional areas. FMZ PET can be especially helpful when MRI and EEG findings of patients with intractable epilepsy are discordant.

  8. Is hunger important to model in fMRI visual food-cue reactivity paradigms in adults with obesity and how should this be done?

    PubMed

    Chin, Shao-Hua; Kahathuduwa, Chanaka N; Stearns, Macy B; Davis, Tyler; Binks, Martin

    2018-01-01

    We considered 1) influence of self-reported hunger in behavioral and fMRI food-cue reactivity (fMRI-FCR) 2) optimal methods to model this. Adults (N = 32; 19-60 years; F = 21; BMI 30-39.9 kg/m 2 ) participated in an fMRI-FCR task that required rating 240 images of food and matched objects for 'appeal'. Hunger, satiety, thirst, fullness and emptiness were measured pre- and post-scan (visual analogue scales). Hunger, satiety, fullness and emptiness were combined to form a latent factor (appetite). Post-vs. pre-scores were compared using paired t-tests. In mixed-effects models, appeal/fMRI-FCR responses were regressed on image (i.e. food/objects), with random intercepts and slopes of image for functional runs nested within subjects. Each of hunger, satiety, thirst, fullness, emptiness and appetite were added as covariates in 4 forms (separate models): 1) change; 2) post- and pre-mean; 3) pre-; 4) change and pre-. Satiety decreased (Δ = -13.39, p = 0.001) and thirst increased (Δ = 11.78, p = 0.006) during the scan. Changes in other constructs were not significant (p's > 0.05). Including covariates did not influence food vs. object contrast of appeal ratings/fMRI-FCR. Significant image X covariate interactions were observed in some fMRI models. However, including these constructs did not improve the overall model fit. While some subjective, self-reported hunger, satiety and related constructs may be moderating fMRI-FCR, these constructs do not appear to be salient influences on appeal/fMRI-FCR in people with obesity undergoing fMRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Multiscale and multi-modality visualization of angiogenesis in a human breast cancer model

    PubMed Central

    Cebulla, Jana; Kim, Eugene; Rhie, Kevin; Zhang, Jiangyang

    2017-01-01

    Angiogenesis in breast cancer helps fulfill the metabolic demands of the progressing tumor and plays a critical role in tumor metastasis. Therefore, various imaging modalities have been used to characterize tumor angiogenesis. While micro-CT (μCT) is a powerful tool for analyzing the tumor microvascular architecture at micron-scale resolution, magnetic resonance imaging (MRI) with its sub-millimeter resolution is useful for obtaining in vivo vascular data (e.g. tumor blood volume and vessel size index). However, integration of these microscopic and macroscopic angiogenesis data across spatial resolutions remains challenging. Here we demonstrate the feasibility of ‘multiscale’ angiogenesis imaging in a human breast cancer model, wherein we bridge the resolution gap between ex vivo μCT and in vivo MRI using intermediate resolution ex vivo MR microscopy (μMRI). To achieve this integration, we developed suitable vessel segmentation techniques for the ex vivo imaging data and co-registered the vascular data from all three imaging modalities. We showcase two applications of this multiscale, multi-modality imaging approach: (1) creation of co-registered maps of vascular volume from three independent imaging modalities, and (2) visualization of differences in tumor vasculature between viable and necrotic tumor regions by integrating μCT vascular data with tumor cellularity data obtained using diffusion-weighted MRI. Collectively, these results demonstrate the utility of ‘mesoscopic’ resolution μMRI for integrating macroscopic in vivo MRI data and microscopic μCT data. Although focused on the breast tumor xenograft vasculature, our imaging platform could be extended to include additional data types for a detailed characterization of the tumor microenvironment and computational systems biology applications. PMID:24719185

  10. Optimizing MRI for imaging peripheral arthritis.

    PubMed

    Hodgson, Richard J; O'Connor, Philip J; Ridgway, John P

    2012-11-01

    MRI is increasingly used for the assessment of both inflammatory arthritis and osteoarthritis. The wide variety of MRI systems in use ranges from low-field, low-cost extremity units to whole-body high-field 7-T systems, each with different strengths for specific applications. The availability of dedicated radiofrequency phased-array coils allows the rapid acquisition of high-resolution images of one or more peripheral joints. MRI is uniquely flexible in its ability to manipulate image contrast, and individual MR sequences may be combined into protocols to sensitively visualize multiple features of arthritis including synovitis, bone marrow lesions, erosions, cartilage changes, and tendinopathy. Careful choice of the imaging parameters allows images to be generated with optimal quality while minimizing unwanted artifacts. Finally, there are many novel MRI techniques that can quantify disease levels in arthritis in tissues including synovitis and cartilage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Robot-assisted real-time magnetic resonance image-guided transcatheter aortic valve replacement.

    PubMed

    Miller, Justin G; Li, Ming; Mazilu, Dumitru; Hunt, Tim; Horvath, Keith A

    2016-05-01

    Real-time magnetic resonance imaging (rtMRI)-guided transcatheter aortic valve replacement (TAVR) offers improved visualization, real-time imaging, and pinpoint accuracy with device delivery. Unfortunately, performing a TAVR in a MRI scanner can be a difficult task owing to limited space and an awkward working environment. Our solution was to design a MRI-compatible robot-assisted device to insert and deploy a self-expanding valve from a remote computer console. We present our preliminary results in a swine model. We used an MRI-compatible robotic arm and developed a valve delivery module. A 12-mm trocar was inserted in the apex of the heart via a subxiphoid incision. The delivery device and nitinol stented prosthesis were mounted on the robot. Two continuous real-time imaging planes provided a virtual real-time 3-dimensional reconstruction. The valve was deployed remotely by the surgeon via a graphic user interface. In this acute nonsurvival study, 8 swine underwent robot-assisted rtMRI TAVR for evaluation of feasibility. Device deployment took a mean of 61 ± 5 seconds. Postdeployment necropsy was performed to confirm correlations between imaging and actual valve positions. These results demonstrate the feasibility of robotic-assisted TAVR using rtMRI guidance. This approach may eliminate some of the challenges of performing a procedure while working inside of an MRI scanner, and may improve the success of TAVR. It provides superior visualization during the insertion process, pinpoint accuracy of deployment, and, potentially, communication between the imaging device and the robotic module to prevent incorrect or misaligned deployment. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  12. A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T

    PubMed Central

    Sengupta, Shubharthi; Roebroeck, Alard; Kemper, Valentin G.; Poser, Benedikt A.; Zimmermann, Jan; Goebel, Rainer; Adriany, Gregor

    2016-01-01

    Purpose To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. Methods A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using B1+ mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. Results The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was ∼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. Conclusion The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T. PMID:27911950

  13. The utility of high-resolution intraoperative MRI in endoscopic transsphenoidal surgery for pituitary macroadenomas: early experience in the Advanced Multimodality Image Guided Operating suite.

    PubMed

    Zaidi, Hasan A; De Los Reyes, Kenneth; Barkhoudarian, Garni; Litvack, Zachary N; Bi, Wenya Linda; Rincon-Torroella, Jordina; Mukundan, Srinivasan; Dunn, Ian F; Laws, Edward R

    2016-03-01

    Endoscopic skull base surgery has become increasingly popular among the skull base surgery community, with improved illumination and angled visualization potentially improving tumor resection rates. Intraoperative MRI (iMRI) is used to detect residual disease during the course of the resection. This study is an investigation of the utility of 3-T iMRI in combination with transnasal endoscopy with regard to gross-total resection (GTR) of pituitary macroadenomas. The authors retrospectively reviewed all endoscopic transsphenoidal operations performed in the Advanced Multimodality Image Guided Operating (AMIGO) suite from November 2011 to December 2014. Inclusion criteria were patients harboring presumed pituitary macroadenomas with optic nerve or chiasmal compression and visual loss, operated on by a single surgeon. Of the 27 patients who underwent transsphenoidal resection in the AMIGO suite, 20 patients met the inclusion criteria. The endoscope alone, without the use of iMRI, would have correctly predicted extent of resection in 13 (65%) of 20 cases. Gross-total resection was achieved in 12 patients (60%) prior to MRI. Intraoperative MRI helped convert 1 STR and 4 NTRs to GTRs, increasing the number of GTRs from 12 (60%) to 16 (80%). Despite advances in visualization provided by the endoscope, the incidence of residual disease can potentially place the patient at risk for additional surgery. The authors found that iMRI can be useful in detecting unexpected residual tumor. The cost-effectiveness of this tool is yet to be determined.

  14. Neural Responses to Visual Food Cues According to Weight Status: A Systematic Review of Functional Magnetic Resonance Imaging Studies

    PubMed Central

    Pursey, Kirrilly M.; Stanwell, Peter; Callister, Robert J.; Brain, Katherine; Collins, Clare E.; Burrows, Tracy L.

    2014-01-01

    Emerging evidence from recent neuroimaging studies suggests that specific food-related behaviors contribute to the development of obesity. The aim of this review was to report the neural responses to visual food cues, as assessed by functional magnetic resonance imaging (fMRI), in humans of differing weight status. Published studies to 2014 were retrieved and included if they used visual food cues, studied humans >18 years old, reported weight status, and included fMRI outcomes. Sixty studies were identified that investigated the neural responses of healthy weight participants (n = 26), healthy weight compared to obese participants (n = 17), and weight-loss interventions (n = 12). High-calorie food images were used in the majority of studies (n = 36), however, image selection justification was only provided in 19 studies. Obese individuals had increased activation of reward-related brain areas including the insula and orbitofrontal cortex in response to visual food cues compared to healthy weight individuals, and this was particularly evident in response to energy dense cues. Additionally, obese individuals were more responsive to food images when satiated. Meta-analysis of changes in neural activation post-weight loss revealed small areas of convergence across studies in brain areas related to emotion, memory, and learning, including the cingulate gyrus, lentiform nucleus, and precuneus. Differential activation patterns to visual food cues were observed between obese, healthy weight, and weight-loss populations. Future studies require standardization of nutrition variables and fMRI outcomes to enable more direct comparisons between studies. PMID:25988110

  15. Neural responses to visual food cues according to weight status: a systematic review of functional magnetic resonance imaging studies.

    PubMed

    Pursey, Kirrilly M; Stanwell, Peter; Callister, Robert J; Brain, Katherine; Collins, Clare E; Burrows, Tracy L

    2014-01-01

    Emerging evidence from recent neuroimaging studies suggests that specific food-related behaviors contribute to the development of obesity. The aim of this review was to report the neural responses to visual food cues, as assessed by functional magnetic resonance imaging (fMRI), in humans of differing weight status. Published studies to 2014 were retrieved and included if they used visual food cues, studied humans >18 years old, reported weight status, and included fMRI outcomes. Sixty studies were identified that investigated the neural responses of healthy weight participants (n = 26), healthy weight compared to obese participants (n = 17), and weight-loss interventions (n = 12). High-calorie food images were used in the majority of studies (n = 36), however, image selection justification was only provided in 19 studies. Obese individuals had increased activation of reward-related brain areas including the insula and orbitofrontal cortex in response to visual food cues compared to healthy weight individuals, and this was particularly evident in response to energy dense cues. Additionally, obese individuals were more responsive to food images when satiated. Meta-analysis of changes in neural activation post-weight loss revealed small areas of convergence across studies in brain areas related to emotion, memory, and learning, including the cingulate gyrus, lentiform nucleus, and precuneus. Differential activation patterns to visual food cues were observed between obese, healthy weight, and weight-loss populations. Future studies require standardization of nutrition variables and fMRI outcomes to enable more direct comparisons between studies.

  16. A method for real-time visual stimulus selection in the study of cortical object perception.

    PubMed

    Leeds, Daniel D; Tarr, Michael J

    2016-06-01

    The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A method for real-time visual stimulus selection in the study of cortical object perception

    PubMed Central

    Leeds, Daniel D.; Tarr, Michael J.

    2016-01-01

    The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit’s image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across predetermined 1 cm3 brain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) Real-time estimation of cortical responses to stimuli are reasonably consistent; 3) Search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. PMID:26973168

  18. BOLDSync: a MATLAB-based toolbox for synchronized stimulus presentation in functional MRI.

    PubMed

    Joshi, Jitesh; Saharan, Sumiti; Mandal, Pravat K

    2014-02-15

    Precise and synchronized presentation of paradigm stimuli in functional magnetic resonance imaging (fMRI) is central to obtaining accurate information about brain regions involved in a specific task. In this manuscript, we present a new MATLAB-based toolbox, BOLDSync, for synchronized stimulus presentation in fMRI. BOLDSync provides a user friendly platform for design and presentation of visual, audio, as well as multimodal audio-visual (AV) stimuli in functional imaging experiments. We present simulation experiments that demonstrate the millisecond synchronization accuracy of BOLDSync, and also illustrate the functionalities of BOLDSync through application to an AV fMRI study. BOLDSync gains an advantage over other available proprietary and open-source toolboxes by offering a user friendly and accessible interface that affords both precision in stimulus presentation and versatility across various types of stimulus designs and system setups. BOLDSync is a reliable, efficient, and versatile solution for synchronized stimulus presentation in fMRI study. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Interactive 3D visualization tools for stereotactic atlas-based functional neurosurgery

    NASA Astrophysics Data System (ADS)

    St. Jean, Philippe; Kasrai, Reza; Clonda, Diego; Sadikot, Abbas F.; Evans, Alan C.; Peters, Terence M.

    1998-06-01

    Many of the critical basal ganglia structures are not distinguishable on anatomical magnetic resonance imaging (MRI) scans, even though they differ in functionality. In order to provide the neurosurgeon with this missing information, a deformable volumetric atlas of the basal ganglia has been created from the Shaltenbrand and Wahren atlas of cryogenic slices. The volumetric atlas can be non-linearly deformed to an individual patient's MRI. To facilitate the clinical use of the atlas, a visualization platform has been developed for pre- and intra-operative use which permits manipulation of the merged atlas and MRI data sets in two- and three-dimensional views. The platform includes graphical tools which allow the visualization of projections of the leukotome and other surgical tools with respect to the atlas data, as well as pre- registered images from any other imaging modality. In addition, a graphical interface has been designed to create custom virtual lesions using computer models of neurosurgical tools for intra-operative planning. To date 17 clinical cases have been successfully performed using the described system.

  20. First multimodal embolization particles visible on x-ray/computed tomography and magnetic resonance imaging.

    PubMed

    Bartling, Soenke H; Budjan, Johannes; Aviv, Hagit; Haneder, Stefan; Kraenzlin, Bettina; Michaely, Henrik; Margel, Shlomo; Diehl, Steffen; Semmler, Wolfhard; Gretz, Norbert; Schönberg, Stefan O; Sadick, Maliha

    2011-03-01

    Embolization therapy is gaining importance in the treatment of malignant lesions, and even more in benign lesions. Current embolization materials are not visible in imaging modalities. However, it is assumed that directly visible embolization material may provide several advantages over current embolization agents, ranging from particle shunt and reflux prevention to improved therapy control and follow-up assessment. X-ray- as well as magnetic resonance imaging (MRI)-visible embolization materials have been demonstrated in experiments. In this study, we present an embolization material with the property of being visible in more than one imaging modality, namely MRI and x-ray/computed tomography (CT). Characterization and testing of the substance in animal models was performed. To reduce the chance of adverse reactions and to facilitate clinical approval, materials have been applied that are similar to those that are approved and being used on a routine basis in diagnostic imaging. Therefore, x-ray-visible Iodine was combined with MRI-visible Iron (Fe3O4) in a macroparticle (diameter, 40-200 μm). Its core, consisting of a copolymerized monomer MAOETIB (2-methacryloyloxyethyl [2,3,5-triiodobenzoate]), was coated with ultra-small paramagnetic iron oxide nanoparticles (150 nm). After in vitro testing, including signal to noise measurements in CT and MRI (n = 5), its ability to embolize tissue was tested in an established tumor embolization model in rabbits (n = 6). Digital subtraction angiography (DSA) (Integris, Philips), CT (Definition, Siemens Healthcare Section, Forchheim, Germany), and MRI (3 Tesla Magnetom Tim Trio MRI, Siemens Healthcare Section, Forchheim, Germany) were performed before, during, and after embolization. Imaging signal changes that could be attributed to embolization particles were assessed by visual inspection and rated on an ordinal scale by 3 radiologists, from 1 to 3. Histologic analysis of organs was performed. Particles provided a sufficient image contrast on DSA, CT (signal to noise [SNR], 13 ± 2.5), and MRI (SNR, 35 ± 1) in in vitro scans. Successful embolization of renal tissue was confirmed by catheter angiography, revealing at least partial perfusion stop in all kidneys. Signal changes that were attributed to particles residing within the kidney were found in all cases in all the 3 imaging modalities. Localization distribution of particles corresponded well in all imaging modalities. Dynamic imaging during embolization provided real-time monitoring of the inflow of embolization particles within DSA, CT, and MRI. Histologic visualization of the residing particles as well as associated thrombosis in renal arteries could be performed. Visual assessment of the likelihood of embolization particle presence received full rating scores (153/153) after embolization. Multimodal-visible embolization particles have been developed, characterized, and tested in vivo in an animal model. Their implementation in clinical radiology may provide optimization of embolization procedures with regard to prevention of particle misplacement and direct intraprocedural visualization, at the same time improving follow-up examinations by utilizing the complementary characteristics of CT and MRI. Radiation dose savings can also be considered. All these advantages could contribute to future refinements and improvements in embolization therapy. Additionally, new approaches in embolization research may open up.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marenco, S.; Kraut, M.A.; Soher, B.J.

    To ascertain whether local changes in signal intensity seen with functional MRI (fMRI) were related to regional blood flow changes with PET, 45 normal male volunteers (ages 31-49) underwent both procedures during resting and bilateral visual stimulation. A single 4mm thick fMRI slice over the calcarine fissure was acquired with a gradient echo 60,60,40{prime} (TR,TE,{alpha}), on a GE Signa 1.5 T. Sixty images were acquired over 366 sec. The visual stimulator was turned on and off at intervals of 36 sec, with a stimulating frequency of 8 Hz. ROIs were drawn around clusters of pixels with high z-scores (pixel value-meanmore » over whole acquisition/SD). Several ROIs were drawn in each subject. Percent change in signal intensity was calculated as the intensity in the average of six {open_quotes}on{close_quotes} images over the average of six {open_quotes}off{close_quotes} images 100.« less

  2. Monkey cortex through fMRI glasses.

    PubMed

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A

    2014-08-06

    In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deli, Martin, E-mail: martin.deli@web.de; Fritz, Jan, E-mail: jfritz9@jhmi.edu; Mateiescu, Serban, E-mail: mateiescu@microtherapy.de

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 withmore » gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 {+-} 9 min in the gadolinium-enhanced saline solution group and 22 {+-} 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.« less

  4. Significance of clinical evaluation of the metacarpophalangeal joint in relation to synovial/bone pathology in rheumatoid and psoriatic arthritis detected by magnetic resonance imaging.

    PubMed

    Stone, Millicent A; White, Lawrence M; Gladman, Dafna D; Inman, Robert D; Chaya, Sam; Lax, Matthew; Salonen, David; Weber, Deborah A; Guthrie, Judy A; Pomeroy, Emma; Podbielski, Dominik; Keystone, Edward C

    2009-12-01

    Rheumatologists base many clinical decisions regarding the management of inflammatory joint diseases on joint counts performed at clinic. We investigated the reliability and accuracy of physically examining the metacarpophalangeal (MCP) joints to detect inflammatory synovitis using magnetic resonance imaging (MRI) as the gold standard. MCP joints 2 to 5 in both hands of 5 patients with rheumatoid arthritis (RA) and 5 with psoriatic arthritis (PsA) were assessed by 5 independent examiners for joint-line swelling (visually and by palpation); joint-line tenderness by palpation (tender joint count, TJC) and stress pain; and by MRI (1.5 Tesla superconducting magnet). Interrater reliability was assessed using kappa statistics, and agreement between examination and corresponding MRI assessment was assessed by Fisher's exact tests (p < 0.05 considered statistically significant). Interrater agreement was highest for visual assessment of swelling (kappa = 0.55-0.63), slight-fair for assessment of swelling by palpation (kappa = 0.19-0.41), and moderate (kappa = 0.41-0.58) for assessment of joint tenderness. In patients with RA, TJC, stress pain, and visual swelling assessment were strongly associated with MRI evaluation of synovitis. Visual swelling assessment demonstrated high specificity (> 0.8) and positive predictive value (= 0.8). For PsA, significant associations exist between TJC and MRI synovitis scores (p < 0.01) and stress pain and MRI edema scores (p < 0.04). Assessment of swelling by palpation was not significantly associated with synovitis or edema as determined by MRI in RA or PsA (p = 0.54-1.0). In inflammatory arthritis, disease activity in MCP joints can be reliably assessed at the bedside by examining for joint-line tenderness (TJC) and visual inspection for swelling. Clinical assessment may have to be complemented by other methods for evaluating disease activity in the joint, such as MRI, particularly in patients with PsA.

  5. [Possibilities of magnetic resonance tomography in diagnostic imaging of the shoulder joint].

    PubMed

    Reiser, M; Erlemann, R; Bongartz, G; Pauly, T; Kunze, V; Mathiass, H H; Peters, P E

    1988-02-01

    By virtue of its multiplanar representation, magnetic resonance imaging (MRI) allows clear visualization of the complex anatomical relationships of the shoulder joint. In addition to axial planes, slices perpendicular and parallel to the glenoid cavity are used to good advantage. In tears of the rotator cuff an increase in signal intensity within the cuff is recognized in T2- and proton-density-weighted images. Lesions of the glenoid labrum following luxations of the glenohumeral joint can be detected and classified using MRI. The diagnostic value of MRI as compared with other imaging modalities will have to be evaluated in larger series with operative verification.

  6. The Neural Basis of Mark Making: A Functional MRI Study of Drawing

    PubMed Central

    Yuan, Ye; Brown, Steven

    2014-01-01

    Compared to most other forms of visually-guided motor activity, drawing is unique in that it “leaves a trail behind” in the form of the emanating image. We took advantage of an MRI-compatible drawing tablet in order to examine both the motor production and perceptual emanation of images. Subjects participated in a series of mark making tasks in which they were cued to draw geometric patterns on the tablet's surface. The critical comparison was between when visual feedback was displayed (image generation) versus when it was not (no image generation). This contrast revealed an occipito-parietal stream involved in motion-based perception of the emerging image, including areas V5/MT+, LO, V3A, and the posterior part of the intraparietal sulcus. Interestingly, when subjects passively viewed animations of visual patterns emerging on the projected surface, all of the sensorimotor network involved in drawing was strongly activated, with the exception of the primary motor cortex. These results argue that the origin of the human capacity to draw and write involves not only motor skills for tool use but also motor-sensory links between drawing movements and the visual images that emanate from them in real time. PMID:25271440

  7. [Magnetic resonance imaging in facial injuries and digital fusion CT/MRI].

    PubMed

    Kozakiewicz, Marcin; Olszycki, Marek; Arkuszewski, Piotr; Stefańczyk, Ludomir

    2006-01-01

    Magnetic resonance images [MRI] and their digital fusion with computed tomography [CT] data, observed in patients affected with facial injuries, are presented in this study. The MR imaging of 12 posttraumatic patients was performed in the same plains as their previous CT scans. Evaluation focused on quality of the facial soft tissues depicting, which was unsatisfactory in CT. Using the own "Dental Studio" programme the digital fusion of the both modalities was performed. Pathologic dislocations and injures of facial soft tissues are visualized better in MRI than in CT examination. Especially MRI properly reveals disturbances in intraorbital soft structures. MRI-based assessment is valuable in patients affected with facial soft tissues injuries, especially in case of orbita/sinuses hernia. Fusion CT/MRI scans allows to evaluate simultaneously bone structure and soft tissues of the same region.

  8. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Raaymakers, B. W.; Jürgenliemk-Schulz, I. M.; Bol, G. H.; Glitzner, M.; Kotte, A. N. T. J.; van Asselen, B.; de Boer, J. C. J.; Bluemink, J. J.; Hackett, S. L.; Moerland, M. A.; Woodings, S. J.; Wolthaus, J. W. H.; van Zijp, H. M.; Philippens, M. E. P.; Tijssen, R.; Kok, J. G. M.; de Groot-van Breugel, E. N.; Kiekebosch, I.; Meijers, L. T. C.; Nomden, C. N.; Sikkes, G. G.; Doornaert, P. A. H.; Eppinga, W. S. C.; Kasperts, N.; Kerkmeijer, L. G. W.; Tersteeg, J. H. A.; Brown, K. J.; Pais, B.; Woodhead, P.; Lagendijk, J. J. W.

    2017-12-01

    The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac. Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm. In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.

  9. A new user-friendly visual environment for breast MRI data analysis.

    PubMed

    Antonios, Danelakis; Dimitrios, Verganelakis A; Theoharis, Theoharis

    2013-06-01

    In this paper a novel, user friendly visual environment for Breast MRI Data Analysis is presented (BreDAn). Given planar MRI images before and after IV contrast medium injection, BreDAn generates kinematic graphs, color maps of signal increase and decrease and finally detects high risk breast areas. The advantage of BreDAn, which has been validated and tested successfully, is the automation of the radiodiagnostic process in an accurate and reliable manner. It can potentially facilitate radiologists' workload. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. [From Brownian motion to mind imaging: diffusion MRI].

    PubMed

    Le Bihan, Denis

    2006-11-01

    The success of diffusion MRI, which was introduced in the mid 1980s is deeply rooted in the powerful concept that during their random, diffusion-driven movements water molecules probe tissue structure at a microscopic scale well beyond the usual image resolution. The observation of these movements thus provides valuable information on the structure and the geometric organization of tissues. The most successful application of diffusion MRI has been in brain ischemia, following the discovery that water diffusion drops at a very early stage of the ischemic event. Diffusion MRI provides some patients with the opportunity to receive suitable treatment at a very acute stage when brain tissue might still be salvageable. On the other hand, diffusion is modulated by the spatial orientation of large bundles of myelinated axons running in parallel through in brain white matter. This feature can be exploited to map out the orientation in space of the white matter tracks and to visualize the connections between different parts of the brain on an individual basis. Furthermore, recent data suggest that diffusion MRI may also be used to visualize rapid dynamic tissue changes, such as neuronal swelling, associated with cortical activation, offering a new and direct approach to brain functional imaging.

  11. Individual Differences in the Alignment of Structural and Functional Markers of the V5/MT Complex in Primates

    PubMed Central

    Large, I.; Bridge, H.; Ahmed, B.; Clare, S.; Kolasinski, J.; Lam, W. W.; Miller, K. L.; Dyrby, T. B.; Parker, A. J.; Smith, J. E. T.; Daubney, G.; Sallet, J.; Bell, A. H.; Krug, K.

    2016-01-01

    Extrastriate visual area V5/MT in primates is defined both structurally by myeloarchitecture and functionally by distinct responses to visual motion. Myelination is directly identifiable from postmortem histology but also indirectly by image contrast with structural magnetic resonance imaging (sMRI). First, we compared the identification of V5/MT using both sMRI and histology in Rhesus macaques. A section-by-section comparison of histological slices with in vivo and postmortem sMRI for the same block of cortical tissue showed precise correspondence in localizing heavy myelination for V5/MT and neighboring MST. Thus, sMRI in macaques accurately locates histologically defined myelin within areas known to be motion selective. Second, we investigated the functionally homologous human motion complex (hMT+) using high-resolution in vivo imaging. Humans showed considerable intersubject variability in hMT+ location, when defined with myelin-weighted sMRI signals to reveal structure. When comparing sMRI markers to functional MRI in response to moving stimuli, a region of high myelin signal was generally located within the hMT+ complex. However, there were considerable differences in the alignment of structural and functional markers between individuals. Our results suggest that variation in area identification for hMT+ based on structural and functional markers reflects individual differences in human regional brain architecture. PMID:27371764

  12. Neural Mechanisms of Recognizing Camouflaged Objects: A Human fMRI Study

    DTIC Science & Technology

    2015-07-30

    Unlimited Final Report: Neural Mechanisms of Recognizing Camouflaged Objects: A Human fMRI Study The views, opinions and/or findings contained in this...27709-2211 Visual search, Camouflage, Functional magnetic resonance imaging ( fMRI ), Perceptual learning REPORT DOCUMENTATION PAGE 11. SPONSOR...ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Neural Mechanisms of Recognizing Camouflaged Objects: A Human fMRI Study

  13. fMRI response during visual motion stimulation in patients with late whiplash syndrome.

    PubMed

    Freitag, P; Greenlee, M W; Wachter, K; Ettlin, T M; Radue, E W

    2001-01-01

    After whiplash trauma, up to one fourth of patients develop chronic symptoms including head and neck pain and cognitive disturbances. Resting perfusion single-photon-emission computed tomography (SPECT) found decreased temporoparietooccipital tracer uptake among these long-term symptomatic patients with late whiplash syndrome. As MT/MST (V5/V5a) are located in that area, this study addressed the question whether these patients show impairments in visual motion perception. We examined five symptomatic patients with late whiplash syndrome, five asymptomatic patients after whiplash trauma, and a control group of seven volunteers without the history of trauma. Tests for visual motion perception and functional magnetic resonance imaging (fMRI) measurements during visual motion stimulation were performed. Symptomatic patients showed a significant reduction in their ability to perceive coherent visual motion compared with controls, whereas the asymptomatic patients did not show this effect. fMRI activation was similar during random dot motion in all three groups, but was significantly decreased during coherent dot motion in the symptomatic patients compared with the other two groups. Reduced psychophysical motion performance and reduced fMRI responses in symptomatic patients with late whiplash syndrome both point to a functional impairment in cortical areas sensitive to coherent motion. Larger studies are needed to confirm these clinical and functional imaging results to provide a possible additional diagnostic criterion for the evaluation of patients with late whiplash syndrome.

  14. Optic neuritis

    MedlinePlus

    ... optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when it becomes suddenly ... may include: Color vision testing MRI of the brain , including special images of the optic nerve Visual acuity testing Visual field testing Examination of the ...

  15. In vivo targeted peripheral nerve imaging with a nerve-specific nanoscale magnetic resonance probe.

    PubMed

    Zheng, Linfeng; Li, Kangan; Han, Yuedong; Wei, Wei; Zheng, Sujuan; Zhang, Guixiang

    2014-11-01

    Neuroimaging plays a pivotal role in clinical practice. Currently, computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography, and positron emission tomography (PET) are applied in the clinical setting as neuroimaging modalities. There is no optimal imaging modality for clinical peripheral nerve imaging even though fluorescence/bioluminescence imaging has been used for preclinical studies on the nervous system. Some studies have shown that molecular and cellular MRI (MCMRI) can be used to visualize and image the cellular and molecular level of the nervous system. Other studies revealed that there are different pathological/molecular changes in the proximal and distal sites after peripheral nerve injury (PNI). Therefore, we hypothesized that in vivo peripheral nerve targets can be imaged using MCMRI with specific MRI probes. Specific probes should have higher penetrability for the blood-nerve barrier (BNB) in vivo. Here, a functional nanometre MRI probe that is based on nerve-specific proteins as targets, specifically, using a molecular antibody (mAb) fragment conjugated to iron nanoparticles as an MRI probe, was constructed for further study. The MRI probe allows for imaging the peripheral nerve targets in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Characterization and optimization of the visualization performance of continuous flow overhauser DNP hyperpolarized water MRI: Inversion recovery approach.

    PubMed

    Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria

    2016-03-01

    Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.

  17. Three-dimensional Magnetic Resonance Imaging of the Anterolateral Ligament of the Knee: An Evaluation of Intact and Anterior Cruciate Ligament-Deficient Knees From the Scientific Anterior Cruciate Ligament Network International (SANTI) Study Group.

    PubMed

    Muramatsu, Koichi; Saithna, Adnan; Watanabe, Hiroki; Sasaki, Kana; Yokosawa, Kenta; Hachiya, Yudo; Banno, Tatsuo; Helito, Camilo Partezani; Sonnery-Cottet, Bertrand

    2018-05-02

    To determine the visualization rate of the anterolateral ligament (ALL) in uninjured and anterior cruciate ligament (ACL)-deficient knees using 3-dimensional (3D) magnetic resonance imaging (MRI) and to characterize the spectrum of ALL injury observed in ACL-deficient knees, as well as determine the interobserver and intraobserver reliability of a 3D MRI classification of ALL injury. A total of 100 knees (60 ACL deficient and 40 uninjured) underwent 3D MRI. The ALL was evaluated by 2 blinded orthopaedic surgeons. The ALL was classified as follows: type A, continuous, clearly defined low-signal band; type B, warping, thinning, or iso-signal changes; and type C, without clear continuity. The comparison between imaging performed early after ACL injury (<1 month) and delayed imaging (>1 month) was evaluated, as was intraobserver and interobserver reliability. Complete visualization of the ALL was achieved in all uninjured knees. In the ACL-deficient group, 24 knees underwent early imaging, with 87.5% showing evidence of ALL injury (3 normal, or type A, knees [12.5%], 18 type B [75.0%], and 3 type C [12.5%]). The remaining 36 knees underwent delayed imaging, with 55.6% showing evidence of injury (16 type A [44.4%], 18 type B [50.0%], and 2 type C [5.6%]). The difference in the rate of injury between the 2 groups was significant (P = .03). Multivariate analysis showed that the delay from ACL injury to MRI was the only factor (negatively) associated with the rate of injury to the ALL. Interobserver reliability and intraobserver reliability of the classification of ALL type were good (κ = 0.86 and κ = 0.93, respectively). Three-dimensional MRI allows full visualization of the ALL in all normal knees. The rate of injury to the ALL in acutely ACL-injured knees identified on 3D MRI is higher than previous reports using standard MRI techniques. This rate is significantly higher than the rate of injury to the ALL identified on delayed imaging of ACL-injured knees. Level IV, diagnostic, case-control study. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. MRI evidence of endolymphatic impermeability to the gadolinium molecule in the in vivo mouse inner ear at 9.4 tesla.

    PubMed

    Counter, S Allen; Nikkhou, Sahar; Brené, Stefan; Damberg, Peter; Sierakowiak, Adam; Klason, Tomas; Berglin, Cecilia Engmér; Laurell, Göran

    2013-01-01

    Previous in vivo experimental magnetic resonance imaging (MRI) investigations of the mammalian inner ear at 4.7 Tesla have indicated that intravenously injected gadolinium (Gd) penetrates the perilymphatic labyrinth, but not the endolymphatic membranous labyrinth. In the present study, high field MRI at 9.4T was used to visualize the in vivo mouse vestibulo-cochlea system, and to determine whether the endolymphatic system is permeable to a Gd complex. A 9.4 T Varian magnet equipped with a 12 cm inner diameter gradient system with maximum gradient strength of 600 mT/m, a millipede coil (Varian design) and a Gd contrast agent were used for image acquisition in the normal C57 BL-6 mouse. High-resolution 2D and 3D images of the mouse cochlea were acquired within 80 minutes following intravenous injection of Gd. Gd initially permeated the perilymphatic scala tympani and scala vestibuli, and permitted visualization of both cochlear turns from base to apex. The superior, inferior and lateral semicircular canals were subsequently visualized in 3 planes. The membranous endolymphatic labyrinth was impermeable to intravenously injected Gd, and thus showed no apparent uptake of Gd at 9.4T. The 9.4T field strength MRI permitted acquisition of high resolution images of anatomical and physiological features of the normal, wild type mouse perilymphatic inner ear in vivo, and provided further evidence that the endolymphatic system is impermeable to intravenously injected Gd.

  19. Unsupervised spatiotemporal analysis of fMRI data using graph-based visualizations of self-organizing maps.

    PubMed

    Katwal, Santosh B; Gore, John C; Marois, Rene; Rogers, Baxter P

    2013-09-01

    We present novel graph-based visualizations of self-organizing maps for unsupervised functional magnetic resonance imaging (fMRI) analysis. A self-organizing map is an artificial neural network model that transforms high-dimensional data into a low-dimensional (often a 2-D) map using unsupervised learning. However, a postprocessing scheme is necessary to correctly interpret similarity between neighboring node prototypes (feature vectors) on the output map and delineate clusters and features of interest in the data. In this paper, we used graph-based visualizations to capture fMRI data features based upon 1) the distribution of data across the receptive fields of the prototypes (density-based connectivity); and 2) temporal similarities (correlations) between the prototypes (correlation-based connectivity). We applied this approach to identify task-related brain areas in an fMRI reaction time experiment involving a visuo-manual response task, and we correlated the time-to-peak of the fMRI responses in these areas with reaction time. Visualization of self-organizing maps outperformed independent component analysis and voxelwise univariate linear regression analysis in identifying and classifying relevant brain regions. We conclude that the graph-based visualizations of self-organizing maps help in advanced visualization of cluster boundaries in fMRI data enabling the separation of regions with small differences in the timings of their brain responses.

  20. Visual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information.

    PubMed

    Guidotti, Roberto; Del Gratta, Cosimo; Baldassarre, Antonello; Romani, Gian Luca; Corbetta, Maurizio

    2015-07-08

    When measured with functional magnetic resonance imaging (fMRI) in the resting state (R-fMRI), spontaneous activity is correlated between brain regions that are anatomically and functionally related. Learning and/or task performance can induce modulation of the resting synchronization between brain regions. Moreover, at the neuronal level spontaneous brain activity can replay patterns evoked by a previously presented stimulus. Here we test whether visual learning/task performance can induce a change in the patterns of coded information in R-fMRI signals consistent with a role of spontaneous activity in representing task-relevant information. Human subjects underwent R-fMRI before and after perceptual learning on a novel visual shape orientation discrimination task. Task-evoked fMRI patterns to trained versus novel stimuli were recorded after learning was completed, and before the second R-fMRI session. Using multivariate pattern analysis on task-evoked signals, we found patterns in several cortical regions, as follows: visual cortex, V3/V3A/V7; within the default mode network, precuneus, and inferior parietal lobule; and, within the dorsal attention network, intraparietal sulcus, which discriminated between trained and novel visual stimuli. The accuracy of classification was strongly correlated with behavioral performance. Next, we measured multivariate patterns in R-fMRI signals before and after learning. The frequency and similarity of resting states representing the task/visual stimuli states increased post-learning in the same cortical regions recruited by the task. These findings support a representational role of spontaneous brain activity. Copyright © 2015 the authors 0270-6474/15/359786-13$15.00/0.

  1. Fetal magnetic resonance imaging (MRI): a tool for a better understanding of normal and abnormal brain development.

    PubMed

    Saleem, Sahar N

    2013-07-01

    Knowledge of the anatomy of the developing fetal brain is essential to detect abnormalities and understand their pathogenesis. Capability of magnetic resonance imaging (MRI) to visualize the brain in utero and to differentiate between its various tissues makes fetal MRI a potential diagnostic and research tool for the developing brain. This article provides an approach to understand the normal and abnormal brain development through schematic interpretation of fetal brain MR images. MRI is a potential screening tool in the second trimester of pregnancies in fetuses at risk for brain anomalies and helps in describing new brain syndromes with in utero presentation. Accurate interpretation of fetal MRI can provide valuable information that helps genetic counseling, facilitates management decisions, and guides therapy. Fetal MRI can help in better understanding the pathogenesis of fetal brain malformations and can support research that could lead to disease-specific interventions.

  2. Aging effects on functional auditory and visual processing using fMRI with variable sensory loading.

    PubMed

    Cliff, Michael; Joyce, Dan W; Lamar, Melissa; Dannhauser, Thomas; Tracy, Derek K; Shergill, Sukhwinder S

    2013-05-01

    Traditionally, studies investigating the functional implications of age-related structural brain alterations have focused on higher cognitive processes; by increasing stimulus load, these studies assess behavioral and neurophysiological performance. In order to understand age-related changes in these higher cognitive processes, it is crucial to examine changes in visual and auditory processes that are the gateways to higher cognitive functions. This study provides evidence for age-related functional decline in visual and auditory processing, and regional alterations in functional brain processing, using non-invasive neuroimaging. Using functional magnetic resonance imaging (fMRI), younger (n=11; mean age=31) and older (n=10; mean age=68) adults were imaged while observing flashing checkerboard images (passive visual stimuli) and hearing word lists (passive auditory stimuli) across varying stimuli presentation rates. Younger adults showed greater overall levels of temporal and occipital cortical activation than older adults for both auditory and visual stimuli. The relative change in activity as a function of stimulus presentation rate showed differences between young and older participants. In visual cortex, the older group showed a decrease in fMRI blood oxygen level dependent (BOLD) signal magnitude as stimulus frequency increased, whereas the younger group showed a linear increase. In auditory cortex, the younger group showed a relative increase as a function of word presentation rate, while older participants showed a relatively stable magnitude of fMRI BOLD response across all rates. When analyzing participants across all ages, only the auditory cortical activation showed a continuous, monotonically decreasing BOLD signal magnitude as a function of age. Our preliminary findings show an age-related decline in demand-related, passive early sensory processing. As stimulus demand increases, visual and auditory cortex do not show increases in activity in older compared to younger people. This may negatively impact on the fidelity of information available to higher cognitive processing. Such evidence may inform future studies focused on cognitive decline in aging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. The utility of high-resolution intraoperative MRI in endoscopic transsphenoidal surgery for pituitary macroadenomas: early experience in the Advanced Multimodality Image Guided Operating suite

    PubMed Central

    Zaidi, Hasan A.; De Los Reyes, Kenneth; Barkhoudarian, Garni; Litvack, Zachary N.; Bi, Wenya Linda; Rincon-Torroella, Jordina; Mukundan, Srinivasan; Dunn, Ian F.; Laws, Edward R.

    2016-01-01

    Objective Endoscopic skull base surgery has become increasingly popular among the skull base surgery community, with improved illumination and angled visualization potentially improving tumor resection rates. Intraoperative MRI (iMRI) is used to detect residual disease during the course of the resection. This study is an investigation of the utility of 3-T iMRI in combination with transnasal endoscopy with regard to gross-total resection (GTR) of pituitary macroadenomas. Methods The authors retrospectively reviewed all endoscopic transsphenoidal operations performed in the Advanced Multimodality Image Guided Operating (AMIGO) suite from November 2011 to December 2014. Inclusion criteria were patients harboring presumed pituitary macroadenomas with optic nerve or chiasmal compression and visual loss, operated on by a single surgeon. Results Of the 27 patients who underwent transsphenoidal resection in the AMIGO suite, 20 patients met the inclusion criteria. The endoscope alone, without the use of iMRI, would have correctly predicted 13 (65%) of 20 cases. Gross-total resection was achieved in 12 patients (60%) prior to MRI. Intraoperative MRI helped convert 1 STR and 4 NTRs to GTRs, increasing the number of GTRs from 12 (60%) to 16 (80%). Conclusions Despite advances in visualization provided by the endoscope, the incidence of residual disease can potentially place the patient at risk for additional surgery. The authors found that iMRI can be useful in detecting unexpected residual tumor. The cost-effectiveness of this tool is yet to be determined. PMID:26926058

  4. MRI vs. CT for orthodontic applications: comparison of two MRI protocols and three CT (multislice, cone-beam, industrial) technologies.

    PubMed

    Detterbeck, Andreas; Hofmeister, Michael; Hofmann, Elisabeth; Haddad, Daniel; Weber, Daniel; Hölzing, Astrid; Zabler, Simon; Schmid, Matthias; Hiller, Karl-Heinz; Jakob, Peter; Engel, Jens; Hiller, Jochen; Hirschfelder, Ursula

    2016-07-01

    To examine the relative usefulness and suitability of magnetic resonance imaging (MRI) in daily clinical practice as compared to various technologies of computed tomography (CT) in addressing questions of orthodontic interest. Three blinded raters evaluated 2D slices and 3D reconstructions created from scans of two pig heads. Five imaging modalities were used, including three CT technologies-multislice (MSCT), cone-beam CT (CBCT), and industrial (µCT)-and two MRI protocols with different scan durations. Defined orthodontic parameters were rated one by one on the 2D slices and the 3D reconstructions, followed by final overall ratings for each modality. A mixed linear model was used for statistical analysis. Based on the 2D slices, the parameter of visualizing tooth-germ topography did not yield any significantly different ratings for MRI versus any of the CT scans. While some ratings for the other parameters did involve significant differences, how these should be interpreted depends greatly on the relevance of each parameter. Based on the 3D reconstructions, the only significant difference between technologies was noted for the parameter of visualizing root-surface morphology. Based on the final overall ratings, the imaging performance of the standard MRI protocol was noninferior to the performance of the three CT technologies. On comparing the imaging performance of MRI and CT scans, it becomes clear that MRI has a huge potential for applications in daily clinical practice. Given its additional benefits of a good contrast ratio and complete absence of ionizing radiation, further studies are needed to explore this clinical potential in greater detail.

  5. Magnetic resonance imaging of female prostate pathology.

    PubMed

    Wimpissinger, Florian; Tscherney, Robert; Stackl, Walter

    2009-06-01

    The female prostate (paraurethral glands) is a well-known, yet poorly understood, anatomic structure. Imaging studies of the female prostate, its physiology, and pathologies are still highly controversial. To study the anatomy of the female prostate with contemporary magnetic resonance imaging (MRI) techniques and correlate these findings to clinical features. Female prostate pathologic anatomy on MRI. Women with clinical signs of function (or dysfunction) of paraurethral glands have been examined with 1.5 or 3 Tesla MRI and urethroscopy. Seven women aged 17 to 62 years (median 40 years) have been prospectively included into the study. Clinically, one of the seven women reported ejaculation at orgasm, whereas three women presented with occasional secretions independent of sexual stimulation. In two women, paraurethral glands have been randomly found on MRI that has been performed in the diagnostic workup of other diseases. One woman presented with swelling of the external urethral meatus at puberty. In this woman, a paraurethral gland has been found, besides the erectile tissue at the external meatus. Two women reported lower urinary tract symptoms (LUTS) with mainly urethral symptoms (recurrent infections in one and paraurethral stones in the other). On MRI, paraurethral glands could be visualized in six of the seven patients. There was no relation between glandular volume and ejaculation status. In cases where glands or related pathologies could be found on physical examination, there was a clear correlation with MRI anatomy. MRI has the potential to become the standard imaging modality for female prostate pathology. Exact visualization of this highly variable structure is possible by tailored MRI protocols. This tool can aid in understanding an individual woman's symptoms related to paraurethral glands with an impact on her sexual life.

  6. Real time 3D visualization of intraoperative organ deformations using structured dictionary.

    PubMed

    Wang, Dan; Tewfik, Ahmed H

    2012-04-01

    Restricted visualization of the surgical field is one of the most critical challenges for minimally invasive surgery (MIS). Current intraoperative visualization systems are promising. However, they can hardly meet the requirements of high resolution and real time 3D visualization of the surgical scene to support the recognition of anatomic structures for safe MIS procedures. In this paper, we present a new approach for real time 3D visualization of organ deformations based on optical imaging patches with limited field-of-view and a single preoperative scan of magnetic resonance imaging (MRI) or computed tomography (CT). The idea for reconstruction is motivated by our empirical observation that the spherical harmonic coefficients corresponding to distorted surfaces of a given organ lie in lower dimensional subspaces in a structured dictionary that can be learned from a set of representative training surfaces. We provide both theoretical and practical designs for achieving these goals. Specifically, we discuss details about the selection of limited optical views and the registration of partial optical images with a single preoperative MRI/CT scan. The design proposed in this paper is evaluated with both finite element modeling data and ex vivo experiments. The ex vivo test is conducted on fresh porcine kidneys using 3D MRI scans with 1.2 mm resolution and a portable laser scanner with an accuracy of 0.13 mm. Results show that the proposed method achieves a sub-3 mm spatial resolution in terms of Hausdorff distance when using only one preoperative MRI scan and the optical patch from the single-sided view of the kidney. The reconstruction frame rate is between 10 frames/s and 39 frames/s depending on the complexity of the test model.

  7. A new integrated dual time-point amyloid PET/MRI data analysis method.

    PubMed

    Cecchin, Diego; Barthel, Henryk; Poggiali, Davide; Cagnin, Annachiara; Tiepolt, Solveig; Zucchetta, Pietro; Turco, Paolo; Gallo, Paolo; Frigo, Anna Chiara; Sabri, Osama; Bui, Franco

    2017-11-01

    In the initial evaluation of patients with suspected dementia and Alzheimer's disease, there is no consensus on how to perform semiquantification of amyloid in such a way that it: (1) facilitates visual qualitative interpretation, (2) takes the kinetic behaviour of the tracer into consideration particularly with regard to at least partially correcting for blood flow dependence, (3) analyses the amyloid load based on accurate parcellation of cortical and subcortical areas, (4) includes partial volume effect correction (PVEC), (5) includes MRI-derived topographical indexes, (6) enables application to PET/MRI images and PET/CT images with separately acquired MR images, and (7) allows automation. A method with all of these characteristics was retrospectively tested in 86 subjects who underwent amyloid ( 18 F-florbetaben) PET/MRI in a clinical setting (using images acquired 90-110 min after injection, 53 were classified visually as amyloid-negative and 33 as amyloid-positive). Early images after tracer administration were acquired between 0 and 10 min after injection, and later images were acquired between 90 and 110 min after injection. PVEC of the PET data was carried out using the geometric transfer matrix method. Parametric images and some regional output parameters, including two innovative "dual time-point" indexes, were obtained. Subjects classified visually as amyloid-positive showed a sparse tracer uptake in the primary sensory, motor and visual areas in accordance with the isocortical stage of the topographic distribution of the amyloid plaque (Braak stages V/VI). In patients classified visually as amyloid-negative, the method revealed detectable levels of tracer uptake in the basal portions of the frontal and temporal lobes, areas that are known to be sites of early deposition of amyloid plaques that probably represented early accumulation (Braak stage A) that is typical of normal ageing. There was a strong correlation between age and the indexes of the new dual time-point amyloid imaging method in amyloid-negative patients. The method can be considered a valuable tool in both routine clinical practice and in the research setting as it will standardize data regarding amyloid deposition. It could potentially also be used to identify early amyloid plaque deposition in younger subjects in whom treatment could theoretically be more effective.

  8. Automatical and accurate segmentation of cerebral tissues in fMRI dataset with combination of image processing and deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in medical science. One application is multimodality imaging, especially the fusion of structural imaging with functional imaging, which includes CT, MRI and new types of imaging technology such as optical imaging to obtain functional images. The fusion process require precisely extracted structural information, in order to register the image to it. Here we used image enhancement, morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in deep learning way. Such approach greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. The contours of the borders of different tissues on all images were accurately extracted and 3D visualized. This can be used in low-level light therapy and optical simulation software such as MCVM. We obtained a precise three-dimensional distribution of brain, which offered doctors and researchers quantitative volume data and detailed morphological characterization for personal precise medicine of Cerebral atrophy/expansion. We hope this technique can bring convenience to visualization medical and personalized medicine.

  9. The evaluation of correction algorithms of intensity nonuniformity in breast MRI images: a phantom study

    NASA Astrophysics Data System (ADS)

    Borys, Damian; Serafin, Wojciech; Gorczewski, Kamil; Kijonka, Marek; Frackiewicz, Mariusz; Palus, Henryk

    2018-04-01

    The aim of this work was to test the most popular and essential algorithms of the intensity nonuniformity correction of the breast MRI imaging. In this type of MRI imaging, especially in the proximity of the coil, the signal is strong but also can produce some inhomogeneities. Evaluated methods of signal correction were: N3, N3FCM, N4, Nonparametric, and SPM. For testing purposes, a uniform phantom object was used to obtain test images using breast imaging MRI coil. To quantify the results, two measures were used: integral uniformity and standard deviation. For each algorithm minimum, average and maximum values of both evaluation factors have been calculated using the binary mask created for the phantom. In the result, two methods obtained the lowest values in these measures: N3FCM and N4, however, for the second method visually phantom was the most uniform after correction.

  10. Functional localization of the human color center by decreased water displacement using diffusion-weighted fMRI.

    PubMed

    Williams, Rebecca J; Reutens, David C; Hocking, Julia

    2015-11-01

    Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.

  11. Nonvisualization of the ovaries on pelvic ultrasound: does MRI add anything?

    PubMed

    Lisanti, Christopher J; Wood, Jonathan R; Schwope, Ryan B

    2014-02-01

    The purpose of our study is to assess the utility of pelvic magnetic resonance imaging (MRI) in the event that either one or both ovaries are not visualized by pelvic ultrasound. This HIPAA-compliant retrospective study was approved by our local institutional review board and informed consent waived. 1926 pelvic MRI examinations between March 2007 and December 2011 were reviewed and included if a combined transabdominal and endovaginal pelvic ultrasound had been performed in the preceding 6 months with at least one ovary nonvisualized. Ovaries not visualized on pelvic ultrasound were assumed to be normal and compared with the pelvic MRI findings. MRI findings were categorized as concordant or discordant. Discordant findings were divided into malignant, non-malignant physiologic or non-malignant non-physiologic. The modified Wald, the "rule of thirds", and the binomial distribution probability tests were performed. 255 pelvic ultrasounds met inclusion criteria with 364 ovaries not visualized. 0 malignancies were detected on MRI. 6.9% (25/364) of nonvisualized ovaries had non-malignant discordant findings on MRI: 5.2% (19/364) physiologic, 1.6% (6/364) non-physiologic. Physiologic findings included: 16 functional cysts and 3 hemorrhagic cysts. Non-physiologic findings included: 3 cysts in post-menopausal women, 1 hydrosalpinx, and 2 broad ligament fibroids. The theoretical risk of detecting an ovarian carcinoma on pelvic MRI when an ovary is not visualized on ultrasound ranges from 0 to 1.3%. If an ovary is not visualized on pelvic ultrasound, it can be assumed to be without carcinoma and MRI rarely adds additional information.

  12. Visualization of the aneurysm wall: a 7.0-tesla magnetic resonance imaging study.

    PubMed

    Kleinloog, Rachel; Korkmaz, Emine; Zwanenburg, Jaco J M; Kuijf, Hugo J; Visser, Fredy; Blankena, Roos; Post, Jan A; Ruigrok, Ynte M; Luijten, Peter R; Regli, Luca; Rinkel, Gabriel J E; Verweij, Bon H

    2014-12-01

    Risk prediction of rupture of intracranial aneurysms is poor and is based mainly on lumen characteristics. However, characteristics of the aneurysm wall may be more informative predictors. The limited resolution of currently available imaging techniques and the thin aneurysm wall make imaging of wall thickness challenging. To introduce a novel protocol for imaging wall thickness variation using ultra--high-resolution 7.0-Tesla (7.0-T) magnetic resonance imaging (MRI). We studied 33 unruptured intracranial aneurysms in 24 patients with a T1-weighted 3-dimensional magnetization-prepared inversion-recovery turbo-spin-echo whole-brain sequence with a resolution of 0.8 × 0.8 × 0.8 mm. We performed a validation study with a wedge phantom and with 2 aneurysm wall biopsies obtained during aneurysm treatment using ex vivo MRI and histological examination and correlating variations in MRI signal intensity with variations in actual thickness of the aneurysm wall. In vivo, the aneurysm wall was visible in 28 of the 33 aneurysms. Variation in signal intensity was observed in all visible aneurysm walls. Ex vivo MRI showed variation in signal intensity across the wall of the biopsies, similar to that observed on the in vivo images. Signal intensity and actual thickness in both biopsies had a linear correlation, with Pearson correlation coefficients of 0.85 and 0.86. Unruptured intracranial aneurysm wall and its variation in thickness can be visualized with 7.0-T MRI. Aneurysm wall thickness variation can now be further studied as a risk factor for rupture in prospective studies.

  13. A Tool for Interactive Data Visualization: Application to Over 10,000 Brain Imaging and Phantom MRI Data Sets.

    PubMed

    Panta, Sandeep R; Wang, Runtang; Fries, Jill; Kalyanam, Ravi; Speer, Nicole; Banich, Marie; Kiehl, Kent; King, Margaret; Milham, Michael; Wager, Tor D; Turner, Jessica A; Plis, Sergey M; Calhoun, Vince D

    2016-01-01

    In this paper we propose a web-based approach for quick visualization of big data from brain magnetic resonance imaging (MRI) scans using a combination of an automated image capture and processing system, nonlinear embedding, and interactive data visualization tools. We draw upon thousands of MRI scans captured via the COllaborative Imaging and Neuroinformatics Suite (COINS). We then interface the output of several analysis pipelines based on structural and functional data to a t-distributed stochastic neighbor embedding (t-SNE) algorithm which reduces the number of dimensions for each scan in the input data set to two dimensions while preserving the local structure of data sets. Finally, we interactively display the output of this approach via a web-page, based on data driven documents (D3) JavaScript library. Two distinct approaches were used to visualize the data. In the first approach, we computed multiple quality control (QC) values from pre-processed data, which were used as inputs to the t-SNE algorithm. This approach helps in assessing the quality of each data set relative to others. In the second case, computed variables of interest (e.g., brain volume or voxel values from segmented gray matter images) were used as inputs to the t-SNE algorithm. This approach helps in identifying interesting patterns in the data sets. We demonstrate these approaches using multiple examples from over 10,000 data sets including (1) quality control measures calculated from phantom data over time, (2) quality control data from human functional MRI data across various studies, scanners, sites, (3) volumetric and density measures from human structural MRI data across various studies, scanners and sites. Results from (1) and (2) show the potential of our approach to combine t-SNE data reduction with interactive color coding of variables of interest to quickly identify visually unique clusters of data (i.e., data sets with poor QC, clustering of data by site) quickly. Results from (3) demonstrate interesting patterns of gray matter and volume, and evaluate how they map onto variables including scanners, age, and gender. In sum, the proposed approach allows researchers to rapidly identify and extract meaningful information from big data sets. Such tools are becoming increasingly important as datasets grow larger.

  14. Longitudinal assessment of childhood optic gliomas: relationship between flicker visual evoked potentials and magnetic resonance imaging findings.

    PubMed

    Falsini, Benedetto; Ziccardi, Lucia; Lazzareschi, Ilaria; Ruggiero, Antonio; Placentino, Luca; Dickmann, Anna; Liotti, Lucia; Piccardi, Marco; Balestrazzi, Emilio; Colosimo, Cesare; Di Rocco, Concezio; Riccardi, Riccardo

    2008-05-01

    The aim of this study was to evaluate longitudinally functional and neuro-radiologic findings in childhood optic gliomas (OG), by comparing flicker visual evoked potentials (F-VEPs) with brain magnetic resonance imaging (MRI) changes. Fourteen children (age range: 1-13 years) with OGs underwent serial F-VEP, MRI and neuro-ophthalmic examinations over a 38 month (median, range: 6-76) follow-up. F-VEPs were elicited by 8 Hz sine-wave flicker stimuli presented in a mini-Ganzfeld. Contrast-enhanced MRI examinations were performed. Results of both tests were blindly assessed by independent evaluators. F-VEPs were judged to be improved, stable or worsened if changes in the amplitude and/or phase angle of the response exceeded the limits of test-retest variability (+/-90th percentile) established for the same patients. MRI results were judged to show regression, stabilization or progression of OG based on its changes in size (+/-20%) or extension. Two to seven pairs of F-VEP/MRI examinations per patient (median: 4) were collected. Based on a total of 38 pairs of F-VEP/MRI examinations, both tests agreed in showing worsening (progression), stabilization and improvement (regression) in 5, 15 and 10 cases, respectively. In 3 cases, F-VEPs showed a worsening and MRI a stabilization, while in 5 cases F-VEPs showed an improvement and MRI a stabilization. Agreement between F-VEP and MRI changes was 78.9% (95% CI: +/- 37%, K statistics = 0.67, P < 0.001). The results indicate that longitudinal F-VEP changes can predict changes in MRI-assessed OG size and extension, providing a non-invasive functional assay, complementary to neuro-imaging, for OG follow-up.

  15. A Novel Functional Magnetic Resonance Imaging Paradigm for the Preoperative Assessment of Auditory Perception in a Musician Undergoing Temporal Lobe Surgery.

    PubMed

    Hale, Matthew D; Zaman, Arshad; Morrall, Matthew C H J; Chumas, Paul; Maguire, Melissa J

    2018-03-01

    Presurgical evaluation for temporal lobe epilepsy routinely assesses speech and memory lateralization and anatomic localization of the motor and visual areas but not baseline musical processing. This is paramount in a musician. Although validated tools exist to assess musical ability, there are no reported functional magnetic resonance imaging (fMRI) paradigms to assess musical processing. We examined the utility of a novel fMRI paradigm in an 18-year-old left-handed pianist who underwent surgery for a left temporal low-grade ganglioglioma. Preoperative evaluation consisted of neuropsychological evaluation, T1-weighted and T2-weighted magnetic resonance imaging, and fMRI. Auditory blood oxygen level-dependent fMRI was performed using a dedicated auditory scanning sequence. Three separate auditory investigations were conducted: listening to, humming, and thinking about a musical piece. All auditory fMRI paradigms activated the primary auditory cortex with varying degrees of auditory lateralization. Thinking about the piece additionally activated the primary visual cortices (bilaterally) and right dorsolateral prefrontal cortex. Humming demonstrated left-sided predominance of auditory cortex activation with activity observed in close proximity to the tumor. This study demonstrated an fMRI paradigm for evaluating musical processing that could form part of preoperative assessment for patients undergoing temporal lobe surgery for epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The neuropsychological and neuroradiological correlates of slowly progressive visual agnosia.

    PubMed

    Giovagnoli, Anna Rita; Aresi, Anna; Reati, Fabiola; Riva, Alice; Gobbo, Clara; Bizzi, Alberto

    2009-04-01

    The case of a 64-year-old woman affected by slowly progressive visual agnosia is reported aiming to describe specific cognitive-brain relationships. Longitudinal clinical and neuropsychological assessment, combined with magnetic resonance imaging (MRI), spectroscopy, and positron emission tomography (PET) were used. Sequential neuropsychological evaluations performed during a period of 9 years since disease onset showed the appearance of apperceptive and associative visual agnosia, alexia without agraphia, agraphia, finger agnosia, and prosopoagnosia, but excluded dementia. MRI showed moderate diffuse cortical atrophy, with predominant atrophy in the left posterior cortical areas (temporal, parietal, and lateral occipital cortical gyri). 18FDG-PET showed marked bilateral posterior cortical hypometabolism; proton magnetic resonance spectroscopic imaging disclosed severe focal N-acetyl-aspartate depletion in the left temporoparietal and lateral occipital cortical areas. In conclusion, selective metabolic alterations and neuronal loss in the left temporoparietooccipital cortex may determine progressive visual agnosia in the absence of dementia.

  17. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease.

    PubMed

    Nörenberg, Dominik; Ebersberger, Hans U; Diederichs, Gerd; Hamm, Bernd; Botnar, René M; Makowski, Marcus R

    2016-03-01

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. Targeted MR-probes allow the characterization of atherosclerosis on a molecular level. Molecular MRI can identify in vivo markers for the differentiation of stable and unstable plaques. Visualization of early molecular changes has the potential to improve patient-individualized risk-assessment.

  18. Search for Patterns of Functional Specificity in the Brain: A Nonparametric Hierarchical Bayesian Model for Group fMRI Data

    PubMed Central

    Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina

    2012-01-01

    Functional MRI studies have uncovered a number of brain areas that demonstrate highly specific functional patterns. In the case of visual object recognition, small, focal regions have been characterized with selectivity for visual categories such as human faces. In this paper, we develop an algorithm that automatically learns patterns of functional specificity from fMRI data in a group of subjects. The method does not require spatial alignment of functional images from different subjects. The algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to learn the patterns of functional specificity shared across the group, which we call functional systems, and estimate the number of these systems. Inference based on our model enables automatic discovery and characterization of dominant and consistent functional systems. We apply the method to data from a visual fMRI study comprised of 69 distinct stimulus images. The discovered system activation profiles correspond to selectivity for a number of image categories such as faces, bodies, and scenes. Among systems found by our method, we identify new areas that are deactivated by face stimuli. In empirical comparisons with perviously proposed exploratory methods, our results appear superior in capturing the structure in the space of visual categories of stimuli. PMID:21884803

  19. Magnetic Resonance Imaging of Surgical Implants Made from Weak Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Gogola, D.; Krafčík, A.; Štrbák, O.; Frollo, I.

    2013-08-01

    Materials with high magnetic susceptibility cause local inhomogeneities in the main field of the magnetic resonance (MR) tomograph. These inhomogeneities lead to loss of phase coherence, and thus to a rapid loss of signal in the image. In our research we investigated inhomogeneous field of magnetic implants such as magnetic fibers, designed for inner suture during surgery. The magnetic field inhomogeneities were studied at low magnetic planar phantom, which was made from four thin strips of magnetic tape, arranged grid-wise. We optimized the properties of imaging sequences with the aim to find the best setup for magnetic fiber visualization. These fibers can be potentially exploited in surgery for internal stitches. Stitches can be visualized by the magnetic resonance imaging (MRI) method after surgery. This study shows that the imaging of magnetic implants is possible by using the low field MRI systems, without the use of complicated post processing techniques (e.g., IDEAL).

  20. Magnetic resonance imaging-a diagnostic tool for postoperative evaluation of dental implants: a case report.

    PubMed

    Wanner, Laura; Ludwig, Ute; Hövener, Jan-Bernd; Nelson, Katja; Flügge, Tabea

    2018-04-01

    Compared with cone beam computed tomography (CBCT), magnetic resonance imaging (MRI) might be superior for the diagnosis of nerve lesions associated with implant placement. A patient presented with unilateral pain associated with dysesthesia in the region of the right lower lip and chin after implant placement. Conventional orthopantomography could not identify an association between the position of the inferior alveolar nerve and the implant. For 3-dimensional display of the implant in relation to the surrounding anatomy, CBCT was compared with MRI. MRI enabled the precise depiction of the implant position and its spatial relation to the inferior alveolar nerve, whereas the nerve position and its exact course within the mandible could not be directly displayed in CBCT. MRI may be a valuable, radiation-free diagnostic tool for the visualization of intraoral hard and soft tissues, offering an objective assessment of nerve injuries by a direct visualization of the inferior alveolar neurovascular bundle. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Advanced magnetic resonance imaging of neurodegenerative diseases.

    PubMed

    Agosta, Federica; Galantucci, Sebastiano; Filippi, Massimo

    2017-01-01

    Magnetic resonance imaging (MRI) is playing an increasingly important role in the study of neurodegenerative diseases, delineating the structural and functional alterations determined by these conditions. Advanced MRI techniques are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression. This aspect will become crucial when disease-modifying (personalized) therapies will be established. MRI techniques are very diverse and go from the visual inspection of MRI scans to more complex approaches, such as manual and automatic volume measurements, diffusion tensor MRI, and functional MRI. All these techniques allow us to investigate the different features of neurodegeneration. In this review, we summarize the most recent advances concerning the use of MRI in some of the most important neurodegenerative conditions, putting an emphasis on the advanced techniques.

  2. Gas Phase UTE MRI of Propane and Propene

    PubMed Central

    Kovtunov, Kirill V.; Romanov, Alexey S.; Salnikov, Oleg G.; Barskiy, Danila A.; Chekmenev, Eduard Y.; Koptyug, Igor V.

    2016-01-01

    1H MRI of gases can potentially enable functional lung imaging to probe gas ventilation and other functions. In this work, 1H MR images of hyperpolarized and thermally polarized propane gas were obtained using UTE (ultrashort echo time) pulse sequence. A 2D image of thermally polarized propane gas with ~0.9×0.9 mm2 spatial resolution was obtained in less than 2 seconds, demonstrating that even non-hyperpolarized hydrocarbon gases can be successfully utilized for conventional proton MRI. The experiments were also performed with hyperpolarized propane gas and demonstrated acquisition of high-resolution multi-slice FLASH 2D images in ca. 510 s and non slice-selective 2D UTE MRI images in ca. 2 s. The UTE approach adopted in this study can be potentially used for medical lung imaging. Furthermore, the possibility to combine UTE with selective suppression of 1H signals from one of the two gases in a mixture is demonstrated in this MRI study. The latter can be useful for visualizing industrially important processes where several gases may be present, e.g., gas-solid catalytic reactions. PMID:27478870

  3. Dynamic Imaging of the Eye, Optic Nerve, and Extraocular Muscles With Golden Angle Radial MRI

    PubMed Central

    Smith, David S.; Smith, Alex K.; Welch, E. Brian; Smith, Seth A.

    2017-01-01

    Purpose The eye and its accessory structures, the optic nerve and the extraocular muscles, form a complex dynamic system. In vivo magnetic resonance imaging (MRI) of this system in motion can have substantial benefits in understanding oculomotor functioning in health and disease, but has been restricted to date to imaging of static gazes only. The purpose of this work was to develop a technique to image the eye and its accessory visual structures in motion. Methods Dynamic imaging of the eye was developed on a 3-Tesla MRI scanner, based on a golden angle radial sequence that allows freely selectable frame-rate and temporal-span image reconstructions from the same acquired data set. Retrospective image reconstructions at a chosen frame rate of 57 ms per image yielded high-quality in vivo movies of various eye motion tasks performed in the scanner. Motion analysis was performed for a left–right version task where motion paths, lengths, and strains/globe angle of the medial and lateral extraocular muscles and the optic nerves were estimated. Results Offline image reconstructions resulted in dynamic images of bilateral visual structures of healthy adults in only ∼15-s imaging time. Qualitative and quantitative analyses of the motion enabled estimation of trajectories, lengths, and strains on the optic nerves and extraocular muscles at very high frame rates of ∼18 frames/s. Conclusions This work presents an MRI technique that enables high-frame-rate dynamic imaging of the eyes and orbital structures. The presented sequence has the potential to be used in furthering the understanding of oculomotor mechanics in vivo, both in health and disease. PMID:28813574

  4. Reading visually embodied meaning from the brain: Visually grounded computational models decode visual-object mental imagery induced by written text.

    PubMed

    Anderson, Andrew James; Bruni, Elia; Lopopolo, Alessandro; Poesio, Massimo; Baroni, Marco

    2015-10-15

    Embodiment theory predicts that mental imagery of object words recruits neural circuits involved in object perception. The degree of visual imagery present in routine thought and how it is encoded in the brain is largely unknown. We test whether fMRI activity patterns elicited by participants reading objects' names include embodied visual-object representations, and whether we can decode the representations using novel computational image-based semantic models. We first apply the image models in conjunction with text-based semantic models to test predictions of visual-specificity of semantic representations in different brain regions. Representational similarity analysis confirms that fMRI structure within ventral-temporal and lateral-occipital regions correlates most strongly with the image models and conversely text models correlate better with posterior-parietal/lateral-temporal/inferior-frontal regions. We use an unsupervised decoding algorithm that exploits commonalities in representational similarity structure found within both image model and brain data sets to classify embodied visual representations with high accuracy (8/10) and then extend it to exploit model combinations to robustly decode different brain regions in parallel. By capturing latent visual-semantic structure our models provide a route into analyzing neural representations derived from past perceptual experience rather than stimulus-driven brain activity. Our results also verify the benefit of combining multimodal data to model human-like semantic representations. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. How task demands shape brain responses to visual food cues.

    PubMed

    Pohl, Tanja Maria; Tempelmann, Claus; Noesselt, Toemme

    2017-06-01

    Several previous imaging studies have aimed at identifying the neural basis of visual food cue processing in humans. However, there is little consistency of the functional magnetic resonance imaging (fMRI) results across studies. Here, we tested the hypothesis that this variability across studies might - at least in part - be caused by the different tasks employed. In particular, we assessed directly the influence of task set on brain responses to food stimuli with fMRI using two tasks (colour vs. edibility judgement, between-subjects design). When participants judged colour, the left insula, the left inferior parietal lobule, occipital areas, the left orbitofrontal cortex and other frontal areas expressed enhanced fMRI responses to food relative to non-food pictures. However, when judging edibility, enhanced fMRI responses to food pictures were observed in the superior and middle frontal gyrus and in medial frontal areas including the pregenual anterior cingulate cortex and ventromedial prefrontal cortex. This pattern of results indicates that task sets can significantly alter the neural underpinnings of food cue processing. We propose that judging low-level visual stimulus characteristics - such as colour - triggers stimulus-related representations in the visual and even in gustatory cortex (insula), whereas discriminating abstract stimulus categories activates higher order representations in both the anterior cingulate and prefrontal cortex. Hum Brain Mapp 38:2897-2912, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Robotic System for MRI-Guided Stereotactic Neurosurgery

    PubMed Central

    Li, Gang; Cole, Gregory A.; Shang, Weijian; Harrington, Kevin; Camilo, Alex; Pilitsis, Julie G.; Fischer, Gregory S.

    2015-01-01

    Stereotaxy is a neurosurgical technique that can take several hours to reach a specific target, typically utilizing a mechanical frame and guided by preoperative imaging. An error in any one of the numerous steps or deviations of the target anatomy from the preoperative plan such as brain shift (up to 20 mm), may affect the targeting accuracy and thus the treatment effectiveness. Moreover, because the procedure is typically performed through a small burr hole opening in the skull that prevents tissue visualization, the intervention is basically “blind” for the operator with limited means of intraoperative confirmation that may result in reduced accuracy and safety. The presented system is intended to address the clinical needs for enhanced efficiency, accuracy, and safety of image-guided stereotactic neurosurgery for Deep Brain Stimulation (DBS) lead placement. The work describes a magnetic resonance imaging (MRI)-guided, robotically actuated stereotactic neural intervention system for deep brain stimulation procedure, which offers the potential of reducing procedure duration while improving targeting accuracy and enhancing safety. This is achieved through simultaneous robotic manipulation of the instrument and interactively updated in situ MRI guidance that enables visualization of the anatomy and interventional instrument. During simultaneous actuation and imaging, the system has demonstrated less than 15% signal-to-noise ratio (SNR) variation and less than 0.20% geometric distortion artifact without affecting the imaging usability to visualize and guide the procedure. Optical tracking and MRI phantom experiments streamline the clinical workflow of the prototype system, corroborating targeting accuracy with 3-axis root mean square error 1.38 ± 0.45 mm in tip position and 2.03 ± 0.58° in insertion angle. PMID:25376035

  7. SU-C-17A-02: Sirius MRI Markers for Prostate Post-Implant Assessment: MR Protocol Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, T; Wang, J; Kudchadker, R

    Purpose: Currently, CT is used to visualize prostate brachytherapy sources, at the expense of accurate structure contouring. MRI is superior to CT for anatomical delineation, but the sources appear as voids on MRI images. Previously we have developed Sirius MRI markers (C4 Imaging) to replace spacers to assist source localization on MRI images. Here we develop an MRI pulse sequence protocol that enhances the signal of these markers to enable MRI-only post-implant prostate dosimetric analysis. Methods: To simulate a clinical scenario, a CIRS multi-modality prostate phantom was implanted with 66 markers and 86 sources. The implanted phantom was imaged onmore » both 1.5T and 3.0T GE scanners under various conditions, different pulse sequences (2D fast spin echo [FSE], 3D balanced steadystate free precession [bSSFP] and 3D fast spoiled gradient echo [FSPGR]), as well as varying amount of padding to simulate various patient sizes and associated signal fall-off from the surface coil elements. Standard FSE sequences from the current clinical protocols were also evaluated. Marker visibility, marker size, intra-marker distance, total scan time and artifacts were evaluated for various combinations of echo time, repetition time, flip angle, number of excitations, bandwidth, slice thickness and spacing, fieldof- view, frequency/phase encoding steps and frequency direction. Results: We have developed a 3D FSPGR pulse sequence that enhances marker signal and ensures the integrity of the marker shape while maintaining reasonable scan time. For patients contraindicated for 3.0T, we have also developed a similar sequence for 1.5T scanners. Signal fall-off with distance from prostate to coil can be compensated mainly by decreasing bandwidth. The markers are not visible using standard FSE sequences. FSPGR sequences are more robust for consistent marker visualization as compared to bSSFP sequences. Conclusion: The developed MRI pulse sequence protocol for Sirius MRI markers assists source localization to enable MRIonly post-implant prostate dosimetric analysis. S.J. Frank is a co-founder of C4 Imaging (manufactures the MRI markers)« less

  8. Off-resonance saturation magnetic resonance imaging of superparamagnetic polymeric micelles.

    PubMed

    Khemtong, Chalermchai; Kessinger, Chase W; Togao, Osamu; Ren, Jimin; Takahashi, Masaya; Sherry, A Dean; Gao, Jinming

    2009-01-01

    An off-resonance saturation (ORS) method was used for magnetic resonance imaging of superparamagnetic polymeric micelles (SPPM). SPPM was produced by encapsulating a cluster of magnetite nanoparticles (9.9+/-0.4 nm in diameter) in poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) copolymer micelles (micelle diameter: 60+/-9 nm). In ORS MRI, a selective radiofrequency (RF) pulse was applied at an off-resonance position (0-50 ppm) from the bulk water signal, and the SPPM particles were visualized by the contrast on a division image constructed from two images acquired with and without pre-saturation. Here, the effects of saturation offset frequencies, saturation durations, and RF powers on ORS contrasts were investigated as these parameters are critical for optimization of ORS MRI for in vivo imaging applications. The ability to turn "ON" and "OFF" ORS contrast of SPPM solutions permits for an accurate image subtraction and a contrast enhancement to visualize SPPM probes for in vivo imaging of cancer.

  9. Perceptual Measurement in Schizophrenia: Promising Electrophysiology and Neuroimaging Paradigms From CNTRICS

    PubMed Central

    Butler, Pamela D.; Chen, Yue; Ford, Judith M.; Geyer, Mark A.; Silverstein, Steven M.; Green, Michael F.

    2012-01-01

    The sixth meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) focused on selecting promising imaging paradigms for each of the cognitive constructs selected in the first CNTRICS meeting. In the domain of perception, the 2 constructs of interest were “gain control” and “visual integration.” CNTRICS received 6 task nominations for imaging paradigms for gain control and 3 task nominations for integration. The breakout group for perception evaluated the degree to which each of these tasks met prespecified criteria. For gain control, the breakout group believed that one task (mismatch negativity) was already mature and was being incorporated into multisite clinical trials. The breakout group recommended that 1 visual task (steady-state visual evoked potentials to magnocellular- vs parvocellular-biased stimuli) and 2 auditory measures (an event-related potential (ERP) measure of corollary discharge and a functional magnetic resonance imaging (fMRI) version of prepulse inhibition of startle) be adapted for use in clinical trials in schizophrenia research. For visual integration, the breakout group recommended that fMRI and ERP versions of a contour integration test and an fMRI version of a coherent motion test be adapted for use in clinical trials. This manuscript describes the ways in which each of these tasks met the criteria used in the breakout group to evaluate and recommend tasks for further development. PMID:21890745

  10. [Retinotopic mapping of the human visual cortex with functional magnetic resonance imaging - basic principles, current developments and ophthalmological perspectives].

    PubMed

    Hoffmann, M B; Kaule, F; Grzeschik, R; Behrens-Baumann, W; Wolynski, B

    2011-07-01

    Since its initial introduction in the mid-1990 s, retinotopic mapping of the human visual cortex, based on functional magnetic resonance imaging (fMRI), has contributed greatly to our understanding of the human visual system. Multiple cortical visual field representations have been demonstrated and thus numerous visual areas identified. The organisation of specific areas has been detailed and the impact of pathophysiologies of the visual system on the cortical organisation uncovered. These results are based on investigations at a magnetic field strength of 3 Tesla or less. In a field-strength comparison between 3 and 7 Tesla, it was demonstrated that retinotopic mapping benefits from a magnetic field strength of 7 Tesla. Specifically, the visual areas can be mapped with high spatial resolution for a detailed analysis of the visual field maps. Applications of fMRI-based retinotopic mapping in ophthalmological research hold promise to further our understanding of plasticity in the human visual cortex. This is highlighted by pioneering studies in patients with macular dysfunction or misrouted optic nerves. © Georg Thieme Verlag KG Stuttgart · New York.

  11. MRI Evidence of Endolymphatic Impermeability to the Gadolinium Molecule in the In Vivo Mouse Inner Ear at 9.4 Tesla

    PubMed Central

    Counter, S Allen; Nikkhou, Sahar; Brené, Stefan; Damberg, Peter; Sierakowiak, Adam; Klason, Tomas; Berglin, Cecilia Engmér; Laurell, Göran

    2013-01-01

    Objective: Previous in vivo experimental magnetic resonance imaging (MRI) investigations of the mammalian inner ear at 4.7 Tesla have indicated that intravenously injected gadolinium (Gd) penetrates the perilymphatic labyrinth, but not the endolymphatic membranous labyrinth. In the present study, high field MRI at 9.4T was used to visualize the in vivo mouse vestibulo-cochlea system, and to determine whether the endolymphatic system is permeable to a Gd complex. Methods: A 9.4 T Varian magnet equipped with a 12 cm inner diameter gradient system with maximum gradient strength of 600 mT/m, a millipede coil (Varian design) and a Gd contrast agent were used for image acquisition in the normal C57 BL-6 mouse. Results: High-resolution 2D and 3D images of the mouse cochlea were acquired within 80 minutes following intravenous injection of Gd. Gd initially permeated the perilymphatic scala tympani and scala vestibuli, and permitted visualization of both cochlear turns from base to apex. The superior, inferior and lateral semicircular canals were subsequently visualized in 3 planes. The membranous endolymphatic labyrinth was impermeable to intravenously injected Gd, and thus showed no apparent uptake of Gd at 9.4T. Conclusion: The 9.4T field strength MRI permitted acquisition of high resolution images of anatomical and physiological features of the normal, wild type mouse perilymphatic inner ear in vivo, and provided further evidence that the endolymphatic system is impermeable to intravenously injected Gd. PMID:23894262

  12. In Vivo Molecular Imaging of Acute and Subacute Thrombosis Using a Fibrin-Binding Magnetic Resonance Imaging Contrast Agent

    PubMed Central

    Botnar, René M.; Perez, Alexandra S.; Witte, Sonia; Wiethoff, Andrea J.; Laredo, James; Hamilton, James; Quist, William; Parsons, Edward C.; Vaidya, Anand; Kolodziej, Andrew; Barrett, John A.; Graham, Philip B.; Weisskoff, Robert M.; Manning, Warren J.; Johnstone, Michael T.

    2010-01-01

    Background Plaque rupture with subsequent thrombosis is recognized as the underlying pathophysiology of most acute coronary syndromes and stroke. Thus, direct thrombus visualization may be beneficial for both diagnosis and guidance of therapy. We sought to test the feasibility of direct imaging of acute and subacute thrombosis using MRI together with a novel fibrin-binding gadolinium-labeled peptide, EP-1873, in an experimental animal model of plaque rupture and thrombosis. Methods and Results Fifteen male New Zealand White rabbits (weight, ≈3.5 kg) were made atherosclerotic by feeding a high-cholesterol diet after endothelial aortic injury. Plaque rupture was then induced with the use of Russell’s viper venom (RVV) and histamine. Subsequently, MRI of the subrenal aorta was performed before RVV, after RVV, and after EP-1873. Histology was performed on regions suggested by MRI to contain thrombus. Nine rabbits (60%) developed plaque rupture and thrombus, including 25 thrombi visually apparent on MRI as “hot spots” after injection of EP-1873. Histological correlation confirmed all 25 thrombi (100%), with no thrombi seen in the other regions of the aorta. In the remaining 6 rabbits (control) without plaque rupture, no thrombus was observed on the MR images or on histology. Conclusions We demonstrate the feasibility of in vivo “molecular” MRI for the detection of acute and subacute thrombosis using a novel fibrin-binding MRI contrast agent in an animal model of atherosclerosis and acute/subacute thrombosis. Potential clinical applications include thrombus detection in acute coronary syndromes and stroke. PMID:15066940

  13. Visual feature extraction from voxel-weighted averaging of stimulus images in 2 fMRI studies.

    PubMed

    Hart, Corey B; Rose, William J

    2013-11-01

    Multiple studies have provided evidence for distributed object representation in the brain, with several recent experiments leveraging basis function estimates for partial image reconstruction from fMRI data. Using a novel combination of statistical decomposition, generalized linear models, and stimulus averaging on previously examined image sets and Bayesian regression of recorded fMRI activity during presentation of these data sets, we identify a subset of relevant voxels that appear to code for covarying object features. Using a technique we term "voxel-weighted averaging," we isolate image filters that these voxels appear to implement. The results, though very cursory, appear to have significant implications for hierarchical and deep-learning-type approaches toward the understanding of neural coding and representation.

  14. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  15. Effects of hypoglycemia on human brain activation measured with fMRI.

    PubMed

    Anderson, Adam W; Heptulla, Rubina A; Driesen, Naomi; Flanagan, Daniel; Goldberg, Philip A; Jones, Timothy W; Rife, Fran; Sarofin, Hedy; Tamborlane, William; Sherwin, Robert; Gore, John C

    2006-07-01

    Functional magnetic resonance imaging (fMRI) was used to measure the effects of acute hypoglycemia caused by passive sensory stimulation on brain activation. Visual stimulation was used to generate blood-oxygen-level-dependent (BOLD) contrast, which was monitored during hyperinsulinemic hypoglycemic and euglycemic clamp studies. Hypoglycemia (50 +/- 1 mg glucose/dl) decreased the fMRI signal relative to euglycemia in 10 healthy human subjects: the fractional signal change was reduced by 28 +/- 12% (P < .05). These changes were reversed when euglycemia was restored. These data provide a basis of comparison for studies that quantify hypoglycemia-related changes in fMRI activity during cognitive tasks based on visual stimuli and demonstrate that variations in blood glucose levels may modulate BOLD signals in the healthy brain.

  16. MRI-powered biomedical devices.

    PubMed

    Hovet, Sierra; Ren, Hongliang; Xu, Sheng; Wood, Bradford; Tokuda, Junichi; Tse, Zion Tsz Ho

    2017-11-16

    Magnetic resonance imaging (MRI) is beneficial for imaging-guided procedures because it provides higher resolution images and better soft tissue contrast than computed tomography (CT), ultrasound, and X-ray. MRI can be used to streamline diagnostics and treatment because it does not require patients to be repositioned between scans of different areas of the body. It is even possible to use MRI to visualize, power, and control medical devices inside the human body to access remote locations and perform minimally invasive procedures. Therefore, MR conditional medical devices have the potential to improve a wide variety of medical procedures; this potential is explored in terms of practical considerations pertaining to clinical applications and the MRI environment. Recent advancements in this field are introduced with a review of clinically relevant research in the areas of interventional tools, endovascular microbots, and closed-loop controlled MRI robots. Challenges related to technology and clinical feasibility are discussed, including MRI based propulsion and control, navigation of medical devices through the human body, clinical adoptability, and regulatory issues. The development of MRI-powered medical devices is an emerging field, but the potential clinical impact of these devices is promising.

  17. [Anatomy of the skull base and the cranial nerves in slice imaging].

    PubMed

    Bink, A; Berkefeld, J; Zanella, F

    2009-07-01

    Computed tomography (CT) and magnetic resonance imaging (MRI) are suitable methods for examination of the skull base. Whereas CT is used to evaluate mainly bone destruction e.g. for planning surgical therapy, MRI is used to show pathologies in the soft tissue and bone invasion. High resolution and thin slice thickness are indispensible for both modalities of skull base imaging. Detailed anatomical knowledge is necessary even for correct planning of the examination procedures. This knowledge is a requirement to be able to recognize and interpret pathologies. MRI is the method of choice for examining the cranial nerves. The total path of a cranial nerve can be visualized by choosing different sequences taking into account the tissue surrounding this cranial nerve. This article summarizes examination methods of the skull base in CT and MRI, gives a detailed description of the anatomy and illustrates it with image examples.

  18. MRI versus breast-specific gamma imaging (BSGI) in newly diagnosed ductal cell carcinoma-in-situ: a prospective head-to-head trial.

    PubMed

    Keto, Jessica L; Kirstein, Laurie; Sanchez, Diana P; Fulop, Tamara; McPartland, Laura; Cohen, Ilona; Boolbol, Susan K

    2012-01-01

    Mammography remains the standard imaging technique for the diagnosis of ductal carcinoma-in-situ (DCIS). Functional breast imaging, including breast magnetic resonance imaging (MRI), has known limitations in evaluating DCIS. To date, there are limited data on the utility of breast-specific gamma imaging (BSGI) in DCIS. We sought to prospectively compare the sensitivity of BSGI to MRI in newly diagnosed DCIS patients. Patients with newly diagnosed DCIS from June 1, 2009, through May 31, 2010, underwent a protocol with both breast MRI and BSGI. Each imaging study was read by a separate dedicated breast radiologist. Patients were excluded if excisional biopsy was performed for diagnosis, if their MRI was performed at an outside facility, or if final pathology revealed invasive carcinoma. There were 18 patients enrolled onto the study that had both MRI and BSGI for newly diagnosed DCIS. The sensitivity for MRI was 94% and for BSGI was 89% (P > 0.5, NS). There was one index tumor not seen on either MRI or BSGI, and one index tumor seen on MRI but not visualized on BSGI. Although BSGI has previously been shown to be as sensitive as MRI for detecting known invasive breast carcinoma, this study shows that BSGI is equally as sensitive as MRI at detecting newly diagnosed DCIS. As a result of the limited number of patients enrolled onto the study, larger prospective studies need to be performed to determine the true sensitivity and specificity of BSGI.

  19. Water and fat separation in real-time MRI of joint movement with phase-sensitive bSSFP.

    PubMed

    Mazzoli, Valentina; Nederveen, Aart J; Oudeman, Jos; Sprengers, Andre; Nicolay, Klaas; Strijkers, Gustav J; Verdonschot, Nico

    2017-07-01

    To introduce a method for obtaining fat-suppressed images in real-time MRI of moving joints at 3 Tesla (T) using a bSSFP sequence with phase detection to enhance visualization of soft tissue structures during motion. The wrist and knee of nine volunteers were imaged with a real-time bSSFP sequence while performing dynamic tasks. For appropriate choice of sequence timing parameters, water and fat pixels showed an out-of-phase behavior, which was exploited to reconstruct water and fat images. Additionally, a 2-point Dixon sequence was used for dynamic imaging of the joints, and resulting water and fat images were compared with our proposed method. The joints could be visualized with good water-fat separation and signal-to-noise ratio (SNR), while maintaining a relatively high temporal resolution (5 fps in knee imaging and 10 fps in wrist imaging). The proposed method produced images of moving joints with higher SNR and higher image quality when compared with the Dixon method. Water-fat separation is feasible in real-time MRI of moving knee and wrist at 3 T. PS-bSSFP offers movies with higher SNR and higher diagnostic quality when compared with Dixon scans. Magn Reson Med 78:58-68, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Detection of different kidney stone types: an ex vivo comparison of ultrashort echo time MRI to reference standard CT.

    PubMed

    Ibrahim, El-Sayed H; Cernigliaro, Joseph G; Pooley, Robert A; Bridges, Mellena D; Giesbrandt, Jamie G; Williams, James C; Haley, William E

    2016-01-01

    With the development of ultrashort echo time (UTE) sequences, it may now be possible to detect kidney stones by using magnetic resonance imaging (MRI). In this study, kidney stones of varying composition and sizes were imaged using both UTE MRI as well as the reference standard of computed tomography (CT), with different surrounding materials and scan setups. One hundred and fourteen kidney stones were inserted into agarose and urine phantoms and imaged both on a dual-energy CT (DECT) scanner using a standard renal stone imaging protocol and on an MRI scanner using the UTE sequence with both head and body surface coils. A subset of the stones representing all composition types and sizes was then inserted into the collecting system of porcine kidneys and imaged in vitro with both CT and MRI. All of the stones were visible on both CT and MRI imaging. DECT was capable of differentiating between uric acid and nonuric acid stones. In MRI imaging, the choice of coil and large field of view (FOV) did not affect stone detection or image quality. The MRI images showed good visualization of the stones' shapes, and the stones' dimensions measured from MRI were in good agreement with the actual values (R(2)=0.886, 0.895, and 0.81 in the agarose phantom, urine phantom, and pig kidneys, respectively). The measured T2 relaxation times ranged from 4.2 to 7.5ms, but did not show significant differences among different stone composition types. UTE MRI compared favorably with the reference standard CT for imaging stones of different composition types and sizes using body surface coil and large FOV, which suggests potential usefulness of UTE MRI in imaging kidney stones in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Correlation of MRI Visual Scales with Neuropsychological Profile in Mild Cognitive Impairment of Parkinson's Disease.

    PubMed

    Vasconcellos, Luiz Felipe; Pereira, João Santos; Adachi, Marcelo; Greca, Denise; Cruz, Manuela; Malak, Ana Lara; Charchat-Fichman, Helenice; Spitz, Mariana

    2017-01-01

    Few studies have evaluated magnetic resonance imaging (MRI) visual scales in Parkinson's disease-Mild Cognitive Impairment (PD-MCI). We selected 79 PD patients and 92 controls (CO) to perform neurologic and neuropsychological evaluation. Brain MRI was performed to evaluate the following scales: Global Cortical Atrophy (GCA), Fazekas, and medial temporal atrophy (MTA). The analysis revealed that both PD groups (amnestic and nonamnestic) showed worse performance on several tests when compared to CO. Memory, executive function, and attention impairment were more severe in amnestic PD-MCI group. Overall analysis of frequency of MRI visual scales by MCI subtype did not reveal any statistically significant result. Statistically significant inverse correlation was observed between GCA scale and Mini-Mental Status Examination (MMSE), Montreal Cognitive Assessment (MoCA), semantic verbal fluency, Stroop test, figure memory test, trail making test (TMT) B, and Rey Auditory Verbal Learning Test (RAVLT). The MTA scale correlated with Stroop test and Fazekas scale with figure memory test, digit span, and Stroop test according to the subgroup evaluated. Visual scales by MRI in MCI should be evaluated by cognitive domain and might be more useful in more severely impaired MCI or dementia patients.

  2. [One decade of functional imaging in schizophrenia research. From visualisation of basic information processing steps to molecular-genetic oriented imaging].

    PubMed

    Tost, H; Meyer-Lindenberg, A; Ruf, M; Demirakça, T; Grimm, O; Henn, F A; Ende, G

    2005-02-01

    Modern neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have contributed tremendously to our current understanding of psychiatric disorders in the context of functional, biochemical and microstructural alterations of the brain. Since the mid-nineties, functional MRI has provided major insights into the neurobiological correlates of signs and symptoms in schizophrenia. The current paper reviews important fMRI studies of the past decade in the domains of motor, visual, auditory, attentional and working memory function. Special emphasis is given to new methodological approaches, such as the visualisation of medication effects and the functional characterisation of risk genes.

  3. Serial nonenhancing magnetic resonance imaging scans of high grade glioblastoma multiforme.

    PubMed Central

    Moore-Stovall, J.; Venkatesh, R.

    1993-01-01

    Magnetic resonance imaging (MRI) from clinical experience has proven to be superior to all other diagnostic imaging modalities, including computed tomography (CT) in the detection of intracranial neoplasms. Although glioblastoma multiforme presents a challenge for all diagnostic imaging modalities including MRI, MRI is paramount to CT in detecting subtle abnormal water accumulation in brain tissue caused by tumor even before there is disruption of the blood brain barrier. Currently, clinical research and investigational trials on nonionic gadolinium contrast agents have proven that nonionic gadolinium HP-DO3A (ProHance) contrast agents have lower osmolality and greater stability, which make them superior compounds to gadolinium diethylenetriamine-pentacetic acid (Gd-DTPA). Therefore, the nonionic gadolinium contrasts have been safely administered more rapidly, in higher or multiple doses for contrast enhanced MRI without adverse side effects or changes in serum iron or total bilirubin, and the intensity of the area of enhancement and number of lesions detected were superior to that of Gd-DTPA (Magnevist) at the standard dose (0.1 mmol/Kg). Perhaps if the nonionic gadolinium contrast agent, ProHance, had been approved by the Food and Drug Administration (FDA) when this MRI was performed in 1990 it would have aided in providing contrast enhancement and visualization of the tumor lesion to assist in patient diagnosis and management. Magnetic resonance imaging also provides unique multiplanar capabilities that allow for optimal visualization of the temporal and occipital lobes of the brain without bone interference.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9A Figure 9B Figure 10 Figure 11 Figure 12 Figure 13 PMID:8382751

  4. Design, development, and evaluation of an MRI-guided SMA spring-actuated neurosurgical robot

    PubMed Central

    Ho, Mingyen; Kim, Yeongjin; Cheng, Shing Shin; Gullapalli, Rao; Desai, Jaydev P.

    2015-01-01

    In this paper, we present our work on the development of a magnetic resonance imaging (MRI)-compatible Minimally Invasive Neurosurgical Intracranial Robot (MINIR) comprising of shape memory alloy (SMA) spring actuators and tendon-sheath mechanism. We present the detailed modeling and analysis along with experimental results of the characterization of SMA spring actuators. Furthermore, to demonstrate image-feedback control, we used the images obtained from a camera to control the motion of the robot so that eventually continuous MR images could be used in the future to control the robot motion. Since the image tracking algorithm may fail in some situations, we also developed a temperature feedback control scheme which served as a backup controller for the robot. Experimental results demonstrated that both image feedback and temperature feedback can be used to control the motion of MINIR. A series of MRI compatibility tests were performed on the robot and the experimental results demonstrated that the robot is MRI compatible and no significant visual image distortion was observed in the MR images during robot operation. PMID:26622075

  5. [Magnetic resonance imaging of tibial periostitis].

    PubMed

    Meyer, X; Boscagli, G; Tavernier, T; Aczel, F; Weber, F; Legros, R; Charlopain, P; Martin, J P

    1998-01-01

    Tibial periostitis frequently occurs in athletes. We present our experience with MRI in a series of 7 patients (11 legs) with this condition. The clinical presentation and scintigraphic scanning suggested the diagnosis. MRI exploration of 11 legs demonstrated a high band-like juxta-osseous signal enhancement of SE and IR T2 weighted sequences in 6 cases, a signal enhancement after i.v. contrast administration in 4. Tibial periostitis is a clinical diagnosis and MRI and scintigraphic findings can be used to assure the differential diagnosis in difficult cases with stress fracture. MRI can visualize juxta-osseous edematous and inflammatory reactions and an increased signal would appear to be characteristic when the band-like image is fixed to the periosteum.

  6. [The Application of Magnetic Resonance Imaging in Alzheimer's Disease].

    PubMed

    Matsuda, Hiroshi

    2017-07-01

    In Alzheimer's disease (AD), magnetic resonance imaging (MRI) is essential for early diagnosis, differential diagnosis, and evaluation of disease progression. In structural MRI, the automatic diagnosis of atrophy by computers, even when it is not visually noticeable, is possible in daily clinical practice. Furthermore, subfield volumetric measurements of the medial temporal structures, as well as longitudinal volume measurements with high accuracy, have been developed and are useful for calculating the needed sample size in clinical trials. In addition to detecting local atrophy, graph theory has been applied to structural MRI for evaluation of alterations of the brain networks potentially affected in AD.

  7. detecting multiple sclerosis lesions with a fully bioinspired visual attention model

    NASA Astrophysics Data System (ADS)

    Villalon-Reina, Julio; Gutierrez-Carvajal, Ricardo; Thompson, Paul M.; Romero-Castro, Eduardo

    2013-11-01

    The detection, segmentation and quantification of multiple sclerosis (MS) lesions on magnetic resonance images (MRI) has been a very active field for the last two decades because of the urge to correlate these measures with the effectiveness of pharmacological treatment. A myriad of methods has been developed and most of these are non specific for the type of lesions and segment the lesions in their acute and chronic phases together. On the other hand, radiologists are able to distinguish between several stages of the disease on different types of MRI images. The main motivation of the work presented here is to computationally emulate the visual perception of the radiologist by using modeling principles of the neuronal centers along the visual system. By using this approach we are able to detect the lesions in the majority of the images in our population sample. This type of approach also allows us to study and improve the analysis of brain networks by introducing a priori information.

  8. Visibility of Different Intraorbital Foreign Bodies Using Plain Radiography, Computed Tomography, Magnetic Resonance Imaging, and Cone-Beam Computed Tomography: An In Vitro Study.

    PubMed

    Javadrashid, Reza; Golamian, Masoud; Shahrzad, Maryam; Hajalioghli, Parisa; Shahmorady, Zahra; Fouladi, Daniel F; Sadrarhami, Shohreh; Akhoundzadeh, Leila

    2017-05-01

    The study sought to compare the usefulness of 4 imaging modalities in visualizing various intraorbital foreign bodies (IOFBs) in different sizes. Six different materials including metal, wood, plastic, stone, glass. and graphite were cut in cylindrical shapes in 4 sizes (dimensions: 0.5, 1, 2, and 3 mm) and placed intraorbitally in the extraocular space of fresh sheep's head. Four skilled radiologists rated the visibility of the objects individually using plain radiography, spiral computed tomography (CT), magnetic resonance imaging (MRI), and cone-beam computed tomography (CBCT) in accordance with a previously described grading system. Excluding wood, all embedded foreign bodies were best visualized in CT and CBCT images with almost equal accuracies. Wood could only be detected using MRI, and then only when fragments were more than 2 mm in size. There were 3 false-positive MRI reports, suggesting air bubbles as wood IOFBs. Because of lower cost and using less radiation in comparison with conventional CT, CBCT can be used as the initial imaging technique in cases with suspected IOFBs. Optimal imaging technique for wood IOFBs is yet to be defined. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  9. Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis

    PubMed Central

    Kluza, Ewelina; Van Tilborg, Geralda A. F.; van der Schaft, Daisy W. J.; Griffioen, Arjan W.; Mulder, Willem J. M.; Nicolay, Klaas

    2010-01-01

    Angiogenesis is essential for tumor growth and metastatic potential and for that reason considered an important target for tumor treatment. Noninvasive imaging technologies, capable of visualizing tumor angiogenesis and evaluating the efficacy of angiostatic therapies, are therefore becoming increasingly important. Among the various imaging modalities, magnetic resonance imaging (MRI) is characterized by a superb spatial resolution and anatomical soft-tissue contrast. Revolutionary advances in contrast agent chemistry have delivered versatile angiogenesis-specific molecular MRI contrast agents. In this paper, we review recent advances in the preclinical application of paramagnetic and fluorescent liposomes for noninvasive visualization of the molecular processes involved in tumor angiogenesis. This liposomal contrast agent platform can be prepared with a high payload of contrast generating material, thereby facilitating its detection, and is equipped with one or more types of targeting ligands for binding to specific molecules expressed at the angiogenic site. Multimodal liposomes endowed with contrast material for complementary imaging technologies, e.g., MRI and optical, can be exploited to gain important preclinical insights into the mechanisms of binding and accumulation at angiogenic vascular endothelium and to corroborate the in vivo findings. Interestingly, liposomes can be designed to contain angiostatic therapeutics, allowing for image-supervised drug delivery and subsequent monitoring of therapeutic efficacy. PMID:20390447

  10. Thinking about eating food activates visual cortex with reduced bilateral cerebellar activation in females with anorexia nervosa: an fMRI study.

    PubMed

    Brooks, Samantha J; O'Daly, Owen; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C R; Schiöth, Helgi B; Treasure, Janet; Campbell, Iain C

    2012-01-01

    Women with anorexia nervosa (AN) have aberrant cognitions about food and altered activity in prefrontal cortical and somatosensory regions to food images. However, differential effects on the brain when thinking about eating food between healthy women and those with AN is unknown. Functional magnetic resonance imaging (fMRI) examined neural activation when 42 women thought about eating the food shown in images: 18 with AN (11 RAN, 7 BPAN) and 24 age-matched controls (HC). Group contrasts between HC and AN revealed reduced activation in AN in the bilateral cerebellar vermis, and increased activation in the right visual cortex. Preliminary comparisons between AN subtypes and healthy controls suggest differences in cortical and limbic regions. These preliminary data suggest that thinking about eating food shown in images increases visual and prefrontal cortical neural responses in females with AN, which may underlie cognitive biases towards food stimuli and ruminations about controlling food intake. Future studies are needed to explicitly test how thinking about eating activates restraint cognitions, specifically in those with restricting vs. binge-purging AN subtypes.

  11. 18F-FDG PET/MRI fusion in characterizing pancreatic tumors: comparison to PET/CT.

    PubMed

    Tatsumi, Mitsuaki; Isohashi, Kayako; Onishi, Hiromitsu; Hori, Masatoshi; Kim, Tonsok; Higuchi, Ichiro; Inoue, Atsuo; Shimosegawa, Eku; Takeda, Yutaka; Hatazawa, Jun

    2011-08-01

    To demonstrate that positron emission tomography (PET)/magnetic resonance imaging (MRI) fusion was feasible in characterizing pancreatic tumors (PTs), comparing MRI and computed tomography (CT) as mapping images for fusion with PET as well as fused PET/MRI and PET/CT. We retrospectively reviewed 47 sets of (18)F-fluorodeoxyglucose ((18)F -FDG) PET/CT and MRI examinations to evaluate suspected or known pancreatic cancer. To assess the ability of mapping images for fusion with PET, CT (of PET/CT), T1- and T2-weighted (w) MR images (all non-contrast) were graded regarding the visibility of PT (5-point confidence scale). Fused PET/CT, PET/T1-w or T2-w MR images of the upper abdomen were evaluated to determine whether mapping images provided additional diagnostic information to PET alone (3-point scale). The overall quality of PET/CT or PET/MRI sets in diagnosis was also assessed (3-point scale). These PET/MRI-related scores were compared to PET/CT-related scores and the accuracy in characterizing PTs was compared. Forty-three PTs were visualized on CT or MRI, including 30 with abnormal FDG uptake and 13 without. The confidence score for the visibility of PT was significantly higher on T1-w MRI than CT. The scores for additional diagnostic information to PET and overall quality of each image set in diagnosis were significantly higher on the PET/T1-w MRI set than the PET/CT set. The diagnostic accuracy was higher on PET/T1-w or PET/T2-w MRI (93.0 and 90.7%, respectively) than PET/CT (88.4%), but statistical significance was not obtained. PET/MRI fusion, especially PET with T1-w MRI, was demonstrated to be superior to PET/CT in characterizing PTs, offering better mapping and fusion image quality.

  12. Visual Masking in Schizophrenia: Overview and Theoretical Implications

    PubMed Central

    Green, Michael F.; Lee, Junghee; Wynn, Jonathan K.; Mathis, Kristopher I.

    2011-01-01

    Visual masking provides several key advantages for exploring the earliest stages of visual processing in schizophrenia: it allows for control over timing at the millisecond level, there are several well-supported theories of the underlying neurobiology of visual masking, and it is amenable to examination by electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI). In this paper, we provide an overview of the visual masking impairment schizophrenia, including the relevant theoretical mechanisms for masking impairment. We will discuss its relationship to clinical symptoms, antipsychotic medications, diagnostic specificity, and presence in at-risk populations. As part of this overview, we will cover the neural correlates of visual masking based on recent findings from EEG and fMRI. Finally, we will suggest a possible mechanism that could explain the patterns of masking findings and other visual processing findings in schizophrenia. PMID:21606322

  13. Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG-fMRI Recording.

    PubMed

    Green, Jessica J; Boehler, Carsten N; Roberts, Kenneth C; Chen, Ling-Chia; Krebs, Ruth M; Song, Allen W; Woldorff, Marty G

    2017-08-16

    Visual spatial attention has been studied in humans with both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) individually. However, due to the intrinsic limitations of each of these methods used alone, our understanding of the systems-level mechanisms underlying attentional control remains limited. Here, we examined trial-to-trial covariations of concurrently recorded EEG and fMRI in a cued visual spatial attention task in humans, which allowed delineation of both the generators and modulators of the cue-triggered event-related oscillatory brain activity underlying attentional control function. The fMRI activity in visual cortical regions contralateral to the cued direction of attention covaried positively with occipital gamma-band EEG, consistent with activation of cortical regions representing attended locations in space. In contrast, fMRI activity in ipsilateral visual cortical regions covaried inversely with occipital alpha-band oscillations, consistent with attention-related suppression of the irrelevant hemispace. Moreover, the pulvinar nucleus of the thalamus covaried with both of these spatially specific, attention-related, oscillatory EEG modulations. Because the pulvinar's neuroanatomical geometry makes it unlikely to be a direct generator of the scalp-recorded EEG, these covariational patterns appear to reflect the pulvinar's role as a regulatory control structure, sending spatially specific signals to modulate visual cortex excitability proactively. Together, these combined EEG/fMRI results illuminate the dynamically interacting cortical and subcortical processes underlying spatial attention, providing important insight not realizable using either method alone. SIGNIFICANCE STATEMENT Noninvasive recordings of changes in the brain's blood flow using functional magnetic resonance imaging and electrical activity using electroencephalography in humans have individually shown that shifting attention to a location in space produces spatially specific changes in visual cortex activity in anticipation of a stimulus. The mechanisms controlling these attention-related modulations of sensory cortex, however, are poorly understood. Here, we recorded these two complementary measures of brain activity simultaneously and examined their trial-to-trial covariations to gain insight into these attentional control mechanisms. This multi-methodological approach revealed the attention-related coordination of visual cortex modulation by the subcortical pulvinar nucleus of the thalamus while also disentangling the mechanisms underlying the attentional enhancement of relevant stimulus input and those underlying the concurrent suppression of irrelevant input. Copyright © 2017 the authors 0270-6474/17/377803-08$15.00/0.

  14. 7 Tesla Magnetic Resonance Imaging to Detect Cortical Pathology in Multiple Sclerosis

    PubMed Central

    van Gelderen, Peter; Merkle, Hellmuth; Chen, Christina; Lassmann, Hans; Duyn, Jeff H.; Bagnato, Francesca

    2014-01-01

    Background Neocortical lesions (NLs) are an important pathological component of multiple sclerosis (MS), but their visualization by magnetic resonance imaging (MRI) remains challenging. Objectives We aimed at assessing the sensitivity of multi echo gradient echo (ME-GRE) T2 *-weighted MRI at 7.0 Tesla in depicting NLs compared to myelin and iron staining. Methods Samples from two MS patients were imaged post mortem using a whole body 7T MRI scanner with a 24-channel receive-only array. Isotropic 200 micron resolution images with varying T2 * weighting were reconstructed from the ME-GRE data and converted into R2 * maps. Immunohistochemical staining for myelin (proteolipid protein, PLP) and diaminobenzidine-enhanced Turnbull blue staining for iron were performed. Results Prospective and retrospective sensitivities of MRI for the detection of NLs were 48% and 67% respectively. We observed MRI maps detecting only a small portion of 20 subpial NLs extending over large cortical areas on PLP stainings. No MRI signal changes suggestive of iron accumulation in NLs were observed. Conversely, R2 * maps indicated iron loss in NLs, which was confirmed by histological quantification. Conclusions High-resolution post mortem imaging using R2 * and magnitude maps permits detection of focal NLs. However, disclosing extensive subpial demyelination with MRI remains challenging. PMID:25303286

  15. Application of a Compact Magnetic Resonance Imaging System with 1.5 T Permanent Magnets to Visualize Release from and the Disintegration of Capsule Formulations in Vitro and in Vivo.

    PubMed

    Takeshita, Keizo; Okazaki, Shoko; Shinada, Kyosuke; Shibamoto, Yuma

    2017-01-01

    Although magnetic resonance imaging (MRI) has potential in assessments of formulations, few studies have been conducted because of the size and expense of the instrument. In the present study, the processes of in vitro and in vivo release in a gelatin capsule formulation model were visualized using a compact MRI system with 1.5 T permanent magnets, which is more convenient than the superconducting MRI systems typically used for clinical and experimental purposes. A Gd-chelate of diethylenetriamine-N,N,N',N″,N″-pentaacetic acid, a contrast agent that markedly enhances proton signals via close contact with water, was incorporated into capsule formulations as a marker compound. In vitro experiments could clearly demonstrate the preparation-dependent differences in the release/disintegration of the formulations. In some preparations, the penetration of water into the formulation and generation of bubbles in the capsule were also observed prior to the disintegration of the formulation. When capsule formulations were orally administered to rats, the release of the marker into the stomach and its transit to the duodenum were visualized. These results strongly indicate that the compact MRI system is a powerful tool for pharmaceutical studies.

  16. Simultaneous in vivo visualization and localization of solid oral dosage forms in the rat gastrointestinal tract by magnetic resonance imaging (MRI).

    PubMed

    Christmann, V; Rosenberg, J; Seega, J; Lehr, C M

    1997-08-01

    Bioavailability of orally administered drugs is much influenced by the behavior, performance and fate of the dosage form within the gastrointestinal (GI) tract. Therefore, MRI in vivo methods that allow for the simultaneous visualization of solid oral dosage forms and anatomical structures of the GI tract have been investigated. Oral contrast agents containing Gd-DTPA were used to depict the lumen of the digestive organs. Solid oral dosage forms were visualized in a rat model by a 1H-MRI double contrast technique (magnetite-labelled microtablets) and a combination of 1H- and 19F-MRI (fluorine-labelled minicapsules). Simultaneous visualization of solid oral dosage forms and the GI environment in the rat was possible using MRI. Microtablets could reproducibly be monitored in the rat stomach and in the intestines using a 1H-MRI double contrast technique. Fluorine-labelled minicapsules were detectable in the rat stomach by a combination of 1H- and 19F-MRI in vivo. The in vivo 1H-MRI double contrast technique described allows solid oral dosage forms in the rat GI tract to be depicted. Solid dosage forms can easily be labelled by incorporating trace amounts of non-toxic iron oxide (magnetite) particles. 1H-MRI is a promising tool for observing such pharmaceutical dosage forms in humans. Combined 1H- and 19F-MRI offer a means of unambiguously localizing solid oral dosage forms in more distal parts of the GI tract. Studies correlating MRI examinations with drug plasma levels could provide valuable information for the development of pharmaceutical dosage forms.

  17. The Brightness of Colour

    PubMed Central

    Corney, David; Haynes, John-Dylan; Rees, Geraint; Lotto, R. Beau

    2009-01-01

    Background The perception of brightness depends on spatial context: the same stimulus can appear light or dark depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour) appear brighter than stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the Helmholtz-Kohlrausch (HK) effect, was first described in the nineteenth century but has never been explained. Here, we take advantage of the relative simplicity of this ‘illusion’ to explain it and contextual effects more generally, by using a simple Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI studies. Results Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural scenes that would have been experienced by the human visual system in the past. We further show that the complexity of this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship between images and scenes lies in the primary visual cortex (V1), if not earlier in the visual system, since the brightness of colours (as opposed to their luminance) accords with activity in V1 as measured with fMRI. Conclusions The data suggest that perceptions of brightness represent a robust visual response to the likely sources of stimuli, as determined, in this instance, by the known statistical relationship between scenes and their retinal responses. While the responses of the early visual system (receptors in this case) may represent specifically the statistics of images, post receptor responses are more likely represent the statistical relationship between images and scenes. A corollary of this suggestion is that the visual cortex is adapted to relate the retinal image to behaviour given the statistics of its past interactions with the sources of retinal images: the visual cortex is adapted to the signals it receives from the eyes, and not directly to the world beyond. PMID:19333398

  18. Cortical connective field estimates from resting state fMRI activity.

    PubMed

    Gravel, Nicolás; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V; Dumoulin, Serge O; Renken, Remco; Curčić-Blake, Branislava; Cornelissen, Frans W

    2014-01-01

    One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that-despite some variability in CF estimates between RS scans-neural properties such as CF maps and CF size can be derived from resting state data.

  19. Physical examination, magnetic resonance image, and electrodiagnostic study in patients with lumbosacral disc herniation or spinal stenosis.

    PubMed

    Lee, Jung Hwan; Lee, Sang-Ho

    2012-10-01

    To compare the clinical implications of electro-diagnostic study with those of magnetic resonance imaging in patients with lumbosacral intervertebral herniated disc or spinal stenosis. Retrospective study of clinical data. Patients with lumbosacral intervertebral herniated disc or spinal stenosis, diagnosed by clinical assessment and magnetic resonance imaging (MRI), were selected. A total of 753 patients (437 with lumbosacral intervertebral herniated disc and 316 with spinal stenosis) were included in the study. Clinical data for electrodiagnostic study (EDX)and MRI were compared and the sensitivity and specificity of these studies were evaluated. Among all subjects, 267 had radiculopathy on EDX (EDX (+)) and 486 no radiculopathy (EDX(-)). Furthermore, 391 had root compression on MRI (MRI (+)) and 362 no root compression on MRI (MRI (-)). Patients with radioculopathy on EDX (+) showed a significantly higher visual analogue scale score for radiating pain and a higher Oswestry Disability Index than those with negative findings by EDX (-) in the total subjects group and the lumbosacral intervertebral herniated disc subgroup, and there was a trend toward higher Oswestry Disability Index in the spinal stenosis subgroup. Although patients with radioculopathy on root compression on MRI (+) also had a higher visual analogue scale for radiating pain than patients with negative findings by MRI (-) in the total subjects group and the lumbosacral intervertebral herniated disc subgroup, no significant difference was seen in the Oswestry Disability Index. EDX revealed a significant correlation with muscle weakness in the total subjects group and the lumbosacral intervertebral herniated disc subgroup, and trends toward muscle weakness in the spinal stenosis subgroup, whereas there was no such significant correlation for MRI findings in any group. Electrodiagnostic study had a higher specificity in terms of physical examination data than MRI, in spite of its lower sensitivity. Electrodiagnostic study was significantly more correlated with clinical data, especially leg muscle weakness and functional status, and showed a higher specificity than MRI in patients with lumbosacral intervertebral herniated disc or spinal stenosis.

  20. Feasibility of real-time magnetic resonance imaging-guided endomyocardial biopsies: An in-vitro study.

    PubMed

    Lossnitzer, Dirk; Seitz, Sebastian A; Krautz, Birgit; Schnackenburg, Bernhard; André, Florian; Korosoglou, Grigorios; Katus, Hugo A; Steen, Henning

    2015-07-26

    To investigate if magnetic resonance (MR)-guided biopsy can improve the performance and safety of such procedures. A novel MR-compatible bioptome was evaluated in a series of in-vitro experiments in a 1.5T magnetic resonance imaging (MRI) system. The bioptome was inserted into explanted porcine and bovine hearts under real-time MR-guidance employing a steady state free precession sequence. The artifact produced by the metal element at the tip and the signal voids caused by the bioptome were visually tracked for navigation and allowed its constant and precise localization. Cardiac structural elements and the target regions for the biopsy were clearly visible. Our method allowed a significantly better spatial visualization of the bioptoms tip compared to conventional X-ray guidance. The specific device design of the bioptome avoided inducible currents and therefore subsequent heating. The novel MR-compatible bioptome provided a superior cardiovascular magnetic resonance (imaging) soft-tissue visualization for MR-guided myocardial biopsies. Not at least the use of MRI guidance for endomyocardial biopsies completely avoided radiation exposure for both patients and interventionalists. MRI-guided endomyocardial biopsies provide a better than conventional X-ray guided navigation and could therefore improve the specificity and reproducibility of cardiac biopsies in future studies.

  1. Quantitative Rapid Assessment of Leukoaraiosis in CT : Comparison to Gold Standard MRI.

    PubMed

    Hanning, Uta; Sporns, Peter Bernhard; Schmidt, Rene; Niederstadt, Thomas; Minnerup, Jens; Bier, Georg; Knecht, Stefan; Kemmling, André

    2017-10-20

    The severity of white matter lesions (WML) is a risk factor of hemorrhage and predictor of clinical outcome after ischemic stroke; however, in contrast to magnetic resonance imaging (MRI) reliable quantification for this surrogate marker is limited for computed tomography (CT), the leading stroke imaging technique. We aimed to present and evaluate a CT-based automated rater-independent method for quantification of microangiopathic white matter changes. Patients with suspected minor stroke (National Institutes of Health Stroke scale, NIHSS < 4) were screened for the analysis of non-contrast computerized tomography (NCCT) at admission and compared to follow-up MRI. The MRI-based WML volume and visual Fazekas scores were assessed as the gold standard reference. We employed a recently published probabilistic brain segmentation algorithm for CT images to determine the tissue-specific density of WM space. All voxel-wise densities were quantified in WM space and weighted according to partial probabilistic WM content. The resulting mean weighted density of WM space in NCCT, the surrogate of WML, was correlated with reference to MRI-based WML parameters. The process of CT-based tissue-specific segmentation was reliable in 79 cases with varying severity of microangiopathy. Voxel-wise weighted density within WM spaces showed a noticeable correlation (r = -0.65) with MRI-based WML volume. Particularly in patients with moderate or severe lesion load according to the visual Fazekas score the algorithm provided reliable prediction of MRI-based WML volume. Automated observer-independent quantification of voxel-wise WM density in CT significantly correlates with microangiopathic WM disease in gold standard MRI. This rapid surrogate of white matter lesion load in CT may support objective WML assessment and therapeutic decision-making during acute stroke triage.

  2. In Vivo Visualization of Alzheimer’s Amyloid Plaques by MRI in Transgenic Mice Without a Contrast Agent

    PubMed Central

    Jack, Clifford R.; Garwood, Michael; Wengenack, Thomas M.; Borowski, Bret; Curran, Geoffrey L.; Lin, Joseph; Adriany, Gregor; Grohn, Olli H.J.; Grimm, Roger; Poduslo, Joseph F.

    2009-01-01

    One of the cardinal pathologic features of Alzheimer’s disease (AD) is formation of senile, or amyloid, plaques. Transgenic mice have been developed that express one or more of the genes responsible for familial AD in humans. Doubly transgenic mice develop “human-like” plaques, providing a mechanism to study amyloid plaque biology in a controlled manner. Imaging of labeled plaques has been accomplished with other modalities, but only MRI has sufficient spatial and contrast resolution to visualize individual plaques non-invasively. Methods to optimize visualization of plaques in vivo in transgenic mice at 9.4 T using a spin echo sequence based on adiabatic pulses are described. Preliminary results indicate that a spin echo acquisition more accurately reflects plaque size, while a T2* weighted gradient echo sequence reflects plaque iron content not plaque size. In vivo MRI – ex vivo MRI – in vitro histological correlations are provided. Histologically verified plaques as small as 50 μm in diameter were visualized in the living animal. To our knowledge this work represents the first demonstration of non-invasive in vivo visualization of individual AD plaques without the use of a contrast agent. PMID:15562496

  3. Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision.

    PubMed

    Van Dromme, Ilse C; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter

    2016-04-01

    The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.

  4. Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision

    PubMed Central

    Van Dromme, Ilse C.; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter

    2016-01-01

    The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams. PMID:27082854

  5. Skeletal age assessment in children using an open compact MRI system.

    PubMed

    Terada, Yasuhiko; Kono, Saki; Tamada, Daiki; Uchiumi, Tomomi; Kose, Katsumi; Miyagi, Ryo; Yamabe, Eiko; Yoshioka, Hiroshi

    2013-06-01

    MRI may be a noninvasive and alternative tool for skeletal age assessment in children, although few studies have reported on this topic. In this article, skeletal age was assessed over a wide range of ages using an open, compact MRI optimized for the imaging of a child's hand and wrist, and its validity was evaluated. MR images and their three-dimensional segmentation visualized detailed skeletal features of each bone in the hand and wrist. Skeletal age was then independently scored from the MR images by two raters, according to the Tanner-Whitehouse Japan system. The skeletal age assessed by MR rating demonstrated a strong positive correlation with chronological age. The intrarater and inter-rater reproducibilities were significantly high. These results demonstrate the validity and reliability of skeletal age assessment using MRI. Copyright © 2012 Wiley Periodicals, Inc.

  6. Increase in MST activity correlates with visual motion learning: A functional MRI study of perceptual learning

    PubMed Central

    Larcombe, Stephanie J.; Kennard, Chris

    2017-01-01

    Abstract Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145–156, 2018. © 2017 Wiley Periodicals, Inc. PMID:28963815

  7. Comparison of Magnetic Resonance Imaging and Computed Tomography for Breast Target Volume Delineation in Prone and Supine Positions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogson, Elise M.; Liverpool and Macarthur Cancer Therapy Centres, Liverpool; Ingham Institute for Applied Medical Research, Liverpool

    2016-11-15

    Purpose: To determine whether T2-weighted MRI improves seroma cavity (SC) and whole breast (WB) interobserver conformity for radiation therapy purposes, compared with the gold standard of CT, both in the prone and supine positions. Methods and Materials: Eleven observers (2 radiologists and 9 radiation oncologists) delineated SC and WB clinical target volumes (CTVs) on T2-weighted MRI and CT supine and prone scans (4 scans per patient) for 33 patient datasets. Individual observer's volumes were compared using the Dice similarity coefficient, volume overlap index, center of mass shift, and Hausdorff distances. An average cavity visualization score was also determined. Results: Imaging modalitymore » did not affect interobserver variation for WB CTVs. Prone WB CTVs were larger in volume and more conformal than supine CTVs (on both MRI and CT). Seroma cavity volumes were larger on CT than on MRI. Seroma cavity volumes proved to be comparable in interobserver conformity in both modalities (volume overlap index of 0.57 (95% Confidence Interval (CI) 0.54-0.60) for CT supine and 0.52 (95% CI 0.48-0.56) for MRI supine, 0.56 (95% CI 0.53-0.59) for CT prone and 0.55 (95% CI 0.51-0.59) for MRI prone); however, after registering modalities together the intermodality variation (Dice similarity coefficient of 0.41 (95% CI 0.36-0.46) for supine and 0.38 (0.34-0.42) for prone) was larger than the interobserver variability for SC, despite the location typically remaining constant. Conclusions: Magnetic resonance imaging interobserver variation was comparable to CT for the WB CTV and SC delineation, in both prone and supine positions. Although the cavity visualization score and interobserver concordance was not significantly higher for MRI than for CT, the SCs were smaller on MRI, potentially owing to clearer SC definition, especially on T2-weighted MR images.« less

  8. Visualization of the internal globus pallidus: sequence and orientation for deep brain stimulation using a standard installation protocol at 3.0 Tesla.

    PubMed

    Nölte, Ingo S; Gerigk, Lars; Al-Zghloul, Mansour; Groden, Christoph; Kerl, Hans U

    2012-03-01

    Deep-brain stimulation (DBS) of the internal globus pallidus (GPi) has shown remarkable therapeutic benefits for treatment-resistant neurological disorders including dystonia and Parkinson's disease (PD). The success of the DBS is critically dependent on the reliable visualization of the GPi. The aim of the study was to evaluate promising 3.0 Tesla magnetic resonance imaging (MRI) methods for pre-stereotactic visualization of the GPi using a standard installation protocol. MRI at 3.0 T of nine healthy individuals and of one patient with PD was acquired (FLAIR, T1-MPRAGE, T2-SPACE, T2*-FLASH2D, susceptibility-weighted imaging mapping (SWI)). Image quality and visualization of the GPi for each sequence were assessed by two neuroradiologists independently using a 6-point scale. Axial, coronal, and sagittal planes of the T2*-FLASH2D images were compared. Inter-rater reliability, contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) for the GPi were determined. For illustration, axial T2*-FLASH2D images were fused with a section schema of the Schaltenbrand-Wahren stereotactic atlas. The GPi was best and reliably visualized in axial and to a lesser degree on coronal T2*-FLASH2D images. No major artifacts in the GPi were observed in any of the sequences. SWI offered a significantly higher CNR for the GPi compared to standard T2-weighted imaging using the standard parameters. The fusion of the axial T2*-FLASH2D images and the atlas projected the GPi clearly in the boundaries of the section schema. Using a standard installation protocol at 3.0 T T2*-FLASH2D imaging (particularly axial view) provides optimal and reliable delineation of the GPi.

  9. Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI.

    PubMed

    Utsumi, Hideo; Hyodo, Fuminori

    2015-01-01

    Redox reactions that generate free radical intermediates are essential to metabolic processes, and their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. The development of an in vivo electron spin resonance (ESR) spectrometer and its imaging enables us noninvasive and direct measurement of in vivo free radical reactions in living organisms. The dynamic nuclear polarization magnetic resonance imaging (DNP-MRI), also called PEDRI or OMRI, is also a new imaging method for observing free radical species in vivo. The spatiotemporal resolution of free radical imaging with DNP-MRI is comparable with that in MRI, and each of the radical species can be distinguished in the spectroscopic images by changing the frequency or magnetic field of ESR irradiation. Several kinds of stable nitroxyl radicals were used as spin probes to detect in vivo redox reactions. The signal decay of nitroxyl probes, which is determined with in vivo DNP-MRI, reflects the redox status under oxidative stress, and the signal decay is suppressed by prior administration of antioxidants. In addition, DNP-MRI can also visualize various intermediate free radicals from the intrinsic redox molecules. This noninvasive method, in vivo DNP-MRI, could become a useful tool for investigating the mechanism of oxidative injuries in animal disease models and the in vivo effects of antioxidant drugs. © 2015 Elsevier Inc. All rights reserved.

  10. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments.

    PubMed

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

  11. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments

    PubMed Central

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4–8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic). PMID:21243106

  12. The putative visual word form area is functionally connected to the dorsal attention network.

    PubMed

    Vogel, Alecia C; Miezin, Fran M; Petersen, Steven E; Schlaggar, Bradley L

    2012-03-01

    The putative visual word form area (pVWFA) is the most consistently activated region in single word reading studies (i.e., Vigneau et al. 2006), yet its function remains a matter of debate. The pVWFA may be predominantly used in reading or it could be a more general visual processor used in reading but also in other visual tasks. Here, resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) is used to characterize the functional relationships of the pVWFA to help adjudicate between these possibilities. rs-fcMRI defines relationships based on correlations in slow fluctuations of blood oxygen level-dependent activity occurring at rest. In this study, rs-fcMRI correlations show little relationship between the pVWFA and reading-related regions but a strong relationship between the pVWFA and dorsal attention regions thought to be related to spatial and feature attention. The rs-fcMRI correlations between the pVWFA and regions of the dorsal attention network increase with age and reading skill, while the correlations between the pVWFA and reading-related regions do not. These results argue the pVWFA is not used predominantly in reading but is a more general visual processor used in other visual tasks, as well as reading.

  13. The Putative Visual Word Form Area Is Functionally Connected to the Dorsal Attention Network

    PubMed Central

    Miezin, Fran M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2012-01-01

    The putative visual word form area (pVWFA) is the most consistently activated region in single word reading studies (i.e., Vigneau et al. 2006), yet its function remains a matter of debate. The pVWFA may be predominantly used in reading or it could be a more general visual processor used in reading but also in other visual tasks. Here, resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) is used to characterize the functional relationships of the pVWFA to help adjudicate between these possibilities. rs-fcMRI defines relationships based on correlations in slow fluctuations of blood oxygen level–dependent activity occurring at rest. In this study, rs-fcMRI correlations show little relationship between the pVWFA and reading-related regions but a strong relationship between the pVWFA and dorsal attention regions thought to be related to spatial and feature attention. The rs-fcMRI correlations between the pVWFA and regions of the dorsal attention network increase with age and reading skill, while the correlations between the pVWFA and reading-related regions do not. These results argue the pVWFA is not used predominantly in reading but is a more general visual processor used in other visual tasks, as well as reading. PMID:21690259

  14. A computerized tablet with visual feedback of hand position for functional magnetic resonance imaging

    PubMed Central

    Karimpoor, Mahta; Tam, Fred; Strother, Stephen C.; Fischer, Corinne E.; Schweizer, Tom A.; Graham, Simon J.

    2015-01-01

    Neuropsychological tests behavioral tasks that very commonly involve handwriting and drawing are widely used in the clinic to detect abnormal brain function. Functional magnetic resonance imaging (fMRI) may be useful in increasing the specificity of such tests. However, performing complex pen-and-paper tests during fMRI involves engineering challenges. Previously, we developed an fMRI-compatible, computerized tablet system to address this issue. However, the tablet did not include visual feedback of hand position (VFHP), a human factors component that may be important for fMRI of certain patient populations. A real-time system was thus developed to provide VFHP and integrated with the tablet in an augmented reality display. The effectiveness of the system was initially tested in young healthy adults who performed various handwriting tasks in front of a computer display with and without VFHP. Pilot fMRI of writing tasks were performed by two representative individuals with and without VFHP. Quantitative analysis of the behavioral results indicated improved writing performance with VFHP. The pilot fMRI results suggest that writing with VFHP requires less neural resources compared to the without VFHP condition, to maintain similar behavior. Thus, the tablet system with VFHP is recommended for future fMRI studies involving patients with impaired brain function and where ecologically valid behavior is important. PMID:25859201

  15. Micrometer-sized iron oxide particle labeling of mesenchymal stem cells for magnetic resonance imaging-based monitoring of cartilage tissue engineering.

    PubMed

    Saldanha, Karl J; Doan, Ryan P; Ainslie, Kristy M; Desai, Tejal A; Majumdar, Sharmila

    2011-01-01

    To examine mesenchymal stem cell (MSC) labeling with micrometer-sized iron oxide particles (MPIOs) for magnetic resonance imaging (MRI)-based tracking and its application to monitoring articular cartilage regeneration. Rabbit MSCs were labeled using commercial MPIOs. In vitro MRI was performed with gradient echo (GRE) and spin echo (SE) sequences at 3T and quantitatively characterized using line profile and region of interest analysis. Ex vivo MRI of hydrogel-encapsulated labeled MSCs implanted within a bovine knee was performed with spoiled GRE (SPGR) and T(1ρ) sequences. Fluorescence microscopy, labeling efficiency, and chondrogenesis of MPIO-labeled cells were also examined. MPIO labeling results in efficient contrast uptake and signal loss that can be visualized and quantitatively characterized via MRI. SPGR imaging of implanted cells results in ex vivo detection within native tissue, and T(1ρ) imaging is unaffected by the presence of labeled cells immediately following implantation. MPIO labeling does not affect quantitative glycosaminoglycan production during chondrogenesis, but iron aggregation hinders extracellular matrix visualization. This aggregation may result from excess unincorporated particles following labeling and is an issue that necessitates further investigation. This study demonstrates the promise of MPIO labeling for monitoring cartilage regeneration and highlights its potential in the development of cell-based tissue engineering strategies. Published by Elsevier Inc.

  16. Object representations in ventral and dorsal visual streams: fMRI repetition effects depend on attention and part–whole configuration

    PubMed Central

    Thoma, Volker; Henson, Richard N.

    2011-01-01

    The effects of attention and object configuration on the neural responses to short-lag visual image repetition were investigated with fMRI. Attention to one of two object images in a prime display was cued spatially. The images were either intact or split vertically; a manipulation that negates the influence of view-based representations. A subsequent single intact probe image was named covertly. Behavioural priming observed as faster button presses was found for attended primes in both intact and split configurations, but only for uncued primes in the intact configuration. In a voxel-wise analysis, fMRI repetition suppression (RS) was observed in a left mid-fusiform region for attended primes, both intact and split, whilst a right intraparietal region showed repetition enhancement (RE) for intact primes, regardless of attention. In a factorial analysis across regions of interest (ROIs) defined from independent localiser contrasts, RS for attended objects in the ventral stream was significantly left-lateralised, whilst repetition effects in ventral and dorsal ROIs correlated with the amount of priming in specific conditions. These fMRI results extend hybrid theories of object recognition, implicating left ventral stream regions in analytic processing (requiring attention), consistent with prior hypotheses about hemispheric specialisation, and implicating dorsal stream regions in holistic processing (independent of attention). PMID:21554967

  17. Correlation between hippocampal volumes and medial temporal lobe atrophy in patients with Alzheimer's disease.

    PubMed

    Dhikav, Vikas; Duraiswamy, Sharmila; Anand, Kuljeet Singh

    2017-01-01

    Hippocampus undergoes atrophy in patients with Alzheimer's disease (AD). Calculation of hippocampal volumes can be done by a variety of methods using T1-weighted images of magnetic resonance imaging (MRI) of the brain. Medial temporal lobes atrophy (MTL) can be rated visually using T1-weighted MRI brain images. The present study was done to see if any correlation existed between hippocampal volumes and visual rating scores of the MTL using Scheltens Visual Rating Method. We screened 84 subjects presented to the Department of Neurology of a Tertiary Care Hospital and enrolled forty subjects meeting the National Institute of Neurological and Communicative Disorders and Stroke, AD related Disease Association criteria. Selected patients underwent MRI brain and T1-weighted images in a plane perpendicular to long axis of hippocampus were obtained. Hippocampal volumes were calculated manually using a standard protocol. The calculated hippocampal volumes were correlated with Scheltens Visual Rating Method for Rating MTL. A total of 32 cognitively normal age-matched subjects were selected to see the same correlation in the healthy subjects as well. Sensitivity and specificity of both methods was calculated and compared. There was an insignificant correlation between the hippocampal volumes and MTL rating scores in cognitively normal elderly ( n = 32; Pearson Correlation coefficient = 0.16, P > 0.05). In the AD Group, there was a moderately strong correlation between measured hippocampal volumes and MTL Rating (Pearson's correlation coefficient = -0.54; P < 0.05. There was a moderately strong correlation between hippocampal volume and Mini-Mental Status Examination in the AD group. Manual delineation was superior compared to the visual method ( P < 0.05). Good correlation was present between manual hippocampal volume measurements and MTL scores. Sensitivity and specificity of manual measurement of hippocampus was higher compared to visual rating scores for MTL in patients with AD.

  18. Correlation between hippocampal volumes and medial temporal lobe atrophy in patients with Alzheimer's disease

    PubMed Central

    Dhikav, Vikas; Duraiswamy, Sharmila; Anand, Kuljeet Singh

    2017-01-01

    Introduction: Hippocampus undergoes atrophy in patients with Alzheimer's disease (AD). Calculation of hippocampal volumes can be done by a variety of methods using T1-weighted images of magnetic resonance imaging (MRI) of the brain. Medial temporal lobes atrophy (MTL) can be rated visually using T1-weighted MRI brain images. The present study was done to see if any correlation existed between hippocampal volumes and visual rating scores of the MTL using Scheltens Visual Rating Method. Materials and Methods: We screened 84 subjects presented to the Department of Neurology of a Tertiary Care Hospital and enrolled forty subjects meeting the National Institute of Neurological and Communicative Disorders and Stroke, AD related Disease Association criteria. Selected patients underwent MRI brain and T1-weighted images in a plane perpendicular to long axis of hippocampus were obtained. Hippocampal volumes were calculated manually using a standard protocol. The calculated hippocampal volumes were correlated with Scheltens Visual Rating Method for Rating MTL. A total of 32 cognitively normal age-matched subjects were selected to see the same correlation in the healthy subjects as well. Sensitivity and specificity of both methods was calculated and compared. Results: There was an insignificant correlation between the hippocampal volumes and MTL rating scores in cognitively normal elderly (n = 32; Pearson Correlation coefficient = 0.16, P > 0.05). In the AD Group, there was a moderately strong correlation between measured hippocampal volumes and MTL Rating (Pearson's correlation coefficient = −0.54; P < 0.05. There was a moderately strong correlation between hippocampal volume and Mini-Mental Status Examination in the AD group. Manual delineation was superior compared to the visual method (P < 0.05). Conclusions: Good correlation was present between manual hippocampal volume measurements and MTL scores. Sensitivity and specificity of manual measurement of hippocampus was higher compared to visual rating scores for MTL in patients with AD. PMID:28298839

  19. Event-Related fMRI of Category Learning: Differences in Classification and Feedback Networks

    ERIC Educational Resources Information Center

    Little, Deborah M.; Shin, Silvia S.; Sisco, Shannon M.; Thulborn, Keith R.

    2006-01-01

    Eighteen healthy young adults underwent event-related (ER) functional magnetic resonance imaging (fMRI) of the brain while performing a visual category learning task. The specific category learning task required subjects to extract the rules that guide classification of quasi-random patterns of dots into categories. Following each classification…

  20. Dual-Tasking Alleviated Sleep Deprivation Disruption in Visuomotor Tracking: An fMRI Study

    ERIC Educational Resources Information Center

    Gazes, Yunglin; Rakitin, Brian C.; Steffener, Jason; Habeck, Christian; Butterfield, Brady; Basner, Robert C.; Ghez, Claude; Stern, Yaakov

    2012-01-01

    Effects of dual-responding on tracking performance after 49-h of sleep deprivation (SD) were evaluated behaviorally and with functional magnetic resonance imaging (fMRI). Continuous visuomotor tracking was performed simultaneously with an intermittent color-matching visual detection task in which a pair of color-matched stimuli constituted a…

  1. Fast interactive exploration of 4D MRI flow data

    NASA Astrophysics Data System (ADS)

    Hennemuth, A.; Friman, O.; Schumann, C.; Bock, J.; Drexl, J.; Huellebrand, M.; Markl, M.; Peitgen, H.-O.

    2011-03-01

    1- or 2-directional MRI blood flow mapping sequences are an integral part of standard MR protocols for diagnosis and therapy control in heart diseases. Recent progress in rapid MRI has made it possible to acquire volumetric, 3-directional cine images in reasonable scan time. In addition to flow and velocity measurements relative to arbitrarily oriented image planes, the analysis of 3-dimensional trajectories enables the visualization of flow patterns, local features of flow trajectories or possible paths into specific regions. The anatomical and functional information allows for advanced hemodynamic analysis in different application areas like stroke risk assessment, congenital and acquired heart disease, aneurysms or abdominal collaterals and cranial blood flow. The complexity of the 4D MRI flow datasets and the flow related image analysis tasks makes the development of fast comprehensive data exploration software for advanced flow analysis a challenging task. Most existing tools address only individual aspects of the analysis pipeline such as pre-processing, quantification or visualization, or are difficult to use for clinicians. The goal of the presented work is to provide a software solution that supports the whole image analysis pipeline and enables data exploration with fast intuitive interaction and visualization methods. The implemented methods facilitate the segmentation and inspection of different vascular systems. Arbitrary 2- or 3-dimensional regions for quantitative analysis and particle tracing can be defined interactively. Synchronized views of animated 3D path lines, 2D velocity or flow overlays and flow curves offer a detailed insight into local hemodynamics. The application of the analysis pipeline is shown for 6 cases from clinical practice, illustrating the usefulness for different clinical questions. Initial user tests show that the software is intuitive to learn and even inexperienced users achieve good results within reasonable processing times.

  2. Visibility of Anterolateral Ligament Tears in Anterior Cruciate Ligament-Deficient Knees With Standard 1.5-Tesla Magnetic Resonance Imaging.

    PubMed

    Hartigan, David E; Carroll, Kevin W; Kosarek, Frank J; Piasecki, Dana P; Fleischli, James F; D'Alessandro, Donald F

    2016-10-01

    To attempt to visualize the ligament with standard 1.5-tesla magnetic resonance imaging (MRI) in the acute anterior cruciate ligament (ACL)-torn knee, and if it is visible, attempt to characterize it as torn or intact at its femoral, meniscal, and tibial attachment sites. This was a retrospective MRI study based on arthroscopic findings of a known ACL tear in 72 patients between the years 2006 and 2010. Patients all had hamstring ACL reconstructions, no concomitant lateral collateral ligament, or posterolateral corner injury based on imaging and physical examination, and had a preoperative 1.5-tesla MRI scan with standard sequences performed within 3 weeks of the injury. Two fellowship-trained musculoskeletal radiologists retrospectively reviewed the preoperative MRI for visualization of the anterolateral ligament (ALL) for concomitant tears. Inter- and intraobserver reliability was calculated. Learning effect was analyzed to determine if radiologists' agreement improved as reads progressed. Both radiologists were able to visualize the ALL in 100% of the scans. Overall, ALL tears were noted in 26% by radiologist 1 and in 62% by radiologist 2. The agreement between the ligament being torn or not had a kappa of 0.54 between radiologists. The agreements in torn or not torn between radiologists in the femoral, meniscal, and tibial sites were 0.14, 0.15, and 0.31. The intraobserver reliability by radiologist 1 for femoral, meniscal, and tibial tears was 0.04, 0.57, and 0.54 respectively. For radiologist 2, they were 0.75, 0.61, and 0.55. There was no learning effect noted. ALL tears are currently unable to be reliably identified as torn or intact on standard 1.5-tesla MRI sequences. Proper imaging sequences are of crucial importance to reliably follow these tears to determine their clinical significance. Level IV, therapeutic case series study. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  3. Biodegradable human serum albumin nanoparticles as contrast agents for the detection of hepatocellular carcinoma by magnetic resonance imaging.

    PubMed

    Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Huebner, Frank; Zeuzem, Stefan; Korf, Hans W; Vogl, Thomas J; Rittmeyer, Claudia; Terfort, Andreas; Piiper, Albrecht; Gelperina, Svetlana; Kreuter, Jörg

    2014-05-01

    Tumor visualization by magnetic resonance imaging (MRI) and nanoparticle-based contrast agents may improve the imaging of solid tumors such as hepatocellular carcinoma (HCC). In particular, human serum albumin (HSA) nanoparticles appear to be a suitable carrier due to their safety and feasibility of functionalization. In the present study HSA nanoparticles were conjugated with gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) using carbodiimide chemistry. The nanoparticles had a uniform spherical shape and a diameter of 235±19nm. For better optical visualization in vitro and in vivo, the HSA-Gd nanoparticles were additionally labeled with rhodamine 123. As shown by confocal microscopy and flow cytometry analysis, the fluorescent nanoparticles were readily taken up by Huh-7 hepatocellular carcinoma cells. After 24h incubation in blood serum, less than 5% of the Gd(III) was released from the particles, which suggests that this nanoparticulate system may be stable in vivo and, therefore, may serve as potentially safe T1 MRI contrast agent for MRI of hepatocellular carcinoma. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. LH-RH agonists modulate amygdala response to visual sexual stimulation: a single case fMRI study in pedophilia.

    PubMed

    Habermeyer, Benedikt; Händel, Nadja; Lemoine, Patrick; Klarhöfer, Markus; Seifritz, Erich; Dittmann, Volker; Graf, Marc

    2012-01-01

    Pedophilia is characterized by a persistent sexual attraction to prepubescent children. Treatment with anti-androgen agents, such as luteinizing hormone-releasing hormone (LH-RH) agonists, reduces testosterone levels and thereby sexual drive and arousal. We used functional magnetic resonance imaging (fMRI) to compare visual erotic stimulation pre- and on-treatment with the LH-RH agonist leuprolide acetate in the case of homosexual pedophilia. The pre-treatment contrasts of the erotic pictures against the respective neutral pictures showed an activation of the right amygdala and adjacent parahippocampal gyrus that decreased significantly under treatment with leuprolide acetate. Our single case fMRI study supports the notion that anti-androgens may modify amygdala response to visual erotic stimulation, a hypothesis that should be further examined in larger studies.

  5. Three-dimensional volume rendering of the ankle based on magnetic resonance images enables the generation of images comparable to real anatomy.

    PubMed

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio

    2009-11-01

    We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon-bone-muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18-30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data.

  6. Three-dimensional volume rendering of the ankle based on magnetic resonance images enables the generation of images comparable to real anatomy

    PubMed Central

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio

    2009-01-01

    We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon–bone–muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18–30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data. PMID:19678857

  7. Visualizing Transcranial Direct Current Stimulation (tDCS) in vivo using Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Jog, Mayank Anant

    Transcranial Direct Current Stimulation (tDCS) is a low-cost, non-invasive neuromodulation technique that has been shown to treat clinical symptoms as well as improve cognition. However, no techniques exist at the time of research to visualize tDCS currents in vivo. This dissertation presents the theoretical framework and experimental implementations of a novel MRI technique that enables non-invasive visualization of the tDCS electric current using magnetic field mapping. The first chapter establishes the feasibility of measuring magnetic fields induced by tDCS currents. The following chapter discusses the state of the art implementation that can measure magnetic field changes in individual subjects undergoing concurrent tDCS/MRI. The final chapter discusses how the developed technique was integrated with BOLD fMRI-an established MRI technique for measuring brain function. By enabling a concurrent measurement of the tDCS current induced magnetic field as well as the brain's hemodynamic response to tDCS, our technique opens a new avenue to investigate tDCS mechanisms and improve targeting.

  8. Enhanced visualization of MR angiogram with modified MIP and 3D image fusion

    NASA Astrophysics Data System (ADS)

    Kim, JongHyo; Yeon, Kyoung M.; Han, Man Chung; Lee, Dong Hyuk; Cho, Han I.

    1997-05-01

    We have developed a 3D image processing and display technique that include image resampling, modification of MIP, volume rendering, and fusion of MIP image with volumetric rendered image. This technique facilitates the visualization of the 3D spatial relationship between vasculature and surrounding organs by overlapping the MIP image on the volumetric rendered image of the organ. We applied this technique to a MR brain image data to produce an MRI angiogram that is overlapped with 3D volume rendered image of brain. MIP technique was used to visualize the vasculature of brain, and volume rendering was used to visualize the other structures of brain. The two images are fused after adjustment of contrast and brightness levels of each image in such a way that both the vasculature and brain structure are well visualized either by selecting the maximum value of each image or by assigning different color table to each image. The resultant image with this technique visualizes both the brain structure and vasculature simultaneously, allowing the physicians to inspect their relationship more easily. The presented technique will be useful for surgical planning for neurosurgery.

  9. Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI.

    PubMed

    Zhou, Yongxin; Bai, Jing

    2007-01-01

    A framework that combines atlas registration, fuzzy connectedness (FC) segmentation, and parametric bias field correction (PABIC) is proposed for the automatic segmentation of brain magnetic resonance imaging (MRI). First, the atlas is registered onto the MRI to initialize the following FC segmentation. Original techniques are proposed to estimate necessary initial parameters of FC segmentation. Further, the result of the FC segmentation is utilized to initialize a following PABIC algorithm. Finally, we re-apply the FC technique on the PABIC corrected MRI to get the final segmentation. Thus, we avoid expert human intervention and provide a fully automatic method for brain MRI segmentation. Experiments on both simulated and real MRI images demonstrate the validity of the method, as well as the limitation of the method. Being a fully automatic method, it is expected to find wide applications, such as three-dimensional visualization, radiation therapy planning, and medical database construction.

  10. 3D MRI Modeling of Thin and Spatially Complex Soft Tissue Structures without Shrinkage: Lamprey Myosepta as an Example.

    PubMed

    Wood, Bradley M; Jia, Guang; Carmichael, Owen; McKlveen, Kevin; Homberger, Dominique G

    2018-05-12

    3D imaging techniques enable the non-destructive analysis and modeling of complex structures. Among these, MRI exhibits good soft tissue contrast, but is currently less commonly used for non-clinical research than x-ray CT, even though the latter requires contrast-staining that shrinks and distorts soft tissues. When the objective is the creation of a realistic and complete 3D model of soft tissue structures, MRI data are more demanding to acquire and visualize and require extensive post-processing because they comprise non-cubic voxels with dimensions that represent a trade-off between tissue contrast and image resolution. Therefore, thin soft tissue structures with complex spatial configurations are not always visible in a single MRI dataset, so that standard segmentation techniques are not sufficient for their complete visualization. By using the example of the thin and spatially complex connective tissue myosepta in lampreys, we developed a workflow protocol for the selection of the appropriate parameters for the acquisition of MRI data and for the visualization and 3D modeling of soft tissue structures. This protocol includes a novel recursive segmentation technique for supplementing missing data in one dataset with data from another dataset to produce realistic and complete 3D models. Such 3D models are needed for the modeling of dynamic processes, such as the biomechanics of fish locomotion. However, our methodology is applicable to the visualization of any thin soft tissue structures with complex spatial configurations, such as fasciae, aponeuroses, and small blood vessels and nerves, for clinical research and the further exploration of tensegrity. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  11. Evaluation of MRI-US Fusion Technology in Sports-Related Musculoskeletal Injuries.

    PubMed

    Wong-On, Manuel; Til-Pérez, Lluís; Balius, Ramón

    2015-06-01

    A combination of magnetic resonance imaging (MRI) with real-time high-resolution ultrasound (US) known as fusion imaging may improve visualization of musculoskeletal (MSK) sports medicine injuries. The aim of this study was to evaluate the applicability of MRI-US fusion technology in MSK sports medicine. This study was conducted by the medical services of the FC Barcelona. The participants included volunteers and referred athletes with symptomatic and asymptomatic MSK injuries. All cases underwent MRI which was loaded into the US system for manual registration on the live US image and fusion imaging examination. After every test, an evaluation form was completed in terms of advantages, disadvantages, and anatomic fusion landmarks. From November 2014 to March 2015, we evaluated 20 subjects who underwent fusion imaging, 5 non-injured volunteers and 15 injured athletes, 11 symptomatic and 4 asymptomatic, age range 16-50 years, mean 22. We describe some of the anatomic landmarks used to guide fusion in different regions. This technology allowed us to examine muscle and tendon injuries simultaneously in US and MRI, and the correlation of both techniques, especially low-grade muscular injuries. This has also helped compensate for the limited field of view with US. It improves spatial orientation of cartilage, labrum and meniscal injuries. However, a high-quality MRI image is essential in achieving an adequate fusion image, and 3D sequences need to be added in MRI protocols to improve navigation. The combination of real-time MRI and US image fusion and navigation is relatively easy to perform and is helping to improve understanding of MSK injuries. However, it requires specific skills in MSK imaging and still needs further research in sports-related injuries. Toshiba Medical Systems Corporation.

  12. Visualization of suspicious lesions in breast MRI based on intelligent neural systems

    NASA Astrophysics Data System (ADS)

    Twellmann, Thorsten; Lange, Oliver; Nattkemper, Tim Wilhelm; Meyer-Bäse, Anke

    2006-05-01

    Intelligent medical systems based on supervised and unsupervised artificial neural networks are applied to the automatic visualization and classification of suspicious lesions in breast MRI. These systems represent an important component of future sophisticated computer-aided diagnosis systems and enable the extraction of spatial and temporal features of dynamic MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogenity of the cancerous tissue, these techniques reveal the malignant, benign and normal kinetic signals and and provide a regional subclassification of pathological breast tissue. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging.

  13. Visual analysis of variance: a tool for quantitative assessment of fMRI data processing and analysis.

    PubMed

    McNamee, R L; Eddy, W F

    2001-12-01

    Analysis of variance (ANOVA) is widely used for the study of experimental data. Here, the reach of this tool is extended to cover the preprocessing of functional magnetic resonance imaging (fMRI) data. This technique, termed visual ANOVA (VANOVA), provides both numerical and pictorial information to aid the user in understanding the effects of various parts of the data analysis. Unlike a formal ANOVA, this method does not depend on the mathematics of orthogonal projections or strictly additive decompositions. An illustrative example is presented and the application of the method to a large number of fMRI experiments is discussed. Copyright 2001 Wiley-Liss, Inc.

  14. SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amro, H; Chetty, I; Gordon, J

    2014-06-01

    Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in themore » phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation.« less

  15. Multimodal-3D imaging based on μMRI and μCT techniques bridges the gap with histology in visualization of the bone regeneration process.

    PubMed

    Sinibaldi, R; Conti, A; Sinjari, B; Spadone, S; Pecci, R; Palombo, M; Komlev, V S; Ortore, M G; Tromba, G; Capuani, S; Guidotti, R; De Luca, F; Caputi, S; Traini, T; Della Penna, S

    2018-03-01

    Bone repair/regeneration is usually investigated through X-ray computed microtomography (μCT) supported by histology of extracted samples, to analyse biomaterial structure and new bone formation processes. Magnetic resonance imaging (μMRI) shows a richer tissue contrast than μCT, despite at lower resolution, and could be combined with μCT in the perspective of conducting non-destructive 3D investigations of bone. A pipeline designed to combine μMRI and μCT images of bone samples is here described and applied on samples of extracted human jawbone core following bone graft. We optimized the coregistration procedure between μCT and μMRI images to avoid bias due to the different resolutions and contrasts. Furthermore, we used an Adaptive Multivariate Clustering, grouping homologous voxels in the coregistered images, to visualize different tissue types within a fused 3D metastructure. The tissue grouping matched the 2D histology applied only on 1 slice, thus extending the histology labelling in 3D. Specifically, in all samples, we could separate and map 2 types of regenerated bone, calcified tissue, soft tissues, and/or fat and marrow space. Remarkably, μMRI and μCT alone were not able to separate the 2 types of regenerated bone. Finally, we computed volumes of each tissue in the 3D metastructures, which might be exploited by quantitative simulation. The 3D metastructure obtained through our pipeline represents a first step to bridge the gap between the quality of information obtained from 2D optical microscopy and the 3D mapping of the bone tissue heterogeneity and could allow researchers and clinicians to non-destructively characterize and follow-up bone regeneration. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Impact of audio/visual systems on pediatric sedation in magnetic resonance imaging.

    PubMed

    Lemaire, Colette; Moran, Gerald R; Swan, Hans

    2009-09-01

    To evaluate the use of an audio/visual (A/V) system in pediatric patients as an alternative to sedation in magnetic resonance imaging (MRI) in terms of wait times, image quality, and patient experience. Pediatric MRI examinations from April 8 to August 11, 2008 were compared to those 1 year prior to the installation of the A/V system. Data collected included age, requisition receive date, scan date, and whether sedation was used. A posttest questionnaire was used to evaluate patient experience. Image quality was assessed by two radiologists. Over the 4 months in 2008 there was an increase of 7.2% (115; P < 0.05) of pediatric patients scanned and a decrease of 15.4%, (67; P = 0.32) requiring sedation. The average sedation wait time decreased by 33% (5.8 months) (P < 0.05). Overall, the most positively affected group was the 4-10 years. The questionnaire resulted in 84% of participants expressing a positive reaction to the A/V system. Radiological evaluation revealed no changes in image quality between A/V users and sedates. The A/V system was a successful method to reduce patient motion and obtain a quality diagnostic MRI without the use of sedation in pediatric patients. It provided a safer option, a positive experience, and decreased wait times.

  17. ProstateAnalyzer: Web-based medical application for the management of prostate cancer using multiparametric MR imaging.

    PubMed

    Mata, Christian; Walker, Paul M; Oliver, Arnau; Brunotte, François; Martí, Joan; Lalande, Alain

    2016-01-01

    In this paper, we present ProstateAnalyzer, a new web-based medical tool for prostate cancer diagnosis. ProstateAnalyzer allows the visualization and analysis of magnetic resonance images (MRI) in a single framework. ProstateAnalyzer recovers the data from a PACS server and displays all the associated MRI images in the same framework, usually consisting of 3D T2-weighted imaging for anatomy, dynamic contrast-enhanced MRI for perfusion, diffusion-weighted imaging in the form of an apparent diffusion coefficient (ADC) map and MR Spectroscopy. ProstateAnalyzer allows annotating regions of interest in a sequence and propagates them to the others. From a representative case, the results using the four visualization platforms are fully detailed, showing the interaction among them. The tool has been implemented as a Java-based applet application to facilitate the portability of the tool to the different computer architectures and software and allowing the possibility to work remotely via the web. ProstateAnalyzer enables experts to manage prostate cancer patient data set more efficiently. The tool allows delineating annotations by experts and displays all the required information for use in diagnosis. According to the current European Society of Urogenital Radiology guidelines, it also includes the PI-RADS structured reporting scheme.

  18. Retinitis Pigmentosa Sine Pigmento Mimicking a Chiasm Disease.

    PubMed

    Pellegrini, Francesco; Prosdocimo, Giovanni; Romano, Francesco; Interlandi, Emanuela

    2017-08-01

    A 75-year-old woman presented to her ophthalmologist complaining of visual loss for several years. The ophthalmic examination was remarkable for a bitemporal visual field defect. Magnetic resonance imaging (MRI) scan of the brain was normal without evidence of chiasm compression. Neuro-ophthalmic examination was consistent with a retinal rather than a chiasmal disease. Retinal multimodal imaging helped in the correct diagnosis of retinitis pigmentosa, later confirmed by genetic testing.

  19. Intraoperative Magnetic Resonance Imaging-Guided Biopsy in the Diagnosis of Suprasellar Langerhans Cell Histiocytosis.

    PubMed

    Carroll, Kate T; Lochte, Bryson C; Chen, James Y; Snyder, Vivian S; Carter, Bob S; Chen, Clark C

    2018-04-01

    Magnetic resonance imaging (MRI)-guided biopsy is an emerging diagnostic technique that holds great promise for otherwise difficult to access neuroanatomy. Here we describe MRI-guided biopsy of a suprasellar lesion located posterior and superior to the pituitary stalk. The approach was implemented successfully in a 38-year-old woman who had developed progressive visual deterioration. Intraoperative MRI revealed the need for trajectory adjustment due to an unintended, minor deviation in the burr hole entry point, demonstrating the benefit of an MRI-guided approach. Langerhans cell histiocytosis was diagnosed after biopsy, and the lesion regressed after cladribine treatment. Technical nuances of the case are reviewed in the context of the available literature. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Signal intensity of lanthanum carbonate on magnetic resonance images: phantom study.

    PubMed

    Nakamura, Shinichi; Awai, Kazuo; Komi, Masanori; Morita, Kosuke; Namimoto, Tomohiro; Yanaga, Yumi; Utsunomiya, Daisuke; Date, Shuji; Yamashita, Yasuyuki

    2011-06-01

    Lanthanum carbonate (LC) is used to treat hyperphosphatemia. The purpose of this study was to investigate the signal intensity (SI) of LC on magnetic resonance imaging (MRI) scans of phantoms. LC tablets were thoroughly ground and mixed with distilled water or edible agar (0.05, 0.25, 0.5, and 2.5 mg/ml) in plastic bottles. Four intact tablets were placed in plastic bottles that did or did not contain distilled water or agar. Two radiologists consensually evaluated T1- and T2-weighted images (WIs) obtained with 1.5- and 3.0-T MRI systems for the SI of unground and ground tablets. On T1- and T2WI, the SIs of the LC suspensions and the solvents alone were similar; the SIs of unground tablets alone and of the air were also similar. Unground tablets in phantoms filled with solvent exhibited lower SI than the solvent. Ground tablets in suspension were not visualized on MRI or computed tomography. These results remained unchanged regardless of differences in magnetic field strength or the solvent used. Ground LC had no contrast enhancement effect on T1WI; on T2WI it did not affect the SI of the solvent. Unground LC tablets may be visualized as a "filling defect" on MRI.

  1. Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review

    PubMed Central

    Nuzzi, Raffaele; Dallorto, Laura; Rolle, Teresa

    2018-01-01

    Background: Glaucoma is a leading cause of irreversible blindness worldwide. The increasing interest in the involvement of the cortical visual pathway in glaucomatous patients is due to the implications in recent therapies, such as neuroprotection and neuroregeneration. Objective: In this review, we outline the current understanding of brain structural, functional, and metabolic changes detected with the modern techniques of neuroimaging in glaucomatous subjects. Methods: We screened MEDLINE, EMBASE, CINAHL, CENTRAL, LILACS, Trip Database, and NICE for original contributions published until 31 October 2017. Studies with at least six patients affected by any type of glaucoma were considered. We included studies using the following neuroimaging techniques: functional Magnetic Resonance Imaging (fMRI), resting-state fMRI (rs-fMRI), magnetic resonance spectroscopy (MRS), voxel- based Morphometry (VBM), surface-based Morphometry (SBM), diffusion tensor MRI (DTI). Results: Over a total of 1,901 studies, 56 case series with a total of 2,381 patients were included. Evidence of neurodegenerative process in glaucomatous patients was found both within and beyond the visual system. Structural alterations in visual cortex (mainly reduced cortex thickness and volume) have been demonstrated with SBM and VBM; these changes were not limited to primary visual cortex but also involved association visual areas. Other brain regions, associated with visual function, demonstrated a certain grade of increased or decreased gray matter volume. Functional and metabolic abnormalities resulted within primary visual cortex in all studies with fMRI and MRS. Studies with rs-fMRI found disrupted connectivity between the primary and higher visual cortex and between visual cortex and associative visual areas in the task-free state of glaucomatous patients. Conclusions: This review contributes to the better understanding of brain abnormalities in glaucoma. It may stimulate further speculation about brain plasticity at a later age and therapeutic strategies, such as the prevention of cortical degeneration in patients with glaucoma. Structural, functional, and metabolic neuroimaging methods provided evidence of changes throughout the visual pathway in glaucomatous patients. Other brain areas, not directly involved in the processing of visual information, also showed alterations. PMID:29896087

  2. Visual recognition and visually guided action after early bilateral lesion of occipital cortex: a behavioral study of a 4.6-year-old girl.

    PubMed

    Amicuzi, Ileana; Stortini, Massimo; Petrarca, Maurizio; Di Giulio, Paola; Di Rosa, Giuseppe; Fariello, Giuseppe; Longo, Daniela; Cannatà, Vittorio; Genovese, Elisabetta; Castelli, Enrico

    2006-10-01

    We report the case of a 4.6-year-old girl born pre-term with early bilateral occipital damage. It was revealed that the child had non-severely impaired basic visual abilities and ocular motility, a selective perceptual deficit of figure-ground segregation, impaired visual recognition and abnormal navigating through space. Even if the child's visual functioning was not optimal, this was the expression of adaptive anatomic and functional brain modifications that occurred following the early lesion. Anatomic brain structure was studied with anatomic MRI and Diffusor Tensor Imaging (DTI)-MRI. This behavioral study may provide an important contribution to understanding the impact of an early lesion of the visual system on the development of visual functions and on the immature brain's potential for reorganisation related to when the damage occurred.

  3. High-resolution MRI in detecting subareolar breast abscess.

    PubMed

    Fu, Peifen; Kurihara, Yasuyuki; Kanemaki, Yoshihide; Okamoto, Kyoko; Nakajima, Yasuo; Fukuda, Mamoru; Maeda, Ichiro

    2007-06-01

    Because subareolar breast abscess has a high recurrence rate, a more effective imaging technique is needed to comprehensively visualize the lesions and guide surgery. We performed a high-resolution MRI technique using a microscopy coil to reveal the characteristics and extent of subareolar breast abscess. High-resolution MRI has potential diagnostic value in subareolar breast abscess. This technique can be used to guide surgery with the aim of reducing the recurrence rate.

  4. A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners

    PubMed Central

    Greco, V.; Frijia, F.; Mikellidou, K.; Montanaro, D.; Farini, A.; D’Uva, M.; Poggi, P.; Pucci, M.; Sordini, A.; Morrone, M. C.; Burr, D. C.

    2016-01-01

    We have constructed and tested a custom-made magnetic-imaging-compatible visual projection system designed to project on a very wide visual field (~80°). A standard projector was modified with a coupling lens, projecting images into the termination of an image fiber. The other termination of the fiber was placed in the 3-T scanner room with a projection lens, which projected the images relayed by the fiber onto a screen over the head coil, viewed by a participant wearing magnifying goggles. To validate the system, wide-field stimuli were presented in order to identify retinotopic visual areas. The results showed that this low-cost and versatile optical system may be a valuable tool to map visual areas in the brain that process peripheral receptive fields. PMID:26092392

  5. Thoracic magnetic resonance imaging: pulmonary thromboembolism.

    PubMed

    Fink, Christian; Henzler, Thomas; Shirinova, Aysel; Apfaltrer, Paul; Wasser, Klaus

    2013-05-01

    Ongoing technical developments have substantially improved the potential of magnetic resonance imaging (MRI) in the assessment of the pulmonary circulation. These developments includes improved magnet and hardware design, new k-space sampling techniques (ie, parallel imaging), and alternative contrast materials. With these techniques, not only can pulmonary vessels be visualized by MR angiography with high spatial resolution but also the perfusion of the lungs and its changes in relation to pulmonary thromboembolism (PE) can be assessed. Considering venous thromboembolism as a systemic disease, MR venography might be added for the diagnosis of underlying deep venous thrombosis. A unique advantage of MRI over other imaging tests is its potential to evaluate changes in cardiac function as a result of obstruction of the pulmonary circulation, which may have a significant impact on patient monitoring and treatment. Finally, MRI does not involve radiation, which is advantageous, especially in young patients. Over the years, a number of studies have shown promising results not only for MR angiography but also for MRI of lung perfusion and for MR venography. This review article summarizes and discusses the current evidence on pulmonary MRI for patients with suspected PE.

  6. MR image reconstruction via guided filter.

    PubMed

    Huang, Heyan; Yang, Hang; Wang, Kang

    2018-04-01

    Magnetic resonance imaging (MRI) reconstruction from the smallest possible set of Fourier samples has been a difficult problem in medical imaging field. In our paper, we present a new approach based on a guided filter for efficient MRI recovery algorithm. The guided filter is an edge-preserving smoothing operator and has better behaviors near edges than the bilateral filter. Our reconstruction method is consist of two steps. First, we propose two cost functions which could be computed efficiently and thus obtain two different images. Second, the guided filter is used with these two obtained images for efficient edge-preserving filtering, and one image is used as the guidance image, the other one is used as a filtered image in the guided filter. In our reconstruction algorithm, we can obtain more details by introducing guided filter. We compare our reconstruction algorithm with some competitive MRI reconstruction techniques in terms of PSNR and visual quality. Simulation results are given to show the performance of our new method.

  7. Subclinical visual involvement in multiple sclerosis: a study by MRI, VEPs, frequency-doubling perimetry, standard perimetry, and contrast sensitivity.

    PubMed

    Sisto, Dario; Trojano, Maria; Vetrugno, Michele; Trabucco, Tiziana; Iliceto, Giovanni; Sborgia, Carlo

    2005-04-01

    To evaluate the effectiveness of visual evoked potentials (VEPs), frequency-doubling perimetry (FDP), standard achromatic perimetry (SAP), contrast sensitivity (CS) test, and magnetic resonance imaging (MRI), isolated or in combination, in detecting subclinical impairment of visual function in multiple sclerosis (MS). Twenty-two eyes of 11 patients affected by clinically definite MS, without a history of optic neuritis and asymptomatic for visual disturbances, underwent full ophthalmic examination and, in addition, VEPs, FDP, SAP, CS, and MRI. Abnormal results were taken to be as follows: for VEPs, a P100 latency >115 ms; for FDP, abnormal mean deviation (MD) or pattern SD (PSD); for SAP, abnormal MD or PSD; for CS, abnormal CS at one spatial frequency, at least; and for MRI, evidence of at least one demyelinating plaque along the visual pathway. VEPs showed abnormal results in 12 eyes (54.4%), FDP in 11 (50%), SAP in 14 (63.6%), CS in 17 (77.1%), and MRI in 16 (72.7%). In only two (9.1%) eyes of the same patient was no abnormality found. No single test detected all the abnormal eyes. Four (18.2%) eyes had pure optic nerve involvement and the remaining 16 (72.7%) had both pre- and postchiasmal involvement. In patients affected by clinically definite MS without history of optic neuritis and no visual symptoms, there is a large prevalence of visual pathway involvement that can be diagnosed only by performing multiple tests. The comparison of the tests is also useful to detect the presence of multiple lesions in the same patient.

  8. Alterations of the Temporomandibular Joint on Magnetic Resonance Imaging according to Growth and Development in Schoolchildren

    PubMed Central

    Tanaka, Tatsurou; Konoo, Tetsuro; Habu, Manabu; Oda, Masafumi; Kito, Shinji; Kodama, Masaaki; Kokuryo, Shinya; Wakasugi-Sato, Nao; Matsumoto-Takeda, Shinobu; Nishida, Ikuko; Morikawa, Kazumasa; Saeki, Katsura; Maki, Kenshi; Tominaga, Kazuhiro; Masumi, Shin-ichi; Terashita, Masamichi; Morimoto, Yasuhiro

    2012-01-01

    The paper explains the alterations of the temporomandibular joint (TMJ) visualized by magnetic resonance imaging (MRI) according to the growth and development of schoolchildren. Appearance and disappearance of a “double contour-like structure” (DCLS) of the mandibular condyle on MRI according to the growth and development of schoolchildren were demonstrated. In addition, possible constituents of DCLS and the significance of detection of DCLS on MRI were also speculated. The relationship between red marrow and yellow marrow in the articular eminence of temporal bone, the disappearance of DCLS, and alterations of the mandibular condyle have been elucidated. PMID:23316233

  9. Non-enhanced magnetic resonance imaging of the small bowel at 7 Tesla in comparison to 1.5 Tesla: First steps towards clinical application.

    PubMed

    Hahnemann, Maria L; Kraff, Oliver; Maderwald, Stefan; Johst, Soeren; Orzada, Stephan; Umutlu, Lale; Ladd, Mark E; Quick, Harald H; Lauenstein, Thomas C

    2016-06-01

    To perform non-enhanced (NE) magnetic resonance imaging (MRI) of the small bowel at 7 Tesla (7T) and to compare it with 1.5 Tesla (1.5T). Twelve healthy subjects were prospectively examined using a 1.5T and 7T MRI system. Coronal and axial true fast imaging with steady-state precession (TrueFISP) imaging and a coronal T2-weighted (T2w) half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequence were acquired. Image analysis was performed by 1) visual evaluation of tissue contrast and detail detectability, 2) measurement and calculation of contrast ratios and 3) assessment of artifacts. NE MRI of the small bowel at 7T was technically feasible. In the vast majority of the cases, tissue contrast and image details were equivalent at both field strengths. At 7T, two cases revealed better detail detectability in the TrueFISP, and better contrast in the HASTE. Susceptibility artifacts and B1 inhomogeneities were significantly increased at 7T. This study provides first insights into NE ultra-high field MRI of the small bowel and may be considered an important step towards high quality T2w abdominal imaging at 7T MRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Characteristic findings of magnetic resonance imaging (MRI) and computed tomography (CT) for severe chronic laminitis in a Thoroughbred horse

    PubMed Central

    YAMADA, Kazutaka; INUI, Tomohiro; ITOH, Megumi; YANAGAWA, Masashi; SATO, Fumio; TOMINARI, Masataka; MIZOBE, Fumiaki; KISHIMOTO, Miori; SASAKI, Naoki

    2017-01-01

    ABSTRACT A Thoroughbred horse with severe chronic laminitis of both forelimbs was evaluated on the same day with magnetic resonance imaging (MRI) and computed tomography (CT). Both MRI and CT revealed loss of the dorsal aspect of the cortical bone of the 3rd phalanx and sclerosis. CT reflected the status of the horny layer and bone of the affected feet, while MRI depicted inflammation of the laminar corium, together with tendon edema. On the 3-dimensional CT venogram, vessels were visualized in both the right and left forelimbs, although there was a difference in the vasculature of the coronary plexus and circumflex vessels between the right and left forelimbs. A combination of both MRI and CT provides detailed information regarding pathological conditions. PMID:28955162

  11. The peri-esophageal connective tissue layers and related compartments: visualization by histology and magnetic resonance imaging.

    PubMed

    Weijs, T J; Goense, L; van Rossum, P S N; Meijer, G J; van Lier, A L H M W; Wessels, F J; Braat, M N G; Lips, I M; Ruurda, J P; Cuesta, M A; van Hillegersberg, R; Bleys, R L A W

    2017-02-01

    An organized layer of connective tissue coursing from aorta to esophagus was recently discovered in the mediastinum. The relations with other peri-esophageal fascias have not been described and it is unclear whether this layer can be visualized by non-invasive imaging. This study aimed to provide a comprehensive description of the peri-esophageal fascias and determine whether the connective tissue layer between aorta and esophagus can be visualized by magnetic resonance imaging (MRI). First, T2-weighted MRI scanning of the thoracic region of a human cadaver was performed, followed by histological examination of transverse sections of the peri-esophageal tissue between the thyroid gland and the diaphragm. Secondly, pretreatment motion-triggered MRI scans were prospectively obtained from 34 patients with esophageal cancer and independently assessed by two radiologists for the presence and location of the connective tissue layer coursing from aorta to esophagus. A layer of connective tissue coursing from the anterior aspect of the descending aorta to the left lateral aspect of the esophagus, with a thin extension coursing to the right pleural reflection, was visualized ex vivo in the cadaver on MR images, macroscopic tissue sections, and after histologic staining, as well as on in vivo MR images. The layer connecting esophagus and aorta was named 'aorto-esophageal ligament' and the layer connecting aorta to the right pleural reflection 'aorto-pleural ligament'. These connective tissue layers divides the posterior mediastinum in an anterior compartment containing the esophagus, (carinal) lymph nodes and vagus nerve, and a posterior compartment, containing the azygos vein, thoracic duct and occasionally lymph nodes. The anterior compartment was named 'peri-esophageal compartment' and the posterior compartment 'para-aortic compartment'. The connective tissue layers superior to the aortic arch and at the diaphragm corresponded with the currently available anatomic descriptions. This study confirms the existence of the previously described connective tissue layer coursing from aorta to esophagus, challenging the long-standing paradigm that no such structure exists. A comprehensive, detailed description of the peri-esophageal fascias is provided and, furthermore, it is shown that the connective tissue layer coursing from aorta to esophagus can be visualized in vivo by MRI. © 2016 Anatomical Society.

  12. Dipy, a library for the analysis of diffusion MRI data.

    PubMed

    Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian

    2014-01-01

    Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing.

  13. 3-Tesla MRI: Beneficial visualization of the meniscofemoral ligaments?

    PubMed

    Ebrecht, Johanna; Krasny, Andrej; Hartmann, Dinah Maria; Rückbeil, Marcia Viviane; Ritz, Thomas; Prescher, Andreas

    2017-10-01

    Recent investigations have confirmed an important stabilizing and protective function of the meniscofemoral ligaments (MFLs) to the knee joint and suggest a clinical relevance. Concerning their incidences, however, there have been discrepancies between data acquired from cadaveric studies and MRI data using 0.3- to 1.5-Tesla field strengths probably due to lower resolution. This study aims to investigate whether imaging with 3-Tesla magnetic resonance imaging (3-T MRI) is beneficial in gaining information regarding the ligaments' incidence, length, width and anatomic variation. 3-T MRI images of 448 patients (224 males, 224 females, with, respectively, 32 patients of each sex in the age groups: 0-20, 21-30, 31-40, 41-50, 51-60, 61-70, >70years) were retrospectively reviewed. The influence of the parameters 'sex' and 'age' was determined. Whereas 71% of the patients had at least one MFL, 22% had an anterior MFL (aMFL), 53% had a posterior MFL (pMFL) and five percent had coexisting ligaments. The pMFLs were more likely to be present in female patients (P<0.05) but if so, they were longer in the males (P<0.05). The pMFL was categorized according to its insertion on the medial femoral condyle. 3-T MRI enables an excellent illustration of the anatomic variations of pMFLs. By modifying an anatomic classification for radiological use we measured lengths and widths of the MFLs without any difficulties. Despite its increased resolution, 3-T MRI lends no diagnostic benefit in visualizing the course of the aMFL or filigree coexisting ligaments as compared to MRI at lower field strengths. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by 19F- and diffusion-MRI

    PubMed Central

    Bible, Ellen; Dell’Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter; Badylak, Stephen F.; Ahrens, Eric T.; Modo, Michel

    2012-01-01

    Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based 1H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a 19F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on 1H-MRI scans. Twenty percent of cells labeled with the 19F-agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T2- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. PMID:22244696

  15. Dipy, a library for the analysis of diffusion MRI data

    PubMed Central

    Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian

    2014-01-01

    Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing. PMID:24600385

  16. Comparison of PET/CT with Sequential PET/MRI Using an MR-Compatible Mobile PET System.

    PubMed

    Nakamoto, Ryusuke; Nakamoto, Yuji; Ishimori, Takayoshi; Fushimi, Yasutaka; Kido, Aki; Togashi, Kaori

    2018-05-01

    The current study tested a newly developed flexible PET (fxPET) scanner prototype. This fxPET system involves dual arc-shaped detectors based on silicon photomultipliers that are designed to fit existing MRI devices, allowing us to obtain fused PET and MR images by sequential PET and MR scanning. This prospective study sought to evaluate the image quality, lesion detection rate, and quantitative values of fxPET in comparison with conventional whole-body (WB) PET and to assess the accuracy of registration. Methods: Seventeen patients with suspected or known malignant tumors were analyzed. Approximately 1 h after intravenous injection of 18 F-FDG, WB PET/CT was performed, followed by fxPET and MRI. For reconstruction of fxPET images, MRI-based attenuation correction was applied. The quality of fxPET images was visually assessed, and the number of detected lesions was compared between the 2 imaging methods. SUV max and maximum average SUV within a 1 cm 3 spheric volume (SUV peak ) of lesions were also compared. In addition, the magnitude of misregistration between fxPET and MR images was evaluated. Results: The image quality of fxPET was acceptable for diagnosis of malignant tumors. There was no significant difference in detectability of malignant lesions between fxPET and WB PET ( P > 0.05). However, the fxPET system did not exhibit superior performance to the WB PET system. There were strong positive correlations between the 2 imaging modalities in SUV max (ρ = 0.88) and SUV peak (ρ = 0.81). SUV max and SUV peak measured with fxPET were approximately 1.1-fold greater than measured with WB PET. The average misregistration between fxPET and MR images was 5.5 ± 3.4 mm. Conclusion: Our preliminary data indicate that running an fxPET scanner near an existing MRI system provides visually and quantitatively acceptable fused PET/MR images for diagnosis of malignant lesions. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  17. Prioritization of brain MRI volumes using medical image perception model and tumor region segmentation.

    PubMed

    Mehmood, Irfan; Ejaz, Naveed; Sajjad, Muhammad; Baik, Sung Wook

    2013-10-01

    The objective of the present study is to explore prioritization methods in diagnostic imaging modalities to automatically determine the contents of medical images. In this paper, we propose an efficient prioritization of brain MRI. First, the visual perception of the radiologists is adapted to identify salient regions. Then this saliency information is used as an automatic label for accurate segmentation of brain lesion to determine the scientific value of that image. The qualitative and quantitative results prove that the rankings generated by the proposed method are closer to the rankings created by radiologists. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Direct cerebral and cardiac 17O-MRI at 3 Tesla: initial results at natural abundance.

    PubMed

    Borowiak, Robert; Groebner, Jens; Haas, Martin; Hennig, Jürgen; Bock, Michael

    2014-02-01

    To establish direct (17)O-magnetic resonance imaging (MRI) for metabolic imaging at a clinical field strength of 3 T. An experimental setup including a surface coil and transmit/receive switch was constructed. Natural abundance in vivo brain images of a volunteer were acquired with a radial three-dimensional (3D) sequence in the visual cortex and in the heart with electrocardiogram (ECG)-gating. In the brain, a signal-to-noise ratio of 36 was found at a nominal resolution of (5.6 mm)(3), and a transverse relaxation time of T(2)* = (1.9 ± 0.2) ms was obtained. In the heart (17)O images were acquired with a temporal resolution of 200 ms. Cerebral and cardiac (17)O-MRI at natural abundance is feasible at 3 T.

  19. Comparative Evaluation of Flow Quantification across the Atrioventricular Valve in Patients with Functional Univentricular Heart after Fontan's Surgery and Healthy Controls: Measurement by 4D Flow Magnetic Resonance Imaging and Streamline Visualization.

    PubMed

    She, Hoi Lam; Roest, Arno A W; Calkoen, Emmeline E; van den Boogaard, Pieter J; van der Geest, Rob J; Hazekamp, Mark G; de Roos, Albert; Westenberg, Jos J M

    2017-01-01

    To evaluate the inflow pattern and flow quantification in patients with functional univentricular heart after Fontan's operation using 4D flow magnetic resonance imaging (MRI) with streamline visualization when compared with the conventional 2D flow approach. Seven patients with functional univentricular heart after Fontan's operation and twenty-three healthy controls underwent 4D flow MRI. In two orthogonal two-chamber planes, streamline visualization was applied, and inflow angles with peak inflow velocity (PIV) were measured. Transatrioventricular flow quantification was assessed using conventional 2D multiplanar reformation (MPR) and 4D MPR tracking the annulus and perpendicular to the streamline inflow at PIV, and they were validated with net forward aortic flow. Inflow angles at PIV in the patient group demonstrated wide variation of angles and directions when compared with the control group (P < .01). The use of 4D flow MRI with streamlines visualization in quantification of the transatrioventricular flow had smaller limits of agreement (2.2 ± 4.1 mL; 95% limit of agreement -5.9-10.3 mL) when compared with the static plane assessment from 2DFlow MRI (-2.2 ± 18.5 mL; 95% limit of agreement agreement -38.5-34.1 mL). Stronger correlation was present in the 4D flow between the aortic and trans-atrioventricular flow (R 2 correlation in 4D flow: 0.893; in 2D flow: 0.786). Streamline visualization in 4D flow MRI confirmed variable atrioventricular inflow directions in patients with functional univentricular heart with previous Fontan's procedure. 4D flow aided generation of measurement planes according to the blood flood dynamics and has proven to be more accurate than the fixed plane 2D flow measurements when calculating flow quantifications. © 2016 Wiley Periodicals, Inc.

  20. Serial functional imaging poststroke reveals visual cortex reorganization.

    PubMed

    Brodtmann, Amy; Puce, Aina; Darby, David; Donnan, Geoffrey

    2009-02-01

    Visual cortical reorganization following injury remains poorly understood. The authors performed serial functional magnetic resonance imaging (fMRI) on patients with visual cortex infarction to evaluate early and late striate, ventral, and dorsal extrastriate cortical activation. Patients were studied with fMRI within 10 days and at 6 months. The authors used a high-level visual activation task designed to activate the ventral extrastriate cortex. These data were compared to those of age-appropriate healthy control participants. The results from 24 healthy control individuals (mean age 65.7 +/- SE 3.6 years, range 32-89) were compared to those from 5 stroke patients (mean age 73.8 +/- SE 7 years, range 49-86). Patients had infarcts involving the striate and ventral extrastriate cortex. Patient activation patterns were markedly different to controls. Bilateral striate and ventral extrastriate activation was reduced at both sessions, but dorsal extrastriate activated voxel counts remained comparable to controls. Conversely, mean percent magnetic resonance signal change increased in dorsal sites. These data provide strong evidence of bilateral poststroke functional depression of striate and ventral extrastriate cortices. Possible utilization or surrogacy of the dorsal visual system was demonstrated following stroke. This activity could provide a target for novel visual rehabilitation therapies.

  1. High resolution pituitary gland MRI at 7.0 tesla: a clinical evaluation in Cushing's disease.

    PubMed

    de Rotte, Alexandra A J; Groenewegen, Amy; Rutgers, Dik R; Witkamp, Theo; Zelissen, Pierre M J; Meijer, F J Anton; van Lindert, Erik J; Hermus, Ad; Luijten, Peter R; Hendrikse, Jeroen

    2016-01-01

    To evaluate the detection of pituitary lesions at 7.0 T compared to 1.5 T MRI in 16 patients with clinically and biochemically proven Cushing's disease. In seven patients, no lesion was detected on the initial 1.5 T MRI, and in nine patients it was uncertain whether there was a lesion. Firstly, two readers assessed both 1.5 T and 7.0 T MRI examinations unpaired in a random order for the presence of lesions. Consensus reading with a third neuroradiologist was used to define final lesions in all MRIs. Secondly, surgical outcome was evaluated. A comparison was made between the lesions visualized with MRI and the lesions found during surgery in 9/16 patients. The interobserver agreement for lesion detection was good at 1.5 T MRI (κ = 0.69) and 7.0 T MRI (κ = 0.62). In five patients, both the 1.5 T and 7.0 T MRI enabled visualization of a lesion on the correct side of the pituitary gland. In three patients, 7.0 T MRI detected a lesion on the correct side of the pituitary gland, while no lesion was visible at 1.5 T MRI. The interobserver agreement of image assessment for 7.0 T MRI in patients with Cushing's disease was good, and lesions were detected more accurately with 7.0 T MRI. Interobserver agreement for lesion detection on 1.5 T MRI was good; Interobserver agreement for lesion detection on 7.0 T MRI was good; 7.0 T enabled confirmation of unclear lesions at 1.5 T; 7.0 T enabled visualization of lesions not visible at 1.5 T.

  2. Motion Direction Biases and Decoding in Human Visual Cortex

    PubMed Central

    Wang, Helena X.; Merriam, Elisha P.; Freeman, Jeremy

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies have relied on multivariate analysis methods to decode visual motion direction from measurements of cortical activity. Above-chance decoding has been commonly used to infer the motion-selective response properties of the underlying neural populations. Moreover, patterns of reliable response biases across voxels that underlie decoding have been interpreted to reflect maps of functional architecture. Using fMRI, we identified a direction-selective response bias in human visual cortex that: (1) predicted motion-decoding accuracy; (2) depended on the shape of the stimulus aperture rather than the absolute direction of motion, such that response amplitudes gradually decreased with distance from the stimulus aperture edge corresponding to motion origin; and 3) was present in V1, V2, V3, but not evident in MT+, explaining the higher motion-decoding accuracies reported previously in early visual cortex. These results demonstrate that fMRI-based motion decoding has little or no dependence on the underlying functional organization of motion selectivity. PMID:25209297

  3. Functional neural substrates of posterior cortical atrophy patients.

    PubMed

    Shames, H; Raz, N; Levin, Netta

    2015-07-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.

  4. Hemodynamic and Electrophysiological Relationship Involved in Human Face Processing: Evidence from a Combined fMRI-ERP Study

    ERIC Educational Resources Information Center

    Iidaka, Tetsuya; Matsumoto, Atsushi; Haneda, Kaoruko; Okada, Tomohisa; Sadato, Norihiro

    2006-01-01

    Functional magnetic resonance imaging (fMRI) and event-related potential (ERP) experiments were conducted in the same group of subjects and with an identical task paradigm to investigate a possible relationship between hemodynamic and electrophysiological responses within the brain. The subjects were instructed to judge whether visually presented…

  5. Reduced Field-of-View Diffusion-Weighted Magnetic Resonance Imaging of the Prostate at 3 Tesla: Comparison With Standard Echo-Planar Imaging Technique for Image Quality and Tumor Assessment.

    PubMed

    Tamada, Tsutomu; Ream, Justin M; Doshi, Ankur M; Taneja, Samir S; Rosenkrantz, Andrew B

    The purpose of this study was to compare image quality and tumor assessment at prostate magnetic resonance imaging (MRI) between reduced field-of-view diffusion-weighted imaging (rFOV-DWI) and standard DWI (st-DWI). A total of 49 patients undergoing prostate MRI and MRI/ultrasound fusion-targeted biopsy were included. Examinations included st-DWI (field of view [FOV], 200 × 200 mm) and rFOV-DWI (FOV, 140 × 64 mm) using a 2-dimensional (2D) spatially-selective radiofrequency pulse and parallel transmission. Two readers performed qualitative assessments; a third reader performed quantitative evaluation. Overall image quality, anatomic distortion, visualization of capsule, and visualization of peripheral/transition zone edge were better for rFOV-DWI for reader 1 (P ≤ 0.002), although not for reader 2 (P ≥ 0.567). For both readers, sensitivity, specificity, and accuracy for tumor with a Gleason Score (GS) of 3 + 4 or higher were not different (P ≥ 0.289). Lesion clarity was higher for st-DWI for reader 2 (P = 0.008), although similar for reader 1 (P = 0.409). Diagnostic confidence was not different for either reader (P ≥ 0.052). Tumor-to-benign apparent diffusion coefficient ratio was not different (P = 0.675). Potentially improved image quality of rFOV-DWI did not yield improved tumor assessment. Continued optimization is warranted.

  6. Patient-tailored multimodal neuroimaging, visualization and quantification of human intra-cerebral hemorrhage

    NASA Astrophysics Data System (ADS)

    Goh, Sheng-Yang M.; Irimia, Andrei; Vespa, Paul M.; Van Horn, John D.

    2016-03-01

    In traumatic brain injury (TBI) and intracerebral hemorrhage (ICH), the heterogeneity of lesion sizes and types necessitates a variety of imaging modalities to acquire a comprehensive perspective on injury extent. Although it is advantageous to combine imaging modalities and to leverage their complementary benefits, there are difficulties in integrating information across imaging types. Thus, it is important that efforts be dedicated to the creation and sustained refinement of resources for multimodal data integration. Here, we propose a novel approach to the integration of neuroimaging data acquired from human patients with TBI/ICH using various modalities; we also demonstrate the integrated use of multimodal magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) data for TBI analysis based on both visual observations and quantitative metrics. 3D models of healthy-appearing tissues and TBIrelated pathology are generated, both of which are derived from multimodal imaging data. MRI volumes acquired using FLAIR, SWI, and T2 GRE are used to segment pathology. Healthy tissues are segmented using user-supervised tools, and results are visualized using a novel graphical approach called a `connectogram', where brain connectivity information is depicted within a circle of radially aligned elements. Inter-region connectivity and its strength are represented by links of variable opacities drawn between regions, where opacity reflects the percentage longitudinal change in brain connectivity density. Our method for integrating, analyzing and visualizing structural brain changes due to TBI and ICH can promote knowledge extraction and enhance the understanding of mechanisms underlying recovery.

  7. Resolving human object recognition in space and time

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2014-01-01

    A comprehensive picture of object processing in the human brain requires combining both spatial and temporal information about brain activity. Here, we acquired human magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) responses to 92 object images. Multivariate pattern classification applied to MEG revealed the time course of object processing: whereas individual images were discriminated by visual representations early, ordinate and superordinate category levels emerged relatively later. Using representational similarity analysis, we combine human fMRI and MEG to show content-specific correspondence between early MEG responses and primary visual cortex (V1), and later MEG responses and inferior temporal (IT) cortex. We identified transient and persistent neural activities during object processing, with sources in V1 and IT., Finally, human MEG signals were correlated to single-unit responses in monkey IT. Together, our findings provide an integrated space- and time-resolved view of human object categorization during the first few hundred milliseconds of vision. PMID:24464044

  8. Increase in MST activity correlates with visual motion learning: A functional MRI study of perceptual learning.

    PubMed

    Larcombe, Stephanie J; Kennard, Chris; Bridge, Holly

    2018-01-01

    Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145-156, 2018. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  9. Advantages in functional imaging of the brain.

    PubMed

    Mier, Walter; Mier, Daniela

    2015-01-01

    As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this-visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. We conclude that the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  10. Segmentation precision of abdominal anatomy for MRI-based radiotherapy

    PubMed Central

    Noel, Camille E.; Zhu, Fan; Lee, Andrew Y.; Yanle, Hu; Parikh, Parag J.

    2014-01-01

    The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observers on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DCintraobserver = 0.89 ± 0.12, HDintraobserver = 3.6 mm ± 1.5, DCinterobserver = 0.89 ± 0.15, and HDinterobserver = 3.2 mm ± 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4 mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MRI-based radiotherapy. PMID:24726701

  11. Segmentation precision of abdominal anatomy for MRI-based radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noel, Camille E.; Zhu, Fan; Lee, Andrew Y.

    2014-10-01

    The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observersmore » on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DC{sub intraobserver} = 0.89 ± 0.12, HD{sub intraobserver} = 3.6 mm ± 1.5, DC{sub interobserver} = 0.89 ± 0.15, and HD{sub interobserver} = 3.2 mm ± 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4 mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MRI-based radiotherapy.« less

  12. Mesoporous silica nanoparticles functionalized with fluorescent and MRI reporters for the visualization of murine tumors overexpressing αvβ3 receptors

    NASA Astrophysics Data System (ADS)

    Hu, He; Arena, Francesca; Gianolio, Eliana; Boffa, Cinzia; di Gregorio, Enza; Stefania, Rachele; Orio, Laura; Baroni, Simona; Aime, Silvio

    2016-03-01

    A novel fluorescein/Gd-DOTAGA containing nanoprobe for the visualization of tumors by optical and Magnetic Resonance Imaging (MRI) is reported herein. It is based on the functionalization of the surface of small mesoporous silica nanoparticles (MSNs) (~30 nm) with the arginine-glycine-aspartic (RGD) moieties, which are known to target αvβ3 integrin receptors overexpressed in several tumor cells. The obtained nanoprobe (Gd-MSNs-RGD) displays good stability, tolerability and high relaxivity (37.6 mM-1 s-1 at 21.5 MHz). After a preliminary evaluation of their cytotoxicity and targeting capability toward U87MG cells by in vitro fluorescence and MR imaging, the nanoprobes were tested in vivo by T1-weighted MR imaging of xenografted murine tumor models. The obtained results demonstrated that the Gd-MSNs-RGD nanoprobes are good reporters both in vitro and in vivo for the MR-visualization of tumor cells overexpressing αvβ3 integrin receptors.A novel fluorescein/Gd-DOTAGA containing nanoprobe for the visualization of tumors by optical and Magnetic Resonance Imaging (MRI) is reported herein. It is based on the functionalization of the surface of small mesoporous silica nanoparticles (MSNs) (~30 nm) with the arginine-glycine-aspartic (RGD) moieties, which are known to target αvβ3 integrin receptors overexpressed in several tumor cells. The obtained nanoprobe (Gd-MSNs-RGD) displays good stability, tolerability and high relaxivity (37.6 mM-1 s-1 at 21.5 MHz). After a preliminary evaluation of their cytotoxicity and targeting capability toward U87MG cells by in vitro fluorescence and MR imaging, the nanoprobes were tested in vivo by T1-weighted MR imaging of xenografted murine tumor models. The obtained results demonstrated that the Gd-MSNs-RGD nanoprobes are good reporters both in vitro and in vivo for the MR-visualization of tumor cells overexpressing αvβ3 integrin receptors. Electronic supplementary information (ESI) available: Absorption and emission spectra, energy dispersive X-ray analysis (EDXA) and XPS spectra, TGA, zeta-potential and the molecular structures of the Gd-complexes. See DOI: 10.1039/c5nr08878j

  13. A novel two-dimensional echocardiographic image analysis system using artificial intelligence-learned pattern recognition for rapid automated ejection fraction.

    PubMed

    Cannesson, Maxime; Tanabe, Masaki; Suffoletto, Matthew S; McNamara, Dennis M; Madan, Shobhit; Lacomis, Joan M; Gorcsan, John

    2007-01-16

    We sought to test the hypothesis that a novel 2-dimensional echocardiographic image analysis system using artificial intelligence-learned pattern recognition can rapidly and reproducibly calculate ejection fraction (EF). Echocardiographic EF by manual tracing is time consuming, and visual assessment is inherently subjective. We studied 218 patients (72 female), including 165 with abnormal left ventricular (LV) function. Auto EF incorporated a database trained on >10,000 human EF tracings to automatically locate and track the LV endocardium from routine grayscale digital cineloops and calculate EF in 15 s. Auto EF results were independently compared with manually traced biplane Simpson's rule, visual EF, and magnetic resonance imaging (MRI) in a subset. Auto EF was possible in 200 (92%) of consecutive patients, of which 77% were completely automated and 23% required manual editing. Auto EF correlated well with manual EF (r = 0.98; 6% limits of agreement) and required less time per patient (48 +/- 26 s vs. 102 +/- 21 s; p < 0.01). Auto EF correlated well with visual EF by expert readers (r = 0.96; p < 0.001), but interobserver variability was greater (3.4 +/- 2.9% vs. 9.8 +/- 5.7%, respectively; p < 0.001). Visual EF was less accurate by novice readers (r = 0.82; 19% limits of agreement) and improved with trainee-operated Auto EF (r = 0.96; 7% limits of agreement). Auto EF also correlated with MRI EF (n = 21) (r = 0.95; 12% limits of agreement), but underestimated absolute volumes (r = 0.95; bias of -36 +/- 27 ml overall). Auto EF can automatically calculate EF similarly to results by manual biplane Simpson's rule and MRI, with less variability than visual EF, and has clinical potential.

  14. Whole-body diffusion-weighted MR image stitching and alignment to anatomical MRI

    NASA Astrophysics Data System (ADS)

    Ceranka, Jakub; Polfliet, Mathias; Lecouvet, Frederic; Michoux, Nicolas; Vandemeulebroucke, Jef

    2017-02-01

    Whole-body diffusion-weighted (WB-DW) MRI in combination with anatomical MRI has shown a great poten- tial in bone and soft tissue tumour detection, evaluation of lymph nodes and treatment response assessment. Because of the vast body coverage, whole-body MRI is acquired in separate stations, which are subsequently combined into a whole-body image. However, inter-station and inter-modality image misalignments can occur due to image distortions and patient motion during acquisition, which may lead to inaccurate representations of patient anatomy and hinder visual assessment. Automated and accurate whole-body image formation and alignment of the multi-modal MRI images is therefore crucial. We investigated several registration approaches for the formation or stitching of the whole-body image stations, followed by a deformable alignment of the multi- modal whole-body images. We compared a pairwise approach, where diffusion-weighted (DW) image stations were sequentially aligned to a reference station (pelvis), to a groupwise approach, where all stations were simultaneously mapped to a common reference space while minimizing the overall transformation. For each, a choice of input images and corresponding metrics was investigated. Performance was evaluated by assessing the quality of the obtained whole-body images, and by verifying the accuracy of the alignment with whole-body anatomical sequences. The groupwise registration approach provided the best compromise between the formation of WB- DW images and multi-modal alignment. The fully automated method was found to be robust, making its use in the clinic feasible.

  15. Retinitis Pigmentosa Sine Pigmento Mimicking a Chiasm Disease

    PubMed Central

    Pellegrini, Francesco; Prosdocimo, Giovanni; Romano, Francesco; Interlandi, Emanuela

    2017-01-01

    ABSTRACT A 75-year-old woman presented to her ophthalmologist complaining of visual loss for several years. The ophthalmic examination was remarkable for a bitemporal visual field defect. Magnetic resonance imaging (MRI) scan of the brain was normal without evidence of chiasm compression. Neuro-ophthalmic examination was consistent with a retinal rather than a chiasmal disease. Retinal multimodal imaging helped in the correct diagnosis of retinitis pigmentosa, later confirmed by genetic testing. PMID:29344059

  16. Thinking about Eating Food Activates Visual Cortex with Reduced Bilateral Cerebellar Activation in Females with Anorexia Nervosa: An fMRI Study

    PubMed Central

    Brooks, Samantha J.; O'Daly, Owen; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C. R.; Schiöth, Helgi B.; Treasure, Janet; Campbell, Iain C.

    2012-01-01

    Background Women with anorexia nervosa (AN) have aberrant cognitions about food and altered activity in prefrontal cortical and somatosensory regions to food images. However, differential effects on the brain when thinking about eating food between healthy women and those with AN is unknown. Methods Functional magnetic resonance imaging (fMRI) examined neural activation when 42 women thought about eating the food shown in images: 18 with AN (11 RAN, 7 BPAN) and 24 age-matched controls (HC). Results Group contrasts between HC and AN revealed reduced activation in AN in the bilateral cerebellar vermis, and increased activation in the right visual cortex. Preliminary comparisons between AN subtypes and healthy controls suggest differences in cortical and limbic regions. Conclusions These preliminary data suggest that thinking about eating food shown in images increases visual and prefrontal cortical neural responses in females with AN, which may underlie cognitive biases towards food stimuli and ruminations about controlling food intake. Future studies are needed to explicitly test how thinking about eating activates restraint cognitions, specifically in those with restricting vs. binge-purging AN subtypes. PMID:22479499

  17. Magnetic Resonance Imaging of Chondrocytes Labeled with Superparamagnetic Iron Oxide Nanoparticles in Tissue-Engineered Cartilage

    PubMed Central

    Ramaswamy, Sharan; Greco, Jane B.; Uluer, Mehmet C.; Zhang, Zijun; Zhang, Zhuoli; Fishbein, Kenneth W.

    2009-01-01

    The distribution of cells within tissue-engineered constructs is difficult to study through nondestructive means, such as would be required after implantation. However, cell labeling with iron-containing particles may prove to be a useful approach to this problem, because regions containing such labeled cells have been shown to be readily detectable using magnetic resonance imaging (MRI). In this study, we used the Food and Drug Administration–approved superparamagnetic iron oxide (SPIO) contrast agent Feridex in combination with transfection agents to label chondrocytes and visualize them with MRI in two different tissue-engineered cartilage constructs. Correspondence between labeled cell spatial location as determined using MRI and histology was established. The SPIO-labeling process was found not to affect the phenotype or viability of the chondrocytes or the production of major cartilage matrix constituents. We believe that this method of visualizing and tracking chondrocytes may be useful in the further development of tissue engineered cartilage therapeutics. PMID:19788362

  18. Low-Cost High-Performance MRI

    NASA Astrophysics Data System (ADS)

    Sarracanie, Mathieu; Lapierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-10-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10 mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices.

  19. Fusion of PET and MRI for Hybrid Imaging

    NASA Astrophysics Data System (ADS)

    Cho, Zang-Hee; Son, Young-Don; Kim, Young-Bo; Yoo, Seung-Schik

    Recently, the development of the fusion PET-MRI system has been actively studied to meet the increasing demand for integrated molecular and anatomical imaging. MRI can provide detailed anatomical information on the brain, such as the locations of gray and white matter, blood vessels, axonal tracts with high resolution, while PET can measure molecular and genetic information, such as glucose metabolism, neurotransmitter-neuroreceptor binding and affinity, protein-protein interactions, and gene trafficking among biological tissues. State-of-the-art MRI systems, such as the 7.0 T whole-body MRI, now can visualize super-fine structures including neuronal bundles in the pons, fine blood vessels (such as lenticulostriate arteries) without invasive contrast agents, in vivo hippocampal substructures, and substantia nigra with excellent image contrast. High-resolution PET, known as High-Resolution Research Tomograph (HRRT), is a brain-dedicated system capable of imaging minute changes of chemicals, such as neurotransmitters and -receptors, with high spatial resolution and sensitivity. The synergistic power of the two, i.e., ultra high-resolution anatomical information offered by a 7.0 T MRI system combined with the high-sensitivity molecular information offered by HRRT-PET, will significantly elevate the level of our current understanding of the human brain, one of the most delicate, complex, and mysterious biological organs. This chapter introduces MRI, PET, and PET-MRI fusion system, and its algorithms are discussed in detail.

  20. A Web platform for the interactive visualization and analysis of the 3D fractal dimension of MRI data.

    PubMed

    Jiménez, J; López, A M; Cruz, J; Esteban, F J; Navas, J; Villoslada, P; Ruiz de Miras, J

    2014-10-01

    This study presents a Web platform (http://3dfd.ujaen.es) for computing and analyzing the 3D fractal dimension (3DFD) from volumetric data in an efficient, visual and interactive way. The Web platform is specially designed for working with magnetic resonance images (MRIs) of the brain. The program estimates the 3DFD by calculating the 3D box-counting of the entire volume of the brain, and also of its 3D skeleton. All of this is done in a graphical, fast and optimized way by using novel technologies like CUDA and WebGL. The usefulness of the Web platform presented is demonstrated by its application in a case study where an analysis and characterization of groups of 3D MR images is performed for three neurodegenerative diseases: Multiple Sclerosis, Intrauterine Growth Restriction and Alzheimer's disease. To the best of our knowledge, this is the first Web platform that allows the users to calculate, visualize, analyze and compare the 3DFD from MRI images in the cloud. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Role of cerebral ultrasound and magnetic resonance imaging in newborns with congenital cytomegalovirus infection.

    PubMed

    Capretti, Maria Grazia; Lanari, Marcello; Tani, Giovanni; Ancora, Gina; Sciutti, Rita; Marsico, Concetta; Lazzarotto, Tiziana; Gabrielli, Liliana; Guerra, Brunella; Corvaglia, Luigi; Faldella, Giacomo

    2014-03-01

    To assess the diagnostic and prognostic value of cerebral magnetic resonance imaging (cMRI) in comparison with that of cerebral ultrasound (cUS) in predicting neurodevelopmental outcome in newborns with congenital cytomegalovirus (CMV) infection. Forty CMV-congenitally infected newborns underwent cUS and cMRI within the first month of life. Clinical course, laboratory findings, visual/hearing function and neurodevelopmental outcome were documented. Thirty newborns showed normal cMRI, cUS and hearing/visual function in the first month of life; none showed CMV-related abnormalities at follow-up. Six newborns showed pathological cMRI and cUS findings (pseudocystis, ventriculomegaly, calcifications, cerebellar hypoplasia) but cMRI provided additional information (white matter abnormalities in three cases, lissencephaly/polymicrogyria in one and a cyst of the temporal lobe in another one); cerebral calcifications were detected in 3/6 infants by cUS but only in 2/6 by cMRI. Four of these 6 infants showed severe neurodevelopmental impairment and five showed deafness during follow-up. Three newborns had a normal cUS, but cMRI documented white matter abnormalities and in one case also cerebellar hypoplasia; all showed neurodevelopmental impairment and two were deaf at follow-up. One more newborn showed normal cUS and cMRI, but brainstem auditory evoked responses were abnormal; psychomotor development was normal at follow-up. Compared with cUS, cMRI disclosed additional pathological findings in CMV-congenitally infected newborns. cUS is a readily available screening tool useful in the identification of infected newborns with major cerebral involvement. Further studies with a larger sample size are needed to determine the prognostic role of MRI, particularly regarding isolated white matter lesions. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  2. Visual and proprioceptive interaction in patients with bilateral vestibular loss☆

    PubMed Central

    Cutfield, Nicholas J.; Scott, Gregory; Waldman, Adam D.; Sharp, David J.; Bronstein, Adolfo M.

    2014-01-01

    Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients. PMID:25061564

  3. Visual and proprioceptive interaction in patients with bilateral vestibular loss.

    PubMed

    Cutfield, Nicholas J; Scott, Gregory; Waldman, Adam D; Sharp, David J; Bronstein, Adolfo M

    2014-01-01

    Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients.

  4. Lack of sex effect on brain activity during a visuomotor response task: functional MR imaging study.

    PubMed

    Mikhelashvili-Browner, Nina; Yousem, David M; Wu, Colin; Kraut, Michael A; Vaughan, Christina L; Oguz, Kader Karli; Calhoun, Vince D

    2003-03-01

    As more individuals are enrolled in clinical functional MR imaging (fMRI) studies, an understanding of how sex may influence fMRI-measured brain activation is critical. We used fixed- and random-effects models to study the influence of sex on fMRI patterns of brain activation during a simple visuomotor reaction time task in the group of 26 age-matched men and women. We evaluated the right visual, left visual, left primary motor, left supplementary motor, and left anterior cingulate areas. Volumes of activations did not significantly differ between the groups in any defined regions. Analysis of variance failed to show any significant correlations between sex and volumes of brain activation in any location studied. Mean percentage signal-intensity changes for all locations were similar between men and women. A two-way t test of brain activation in men and women, performed as a part of random-effects modeling, showed no significant difference at any site. Our results suggest that sex seems to have little influence on fMRI brain activation when we compared performance on the simple reaction-time task. The need to control for sex effects is not critical in the analysis of this task with fMRI.

  5. A feasibility study for compressed sensing combined phase contrast MR angiography reconstruction

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hoon; Hong, Cheol-Pyo; Lee, Man-Woo; Han, Bong-Soo

    2012-02-01

    Phase contrast magnetic resonance angiography (PC MRA) is a technique for flow velocity measurement and vessels visualization, simultaneously. The PC MRA takes long scan time because each flow encoding gradients which are composed bipolar gradient type need to reconstruct the angiography image. Moreover, it takes more image acquisition time when we use the PC MRA at the low-tesla MRI system. In this study, we studied and evaluation of feasibility for CS MRI reconstruction combined PC MRA which data acquired by low-tesla MRI system. We used non-linear reconstruction algorithm which named Bregman iteration for CS image reconstruction and validate the usefulness of CS combined PC MRA reconstruction technique. The results of CS reconstructed PC MRA images provide similar level of image quality between fully sampled reconstruction data and sparse sampled reconstruction using CS technique. Although our results used half of sampling ratio and do not used specification hardware device or performance which are improving the temporal resolution of MR image acquisition such as parallel imaging reconstruction using phased array coil or non-cartesian trajectory, we think that CS combined PC MRA technique will be helpful to increase the temporal resolution and at low-tesla MRI system.

  6. Polymer film-nanoparticle composites as new multimodality, non-migrating breast biopsy markers.

    PubMed

    Kaplan, Jonah A; Grinstaff, Mark W; Bloch, B Nicolas

    2016-03-01

    To develop a breast biopsy marker that resists fast and slow migration and has permanent visibility under commonly used imaging modalities. A polymer-nanoparticle composite film was prepared by embedding superparamagnetic iron oxide nanoparticles and a superelastic Nitinol wire within a flexible polyethylene matrix. MRI, mammography, and ultrasound were used to visualize the marker in agar, ex vivo chicken breast, bovine liver, brisket, and biopsy training phantoms. Fast migration caused by the "accordion effect" was quantified after simulated stereotactic, vacuum-assisted core biopsy/marker placement, and centrifugation was used to simulate accelerated long-term (i.e., slow) migration in ex vivo bovine tissue phantoms. Clear marker visualization under MRI, mammography, and ultrasound was observed. After deployment, the marker partially unfolds to give a geometrically constrained structure preventing fast and slow migration. The marker can be deployed through an 11G introducer without fast migration occurring, and shows substantially less slow migration than conventional markers. The polymer-nanoparticle composite biopsy marker is clearly visible on all clinical imaging modalities and does not show substantial migration, which ensures multimodal assessment of the correct spatial information of the biopsy site, allowing for more accurate diagnosis and treatment planning and improved breast cancer patient care. Polymer-nanoparticle composite biopsy markers are visualized using ultrasound, MRI, and mammography. Embedded iron oxide nanoparticles provide tuneable contrast for MRI visualization. Permanent ultrasound visibility is achieved with a non-biodegradable polymer having a distinct ultrasound signal. Flexible polymer-based biopsy markers undergo shape change upon deployment to minimize migration. Non-migrating multimodal markers will help improve accuracy of pre/post-treatment planning studies.

  7. Efficient bias correction for magnetic resonance image denoising.

    PubMed

    Mukherjee, Partha Sarathi; Qiu, Peihua

    2013-05-30

    Magnetic resonance imaging (MRI) is a popular radiology technique that is used for visualizing detailed internal structure of the body. Observed MRI images are generated by the inverse Fourier transformation from received frequency signals of a magnetic resonance scanner system. Previous research has demonstrated that random noise involved in the observed MRI images can be described adequately by the so-called Rician noise model. Under that model, the observed image intensity at a given pixel is a nonlinear function of the true image intensity and of two independent zero-mean random variables with the same normal distribution. Because of such a complicated noise structure in the observed MRI images, denoised images by conventional denoising methods are usually biased, and the bias could reduce image contrast and negatively affect subsequent image analysis. Therefore, it is important to address the bias issue properly. To this end, several bias-correction procedures have been proposed in the literature. In this paper, we study the Rician noise model and the corresponding bias-correction problem systematically and propose a new and more effective bias-correction formula based on the regression analysis and Monte Carlo simulation. Numerical studies show that our proposed method works well in various applications. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Magnetic Resonance Fingerprinting - a promising new approach to obtain standardized imaging biomarkers from MRI.

    PubMed

    2015-04-01

    Current routine MRI examinations rely on the acquisition of qualitative images that have a contrast "weighted" for a mixture of (magnetic) tissue properties. Recently, a novel approach was introduced, namely MR Fingerprinting (MRF) with a completely different approach to data acquisition, post-processing and visualization. Instead of using a repeated, serial acquisition of data for the characterization of individual parameters of interest, MRF uses a pseudo randomized acquisition that causes the signals from different tissues to have a unique signal evolution or 'fingerprint' that is simultaneously a function of the multiple material properties under investigation. The processing after acquisition involves a pattern recognition algorithm to match the fingerprints to a predefined dictionary of predicted signal evolutions. These can then be translated into quantitative maps of the magnetic parameters of interest. MR Fingerprinting (MRF) is a technique that could theoretically be applied to most traditional qualitative MRI methods and replaces them with acquisition of truly quantitative tissue measures. MRF is, thereby, expected to be much more accurate and reproducible than traditional MRI and should improve multi-center studies and significantly reduce reader bias when diagnostic imaging is performed. Key Points • MR fingerprinting (MRF) is a new approach to data acquisition, post-processing and visualization.• MRF provides highly accurate quantitative maps of T1, T2, proton density, diffusion.• MRF may offer multiparametric imaging with high reproducibility, and high potential for multicenter/ multivendor studies.

  9. Functional MR imaging assessment of a non-responsive brain injured patient.

    PubMed

    Moritz, C H; Rowley, H A; Haughton, V M; Swartz, K R; Jones, J; Badie, B

    2001-10-01

    Functional magnetic resonance imaging (fMRI) was requested to assist in the evaluation of a comatose 38-year-old woman who had sustained multiple cerebral contusions from a motor vehicle accident. Previous electrophysiologic studies suggested absence of thalamocortical processing in response to median nerve stimulation. Whole-brain fMRI was performed utilizing visual, somatosensory, and auditory stimulation paradigms. Results demonstrated intact task-correlated sensory and cognitive blood oxygen level dependent (BOLD) hemodynamic response to stimuli. Electrodiagnostic studies were repeated and evoked potentials indicated supratentorial recovery in the cerebrum. At 3-months post trauma the patient had recovered many cognitive & sensorimotor functions, accurately reflecting the prognostic fMRI evaluation. These results indicate that fMRI examinations may provide a useful evaluation for brain function in non-responsive brain trauma patients.

  10. Functional MRI mapping of visual function and selective attention for performance assessment and presurgical planning using conjunctive visual search.

    PubMed

    Parker, Jason G; Zalusky, Eric J; Kirbas, Cemil

    2014-03-01

    Accurate mapping of visual function and selective attention using fMRI is important in the study of human performance as well as in presurgical treatment planning of lesions in or near visual centers of the brain. Conjunctive visual search (CVS) is a useful tool for mapping visual function during fMRI because of its greater activation extent compared with high-capacity parallel search processes. The purpose of this work was to develop and evaluate a CVS that was capable of generating consistent activation in the basic and higher level visual areas of the brain by using a high number of distractors as well as an optimized contrast condition. Images from 10 healthy volunteers were analyzed and brain regions of greatest activation and deactivation were determined using a nonbiased decomposition of the results at the hemisphere, lobe, and gyrus levels. The results were quantified in terms of activation and deactivation extent and mean z-statistic. The proposed CVS was found to generate robust activation of the occipital lobe, as well as regions in the middle frontal gyrus associated with coordinating eye movements and in regions of the insula associated with task-level control and focal attention. As expected, the task demonstrated deactivation patterns commonly implicated in the default-mode network. Further deactivation was noted in the posterior region of the cerebellum, most likely associated with the formation of optimal search strategy. We believe the task will be useful in studies of visual and selective attention in the neuroscience community as well as in mapping visual function in clinical fMRI.

  11. The Importance of Neurogenic Inflammation in Blast-Induced Neurotrauma

    DTIC Science & Technology

    2013-01-01

    mild/moderate BINT are imaged by magnetic resonance imaging ( MRI ) to visualize potential macrophage infiltration; blood-brain barrier (BBB) disturbance...TERMS blast, traumatic brain injury, brain, inflammation, magnetic resonance imaging , mice 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...monitoring the success of therapeutic interventions. In this annual report we have utilized current live imaging methods (i.e. magnetic resonance

  12. Spot Sign in Acute Intracerebral Hemorrhage in Dynamic T1-Weighted Magnetic Resonance Imaging.

    PubMed

    Schindlbeck, Katharina A; Santaella, Anna; Galinovic, Ivana; Krause, Thomas; Rocco, Andrea; Nolte, Christian H; Villringer, Kersten; Fiebach, Jochen B

    2016-02-01

    In computed tomographic imaging of acute intracerebral hemorrhage spot sign on computed tomographic angiography has been established as a marker for hematoma expansion and poor clinical outcome. Although, magnetic resonance imaging (MRI) can accurately visualize acute intracerebral hemorrhage, a corresponding MRI marker is lacking to date. We prospectively examined 50 consecutive patients with acute intracerebral hemorrhage within 24 hours of symptom onset. The MRI protocol consisted of a standard stroke protocol and dynamic contrast-enhanced T1-weighted imaging with a time resolution of 7.07 s/batch. Stroke scores were assessed at admission and at time of discharge. Volume measurements of hematoma size and spot sign were performed with MRIcron. Contrast extravasation within sites of the hemorrhage (MRI spot sign) was seen in 46% of the patients. Patients with an MRI spot sign had a significantly shorter time to imaging than those without (P<0.001). The clinical outcome measured by the modified Rankin Scale was significantly worse in patients with spot sign compared with those without (P≤0.001). Hematoma expansion was observed in the spot sign group compared with the nonspot sign group, although the differences were not significant. Spot sign can be detected using MRI on postcontrast T1-weighted and dynamic T1-weighted images. It is associated with worse clinical outcome. The time course of contrast extravasation in dynamic T1 images indicates that these spots represent ongoing bleeding. © 2015 American Heart Association, Inc.

  13. The effects of orientation and attention during surround suppression of small image features: A 7 Tesla fMRI study.

    PubMed

    Schallmo, Michael-Paul; Grant, Andrea N; Burton, Philip C; Olman, Cheryl A

    2016-08-01

    Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports.

  14. Accuracy of UTE-MRI-based patient setup for brain cancer radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yingli; Cao, Minsong; Kaprealian, Tania

    2016-01-15

    Purpose: Radiation therapy simulations solely based on MRI have advantages compared to CT-based approaches. One feature readily available from computed tomography (CT) that would need to be reproduced with MR is the ability to compute digitally reconstructed radiographs (DRRs) for comparison against on-board radiographs commonly used for patient positioning. In this study, the authors generate MR-based bone images using a single ultrashort echo time (UTE) pulse sequence and quantify their 3D and 2D image registration accuracy to CT and radiographic images for treatments in the cranium. Methods: Seven brain cancer patients were scanned at 1.5 T using a radial UTEmore » sequence. The sequence acquired two images at two different echo times. The two images were processed using an in-house software to generate the UTE bone images. The resultant bone images were rigidly registered to simulation CT data and the registration error was determined using manually annotated landmarks as references. DRRs were created based on UTE-MRI and registered to simulated on-board images (OBIs) and actual clinical 2D oblique images from ExacTrac™. Results: UTE-MRI resulted in well visualized cranial, facial, and vertebral bones that quantitatively matched the bones in the CT images with geometric measurement errors of less than 1 mm. The registration error between DRRs generated from 3D UTE-MRI and the simulated 2D OBIs or the clinical oblique x-ray images was also less than 1 mm for all patients. Conclusions: UTE-MRI-based DRRs appear to be promising for daily patient setup of brain cancer radiotherapy with kV on-board imaging.« less

  15. A composite measure to explore visual disability in primary progressive multiple sclerosis.

    PubMed

    Poretto, Valentina; Petracca, Maria; Saiote, Catarina; Mormina, Enricomaria; Howard, Jonathan; Miller, Aaron; Lublin, Fred D; Inglese, Matilde

    2017-01-01

    Optical coherence tomography (OCT) and magnetic resonance imaging (MRI) can provide complementary information on visual system damage in multiple sclerosis (MS). The objective of this paper is to determine whether a composite OCT/MRI score, reflecting cumulative damage along the entire visual pathway, can predict visual deficits in primary progressive multiple sclerosis (PPMS). Twenty-five PPMS patients and 20 age-matched controls underwent neuro-ophthalmologic evaluation, spectral-domain OCT, and 3T brain MRI. Differences between groups were assessed by univariate general linear model and principal component analysis (PCA) grouped instrumental variables into main components. Linear regression analysis was used to assess the relationship between low-contrast visual acuity (LCVA), OCT/MRI-derived metrics and PCA-derived composite scores. PCA identified four main components explaining 80.69% of data variance. Considering each variable independently, LCVA 1.25% was significantly predicted by ganglion cell-inner plexiform layer (GCIPL) thickness, thalamic volume and optic radiation (OR) lesion volume (adjusted R 2 0.328, p  = 0.00004; adjusted R 2 0.187, p  = 0.002 and adjusted R 2 0.180, p  = 0.002). The PCA composite score of global visual pathway damage independently predicted both LCVA 1.25% (adjusted R 2 value 0.361, p  = 0.00001) and LCVA 2.50% (adjusted R 2 value 0.323, p  = 0.00003). A multiparametric score represents a more comprehensive and effective tool to explain visual disability than a single instrumental metric in PPMS.

  16. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    PubMed

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  17. Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain injury.

    PubMed

    Lu, Liyan; Wei, Xiaoer; Li, Minghua; Li, Yuehua; Li, Wenbin

    2014-01-01

    Traumatic brain injury (TBI) is one of the leading causes of death worldwide, and mild traumatic brain injury (mTBI) is the most common traumatic injury. It is difficult to detect mTBI using a routine neuroimaging. Advanced techniques with greater sensitivity and specificity for the diagnosis and treatment of mTBI are required. The aim of this review is to offer an overview of various emerging neuroimaging methodologies that can solve the clinical health problems associated with mTBI. Important findings and improvements in neuroimaging that hold value for better detection, characterization and monitoring of objective brain injuries in patients with mTBI are presented. Conventional computed tomography (CT) and magnetic resonance imaging (MRI) are not very efficient for visualizing mTBI. Moreover, techniques such as diffusion tensor imaging, magnetization transfer imaging, susceptibility-weighted imaging, functional MRI, single photon emission computed tomography, positron emission tomography and magnetic resonance spectroscopy imaging were found to be useful for mTBI imaging.

  18. Nonlocal Means Denoising of Self-Gated and k-Space Sorted 4-Dimensional Magnetic Resonance Imaging Using Block-Matching and 3-Dimensional Filtering: Implications for Pancreatic Tumor Registration and Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Jun; McKenzie, Elizabeth; Fan, Zhaoyang

    Purpose: To denoise self-gated k-space sorted 4-dimensional magnetic resonance imaging (SG-KS-4D-MRI) by applying a nonlocal means denoising filter, block-matching and 3-dimensional filtering (BM3D), to test its impact on the accuracy of 4D image deformable registration and automated tumor segmentation for pancreatic cancer patients. Methods and Materials: Nine patients with pancreatic cancer and abdominal SG-KS-4D-MRI were included in the study. Block-matching and 3D filtering was adapted to search in the axial slices/frames adjacent to the reference image patch in the spatial and temporal domains. The patches with high similarity to the reference patch were used to collectively denoise the 4D-MRI image. Themore » pancreas tumor was manually contoured on the first end-of-exhalation phase for both the raw and the denoised 4D-MRI. B-spline deformable registration was applied to the subsequent phases for contour propagation. The consistency of tumor volume defined by the standard deviation of gross tumor volumes from 10 breathing phases (σ-GTV), tumor motion trajectories in 3 cardinal motion planes, 4D-MRI imaging noise, and image contrast-to-noise ratio were compared between the raw and denoised groups. Results: Block-matching and 3D filtering visually and quantitatively reduced image noise by 52% and improved image contrast-to-noise ratio by 56%, without compromising soft tissue edge definitions. Automatic tumor segmentation is statistically more consistent on the denoised 4D-MRI (σ-GTV = 0.6 cm{sup 3}) than on the raw 4D-MRI (σ-GTV = 0.8 cm{sup 3}). Tumor end-of-exhalation location is also more reproducible on the denoised 4D-MRI than on the raw 4D-MRI in all 3 cardinal motion planes. Conclusions: Block-matching and 3D filtering can significantly reduce random image noise while maintaining structural features in the SG-KS-4D-MRI datasets. In this study of pancreatic tumor segmentation, automatic segmentation of GTV in the registered image sets is shown to be more consistent on the denoised 4D-MRI than on the raw 4D-MRI.« less

  19. Further fMRI Validation of the Visual Half Field Technique as an Indicator of Language Laterality: A Large-Group Analysis

    ERIC Educational Resources Information Center

    Van der Haegen, Lise; Cai, Qing; Seurinck, Ruth; Brysbaert, Marc

    2011-01-01

    The best established lateralized cerebral function is speech production, with the majority of the population having left hemisphere dominance. An important question is how to best assess the laterality of this function. Neuroimaging techniques such as functional Magnetic Resonance Imaging (fMRI) are increasingly used in clinical settings to…

  20. Pulse sequence programming in a dynamic visual environment: SequenceTree.

    PubMed

    Magland, Jeremy F; Li, Cheng; Langham, Michael C; Wehrli, Felix W

    2016-01-01

    To describe SequenceTree, an open source, integrated software environment for implementing MRI pulse sequences and, ideally, exporting them to actual MRI scanners. The software is a user-friendly alternative to vendor-supplied pulse sequence design and editing tools and is suited for programmers and nonprogrammers alike. The integrated user interface was programmed using the Qt4/C++ toolkit. As parameters and code are modified, the pulse sequence diagram is automatically updated within the user interface. Several aspects of pulse programming are handled automatically, allowing users to focus on higher-level aspects of sequence design. Sequences can be simulated using a built-in Bloch equation solver and then exported for use on a Siemens MRI scanner. Ideally, other types of scanners will be supported in the future. SequenceTree has been used for 8 years in our laboratory and elsewhere and has contributed to more than 50 peer-reviewed publications in areas such as cardiovascular imaging, solid state and nonproton NMR, MR elastography, and high-resolution structural imaging. SequenceTree is an innovative, open source, visual pulse sequence environment for MRI combining simplicity with flexibility and is ideal both for advanced users and users with limited programming experience. © 2015 Wiley Periodicals, Inc.

  1. Learning Computational Models of Video Memorability from fMRI Brain Imaging.

    PubMed

    Han, Junwei; Chen, Changyuan; Shao, Ling; Hu, Xintao; Han, Jungong; Liu, Tianming

    2015-08-01

    Generally, various visual media are unequally memorable by the human brain. This paper looks into a new direction of modeling the memorability of video clips and automatically predicting how memorable they are by learning from brain functional magnetic resonance imaging (fMRI). We propose a novel computational framework by integrating the power of low-level audiovisual features and brain activity decoding via fMRI. Initially, a user study experiment is performed to create a ground truth database for measuring video memorability and a set of effective low-level audiovisual features is examined in this database. Then, human subjects' brain fMRI data are obtained when they are watching the video clips. The fMRI-derived features that convey the brain activity of memorizing videos are extracted using a universal brain reference system. Finally, due to the fact that fMRI scanning is expensive and time-consuming, a computational model is learned on our benchmark dataset with the objective of maximizing the correlation between the low-level audiovisual features and the fMRI-derived features using joint subspace learning. The learned model can then automatically predict the memorability of videos without fMRI scans. Evaluations on publically available image and video databases demonstrate the effectiveness of the proposed framework.

  2. The diagnostic value of 18F-FDG-PET/CT and MRI in suspected vertebral osteomyelitis - a prospective study.

    PubMed

    Kouijzer, Ilse J E; Scheper, Henk; de Rooy, Jacky W J; Bloem, Johan L; Janssen, Marcel J R; van den Hoven, Leon; Hosman, Allard J F; Visser, Leo G; Oyen, Wim J G; Bleeker-Rovers, Chantal P; de Geus-Oei, Lioe-Fee

    2018-05-01

    The aim of this study was to determine the diagnostic value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT) and magnetic resonance imaging (MRI) in diagnosing vertebral osteomyelitis. From November 2015 until December 2016, 32 patients with suspected vertebral osteomyelitis were prospectively included. All patients underwent both 18 F-FDG-PET/CT and MRI within 48 h. All images were independently reevaluated by two radiologists and two nuclear medicine physicians who were blinded to each others' image interpretation. 18 F-FDG-PET/CT and MRI were compared to the clinical diagnosis according to international guidelines. For 18 F-FDG-PET/CT, sensitivity, specificity, PPV, and NPV in diagnosing vertebral osteomyelitis were 100%, 83.3%, 90.9%, and 100%, respectively. For MRI, sensitivity, specificity, PPV, and NPV were 100%, 91.7%, 95.2%, and 100%, respectively. MRI detected more epidural/spinal abscesses. An important advantage of 18 F-FDG-PET/CT is the detection of metastatic infection (16 patients, 50.0%). 18 F-FDG-PET/CT and MRI are both necessary techniques in diagnosing vertebral osteomyelitis. An important advantage of 18 F-FDG-PET/CT is the visualization of metastatic infection, especially in patients with bacteremia. MRI is more sensitive in detection of small epidural abscesses.

  3. Utility of Magnetic Resonance Imaging for the Diagnosis of Appendicitis During Pregnancy: A Canadian Experience.

    PubMed

    Burns, Michael; Hague, Cameron J; Vos, Patrick; Tiwari, Pari; Wiseman, Sam M

    2017-11-01

    The objective of the study was to evaluate the performance of magnetic resonance imaging (MRI) for the diagnosis of appendicitis during pregnancy. We conducted a retrospective review of all MRI scans performed at our institution, between 2006 and 2012, for the evaluation of suspected appendicitis in pregnant women. Details of the MRI scans performed were obtained from the radiology information system as well as details of any ultrasounds carried out for the same indication. Clinical and pathological data were obtained by retrospective chart review. The study population comprised 63 patients, and 8 patients underwent a second MRI scan during the same pregnancy. A total of 71 MRI scans were reviewed. The appendix was identified on 40 scans (56.3%). Sensitivity of MRI was 75% and specificity was 100% for the diagnosis of appendicitis in pregnant women. When cases with right lower quadrant inflammatory fat stranding or focal fluid, without appendix visualization, were classified as positive for appendicitis, MRI sensitivity increased to 81.3% but specificity decreased to 96.4%. MRI is sensitive and highly specific for the diagnosis of appendicitis during pregnancy and should be considered as a first line imaging study for this clinical presentation. Copyright © 2017 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  4. Calibrated LCD/TFT stimulus presentation for visual psychophysics in fMRI.

    PubMed

    Strasburger, H; Wüstenberg, T; Jäncke, L

    2002-11-15

    Standard projection techniques using liquid crystal (LCD) or thin-film transistor (TFT) technology show drastic distortions in luminance and contrast characteristics across the screen and across grey levels. Common luminance measurement and calibration techniques are not applicable in the vicinity of MRI scanners. With the aid of a fibre optic, we measured screen luminances for the full space of screen position and image grey values and on that basis developed a compensation technique that involves both luminance homogenisation and position-dependent gamma correction. By the technique described, images displayed to a subject in functional MRI can be specified with high precision by a matrix of desired luminance values rather than by local grey value.

  5. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging.

    PubMed

    De Ciantis, Alessio; Barba, Carmen; Tassi, Laura; Cosottini, Mirco; Tosetti, Michela; Costagli, Mauro; Bramerio, Manuela; Bartolini, Emanuele; Biagi, Laura; Cossu, Massimo; Pelliccia, Veronica; Symms, Mark R; Guerrini, Renzo

    2016-03-01

    To assess the diagnostic yield of 7T magnetic resonance imaging (MRI) in detecting and characterizing structural lesions in patients with intractable focal epilepsy and unrevealing conventional (1.5 or 3T) MRI. We conducted an observational clinical imaging study on 21 patients (17 adults and 4 children) with intractable focal epilepsy, exhibiting clinical and electroencephalographic features consistent with a single seizure-onset zone (SOZ) and unrevealing conventional MRI. Patients were enrolled at two tertiary epilepsy surgery centers and imaged at 7T, including whole brain (three-dimensional [3D] T1 -weighted [T1W] fast-spoiled gradient echo (FSPGR), 3D susceptibility-weighted angiography [SWAN], 3D fluid-attenuated inversion recovery [FLAIR]) and targeted imaging (2D T2*-weighted dual-echo gradient-recalled echo [GRE] and 2D gray-white matter tissue border enhancement [TBE] fast spin echo inversion recovery [FSE-IR]). MRI studies at 1.5 or 3T deemed unrevealing at the referral center were reviewed by three experts in epilepsy imaging. Reviewers were provided information regarding the suspected localization of the SOZ. The same team subsequently reviewed 7T images. Agreement in imaging interpretation was reached through consensus-based discussions based on visual identification of structural abnormalities and their likely correlation with clinical and electrographic data. 7T MRI revealed structural lesions in 6 (29%) of 21 patients. The diagnostic gain in detection was obtained using GRE and FLAIR images. Four of the six patients with abnormal 7T underwent epilepsy surgery. Histopathology revealed focal cortical dysplasia (FCD) in all. In the remaining 15 patients (71%), 7T MRI remained unrevealing; 4 of the patients underwent epilepsy surgery and histopathologic evaluation revealed gliosis. 7T MRI improves detection of epileptogenic FCD that is not visible at conventional field strengths. A dedicated protocol including whole brain FLAIR and GRE images at 7T targeted at the suspected SOZ increases the diagnostic yield. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  6. Magnetic resonance imaging for the study of mummies.

    PubMed

    Giovannetti, Giulio; Guerrini, Andrea; Carnieri, Emiliano; Salvadori, Piero A

    2016-07-01

    Nondestructive diagnostic imaging for mummies study has a long tradition and high-resolution images of the samples morphology have been extensively acquired by using computed tomography (CT). However, although in early reports no signal or image was obtained because of the low water content, mummy magnetic resonance imaging (MRI) was demonstrated able to generate images of such ancient specimens by using fast imaging techniques. Literature demonstrated the general feasibility of nonclinical MRI for visualizing historic human tissues, which is particularly interesting for archeology. More recently, multinuclear magnetic resonance spectroscopy (MRS) was demonstrated able to detect numerous organic biochemicals from such remains. Although the quality of these images is not yet comparable to that of clinical magnetic resonance (MR) images, and further research will be needed for determining the full capacity of MR in this topic, the information obtained with MR can be viewed as complementary to the one provided by CT and useful for paleoradiological studies of mummies. This work contains an overview of the state of art of the emerging uses of MRI in paleoradiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. An fMRI Study of Multimodal Semantic and Phonological Processing in Reading Disabled Adolescents

    ERIC Educational Resources Information Center

    Landi, Nicole; Mencl, W. Einar; Frost, Stephen J.; Sandak, Rebecca; Pugh, Kenneth R.

    2010-01-01

    Using functional magnetic resonance imaging, we investigated multimodal (visual and auditory) semantic and unimodal (visual only) phonological processing in reading disabled (RD) adolescents and non-impaired (NI) control participants. We found reduced activation for RD relative to NI in a number of left-hemisphere reading-related areas across all…

  8. Intrusive Memories of Distressing Information: An fMRI Study

    PubMed Central

    Battaglini, Eva; Liddell, Belinda; Das, Pritha; Malhi, Gin; Felmingham, Kim

    2016-01-01

    Although intrusive memories are characteristic of many psychological disorders, the neurobiological underpinning of these involuntary recollections are largely unknown. In this study we used functional magentic resonance imaging (fMRI) to identify the neural networks associated with encoding of negative stimuli that are subsequently experienced as intrusive memories. Healthy partipants (N = 42) viewed negative and neutral images during a visual/verbal processing task in an fMRI context. Two days later they were assessed on the Impact of Event Scale for occurrence of intrusive memories of the encoded images. A sub-group of participants who reported significant intrusions (n = 13) demonstrated stronger activation in the amygdala, bilateral ACC and parahippocampal gyrus during verbal encoding relative to a group who reported no intrusions (n = 13). Within-group analyses also revealed that the high intrusion group showed greater activity in the dorsomedial (dmPFC) and dorsolateral prefrontal cortex (dlPFC), inferior frontal gyrus and occipital regions during negative verbal processing compared to neutral verbal processing. These results do not accord with models of intrusions that emphasise visual processing of information at encoding but are consistent with models that highlight the role of inhibitory and suppression processes in the formation of subsequent intrusive memories. PMID:27685784

  9. Anorexia nervosa and body dysmorphic disorder are associated with abnormalities in processing visual information.

    PubMed

    Li, W; Lai, T M; Bohon, C; Loo, S K; McCurdy, D; Strober, M; Bookheimer, S; Feusner, J

    2015-07-01

    Anorexia nervosa (AN) and body dysmorphic disorder (BDD) are characterized by distorted body image and are frequently co-morbid with each other, although their relationship remains little studied. While there is evidence of abnormalities in visual and visuospatial processing in both disorders, no study has directly compared the two. We used two complementary modalities--event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI)--to test for abnormal activity associated with early visual signaling. We acquired fMRI and ERP data in separate sessions from 15 unmedicated individuals in each of three groups (weight-restored AN, BDD, and healthy controls) while they viewed images of faces and houses of different spatial frequencies. We used joint independent component analyses to compare activity in visual systems. AN and BDD groups demonstrated similar hypoactivity in early secondary visual processing regions and the dorsal visual stream when viewing low spatial frequency faces, linked to the N170 component, as well as in early secondary visual processing regions when viewing low spatial frequency houses, linked to the P100 component. Additionally, the BDD group exhibited hyperactivity in fusiform cortex when viewing high spatial frequency houses, linked to the N170 component. Greater activity in this component was associated with lower attractiveness ratings of faces. Results provide preliminary evidence of similar abnormal spatiotemporal activation in AN and BDD for configural/holistic information for appearance- and non-appearance-related stimuli. This suggests a common phenotype of abnormal early visual system functioning, which may contribute to perceptual distortions.

  10. Alterations in the trapezius muscle in young patients with migraine--a pilot case series with MRI.

    PubMed

    Landgraf, M N; Ertl-Wagner, B; Koerte, I K; Thienel, J; Langhagen, T; Straube, A; von Kries, R; Reilich, P; Pomschar, A; Heinen, F

    2015-05-01

    Migraine is frequent in young adults and adolescents and often associated with neck muscle tension and pain. Common pathophysiological pathways, such as reciprocal cervico-trigeminal activation, are assumed. Tense areas within the neck muscles can be clinically observed many patients with migraine. The aim of this pilot case study was to visualize these tense areas via magnet resonance imaging (MRI). Three young patients with migraine were examined by an experienced investigator. In all three patients tense areas in the trapezius muscles were palpated. These areas were marked by nitroglycerin capsules on the adjacent skin surface. The MRI showed focal signal alterations at the marked locations within the trapezius muscles. Visualization of palpable tense areas by MRI may be usefully applied in the future to help elucidate the underlying pathophysiological processes of migraine. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  11. Use of an advanced 3-T MRI movie to investigate articulation.

    PubMed

    Nunthayanon, Kulthida; Honda, Ei-ichi; Shimazaki, Kazuo; Ohmori, Hiroko; Inoue-Arai, Maristela Sayuri; Kurabayashi, Tohru; Ono, Takashi

    2015-06-01

    To develop a magnetic resonance imaging (MRI) movie to reveal the dynamic movement of articulators and teeth. Five healthy females with normal occlusion participated in this study. Various concentrations of MRI contrast media (ferric ammonium citrate [FAC]) were tested for visualization of teeth, according to facial markers and with the use of a gel. Custom-made circuitry was connected to synchronize pronunciation of fricative sounds (/asa/) with scans. Three gradient echo sequences (True fast imaging with steady state precession [true FISP], FISP, and fast low angle shot [FLASH]) with a segmented cine were tested with the use of repetition times (TRs) of 9 ms and 31.5 ms. The MRI movie images were superimposed over the boundaries of teeth. The images produced during pronunciation, using the two different TRs (9 ms and 31 ms), were compared to assess the position of the lips and the tongue. Images obtained using the FLASH sequence, with a TR of 9 ms or 31.5 ms, can be used for diagnostic purposes. A TR of 9 ms, with 161 continuous images acquired, produced the highest-quality images of teeth, with few artifacts present. Pronunciation of the consonant "s" was clearly discernable. Our 3-T MRI movie system, with a temporal resolution less than 9 ms, can provide detailed information pertaining to variations in speech or oropharyngeal function. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Mapping white-matter functional organization at rest and during naturalistic visual perception.

    PubMed

    Marussich, Lauren; Lu, Kun-Han; Wen, Haiguang; Liu, Zhongming

    2017-02-01

    Despite the wide applications of functional magnetic resonance imaging (fMRI) to mapping brain activation and connectivity in cortical gray matter, it has rarely been utilized to study white-matter functions. In this study, we investigated the spatiotemporal characteristics of fMRI data within the white matter acquired from humans both in the resting state and while watching a naturalistic movie. By using independent component analysis and hierarchical clustering, resting-state fMRI data in the white matter were de-noised and decomposed into spatially independent components, which were further assembled into hierarchically organized axonal fiber bundles. Interestingly, such components were partly reorganized during natural vision. Relative to resting state, the visual task specifically induced a stronger degree of temporal coherence within the optic radiations, as well as significant correlations between the optic radiations and multiple cortical visual networks. Therefore, fMRI contains rich functional information about the activity and connectivity within white matter at rest and during tasks, challenging the conventional practice of taking white-matter signals as noise or artifacts. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A MR-conditional High-torque Pneumatic Stepper Motor for MRI-guided and Robot-assisted Intervention

    PubMed Central

    Chen, Yue; Kwok, Ka-Wai; Tse, Zion Tsz Ho

    2015-01-01

    Magnetic Resonance Imaging allows for visualizing detailed pathological and morphological changes of soft tissue. This increasingly attracts attention on MRI-guided intervention; hence, MR-conditional actuations have been widely investigated for development of image-guided and robot-assisted surgical devices under the MRI. This paper presents a simple design of MR-conditional stepper motor which can provide precise and high-torque actuation without adversely affecting the MR image quality. This stepper motor consists of two MR-conditional pneumatic cylinders and the corresponding supporting structures. Alternating the pressurized air can drive the motor to rotate each step in 3.6° with the motor coupled to a planetary gearbox. Experimental studies were conducted to validate its dynamics performance. Maximum 800mNm output torque can be achieved. The motor accuracy independently varied by two factors: motor operating speed and step size, was also investigated. The motor was tested within a Siemens 3T MRI scanner. The image artifact and the signal-to-noise ratio (SNR) were evaluated in order to study its MRI compliancy. The results show that the presented pneumatic stepper motor generated 2.35% SNR reduction in MR images and no observable artifact was presented besides the motor body itself. The proposed motor test also demonstrates a standard to evaluate the motor capability for later incorporation with motorized devices used in robot-assisted surgery under MRI. PMID:24957635

  14. Quantitative Assessment of Degenerative Cartilage and Subchondral Bony Lesions in a Preserved Cadaveric Knee: Propagation-Based Phase-Contrast CT Versus Conventional MRI and CT.

    PubMed

    Geith, Tobias; Brun, Emmanuel; Mittone, Alberto; Gasilov, Sergei; Weber, Loriane; Adam-Neumair, Silvia; Bravin, Alberto; Reiser, Maximilian; Coan, Paola; Horng, Annie

    2018-06-01

    The aim of this study was to quantitatively assess hyaline cartilage and subchondral bone conditions in a fully preserved cadaveric human knee joint using high-resolution x-ray propagation-based phase-contrast imaging (PBI) CT and to compare the performance of the new technique with conventional CT and MRI. A cadaveric human knee was examined using an x-ray beam of 60 keV, a detector with a 90-mm 2 FOV, and a pixel size of 46 × 46 μm 2 . PBI CT images were reconstructed with both the filtered back projection algorithm and the equally sloped tomography method. Conventional 3-T MRI and CT were also performed. Measurements of cartilage thickness, cartilage lesions, International Cartilage Repair Society scoring, and detection of subchondral bone changes were evaluated. Visual inspection of the specimen akin to arthroscopy was conducted and served as a standard of reference for lesion detection. Loss of cartilage height was visible on PBI CT and MRI. Quantification of cartilage thickness showed a strong correlation between the two modalities. Cartilage lesions appeared darker than the adjacent cartilage on PBI CT. PBI CT showed similar agreement to MRI for depicting cartilage substance defects or lesions compared with the visual inspection. The assessment of subchondral bone cysts showed moderate to strong agreement between PBI CT and CT. In contrast to the standard clinical methods of MRI and CT, PBI CT is able to simultaneously depict cartilage and bony changes at high resolution. Though still an experimental technique, PBI CT is a promising high-resolution imaging method to evaluate comprehensive changes of osteoarthritic disease in a clinical setting.

  15. Transapical Aortic Valve Replacement under Real-time Magnetic Resonance Imaging Guidance: Experimental Results with Balloon-Expandable and Self-Expanding Stents

    PubMed Central

    Horvath, Keith A.; Mazilu, Dumitru; Kocaturk, Ozgur; Li, Ming

    2010-01-01

    Objective Aortic valves have been implanted on self-expanding (SE) and balloon-expandable (BE) stents minimally invasively. We have demonstrated the advantages of transapical aortic valve implantation (tAVI) under real-time magnetic resonance imaging (rtMRI) guidance. Whether there are different advantages to SE or BE stents is unknown. We report rtMRI guided tAVI in a porcine model using both SE and BE stents, and compare the differences between the stents. Methods Twenty-two Yucatan pigs (45-57kgs.) underwent tAVI. Commercially available stentless bioprostheses (21-25mm) were mounted on either BE platinum-iridium stents or SE nitinol stents. rtMRI guidance was employed as the intraoperative imaging. Markers on both types of stents were used to enhance the visualization in rtMRI. Pigs were allowed to survive and had follow-up MRI scans and echocardiography at 1, 3 and 6 months postoperatively. Results rtMRI provided excellent visualization of the aortic valve implantation mounted on both stent types. The implantation times were shorter with the SE stents (60±14 seconds) than BE (74±18s), (p=0.027). Total procedure time was 31 and 37 minutes respectively (p=0.12). It was considerably easier to manipulate the SE stent during deployment without hemodynamic compromise. This was not always the case with the BE stent and its placement occasionally resulted in coronary obstruction and death. Long-term results demonstrated stability of the implants with preservation of myocardial perfusion and function over time for both stents. Conclusions SE stents were easier to position and deploy thus leading to fewer complications during tAVI. Future optimization of SE stent design should improve clinical results. PMID:20971017

  16. Real-time magnetic resonance imaging-guided transcatheter aortic valve replacement.

    PubMed

    Miller, Justin G; Li, Ming; Mazilu, Dumitru; Hunt, Tim; Horvath, Keith A

    2016-05-01

    To demonstrate the feasibility of Real-time magnetic resonance imaging (rtMRI) guided transcatheter aortic valve replacement (TAVR) with an active guidewire and an MRI compatible valve delivery catheter system in a swine model. The CoreValve system was minimally modified to be MRI-compatible by replacing the stainless steel components with fluoroplastic resin and high-density polyethylene components. Eight swine weighing 60-90 kg underwent rtMRI-guided TAVR with an active guidewire through a left subclavian approach. Two imaging planes (long-axis view and short-axis view) were used simultaneously for real-time imaging during implantation. Successful deployment was performed without rapid ventricular pacing or cardiopulmonary bypass. Postdeployment images were acquired to evaluate the final valve position in addition to valvular and cardiac function. Our results show that the CoreValve can be easily and effectively deployed through a left subclavian approach using rtMRI guidance, a minimally modified valve delivery catheter system, and an active guidewire. This method allows superior visualization before deployment, thereby allowing placement of the valve with pinpoint accuracy. rtMRI has the added benefit of the ability to perform immediate postprocedural functional assessment, while eliminating the morbidity associated with radiation exposure, rapid ventricular pacing, contrast media renal toxicity, and a more invasive procedure. Use of a commercially available device brings this rtMRI-guided approach closer to clinical reality. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  17. Interactive local super-resolution reconstruction of whole-body MRI mouse data: a pilot study with applications to bone and kidney metastases.

    PubMed

    Dzyubachyk, Oleh; Khmelinskii, Artem; Plenge, Esben; Kok, Peter; Snoeks, Thomas J A; Poot, Dirk H J; Löwik, Clemens W G M; Botha, Charl P; Niessen, Wiro J; van der Weerd, Louise; Meijering, Erik; Lelieveldt, Boudewijn P F

    2014-01-01

    In small animal imaging studies, when the locations of the micro-structures of interest are unknown a priori, there is a simultaneous need for full-body coverage and high resolution. In MRI, additional requirements to image contrast and acquisition time will often make it impossible to acquire such images directly. Recently, a resolution enhancing post-processing technique called super-resolution reconstruction (SRR) has been demonstrated to improve visualization and localization of micro-structures in small animal MRI by combining multiple low-resolution acquisitions. However, when the field-of-view is large relative to the desired voxel size, solving the SRR problem becomes very expensive, in terms of both memory requirements and computation time. In this paper we introduce a novel local approach to SRR that aims to overcome the computational problems and allow researchers to efficiently explore both global and local characteristics in whole-body small animal MRI. The method integrates state-of-the-art image processing techniques from the areas of articulated atlas-based segmentation, planar reformation, and SRR. A proof-of-concept is provided with two case studies involving CT, BLI, and MRI data of bone and kidney tumors in a mouse model. We show that local SRR-MRI is a computationally efficient complementary imaging modality for the precise characterization of tumor metastases, and that the method provides a feasible high-resolution alternative to conventional MRI.

  18. A distributed computing system for magnetic resonance imaging: Java-based processing and binding of XML.

    PubMed

    de Beer, R; Graveron-Demilly, D; Nastase, S; van Ormondt, D

    2004-03-01

    Recently we have developed a Java-based heterogeneous distributed computing system for the field of magnetic resonance imaging (MRI). It is a software system for embedding the various image reconstruction algorithms that we have created for handling MRI data sets with sparse sampling distributions. Since these data sets may result from multi-dimensional MRI measurements our system has to control the storage and manipulation of large amounts of data. In this paper we describe how we have employed the extensible markup language (XML) to realize this data handling in a highly structured way. To that end we have used Java packages, recently released by Sun Microsystems, to process XML documents and to compile pieces of XML code into Java classes. We have effectuated a flexible storage and manipulation approach for all kinds of data within the MRI system, such as data describing and containing multi-dimensional MRI measurements, data configuring image reconstruction methods and data representing and visualizing the various services of the system. We have found that the object-oriented approach, possible with the Java programming environment, combined with the XML technology is a convenient way of describing and handling various data streams in heterogeneous distributed computing systems.

  19. Clinical image: MRI during migraine with aura

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeal, A.C.

    1996-03-01

    Migraine refers to severe headaches that are usually unilateral, throbbing, and associated with nausea, vomiting, photophobia, and phonophobia. Migraine with aura (formerly called {open_quotes}classic migraine{close_quotes}) consists of the headache preceded or accompanied by neurological dysfunction. This dysfunction (aura) usually involves visual and sensory symptoms. The patient described herein experienced migraine with aura. MRI during and after the attack showed a reversible abnormality of the right posterior cerebral artery, with no parenchymal lesions. This appears to be the first report of abnormal MR vascular imaging during migraine with aura. 10 refs., 2 figs.

  20. Detection of Focal Cortical Dysplasia Lesions in MRI Using Textural Features

    NASA Astrophysics Data System (ADS)

    Loyek, Christian; Woermann, Friedrich G.; Nattkemper, Tim W.

    Focal cortical dysplasia (FCD) is a frequent cause of medically refractory partial epilepsy. The visual identification of FCD lesions on magnetic resonance images (MRI) is a challenging task in standard radiological analysis. Quantitative image analysis which tries to assist in the diagnosis of FCD lesions is an active field of research. In this work we investigate the potential of different texture features, in order to explore to what extent they are suitable for detecting lesional tissue. As a result we can show first promising results based on segmentation and texture classification.

  1. A fully actuated robotic assistant for MRI-guided prostate biopsy and brachytherapy

    NASA Astrophysics Data System (ADS)

    Li, Gang; Su, Hao; Shang, Weijian; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Fischer, Gregory S.

    2013-03-01

    Intra-operative medical imaging enables incorporation of human experience and intelligence in a controlled, closed-loop fashion. Magnetic resonance imaging (MRI) is an ideal modality for surgical guidance of diagnostic and therapeutic procedures, with its ability to perform high resolution, real-time, high soft tissue contrast imaging without ionizing radiation. However, for most current image-guided approaches only static pre-operative images are accessible for guidance, which are unable to provide updated information during a surgical procedure. The high magnetic field, electrical interference, and limited access of closed-bore MRI render great challenges to developing robotic systems that can perform inside a diagnostic high-field MRI while obtaining interactively updated MR images. To overcome these limitations, we are developing a piezoelectrically actuated robotic assistant for actuated percutaneous prostate interventions under real-time MRI guidance. Utilizing a modular design, the system enables coherent and straight forward workflow for various percutaneous interventions, including prostate biopsy sampling and brachytherapy seed placement, using various needle driver configurations. The unified workflow compromises: 1) system hardware and software initialization, 2) fiducial frame registration, 3) target selection and motion planning, 4) moving to the target and performing the intervention (e.g. taking a biopsy sample) under live imaging, and 5) visualization and verification. Phantom experiments of prostate biopsy and brachytherapy were executed under MRI-guidance to evaluate the feasibility of the workflow. The robot successfully performed fully actuated biopsy sampling and delivery of simulated brachytherapy seeds under live MR imaging, as well as precise delivery of a prostate brachytherapy seed distribution with an RMS accuracy of 0.98mm.

  2. [Visualization of Anterolateral Ligament of the Knee Using 3D Reconstructed Variable Refocus Flip Angle-Turbo Spin Echo T2 Weighted Image].

    PubMed

    Yokosawa, Kenta; Sasaki, Kana; Muramatsu, Koichi; Ono, Tomoya; Izawa, Hiroyuki; Hachiya, Yudo

    2016-05-01

    Anterolateral ligament (ALL) is one of the lateral structures in the knee that contributes to the internal rotational stability of tibia. ALL has been referred to in some recent reports to re-emphasize its importance. We visualized the ALL on 3D-MRI in 32 knees of 27 healthy volunteers (23 male knees, 4 female knees; mean age: 37 years). 3D-MRIs were performed using 1.5-T scanner [T(2) weighted image (WI), SPACE: Sampling Perfection with Application optimized Contrast using different flip angle Evolutions] in the knee extended positions. The visualization rate of the ALL, the mean angle to the lateral collateral ligament (LCL), and the width and the thickness of the ALL at the joint level were investigated. The visualization rate was 100%. The mean angle to the LCL was 10.6 degrees. The mean width and the mean thickness of the ALL were 6.4 mm and 1.0 mm, respectively. The ALL is a very thin ligament with a somewhat oblique course between the lateral femoral epicondyle and the mid-third area of lateral tibial condyle. Therefore, the slice thickness and the slice angle can easily affect the ALL visualization. 3D-MRI enables acquiring thin-slice imaging data over a relatively short time, and arbitrary sections aligned with the course of the ALL can later be selected.

  3. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children.

    PubMed

    Sreedharan, Ruma Madhu; Menon, Amitha C; James, Jija S; Kesavadas, Chandrasekharan; Thomas, Sanjeev V

    2015-03-01

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms--visual verb generation and word pair task--were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm(3)) as compared to the right (1824.11 ± 582.81 mm(3)) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities.

  4. [Method of correcting sensitivity nonuniformity using gaussian distribution on 3.0 Tesla abdominal MRI].

    PubMed

    Hayashi, Norio; Miyati, Tosiaki; Takanaga, Masako; Ohno, Naoki; Hamaguchi, Takashi; Kozaka, Kazuto; Sanada, Shigeru; Yamamoto, Tomoyuki; Matsui, Osamu

    2011-01-01

    In the direction where the phased array coil used in parallel magnetic resonance imaging (MRI) is perpendicular to the arrangement, sensitivity falls significantly. Moreover, in a 3.0 tesla (3T) abdominal MRI, the quality of the image is reduced by changes in the relaxation time, reinforcement of the magnetic susceptibility effect, etc. In a 3T MRI, which has a high resonant frequency, the signal of the depths (central part) is reduced in the trunk part. SCIC, which is sensitivity correction processing, has inadequate correction processing, such as that edges are emphasized and the central part is corrected. Therefore, we used 3T with a Gaussian distribution. The uneven compensation processing for sensitivity of an abdomen MR image was considered. The correction processing consisted of the following methods. 1) The center of gravity of the domain of the human body in an abdomen MR image was calculated. 2) The correction coefficient map was created from the center of gravity using the Gaussian distribution. 3) The sensitivity correction image was created from the correction coefficient map and the original picture image. Using the Gaussian correction to process the image, the uniformity calculated using the NEMA method was improved significantly compared to the original image of a phantom. In a visual evaluation by radiologists, the uniformity was improved significantly using the Gaussian correction processing. Because of the homogeneous improvement of the abdomen image taken using 3T MRI, the Gaussian correction processing is considered to be a very useful technique.

  5. Correspondence between retinotopic cortical mapping and conventional functional and morphological assessment of retinal disease.

    PubMed

    Ritter, Markus; Hummer, Allan; Ledolter, Anna A; Holder, Graham E; Windischberger, Christian; Schmidt-Erfurth, Ursula M

    2018-04-26

    The present study describes retinotopic mapping of the primary visual cortex using functional MRI (fMRI) in patients with retinal disease. It addresses the relationship between fMRI data and data obtained by conventional assessment including microperimetry (MP) and structural imaging. Initial testing involved eight patients with central retinal disease (Stargardt disease, STGD) and eight with peripheral retinal disease (retinitis pigmentosa, RP), who were examined using fMRI and MP (Nidek MP-1). All had a secure clinical diagnosis supported by electrophysiological data. fMRI used population-receptive field (pRF) mapping to provide retinotopic data that were then compared with the results of MP, optical coherence tomography and fundus autofluorescence imaging. Full analysis, following assessment of fMRI data reliability criteria, was performed in five patients with STGD and seven patients with RP; unstable fixation was responsible for unreliable pRF measurements in three patients excluded from final analysis. The macular regions in patients with STGD with central visual field defects and outer retinal atrophy (ORA) at the macula correlated well with pRF coverage maps showing reduced density of activated voxels at the occipital pole. Patients with RP exhibited peripheral ORA and concentric visual field defects both on MP and pRF mapping. Anterior V1 voxels, corresponding to peripheral regions, showed no significant activation. Correspondence between MP and pRF mapping was quantified by calculating the simple matching coefficient. Retinotopic maps acquired by fMRI provide a valuable adjunct in the assessment of retinal dysfunction. The addition of microperimetric data to pRF maps allowed better assessment of macular function than MP alone. Unlike MP, pRF mapping provides objective data independent of psychophysical perception from the patient. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. MRI and PET Compatible Bed for Direct Co-Registration in Small Animals

    NASA Astrophysics Data System (ADS)

    Bartoli, Antonietta; Esposito, Giovanna; D'Angeli, Luca; Chaabane, Linda; Terreno, Enzo

    2013-06-01

    To obtain an accurate co-registration with stand-alone PET and MRI scanners, we developed a compatible bed system for mice and rats that enables both images to be acquired without repositioning the animals. MRI acquisitions were performed on a preclinical 7T scanner (Pharmascan, Bruker), whereas PET scans were acquired on a YAP-(S)PET (ISE s.r.l.). The bed performance was tested both on a phantom (NEMA Image Quality phantom) and in vivo (healthy rats and mice brain). Fiducial markers filled up with a drop of 18 F were visible in both modalities. Co-registration process was performed using the point-based registration technique. The reproducibility and accuracy of the co-registration were assessed using the phantom. The reproducibility of the translation distances was 0.2 mm along the z axis. On the other hand, the accuracy depended on the physical size of the phantom structures under investigation but was always lower than 4%. Regions of Interest (ROIs) drawn on the fused images were used for quantification purposes. PET and MRI intensity profiles on small structures of the phantom showed that the underestimation in activity concentration reached 90% in regions that were smaller than the PET spatial resolution, while the MRI allowed a good visualization of the 1 mm 0 rod. PET/MRI images of healthy mice and rats highlighted the expected superior capability of MRI to define brain structures. The simplicity of our developed MRI/PET compatible bed and the quality of the fused images obtained offers a promising opportunity for a future preclinical translation, particularly for neuroimaging studies.

  7. An Example-Based Brain MRI Simulation Framework.

    PubMed

    He, Qing; Roy, Snehashis; Jog, Amod; Pham, Dzung L

    2015-02-21

    The simulation of magnetic resonance (MR) images plays an important role in the validation of image analysis algorithms such as image segmentation, due to lack of sufficient ground truth in real MR images. Previous work on MRI simulation has focused on explicitly modeling the MR image formation process. However, because of the overwhelming complexity of MR acquisition these simulations must involve simplifications and approximations that can result in visually unrealistic simulated images. In this work, we describe an example-based simulation framework, which uses an "atlas" consisting of an MR image and its anatomical models derived from the hard segmentation. The relationships between the MR image intensities and its anatomical models are learned using a patch-based regression that implicitly models the physics of the MR image formation. Given the anatomical models of a new brain, a new MR image can be simulated using the learned regression. This approach has been extended to also simulate intensity inhomogeneity artifacts based on the statistical model of training data. Results show that the example based MRI simulation method is capable of simulating different image contrasts and is robust to different choices of atlas. The simulated images resemble real MR images more than simulations produced by a physics-based model.

  8. Evaluation of Nonradiative Clinical Imaging Techniques for the Longitudinal Assessment of Tumour Growth in Murine CT26 Colon Carcinoma

    PubMed Central

    Doan, Bich-Thuy; Latorre Ossa, Heldmuth; Jugé, Lauriane; Gennisson, Jean-Luc; Tanter, Mickaël; Scherman, Daniel; Chabot, Guy G.; Mignet, Nathalie

    2013-01-01

    Background and Objectives. To determine the most appropriate technique for tumour followup in experimental therapeutics, we compared ultrasound (US) and magnetic resonance imaging (MRI) to characterize ectopic and orthotopic colon carcinoma models. Methods. CT26 tumours were implanted subcutaneously (s.c.) in Balb/c mice for the ectopic model or into the caecum for the orthotopic model. Tumours were evaluated by histology, spectrofluorescence, MRI, and US. Results. Histology of CT26 tumour showed homogeneously dispersed cancer cells and blood vessels. The visualization of the vascular network using labelled albumin showed that CT26 tumours were highly vascularized and disorganized. MRI allowed high-resolution and accurate 3D tumour measurements and provided additional anatomical and functional information. Noninvasive US imaging allowed good delineation of tumours despite an hypoechogenic signal. Monitoring of tumour growth with US could be accomplished as early as 5 days after implantation with a shorter acquisition time (<5 min) compared to MRI. Conclusion. MRI and US afforded excellent noninvasive imaging techniques to accurately follow tumour growth of ectopic and orthotopic CT26 tumours. These two techniques can be appropriately used for tumour treatment followup, with a preference for US imaging, due to its short acquisition time and simplicity of use. PMID:23936648

  9. Magnetic resonance imaging in children presenting migraine with aura: Association of hypoperfusion detected by arterial spin labelling and vasospasm on MR angiography findings.

    PubMed

    Cadiot, Domitille; Longuet, Romain; Bruneau, Bertrand; Treguier, Catherine; Carsin-Vu, Aline; Corouge, Isabelle; Gomes, Constantin; Proisy, Maïa

    2018-04-01

    Objective A child presenting with a first attack of migraine with aura usually undergoes magnetic resonance imaging (MRI) to rule out stroke. The purpose of this study was to report vascular and brain perfusion findings in children suffering from migraine with aura on time-of-flight MR angiography (TOF-MRA) and MR perfusion imaging using arterial spin labelling (ASL). Methods We retrospectively included all children who had undergone an emergency MRI examination with ASL and TOF-MRA sequences for acute neurological deficit and were given a final diagnosis of migraine with aura. The ASL perfusion maps and TOF-MRA images were independently assessed by reviewers blinded to clinical data. A mean cerebral blood flow (CBF) value was obtained for each cerebral lobe after automatic data post-processing. Results Seventeen children were finally included. Hypoperfusion was identified in one or more cerebral lobes on ASL perfusion maps by visual assessment in 16/17 (94%) children. Vasospasm was noted within the intracranial vasculature on the TOF-MRA images in 12/17 (71%) children. All (100%) of the abnormal TOF-MRA images were associated with homolateral hypoperfusion. Mean CBF values were significantly lower ( P < 0.05) in visually hypoperfused lobes than in normally perfused lobes. Conclusion ASL and TOF-MRA are two totally non-invasive, easy-to-use MRI sequences for children in emergency settings. Hypoperfusion associated with homolateral vasospasm may suggest a diagnosis of migraine with aura.

  10. Prevalence of pathologic findings in asymptomatic knees of marathon runners before and after a competition in comparison with physically active subjects-a 3.0 T magnetic resonance imaging study.

    PubMed

    Stahl, Robert; Luke, Anthony; Ma, C Benjamin; Krug, Roland; Steinbach, Lynne; Majumdar, Sharmila; Link, Thomas M

    2008-07-01

    To determine the prevalence of pathologic findings in asymptomatic knees of marathon runners before and after a competition in comparison with physically active subjects. To compare the diagnostic performance of cartilage-dedicated magnetic resonance imaging (MRI) sequences at 3.0 T. Ten marathon runners underwent 3.0 T MRI 2-3 days before and after competition. Twelve physically active asymptomatic subjects not performing long-distance running were examined as controls. Pathologic condition was assessed with the whole-organ magnetic resonance imaging score (WORMS). Cartilage abnormalities and bone marrow edema pattern (BMEP) were quantified. Visualization of cartilage pathology was assessed with intermediate-weighted fast spin-echo (IM-w FSE), fast imaging employing steady-state acquisition (FIESTA) and T1-weighted three-dimensional (3D) high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) MRI sequences. Eight of ten marathon runners and 7/12 controls showed knee abnormality. Slightly more and larger cartilage abnormalities, and BMEP, in marathon runners yielded higher but not significantly different WORMS (P > 0.05) than in controls. Running a single marathon did not alter MR findings substantially. Cartilage abnormalities were best visualized with IM-w FSE images (P < 0.05). A high prevalence of knee abnormalities was found in marathon runners and also in active subjects participating in other recreational sports. IM-w FSE sequences delineated more cartilage MR imaging abnormalities than did FIESTA and SPGR sequences.

  11. Strain-Encoded Cardiac Magnetic Resonance Imaging as an Adjunct for Dobutamine Stress Testing. Incremental Value to Conventional Wall Motion Analysis

    PubMed Central

    Korosoglou, Grigorios; Lossnitzer, Dirk; Schellberg, Dieter; Lewien, Antje; Wochele, Angela; Schaeufele, Tim; Neizel, Mirja; Steen, Henning; Giannitsis, Evangelos; Katus, Hugo A.; Osman, Nael F.

    2009-01-01

    Background High-dose dobutamine stress magnetic resonance imaging (DS-MRI) is safe and feasible for the diagnosis of coronary artery disease (CAD) in humans. However, the assessment of cine scans relies on the visual interpretation of regional wall motion, which is subjective. Recently, Strain-Encoded MRI (SENC) has been proposed for the direct color-coded visualization of myocardial strain. The purpose of our study was to compare the diagnostic value of SENC to that provided by conventional wall motion analysis for the detection of inducible ischemia during DS-MRI. Methods and Results Stress induced ischemia was assessed by wall motion analysis and by SENC in 101 patients with suspected or known CAD and in 17 healthy volunteers who underwent DS-MRI in a clinical 1.5T scanner. Quantitative coronary angiography deemed as the standard reference for the presence or absence of significant CAD (≥50% diameter stenosis). On a coronary vessel level, SENC detected inducible ischemia in 86/101 versus 71/101 diseased coronary vessels (p<0.01 versus cine), and showed normal strain response in 189/202 versus 194/202 vessels with <50% stenosis (p=NS versus cine). On a patient level, SENC detected inducible ischemia in 63/64 versus 55/64 patients with CAD (p<0.05 versus cine), and showed normal strain response in 32/37 versus 34/37 patients without CAD (p=NS versus cine).Quantification analysis demonstrated a significant correlation between strain rate reserve (SRreserve) and coronary artery stenosis severity (r²=0.56, p<0.001), and a cut-off value of SRreserve=1.64 deemed as a highly accurate marker for the detection of stenosis≥50% (AUC=0.96, SE=0.01, 95% CI = 0.94–0.98, p<0.001). Conclusions The direct color-coded visualization of strain on MR-images is a useful adjunct for DS-MRI, which provides incremental value for the detection of CAD compared to conventional wall motion readings on cine images. PMID:19808579

  12. MR-guided endovascular interventions: a comprehensive review on techniques and applications.

    PubMed

    Kos, Sebastian; Huegli, Rolf; Bongartz, Georg M; Jacob, Augustinus L; Bilecen, Deniz

    2008-04-01

    The magnetic resonance (MR) guidance of endovascular interventions is probably one of the greatest challenges of clinical MR research. MR angiography is not only an imaging tool for the vasculature but can also simultaneously depict high tissue contrast, including the differentiation of the vascular wall and perivascular tissues, as well as vascular function. Several hurdles had to be overcome to allow MR guidance for endovascular interventions. MR hardware and sequence design had to be developed to achieve acceptable patient access and to allow real-time or near real-time imaging. The development of interventional devices, both applicable and safe for MR imaging (MRI), was also mandatory. The subject of this review is to summarize the latest developments in real-time MRI hardware, MRI, visualization tools, interventional devices, endovascular tracking techniques, actual applications and safety issues.

  13. Structural brain alterations in primary open angle glaucoma: a 3T MRI study

    PubMed Central

    Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang

    2016-01-01

    Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811

  14. Vibration and Noise in Magnetic Resonance Imaging of the Vocal Tract: Differences between Whole-Body and Open-Air Devices.

    PubMed

    Přibil, Jiří; Přibilová, Anna; Frollo, Ivan

    2018-04-05

    This article compares open-air and whole-body magnetic resonance imaging (MRI) equipment working with a weak magnetic field as regards the methods of its generation, spectral properties of mechanical vibration and acoustic noise produced by gradient coils during the scanning process, and the measured noise intensity. These devices are used for non-invasive MRI reconstruction of the human vocal tract during phonation with simultaneous speech recording. In this case, the vibration and noise have negative influence on quality of speech signal. Two basic measurement experiments were performed within the paper: mapping sound pressure levels in the MRI device vicinity and picking up vibration and noise signals in the MRI scanning area. Spectral characteristics of these signals are then analyzed statistically and compared visually and numerically.

  15. Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1

    PubMed Central

    Olman, Cheryl A.; Harel, Noam; Feinberg, David A.; He, Sheng; Zhang, Peng; Ugurbil, Kamil; Yacoub, Essa

    2012-01-01

    Recent work has established that cerebral blood flow is regulated at a spatial scale that can be resolved by high field fMRI to show cortical columns in humans. While cortical columns represent a cluster of neurons with similar response properties (spanning from the pial surface to the white matter), important information regarding neuronal interactions and computational processes is also contained within a single column, distributed across the six cortical lamina. A basic understanding of underlying neuronal circuitry or computations may be revealed through investigations of the distribution of neural responses at different cortical depths. In this study, we used T2-weighted imaging with 0.7 mm (isotropic) resolution to measure fMRI responses at different depths in the gray matter while human subjects observed images with either recognizable or scrambled (physically impossible) objects. Intact and scrambled images were partially occluded, resulting in clusters of activity distributed across primary visual cortex. A subset of the identified clusters of voxels showed a preference for scrambled objects over intact; in these clusters, the fMRI response in middle layers was stronger during the presentation of scrambled objects than during the presentation of intact objects. A second experiment, using stimuli targeted at either the magnocellular or the parvocellular visual pathway, shows that laminar profiles in response to parvocellular-targeted stimuli peak in more superficial layers. These findings provide new evidence for the differential sensitivity of high-field fMRI to modulations of the neural responses at different cortical depths. PMID:22448223

  16. Acute postretinal blindness: ophthalmologic, neurologic, and magnetic resonance imaging findings in dogs and cats (seven cases).

    PubMed

    Seruca, Cristina; Ródenas, Sergio; Leiva, Marta; Peña, Teresa; Añor, Sònia

    2010-09-01

    To describe the ophthalmologic, neurologic, and magnetic resonance imaging (MRI) findings of seven animals with acute postretinal blindness as sole neurologic deficit. Medical records were reviewed to identify dogs and cats with postretinal blindness of acute presentation, that had a cranial MRI performed as part of the diagnostic workup. Only animals lacking other neurologic signs at presentation were included. Complete physical, ophthalmic, and neurologic examinations, routine laboratory evaluations, thoracic radiographs, abdominal ultrasound, electroretinography, and brain MRI were performed in all animals. Cerebrospinal fluid analysis and postmortem histopathologic results were recorded when available. Four dogs and three cats met the inclusion criteria. Lesions affecting the visual pathways were observed on magnetic resonance (MR) images in six cases. Location, extension, and MRI features were described. Neuroanatomic localization included: olfactory region with involvement of the optic chiasm (n = 4), pituitary fossa with involvement of the optic chiasm and optic tracts (n = 1), and optic nerves (n = 1). Of all lesions detected, five were consistent with intracranial tumors (two meningiomas, one pituitary tumor, two nasal tumors with intracranial extension), and one with bilateral optic neuritis that was confirmed by cerebrospinal fluid analysis. Histologic diagnosis was obtained in four cases and included one meningioma, one pituitary carcinoma, one nasal osteosarcoma, and one nasal carcinoma. Central nervous system (CNS) disease should be considered in dogs and cats with acute blindness, even when other neurologic deficits are absent. This study emphasizes the relevance of MRI as a diagnostic tool for detection and characterization of CNS lesions affecting the visual pathways.

  17. Classification of the venous architecture of the pineal gland by 7T MRI.

    PubMed

    Cho, Zang-Hee; Choi, Sang-Han; Chi, Je-Gun; Kim, Young-Bo

    2011-10-01

    Magnetic resonance imaging (MRI) at 7.0 Tesla (7T) can show many details of anatomical structures with unprecedented resolution and contrast. In this report, we describe for the first time the unexpected wide variation in pineal gland structure, as visualized by MR images obtained with 7T in a group of healthy young volunteers. A total of 34 volunteers (22 men and 12 women) were enrolled in the study. Their 7T MR images revealed such wide variations in pineal gland shape that it led us to attempt to classify the patterns seen in these pineal glands. Indeed, they were successfully correlated with a previous human cadaver study of venous structures by Tamaki et al., who classified the venous structures of the pineal gland into three categories. This is the first human in vivo pineal vein imaging study using 7T MRI. Pineal venous imaging may permit the early diagnosis of a pineal tumor. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  18. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors.

    PubMed

    Ciulla, Carlo; Veljanovski, Dimitar; Rechkoska Shikoska, Ustijana; Risteski, Filip A

    2015-11-01

    This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI). Post-processing of the MRI of the human brain encompasses the following model functions: (i) bivariate cubic polynomial, (ii) bivariate cubic Lagrange polynomial, (iii) monovariate sinc, and (iv) bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i) classic-curvature, (ii) signal resilient to interpolation, (iii) intensity-curvature measure and (iv) intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i) the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii) the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional.

  19. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors

    PubMed Central

    Ciulla, Carlo; Veljanovski, Dimitar; Rechkoska Shikoska, Ustijana; Risteski, Filip A.

    2015-01-01

    This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI). Post-processing of the MRI of the human brain encompasses the following model functions: (i) bivariate cubic polynomial, (ii) bivariate cubic Lagrange polynomial, (iii) monovariate sinc, and (iv) bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i) classic-curvature, (ii) signal resilient to interpolation, (iii) intensity-curvature measure and (iv) intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i) the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii) the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional. PMID:26644943

  20. Magnetic resonance imaging of the wrist: bone and cartilage injury.

    PubMed

    Hayter, Catherine L; Gold, Stephanie L; Potter, Hollis G

    2013-05-01

    Magnetic resonance imaging (MRI) is particularly useful for imaging the wrist due to its superior soft tissue contrast and ability to detect subtle bone marrow changes and occult fractures. A high field (1.5T or greater) strength, dedicated wrist coil, and high in-plane and through-plane resolution must be utilized to successfully visualize the relatively thin cartilage of the wrist. MRI can be used to detect occult carpal bone fractures, identify complications following scaphoid fractures, and assess for avascular necrosis in the setting in Kienböck's and Preiser's disease. MRI is useful to identify secondary soft tissue and chondral pathology in impaction/impingement syndromes. The use of an intermediate-echo time fast spin echo sequence allows for accurate assessment of articular cartilage, allowing evaluation of chondral wear in the setting of primary osteoarthritis and posttraumatic degenerative arthrosis. MRI is the most sensitive imaging modality for the detection of early inflammatory arthropathies and can detect synovitis, bone marrow edema, and early erosions in the setting of negative radiographs. Copyright © 2012 Wiley Periodicals, Inc.

  1. Regions of mid-level human visual cortex sensitive to the global coherence of local image patches.

    PubMed

    Mannion, Damien J; Kersten, Daniel J; Olman, Cheryl A

    2014-08-01

    The global structural arrangement and spatial layout of the visual environment must be derived from the integration of local signals represented in the lower tiers of the visual system. This interaction between the spatially local and global properties of visual stimulation underlies many of our visual capacities, and how this is achieved in the brain is a central question for visual and cognitive neuroscience. Here, we examine the sensitivity of regions of the posterior human brain to the global coordination of spatially displaced naturalistic image patches. We presented observers with image patches in two circular apertures to the left and right of central fixation, with the patches drawn from either the same (coherent condition) or different (noncoherent condition) extended image. Using fMRI at 7T (n = 5), we find that global coherence affected signal amplitude in regions of dorsal mid-level cortex. Furthermore, we find that extensive regions of mid-level visual cortex contained information in their local activity pattern that could discriminate coherent and noncoherent stimuli. These findings indicate that the global coordination of local naturalistic image information has important consequences for the processing in human mid-level visual cortex.

  2. Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.

    PubMed

    Bayram, Ali; Bayraktaroglu, Zubeyir; Karahan, Esin; Erdogan, Basri; Bilgic, Basar; Ozker, Muge; Kasikci, Itir; Duru, Adil D; Ademoglu, Ahmet; Oztürk, Cengizhan; Arikan, Kemal; Tarhan, Nevzat; Demiralp, Tamer

    2011-04-01

    The stability of the steady-state visual evoked potentials (SSVEPs) across trials and subjects makes them a suitable tool for the investigation of the visual system. The reproducible pattern of the frequency characteristics of SSVEPs shows a global amplitude maximum around 10 Hz and additional local maxima around 20 and 40 Hz, which have been argued to represent resonant behavior of damped neuronal oscillators. Simultaneous electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) measurement allows testing of the resonance hypothesis about the frequency-selective increases in SSVEP amplitudes in human subjects, because the total synaptic activity that is represented in the fMRI-Blood Oxygen Level Dependent (fMRI-BOLD) response would not increase but get synchronized at the resonance frequency. For this purpose, 40 healthy volunteers were visually stimulated with flickering light at systematically varying frequencies between 6 and 46 Hz, and the correlations between SSVEP amplitudes and the BOLD responses were computed. The SSVEP frequency characteristics of all subjects showed 3 frequency ranges with an amplitude maximum in each of them, which roughly correspond to alpha, beta and gamma bands of the EEG. The correlation maps between BOLD responses and SSVEP amplitude changes across the different stimulation frequencies within each frequency band showed no significant correlation in the alpha range, while significant correlations were obtained in the primary visual area for the beta and gamma bands. This non-linear relationship between the surface recorded SSVEP amplitudes and the BOLD responses of the visual cortex at stimulation frequencies around the alpha band supports the view that a resonance at the tuning frequency of the thalamo-cortical alpha oscillator in the visual system is responsible for the global amplitude maximum of the SSVEP around 10 Hz. Information gained from the SSVEP/fMRI analyses in the present study might be extrapolated to the EEG/fMRI analysis of the transient event-related potentials (ERPs) in terms of expecting more reliable and consistent correlations between EEG and fMRI responses, when the analyses are carried out on evoked or induced oscillations (spectral perturbations) in separate frequency bands instead of the time-domain ERP peaks.

  3. Magnetic resonance imaging of neuronal ceroid lipofuscinosis in a border collie.

    PubMed

    Koie, Hiroshi; Shibuya, Hisashi; Sato, Tsuneo; Sato, Akane; Nawa, Koji; Nawa, Yuko; Kitagawa, Masato; Sakai, Manabu; Takahashi, Tomoko; Yamaya, Yoshiki; Yamato, Osamu; Watari, Toshihiro; Tokuriki, Mikihiko

    2004-11-01

    A castrated male border collie 23 months of age weighing 19.4 kg was referred to the Animal Medical Center of Nihon University with complaints of visual disturbance and behavioral abnormality, hyperacusis and morbid fear. The MRI examination revealed the slight dilated cerebral sulci and cerebellar fissures and left ventricular enlargement. This is the first report of MRI findings of canine neuronal ceroid lipofuscinosis.

  4. Comparative study of microelectrode recording-based STN location and MRI-based STN location in low to ultra-high field (7.0 T) T2-weighted MRI images

    NASA Astrophysics Data System (ADS)

    Verhagen, Rens; Schuurman, P. Richard; van den Munckhof, Pepijn; Fiorella Contarino, M.; de Bie, Rob M. A.; Bour, Lo J.

    2016-12-01

    Objective. The correspondence between the anatomical STN and the STN observed in T2-weighted MRI images used for deep brain stimulation (DBS) targeting remains unclear. Using a new method, we compared the STN borders seen on MRI images with those estimated by intraoperative microelectrode recordings (MER). Approach. We developed a method to automatically generate a detailed estimation of STN shape and the location of its borders, based on multiple-channel MER measurements. In 33 STNs of 19 Parkinson patients, we quantitatively compared the dorsal and lateral borders of this MER-based STN model with the STN borders visualized by 1.5 T (n = 14), 3.0 T (n = 10) and 7.0 T (n = 9) T2-weighted MRI. Main results. The dorsal border was identified more dorsally on coronal T2 MRI than by the MER-based STN model, with a significant difference in the 3.0 T (range 0.97-1.19 mm) and 7.0 T (range 1.23-1.25 mm) groups. The lateral border was significantly more medial on 1.5 T (mean: 1.97 mm) and 3.0 T (mean: 2.49 mm) MRI than in the MER-based STN; a difference that was not found in the 7.0 T group. Significance. The STN extends further in the dorsal direction on coronal T2 MRI images than is measured by MER. Increasing MRI field strength to 3.0 T or 7.0 T yields similar discrepancies between MER and MRI at the dorsal STN border. In contrast, increasing MRI field strength to 7.0 T may be useful for identification of the lateral STN border and thereby improve DBS targeting.

  5. Functional MRI mapping of visual function and selective attention for performance assessment and presurgical planning using conjunctive visual search

    PubMed Central

    Parker, Jason G; Zalusky, Eric J; Kirbas, Cemil

    2014-01-01

    Background Accurate mapping of visual function and selective attention using fMRI is important in the study of human performance as well as in presurgical treatment planning of lesions in or near visual centers of the brain. Conjunctive visual search (CVS) is a useful tool for mapping visual function during fMRI because of its greater activation extent compared with high-capacity parallel search processes. Aims The purpose of this work was to develop and evaluate a CVS that was capable of generating consistent activation in the basic and higher level visual areas of the brain by using a high number of distractors as well as an optimized contrast condition. Materials and methods Images from 10 healthy volunteers were analyzed and brain regions of greatest activation and deactivation were determined using a nonbiased decomposition of the results at the hemisphere, lobe, and gyrus levels. The results were quantified in terms of activation and deactivation extent and mean z-statistic. Results The proposed CVS was found to generate robust activation of the occipital lobe, as well as regions in the middle frontal gyrus associated with coordinating eye movements and in regions of the insula associated with task-level control and focal attention. As expected, the task demonstrated deactivation patterns commonly implicated in the default-mode network. Further deactivation was noted in the posterior region of the cerebellum, most likely associated with the formation of optimal search strategy. Conclusion We believe the task will be useful in studies of visual and selective attention in the neuroscience community as well as in mapping visual function in clinical fMRI. PMID:24683515

  6. Influences of High-Level Features, Gaze, and Scene Transitions on the Reliability of BOLD Responses to Natural Movie Stimuli

    PubMed Central

    Lu, Kun-Han; Hung, Shao-Chin; Wen, Haiguang; Marussich, Lauren; Liu, Zhongming

    2016-01-01

    Complex, sustained, dynamic, and naturalistic visual stimulation can evoke distributed brain activities that are highly reproducible within and across individuals. However, the precise origins of such reproducible responses remain incompletely understood. Here, we employed concurrent functional magnetic resonance imaging (fMRI) and eye tracking to investigate the experimental and behavioral factors that influence fMRI activity and its intra- and inter-subject reproducibility during repeated movie stimuli. We found that widely distributed and highly reproducible fMRI responses were attributed primarily to the high-level natural content in the movie. In the absence of such natural content, low-level visual features alone in a spatiotemporally scrambled control stimulus evoked significantly reduced degree and extent of reproducible responses, which were mostly confined to the primary visual cortex (V1). We also found that the varying gaze behavior affected the cortical response at the peripheral part of V1 and in the oculomotor network, with minor effects on the response reproducibility over the extrastriate visual areas. Lastly, scene transitions in the movie stimulus due to film editing partly caused the reproducible fMRI responses at widespread cortical areas, especially along the ventral visual pathway. Therefore, the naturalistic nature of a movie stimulus is necessary for driving highly reliable visual activations. In a movie-stimulation paradigm, scene transitions and individuals’ gaze behavior should be taken as potential confounding factors in order to properly interpret cortical activity that supports natural vision. PMID:27564573

  7. Unilateral blindness with third cranial nerve palsy and abnormal enhancement of extraocular muscles on magnetic resonance imaging of orbit after the ingestion of methanol.

    PubMed

    Chung, Tae Nyoung; Kim, Sun Wook; Park, Yoo Seok; Park, Incheol

    2010-05-01

    Methanol is generally known to cause visual impairment and various systemic manifestations. There are a few reported specific findings for methanol intoxication on magnetic resonance imaging (MRI) of the brain. A case is reported of unilateral blindness with third cranial nerve palsy oculus sinister (OS) after the ingestion of methanol. Unilateral damage of the retina and optic nerve were confirmed by fundoscopy, flourescein angiography, visual evoked potential and electroretinogram. The optic nerve and extraocular muscles (superior rectus, medial rectus, inferior rectus and inferior oblique muscle) were enhanced by gadolinium-DTPA on MRI of the orbit. This is the first case report of permanent monocular blindness with confirmed unilateral damage of the retina and optic nerve, combined with third cranial nerve palsy after methanol ingestion.

  8. Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features.

    PubMed

    Horikawa, Tomoyasu; Kamitani, Yukiyasu

    2017-01-01

    Dreaming is generally thought to be generated by spontaneous brain activity during sleep with patterns common to waking experience. This view is supported by a recent study demonstrating that dreamed objects can be predicted from brain activity during sleep using statistical decoders trained with stimulus-induced brain activity. However, it remains unclear whether and how visual image features associated with dreamed objects are represented in the brain. In this study, we used a deep neural network (DNN) model for object recognition as a proxy for hierarchical visual feature representation, and DNN features for dreamed objects were analyzed with brain decoding of fMRI data collected during dreaming. The decoders were first trained with stimulus-induced brain activity labeled with the feature values of the stimulus image from multiple DNN layers. The decoders were then used to decode DNN features from the dream fMRI data, and the decoded features were compared with the averaged features of each object category calculated from a large-scale image database. We found that the feature values decoded from the dream fMRI data positively correlated with those associated with dreamed object categories at mid- to high-level DNN layers. Using the decoded features, the dreamed object category could be identified at above-chance levels by matching them to the averaged features for candidate categories. The results suggest that dreaming recruits hierarchical visual feature representations associated with objects, which may support phenomenal aspects of dream experience.

  9. Dependence of chromatic responses in V1 on visual field eccentricity and spatial frequency: an fMRI study.

    PubMed

    D'Souza, Dany V; Auer, Tibor; Frahm, Jens; Strasburger, Hans; Lee, Barry B

    2016-03-01

    Psychophysical sensitivity to red-green chromatic modulation decreases with visual eccentricity, compared to sensitivity to luminance modulation, even after appropriate stimulus scaling. This is likely to occur at a central, rather than a retinal, site. Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to stimuli designed to separately stimulate different afferent channels' [red-green, luminance, and short-wavelength (S)-cone] circular gratings were recorded as a function of visual eccentricity (±10  deg) and spatial frequency (SF) in human primary visual cortex (V1) and further visual areas (V2v, V3v). In V1, the SF tuning of BOLD fMRI responses became coarser with eccentricity. For red-green and luminance gratings, similar SF tuning curves were found at all eccentricities. The pattern for S-cone modulation differed, with SF tuning changing more slowly with eccentricity than for the other two modalities. This may be due to the different retinal distribution with eccentricity of this receptor type. A similar pattern held in V2v and V3v. This would suggest that transformation or spatial filtering of the chromatic (red-green) signal occurs beyond these areas.

  10. The fMRI BOLD response to unisensory and multisensory smoking cues in nicotine-dependent adults

    PubMed Central

    Cortese, Bernadette M.; Uhde, Thomas W.; Brady, Kathleen T.; McClernon, F. Joseph; Yang, Qing X.; Collins, Heather R.; LeMatty, Todd; Hartwell, Karen J.

    2015-01-01

    Given that the vast majority of functional magnetic resonance imaging (fMRI) studies of drug cue reactivity use unisensory visual cues, but that multisensory cues may elicit greater craving-related brain responses, the current study sought to compare the fMRI BOLD response to unisensory visual and multisensory, visual plus odor, smoking cues in 17 nicotine-dependent adult cigarette smokers. Brain activation to smoking-related, compared to neutral, pictures was assessed under cigarette smoke and odorless odor conditions. While smoking pictures elicited a pattern of activation consistent with the addiction literature, the multisensory (odor + picture) smoking cues elicited significantly greater and more widespread activation in mainly frontal and temporal regions. BOLD signal elicited by the multi-sensory, but not unisensory cues, was significantly related to participants’ level of control over craving as well. Results demonstrated that the co-presentation of cigarette smoke odor with smoking-related visual cues, compared to the visual cues alone, elicited greater levels of craving-related brain activation in key regions implicated in reward. These preliminary findings support future research aimed at a better understanding of multisensory integration of drug cues and craving. PMID:26475784

  11. The fMRI BOLD response to unisensory and multisensory smoking cues in nicotine-dependent adults.

    PubMed

    Cortese, Bernadette M; Uhde, Thomas W; Brady, Kathleen T; McClernon, F Joseph; Yang, Qing X; Collins, Heather R; LeMatty, Todd; Hartwell, Karen J

    2015-12-30

    Given that the vast majority of functional magnetic resonance imaging (fMRI) studies of drug cue reactivity use unisensory visual cues, but that multisensory cues may elicit greater craving-related brain responses, the current study sought to compare the fMRI BOLD response to unisensory visual and multisensory, visual plus odor, smoking cues in 17 nicotine-dependent adult cigarette smokers. Brain activation to smoking-related, compared to neutral, pictures was assessed under cigarette smoke and odorless odor conditions. While smoking pictures elicited a pattern of activation consistent with the addiction literature, the multisensory (odor+picture) smoking cues elicited significantly greater and more widespread activation in mainly frontal and temporal regions. BOLD signal elicited by the multisensory, but not unisensory cues, was significantly related to participants' level of control over craving as well. Results demonstrated that the co-presentation of cigarette smoke odor with smoking-related visual cues, compared to the visual cues alone, elicited greater levels of craving-related brain activation in key regions implicated in reward. These preliminary findings support future research aimed at a better understanding of multisensory integration of drug cues and craving. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Imaging techniques in the management of chronic kidney disease: current developments and future perspectives.

    PubMed

    Herget-Rosenthal, Stefan

    2011-05-01

    The measurement of both renal function and structure is critical in clinical nephrology to detect, stage, and monitor chronic kidney disease (CKD). Current imaging modalities especially ultrasound (US), computed tomography, and magnetic resonance imaging (MRI) provide adequate information on structural changes but little on functional impairment in CKD. Although not yet considered first-line procedures for evaluating patients with renal disease, new US and MR imaging techniques may permit the assessment of renal function in the near future. Combined with established imaging techniques, contrast-enhanced US, dynamic contrast-enhanced MRI, blood oxygen level dependency MRI, or diffusion-weighted imaging may provide rapid, accurate, simultaneous, and noninvasive imaging of the structure of kidneys, macrovascular and microvascular renal perfusion, oxygenation, and glomerular filtration rate. Recent developments in molecular imaging indicate that pathophysiological pathways of renal diseases such as apoptosis, coagulation, fibrosis, and ischemia will be visualized at the tissue level. These major advances in imaging and developments in hardware and software could enable comprehensive imaging of renal structure and function in four dimensions (three dimensions plus time), and imaging is expected to play an increasing role in the management of CKD. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Cryo-Imaging and Software Platform for Analysis of Molecular MR Imaging of Micrometastases

    PubMed Central

    Qutaish, Mohammed Q.; Zhou, Zhuxian; Prabhu, David; Liu, Yiqiao; Busso, Mallory R.; Izadnegahdar, Donna; Gargesha, Madhusudhana; Lu, Hong; Lu, Zheng-Rong

    2018-01-01

    We created and evaluated a preclinical, multimodality imaging, and software platform to assess molecular imaging of small metastases. This included experimental methods (e.g., GFP-labeled tumor and high resolution multispectral cryo-imaging), nonrigid image registration, and interactive visualization of imaging agent targeting. We describe technological details earlier applied to GFP-labeled metastatic tumor targeting by molecular MR (CREKA-Gd) and red fluorescent (CREKA-Cy5) imaging agents. Optimized nonrigid cryo-MRI registration enabled nonambiguous association of MR signals to GFP tumors. Interactive visualization of out-of-RAM volumetric image data allowed one to zoom to a GFP-labeled micrometastasis, determine its anatomical location from color cryo-images, and establish the presence/absence of targeted CREKA-Gd and CREKA-Cy5. In a mouse with >160 GFP-labeled tumors, we determined that in the MR images every tumor in the lung >0.3 mm2 had visible signal and that some metastases as small as 0.1 mm2 were also visible. More tumors were visible in CREKA-Cy5 than in CREKA-Gd MRI. Tape transfer method and nonrigid registration allowed accurate (<11 μm error) registration of whole mouse histology to corresponding cryo-images. Histology showed inflammation and necrotic regions not labeled by imaging agents. This mouse-to-cells multiscale and multimodality platform should uniquely enable more informative and accurate studies of metastatic cancer imaging and therapy. PMID:29805438

  14. Computed Tomography Cisternography for Evaluation of Trigeminal Neuralgia When Magnetic Resonance Imaging Is Contraindicated: Case Report and Review of the Literature.

    PubMed

    Gospodarev, Vadim; Chakravarthy, Vikram; Harms, Casey; Myers, Hannah; Kaplan, Brett; Kim, Esther; Pond, Matthew; De Los Reyes, Kenneth

    2018-05-01

    Trigeminal neuralgia (TGN) causes severe unilateral facial pain. The etiology is hypothesized to be segmental demyelination of the trigeminal nerve root via compression by the superior cerebellar artery (SCA). Microvascular decompression (MVD) allows immediate and long-term pain relief. Preoperative evaluation includes magnetic resonance imaging (MRI) and/or magnetic resonance angiography of the brain. Having a pacemaker is a contraindication for MRI. There have been isolated reports of using computed tomography (CT) cisternography scans for radiation planning for TGN. A 75-year-old male with a permanent pacemaker who had refractory TGN in the V2 (maxillary) distribution of the trigeminal nerve underwent CT cisternography to prepare for MVD. CT angiography with Isovue 370 intravenous contrast injection and 0.625-mm axial images were obtained from the skull base across the posterior fossa. An intrathecal injection of Isovue 180 was performed at the L2/3 level. Imaging revealed the right SCA abutting the medial margin of the proximal right trigeminal nerve. In surgery (K.D.), a standard retrosigmoid suboccipital craniotomy was performed to access the cerebellopontine angle and separate the abutting SCA and trigeminal nerve. The patient had immediate pain relief. MRI is the preferred method of evaluating for TGN because it offers excellent visualization of vasculature in relation to the trigeminal nerve without accompanying radiation exposure. However, for patients who have contraindications to MRI, CT cisternography is shown to also be an effective method for visualizing the trigeminal root entry zone and nearby vasculature in preparation for MVD of the trigeminal nerve. Published by Elsevier Inc.

  15. Diffusion tensor tracking of neuronal fiber pathways in the living human brain

    NASA Astrophysics Data System (ADS)

    Lori, Nicolas Francisco

    2001-11-01

    The technique of diffusion tensor tracking (DTT) is described, in which diffusion tensor magnetic resonance imaging (DT-MRI) data are processed to allow the visualization of white matter (WM) tracts in a living human brain. To illustrate the methods, a detailed description is given of the physics of DT-MRI, the structure of the DT-MRI experiment, the computer tools that were developed to visualize WM tracts, the anatomical consistency of the obtained WM tracts, and the accuracy and precision of DTT using computer simulations. When presenting the physics of DT-MRI, a completely quantum-mechanical view of DT-MRI is given where some of the results are new. Examples of anatomical tracts viewed using DTT are presented, including the genu and the splenium of the corpus callosum, the ventral pathway with its amygdala connection highlighted, the geniculo- calcarine tract separated into anterior and posterior parts, the geniculo-calcarine tract defined using functional magnetic resonance imaging (MRI), and U- fibers. In the simulation, synthetic DT-MRI data were constructed that would be obtained for a cylindrical WM tract with a helical trajectory surrounded by gray matter. Noise was then added to the synthetic DT-MRI data, and DTT trajectories were calculated using the noisy data (realistic tracks). Simulated DTT errors were calculated as the vector distance between the realistic tracks and the ideal trajectory. The simulation tested the effects of a comprehensive set of experimental conditions, including voxel size, data sampling, data averaging, type of tract tissue, tract diameter and type of tract trajectory. Simulated DTT accuracy and precision were typically below the voxel dimension, and precision was compatible with the experimental results.

  16. MRI for appendicitis in pregnancy: is seeing believing? clinical outcomes in cases of appendix nonvisualization.

    PubMed

    Al-Katib, Sayf; Sokhandon, Farnoosh; Farah, Michael

    2016-12-01

    The primary objective of this study was to determine the clinical outcomes in cases of appendix nonvisualization with MRI in pregnant patients with suspected appendicitis and the implications of appendix nonvisualization for excluding appendicitis. Fifty-eight pregnant patients with suspected appendicitis evaluated with MRI at three centers from a single institution were retrospectively reviewed by three radiologists with varying levels of abdominal imaging experience. All scans were performed on a 1.5-Tesla Siemens unit. Cases were evaluated for diagnostic quality, visualization of the appendix, presence of appendicitis, and alternate diagnoses. Clinical outcomes were gathered from the electronic medical record. Of the 58 patients who underwent MRI for suspected appendicitis, 50 cases were considered adequate diagnostic quality by all three radiologists. The rate of appendix visualization among the three radiologists ranged from 60 to 76% (p = 0.44). The appendix was nonvisualized by at least one of the three radiologists in 25 cases (50%). Of these, none had a final diagnosis of appendicitis including one patient who underwent appendectomy. MRI suggested an alternate diagnosis in 6 (24%) patients with appendix nonvisualization. For the three reviewers, the agreement level on whether or not the appendix was visualized on the MRI had a Light's kappa value of 0.526, indicating a "moderate" level of agreement (p value < 0.01). Despite only moderate level of interobserver agreement for appendix visualization, appendix nonvisualization on MRI in pregnant patients with suspected appendicitis confers a significant reduction in the risk of appendicitis compared to all comers as long as the study is adequate diagnostic quality and there are no secondary signs of appendicitis present.

  17. Choroidal Blood Flow Decreases with Age: An MRI Study

    PubMed Central

    San Emeterio Nateras, Oscar; Harrison, Joseph M.; Muir, Eric R.; Zhang, Yi; Peng, Qi; Chalfin, Steven; Gutierrez, Juan E.; Johnson, Daniel A.; Kiel, Jeffrey W.; Duong, Timothy Q.

    2014-01-01

    Purpose To verify that a visual fixation protocol with cued eye blinks achieves sufficient stability for magnetic resonance imaging (MRI) blood-flow measurements and to determine if choroidal blood flow (ChBF) changes with age in humans. Methods The visual fixation stability achievable during an MRI scan was measured in five normal subjects using an eye-tracking camera outside the MRI scanner. Subjects were instructed to blink immediately after recorded MRI sound cues but to otherwise maintain stable visual fixation on a small target. Using this fixation protocol, ChBF was measured with MRI using a 3 Tesla clinical scanner in 17 normal subjects (24–68 years old). Arterial and intraocular pressures (IOP) were measured to calculate perfusion pressure in the same subjects. Results The mean temporal fluctuations (standard deviation) of the horizontal and vertical displacements were 29 ± 9 μm and 38 ± 11 μm within individual fixation periods, and 50 ± 34 μm and 48 ± 19 μm across different fixation periods. The absolute displacements were 67 ± 31 μm and 81 ± 26 μm. ChBF was negatively correlated with age (R =−0.7, p = 0.003), declining 2.7 ml/100 ml/min per year. There were no significant correlations between ChBF versus perfusion pressure, arterial pressure, or IOP. There were also no significant correlations between age versus perfusion pressure, arterial pressure, or IOP. Multiple regression analysis indicated that age was the only measured independent variable that was significantly correlated with ChBF (p = 0.03). Conclusions The visual fixation protocol with cued eye blinks was effective in achieving sufficient stability for MRI measurements. ChBF had a significant negative correlation with age. PMID:24655028

  18. Default Mode Network (DMN) Deactivation during Odor-Visual Association

    PubMed Central

    Karunanayaka, Prasanna R.; Wilson, Donald A.; Tobia, Michael J.; Martinez, Brittany; Meadowcroft, Mark; Eslinger, Paul J.; Yang, Qing X.

    2017-01-01

    Default mode network (DMN) deactivation has been shown to be functionally relevant for goal-directed cognition. In this study, we investigated the DMN’s role during olfactory processing using two complementary functional magnetic resonance imaging (fMRI) paradigms with identical timing, visual-cue stimulation and response monitoring protocols. Twenty-nine healthy, non-smoking, right-handed adults (mean age = 26±4 yrs., 16 females) completed an odor-visual association fMRI paradigm that had two alternating odor+visual and visual-only trial conditions. During odor+visual trials, a visual cue was presented simultaneously with an odor, while during visual-only trial conditions the same visual cue was presented alone. Eighteen of the 29 participants (mean age = 27.0 ± 6.0 yrs.,11 females) also took part in a control no-odor fMRI paradigm that consisted of visual-only trial conditions which were identical to the visual-only trials in the odor-visual association paradigm. We used Independent Component Analysis (ICA), extended unified structural equation modeling (euSEM), and psychophysiological interaction (PPI) to investigate the interplay between the DMN and olfactory network. In the odor-visual association paradigm, DMN deactivation was evoked by both the odor+visual and visual-only trial conditions. In contrast, the visual-only trials in the no-odor paradigm did not evoke consistent DMN deactivation. In the odor-visual association paradigm, the euSEM and PPI analyses identified a directed connectivity between the DMN and olfactory network which was significantly different between odor+visual and visual-only trial conditions. The results support a strong interaction between the DMN and olfactory network and highlights DMN’s role in task-evoked brain activity and behavioral responses during olfactory processing. PMID:27785847

  19. Hepatopulmonary shunting on Tc99m-MAA liver mapping: correlation with dynamic cross-sectional imaging and description of different shunting patterns.

    PubMed

    Bermo, Mohammed; Matesan, Manuela C; Itani, Malak; Behnia, Fatemeh; Vesselle, Hubert J

    2018-04-09

    The purpose of the study was to correlate lung shunt fraction (LSF) calculated by intra-arterial injection of Technetium-99m (Tc-99m)-labeled macroaggregated albumin (MAA) in a hepatic artery branch with the presence of certain patterns of vascular shunts on dynamic CT or MRI of the liver. This retrospective study was approved by the institutional review board and informed consent was waived. We reviewed 523 MAA scans in 453 patients (301 men, 152 women) performed from July 2007 to June 2015 and their correlative cross-sectional imaging. Patterns of vascular shunts on dynamic CT or MRI performed within 3 months of the MAA study and that potentially divert hepatic arterial inflow to the systemic venous return were defined as "target shunts." Dynamic CT or MRI was classified into three groups with target shunt present, absent, or indeterminate. The mean LSF was compared across the first and second groups using paired t test. 342 CT and MRI studies met inclusion criteria: target shunts were present in 63 studies, absent in 271 studies, and 8 studies were indeterminate. When target shunts were visualized, the mean LSF on corresponding MAA scans was 12.9 ± 10.36% (95% CI 10.29-15.15%) compared to 4.3 ± 3.17% (95% CI 3.93-4.68%) when no target shunt was visualized. The difference was statistically significant (p value < 0.001). Identified target shunts were either direct (arteriohepatic venous shunt) or indirect (arterioportal shunt combined with a portosystemic shunt). Visualizing certain patterns of vascular shunting on a dynamic CT or MRI scan is associated with high LSF.

  20. Hybrid Approach for Biliary Interventions Employing MRI-Guided Bile Duct Puncture with Near-Real-Time Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wybranski, Christian, E-mail: Christian.Wybranski@uk-koeln.de; Pech, Maciej; Lux, Anke

    ObjectiveTo assess the feasibility of a hybrid approach employing MRI-guided bile duct (BD) puncture for subsequent fluoroscopy-guided biliary interventions in patients with non-dilated (≤3 mm) or dilated BD (≥3 mm) but unfavorable conditions for ultrasonography (US)-guided BD puncture.MethodsA total of 23 hybrid interventions were performed in 21 patients. Visualization of BD and puncture needles (PN) in the interventional MR images was rated on a 5-point Likert scale by two radiologists. Technical success, planning time, BD puncture time and positioning adjustments of the PN as well as technical success of the biliary intervention and complication rate were recorded.ResultsVisualization even of third-order non-dilated BDmore » and PN was rated excellent by both radiologists with good to excellent interrater agreement. MRI-guided BD puncture was successful in all cases. Planning and BD puncture times were 1:36 ± 2.13 (0:16–11:07) min. and 3:58 ± 2:35 (1:11–9:32) min. Positioning adjustments of the PN was necessary in two patients. Repeated capsular puncture was not necessary in any case. All biliary interventions were completed successfully without major complications.ConclusionA hybrid approach which employs MRI-guided BD puncture for subsequent fluoroscopy-guided biliary intervention is feasible in clinical routine and yields high technical success in patients with non-dilated BD and/or unfavorable conditions for US-guided puncture. Excellent visualization of BD and PN in near-real-time interventional MRI allows successful cannulation of the BD.« less

  1. How 3D immersive visualization is changing medical diagnostics

    NASA Astrophysics Data System (ADS)

    Koning, Anton H. J.

    2011-03-01

    Originally the only way to look inside the human body without opening it up was by means of two dimensional (2D) images obtained using X-ray equipment. The fact that human anatomy is inherently three dimensional leads to ambiguities in interpretation and problems of occlusion. Three dimensional (3D) imaging modalities such as CT, MRI and 3D ultrasound remove these drawbacks and are now part of routine medical care. While most hospitals 'have gone digital', meaning that the images are no longer printed on film, they are still being viewed on 2D screens. However, this way valuable depth information is lost, and some interactions become unnecessarily complex or even unfeasible. Using a virtual reality (VR) system to present volumetric data means that depth information is presented to the viewer and 3D interaction is made possible. At the Erasmus MC we have developed V-Scope, an immersive volume visualization system for visualizing a variety of (bio-)medical volumetric datasets, ranging from 3D ultrasound, via CT and MRI, to confocal microscopy, OPT and 3D electron-microscopy data. In this talk we will address the advantages of such a system for both medical diagnostics as well as for (bio)medical research.

  2. Combining MRI and VEP imaging to isolate the temporal response of visual cortical areas

    NASA Astrophysics Data System (ADS)

    Carney, Thom; Ales, Justin; Klein, Stanley A.

    2008-02-01

    The human brain has well over 30 cortical areas devoted to visual processing. Classical neuro-anatomical as well as fMRI studies have demonstrated that early visual areas have a retinotopic organization whereby adjacent locations in visual space are represented in adjacent areas of cortex within a visual area. At the 2006 Electronic Imaging meeting we presented a method using sprite graphics to obtain high resolution retinotopic visual evoked potential responses using multi-focal m-sequence technology (mfVEP). We have used this method to record mfVEPs from up to 192 non overlapping checkerboard stimulus patches scaled such that each patch activates about 12 mm2 of cortex in area V1 and even less in V2. This dense coverage enables us to incorporate cortical folding constraints, given by anatomical MRI and fMRI results from the same subject, to isolate the V1 and V2 temporal responses. Moreover, the method offers a simple means of validating the accuracy of the extracted V1 and V2 time functions by comparing the results between left and right hemispheres that have unique folding patterns and are processed independently. Previous VEP studies have been contradictory as to which area responds first to visual stimuli. This new method accurately separates the signals from the two areas and demonstrates that both respond with essentially the same latency. A new method is introduced which describes better ways to isolate cortical areas using an empirically determined forward model. The method includes a novel steady state mfVEP and complex SVD techniques. In addition, this evolving technology is put to use examining how stimulus attributes differentially impact the response in different cortical areas, in particular how fast nonlinear contrast processing occurs. This question is examined using both state triggered kernel estimation (STKE) and m-sequence "conditioned kernels". The analysis indicates different contrast gain control processes in areas V1 and V2. Finally we show that our m-sequence multi-focal stimuli have advantages for integrating EEG and MEG for improved dipole localization.

  3. fMRI evidence for areas that process surface gloss in the human visual cortex

    PubMed Central

    Sun, Hua-Chun; Ban, Hiroshi; Di Luca, Massimiliano; Welchman, Andrew E.

    2015-01-01

    Surface gloss is an important cue to the material properties of objects. Recent progress in the study of macaque’s brain has increased our understating of the areas involved in processing information about gloss, however the homologies with the human brain are not yet fully understood. Here we used human functional magnetic resonance imaging (fMRI) measurements to localize brain areas preferentially responding to glossy objects. We measured cortical activity for thirty-two rendered three-dimensional objects that had either Lambertian or specular surface properties. To control for differences in image structure, we overlaid a grid on the images and scrambled its cells. We found activations related to gloss in the posterior fusiform sulcus (pFs) and in area V3B/KO. Subsequent analysis with Granger causality mapping indicated that V3B/KO processes gloss information differently than pFs. Our results identify a small network of mid-level visual areas whose activity may be important in supporting the perception of surface gloss. PMID:25490434

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do-Dai, D.D.; Youngberg, R.A.; Lanchbury, F.D.

    Magnetic resonance findings with clinical and arthroscopic correlation of intraligamentous cysts of the anterior cruciate ligament (ACL) are presented. Three cases of intraligamentous cysts of the ACL were identified out of 681 knee MRI examinations over a 2-year period. Arthroscopy and postoperative MRI were performed in all three patients, each of whom experienced knee pain with extreme flexion and extension. In all three cases the intraligamentous cyst was homogeneously hypointense on T1-weighted imaging and hyperintense on T2-weighted imaging relative to the ACL. Two of the three ACL cysts required a 70{degrees} scope for adequate visualization and establishment of posteromedial andmore » posterolateral portals for arthroscopic treatment. One cyst could not be visualized arthroscopically and probing of the ACL from the anterior portal resulted in drainage of the cyst. No patient had presence of ACL cyst on follow-up MRI or recurrence of symptoms at a mean of 24 months. Intraligamentous cyst of ACL is a rare cause of knee pain. It should be suspected in patients having chronic pain with extremes of motion. Magnetic resonance findings are diagnostic and help to guide arthroscopy. 14 refs., 3 figs.« less

  5. Arterial spin labeling fMRI measurements of decreased blood flow in primary visual cortex correlates with decreased visual function in human glaucoma.

    PubMed

    Duncan, Robert O; Sample, Pamela A; Bowd, Christopher; Weinreb, Robert N; Zangwill, Linda M

    2012-05-01

    Altered metabolic activity has been identified as a potential contributing factor to the neurodegeneration associated with primary open angle glaucoma (POAG). Consequently, we sought to determine whether there is a relationship between the loss of visual function in human glaucoma and resting blood perfusion within primary visual cortex (V1). Arterial spin labeling (ASL) functional magnetic resonance imaging (fMRI) was conducted in 10 participants with POAG. Resting cerebral blood flow (CBF) was measured from dorsal and ventral V1. Behavioral measurements of visual function were obtained using standard automated perimetry (SAP), short-wavelength automated perimetry (SWAP), and frequency-doubling technology perimetry (FDT). Measurements of CBF were compared to differences in visual function for the superior and inferior hemifield. Differences in CBF between ventral and dorsal V1 were correlated with differences in visual function for the superior versus inferior visual field. A statistical bootstrapping analysis indicated that the observed correlations between fMRI responses and measurements of visual function for SAP (r=0.49), SWAP (r=0.63), and FDT (r=0.43) were statistically significant (all p<0.05). Resting blood perfusion in human V1 is correlated with the loss of visual function in POAG. Altered CBF may be a contributing factor to glaucomatous optic neuropathy, or it may be an indication of post-retinal glaucomatous neurodegeneration caused by damage to the retinal ganglion cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Fixation-related FMRI analysis in the domain of reading research: using self-paced eye movements as markers for hemodynamic brain responses during visual letter string processing.

    PubMed

    Richlan, Fabio; Gagl, Benjamin; Hawelka, Stefan; Braun, Mario; Schurz, Matthias; Kronbichler, Martin; Hutzler, Florian

    2014-10-01

    The present study investigated the feasibility of using self-paced eye movements during reading (measured by an eye tracker) as markers for calculating hemodynamic brain responses measured by functional magnetic resonance imaging (fMRI). Specifically, we were interested in whether the fixation-related fMRI analysis approach was sensitive enough to detect activation differences between reading material (words and pseudowords) and nonreading material (line and unfamiliar Hebrew strings). Reliable reading-related activation was identified in left hemisphere superior temporal, middle temporal, and occipito-temporal regions including the visual word form area (VWFA). The results of the present study are encouraging insofar as fixation-related analysis could be used in future fMRI studies to clarify some of the inconsistent findings in the literature regarding the VWFA. Our study is the first step in investigating specific visual word recognition processes during self-paced natural sentence reading via simultaneous eye tracking and fMRI, thus aiming at an ecologically valid measurement of reading processes. We provided the proof of concept and methodological framework for the analysis of fixation-related fMRI activation in the domain of reading research. © The Author 2013. Published by Oxford University Press.

  7. Effects of rivastigmine on visual attention in subjects with amnestic mild cognitive impairment: A serial functional MRI activation pilot-study.

    PubMed

    Bokde, Arun L W; Cavedo, Enrica; Lopez-Bayo, Patricia; Lista, Simone; Meindl, Thomas; Born, Christine; Galluzzi, Samantha; Faltraco, Frank; Dubois, Bruno; Teipel, Stefan J; Reiser, Maximilian; Möller, Hans-Jürgen; Hampel, Harald

    2016-03-30

    A pilot study to investigate the effects of rivastigmine on the brain activation pattern due to visual attention tasks in a group of amnestic Mild Cognitive Impaired patients (aMCI). The design was an initial three-month double blind period with a rivastigmine and placebo arms, followed by a nine-month open-label period. All patients underwent serial functional magnetic resonance imaging (fMRI) at baseline, and after three and six months of follow-up. Primary endpoint was the effect of rivastigmine on functional brain changes during visual attention (face and location matching) tasks. There were five in the rivastigmine arm and two in the placebo arm. The face matching task showed higher activation of visual areas after three months of treatment but no differences compared to baseline at six months. The location matching task showed a higher activation along the dorsal visual pathway at both three and six months follow ups. Treatment with rivastigmine demonstrates a significant effect on brain activation of the dorsal visual pathway during a location matching task in patients with aMCI. Our data support the potential use of task fMRI to map specific treatment effects of cholinergic drugs during prodromal stages of Alzheimer's disease (AD). Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Image, imagination, and reality: on effectiveness of introductory work with vocalists.

    PubMed

    Gullaer, Irene; Walker, Robert; Badin, Pierre; Lamalle, Laurent

    2006-01-01

    Fifty-four sung tokens, each consisting of eight images were generated with the help of magnetic resonance imaging (MRI) technique to demonstrate the work of intrapharyngeal muscles when singing and speaking, and to help the educational process. The MRI images can be used as a part of a visualization feed-back method in vocal education and contribute to creation of proper mental images. The use of visualization (pictures, drafts, graphs, spectra, MRI images, etc.), along with mental images, facilitates simplification and acceleration of the process of understanding and learning how to master the basics of vocal technique, especially in the initial period of study. It is shown that work on muscle development and use of imagination should progress with close interaction between the two. For higher effectiveness and tangible results, mental images used by a vocal pedagogue should correspond to the technical and emotional level of a student. Therefore, mental images have to undertake the same evolution as articulation technique-from simplified and comprehensible to complex and abstract. Our integrated approach suggests continuing the work on muscle development and use of imagination in singing classes, employing the experience of voice-speech teachers. Their exercises are modified using the empirical method and other techniques developed creatively by singing teachers. In this method, sensitivity towards the state of the tissues becomes increasingly refined; students acquire a conscious control over the muscle work, students gain full awareness of both sensation and muscle activity. As a result, a complex of professional conditioned reflexes is being developed. A case study of the New Zealand experience was conducted with groups of Maori and European students. Unique properties and trends in the voices of Maori people are discussed.

  9. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by (19)F- and diffusion-MRI.

    PubMed

    Bible, Ellen; Dell'Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter M; Badylak, Stephen F; Ahrens, Eric T; Modo, Michel

    2012-04-01

    Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based (1)H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a (19)F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on (1)H-MRI scans. Twenty percent of cells labeled with the (19)F agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T(2)- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Magnetic resonance imaging differential diagnosis of brainstem lesions in children

    PubMed Central

    Quattrocchi, Carlo Cosimo; Errante, Yuri; Rossi Espagnet, Maria Camilla; Galassi, Stefania; Della Sala, Sabino Walter; Bernardi, Bruno; Fariello, Giuseppe; Longo, Daniela

    2016-01-01

    Differential diagnosis of brainstem lesions, either isolated or in association with cerebellar and supra-tentorial lesions, can be challenging. Knowledge of the structural organization is crucial for the differential diagnosis and establishment of prognosis of pathologies with involvement of the brainstem. Familiarity with the location of the lesions in the brainstem is essential, especially in the pediatric population. Magnetic resonance imaging (MRI) is the most sensitive and specific imaging technique for diagnosing disorders of the posterior fossa and, particularly, the brainstem. High magnetic static field MRI allows detailed visualization of the morphology, signal intensity and metabolic content of the brainstem nuclei, together with visualization of the normal development and myelination. In this pictorial essay we review the brainstem pathology in pediatric patients and consider the MR imaging patterns that may help the radiologist to differentiate among vascular, toxico-metabolic, infective-inflammatory, degenerative and neoplastic processes. Helpful MR tips can guide the differential diagnosis: These include the location and morphology of lesions, the brainstem vascularization territories, gray and white matter distribution and tissue selective vulnerability. PMID:26834941

  11. Unique semantic space in the brain of each beholder predicts perceived similarity

    PubMed Central

    Charest, Ian; Kievit, Rogier A.; Schmitz, Taylor W.; Deca, Diana; Kriegeskorte, Nikolaus

    2014-01-01

    The unique way in which each of us perceives the world must arise from our brain representations. If brain imaging could reveal an individual’s unique mental representation, it could help us understand the biological substrate of our individual experiential worlds in mental health and disease. However, imaging studies of object vision have focused on commonalities between individuals rather than individual differences and on category averages rather than representations of particular objects. Here we investigate the individually unique component of brain representations of particular objects with functional MRI (fMRI). Subjects were presented with unfamiliar and personally meaningful object images while we measured their brain activity on two separate days. We characterized the representational geometry by the dissimilarity matrix of activity patterns elicited by particular object images. The representational geometry remained stable across scanning days and was unique in each individual in early visual cortex and human inferior temporal cortex (hIT). The hIT representation predicted perceived similarity as reflected in dissimilarity judgments. Importantly, hIT predicted the individually unique component of the judgments when the objects were personally meaningful. Our results suggest that hIT brain representational idiosyncrasies accessible to fMRI are expressed in an individual's perceptual judgments. The unique way each of us perceives the world thus might reflect the individually unique representation in high-level visual areas. PMID:25246586

  12. [Normal anatomy and related pathological changes of shoulder on MRI].

    PubMed

    Zhu, Q; Katsuya, N

    2000-04-01

    To describe the normal anatomy and common abnormal changes of rotator cuff impingement and tears and recurrent anterior instability of shoulder joint in MRI pictures. MRI was compared in 285 patients with shoulder diseases and 20 patients with symptomatic shoulder diseases. On oblique coronal image, the supraspinatus presented moderate signal intensity and low signal intensity in its tendon-muscle conjunction ranging from the humeral head to the greater tuberosity. The MRI manifestations of impingement lesion of the rotator cuff were as follows: high signal intensity of tendons, changes of their shapes, retraction of tendon-muscle conjunction, and muscle atrophy with high signal intensity. On T1-weighted axial image, the anterior and posterior glenohumeral labrum, the long head biceps tendon were displayed in low signal intensity. The anterior labrum manifested a sharp triangle contour and the posterior labrum a round one. The whole four muscles of the rotator cuff manifested on oblique sagital image. However, it was of less value in detecting the abnormalities of the rotator cuff and the glenohumeral labrum on sagittal imaging. The sensitivity in demonstrating rotator cuff complete tear was 95% for MRI and 91% for arthrography; the specificity was 88% for MRI and 100% for arthrography. The sensitivity and specificity of MRI were 96% and 75% for detecting glenoid labrum abnormalities, and 78% and 88% for detecting labrum tear in anterior recurrent dislocation of the shoulder. Magnetic resonance imaging with its excellent contrast resolution in multiple anatomic planes allows noninvasive visualization of bone and soft tissues in the rotator cuff and labrum.

  13. Studying microstructure and microstructural changes in plant tissues by advanced diffusion magnetic resonance imaging techniques

    PubMed Central

    Morozov, Darya; Tal, Iris; Pisanty, Odelia; Shani, Eilon

    2017-01-01

    Abstract As sessile organisms, plants must respond to the environment by adjusting their growth and development. Most of the plant body is formed post-embryonically by continuous activity of apical and lateral meristems. The development of lateral adventitious roots is a complex process, and therefore the development of methods that can visualize, non-invasively, the plant microstructure and organ initiation that occur during growth and development is of paramount importance. In this study, relaxation-based and advanced diffusion magnetic resonance imaging (MRI) methods including diffusion tensor (DTI), q-space diffusion imaging (QSI), and double-pulsed-field-gradient (d-PFG) MRI, at 14.1 T, were used to characterize the hypocotyl microstructure and the microstructural changes that occurred during the development of lateral adventitious roots in tomato. Better contrast was observed in relaxation-based MRI using higher in-plane resolution but this also resulted in a significant reduction in the signal-to-noise ratio of the T2-weighted MR images. Diffusion MRI revealed that water diffusion is highly anisotropic in the vascular cylinder. QSI and d-PGSE MRI showed that in the vascular cylinder some of the cells have sizes in the range of 6–10 μm. The MR images captured cell reorganization during adventitious root formation in the periphery of the primary vascular bundles, adjacent to the xylem pole that broke through the cortex and epidermis layers. This study demonstrates that MRI and diffusion MRI methods allow the non-invasive study of microstructural features of plants, and enable microstructural changes associated with adventitious root formation to be followed. PMID:28398563

  14. Photoacoustic imaging of breast tumor vascularization: a comparison with MRI and histopathology

    NASA Astrophysics Data System (ADS)

    Heijblom, Michelle; Piras, Daniele; van den Engh, Frank M.; Klaase, Joost M.; Brinkhuis, Mariël.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-06-01

    Breast cancer is the most common form of cancer and the leading cause of cancer death among females. Early diagnosis improves the survival chances for the disease and that is why there is an ongoing search for improved methods for visualizing breast cancer. One of the hallmarks of breast cancer is the increase in tumor vascularization that is associated with angiogenesis: a crucial factor for survival of malignancies. Photoacoustic imaging can visualize the malignancyassociated increased hemoglobin concentration with optical contrast and ultrasound resolution, without the use of ionizing radiation or contrast agents and is therefore theoretically an ideal method for breast imaging. Previous clinical studies using the Twente Photoacoustic Mammoscope (PAM), which works in forward mode using a single wavelength (1064 nm), showed that malignancies can indeed be identified in the photoacoustic imaging volume as high contrast areas. However, the specific appearance of the malignancies led to questions about the contrast mechanism in relation to tumor vascularization. In this study, the photoacoustic lesion appearance obtained with an updated version of PAM is compared with the lesion appearance on Magnetic Resonance Imaging (MRI), both in general (19 patients) and on an individual basis (7 patients). Further, in 3 patients an extended histopathology protocol is being performed in which malignancies are stained for vascularity using an endothelial antibody: CD31. The correspondence between PAM and MRI and between PAM and histopathology makes it likely that the high photoacoustic contrast at 1064 nm is indeed largely the consequence of the increased tumor vascularization.

  15. Integrin Targeted MR Imaging

    PubMed Central

    Tan, Mingqian; Lu, Zheng-Rong

    2011-01-01

    Magnetic resonance imaging (MRI) is a powerful medical diagnostic imaging modality for integrin targeted imaging, which uses the magnetic resonance of tissue water protons to display tissue anatomic structures with high spatial resolution. Contrast agents are often used in MRI to highlight specific regions of the body and make them easier to visualize. There are four main classes of MRI contrast agents based on their different contrast mechanisms, including T1, T2, chemical exchange saturation transfer (CEST) agents, and heteronuclear contrast agents. Integrins are an important family of heterodimeric transmembrane glycoproteins that function as mediators of cell-cell and cell-extracellular matrix interactions. The overexpressed integrins can be used as the molecular targets for designing suitable integrin targeted contrast agents for MR molecular imaging. Integrin targeted contrast agent includes a targeting agent specific to a target integrin, a paramagnetic agent and a linker connecting the targeting agent with the paramagnetic agent. Proper selection of targeting agents is critical for targeted MRI contrast agents to effectively bind to integrins for in vivo imaging. An ideal integrin targeted MR contrast agent should be non-toxic, provide strong contrast enhancement at the target sites and can be completely excreted from the body after MR imaging. An overview of integrin targeted MR contrast agents based on small molecular and macromolecular Gd(III) complexes, lipid nanoparticles and superparamagnetic nanoparticles is provided for MR molecular imaging. By using proper delivery systems for loading sufficient Gd(III) chelates or superparamagnetic nanoparticles, effective molecular imaging of integrins with MRI has been demonstrated in animal models. PMID:21547154

  16. Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging

    PubMed Central

    Zhang, Z; Mascheri, N; Dharmakumar, R; Fan, Z; Paunesku, T; Woloschak, G; Li, D

    2010-01-01

    Background Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image gene-expressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI. Methods The GFP-R3230Ac (GFP) cell line was incubated for 24 h using SPIO nanoparticles at a concentration of 20 μg Fe/mL. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using fluorescent microscopy and MRI. Results SPIO was used to label GFP cells effectively, with no effects on cell function and GFP expression. Iron-loaded GFP cells were successfully imaged with both fluorescent microscopy and T2*-weighted MRI. Prussian blue staining showed intracellular iron accumulation in the cells. All cells were labeled (100% labeling efficiency). The average iron content per cell was 4.75±0.11 pg Fe/cell (P<0.05 versus control). Discussion This study demonstrates that the GFP expression of cells is not altered by the SPIO labeling process. SPIO-labeled GFP cells can be visualized by MRI; therefore, GFP, a gene marker, was tracked indirectly with the SPIO-loaded cells using MRI. The technique holds promise for monitoring the temporal and spatial migration of cells with a gene marker and enhancing the understanding of cell- and gene-based therapeutic strategies. PMID:18956269

  17. Regional brain injury on conventional and diffusion weighted MRI is associated with outcome after pediatric cardiac arrest.

    PubMed

    Fink, Ericka L; Panigrahy, A; Clark, R S B; Fitz, C R; Landsittel, D; Kochanek, P M; Zuccoli, G

    2013-08-01

    To assess regional brain injury on magnetic resonance imaging (MRI) after pediatric cardiac arrest (CA) and to associate regional injury with patient outcome and effects of hypothermia therapy for neuroprotection. We performed a retrospective chart review with prospective imaging analysis. Children between 1 week and 17 years of age who had a brain MRI in the first 2 weeks after CA without other acute brain injury between 2002 and 2008 were included. Brain MRI (1.5 T General Electric, Milwaukee, WI, USA) images were analyzed by 2 blinded neuroradiologists with adjudication; images were visually graded. Brain lobes, basal ganglia, thalamus, brain stem, and cerebellum were analyzed using T1, T2, and diffusion-weighted images (DWI). We examined 28 subjects with median age 1.9 years (IQR 0.4-13.0) and 19 (68 %) males. Increased intensity on T2 in the basal ganglia and restricted diffusion in the brain lobes were associated with unfavorable outcome (all P < 0.05). Therapeutic hypothermia had no effect on regional brain injury. Repeat brain MRI was infrequently performed but demonstrated evolution of lesions. Children with lesions in the basal ganglia on conventional MRI and brain lobes on DWI within the first 2 weeks after CA represent a group with increased risk of poor outcome. These findings may be important for developing neuroprotective strategies based on regional brain injury and for evaluating response to therapy in interventional clinical trials.

  18. 1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections

    PubMed Central

    Marker, David R.; U-Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J.; Fichtinger, Gabor; Iordachita, Iulian I.; Carrino, John A.; Fritz, Jan

    2017-01-01

    PURPOSE The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. METHODS A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. RESULTS Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1–5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. CONCLUSION 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus. PMID:28420598

  19. 1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections.

    PubMed

    Marker, David R; U Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J; Fichtinger, Gabor; Iordachita, Iulian I; Carrino, John A; Fritz, Jan

    2017-01-01

    The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1-5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus.

  20. Method for multimodal analysis of independent source differences in schizophrenia: combining gray matter structural and auditory oddball functional data.

    PubMed

    Calhoun, V D; Adali, T; Giuliani, N R; Pekar, J J; Kiehl, K A; Pearlson, G D

    2006-01-01

    The acquisition of both structural MRI (sMRI) and functional MRI (fMRI) data for a given study is a very common practice. However, these data are typically examined in separate analyses, rather than in a combined model. We propose a novel methodology to perform independent component analysis across image modalities, specifically, gray matter images and fMRI activation images as well as a joint histogram visualization technique. Joint independent component analysis (jICA) is used to decompose a matrix with a given row consisting of an fMRI activation image resulting from auditory oddball target stimuli and an sMRI gray matter segmentation image, collected from the same individual. We analyzed data collected on a group of schizophrenia patients and healthy controls using the jICA approach. Spatially independent joint-components are estimated and resulting components were further analyzed only if they showed a significant difference between patients and controls. The main finding was that group differences in bilateral parietal and frontal as well as posterior temporal regions in gray matter were associated with bilateral temporal regions activated by the auditory oddball target stimuli. A finding of less patient gray matter and less hemodynamic activity for target detection in these bilateral anterior temporal lobe regions was consistent with previous work. An unexpected corollary to this finding was that, in the regions showing the largest group differences, gray matter concentrations were larger in patients vs. controls, suggesting that more gray matter may be related to less functional connectivity in the auditory oddball fMRI task. Hum Brain Mapp, 2005. (c) 2005 Wiley-Liss, Inc.

  1. Comparison of treadmill exercise stress cardiac MRI to stress echocardiography in healthy volunteers for adequacy of left ventricular endocardial wall visualization: A pilot study

    PubMed Central

    Thavendiranathan, Paaladinesh; Dickerson, Jennifer A.; Scandling, Debbie; Balasubramanian, Vijay; Pennell, Michael L.; Hinton, Alice; Raman, Subha V.; Simonetti, Orlando P.

    2013-01-01

    Purpose To compare exercise stress cardiac magnetic resonance (cardiac MR) to echocardiography in healthy volunteers with respect to adequacy of endocardial visualization and confidence of stress study interpretation. Materials and Methods 28 healthy volunteers (aged 28 ± 11 years, 15 males) underwent exercise stress echo and cardiac MR one week apart assigned randomly to one test first. Stress cardiac MR was performed using an MRI-compatible treadmill; stress echo was performed as per routine protocol. Cardiac MR and echo images were independently reviewed and scored for adequacy of endocardial visualization and confidence in interpretation of the stress study. Results Heart rate at the time of imaging was similar between the studies. Average time from cessation of exercise to start of imaging (21 vs. 31 seconds, p<0.001) and time to acquire stress images (20 vs. 51 seconds, p<0.001) was shorter for cardiac MR. The number of myocardial segments adequately visualized was significantly higher by cardiac MR at rest (99.8% versus 96.4%, p=0.002) and stress (99.8% versus 94.1%, p=0.001). The proportion of subjects in whom there was high confidence in the interpretation was higher for cardiac MR than echo (96% vs 60%, p=0.005). Conclusion Exercise stress cardiac MR to assess peak exercise wall motion is feasible and can be performed at least as rapidly as stress echo. PMID:24123562

  2. [Usefulness of curved coronal MPR imaging for the diagnosis of cervical radiculopathy].

    PubMed

    Inukai, Chikage; Inukai, Takashi; Matsuo, Naoki; Shimizu, Ikuo; Goto, Hisaharu; Takagi, Teruhide; Takayasu, Masakazu

    2010-03-01

    In surgical treatment of cervical radiculopathy, localization of the responsible lesions by various imaging modalities is essential. Among them, MRI is non-invasive and plays a primary role in the assessment of spinal radicular symptoms. However, demonstration of nerve root compression is sometimes difficult by the conventional methods of MRI, such as T1 weighted (T1W) and T2 weighted (T2W) sagittal or axial images. We have applied a new technique of curved coronal multiplanar reconstruction (MPR) imaging for the diagnosis of cervical radiculopathy. Ten patients (4 male, 6 female) with ages between 31 and 79 year-old, who had clinical diagnosis of cervical radiculopathy, were included in this study. Seven patients underwent anterior key-hole foraminotomy to decompress the nerve root with successful results. All the patients had 3D MRI studies, such as true fast imaging with steady-state precession (FISP), 3DT2W sampling perfection with application optimized contrasts using different fillip angle evolution (SPACE), and 3D multi-echo data image combination (MEDIC) imagings in addition to the routine MRI (1.5 T Avanto, Siemens, Germany) with a phased array coil. The curved coronal MPR images were produced from these MRI data using a workstation. The nerve root compression was diagnosed by curved coronal MPR images in all the patients. The compression sites were compatible with those of the operative findings in 7 patients, who underwent surgical treatment. The MEDIC imagings were the most demonstrable to visualize the nerve root, while the 3D-space imagings were the next. The curved coronal MPR imaging is useful for the diagnosis of accurate localization of the compressing lesions in patients with cervical radiculopathy.

  3. MR findings of Minamata disease--organic mercury poisoning.

    PubMed

    Korogi, Y; Takahashi, M; Okajima, T; Eto, K

    1998-01-01

    We describe MR findings in patients with Minamata disease who have been followed for a long time. All patients examined were affected after daily eating of a large quantity of methylmercury-contaminated seafood, from 1955 to 1958, and showed typical neurological findings. On MR images, the visual cortex, the cerebellar vermis and hemispheres, and the postcentral cortex are significantly atrophic in Minamata disease. The visual cortex is slightly hypointense on T1-weighted images and hyperintense on T2-weighted images, probably representing the pathologic changes of status spongiosus. MRI can demonstrate the lesions located in the calcarine area, cerebellum, and postcentral gyri, which are probably related to three of the characteristic manifestations of this disease: the constriction of the visual fields, ataxia, and sensory disturbance, respectively.

  4. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm.

    PubMed

    Pizarro, Ricardo A; Cheng, Xi; Barnett, Alan; Lemaitre, Herve; Verchinski, Beth A; Goldman, Aaron L; Xiao, Ena; Luo, Qian; Berman, Karen F; Callicott, Joseph H; Weinberger, Daniel R; Mattay, Venkata S

    2016-01-01

    High-resolution three-dimensional magnetic resonance imaging (3D-MRI) is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM) algorithm in the quality assessment of structural brain images, using global and region of interest (ROI) automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy) of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.

  5. Advanced magnetic resonance imaging of the physical processes in human glioblastoma.

    PubMed

    Kalpathy-Cramer, Jayashree; Gerstner, Elizabeth R; Emblem, Kyrre E; Andronesi, Ovidiu; Rosen, Bruce

    2014-09-01

    The most common malignant primary brain tumor, glioblastoma multiforme (GBM) is a devastating disease with a grim prognosis. Patient survival is typically less than two years and fewer than 10% of patients survive more than five years. Magnetic resonance imaging (MRI) can have great utility in the diagnosis, grading, and management of patients with GBM as many of the physical manifestations of the pathologic processes in GBM can be visualized and quantified using MRI. Newer MRI techniques such as dynamic contrast enhanced and dynamic susceptibility contrast MRI provide functional information about the tumor hemodynamic status. Diffusion MRI can shed light on tumor cellularity and the disruption of white matter tracts in the proximity of tumors. MR spectroscopy can be used to study new tumor tissue markers such as IDH mutations. MRI is helping to noninvasively explore the link between the molecular basis of gliomas and the imaging characteristics of their physical processes. We, here, review several approaches to MR-based imaging and discuss the potential for these techniques to quantify the physical processes in glioblastoma, including tumor cellularity and vascularity, metabolite expression, and patterns of tumor growth and recurrence. We conclude with challenges and opportunities for further research in applying physical principles to better understand the biologic process in this deadly disease. See all articles in this Cancer Research section, "Physics in Cancer Research." ©2014 American Association for Cancer Research.

  6. Smart Contrast Agents for Magnetic Resonance Imaging.

    PubMed

    Bonnet, Célia S; Tóth, Éva

    2016-01-01

    By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.

  7. Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI.

    PubMed

    Ferradal, Silvina L; Eggebrecht, Adam T; Hassanpour, Mahlega; Snyder, Abraham Z; Culver, Joseph P

    2014-01-15

    Diffuse optical imaging (DOI) is increasingly becoming a valuable neuroimaging tool when fMRI is precluded. Recent developments in high-density diffuse optical tomography (HD-DOT) overcome previous limitations of sparse DOI systems, providing improved image quality and brain specificity. These improvements in instrumentation prompt the need for advancements in both i) realistic forward light modeling for accurate HD-DOT image reconstruction, and ii) spatial normalization for voxel-wise comparisons across subjects. Individualized forward light models derived from subject-specific anatomical images provide the optimal inverse solutions, but such modeling may not be feasible in all situations. In the absence of subject-specific anatomical images, atlas-based head models registered to the subject's head using cranial fiducials provide an alternative solution. In addition, a standard atlas is attractive because it defines a common coordinate space in which to compare results across subjects. The question therefore arises as to whether atlas-based forward light modeling ensures adequate HD-DOT image quality at the individual and group level. Herein, we demonstrate the feasibility of using atlas-based forward light modeling and spatial normalization methods. Both techniques are validated using subject-matched HD-DOT and fMRI data sets for visual evoked responses measured in five healthy adult subjects. HD-DOT reconstructions obtained with the registered atlas anatomy (i.e. atlas DOT) had an average localization error of 2.7mm relative to reconstructions obtained with the subject-specific anatomical images (i.e. subject-MRI DOT), and 6.6mm relative to fMRI data. At the group level, the localization error of atlas DOT reconstruction was 4.2mm relative to subject-MRI DOT reconstruction, and 6.1mm relative to fMRI. These results show that atlas-based image reconstruction provides a viable approach to individual head modeling for HD-DOT when anatomical imaging is not available. Copyright © 2013. Published by Elsevier Inc.

  8. Pulse Sequence Programming in a Dynamic Visual Environment: SequenceTree

    PubMed Central

    Magland, Jeremy F.; Li, Cheng; Langham, Michael C.; Wehrli, Felix W.

    2015-01-01

    Purpose To describe SequenceTree (ST), an open source. integrated software environment for implementing MRI pulse sequences, and ideally exported them to actual MRI scanners. The software is a user-friendly alternative to vendor-supplied pulse sequence design and editing tools and is suited for non-programmers and programmers alike. Methods The integrated user interface was programmed using the Qt4/C++ toolkit. As parameters and code are modified, the pulse sequence diagram is automatically updated within the user interface. Several aspects of pulse programming are handled automatically allowing users to focus on higher-level aspects of sequence design. Sequences can be simulated using a built-in Bloch equation solver and then exported for use on a Siemens MRI scanner. Ideally other types of scanners will be supported in the future. Results The software has been used for eight years in the authors’ laboratory and elsewhere and has been utilized in more than fifty peer-reviewed publications in areas such as cardiovascular imaging, solid state and non-proton NMR, MR elastography, and high resolution structural imaging. Conclusion ST is an innovative, open source, visual pulse sequence environment for MRI combining simplicity with flexibility and is ideal for both advanced users and those with limited programming experience. PMID:25754837

  9. Perfusion information extracted from resting state functional magnetic resonance imaging.

    PubMed

    Tong, Yunjie; Lindsey, Kimberly P; Hocke, Lia M; Vitaliano, Gordana; Mintzopoulos, Dionyssios; Frederick, Blaise deB

    2017-02-01

    It is widely known that blood oxygenation level dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) is an indirect measure for neuronal activations through neurovascular coupling. The BOLD signal is also influenced by many non-neuronal physiological fluctuations. In previous resting state (RS) fMRI studies, we have identified a moving systemic low frequency oscillation (sLFO) in BOLD signal and were able to track its passage through the brain. We hypothesized that this seemingly intrinsic signal moves with the blood, and therefore, its dynamic patterns represent cerebral blood flow. In this study, we tested this hypothesis by performing Dynamic Susceptibility Contrast (DSC) MRI scans (i.e. bolus tracking) following the RS scans on eight healthy subjects. The dynamic patterns of sLFO derived from RS data were compared with the bolus flow visually and quantitatively. We found that the flow of sLFO derived from RS fMRI does to a large extent represent the blood flow measured with DSC. The small differences, we hypothesize, are largely due to the difference between the methods in their sensitivity to different vessel types. We conclude that the flow of sLFO in RS visualized by our time delay method represents the blood flow in the capillaries and veins in the brain.

  10. ACTIVE DELIVERY CABLE TUNED TO DEVICE DEPLOYMENT STATE: ENHANCED VISIBILITY OF NITINOL OCCLUDERS DURING PRE-CLINICAL INTERVENTIONAL MRI

    PubMed Central

    Bell, Jamie A.; Saikus, Christina E.; Ratnayaka, Kanishka; Barbash, Israel M.; Faranesh, Anthony Z.; Franson, Dominique N.; Sonmez, Merdim; Slack, Michael C.; Lederman, Robert J.; Kocaturk, Ozgur

    2012-01-01

    Purpose To develop an active delivery system that enhances visualization of nitinol cardiac occluder devices during deployment under real-time MRI. Materials and Methods We constructed an active delivery cable incorporating a loopless antenna and a custom titanium microscrew to secure the occluder devices. The delivery cable was tuned and matched to 50Ω at 64 MHz with the occluder device attached. We used real-time balanced SSFP in a wide-bore 1.5T scanner. Device-related images were reconstructed separately and combined with surface-coil images. The delivery cable was tested in vitro in a phantom and in vivo in swine using a variety of nitinol cardiac occluder devices. Results In vitro, the active delivery cable provided little signal when the occluder device was detached and maximal signal with the device attached. In vivo, signal from the active delivery cable enabled clear visualization of occluder device during positioning and deployment. Device release resulted in decreased signal from the active cable. Post-mortem examination confirmed proper device placement. Conclusions The active delivery cable enhanced the MRI depiction of nitinol cardiac occluder devices during positioning and deployment, both in conventional and novel applications. We expect enhanced visibility to contribute to effectiveness and safety of new and emerging MRI-guided treatments. PMID:22707441

  11. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI.

    PubMed

    Iliff, Jeffrey J; Lee, Hedok; Yu, Mei; Feng, Tian; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2013-03-01

    The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer's disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer's disease susceptibility and progression in the live human brain.

  12. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI

    PubMed Central

    Iliff, Jeffrey J.; Lee, Hedok; Yu, Mei; Feng, Tian; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2013-01-01

    The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer’s disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer’s disease susceptibility and progression in the live human brain. PMID:23434588

  13. Contrast-enhanced cardiac C-arm CT evaluation of radiofrequency ablation lesions in the left ventricle

    PubMed Central

    Girard, Erin E; Al-Ahmad, Amin A; Rosenberg, Jarrett; Luong, Richard; Moore, Teri; Lauritsch, Günter; Boese, Jan; Fahrig, Rebecca

    2011-01-01

    Objectives The purpose of this study was to evaluate use of cardiac C-arm computed tomography (CT) in the assessment of the dimensions and temporal characteristics of radiofrequency ablation (RFA) lesions. This imaging modality uses a standard C-arm fluoroscopy system rotating around the patient, providing CT-like images during the RFA procedure. Background Both magnetic resonance imaging (MRI) and CT can be used to assess myocardial necrotic tissue. Several studies have reported visualizing cardiac RF ablation lesions with MRI, however obtaining MR images during interventional procedures is not common practice. Direct visualization of RFA lesions using C-arm CT during the procedure may improve outcomes and circumvent complications associated with cardiac ablation procedures. Methods RFA lesions were created on the endocardial surface of the left ventricle of 9 swine using a 7-F RF ablation catheter. An ECG-gated C-arm CT imaging protocol was used to acquire projection images during iodine contrast injection and following the injection every 5 min for up to 30 min, with no additional contrast. Reconstructed images were analyzed offline. The mean and standard deviation of the signal intensity of the lesion and normal myocardium were measured in all images in each time series. Lesion dimensions and area were measured and compared in pathologic specimens and C-arm CT images. Results All ablation lesions (n=29) were visualized and lesion dimensions, as measured on C-arm CT, correlated well with postmortem tissue measurements (1D dimensions : concordance correlation = 0.87; area : concordance correlation = 0.90). Lesions were visualized as a perfusion defect on first-pass C-arm CT images with a signal intensity 95 HU lower than normal myocardium (95% confidence interval: -111 to -79 HU). Images acquired at 1 and 5 minutes exhibited an enhancing ring surrounding the perfusion defect in 24 (83%) lesions. Conclusions RFA lesion size, including transmurality, can be assessed using ECG-gated cardiac C-arm CT in the interventional suite. Visualization of RFA lesions using cardiac C-arm CT may facilitate the assessment of adequate lesion delivery and provide valuable feedback during cardiac ablation procedures. PMID:21414574

  14. SU-E-J-229: Magnetic Resonance Imaging of Small Fiducial Markers for Proton Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Y; James, J; Panda, A

    2015-06-15

    Purpose: For proton beam therapy, small fiducial markers are preferred for patient alignment due to less interference with the proton beam. Visualizing small fiducial markers can be challenging in MRI. This study intends to investigate MRI imaging protocols for better visualization of small fiducial markers. Methods: Two carbon and two coil-shaped gold markers were placed into a gel phantom. Both carbon markers had a diameter of 1mm and a length of 3mm. Both gold markers had a length of 5mm. One gold marker had a diameter of 0.5mm and the other had a diameter of 0.75mm. T1 VIBE, T2 SPACE,more » TrueFISP and susceptibility weighted (SW) images were acquired. To improve marker contrast, high spatial resolution was used to reduce partial volume effect. Slice thickness was 1.5mm for all four sequences and in-plane resolution was 0.6mm for TrueFISP, 0.7mm for T1 VIBE, and 0.8mm for T2 SPACE and SW. For comparison purpose, a 3D T1 VIBE image set at 3mm slice thickness and 1.2mm in-plane resolution was also acquired. Results: All markers were visible in all high-resolution image sets. In each image set, marker-induced signal void was the smallest (in diameter) for carbon markers, followed by the 0.5mm gold marker and the largest for the 0.75mm gold marker. The SW images had the largest marker-induced signal void. However, those might be confused by susceptibility-gradient-induced signal voids. T1 VIBE had good visualization of markers with nicely defined edges. T2 SPACE had reasonable visualization of markers but edges were slightly blurred. TrueFISP had good visualization of markers only if they were not masked by banding artifacts. As a comparison, all markers were hardly visible in the standard resolution T1 VIBE images. Conclusion: 3D high-resolution T1 VIBE and SW have great potential in providing good visualization of small fiducial markers for proton beam therapy.« less

  15. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy.

    PubMed

    Simpson, Ewan; Andronikou, Savvas; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade

    2016-09-01

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties.

  16. Analysis of a simulation algorithm for direct brain drug delivery

    PubMed Central

    Rosenbluth, Kathryn Hammond; Eschermann, Jan Felix; Mittermeyer, Gabriele; Thomson, Rowena; Mittermeyer, Stephan; Bankiewicz, Krystof S.

    2011-01-01

    Convection enhanced delivery (CED) achieves targeted delivery of drugs with a pressure-driven infusion through a cannula placed stereotactically in the brain. This technique bypasses the blood brain barrier and gives precise distributions of drugs, minimizing off-target effects of compounds such as viral vectors for gene therapy or toxic chemotherapy agents. The exact distribution is affected by the cannula positioning, flow rate and underlying tissue structure. This study presents an analysis of a simulation algorithm for predicting the distribution using baseline MRI images acquired prior to inserting the cannula. The MRI images included diffusion tensor imaging (DTI) to estimate the tissue properties. The algorithm was adapted for the devices and protocols identified for upcoming trials and validated with direct MRI visualization of Gadolinium in 20 infusions in non-human primates. We found strong agreement between the size and location of the simulated and gadolinium volumes, demonstrating the clinical utility of this surgical planning algorithm. PMID:21945468

  17. Novel technique for preoperative pedicle localization in spinal surgery with challenging anatomy.

    PubMed

    Young, Richard M; Prasad, Vikram; Wind, Joshua J; Olan, Wayne; Caputy, Anthony J

    2014-04-01

    Accurately localizing a spine level in the thoracic spine is often not easily achieved with the existing imaging modalities available in the operating room. The coordination of the preoperative imaging pathology with intraoperative imaging is even more difficult in patients with challenging anatomy. Using standard percutaneous techniques, the authors placed a radiopaque embolization coil into the pedicle of interest under biplanar fluoroscopy in 1 patient. Thoracic spine MRI along with scout MRI was then performed to confirm coil marker placement in relation to the actual spine pathology prior to surgical intervention. No complications were observed during placement of the radiopaque marker. Intraoperatively, the marker was immediately and easily visualized, leading to a confident identification of the correct thoracic spinal level. The preoperative placement of a radiopaque marker into the vertebral pedicle of the identified pathological level combined with postplacement MRI verification provides an advantage over previously proposed techniques in the literature.

  18. Assessment of Abdominal Adipose Tissue and Organ Fat Content by Magnetic Resonance Imaging

    PubMed Central

    Hu, Houchun H.; Nayak, Krishna S.; Goran, Michael I.

    2010-01-01

    As the prevalence of obesity continues to rise, rapid and accurate tools for assessing abdominal body and organ fat quantity and distribution are critically needed to assist researchers investigating therapeutic and preventive measures against obesity and its comorbidities. Magnetic resonance imaging (MRI) is the most promising modality to address such need. It is non-invasive, utilizes no ionizing radiation, provides unmatched 3D visualization, is repeatable, and is applicable to subject cohorts of all ages. This article is aimed to provide the reader with an overview of current and state-of-the-art techniques in MRI and associated image analysis methods for fat quantification. The principles underlying traditional approaches such as T1-weighted imaging and magnetic resonance spectroscopy as well as more modern chemical-shift imaging techniques are discussed and compared. The benefits of contiguous 3D acquisitions over 2D multi-slice approaches are highlighted. Typical post-processing procedures for extracting adipose tissue depot volumes and percent organ fat content from abdominal MRI data sets are explained. Furthermore, the advantages and disadvantages of each MRI approach with respect to imaging parameters, spatial resolution, subject motion, scan time, and appropriate fat quantitative endpoints are also provided. Practical considerations in implementing these methods are also presented. PMID:21348916

  19. Non-invasive detection of matrix-metalloproteinase activity in a mouse model of cerebral ischemia using multispectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Ni, Ruiqing; Vaas, Markus; Ren, Wuwei; Klohs, Jan

    2018-02-01

    Matrix metalloproteinases (MMPs) play important roles in the pathophysiology of cerebral ischemia. Here we visualized in vivo MMP activity in the transient middle cerebral artery occlusion (tMCAO) mouse model using multispectral optoacoustic imaging (MSOT) with a MMP-activatable probe. MSOT data was co-registered with structural magnetic resonance imaging (MRI) obtained at 7 T for localization of signal distribution. We demonstrated upregulated MMP signal within the focal ischemic lesion in the tMCAO mouse model using MSOT/MRI multimodal imaging. This convenient non-invasive method will allow repetitive measurement following the time course of MMP-lesion development in ischemic stroke animal model.

  20. VISUALIZING IRON IN MULTIPLE SCLEROSIS

    PubMed Central

    Bagnato, Francesca; Hametner, Simon; Welch, Edward Brian

    2012-01-01

    Magnetic resonance imaging (MRI) protocols that are designed to be sensitive to iron typically take advantage of (1) iron effects on the relaxation of water protons and/or (2) iron-induced local magnetic field susceptibility changes. Increasing evidence sustains the notion that imaging iron in brain of patients with multiple sclerosis (MS) may add some specificity toward the identification of the disease pathology. The present review summarizes currently reported in vivo and post mortem MRI evidence of (1) iron detection in white matter and grey matter of MS brains, (2) pathological and physiological correlates of iron as disclosed by imaging and (3) relations between iron accumulation and disease progression as measured by clinical metrics. PMID:23347601

  1. Highly Sensitive Detection of Caspase-3/7 Activity in Living Mice Using Enzyme-Responsive 19F MRI Nanoprobes.

    PubMed

    Akazawa, Kazuki; Sugihara, Fuminori; Nakamura, Tatsuya; Mizukami, Shin; Kikuchi, Kazuya

    2018-05-16

    Highly sensitive imaging of enzymatic activities in the deep tissues of living mammals provides useful information about their biological functions and for developing new drugs; however, such imaging is challenging. 19 F magnetic resonance imaging (MRI) is suitable for noninvasive visualization of enzymatic activities without endogenous background signals. Although various enzyme-responsive 19 F MRI probes have been developed, most cannot be used for in vivo imaging because of their low sensitivity. Recently, we developed unique nanoparticles, called FLAMEs, that are composed of a liquid perfluorocarbon core and a robust silica shell, and demonstrated their outstanding sensitivity in vivo. Here, we report a highly functionalized nanoprobe, FLAME-DEVD 2, with an OFF/ON 19 F MRI switch for detecting caspase-3/7 activity based on the paramagnetic relaxation enhancement effect. To improve the cleavage efficiency of peptides by caspase-3, we designed a novel Gd 3+ complex-conjugated peptide, DEVD X ( X = 1, 2), which is a substrate peptide sequence tandemly repeated X times, and demonstrated that DEVD 2 showed faster cleavage kinetics than DEVD 1. By incorporating this novel concept into a signal activation strategy, FLAME-DEVD 2 showed a high 19 F MRI signal enhancement rate in response to caspase-3 activity. After intravenous injection of FLAME-DEVD 2 and an apoptosis-inducing reagent, caspase-3/7 activity in the spleen of a living mouse was successfully imaged by 19 F MRI. This imaging platform shows great potential for highly sensitive detection of enzymatic activities in vivo.

  2. Learning to associate orientation with color in early visual areas by associative decoded fMRI neurofeedback

    PubMed Central

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-01-01

    Summary Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded functional magnetic resonance imaging (fMRI) neurofeedback, termed “DecNef” [9], we tested whether associative learning of color and orientation can be created in early visual areas. During three days' training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive “red” significantly more frequently than “green” in an achromatic vertical grating. This effect was also observed 3 to 5 months after the training. These results suggest that long-term associative learning of the two different visual features such as color and orientation was created most likely in early visual areas. This newly extended technique that induces associative learning is called “A(ssociative)-DecNef” and may be used as an important tool for understanding and modifying brain functions, since associations are fundamental and ubiquitous functions in the brain. PMID:27374335

  3. Single-Step Assembly of Multi-Modal Imaging Nanocarriers: MRI and Long-Wavelength Fluorescence Imaging

    PubMed Central

    Pinkerton, Nathalie M.; Gindy, Marian E.; Calero-DdelC, Victoria L.; Wolfson, Theodore; Pagels, Robert F.; Adler, Derek; Gao, Dayuan; Li, Shike; Wang, Ruobing; Zevon, Margot; Yao, Nan; Pacheco, Carlos; Therien, Michael J.; Rinaldi, Carlos; Sinko, Patrick J.

    2015-01-01

    MRI and NIR-active, multi-modal Composite NanoCarriers (CNCs) are prepared using a simple, one-step process, Flash NanoPrecipitation (FNP). The FNP process allows for the independent control of the hydrodynamic diameter, co-core excipient and NIR dye loading, and iron oxide-based nanocrystal (IONC) content of the CNCs. In the controlled precipitation process, 10 nm IONCs are encapsulated into poly(ethylene glycol) stabilized CNCs to make biocompatible T2 contrast agents. By adjusting the formulation, CNC size is tuned between 80 and 360 nm. Holding the CNC size constant at an intensity weighted average diameter of 99 ± 3 nm (PDI width 28 nm), the particle relaxivity varies linearly with encapsulated IONC content ranging from 66 to 533 mM-1s-1 for CNCs formulated with 4 to 16 wt% IONC. To demonstrate the use of CNCs as in vivo MRI contrast agents, CNCs are surface functionalized with liver targeting hydroxyl groups. The CNCs enable the detection of 0.8 mm3 non-small cell lung cancer metastases in mice livers via MRI. Incorporating the hydrophobic, NIR dye PZn3 into CNCs enables complementary visualization with long-wavelength fluorescence at 800 nm. In vivo imaging demonstrates the ability of CNCs to act both as MRI and fluorescent imaging agents. PMID:25925128

  4. Characterization of the biliary tract by virtual ultrasonography constructed by gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging.

    PubMed

    Koizumi, Yohei; Hirooka, Masashi; Ochi, Hironori; Tokumoto, Yoshio; Takechi, Megumi; Hiraoka, Atsushi; Ikeda, Yoshio; Kumagi, Teru; Matsuura, Bunzo; Abe, Masanori; Hiasa, Yoichi

    2015-04-01

    This study aimed at prospectively evaluating bile duct anatomy on ultrasonography and evaluating the safety and utility of radiofrequency ablation (RFA) assisted by virtual ultrasonography from gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). The institutional review board approved this study, and patients provided written informed consent prior to entry into the study. Bile duct anatomy was assessed in 201 patients who underwent Gd-EOB-DTPA-enhanced MRI for the evaluation of hepatic tumor. Eighty-one of these patients subsequently underwent RFA assisted by ultrasound imaging. In 23 patients, the tumor was located within 5 mm of the central bile duct, as demonstrated by MRI. Virtual ultrasonography constructed by Gd-EOB-enhanced MRI was able to visualize the common bile duct, left hepatic duct, and right hepatic duct in 96.5, 94.0, and 89.6 % of cases, respectively. The target hepatic tumor nodule and biliary duct could be detected with virtual ultrasonography in all patients, and no severe complications occurred. The running pattern of the bile ducts could be recognized on conventional ultrasound by referencing virtual ultrasonography constructed by Gd-EOB-DTPA-enhanced MRI. RFA assisted by this imaging strategy did not result in bile duct injury.

  5. Applicability of three-dimensional imaging techniques in fetal medicine*

    PubMed Central

    Werner Júnior, Heron; dos Santos, Jorge Lopes; Belmonte, Simone; Ribeiro, Gerson; Daltro, Pedro; Gasparetto, Emerson Leandro; Marchiori, Edson

    2016-01-01

    Objective To generate physical models of fetuses from images obtained with three-dimensional ultrasound (3D-US), magnetic resonance imaging (MRI), and, occasionally, computed tomography (CT), in order to guide additive manufacturing technology. Materials and Methods We used 3D-US images of 31 pregnant women, including 5 who were carrying twins. If abnormalities were detected by 3D-US, both MRI and in some cases CT scans were then immediately performed. The images were then exported to a workstation in DICOM format. A single observer performed slice-by-slice manual segmentation using a digital high resolution screen. Virtual 3D models were obtained from software that converts medical images into numerical models. Those models were then generated in physical form through the use of additive manufacturing techniques. Results Physical models based upon 3D-US, MRI, and CT images were successfully generated. The postnatal appearance of either the aborted fetus or the neonate closely resembled the physical models, particularly in cases of malformations. Conclusion The combined use of 3D-US, MRI, and CT could help improve our understanding of fetal anatomy. These three screening modalities can be used for educational purposes and as tools to enable parents to visualize their unborn baby. The images can be segmented and then applied, separately or jointly, in order to construct virtual and physical 3D models. PMID:27818540

  6. Multi-modal image registration: matching MRI with histology

    NASA Astrophysics Data System (ADS)

    Alic, Lejla; Haeck, Joost C.; Klein, Stefan; Bol, Karin; van Tiel, Sandra T.; Wielopolski, Piotr A.; Bijster, Magda; Niessen, Wiro J.; Bernsen, Monique; Veenland, Jifke F.; de Jong, Marion

    2010-03-01

    Spatial correspondence between histology and multi sequence MRI can provide information about the capabilities of non-invasive imaging to characterize cancerous tissue. However, shrinkage and deformation occurring during the excision of the tumor and the histological processing complicate the co registration of MR images with histological sections. This work proposes a methodology to establish a detailed 3D relation between histology sections and in vivo MRI tumor data. The key features of the methodology are a very dense histological sampling (up to 100 histology slices per tumor), mutual information based non-rigid B-spline registration, the utilization of the whole 3D data sets, and the exploitation of an intermediate ex vivo MRI. In this proof of concept paper, the methodology was applied to one tumor. We found that, after registration, the visual alignment of tumor borders and internal structures was fairly accurate. Utilizing the intermediate ex vivo MRI, it was possible to account for changes caused by the excision of the tumor: we observed a tumor expansion of 20%. Also the effects of fixation, dehydration and histological sectioning could be determined: 26% shrinkage of the tumor was found. The annotation of viable tissue, performed in histology and transformed to the in vivo MRI, matched clearly with high intensity regions in MRI. With this methodology, histological annotation can be directly related to the corresponding in vivo MRI. This is a vital step for the evaluation of the feasibility of multi-spectral MRI to depict histological groundtruth.

  7. Multimodal neuroimaging evidence linking memory and attention systems during visual search cued by context.

    PubMed

    Kasper, Ryan W; Grafton, Scott T; Eckstein, Miguel P; Giesbrecht, Barry

    2015-03-01

    Visual search can be facilitated by the learning of spatial configurations that predict the location of a target among distractors. Neuropsychological and functional magnetic resonance imaging (fMRI) evidence implicates the medial temporal lobe (MTL) memory system in this contextual cueing effect, and electroencephalography (EEG) studies have identified the involvement of visual cortical regions related to attention. This work investigated two questions: (1) how memory and attention systems are related in contextual cueing; and (2) how these systems are involved in both short- and long-term contextual learning. In one session, EEG and fMRI data were acquired simultaneously in a contextual cueing task. In a second session conducted 1 week later, EEG data were recorded in isolation. The fMRI results revealed MTL contextual modulations that were correlated with short- and long-term behavioral context enhancements and attention-related effects measured with EEG. An fMRI-seeded EEG source analysis revealed that the MTL contributed the most variance to the variability in the attention enhancements measured with EEG. These results support the notion that memory and attention systems interact to facilitate search when spatial context is implicitly learned. © 2015 New York Academy of Sciences.

  8. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    PubMed Central

    Oh, Seok-Kyun; Kim, Gwang-Won; Yang, Jong-Chul; Kim, Seok-Kwun; Kang, Heoung-Keun

    2012-01-01

    Objective This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. Materials and Methods A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. Results The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Conclusion Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males. PMID:22563262

  9. MRI/TRUS data fusion for prostate brachytherapy. Preliminary results.

    PubMed

    Reynier, Christophe; Troccaz, Jocelyne; Fourneret, Philippe; Dusserre, André; Gay-Jeune, Cécile; Descotes, Jean-Luc; Bolla, Michel; Giraud, Jean-Yves

    2004-06-01

    Prostate brachytherapy involves implanting radioactive seeds (I125 for instance) permanently in the gland for the treatment of localized prostate cancers, e.g., cT1c-T2a N0 M0 with good prognostic factors. Treatment planning and seed implanting are most often based on the intensive use of transrectal ultrasound (TRUS) imaging. This is not easy because prostate visualization is difficult in this imaging modality particularly as regards the apex of the gland and from an intra- and interobserver variability standpoint. Radioactive seeds are implanted inside open interventional MR machines in some centers. Since MRI was shown to be sensitive and specific for prostate imaging whilst open MR is prohibitive for most centers and makes surgical procedures very complex, this work suggests bringing the MR virtually in the operating room with MRI/TRUS data fusion. This involves providing the physician with bi-modality images (TRUS plus MRI) intended to improve treatment planning from the data registration stage. The paper describes the method developed and implemented in the PROCUR system. Results are reported for a phantom and first series of patients. Phantom experiments helped characterize the accuracy of the process. Patient experiments have shown that using MRI data linked with TRUS data improves TRUS image segmentation especially regarding the apex and base of the prostate. This may significantly modify prostate volume definition and have an impact on treatment planning.

  10. Amyloid imaging using fluorine-19 magnetic resonance imaging ((19)F-MRI).

    PubMed

    Tooyama, Ikuo; Yanagisawa, Daijiro; Taguchi, Hiroyasu; Kato, Tomoko; Hirao, Koichi; Shirai, Nobuaki; Sogabe, Takayuki; Ibrahim, Nor Faeizah; Inubushi, Toshiro; Morikawa, Shigehiro

    2016-09-01

    The formation of senile plaques followed by the deposition of amyloid-β is the earliest pathological change in Alzheimer's disease. Thus, the detection of senile plaques remains the most important early diagnostic indicator of Alzheimer's disease. Amyloid imaging is a noninvasive technique for visualizing senile plaques in the brains of Alzheimer's patients using positron emission tomography (PET) or magnetic resonance imaging (MRI). Because fluorine-19 ((19)F) displays an intense nuclear magnetic resonance signal and is almost non-existent in the body, targets are detected with a higher signal-to-noise ratio using appropriate fluorinated contrast agents. The recent introduction of high-field MRI allows us to detect amyloid depositions in the brain of living mouse using (19)F-MRI. So far, at least three probes have been reported to detect amyloid deposition in the brain of transgenic mouse models of Alzheimer's disease; (E,E)-1-fluoro-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB), 1,7-bis(4'-hydroxy-3'-trifluoromethoxyphenyl)-4-methoxycarbonylethyl-1,6-heptadiene3,5-dione (FMeC1, Shiga-Y5) and 6-(3',6',9',15',18',21'-heptaoxa-23',23',23'-trifluorotricosanyloxy)-2-(4'-dimethylaminostyryl)benzoxazole (XP7, Shiga-X22). This review presents the recent advances in amyloid imaging using (19)F-MRI, including our own studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. SU-E-J-214: MR Protocol Development to Visualize Sirius MRI Markers in Prostate Brachytherapy Patients for MR-Based Post-Implant Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, T; Wang, J; Frank, S

    Purpose: The current CT-based post-implant dosimetry allows precise seed localization but limited anatomical delineation. Switching to MR-based post-implant dosimetry is confounded by imprecise seed localization. One approach is to place positive-contrast markers (Sirius) adjacent to the negative-contrast seeds. This patient study aims to assess the utility of a 3D fast spoiled gradient-recalled echo (FSPGR) sequence to visualize Sirius markers for post-implant dosimetry. Methods: MRI images were acquired in prostate implant patients (n=10) on Day 0 (day-of-implant) and Day 30. The post-implant MR protocol consisted of 3D T2-weighted fast-spin-echo (FSE), T2-weighted 2D-FSE (axial) and T1-weighted 2D-FSE (axial/sagittal/coronal). We incorporated a 3D-FSPGRmore » sequence into the post-implant MR protocol to visualize the Sirius markers. Patients were scanned with different number-of-excitations (6, 8, 10), field-of-view (10cm, 14cm, 18cm), slice thickness (1mm, 0.8mm), flip angle (14 degrees, 20 degrees), bandwidth (122.070 Hz/pixel, 325.508 Hz/pixel, 390.625 Hz/pixel), phase encoding steps (160, 192, 224, 256), frequency-encoding direction (right/left, anterior/posterior), echo-time type (minimum-full, out-of-phase), field strength (1.5T, 3T), contrast (with, without), scanner vendor (Siemens, GE), coil (endorectal-coil only, endorectal-and-torso-coil, torsocoil only), endorectal-coil filling (30cc, 50cc) and endorectal-coil filling type (air, perfluorocarbon [PFC]). For post-implant dosimetric evaluation with greater anatomical detail, 3D-FSE images were fused with 3D-FSPGR images. For comparison with CT-based post-implant dosimetry, CT images were fused with 3D-FSPGR images. Results: The 3D-FSPGR sequence facilitated visualization of markers in patients. Marker visualization helped distinguish signal voids as seeds versus needle tracks for more definitive MR-based post-implant dosimetry. On the CT-MR fused images, the distance between the seed on CT to MR images was 3.2±1.6mm in patients with no endorectal coil, 2.3±0.8mm in patients with 30cc-PFC-filled endorectal-coil and 5.0±1.8mm in patients with 50cc-PFC-filled endorectal-coil. Conclusion: An MR protocol to visualize positive-contrast Sirius markers to assist in the identification of negative-contrast seeds was demonstrated. S Frank is a co-founder of C4 Imaging LLC, the manufacturer of the MRI markers.« less

  12. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images.

    PubMed

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S; Lin, Weili; Shen, Dinggang

    2015-09-01

    Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient's exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [(18)F]FDG PET image by using a low-dose brain [(18)F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. The authors employ a regression forest for predicting the standard-dose brain [(18)F]FDG PET image by low-dose brain [(18)F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [(18)F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [(18)F]FDG PET image and substantially enhanced image quality of low-dose brain [(18)F]FDG PET image. In this paper, the authors propose a framework to generate standard-dose brain [(18)F]FDG PET image using low-dose brain [(18)F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [(18)F]FDG PET can be well-predicted using MRI and low-dose brain [(18)F]FDG PET.

  13. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images

    PubMed Central

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2015-01-01

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [18F]FDG PET image by using a low-dose brain [18F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [18F]FDG PET image by low-dose brain [18F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [18F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [18F]FDG PET image and substantially enhanced image quality of low-dose brain [18F]FDG PET image. Conclusions: In this paper, the authors propose a framework to generate standard-dose brain [18F]FDG PET image using low-dose brain [18F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [18F]FDG PET can be well-predicted using MRI and low-dose brain [18F]FDG PET. PMID:26328979

  14. Prediction of standard-dose brain PET image by using MRI and low-dose brain [{sup 18}F]FDG PET images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Jiayin; Gao, Yaozong; Shi, Feng

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. Asmore » yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [{sup 18}F]FDG PET image by using a low-dose brain [{sup 18}F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [{sup 18}F]FDG PET image by low-dose brain [{sup 18}F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [{sup 18}F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [{sup 18}F]FDG PET image and substantially enhanced image quality of low-dose brain [{sup 18}F]FDG PET image. Conclusions: In this paper, the authors propose a framework to generate standard-dose brain [{sup 18}F]FDG PET image using low-dose brain [{sup 18}F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [{sup 18}F]FDG PET can be well-predicted using MRI and low-dose brain [{sup 18}F]FDG PET.« less

  15. Whiplash injuries: is there a role for imaging?

    PubMed

    Van Geothem, J W; Biltjes, I G; van den Hauwe, L; Parizel, P M; De Schepper, A M

    1996-03-01

    Whiplash describes the manner in which a head is moved suddenly to produce a sprain in the neck and typically occurs after rear-end automobile collisions. It is one of the most common mechanisms of injury to the cervical spine. Although considered by some to be a form of compensation neurosis, evidence suggests that whiplash injuries are real and that they are a potential cause of significant impairment. Symptoms of cervical whiplash injury include neck pain and stiffness, interscapular pain, arm pain and/or occipital headache, and many whiplash patients have persistent complaints. Cervical roentgenography and conventional or computed tomography (CT) may show dislocations, subluxations and fractures in severely traumatized patients, but often fail to determine or visualize the cause for a whiplash syndrome. Magnetic resonance imaging (MRI), however, is able to assess different types of soft-tissue lesions related to whiplash injuries. Dynamic imaging may show functional disturbances. More widespread use of flexion/extension views, high-resolution static MRI and especially dynamic MRI should improve the correlation between imaging findings and patients' complaints.

  16. Design Principles of Nanoparticles as Contrast Agents for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Shan, Liang; Gu, Xinbin; Wang, Paul

    2013-09-01

    Molecular imaging is an emerging field that introduces molecular agents into traditional imaging techniques, enabling visualization, characterization and measurement of biological processes at the molecular and cellular levels in humans and other living systems. The promise of molecular imaging lies in its potential for selective potency by targeting biomarkers or molecular targets and the imaging agents serve as reporters for the selectivity of targeting. Development of an efficient molecular imaging agent depends on well-controlled high-quality experiment design involving target selection, agent synthesis, in vitro characterization, and in vivo animal characterization before it is applied in humans. According to the analysis from the Molecular Imaging and Contrast Agent Database (MICAD, ), more than 6000 molecular imaging agents with sufficient preclinical evaluation have been reported to date in the literature and this number increases by 250-300 novel agents each year. The majority of these agents are radionuclides, which are developed for positron emission tomography (PET) and single photon emission computed tomography (SPECT). Contrast agents for magnetic resonance imaging (MRI) account for only a small part. This is largely due to the fact that MRI is currently not a fully quantitative imaging technique and is less sensitive than PET and SPECT. However, because of the superior ability to simultaneously extract molecular and anatomic information, molecular MRI is attracting significant interest and various targeted nanoparticle contrast agents have been synthesized for MRI. The first and one of the most critical steps in developing a targeted nanoparticle contrast agent is target selection, which plays the central role and forms the basis for success of molecular imaging. This chapter discusses the design principles of targeted contrast agents in the emerging frontiers of molecular MRI.

  17. Wide-area mapping of resting state hemodynamic correlations at microvascular resolution with multi-contrast optical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Senarathna, Janaka; Hadjiabadi, Darian; Gil, Stacy; Thakor, Nitish V.; Pathak, Arvind P.

    2017-02-01

    Different brain regions exhibit complex information processing even at rest. Therefore, assessing temporal correlations between regions permits task-free visualization of their `resting state connectivity'. Although functional MRI (fMRI) is widely used for mapping resting state connectivity in the human brain, it is not well suited for `microvascular scale' imaging in rodents because of its limited spatial resolution. Moreover, co-registered cerebral blood flow (CBF) and total hemoglobin (HbT) data are often unavailable in conventional fMRI experiments. Therefore, we built a customized system that combines laser speckle contrast imaging (LSCI), intrinsic optical signal (IOS) imaging and fluorescence imaging (FI) to generate multi-contrast functional connectivity maps at a spatial resolution of 10 μm. This system comprised of three illumination sources: a 632 nm HeNe laser (for LSCI), a 570 nm ± 5 nm filtered white light source (for IOS), and a 473 nm blue laser (for FI), as well as a sensitive CCD camera operating at 10 frames per second for image acquisition. The acquired data enabled visualization of changes in resting state neurophysiology at microvascular spatial scales. Moreover, concurrent mapping of CBF and HbT-based temporal correlations enabled in vivo mapping of how resting brain regions were linked in terms of their hemodynamics. Additionally, we complemented this approach by exploiting the transit times of a fluorescent tracer (Dextran-FITC) to distinguish arterial from venous perfusion. Overall, we demonstrated the feasibility of wide area mapping of resting state connectivity at microvascular resolution and created a new toolbox for interrogating neurovascular function.

  18. A Comparison of Rapid-Scanning X-Ray Fluorescence Mapping And Magnetic Resonance Imaging to Localize Brain Iron Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrea, R.P.E.; Harder, S.L.; Martin, M.

    2009-05-26

    The clinical diagnosis of many neurodegenerative disorders relies primarily or exclusively on observed behaviors rather than measurable physical tests. One of the hallmarks of Alzheimer disease (AD) is the presence of amyloid-containing plaques associated with deposits of iron, copper and/or zinc. Work in other laboratories has shown that iron-rich plaques can be seen in the mouse brain in vivo with magnetic resonance imaging (MRI) using a high-field strength magnet but this iron cannot be visualized in humans using clinical magnets. To improve the interpretation of MRI, we correlated iron accumulation visualized by X-ray fluorescence spectroscopy, an element-specific technique with T1,more » T2, and susceptibility weighted MR (SWI) in a mouse model of AD. We show that SWI best shows areas of increased iron accumulation when compared to standard sequences.« less

  19. A new vibrator to stimulate muscle proprioceptors in fMRI.

    PubMed

    Montant, Marie; Romaiguère, Patricia; Roll, Jean-Pierre

    2009-03-01

    Studying cognitive brain functions by functional magnetic resonance imaging (fMRI) requires appropriate stimulation devices that do not interfere with the magnetic fields. Since the emergence of fMRI in the 90s, a number of stimulation devices have been developed for the visual and auditory modalities. Only few devices, however, have been developed for the somesthesic modality. Here, we present a vibration device for studying somesthesia that is compatible with high magnetic field environments and that can be used in fMRI machines. This device consists of a poly vinyl chloride (PVC) vibrator containing a wind turbine and of a pneumatic apparatus that controls 1-6 vibrators simultaneously. Just like classical electromagnetic vibrators, our device stimulates muscle mechanoreceptors (muscle spindles) and generates reliable illusions of movement. We provide the fMRI compatibility data (phantom test), the calibration curve (vibration frequency as a function of air flow), as well as the results of a kinesthetic test (perceived speed of the illusory movement as a function of vibration frequency). This device was used successfully in several brain imaging studies using both fMRI and magnetoencephalography.

  20. Characterization of the blood-oxygen level-dependent (BOLD) response in cat auditory cortex using high-field fMRI.

    PubMed

    Brown, Trecia A; Joanisse, Marc F; Gati, Joseph S; Hughes, Sarah M; Nixon, Pam L; Menon, Ravi S; Lomber, Stephen G

    2013-01-01

    Much of what is known about the cortical organization for audition in humans draws from studies of auditory cortex in the cat. However, these data build largely on electrophysiological recordings that are both highly invasive and provide less evidence concerning macroscopic patterns of brain activation. Optical imaging, using intrinsic signals or dyes, allows visualization of surface-based activity but is also quite invasive. Functional magnetic resonance imaging (fMRI) overcomes these limitations by providing a large-scale perspective of distributed activity across the brain in a non-invasive manner. The present study used fMRI to characterize stimulus-evoked activity in auditory cortex of an anesthetized (ketamine/isoflurane) cat, focusing specifically on the blood-oxygen-level-dependent (BOLD) signal time course. Functional images were acquired for adult cats in a 7 T MRI scanner. To determine the BOLD signal time course, we presented 1s broadband noise bursts between widely spaced scan acquisitions at randomized delays (1-12 s in 1s increments) prior to each scan. Baseline trials in which no stimulus was presented were also acquired. Our results indicate that the BOLD response peaks at about 3.5s in primary auditory cortex (AI) and at about 4.5 s in non-primary areas (AII, PAF) of cat auditory cortex. The observed peak latency is within the range reported for humans and non-human primates (3-4 s). The time course of hemodynamic activity in cat auditory cortex also occurs on a comparatively shorter scale than in cat visual cortex. The results of this study will provide a foundation for future auditory fMRI studies in the cat to incorporate these hemodynamic response properties into appropriate analyses of cat auditory cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Utility of Early Post-operative High Resolution Volumetric MR Imaging after Transsphenoidal Pituitary Tumor Surgery

    PubMed Central

    Patel, Kunal S.; Kazam, Jacob; Tsiouris, Apostolos J.; Anand, Vijay K.; Schwartz, Theodore H.

    2014-01-01

    Objective Controversy exists over the utility of early post-operative magnetic resonance imaging (MRI) after transsphenoidal pituitary surgery for macroadenomas. We investigate whether valuable information can be derived from current higher resolution scans. Methods Volumetric MRI scans were obtained in the early (<10 days) and late (>30 days) post-operative periods in a series of patients undergoing transsphenoidal pituitary surgery. The volume of the residual tumor, resection cavity, and corresponding visual field tests were recorded at each time point. Statistical analyses of changes in tumor volume and cavity size were calculated using the late MRI as the gold standard. Results 40 patients met the inclusion criteria. Pre-operative tumor volume averaged 8.8 cm3. Early postoperative assessment of average residual tumor volume (1.18 cm3) was quite accurate and did not differ statistically from late post-operative volume (1.23 cm3, p=.64), indicating the utility of early scans to measure residual tumor. Early scans were 100% sensitive and 91% specific for predicting ≥ 98% resection (p<.001, Fisher’s exact test). The average percent decrease in cavity volume from pre-operative MRI (tumor volume) to early post-operative imaging was 45% with decreases in all but 3 patients. There was no correlation between the size of the early cavity and the visual outcome. Conclusions Early high resolution volumetric MRI is valuable in determining the presence or absence of residual tumor. Cavity volume almost always decreases after surgery and a lack of decrease should alert the surgeon to possible persistent compression of the optic apparatus that may warrant re-operation. PMID:25045791

  2. Validating a new methodology for optical probe design and image registration in fNIRS studies

    PubMed Central

    Wijeakumar, Sobanawartiny; Spencer, John P.; Bohache, Kevin; Boas, David A.; Magnotta, Vincent A.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an imaging technique that relies on the principle of shining near-infrared light through tissue to detect changes in hemodynamic activation. An important methodological issue encountered is the creation of optimized probe geometry for fNIRS recordings. Here, across three experiments, we describe and validate a processing pipeline designed to create an optimized, yet scalable probe geometry based on selected regions of interest (ROIs) from the functional magnetic resonance imaging (fMRI) literature. In experiment 1, we created a probe geometry optimized to record changes in activation from target ROIs important for visual working memory. Positions of the sources and detectors of the probe geometry on an adult head were digitized using a motion sensor and projected onto a generic adult atlas and a segmented head obtained from the subject's MRI scan. In experiment 2, the same probe geometry was scaled down to fit a child's head and later digitized and projected onto the generic adult atlas and a segmented volume obtained from the child's MRI scan. Using visualization tools and by quantifying the amount of intersection between target ROIs and channels, we show that out of 21 ROIs, 17 and 19 ROIs intersected with fNIRS channels from the adult and child probe geometries, respectively. Further, both the adult atlas and adult subject-specific MRI approaches yielded similar results and can be used interchangeably. However, results suggest that segmented heads obtained from MRI scans be used for registering children's data. Finally, in experiment 3, we further validated our processing pipeline by creating a different probe geometry designed to record from target ROIs involved in language and motor processing. PMID:25705757

  3. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain.

    PubMed

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS.

  4. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain

    PubMed Central

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS. PMID:26193653

  5. [Clinical application of MRI histogram in evaluation of muscle fatty infiltration].

    PubMed

    Zheng, Y M; Du, J; Li, W Z; Wang, Z X; Zhang, W; Xiao, J X; Yuan, Y

    2016-10-18

    To describe a method based on analysis of the histogram of intensity values produced from the magnetic resonance imaging (MRI) for quantifying the degree of fatty infiltration. The study included 25 patients with dystrophinopathy. All the subjects underwent muscle MRI test at thigh level. The histogram M values of 250 muscles adjusted for subcutaneous fat, representing the degree of fatty infiltration, were compared with the expert visual reading using the modified Mercuri scale. There was a significant positive correlation between the histogram M values and the scores of visual reading (r=0.854, P<0.001). The distinct pattern of muscle involvement detected in the patients with dystrophinopathy in our study of histogram M values was similar to that of visual reading and results in literature. The histogram M values had stronger correlations with the clinical data than the scores of visual reading as follows: the correlations with age (r=0.730, P<0.001) and (r=0.753, P<0.001); with strength of knee extensor (r=-0.468, P=0.024) and (r=-0.460, P=0.027) respectively. Meanwhile, the histogram M values analysis had better repeatability than visual reading with the interclass correlation coefficient was 0.998 (95% CI: 0.997-0.998, P<0.001) and 0.958 (95% CI: 0.946-0.967, P<0.001) respectively. Histogram M values analysis of MRI with the advantages of repeatability and objectivity can be used to evaluate the degree of muscle fatty infiltration.

  6. Cross multivariate correlation coefficients as screening tool for analysis of concurrent EEG-fMRI recordings.

    PubMed

    Ji, Hong; Petro, Nathan M; Chen, Badong; Yuan, Zejian; Wang, Jianji; Zheng, Nanning; Keil, Andreas

    2018-02-06

    Over the past decade, the simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data has garnered growing interest because it may provide an avenue towards combining the strengths of both imaging modalities. Given their pronounced differences in temporal and spatial statistics, the combination of EEG and fMRI data is however methodologically challenging. Here, we propose a novel screening approach that relies on a Cross Multivariate Correlation Coefficient (xMCC) framework. This approach accomplishes three tasks: (1) It provides a measure for testing multivariate correlation and multivariate uncorrelation of the two modalities; (2) it provides criterion for the selection of EEG features; (3) it performs a screening of relevant EEG information by grouping the EEG channels into clusters to improve efficiency and to reduce computational load when searching for the best predictors of the BOLD signal. The present report applies this approach to a data set with concurrent recordings of steady-state-visual evoked potentials (ssVEPs) and fMRI, recorded while observers viewed phase-reversing Gabor patches. We test the hypothesis that fluctuations in visuo-cortical mass potentials systematically covary with BOLD fluctuations not only in visual cortical, but also in anterior temporal and prefrontal areas. Results supported the hypothesis and showed that the xMCC-based analysis provides straightforward identification of neurophysiological plausible brain regions with EEG-fMRI covariance. Furthermore xMCC converged with other extant methods for EEG-fMRI analysis. © 2018 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  7. TH-C-BRD-06: A Novel MRI Based CT Artifact Correction Method for Improving Proton Range Calculation in the Presence of Severe CT Artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, P; Schreibmann, E; Fox, T

    2014-06-15

    Purpose: Severe CT artifacts can impair our ability to accurately calculate proton range thereby resulting in a clinically unacceptable treatment plan. In this work, we investigated a novel CT artifact correction method based on a coregistered MRI and investigated its ability to estimate CT HU and proton range in the presence of severe CT artifacts. Methods: The proposed method corrects corrupted CT data using a coregistered MRI to guide the mapping of CT values from a nearby artifact-free region. First patient MRI and CT images were registered using 3D deformable image registration software based on B-spline and mutual information. Themore » CT slice with severe artifacts was selected as well as a nearby slice free of artifacts (e.g. 1cm away from the artifact). The two sets of paired MRI and CT images at different slice locations were further registered by applying 2D deformable image registration. Based on the artifact free paired MRI and CT images, a comprehensive geospatial analysis was performed to predict the correct CT HU of the CT image with severe artifact. For a proof of concept, a known artifact was introduced that changed the ground truth CT HU value up to 30% and up to 5cm error in proton range. The ability of the proposed method to recover the ground truth was quantified using a selected head and neck case. Results: A significant improvement in image quality was observed visually. Our proof of concept study showed that 90% of area that had 30% errors in CT HU was corrected to 3% of its ground truth value. Furthermore, the maximum proton range error up to 5cm was reduced to 4mm error. Conclusion: MRI based CT artifact correction method can improve CT image quality and proton range calculation for patients with severe CT artifacts.« less

  8. Structural-functional relationships between eye orbital imaging biomarkers and clinical visual assessments

    NASA Astrophysics Data System (ADS)

    Yao, Xiuya; Chaganti, Shikha; Nabar, Kunal P.; Nelson, Katrina; Plassard, Andrew; Harrigan, Rob L.; Mawn, Louise A.; Landman, Bennett A.

    2017-02-01

    Eye diseases and visual impairment affect millions of Americans and induce billions of dollars in annual economic burdens. Expounding upon existing knowledge of eye diseases could lead to improved treatment and disease prevention. This research investigated the relationship between structural metrics of the eye orbit and visual function measurements in a cohort of 470 patients from a retrospective study of ophthalmology records for patients (with thyroid eye disease, orbital inflammation, optic nerve edema, glaucoma, intrinsic optic nerve disease), clinical imaging, and visual function assessments. Orbital magnetic resonance imaging (MRI) and computed tomography (CT) images were retrieved and labeled in 3D using multi-atlas label fusion. Based on the 3D structures, both traditional radiology measures (e.g., Barrett index, volumetric crowding index, optic nerve length) and novel volumetric metrics were computed. Using stepwise regression, the associations between structural metrics and visual field scores (visual acuity, functional acuity, visual field, functional field, and functional vision) were assessed. Across all models, the explained variance was reasonable (R2 0.1-0.2) but highly significant (p < 0.001). Instead of analyzing a specific pathology, this study aimed to analyze data across a variety of pathologies. This approach yielded a general model for the connection between orbital structural imaging biomarkers and visual function.

  9. Use of gadolinium chloride as a contrast agent for imaging spruce knots by magnetic resonance

    Treesearch

    Thomas L. Eberhardt; Chi-Leung So; Amy H. Herlihy; Po-Wah So

    2006-01-01

    Treatments of knot-containing spruce wood blocks with a paramagnetic salt, gadolinium (III) chloride, in combination with solvent pretreatments, were evaluated as strategies to enhance the visualization of wood features by magnetic resonance imaging (MRI). Initial experiments with clear wood and excised knot samples showed differences in moisture uptake after...

  10. Beyond sensory images: Object-based representation in the human ventral pathway

    PubMed Central

    Pietrini, Pietro; Furey, Maura L.; Ricciardi, Emiliano; Gobbini, M. Ida; Wu, W.-H. Carolyn; Cohen, Leonardo; Guazzelli, Mario; Haxby, James V.

    2004-01-01

    We investigated whether the topographically organized, category-related patterns of neural response in the ventral visual pathway are a representation of sensory images or a more abstract representation of object form that is not dependent on sensory modality. We used functional MRI to measure patterns of response evoked during visual and tactile recognition of faces and manmade objects in sighted subjects and during tactile recognition in blind subjects. Results showed that visual and tactile recognition evoked category-related patterns of response in a ventral extrastriate visual area in the inferior temporal gyrus that were correlated across modality for manmade objects. Blind subjects also demonstrated category-related patterns of response in this “visual” area, and in more ventral cortical regions in the fusiform gyrus, indicating that these patterns are not due to visual imagery and, furthermore, that visual experience is not necessary for category-related representations to develop in these cortices. These results demonstrate that the representation of objects in the ventral visual pathway is not simply a representation of visual images but, rather, is a representation of more abstract features of object form. PMID:15064396

  11. Functional anatomy of the prostate: implications for treatment planning.

    PubMed

    McLaughlin, Patrick W; Troyer, Sara; Berri, Sally; Narayana, Vrinda; Meirowitz, Amichay; Roberson, Peter L; Montie, James

    2005-10-01

    To summarize the functional anatomy relevant to prostate cancer treatment planning. Coronal, axial, and sagittal T2 magnetic resonance imaging (MRI) and MRI angiography were fused by mutual information and registered with computed tomography (CT) scan data sets to improve definition of zonal anatomy of the prostate and critical adjacent structures. The three major prostate zones (inner, outer, and anterior fibromuscular) are visible by T2 MRI imaging. The bladder, bladder neck, and internal (preprostatic) sphincter are a continuous muscular structure and clear definition of the preprostatic sphincter is difficult by MRI. Transition zone hypertrophy may efface the bladder neck and internal sphincter. The external "lower" sphincter is clearly visible by T2 MRI with wide variations in length. The critical erectile structures are the internal pudendal artery (defined by MRI angiogram or T2 MRI), corpus cavernosum, and neurovascular bundle. The neurovascular bundle is visible along the posterior lateral surface of the prostate on CT and MRI, but its terminal branches (cavernosal nerves) are not visible and must be defined by their relationship to the urethra within the genitourinary diaphragm. Visualization of the ejaculatory ducts within the prostate is possible on sagittal MRI. The anatomy of the prostate-rectum interface is clarified by MRI, as is the potentially important distinction of rectal muscle and rectal mucosa. Improved understanding of functional anatomy and imaging of the prostate and critical adjacent structures will improve prostate radiation therapy by improvement of dose and toxicity correlation, limitation of dose to critical structures, and potential improvement in post therapy quality of life.

  12. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer's disease mice using magnetic resonance imaging (MRI).

    PubMed

    Cheng, Kwok Kin; Chan, Pui Shan; Fan, Shujuan; Kwan, Siu Ming; Yeung, King Lun; Wáng, Yì-Xiáng J; Chow, Albert Hee Lum; Wu, Ed X; Baum, Larry

    2015-03-01

    Diagnosis of Alzheimer's disease (AD) can be performed with the assistance of amyloid imaging. The current method relies on positron emission tomography (PET), which is expensive and exposes people to radiation, undesirable features for a population screening method. Magnetic resonance imaging (MRI) is cheaper and is not radioactive. Our approach uses magnetic nanoparticles (MNPs) made of superparamagnetic iron oxide (SPIO) conjugated with curcumin, a natural compound that specifically binds to amyloid plaques. Coating of curcumin-conjugated MNPs with polyethylene glycol-polylactic acid block copolymer and polyvinylpyrrolidone by antisolvent precipitation in a multi-inlet vortex mixer produces stable and biocompatible curcumin magnetic nanoparticles (Cur-MNPs) with mean diameter <100 nm. These nanoparticles were visualized by transmission electron microscopy and atomic force microscopy, and their structure and chemistry were further characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and Fourier transform infrared spectroscopy. Cur-MNPs exhibited no cytotoxicity in either Madin-Darby canine kidney (MDCK) or differentiated human neuroblastoma cells (SH-SY5Y). The Papp of Cur-MNPs was 1.03 × 10(-6) cm/s in an in vitro blood-brain barrier (BBB) model. Amyloid plaques could be visualized in ex vivo T2*-weighted magnetic resonance imaging (MRI) of Tg2576 mouse brains after injection of Cur-MNPs, and no plaques could be found in non-transgenic mice. Immunohistochemical examination of the mouse brains revealed that Cur-MNPs were co-localized with amyloid plaques. Thus, Cur-MNPs have the potential for non-invasive diagnosis of AD using MRI. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Targeted brain activation using an MR-compatible wrist torque measurement device and isometric motor tasks during functional magnetic resonance imaging.

    PubMed

    Vlaar, Martijn P; Mugge, Winfred; Groot, Paul F C; Sharifi, Sarvi; Bour, Lo J; van der Helm, Frans C T; van Rootselaar, Anne-Fleur; Schouten, Alfred C

    2016-07-01

    Dedicated pairs of isometric wrist flexion tasks, with and without visual feedback of the exerted torque, were designed to target activation of the CBL and BG in healthy subjects during functional magnetic resonance imaging (fMRI). Selective activation of the cerebellum (CBL) and basal ganglia (BG), often implicated in movement disorders such as tremor and dystonia, may help identify pathological changes and expedite diagnosis. A prototyped MR-compatible wrist torque measurement device, free of magnetic and conductive materials, allowed safe execution of tasks during fMRI without causing artifacts. A significant increase of activity in CBL and BG was found in healthy volunteers during a constant torque task with visual feedback compared to a constant torque task without visual feedback. This study shows that specific pairs of motor tasks using MR-compatible equipment at the wrist allow for targeted activation of CBL and BG, paving a new way for research into the pathophysiology of movement disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging

    PubMed Central

    Caia, George L.; Efimova, Olga V.; Velayutham, Murugesan; El-Mahdy, Mohamed A.; Abdelghany, Tamer M.; Kesselring, Eric; Petryakov, Sergey; Sun, Ziqi; Samouilov, Alexandre; Zweier, Jay L.

    2014-01-01

    In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz) / proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3–carbamoyl–proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease. PMID:22296801

  15. Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging

    NASA Astrophysics Data System (ADS)

    Caia, George L.; Efimova, Olga V.; Velayutham, Murugesan; El-Mahdy, Mohamed A.; Abdelghany, Tamer M.; Kesselring, Eric; Petryakov, Sergey; Sun, Ziqi; Samouilov, Alexandre; Zweier, Jay L.

    2012-03-01

    In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz)/proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3-carbamoyl-proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Pei-Hsin; Chung, Hsiao-Wen; Tsai, Ping-Huei

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations weremore » given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.« less

  17. Visual outcome after endoscopic third ventriculostomy for hydrocephalus.

    PubMed

    Jung, Ji-Ho; Chai, Yong-Hyun; Jung, Shin; Kim, In-Young; Jang, Woo-Youl; Moon, Kyung-Sub; Kim, Seul-Kee; Chong, Sangjoon; Kim, Seung-Ki; Jung, Tae-Young

    2018-02-01

    Hydrocephalus-related symptoms are mostly improved after successful endoscopic third ventriculostomy (ETV). However, visual symptoms can be different. This study was focused on visual symptoms. We analyzed the magnetic resonance images (MRI) of the orbit and visual outcomes. From August 2006 to November 2016, 50 patients with hydrocephalus underwent ETV. The male-to-female ratio was 33:17, and the median age was 61 years (range, 5-74 years). There were 18 pediatric and 32 adult patients. Abnormal orbital MRI findings included prominent subarachnoid space around the optic nerves and vertical tortuosity of the optic nerves. We retrospectively analyzed clinical symptoms, causes of hydrocephalus, ETV success score (ETVSS), ETV success rate, ETV complications, orbital MRI findings, and visual impairment score (VIS). The median duration of follow-up was 59 months (range, 3-113 months). The most common symptoms were headache, vomiting, and gait disturbance. Visual symptoms were found in 6 patients (12%). The most common causes of hydrocephalus were posterior fossa tumor in 13 patients, pineal tumor in 12, aqueductal stenosis in 8, thalamic malignant glioma in 7, and tectal glioma in 4. ETVSS was 70 in 3 patients, 80 in 34 patients, and 90 in 13 patients. ETV success rate was 80%. ETVSS 70 showed the trend in short-term survival compared to ETVSS 90 and 80. ETV complications included epidural hematoma requiring operation in one patient, transient hemiparesis in two patients, and infection in two patients. Preoperative abnormal orbital MRI findings were found in 18 patients and postoperative findings in 7 patients. Four of six patients with visual symptoms had abnormal MR findings. Three patients did not show VIS improvement, including two with severe visual symptoms. Patients with severe visual impairment were found to have bad outcomes. The visual symptoms related with increased intracranial pressure should be carefully monitored and controlled to improve outcomes.

  18. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry.

    PubMed

    Leow, Alex D; Klunder, Andrea D; Jack, Clifford R; Toga, Arthur W; Dale, Anders M; Bernstein, Matt A; Britson, Paula J; Gunter, Jeffrey L; Ward, Chadwick P; Whitwell, Jennifer L; Borowski, Bret J; Fleisher, Adam S; Fox, Nick C; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M

    2006-06-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. As part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere.

  19. Usefulness of the advanced neuroimaging protocol based on plain and gadolinium-enhanced constructive interference in steady state images for gamma knife radiosurgery and planning microsurgical procedures for skull base tumors.

    PubMed

    Hayashi, Motohiro; Chernov, Mikhail F; Tamura, Noriko; Yomo, Shoji; Tamura, Manabu; Horiba, Ayako; Izawa, Masahiro; Muragaki, Yoshihiro; Iseki, Hiroshi; Okada, Yoshikazu; Ivanov, Pavel; Régis, Jean; Takakura, Kintomo

    2013-01-01

    Gamma Knife radiosurgery (GKS) is currently performed with 0.1 mm preciseness, which can be designated microradiosurgery. It requires advanced methods for visualizing the target, which can be effectively attained by a neuroimaging protocol based on plain and gadolinium-enhanced constructive interference in steady state (CISS) images. Since 2003, the following thin-sliced images are routinely obtained before GKS of skull base lesions in our practice: axial CISS, gadolinium-enhanced axial CISS, gadolinium-enhanced axial modified time-of-flight (TOF), and axial computed tomography (CT). Fusion of "bone window" CT and magnetic resonance imaging (MRI), and detailed three-dimensional (3D) delineation of the anatomical structures are performed with the Leksell GammaPlan (Elekta Instruments AB). Recently, a similar technique has been also applied to evaluate neuroanatomy before open microsurgical procedures. Plain CISS images permit clear visualization of the cranial nerves in the subarachnoid space. Gadolinium-enhanced CISS images make the tumor "lucid" but do not affect the signal intensity of the cranial nerves, so they can be clearly delineated in the vicinity to the lesion. Gadolinium-enhanced TOF images are useful for 3D evaluation of the interrelations between the neoplasm and adjacent vessels. Fusion of "bone window" CT and MRI scans permits simultaneous assessment of both soft tissue and bone structures and allows 3D estimation and correction of MRI distortion artifacts. Detailed understanding of the neuroanatomy based on application of the advanced neuroimaging protocol permits performance of highly conformal and selective radiosurgical treatment. It also allows precise planning of the microsurgical procedures for skull base tumors.

  20. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry

    PubMed Central

    Leow, Alex D.; Klunder, Andrea D.; Jack, Clifford R.; Toga, Arthur W.; Dale, Anders M.; Bernstein, Matt A.; Britson, Paula J.; Gunter, Jeffrey L.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret J.; Fleisher, Adam S.; Fox, Nick C.; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.

    2007-01-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. A s part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere. PMID:16480900

  1. Prenatal evaluation of the middle ear and diagnosis of middle ear hypoplasia using MRI.

    PubMed

    Katorza, Eldad; Nahama-Allouche, Catherine; Castaigne, Vanina; Gonzales, Marie; Galliani, Eva; Marlin, Sandrine; Jouannic, Jean-Marie; Rosenblatt, Jonathan; le Pointe, Hubert Ducou; Garel, Catherine

    2011-05-01

    Analysis of the middle ear with fetal MRI has not been previously reported. To show the contribution of fetal MRI to middle ear imaging. The tympanic cavity was evaluated in 108 fetal cerebral MRI examinations (facial and/or cerebral malformation excluded) and in two cases, one of Treacher Collins syndrome (case 1) and the other of oculo-auriculo-vertebral (OUV) spectrum (case 2) with middle ear hypoplasia identified by MRI at 27 and 36 weeks' gestation, respectively. In all 108 fetuses (mean gestational age 32.5 weeks), the tympanic cavity and T2 hypointensity related to the ossicles were well visualised on both sides. Case 1 had micro/retrognathia and bilateral external ear deformity and case 2 had retrognathism with a left low-set and deformed ear. MRI made it possible to recognize the marked hypoplasia of the tympanic cavity, which was bilateral in case 1 and unilateral in case 2. Both syndromes are characterized by craniofacial abnormalities including middle ear hypoplasia, which cannot be diagnosed with US. The middle ear cavity can be visualized with fetal MRI. We emphasize the use of this imaging modality in the diagnosis of middle ear hypoplasia.

  2. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  3. An fMRI Study of the Neural Systems Involved in Visually Cued Auditory Top-Down Spatial and Temporal Attention

    PubMed Central

    Li, Chunlin; Chen, Kewei; Han, Hongbin; Chui, Dehua; Wu, Jinglong

    2012-01-01

    Top-down attention to spatial and temporal cues has been thoroughly studied in the visual domain. However, because the neural systems that are important for auditory top-down temporal attention (i.e., attention based on time interval cues) remain undefined, the differences in brain activity between directed attention to auditory spatial location (compared with time intervals) are unclear. Using fMRI (magnetic resonance imaging), we measured the activations caused by cue-target paradigms by inducing the visual cueing of attention to an auditory target within a spatial or temporal domain. Imaging results showed that the dorsal frontoparietal network (dFPN), which consists of the bilateral intraparietal sulcus and the frontal eye field, responded to spatial orienting of attention, but activity was absent in the bilateral frontal eye field (FEF) during temporal orienting of attention. Furthermore, the fMRI results indicated that activity in the right ventrolateral prefrontal cortex (VLPFC) was significantly stronger during spatial orienting of attention than during temporal orienting of attention, while the DLPFC showed no significant differences between the two processes. We conclude that the bilateral dFPN and the right VLPFC contribute to auditory spatial orienting of attention. Furthermore, specific activations related to temporal cognition were confirmed within the superior occipital gyrus, tegmentum, motor area, thalamus and putamen. PMID:23166800

  4. Diagnostic imaging features of normal anal sacs in dogs and cats.

    PubMed

    Jung, Yechan; Jeong, Eunseok; Park, Sangjun; Jeong, Jimo; Choi, Ul Soo; Kim, Min-Su; Kim, Namsoo; Lee, Kichang

    2016-09-30

    This study was conducted to provide normal reference features for canine and feline anal sacs using ultrasound, low-field magnetic resonance imaging (MRI) and radiograph contrast as diagnostic imaging tools. A total of ten clinically normal beagle dogs and eight clinically normally cats were included. General radiography with contrast, ultrasonography and low-field MRI scans were performed. The visualization of anal sacs, which are located at distinct sites in dogs and cats, is possible with a contrast study on radiography. Most surfaces of the anal sacs tissue, occasionally appearing as a hyperechoic thin line, were surrounded by the hypoechoic external sphincter muscle on ultrasonography. The normal anal sac contents of dogs and cats had variable echogenicity. Signals of anal sac contents on low-field MRI varied in cats and dogs, and contrast medium using T1-weighted images enhanced the anal sac walls more obviously than that on ultrasonography. In conclusion, this study provides the normal features of anal sacs from dogs and cats on diagnostic imaging. Further studies including anal sac evaluation are expected to investigate disease conditions.

  5. Diagnostic imaging features of normal anal sacs in dogs and cats

    PubMed Central

    Jung, Yechan; Jeong, Eunseok; Park, Sangjun; Jeong, Jimo; Choi, Ul Soo; Kim, Min-Su; Kim, Namsoo

    2016-01-01

    This study was conducted to provide normal reference features for canine and feline anal sacs using ultrasound, low-field magnetic resonance imaging (MRI) and radiograph contrast as diagnostic imaging tools. A total of ten clinically normal beagle dogs and eight clinically normally cats were included. General radiography with contrast, ultrasonography and low-field MRI scans were performed. The visualization of anal sacs, which are located at distinct sites in dogs and cats, is possible with a contrast study on radiography. Most surfaces of the anal sacs tissue, occasionally appearing as a hyperechoic thin line, were surrounded by the hypoechoic external sphincter muscle on ultrasonography. The normal anal sac contents of dogs and cats had variable echogenicity. Signals of anal sac contents on low-field MRI varied in cats and dogs, and contrast medium using T1-weighted images enhanced the anal sac walls more obviously than that on ultrasonography. In conclusion, this study provides the normal features of anal sacs from dogs and cats on diagnostic imaging. Further studies including anal sac evaluation are expected to investigate disease conditions. PMID:26645338

  6. 2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining.

    PubMed

    Thiele, Herbert; Heldmann, Stefan; Trede, Dennis; Strehlow, Jan; Wirtz, Stefan; Dreher, Wolfgang; Berger, Judith; Oetjen, Janina; Kobarg, Jan Hendrik; Fischer, Bernd; Maass, Peter

    2014-01-01

    3D imaging has a significant impact on many challenges in life sciences, because biology is a 3-dimensional phenomenon. Current 3D imaging-technologies (various types MRI, PET, SPECT) are labeled, i.e. they trace the localization of a specific compound in the body. In contrast, 3D MALDI mass spectrometry-imaging (MALDI-MSI) is a label-free method imaging the spatial distribution of molecular compounds. It complements 3D imaging labeled methods, immunohistochemistry, and genetics-based methods. However, 3D MALDI-MSI cannot tap its full potential due to the lack of statistical methods for analysis and interpretation of large and complex 3D datasets. To overcome this, we established a complete and robust 3D MALDI-MSI pipeline combined with efficient computational data analysis methods for 3D edge preserving image denoising, 3D spatial segmentation as well as finding colocalized m/z values, which will be reviewed here in detail. Furthermore, we explain, why the integration and correlation of the MALDI imaging data with other imaging modalities allows to enhance the interpretation of the molecular data and provides visualization of molecular patterns that may otherwise not be apparent. Therefore, a 3D data acquisition workflow is described generating a set of 3 different dimensional images representing the same anatomies. First, an in-vitro MRI measurement is performed which results in a three-dimensional image modality representing the 3D structure of the measured object. After sectioning the 3D object into N consecutive slices, all N slices are scanned using an optical digital scanner, enabling for performing the MS measurements. Scanning the individual sections results into low-resolution images, which define the base coordinate system for the whole pipeline. The scanned images conclude the information from the spatial (MRI) and the mass spectrometric (MALDI-MSI) dimension and are used for the spatial three-dimensional reconstruction of the object performed by image registration techniques. Different strategies for automatic serial image registration applied to MS datasets are outlined in detail. The third image modality is histology driven, i.e. a digital scan of the histological stained slices in high-resolution. After fusion of reconstructed scan images and MRI the slice-related coordinates of the mass spectra can be propagated into 3D-space. After image registration of scan images and histological stained images, the anatomical information from histology is fused with the mass spectra from MALDI-MSI. As a result of the described pipeline we have a set of 3 dimensional images representing the same anatomies, i.e. the reconstructed slice scans, the spectral images as well as corresponding clustering results, and the acquired MRI. Great emphasis is put on the fact that the co-registered MRI providing anatomical details improves the interpretation of 3D MALDI images. The ability to relate mass spectrometry derived molecular information with in vivo and in vitro imaging has potentially important implications. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. Copyright © 2013. Published by Elsevier B.V.

  7. Labeling and Magnetic Resonance Imaging of Exosomes Isolated from Adipose Stem Cells.

    PubMed

    Busato, Alice; Bonafede, Roberta; Bontempi, Pietro; Scambi, Ilaria; Schiaffino, Lorenzo; Benati, Donatella; Malatesta, Manuela; Sbarbati, Andrea; Marzola, Pasquina; Mariotti, Raffaella

    2017-06-19

    Adipose stem cells (ASC) represent a promising therapeutic approach for neurodegenerative diseases. Most biological effects of ASC are probably mediated by extracellular vesicles, such as exosomes, which influence the surrounding cells. Current development of exosome therapies requires efficient and noninvasive methods to localize, monitor, and track the exosomes. Among imaging methods used for this purpose, magnetic resonance imaging (MRI) has advantages: high spatial resolution, rapid in vivo acquisition, and radiation-free operation. To be detectable with MRI, exosomes must be labeled with MR contrast agents, such as ultra-small superparamagnetic iron oxide nanoparticles (USPIO). Here, we set up an innovative approach for exosome labeling that preserves their morphology and physiological characteristics. We show that by labeling ASC with USPIO before extraction of nanovesicles, the isolated exosomes retain nanoparticles and can be visualized by MRI. The current work aims at validating this novel USPIO-based exosome labeling method by monitoring the efficiency of the labeling with MRI both in ASC and in exosomes. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  8. Ultrasound imaging-guided intracardiac injection to develop a mouse model of breast cancer brain metastases followed by longitudinal MRI.

    PubMed

    Zhou, Heling; Zhao, Dawen

    2014-03-06

    Breast cancer brain metastasis, occurring in 30% of breast cancer patients at stage IV, is associated with high mortality. The median survival is only 6 months. It is critical to have suitable animal models to mimic the hemodynamic spread of the metastatic cells in the clinical scenario. Here, we are introducing the use of small animal ultrasound imaging to guide an accurate injection of brain tropical breast cancer cells into the left ventricle of athymic nude mice. Longitudinal MRI is used to assessing intracranial initiation and growth of brain metastases. Ultrasound-guided intracardiac injection ensures not only an accurate injection and hereby a higher successful rate but also significantly decreased mortality rate, as compared to our previous manual procedure. In vivo high resolution MRI allows the visualization of hyperintense multifocal lesions, as small as 310 µm in diameter on T2-weighted images at 3 weeks post injection. Follow-up MRI reveals intracranial tumor growth and increased number of metastases that distribute throughout the whole brain.

  9. [Utilization of polymeric micelle magnetic resonance imaging (MRI) contrast agent for theranostic system].

    PubMed

    Shiraishi, Kouichi

    2013-01-01

    We applied a polymeric micelle carrier system for the targeting of a magnetic resonance imaging (MRI) contrast agent. Prepared polymeric micelle MRI contrast agent exhibited a long circulation characteristic in blood, and considerable amount of the contrast agent was found to accumulate in colon 26 solid tumor by the EPR effect. The signal intensities of tumor area showed 2-folds increase in T1-weighted images at 24 h after i.v. injection. To observe enhancement of the EPR effect by Cderiv pretreatment on tumor targeting, we used the contrast agent for the evaluation by means of MRI. Cderiv pretreatment significantly enhanced tumor accumulation of the contrast agent. Interestingly, very high signal intensity in tumor region was found at 24 h after the contrast agent injection in Cderiv pretreated mice. The contrast agent visualized a microenvironmental change in tumor. These results indicate that the contrast agent exhibits potential use for tumor diagnostic agent. To combine with a polymeric micelle carrier system for therapeutic agent, the usage of the combination makes a new concept of "theranostic" for a better cancer treatment.

  10. DataViewer3D: An Open-Source, Cross-Platform Multi-Modal Neuroimaging Data Visualization Tool

    PubMed Central

    Gouws, André; Woods, Will; Millman, Rebecca; Morland, Antony; Green, Gary

    2008-01-01

    Integration and display of results from multiple neuroimaging modalities [e.g. magnetic resonance imaging (MRI), magnetoencephalography, EEG] relies on display of a diverse range of data within a common, defined coordinate frame. DataViewer3D (DV3D) is a multi-modal imaging data visualization tool offering a cross-platform, open-source solution to simultaneous data overlay visualization requirements of imaging studies. While DV3D is primarily a visualization tool, the package allows an analysis approach where results from one imaging modality can guide comparative analysis of another modality in a single coordinate space. DV3D is built on Python, a dynamic object-oriented programming language with support for integration of modular toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the power of the Visualization Toolkit (VTK) for two-dimensional (2D) and 3D rendering, calling VTK's low level C++ functions from Python. Users interact with data via an intuitive interface that uses Python to bind wxWidgets, which in turn calls the user's operating system dialogs and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE™ and DICOM formats for MRI data display (including statistical data overlay). Formats for other data types are supported. The modularity of DV3D and ease of use of Python allows rapid integration of additional format support and user development. DV3D has been tested on Mac OSX, RedHat Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of tutorial resources and example data. PMID:19352444

  11. Hunger and satiety in anorexia nervosa: fMRI during cognitive processing of food pictures.

    PubMed

    Santel, Stephanie; Baving, Lioba; Krauel, Kerstin; Münte, Thomas F; Rotte, Michael

    2006-10-09

    Neuroimaging studies of visually presented food stimuli in patients with anorexia nervosa have demonstrated decreased activations in inferior parietal and visual occipital areas, and increased frontal activations relative to healthy persons, but so far no inferences could be drawn with respect to the influence of hunger or satiety. Thirteen patients with AN and 10 healthy control subjects (aged 13-21) rated visual food and non-food stimuli for pleasantness during functional magnetic resonance imaging (fMRI) in a hungry and a satiated state. AN patients rated food as less pleasant than controls. When satiated, AN patients showed decreased activation in left inferior parietal cortex relative to controls. When hungry, AN patients displayed weaker activation of the right visual occipital cortex than healthy controls. Food stimuli during satiety compared with hunger were associated with stronger right occipital activation in patients and with stronger activation in left lateral orbitofrontal cortex, the middle portion of the right anterior cingulate, and left middle temporal gyrus in controls. The observed group differences in the fMRI activation to food pictures point to decreased food-related somatosensory processing in AN during satiety and to attentional mechanisms during hunger that might facilitate restricted eating in AN.

  12. Coregistration of Preoperative MRI with Ex Vivo Mesorectal Pathology Specimens to Spatially Map Post-treatment Changes in Rectal Cancer Onto In Vivo Imaging: Preliminary Findings.

    PubMed

    Antunes, Jacob; Viswanath, Satish; Brady, Justin T; Crawshaw, Benjamin; Ros, Pablo; Steele, Scott; Delaney, Conor P; Paspulati, Raj; Willis, Joseph; Madabhushi, Anant

    2018-07-01

    The objective of this study was to develop and quantitatively evaluate a radiology-pathology fusion method for spatially mapping tissue regions corresponding to different chemoradiation therapy-related effects from surgically excised whole-mount rectal cancer histopathology onto preoperative magnetic resonance imaging (MRI). This study included six subjects with rectal cancer treated with chemoradiation therapy who were then imaged with a 3-T T2-weighted MRI sequence, before undergoing mesorectal excision surgery. Excised rectal specimens were sectioned, stained, and digitized as two-dimensional (2D) whole-mount slides. Annotations of residual disease, ulceration, fibrosis, muscularis propria, mucosa, fat, inflammation, and pools of mucin were made by an expert pathologist on digitized slide images. An expert radiologist and pathologist jointly established corresponding 2D sections between MRI and pathology images, as well as identified a total of 10 corresponding landmarks per case (based on visually similar structures) on both modalities (five for driving registration and five for evaluating alignment). We spatially fused the in vivo MRI and ex vivo pathology images using landmark-based registration. This allowed us to spatially map detailed annotations from 2D pathology slides onto corresponding 2D MRI sections. Quantitative assessment of coregistered pathology and MRI sections revealed excellent structural alignment, with an overall deviation of 1.50 ± 0.63 mm across five expert-selected anatomic landmarks (in-plane misalignment of two to three pixels at 0.67- to 1.00-mm spatial resolution). Moreover, the T2-weighted intensity distributions were distinctly different when comparing fibrotic tissue to perirectal fat (as expected), but showed a marked overlap when comparing fibrotic tissue and residual rectal cancer. Our fusion methodology enabled successful and accurate localization of post-treatment effects on in vivo MRI. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  13. Towards a Teleoperated Needle Driver Robot with Haptic Feedback for RFA of Breast Tumors under Continuous MRI1

    PubMed Central

    Kokes, Rebecca; Lister, Kevin; Gullapalli, Rao; Zhang, Bao; MacMillan, Alan; Richard, Howard; Desai, Jaydev P.

    2009-01-01

    Objective The purpose of this paper is to explore the feasibility of developing a MRI-compatible needle driver system for radiofrequency ablation (RFA) of breast tumors under continuous MRI imaging while being teleoperated by a haptic feedback device from outside the scanning room. The developed needle driver prototype was designed and tested for both tumor targeting capability as well as RFA. Methods The single degree-of-freedom (DOF) prototype was interfaced with a PHANToM haptic device controlled from outside the scanning room. Experiments were performed to demonstrate MRI-compatibility and position control accuracy with hydraulic actuation, along with an experiment to determine the PHANToM’s ability to guide the RFA tool to a tumor nodule within a phantom breast tissue model while continuously imaging within the MRI and receiving force feedback from the RFA tool. Results Hydraulic actuation is shown to be a feasible actuation technique for operation in an MRI environment. The design is MRI-compatible in all aspects except for force sensing in the directions perpendicular to the direction of motion. Experiments confirm that the user is able to detect healthy vs. cancerous tissue in a phantom model when provided with both visual (imaging) feedback and haptic feedback. Conclusion The teleoperated 1-DOF needle driver system presented in this paper demonstrates the feasibility of implementing a MRI-compatible robot for RFA of breast tumors with haptic feedback capability. PMID:19303805

  14. Preclinical Feasibility of a Technology Framework for MRI-guided Iliac Angioplasty

    PubMed Central

    Rube, Martin A.; Fernandez-Gutierrez, Fabiola; Cox, Benjamin F.; Holbrook, Andrew B.; Houston, J. Graeme; White, Richard D.; McLeod, Helen; Fatahi, Mahsa; Melzer, Andreas

    2015-01-01

    Purpose Interventional MRI has significant potential for image guidance of iliac angioplasty and related vascular procedures. A technology framework with in-room image display, control, communication and MRI-guided intervention techniques was designed and tested for its potential to provide safe, fast and efficient MRI-guided angioplasty of the iliac arteries. Methods A 1.5T MRI scanner was adapted for interactive imaging during endovascular procedures using new or modified interventional devices such as guidewires and catheters. A perfused vascular phantom was used for testing. Pre-, intra- and post-procedural visualization and measurement of vascular morphology and flow was implemented. A detailed analysis of X-Ray fluoroscopic angiography workflow was conducted and applied. Two interventional radiologists and one physician in training performed 39 procedures. All procedures were timed and analyzed. Results MRI-guided iliac angioplasty procedures were successfully performed with progressive adaptation of techniques and workflow. The workflow, setup and protocol enabled a reduction in table time for a dedicated MRI-guided procedure to 6 min 33 s with a mean procedure time of 9 min 2 s, comparable to the mean procedure time of 8 min 42 s for the standard X-Ray guided procedure. Conclusions MRI-guided iliac vascular interventions were found to be feasible and practical using this framework and optimized workflow. In particular the real-time flow analysis was found to be helpful for pre- and post-interventional assessments. Design optimization of the catheters and in vivo experiments are required before clinical evaluation. PMID:25102933

  15. [Therapy relevant imaging in modern surgical treatment of arthrosis of the shoulder: interesting facts for orthopedic surgeons].

    PubMed

    Krifter, R M; Zweiger, C; Lick-Schiffer, W; Mattiassich, G; Schüller-Weidekamm, C; Radl, R

    2013-03-01

    Imaging for shoulder surgery varies a lot nowadays. Advantages and disadvantages of possible imaging methods according to the pathology and treatment options are described. Digital projection radiography in 3 planes, ultrasonography, MRI, CT scanning and scintigrams. Special axial view to visualize the glenoid situation, as well as 3-D CT scanning for larger defects and classification. Imaging of the glenoid situation, the version and erosion in axial view x-ray is mandatory to plan and control glenoid replacement. Useful application of imaging methods for the daily routine of orthopedic surgeons. Digital 3 plane x-ray imaging in arthroplasty surgery is the minimum requirement. For rotator cuff lesions ultrasonography is good. In order to gain information on fatty infiltration of rotator muscles MRI is needed as well as for intra-articular lesions. For bony defects CT and reconstruction 3-D are recommended.

  16. Evaluation of engraftment of superparamagnetic iron oxide-labeled mesenchymal stem cells using three-dimensional reconstruction of magnetic resonance imaging in photothrombotic cerebral infarction models of rats.

    PubMed

    Shim, Jaehyun; Kwak, Byung Kook; Jung, Jisung; Park, Serah

    2015-01-01

    To evaluate engraftment by visualizing the location of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) three-dimensionally in photothrombotic cerebral infarction (PTCI) models of rats. Magnetic resonance imaging (MRI) of an agarose block containing superparamagnetic iron oxide (SPIO)-labeled hBM-MSCs was performed using a 3.0-T MRI, T2-(T2WI), T2(*)-(T2(*)WI), and susceptibility-weighted images (SWI). PTCI was induced in 6 rats, and 2.5 × 10(5) SPIO-labeled hBM-MSCs were infused through the ipsilateral internal carotid artery (ICA group) or tail vein (IV group). MRI was performed on days 1, 3, 7, and 14 after stem cell injection. Dark signal regions were confirmed using histology. Three-dimensional MRI reconstruction was performed using the clinical workflow solution to evaluate the engraftment of hBM-MSCs. Volumetric analysis of the engraftment was also performed. The volumes of SPIO-labeled hBM-MSCs in the phantom MRI were 129.3, 68.4, and 25.9 µL using SWI, T2(*)WI, and T2WI, respectively. SPIO-labeled hBM-MSCs appeared on day 1 after injection, encircling the cerebral infarction from the ventral side. Dark signal regions matched iron positive cells and human origin (positive) cells. The volume of the engraftment was larger in the ICA group on days 1, 3, and 7, after stem cell injection (p < 0.05 on SWI). SWI was the most sensitive MRI pulse sequence (p < 0.05). The volume of infarction decreased until day 14. The engraftment of SPIO-labeled hBM-MSCs can be visualized and evaluated three-dimensionally in PTCI models of rats. The engraftment volume was larger in the ICA group than IV group on early stage within one week.

  17. Nonvisual spatial navigation fMRI lateralizes mesial temporal lobe epilepsy in a patient with congenital blindness.

    PubMed

    Toller, Gianina; Adhimoolam, Babu; Grunwald, Thomas; Huppertz, Hans-Jürgen; König, Kristina; Jokeit, Hennric

    2015-01-01

    Nonvisual spatial navigation functional magnetic resonance imaging (fMRI) may help clinicians determine memory lateralization in blind individuals with refractory mesial temporal lobe epilepsy (MTLE). We report on an exceptional case of a congenitally blind woman with late-onset left MTLE undergoing presurgical memory fMRI. To activate mesial temporal structures despite the lack of visual memory, the patient was requested to recall familiar routes using nonvisual multisensory and verbal cues. Our findings demonstrate the diagnostic value of a nonvisual fMRI task to lateralize MTLE despite congenital blindness and may therefore contribute to the risk assessment for postsurgical amnesia in rare cases with refractory MTLE and accompanying congenital blindness.

  18. Haptic fMRI: Reliability and performance of electromagnetic haptic interfaces for motion and force neuroimaging experiments.

    PubMed

    Menon, Samir; Zhu, Jack; Goyal, Deeksha; Khatib, Oussama

    2017-07-01

    Haptic interfaces compatible with functional magnetic resonance imaging (Haptic fMRI) promise to enable rich motor neuroscience experiments that study how humans perform complex manipulation tasks. Here, we present a large-scale study (176 scans runs, 33 scan sessions) that characterizes the reliability and performance of one such electromagnetically actuated device, Haptic fMRI Interface 3 (HFI-3). We outline engineering advances that ensured HFI-3 did not interfere with fMRI measurements. Observed fMRI temporal noise levels with HFI-3 operating were at the fMRI baseline (0.8% noise to signal). We also present results from HFI-3 experiments demonstrating that high resolution fMRI can be used to study spatio-temporal patterns of fMRI blood oxygenation dependent (BOLD) activation. These experiments include motor planning, goal-directed reaching, and visually-guided force control. Observed fMRI responses are consistent with existing literature, which supports Haptic fMRI's effectiveness at studying the brain's motor regions.

  19. Posterolateral complex knee injuries: magnetic resonance imaging with surgical correlation.

    PubMed

    Theodorou, D J; Theodorou, S J; Fithian, D C; Paxton, L; Garelick, D H; Resnick, D

    2005-05-01

    To describe the magnetic resonance imaging (MRI) findings of injuries of the posterolateral aspect of the knee and to evaluate the diagnostic capabilities of MRI in the assessment of these injuries. The MRI studies of 14 patients (mean age 33 years) with trauma to the posterolateral aspect of the knee were retrospectively reviewed, and the imaging findings were correlated with those of surgery. In all patients, MRI showed an intact iliotibial (ITB) band. MRI showed injury to the biceps tendon in 11 (79%), the gastrocnemius tendon in 1 (7%)), the popliteus tendon in 5 (36%), and the lateral collateral ligament (LCL) in 14 (100%) patients. Tear of the anterior cruciate ligament (ACL) was seen in 11 (79%) patients and tear of the posterior cruciate ligament (PCL) in 4 (29%) patients. With routine MRI, visualization of the popliteofibular or fabellofibular ligaments was incomplete. On MRI, the lateral meniscus and the medial meniscus were torn with equal frequency (n = 4; 29%). Osteochondral defects were seen in 5 (36%) cases and joint effusion in all 14 (100%) cases on MRI. Using surgical findings as the standard for diagnosis, MRI proved 86% accurate in the detection of injury to the ITB band, the biceps tendon (93%), the gastrocnemius tendon (100%), the popliteus tendon (86%), the LCL (100%), the ACL (79%), the PCL (86%), the lateral meniscus (90%), the medial meniscus (82%), and the osteochondral structures (79%). Surgical correlation confirmed the MRI findings of joint effusion in all cases. MRI is well suited for demonstrating the presence and extent of injuries of the major structures of the posterolateral complex of the knee, allowing characterization of the severity of injury.

  20. Brain regions implicated in inhibitory control and appetite regulation are activated in response to food portion size and energy density in children.

    PubMed

    English, L K; Fearnbach, S N; Lasschuijt, M; Schlegel, A; Anderson, K; Harris, S; Wilson, S J; Fisher, J O; Savage, J S; Rolls, B J; Keller, K L

    2016-10-01

    Large portions of energy-dense foods drive energy intake but the brain mechanisms underlying this effect are not clear. Our main objective was to investigate brain function in response to food images varied by portion size (PS) and energy density (ED) in children using functional magnetic resonance imaging (fMRI). Blood-oxygen-level-dependent (BOLD) fMRI was completed in 36 children (ages 7-10 years) after a 2-h fast while viewing food images at two levels of PS (Large PS, Small PS) and two levels of ED (High ED, Low ED). Children rated perceived fullness pre- and post-fMRI, as well as liking of images on visual analog scales post-fMRI. Anthropometrics were completed 4 weeks before the fMRI. Large PS vs Small PS and High ED vs Low ED were compared with region-of-interest analyses using Brain Voyager v 2.8. Region-of-interest analyses revealed that activation in the right inferior frontal gyrus (P=0.03) was greater for Large PS vs Small PS. Activation was reduced for High ED vs Low ED in the left hypothalamus (P=0.03). Main effects were no longer significant after adjustment for pre-fMRI fullness and liking ratings (PS, P=0.92; ED, P=0.58). This is the first fMRI study to report increased activation to large portions in a brain region that is involved in inhibitory control. These findings may contribute to understanding why some children overeat when presented with large portions of palatable food.

  1. Chronic Invasive Fungal Sinusitis Presenting as Inferior Altitudinal Visual Field Defect.

    PubMed

    Bansal, Reema; Takkar, Aastha; Lal, Vivek; Bal, Amanjit; Bansal, Sandeep

    2017-06-01

    A young male with acute blurring of vision (6/9) complained of an inferior altitudinal field defect in right eye. Clinical ophthalmological examination was normal. Magnetic resonance imaging (MRI) of the brain revealed the expansion and mucosal thickening of right posterior ethmoid and sphenoid sinuses and opacified right maxillary sinus. Surgical intervention (transethmoidal sphenoidotomy) and histopathological examination revealed chronic invasive granulomatous fungal sinusitis. Anti-fungal therapy led to resolution of visual complaints and restoration of visual field defects.

  2. Whole-brain high in-plane resolution fMRI using accelerated EPIK for enhanced characterisation of functional areas at 3T

    PubMed Central

    Yun, Seong Dae

    2017-01-01

    The relatively high imaging speed of EPI has led to its widespread use in dynamic MRI studies such as functional MRI. An approach to improve the performance of EPI, EPI with Keyhole (EPIK), has been previously presented and its use in fMRI was verified at 1.5T as well as 3T. The method has been proven to achieve a higher temporal resolution and smaller image distortions when compared to single-shot EPI. Furthermore, the performance of EPIK in the detection of functional signals was shown to be comparable to that of EPI. For these reasons, we were motivated to employ EPIK here for high-resolution imaging. The method was optimised to offer the highest possible in-plane resolution and slice coverage under the given imaging constraints: fixed TR/TE, FOV and acceleration factors for parallel imaging and partial Fourier techniques. The performance of EPIK was evaluated in direct comparison to the optimised protocol obtained from EPI. The two imaging methods were applied to visual fMRI experiments involving sixteen subjects. The results showed that enhanced spatial resolution with a whole-brain coverage was achieved by EPIK (1.00 mm × 1.00 mm; 32 slices) when compared to EPI (1.25 mm × 1.25 mm; 28 slices). As a consequence, enhanced characterisation of functional areas has been demonstrated in EPIK particularly for relatively small brain regions such as the lateral geniculate nucleus (LGN) and superior colliculus (SC); overall, a significantly increased t-value and activation area were observed from EPIK data. Lastly, the use of EPIK for fMRI was validated with the simulation of different types of data reconstruction methods. PMID:28945780

  3. SU-G-JeP2-12: Quantification of 3D Geometric Distortion for 1.5T and 3T MRI Scanners Used for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stowe, M; Gupta, N; Raterman, B

    Purpose: To quantify the magnitude of geometric distortion for MRI scanners and provide recommendations for MRI imaging for radiation therapy Methods: A novel phantom, QUASAR MRID3D [Modus Medical Devices Inc.], was scanned to evaluate the level of 3D geometric distortion present in five MRI scanners used for radiation therapy in our department. The phantom was scanned using the body coil with 1mm image slice thickness to acquire 3D images of the phantom body. The phantom was aligned to its geometric center for each scan, and the field of view was set to visualize the entire phantom. The dependence of distortionmore » magnitude with distance from imaging isocenter and with magnetic field strength (1.5T and 3T) was investigated. Additionally, the characteristics of distortion for Siemens and GE machines were compared. The image distortion for each scanner was quantified in terms of mean, standard deviation (STD), maximum distortion, and skewness. Results: The 3T and 1.5T scans show a similar absolute distortion with a mean of 1.38mm (0.33mm STD) for 3T and 1.39mm (0.34mm STD) for 1.5T for a 100mm radius distance from isocenter. Some machines can have a distortion larger than 10mm at a distance of 200mm from the isocenter. The distortions are presented with plots of the x, y, and z directional components. Conclusion: The results indicate that quantification of MRI image distortion is crucial in radiation oncology for target and organ delineation and treatment planning. The magnitude of geometric distortion determines the margin needed for target contouring which is usually neglected in treatment planning process, especially for SRS/SBRT treatments. Understanding the 3D distribution of the MRI image distortion will improve the accuracy of target delineation and, hence, treatment efficacy. MRI imaging with proper patient alignment to the isocenter is vital to reducing the effects of MRI distortion in treatment planning.« less

  4. MR-eyetracker: a new method for eye movement recording in functional magnetic resonance imaging.

    PubMed

    Kimmig, H; Greenlee, M W; Huethe, F; Mergner, T

    1999-06-01

    We present a method for recording saccadic and pursuit eye movements in the magnetic resonance tomograph designed for visual functional magnetic resonance imaging (fMRI) experiments. To reliably classify brain areas as pursuit or saccade related it is important to carefully measure the actual eye movements. For this purpose, infrared light, created outside the scanner by light-emitting diodes (LEDs), is guided via optic fibers into the head coil and onto the eye of the subject. Two additional fiber optical cables pick up the light reflected by the iris. The illuminating and detecting cables are mounted in a plastic eyepiece that is manually lowered to the level of the eye. By means of differential amplification, we obtain a signal that covaries with the horizontal position of the eye. Calibration of eye position within the scanner yields an estimate of eye position with a resolution of 0.2 degrees at a sampling rate of 1000 Hz. Experiments are presented that employ echoplanar imaging with 12 image planes through visual, parietal and frontal cortex while subjects performed saccadic and pursuit eye movements. The distribution of BOLD (blood oxygen level dependent) responses is shown to depend on the type of eye movement performed. Our method yields high temporal and spatial resolution of the horizontal component of eye movements during fMRI scanning. Since the signal is purely optical, there is no interaction between the eye movement signals and the echoplanar images. This reasonably priced eye tracker can be used to control eye position and monitor eye movements during fMRI.

  5. Individual differences in solving arithmetic word problems

    PubMed Central

    2013-01-01

    Background With the present functional magnetic resonance imaging (fMRI) study at 3 T, we investigated the neural correlates of visualization and verbalization during arithmetic word problem solving. In the domain of arithmetic, visualization might mean to visualize numbers and (intermediate) results while calculating, and verbalization might mean that numbers and (intermediate) results are verbally repeated during calculation. If the brain areas involved in number processing are domain-specific as assumed, that is, that the left angular gyrus (AG) shows an affinity to the verbal domain, and that the left and right intraparietal sulcus (IPS) shows an affinity to the visual domain, the activation of these areas should show a dependency on an individual’s cognitive style. Methods 36 healthy young adults participated in the fMRI study. The participants habitual use of visualization and verbalization during solving arithmetic word problems was assessed with a short self-report assessment. During the fMRI measurement, arithmetic word problems that had to be solved by the participants were presented in an event-related design. Results We found that visualizers showed greater brain activation in brain areas involved in visual processing, and that verbalizers showed greater brain activation within the left angular gyrus. Conclusions Our results indicate that cognitive styles or preferences play an important role in understanding brain activation. Our results confirm, that strong visualizers use mental imagery more strongly than weak visualizers during calculation. Moreover, our results suggest that the left AG shows a specific affinity to the verbal domain and subserves number processing in a modality-specific way. PMID:23883107

  6. 2D XD-GRASP provides better image quality than conventional 2D cardiac cine MRI for patients who cannot suspend respiration

    PubMed Central

    Piekarski, Eve; Chitiboi, Teodora; Ramb, Rebecca; Latson, Larry A; Bhatla, Puneet; Feng, Li; Axel, Leon

    2017-01-01

    Object Residual respiratory motion degrades image quality in conventional cardiac cine MRI (CCMR). We evaluated whether a free-breathing (FB) radial imaging CCMR sequence with compressed sensing reconstruction (eXtra-Dimension (e.g. cardiac and respiratory phases) Golden-angle RAdial Sparse Parallel, or XD-GRASP) could provide better image quality than a conventional Cartesian breath-held (BH) sequence, in an unselected population of patients undergoing clinical CCMR. Material and Methods 101 patients who underwent BH and FB imaging in a mid-ventricular short-axis plane at a matching location were included. Visual and quantitative image analysis was performed by two blinded experienced readers, using a 5-point qualitative scale to score overall image quality and visual signal-to-noise ratio (SNR) grade, with measures of noise and sharpness. End-diastole (ED) and end-systole (ES) left-ventricular areas were also measured and compared for both BH and FB images. Results Image quality was generally better with the BH cines (overall quality grade BH vs FB: 4 vs 2.9, p<0.001; noise 0.06 vs 0.08 p< 0.001; SNR grade: 4.1 vs 3, p<0.001), except for sharpness (p=0.48). There were no significant differences between BH and FB images regarding ED or ES areas (p=0.35 and 0.12). 18 of the 101 patients had impaired BH image quality (grades 1 or 2). In this subgroup, image quality of the FB images was better (p=0.0032), as was the SNR grade (p=0.003), but there were no significant differences regarding noise and sharpness (p=0.45, p=0.47). Conclusion Although FB XD-GRASP CCMR was visually inferior to conventional BH cardiac cine in general, it provided improved image quality in the subgroup of patients presenting respiratory motion-induced artifacts on breath-held images. PMID:29067539

  7. Two-dimensional XD-GRASP provides better image quality than conventional 2D cardiac cine MRI for patients who cannot suspend respiration.

    PubMed

    Piekarski, Eve; Chitiboi, Teodora; Ramb, Rebecca; Latson, Larry A; Bhatla, Puneet; Feng, Li; Axel, Leon

    2018-02-01

    Residual respiratory motion degrades image quality in conventional cardiac cine MRI (CCMRI). We evaluated whether a free-breathing (FB) radial imaging CCMRI sequence with compressed sensing reconstruction [extradimensional (e.g. cardiac and respiratory phases) golden-angle radial sparse parallel, or XD-GRASP] could provide better image quality than a conventional Cartesian breath-held (BH) sequence in an unselected population of patients undergoing clinical CCMRI. One hundred one patients who underwent BH and FB imaging in a midventricular short-axis plane at a matching location were included. Visual and quantitative image analysis was performed by two blinded experienced readers, using a five-point qualitative scale to score overall image quality and visual signal-to-noise ratio (SNR) grade, with measures of noise and sharpness. End-diastolic and end-systolic left ventricular areas were also measured and compared for both BH and FB images. Image quality was generally better with the BH cines (overall quality grade for BH vs FB images 4 vs 2.9, p < 0.001; noise 0.06 vs 0.08 p < 0.001; SNR grade 4.1 vs 3, p < 0.001), except for sharpness (p = 0.48). There were no significant differences between BH and FB images regarding end-diastolic or end-systolic areas (p = 0.35 and p = 0.12). Eighteen of the 101 patients had poor BH image quality (grade 1 or 2). In this subgroup, the quality of the FB images was better (p = 0.0032), as was the SNR grade (p = 0.003), but there were no significant differences regarding noise and sharpness (p = 0.45 and p = 0.47). Although FB XD-GRASP CCMRI was visually inferior to conventional BH CCMRI in general, it provided improved image quality in the subgroup of patients with respiratory-motion-induced artifacts on BH images.

  8. Threat as a feature in visual semantic object memory.

    PubMed

    Calley, Clifford S; Motes, Michael A; Chiang, H-Sheng; Buhl, Virginia; Spence, Jeffrey S; Abdi, Hervé; Anand, Raksha; Maguire, Mandy; Estevez, Leonardo; Briggs, Richard; Freeman, Thomas; Kraut, Michael A; Hart, John

    2013-08-01

    Threatening stimuli have been found to modulate visual processes related to perception and attention. The present functional magnetic resonance imaging (fMRI) study investigated whether threat modulates visual object recognition of man-made and naturally occurring categories of stimuli. Compared with nonthreatening pictures, threatening pictures of real items elicited larger fMRI BOLD signal changes in medial visual cortices extending inferiorly into the temporo-occipital (TO) "what" pathways. This region elicited greater signal changes for threatening items compared to nonthreatening from both the natural-occurring and man-made stimulus supraordinate categories, demonstrating a featural component to these visual processing areas. Two additional loci of signal changes within more lateral inferior TO areas (bilateral BA18 and 19 as well as the right ventral temporal lobe) were detected for a category-feature interaction, with stronger responses to man-made (category) threatening (feature) stimuli than to natural threats. The findings are discussed in terms of visual recognition of processing efficiently or rapidly groups of items that confer an advantage for survival. Copyright © 2012 Wiley Periodicals, Inc.

  9. Design of magnetic and fluorescent nanoparticles for in vivo MR and NIRF cancer imaging

    NASA Astrophysics Data System (ADS)

    Key, Jaehong

    One big challenge for cancer treatment is that it has many errors in detection of cancers in the early stages before metastasis occurs. Using a current imaging modality, the detection of small tumors having potential metastasis is still very difficult. Thus, the development of multi-component nanoparticles (NPs) for dual modality cancer imaging is invaluable. The multi-component NPs can be an alternative to overcome the limitations from an imaging modality. For example, the multi-component NPs can visualize small tumors in both magnetic resonance imaging (MRI) and near infrared fluorescence (NIRF) imaging, which can help find the location of the tumors deep inside the body using MRI and subsequently guide surgeons to delineate the margin of tumors using highly sensitive NIRF imaging during a surgical operation. In this dissertation, we demonstrated the potential of the MRI and NIRF dual-modality NPs for skin and bladder cancer imaging. The multi-component NPs consisted of glycol chitosan, superparamagnetic iron oxide, NIRF dye, and cancer targeting peptides. We characterized the NPs and evaluated them with tumor bearing mice as well as various cancer cells. The findings of this research will contribute to the development of cancer diagnostic imaging and it can also be extensively applied to drug delivery system and fluorescence-guided surgical removal of cancer.

  10. Iterative image reconstruction that includes a total variation regularization for radial MRI.

    PubMed

    Kojima, Shinya; Shinohara, Hiroyuki; Hashimoto, Takeyuki; Hirata, Masami; Ueno, Eiko

    2015-07-01

    This paper presents an iterative image reconstruction method for radial encodings in MRI based on a total variation (TV) regularization. The algebraic reconstruction method combined with total variation regularization (ART_TV) is implemented with a regularization parameter specifying the weight of the TV term in the optimization process. We used numerical simulations of a Shepp-Logan phantom, as well as experimental imaging of a phantom that included a rectangular-wave chart, to evaluate the performance of ART_TV, and to compare it with that of the Fourier transform (FT) method. The trade-off between spatial resolution and signal-to-noise ratio (SNR) was investigated for different values of the regularization parameter by experiments on a phantom and a commercially available MRI system. ART_TV was inferior to the FT with respect to the evaluation of the modulation transfer function (MTF), especially at high frequencies; however, it outperformed the FT with regard to the SNR. In accordance with the results of SNR measurement, visual impression suggested that the image quality of ART_TV was better than that of the FT for reconstruction of a noisy image of a kiwi fruit. In conclusion, ART_TV provides radial MRI with improved image quality for low-SNR data; however, the regularization parameter in ART_TV is a critical factor for obtaining improvement over the FT.

  11. Can DCE-MRI Explain the Heterogeneity in Radiopeptide Uptake Imaged by SPECT in a Pancreatic Neuroendocrine Tumor Model?

    PubMed Central

    Groen, Harald C.; Niessen, Wiro J.; Bernsen, Monique R.; de Jong, Marion; Veenland, Jifke F.

    2013-01-01

    Although efficient delivery and distribution of treatment agents over the whole tumor is essential for successful tumor treatment, the distribution of most of these agents cannot be visualized. However, with single-photon emission computed tomography (SPECT), both delivery and uptake of radiolabeled peptides can be visualized in a neuroendocrine tumor model overexpressing somatostatin receptors. A heterogeneous peptide uptake is often observed in these tumors. We hypothesized that peptide distribution in the tumor is spatially related to tumor perfusion, vessel density and permeability, as imaged and quantified by DCE-MRI in a neuroendocrine tumor model. Four subcutaneous CA20948 tumor-bearing Lewis rats were injected with the somatostatin-analog 111In-DTPA-Octreotide (50 MBq). SPECT-CT and MRI scans were acquired and MRI was spatially registered to SPECT-CT. DCE-MRI was analyzed using semi-quantitative and quantitative methods. Correlation between SPECT and DCE-MRI was investigated with 1) Spearman’s rank correlation coefficient; 2) SPECT uptake values grouped into deciles with corresponding median DCE-MRI parametric values and vice versa; and 3) linear regression analysis for median parameter values in combined datasets. In all tumors, areas with low peptide uptake correlated with low perfusion/density/ /permeability for all DCE-MRI-derived parameters. Combining all datasets, highest linear regression was found between peptide uptake and semi-quantitative parameters (R2>0.7). The average correlation coefficient between SPECT and DCE-MRI-derived parameters ranged from 0.52-0.56 (p<0.05) for parameters primarily associated with exchange between blood and extracellular extravascular space. For these parameters a linear relation with peptide uptake was observed. In conclusion, the ‘exchange-related’ DCE-MRI-derived parameters seemed to predict peptide uptake better than the ‘contrast amount- related’ parameters. Consequently, fast and efficient diffusion through the vessel wall into tissue is an important factor for peptide delivery. DCE-MRI helps to elucidate the relation between vascular characteristics, peptide delivery and treatment efficacy, and may form a basis to predict targeting efficiency. PMID:24116203

  12. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI.

    PubMed

    O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C

    2016-11-09

    Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.

  13. Magnetic resonance imaging, computed tomography, and gross anatomy of the canine tarsus.

    PubMed

    Deruddere, Kirsten J; Milne, Marjorie E; Wilson, Kane M; Snelling, Sam R

    2014-11-01

    To describe the normal anatomy of the soft tissues of the canine tarsus as identified on computed tomography (CT) and magnetic resonance imaging (MRI) and to evaluate specific MRI sequences and planes for observing structures of diagnostic interest. Prospective descriptive study. Canine cadavers (n = 3). A frozen cadaver pelvic limb was used to trial multiple MRI sequences using a 1.5 T superconducting magnet and preferred sequences were selected. Radiographs of 6 canine cadaver pelvic limbs confirmed the tarsi were radiographically normal. A 16-slice CT scanner was used to obtain 1 mm contiguous slices through the tarsi. T1-weighted, proton density with fat suppression (PD FS) and T2-weighted MRI sequences were obtained in the sagittal plane, T1-weighted, and PD FS sequences in the dorsal plane and PD FS sequences in the transverse plane. The limbs were frozen for one month and sliced into 4-5 mm thick frozen sections. Anatomic sections were photographed and visually correlated to CT and MR images. Most soft tissue structures were easiest to identify on the transverse MRI sections with cross reference to either the sagittal or dorsal plane. Bony structures were easily identified on all CT, MR, and gross sections. The anatomy of the canine tarsus can be readily identified on MR imaging. © Copyright 2014 by The American College of Veterinary Surgeons.

  14. Cerebral cortex three-dimensional profiling in human fetuses by magnetic resonance imaging

    PubMed Central

    Sbarbati, Andrea; Pizzini, Francesca; Fabene, Paolo F; Nicolato, Elena; Marzola, Pasquina; Calderan, Laura; Simonati, Alessandro; Longo, Laura; Osculati, Antonio; Beltramello, Alberto

    2004-01-01

    Seven human fetuses of crown/rump length corresponding to gestational ages ranging from the 12th to the 16th week were studied using a paradigm based on three-dimensional reconstruction of the brain obtained by magnetic resonance imaging (MRI). The aim of the study was to evaluate brain morphology in situ and to describe developmental dynamics during an important period of fetal morphogenesis. Three-dimensional MRI showed the increasing degree of maturation of the brains; fronto-occipital distance, bitemporal distance and occipital angle were examined in all the fetuses. The data were interpreted by correlation with the internal structure as visualized using high-spatial-resolution MRI, acquired using a 4.7-T field intensity magnet with a gradient power of 20 G cm−1. The spatial resolution was sufficient for a detailed detection of five layers, and the contrast was optimized using sequences with different degrees of T1 and T2 weighting. Using the latter, it was possible to visualize the subplate and marginal zones. The cortical thickness was mapped on to the hemispheric surface, describing the thickness gradient from the insular cortex to the periphery of the hemispheres. The study demonstrates the utility of MRI for studying brain development. The method provides a quantitative profiling of the brain, which allows the calculation of important morphological parameters, and it provides informative regarding transient features of the developing brain. PMID:15198688

  15. Thinner retinal layers are associated with changes in the visual pathway: A population-based study.

    PubMed

    Mutlu, Unal; Ikram, Mohammad K; Roshchupkin, Gennady V; Bonnemaijer, Pieter W M; Colijn, Johanna M; Vingerling, Johannes R; Niessen, Wiro J; Ikram, Mohammad A; Klaver, Caroline C W; Vernooij, Meike W

    2018-06-23

    Increasing evidence shows that thinner retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL), assessed on optical coherence tomography (OCT), are reflecting global brain atrophy. Yet, little is known on the relation of these layers with specific brain regions. Using voxel-based analysis, we aimed to unravel specific brain regions associated with these retinal layers. We included 2,235 persons (mean age: 67.3 years, 55% women) from the Rotterdam Study (2007-2012) who had gradable retinal OCT images and brain magnetic resonance imaging (MRI) scans, including diffusion tensor (DT) imaging. Thicknesses of peripapillary RNFL and perimacular GCL were measured using an automated segmentation algorithm. Voxel-based morphometry protocols were applied to process DT-MRI data. We investigated the association between retinal layer thickness with voxel-wise gray matter density and white matter microstructure by performing linear regression models. We found that thinner RNFL and GCL were associated with lower gray matter density in the visual cortex, and with lower fractional anisotropy and higher mean diffusivity in white matter tracts that are part of the optic radiation. Furthermore, thinner GCL was associated with lower gray matter density of the thalamus. Thinner RNFL and GCL are associated with gray and white matter changes in the visual pathway suggesting that retinal thinning on OCT may be specifically associated with changes in the visual pathway rather than with changes in the global brain. These findings may serve as a basis for understanding visual symptoms in elderly patients, patients with Alzheimer's disease, or patients with posterior cortical atrophy. © 2018 Wiley Periodicals, Inc.

  16. 3D Ultrashort TE MRI for Evaluation of Cartilaginous Endplate of Cervical Disk In Vivo: Feasibility and Correlation With Disk Degeneration in T2-Weighted Spin-Echo Sequence.

    PubMed

    Kim, Yeo Ju; Cha, Jang Gyu; Shin, Yoon Sang; Chaudhari, Akshay S; Suh, Young Ju; Hwan Yoon, Seung; Gold, Garry E

    2018-05-01

    The purpose of this study was to evaluate the feasibility of 3D ultrashort TE (UTE) MRI in depicting the cartilaginous endplate (CEP) and its abnormalities and to investigate the association between CEP abnormalities and disk degeneration on T2-weighted spin-echo (SE) MR images in cervical disks in vivo. Eight healthy volunteers and 70 patients were examined using 3-T MRI with the 3D UTE cones trajectory technique (TR/TE, 16.1/0.032, 6.6). In the volunteer study, quantitative and qualitative assessments of CEP depiction were conducted for the 3D UTE and T2-weighted SE imaging. In the patient study, CEP abnormalities were analyzed. Intersequence agreement between the images obtained with the first-echo 3D UTE sequence and the images created by subtracting the second-echo from the first-echo 3D UTE sequence (subtracted 3D UTE) and the intraobserver and interobserver agreements for 3D UTE overall were also tested. The CEP abnormalities on the 3D UTE images correlated with the Miyazaki grading of the T2-weighted SE images. In the volunteer study, the CEP was well visualized on 3D UTE images but not on T2-weighted SE images (p < 0.001). In the patient study, for evaluation of CEP abnormalities, intersequence agreements were substantial to almost perfect, intraobserver agreements were substantial to almost perfect, and interobserver agreements were moderate to substantial (p < 0.001). All of the CEP abnormalities correlated with the Miyazaki grade with statistical significance (p < 0.001). Three-dimensional UTE MRI feasibly depicts the CEP and CEP abnormalities, which may be associated with the severity of disk degeneration on T2-weighted SE MRI.

  17. Respiratory motion resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK)

    PubMed Central

    Han, Fei; Zhou, Ziwu; Cao, Minsong; Yang, Yingli; Sheng, Ke; Hu, Peng

    2017-01-01

    Purpose To propose and validate a respiratory motion resolved, self-gated (SG) 4D-MRI technique to assess patient-specific breathing motion of abdominal organs for radiation treatment planning. Methods The proposed 4D-MRI technique was based on the balanced steady-state free-precession (bSSFP) technique and 3D k-space encoding. A novel ROtating Cartesian K-space (ROCK) reordering method was designed that incorporates repeatedly sampled k-space centerline as the SG motion surrogate and allows for retrospective k-space data binning into different respiratory positions based on the amplitude of the surrogate. The multiple respiratory-resolved 3D k-space data were subsequently reconstructed using a joint parallel imaging and compressed sensing method with spatial and temporal regularization. The proposed 4D-MRI technique was validated using a custom-made dynamic motion phantom and was tested in 6 healthy volunteers, in whom quantitative diaphragm and kidney motion measurements based on 4D-MRI images were compared with those based on 2D-CINE images. Results The 5-minute 4D-MRI scan offers high-quality volumetric images in 1.2×1.2×1.6mm3 and 8 respiratory positions, with good soft-tissue contrast. In phantom experiments with triangular motion waveform, the motion amplitude measurements based on 4D-MRI were 11.89% smaller than the ground truth, whereas a −12.5% difference was expected due to data binning effects. In healthy volunteers, the difference between the measurements based on 4D-MRI and the ones based on 2D-CINE were 6.2±4.5% for the diaphragm, 8.2±4.9% and 8.9±5.1% for the right and left kidney. Conclusion The proposed 4D-MRI technique could provide high resolution, high quality, respiratory motion resolved 4D images with good soft-tissue contrast and are free of the “stitching” artifacts usually seen on 4D-CT and 4D-MRI based on resorting 2D-CINE. It could be used to visualize and quantify abdominal organ motion for MRI-based radiation treatment planning. PMID:28133752

  18. Respiratory motion-resolved, self-gated 4D-MRI using rotating cartesian k-space (ROCK).

    PubMed

    Han, Fei; Zhou, Ziwu; Cao, Minsong; Yang, Yingli; Sheng, Ke; Hu, Peng

    2017-04-01

    To propose and validate a respiratory motion resolved, self-gated (SG) 4D-MRI technique to assess patient-specific breathing motion of abdominal organs for radiation treatment planning. The proposed 4D-MRI technique was based on the balanced steady-state free-precession (bSSFP) technique and 3D k-space encoding. A novel rotating cartesian k-space (ROCK) reordering method was designed which incorporates repeatedly sampled k-space centerline as the SG motion surrogate and allows for retrospective k-space data binning into different respiratory positions based on the amplitude of the surrogate. The multiple respiratory-resolved 3D k-space data were subsequently reconstructed using a joint parallel imaging and compressed sensing method with spatial and temporal regularization. The proposed 4D-MRI technique was validated using a custom-made dynamic motion phantom and was tested in six healthy volunteers, in whom quantitative diaphragm and kidney motion measurements based on 4D-MRI images were compared with those based on 2D-CINE images. The 5-minute 4D-MRI scan offers high-quality volumetric images in 1.2 × 1.2 × 1.6 mm 3 and eight respiratory positions, with good soft-tissue contrast. In phantom experiments with triangular motion waveform, the motion amplitude measurements based on 4D-MRI were 11.89% smaller than the ground truth, whereas a -12.5% difference was expected due to data binning effects. In healthy volunteers, the difference between the measurements based on 4D-MRI and the ones based on 2D-CINE were 6.2 ± 4.5% for the diaphragm, 8.2 ± 4.9% and 8.9 ± 5.1% for the right and left kidney. The proposed 4D-MRI technique could provide high-resolution, high-quality, respiratory motion-resolved 4D images with good soft-tissue contrast and are free of the "stitching" artifacts usually seen on 4D-CT and 4D-MRI based on resorting 2D-CINE. It could be used to visualize and quantify abdominal organ motion for MRI-based radiation treatment planning. © 2017 American Association of Physicists in Medicine.

  19. Ultrasonography of the equine shoulder: technique and normal appearance.

    PubMed

    Tnibar, M A; Auer, J A; Bakkali, S

    1999-01-01

    This study was intended to document normal ultrasonographic appearance of the equine shoulder and anatomic landmarks useful in clinical imaging. Both forelimbs of five equine cadavers and both forelimbs of six live adult horses were used. To facilitate understanding of the images, a zoning system assigned to the biceps brachii and to the infraspinatus tendon was developed. Ultrasonography was performed with a real-time B-mode semiportable sector scanner using 7.5- and 5-MHz transducers. On one cadaver limb, magnetic resonance imaging (MRI) was performed using a system at 1.5 Tesla, T1-weighted spin-echo sequence. Ultrasonography images were compared to frozen specimens and MRI images to correlate the ultrasonographic findings to the gross anatomy of the shoulder. Ultrasonography allowed easy evaluation of the biceps brachii and the infraspinatus tendon and their bursae, the supraspinatus muscle and tendons, the superficial muscles of the shoulder, and the underlying humerus and scapula. Only the lateral and, partially, the caudal aspects of the humeral head could be visualized with ultrasound. Ultrasonographic appearance, orientation, and anatomic relationships of these structures are described. Ultrasonographic findings correlated well with MRI images and with gross anatomy in the cadavers' limbs.

  20. Feasibility of quantitative regional ventilation and perfusion mapping with phase-resolved functional lung (PREFUL) MRI in healthy volunteers and COPD, CTEPH, and CF patients.

    PubMed

    Voskrebenzev, Andreas; Gutberlet, Marcel; Klimeš, Filip; Kaireit, Till F; Schönfeld, Christian; Rotärmel, Alexander; Wacker, Frank; Vogel-Claussen, Jens

    2018-04-01

    In this feasibility study, a phase-resolved functional lung imaging postprocessing method for extraction of dynamic perfusion (Q) and ventilation (V) parameters using a conventional 1H lung MRI Fourier decomposition acquisition is introduced. Time series of coronal gradient-echo MR images with a temporal resolution of 288 to 324 ms of two healthy volunteers, one patient with chronic thromboembolic hypertension, one patient with cystic fibrosis, and one patient with chronic obstructive pulmonary disease were acquired at 1.5 T. Using a sine model to estimate cardiac and respiratory phases of each image, all images were sorted to reconstruct full cardiac and respiratory cycles. Time to peak (TTP), V/Q maps, and fractional ventilation flow-volume loops were calculated. For the volunteers, homogenous ventilation and perfusion TTP maps (V-TTP, Q-TTP) were obtained. The chronic thromboembolic hypertension patient showed increased perfusion TTP in hypoperfused regions in visual agreement with dynamic contrast-enhanced MRI, which improved postpulmonary endaterectomy surgery. Cystic fibrosis and chronic obstructive pulmonary disease patients showed a pattern of increased V-TTP and Q-TTP in regions of hypoventilation and decreased perfusion. Fractional ventilation flow-volume loops of the chronic obstructive pulmonary disease patient were smaller in comparison with the healthy volunteer, and showed regional differences in visual agreement with functional small airways disease and emphysema on CT. This study shows the feasibility of phase-resolved functional lung imaging to gain quantitative information regarding regional lung perfusion and ventilation without the need for ultrafast imaging, which will be advantageous for future clinical translation. Magn Reson Med 79:2306-2314, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Reproducibility of MR-Based Attenuation Maps in PET/MRI and the Impact on PET Quantification in Lung Cancer.

    PubMed

    Olin, Anders; Ladefoged, Claes N; Langer, Natasha H; Keller, Sune H; Löfgren, Johan; Hansen, Adam E; Kjær, Andreas; Langer, Seppo W; Fischer, Barbara M; Andersen, Flemming L

    2018-06-01

    Quantitative PET/MRI is dependent on reliable and reproducible MR-based attenuation correction (MR-AC). In this study, we evaluated the quality of current vendor-provided thoracic MR-AC maps and further investigated the reproducibility of their impact on 18 F-FDG PET quantification in patients with non-small cell lung cancer. Methods: Eleven patients with inoperable non-small cell lung cancer underwent 2-5 thoracic PET/MRI scan-rescan examinations within 22 d. 18 F-FDG PET data were acquired along with 2 Dixon MR-AC maps for each examination. Two PET images (PET A and PET B ) were reconstructed using identical PET emission data but with MR-AC from these intrasubject repeated attenuation maps. In total, 90 MR-AC maps were evaluated visually for quality and the occurrence of categorized artifacts by 2 PET/MRI-experienced physicians. Each tumor was outlined by a volume of interest (40% isocontour of maximum) on PET A , which was then projected onto the corresponding PET B SUV mean and SUV max were assessed from the PET images. Within-examination coefficients of variation and Bland-Altman analyses were conducted for the assessment of SUV variations between PET A and PET B Results: Image artifacts were observed in 86% of the MR-AC maps, and 30% of the MR-AC maps were subjectively expected to affect the tumor SUV. SUV mean and SUV max resulted in coefficients of variation of 5.6% and 6.6%, respectively, and scan-rescan SUV variations were within ±20% in 95% of the cases. Substantial SUV variations were seen mainly for scan-rescan examinations affected by respiratory motion. Conclusion: Artifacts occur frequently in standard thoracic MR-AC maps, affecting the reproducibility of PET/MRI. These, in combination with other well-known sources of error associated with PET/MRI examinations, lead to inconsistent SUV measurements in serial studies, which may affect the reliability of therapy response assessment. A thorough visual inspection of the thoracic MR-AC map and Dixon images from which it is derived remains crucial for the detection of MR-AC artifacts that may influence the reliability of SUV. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  2. Coarse-Scale Biases for Spirals and Orientation in Human Visual Cortex

    PubMed Central

    Heeger, David J.

    2013-01-01

    Multivariate decoding analyses are widely applied to functional magnetic resonance imaging (fMRI) data, but there is controversy over their interpretation. Orientation decoding in primary visual cortex (V1) reflects coarse-scale biases, including an over-representation of radial orientations. But fMRI responses to clockwise and counter-clockwise spirals can also be decoded. Because these stimuli are matched for radial orientation, while differing in local orientation, it has been argued that fine-scale columnar selectivity for orientation contributes to orientation decoding. We measured fMRI responses in human V1 to both oriented gratings and spirals. Responses to oriented gratings exhibited a complex topography, including a radial bias that was most pronounced in the peripheral representation, and a near-vertical bias that was most pronounced near the foveal representation. Responses to clockwise and counter-clockwise spirals also exhibited coarse-scale organization, at the scale of entire visual quadrants. The preference of each voxel for clockwise or counter-clockwise spirals was predicted from the preferences of that voxel for orientation and spatial position (i.e., within the retinotopic map). Our results demonstrate a bias for local stimulus orientation that has a coarse spatial scale, is robust across stimulus classes (spirals and gratings), and suffices to explain decoding from fMRI responses in V1. PMID:24336733

  3. Combination of blood oxygen level–dependent functional magnetic resonance imaging and visual evoked potential recordings for abnormal visual cortex in two types of amblyopia

    PubMed Central

    Wang, Xinmei; Cui, Dongmei; Zheng, Ling; Yang, Xiao; Yang, Hui

    2012-01-01

    Purpose To elucidate the different neuromechanisms of subjects with strabismic and anisometropic amblyopia compared with normal vision subjects using blood oxygen level–dependent functional magnetic resonance imaging (BOLD-fMRI) and pattern-reversal visual evoked potential (PR-VEP). Methods Fifty-three subjects, age range seven to 12 years, diagnosed with strabismic amblyopia (17 cases), anisometropic amblyopia (20 cases), and normal vision (16 cases), were examined using the BOLD-fMRI and PR-VEP of UTAS-E3000 techniques. Cortical activation by binocular viewing of reversal checkerboard patterns was examined in terms of the calcarine region of interest (ROI)-based and spatial frequency–dependent analysis. The correlation of cortical activation in fMRI and the P100 amplitude in VEP were analyzed using the SPSS 12.0 software package. Results In the BOLD-fMRI procedure, reduced areas and decreased activation levels were found in Brodmann area (BA) 17 and other extrastriate areas in subjects with amblyopia compared with the normal vision group. In general, the reduced areas mainly resided in the striate visual cortex in subjects with anisometropic amblyopia. In subjects with strabismic amblyopia, a more significant cortical impairment was found in bilateral BA 18 and BA 19 than that in subjects with anisometropic amblyopia. The activation by high-spatial-frequency stimuli was reduced in bilateral BA 18 and 19 as well as BA 17 in subjects with anisometropic amblyopia, whereas the activation was mainly reduced in BA 18 and BA 19 in subjects with strabismic amblyopia. These findings were further confirmed by the ROI-based analysis of BA 17. During spatial frequency–dependent VEP detection, subjects with anisometropic amblyopia had reduced sensitivity for high spatial frequency compared to subjects with strabismic amblyopia. The cortical activation in fMRI with the calcarine ROI-based analysis of BA 17 was significantly correlated with the P100 amplitude in VEP recording. Conclusions This study suggested that different types of amblyopia had different cortical responses and combinations of spatial frequency–dependent BOLD-fMRI with PR-VEP could differentiate among various kinds of amblyopia according to the different cortical responses. This study can supply new methods for amblyopia neurology study. PMID:22539870

  4. MRI and MRA of spinal cord arteriovenous shunts.

    PubMed

    Condette-Auliac, Stéphanie; Boulin, Anne; Roccatagliata, Luca; Coskun, Oguzhan; Guieu, Stéphanie; Guedin, Pierre; Rodesch, Georges

    2014-12-01

    The purpose of this review is to describe the diagnostic criteria for spinal cord arteriovenous shunts (SCAVSs) when using magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA), and to discuss the extent to which the different MRI and MRA sequences and technical parameters provide the information that is required to diagnose these lesions properly. SCAVSs are divided into four groups according to location (paraspinal, epidural, dural, or intradural) and type (fistula or nidus); each type of lesion is described. SCAVSs are responsible for neurological symptoms due to spinal cord or nerve root involvement. MRI is usually the first examination performed when a spinal cord lesion is suspected. Recognition of the image characteristics of vascular lesions is mandatory if useful sequences are to be performed-especially MRA sequences. Because the treatment of SCAVSs relies mainly on endovascular therapies, MRI and MRA help with the planning of the angiographic procedure. We explain the choice of MRA sequences and parameters, the advantages and pitfalls to be aware of in order to obtain the best visualization, and the analysis of each lesion. © 2014 Wiley Periodicals, Inc.

  5. Unobtrusive integration of data management with fMRI analysis.

    PubMed

    Poliakov, Andrew V; Hertzenberg, Xenia; Moore, Eider B; Corina, David P; Ojemann, George A; Brinkley, James F

    2007-01-01

    This note describes a software utility, called X-batch which addresses two pressing issues typically faced by functional magnetic resonance imaging (fMRI) neuroimaging laboratories (1) analysis automation and (2) data management. The first issue is addressed by providing a simple batch mode processing tool for the popular SPM software package (http://www.fil.ion. ucl.ac.uk/spm/; Welcome Department of Imaging Neuroscience, London, UK). The second is addressed by transparently recording metadata describing all aspects of the batch job (e.g., subject demographics, analysis parameters, locations and names of created files, date and time of analysis, and so on). These metadata are recorded as instances of an extended version of the Protégé-based Experiment Lab Book ontology created by the Dartmouth fMRI Data Center. The resulting instantiated ontology provides a detailed record of all fMRI analyses performed, and as such can be part of larger systems for neuroimaging data management, sharing, and visualization. The X-batch system is in use in our own fMRI research, and is available for download at http://X-batch.sourceforge.net/.

  6. Intraoperative high-field magnetic resonance imaging, multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas.

    PubMed

    Li, Fang-Ye; Chen, Xiao-Lei; Xu, Bai-Nan

    2016-09-01

    To determine the beneficial effects of intraoperative high-field magnetic resonance imaging (MRI), multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas. Twelve patients with 13 supratentorial cavernomas were prospectively enrolled and operated while using a 1.5 T intraoperative MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring. All cavernomas were deeply located in subcortical areas or involved critical areas. Intraoperative high-field MRIs were obtained for the intraoperative "visualization" of surrounding eloquent structures, "brain shift" corrections, and navigational plan updates. All cavernomas were successfully resected with guidance from intraoperative MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring. In 5 cases with supratentorial cavernomas, intraoperative "brain shift" severely deterred locating of the lesions; however, intraoperative MRI facilitated precise locating of these lesions. During long-term (>3 months) follow-up, some or all presenting signs and symptoms improved or resolved in 4 cases, but were unchanged in 7 patients. Intraoperative high-field MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring are helpful in surgeries for the treatment of small deeply seated subcortical cavernomas.

  7. EXCI-CEST: Exploiting pharmaceutical excipients as MRI-CEST contrast agents for tumor imaging.

    PubMed

    Longo, Dario Livio; Moustaghfir, Fatima Zzahra; Zerbo, Alexandre; Consolino, Lorena; Anemone, Annasofia; Bracesco, Martina; Aime, Silvio

    2017-06-15

    Chemical Exchange Saturation Transfer (CEST) approach is a novel tool within magnetic resonance imaging (MRI) that allows visualization of molecules possessing exchangeable protons with water. Many molecules, employed as excipients for the formulation of finished drug products, are endowed with hydroxyl, amine or amide protons, thus can be exploitable as MRI-CEST contrast agents. Their high safety profiles allow them to be injected at very high doses. Here we investigated the MRI-CEST properties of several excipients (ascorbic acid, sucrose, N-acetyl-d-glucosamine, meglumine and 2-pyrrolidone) and tested them as tumor-detecting agents in two different murine tumor models (breast and melanoma cancers). All the investigated molecules showed remarkable CEST contrast upon i.v. administration in the range 1-3ppm according to the type of mobile proton groups. A marked increase of CEST contrast was observed in tumor regions up to 30min post injection. The combination of marked tumor contrast enhancement and lack of toxicity make these molecules potential candidates for the diagnosis of tumors within the MRI-CEST approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation.

    PubMed

    Chai, Yuhui; Sheng, Jingwei; Bandettini, Peter A; Gao, Jia-Hong

    2018-05-01

    Transcranial alternating current stimulation (tACS) has emerged as a promising tool for modulating cortical oscillations. In previous electroencephalogram (EEG) studies, tACS has been found to modulate brain oscillatory activity in a frequency-specific manner. However, the spatial distribution and hemodynamic response for this modulation remains poorly understood. Functional magnetic resonance imaging (fMRI) has the advantage of measuring neuronal activity in regions not only below the tACS electrodes but also across the whole brain with high spatial resolution. Here, we measured fMRI signal while applying tACS to modulate rhythmic visual activity. During fMRI acquisition, tACS at different frequencies (4, 8, 16, and 32 Hz) was applied along with visual flicker stimulation at 8 and 16 Hz. We analyzed the blood-oxygen-level-dependent (BOLD) signal difference between tACS-ON vs tACS-OFF, and different frequency combinations (e.g., 4 Hz tACS, 8 Hz flicker vs 8 Hz tACS, 8 Hz flicker). We observed significant tACS modulation effects on BOLD responses when the tACS frequency matched the visual flicker frequency or the second harmonic frequency. The main effects were predominantly seen in regions that were activated by the visual task and targeted by the tACS current distribution. These findings bridge different scientific domains of tACS research and demonstrate that fMRI could localize the tACS effect on stimulus-induced brain rhythms, which could lead to a new approach for understanding the high-level cognitive process shaped by the ongoing oscillatory signal. © 2018 Wiley Periodicals, Inc.

  9. Development of a multi-scale and multi-modality imaging system to characterize tumours and their microenvironment in vivo

    NASA Astrophysics Data System (ADS)

    Rouffiac, Valérie; Ser-Leroux, Karine; Dugon, Emilie; Leguerney, Ingrid; Polrot, Mélanie; Robin, Sandra; Salomé-Desnoulez, Sophie; Ginefri, Jean-Christophe; Sebrié, Catherine; Laplace-Builhé, Corinne

    2015-03-01

    In vivo high-resolution imaging of tumor development is possible through dorsal skinfold chamber implantable on mice model. However, current intravital imaging systems are weakly tolerated along time by mice and do not allow multimodality imaging. Our project aims to develop a new chamber for: 1- long-term micro/macroscopic visualization of tumor (vascular and cellular compartments) and tissue microenvironment; and 2- multimodality imaging (photonic, MRI and sonography). Our new experimental device was patented in March 2014 and was primarily assessed on 75 mouse engrafted with 4T1-Luc tumor cell line, and validated in confocal and multiphoton imaging after staining the mice vasculature using Dextran 155KDa-TRITC or Dextran 2000kDa-FITC. Simultaneously, a universal stage was designed for optimal removal of respiratory and cardiac artifacts during microscopy assays. Experimental results from optical, ultrasound (Bmode and pulse subtraction mode) and MRI imaging (anatomic sequences) showed that our patented design, unlike commercial devices, improves longitudinal monitoring over several weeks (35 days on average against 12 for the commercial chamber) and allows for a better characterization of the early and late tissue alterations due to tumour development. We also demonstrated the compatibility for multimodality imaging and the increase of mice survival was by a factor of 2.9, with our new skinfold chamber. Current developments include: 1- defining new procedures for multi-labelling of cells and tissue (screening of fluorescent molecules and imaging protocols); 2- developing ultrasound and MRI imaging procedures with specific probes; 3- correlating optical/ultrasound/MRI data for a complete mapping of tumour development and microenvironment.

  10. A software tool for automatic classification and segmentation of 2D/3D medical images

    NASA Astrophysics Data System (ADS)

    Strzelecki, Michal; Szczypinski, Piotr; Materka, Andrzej; Klepaczko, Artur

    2013-02-01

    Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided.

  11. Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.

    2007-03-01

    In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.

  12. Decision forests for learning prostate cancer probability maps from multiparametric MRI

    NASA Astrophysics Data System (ADS)

    Ehrenberg, Henry R.; Cornfeld, Daniel; Nawaf, Cayce B.; Sprenkle, Preston C.; Duncan, James S.

    2016-03-01

    Objectives: Advances in multiparametric magnetic resonance imaging (mpMRI) and ultrasound/MRI fusion imaging offer a powerful alternative to the typical undirected approach to diagnosing prostate cancer. However, these methods require the time and expertise needed to interpret mpMRI image scenes. In this paper, a machine learning framework for automatically detecting and localizing cancerous lesions within the prostate is developed and evaluated. Methods: Two studies were performed to gather MRI and pathology data. The 12 patients in the first study underwent an MRI session to obtain structural, diffusion-weighted, and dynamic contrast enhanced image vol- umes of the prostate, and regions suspected of being cancerous from the MRI data were manually contoured by radiologists. Whole-mount slices of the prostate were obtained for the patients in the second study, in addition to structural and diffusion-weighted MRI data, for pathology verification. A 3-D feature set for voxel-wise appear- ance description combining intensity data, textural operators, and zonal approximations was generated. Voxels in a test set were classified as normal or cancer using a decision forest-based model initialized using Gaussian discriminant analysis. A leave-one-patient-out cross-validation scheme was used to assess the predictions against the expert manual segmentations confirmed as cancer by biopsy. Results: We achieved an area under the average receiver-operator characteristic curve of 0.923 for the first study, and visual assessment of the probability maps showed 21 out of 22 tumors were identified while a high level of specificity was maintained. In addition to evaluating the model against related approaches, the effects of the individual MRI parameter types were explored, and pathological verification using whole-mount slices from the second study was performed. Conclusions: The results of this paper show that the combination of mpMRI and machine learning is a powerful tool for quantitatively diagnosing prostate cancer.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avkshtol, V; Tanny, S; Reddy, K

    Purpose: Stereotactic radiation therapy (SRT) provides an excellent alternative to embolization and surgical excision for the management of appropriately selected cerebral arteriovenous malformations (AVMs). The currently accepted standard for delineating AVMs is planar digital subtraction angiography (DSA). DSA can be used to acquire a 3D data set that preserves osseous structures (3D-DA) at the time of the angiography for SRT planning. Magnetic resonance imaging (MRI) provides an alternative noninvasive method of visualizing the AVM nidus with comparable spatial resolution. We utilized 3D-DA and T1 post-contrast MRI data to evaluate the differences in SRT target volumes. Methods: Four patients underwent 3D-DAmore » and high-resolution MRI. 3D T1 post-contrast images were obtained in all three reconstruction planes. A planning CT was fused with MRI and 3D-DA data sets. The AVMs were contoured utilizing one of the image sets at a time. Target volume, centroid, and maximum and minimum dimensions were analyzed for each patient. Results: Targets delineated using post-contrast MRI demonstrated a larger mean volume. AVMs >2 cc were found to have a larger difference between MRI and 3D-DA volumes. Larger AVMs also demonstrated a smaller relative uncertainty in contour centroid position (1 mm). AVM targets <2 cc had smaller absolute differences in volume, but larger differences in contour centroid position (2.5 mm). MRI targets demonstrated a more irregular shape compared to 3D-DA targets. Conclusions: Our preliminary data supports the use of MRI alone to delineate AVM targets >2 cc. The greater centroid stability for AVMs >2 cc ensures accurate target localization during image fusion. The larger MRI target volumes did not result in prohibitively greater volumes of normal brain tissue receiving the prescription dose. The larger centroid instability for AVMs <2 cc precludes the use of MRI alone for target delineation. We recommend incorporating a 3D-DA for these patients.« less

  14. fMRI Analysis-by-Synthesis Reveals a Dorsal Hierarchy That Extracts Surface Slant.

    PubMed

    Ban, Hiroshi; Welchman, Andrew E

    2015-07-08

    The brain's skill in estimating the 3-D orientation of viewed surfaces supports a range of behaviors, from placing an object on a nearby table, to planning the best route when hill walking. This ability relies on integrating depth signals across extensive regions of space that exceed the receptive fields of early sensory neurons. Although hierarchical selection and pooling is central to understanding of the ventral visual pathway, the successive operations in the dorsal stream are poorly understood. Here we use computational modeling of human fMRI signals to probe the computations that extract 3-D surface orientation from binocular disparity. To understand how representations evolve across the hierarchy, we developed an inference approach using a series of generative models to explain the empirical fMRI data in different cortical areas. Specifically, we simulated the responses of candidate visual processing algorithms and tested how well they explained fMRI responses. Thereby we demonstrate a hierarchical refinement of visual representations moving from the representation of edges and figure-ground segmentation (V1, V2) to spatially extensive disparity gradients in V3A. We show that responses in V3A are little affected by low-level image covariates, and have a partial tolerance to the overall depth position. Finally, we show that responses in V3A parallel perceptual judgments of slant. This reveals a relatively short computational hierarchy that captures key information about the 3-D structure of nearby surfaces, and more generally demonstrates an analysis approach that may be of merit in a diverse range of brain imaging domains. Copyright © 2015 Ban and Welchman.

  15. l-Theanine and caffeine improve target-specific attention to visual stimuli by decreasing mind wandering: a human functional magnetic resonance imaging study.

    PubMed

    Kahathuduwa, Chanaka N; Dhanasekara, Chathurika S; Chin, Shao-Hua; Davis, Tyler; Weerasinghe, Vajira S; Dassanayake, Tharaka L; Binks, Martin

    2018-01-01

    Oral intake of l-theanine and caffeine supplements is known to be associated with faster stimulus discrimination, possibly via improving attention to stimuli. We hypothesized that l-theanine and caffeine may be bringing about this beneficial effect by increasing attention-related neural resource allocation to target stimuli and decreasing deviation of neural resources to distractors. We used functional magnetic resonance imaging (fMRI) to test this hypothesis. Solutions of 200mg of l-theanine, 160mg of caffeine, their combination, or the vehicle (distilled water; placebo) were administered in a randomized 4-way crossover design to 9 healthy adult men. Sixty minutes after administration, a 20-minute fMRI scan was performed while the subjects performed a visual color stimulus discrimination task. l-Theanine and l-theanine-caffeine combination resulted in faster responses to targets compared with placebo (∆=27.8milliseconds, P=.018 and ∆=26.7milliseconds, P=.037, respectively). l-Theanine was associated with decreased fMRI responses to distractor stimuli in brain regions that regulate visual attention, suggesting that l-theanine may be decreasing neural resource allocation to process distractors, thus allowing to attend to targets more efficiently. l-Theanine-caffeine combination was associated with decreased fMRI responses to target stimuli as compared with distractors in several brain regions that typically show increased activation during mind wandering. Factorial analysis suggested that l-theanine and caffeine seem to have a synergistic action in decreasing mind wandering. Therefore, our hypothesis is that l-theanine and caffeine may be decreasing deviation of attention to distractors (including mind wandering); thus, enhancing attention to target stimuli was confirmed. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Prospective evaluation of 18F-FACBC PET/CT and PET/MRI versus multiparametric MRI in intermediate- to high-risk prostate cancer patients (FLUCIPRO trial).

    PubMed

    Jambor, Ivan; Kuisma, Anna; Kähkönen, Esa; Kemppainen, Jukka; Merisaari, Harri; Eskola, Olli; Teuho, Jarmo; Perez, Ileana Montoya; Pesola, Marko; Aronen, Hannu J; Boström, Peter J; Taimen, Pekka; Minn, Heikki

    2018-03-01

    The purpose of this study was to evaluate 18 F-FACBC PET/CT, PET/MRI, and multiparametric MRI (mpMRI) in detection of primary prostate cancer (PCa). Twenty-six men with histologically confirmed PCa underwent PET/CT immediately after injection of 369 ± 10 MBq 18 F-FACBC (fluciclovine) followed by PET/MRI started 55 ± 7 min from injection. Maximum standardized uptake values (SUV max ) were measured for both hybrid PET acquisitions. A separate mpMRI was acquired within a week of the PET scans. Logan plots were used to calculate volume of distribution (V T ). The presence of PCa was estimated in 12 regions with radical prostatectomy findings as ground truth. For each imaging modality, area under the curve (AUC) for detection of PCa was determined to predict diagnostic performance. The clinical trial registration number is NCT02002455. In the visual analysis, 164/312 (53%) regions contained PCa, and 41 tumor foci were identified. PET/CT demonstrated the highest sensitivity at 87% while its specificity was low at 56%. The AUC of both PET/MRI and mpMRI significantly (p < 0.01) outperformed that of PET/CT while no differences were detected between PET/MRI and mpMRI. SUV max and V T of Gleason score (GS) >3 + 4 tumors were significantly (p < 0.05) higher than those for GS 3 + 3 and benign hyperplasia. A total of 442 lymph nodes were evaluable for staging, and PET/CT and PET/MRI demonstrated true-positive findings in only 1/7 patients with metastatic lymph nodes. Quantitative 18 F-FACBC imaging significantly correlated with GS but failed to outperform MRI in lesion detection. 18 F-FACBC may assist in targeted biopsies in the setting of hybrid imaging with MRI.

  17. Combined Dynamic Contrast Enhanced Liver MRI and MRA Using Interleaved Variable Density Sampling

    PubMed Central

    Rahimi, Mahdi Salmani; Korosec, Frank R.; Wang, Kang; Holmes, James H.; Motosugi, Utaroh; Bannas, Peter; Reeder, Scott B.

    2014-01-01

    Purpose To develop and evaluate a method for volumetric contrast-enhanced MR imaging of the liver, with high spatial and temporal resolutions, for combined dynamic imaging and MR angiography using a single injection of contrast. Methods An interleaved variable density (IVD) undersampling pattern was implemented in combination with a real-time-triggered, time-resolved, dual-echo 3D spoiled gradient echo sequence. Parallel imaging autocalibration lines were acquired only once during the first time-frame. Imaging was performed in ten subjects with focal nodular hyperplasia (FNH) and compared with their clinical MRI. The angiographic phase of the proposed method was compared to a dedicated MR angiogram acquired during a second injection of contrast. Results A total of 21 FNH, 3 cavernous hemangiomas, and 109 arterial segments were visualized in 10 subjects. The temporally-resolved images depicted the characteristic arterial enhancement pattern of the lesions with a 4 s update rate. Images were graded as having significantly higher quality compared to the clinical MRI. Angiograms produced from the IVD method provided non-inferior diagnostic assessment compared to the dedicated MRA. Conclusion Using an undersampled IVD imaging method, we have demonstrated the feasibility of obtaining high spatial and temporal resolution dynamic contrast-enhanced imaging and simultaneous MRA of the liver. PMID:24639130

  18. Visual Assessment of Brain Perfusion MRI Scans in Dementia: A Pilot Study.

    PubMed

    Fällmar, David; Lilja, Johan; Velickaite, Vilma; Danfors, Torsten; Lubberink, Mark; Ahlgren, André; van Osch, Matthias J P; Kilander, Lena; Larsson, Elna-Marie

    2016-05-01

    Functional imaging is becoming increasingly important for the detection of neurodegenerative disorders. Perfusion MRI with arterial spin labeling (ASL) has been reported to provide promising diagnostic possibilities but is not yet widely used in routine clinical work. The aim of this study was to compare, in a clinical setting, the visual assessment of subtracted ASL CBF maps with and without additional smoothing, to FDG-PET data. Ten patients with a clinical diagnosis of dementia and 11 age-matched cognitively healthy controls were examined with pseudo-continuous ASL (pCASL) and 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET). Three diagnostic physicians visually assessed the pCASL maps after subtraction only, and after postprocessing using Gaussian smoothing and GLM-based beta estimate functions. The assessment scores were compared to FDG PET values. Furthermore, the ability to discriminate patients from healthy elderly controls was assessed. Smoothing improved the correlation between visually assessed regional ASL perfusion scores and the FDG PET SUV-r values from the corresponding regions. However, subtracted pCASL maps discriminated patients from healthy controls better than smoothed maps. Smoothing increased the number of false-positive patient identifications. Application of beta estimate functions had only a marginal effect. Spatial smoothing of ASL images increased false positive results in the discrimination of hypoperfusion conditions from healthy elderly. It also decreased interreader agreement. However, regional characterization and subjective perception of image quality was improved. Copyright © 2015 by the American Society of Neuroimaging.

  19. Computational studies of steering nanoparticles with magnetic gradients

    NASA Astrophysics Data System (ADS)

    Aylak, Sultan Suleyman

    Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform diagnostic, curative, and reconstructive treatments in the human body at the cellular and subcellular level in a controllable manner have recently been proposed. The concept of a MRI-guided nanorobotic system is based on the use of a MRI scanner to induce the required external driving forces to guide magnetic nanocapsules to a specific target. However, the maximum magnetic gradient specifications of existing clinical MRI systems are not capable of driving magnetic nanocapsules against the blood flow. This thesis presents the visualization of nanoparticles inside blood vessel, Graphical User Interface (GUI) for updating file including initial parameters and demonstrating the simulation of particles and C++ code for computing magnetic forces and fluidic forces. The visualization and GUI were designed using Virtual Reality Modeling Language (VRML), MATLAB and C#. The addition of software for MRI-guided nanorobotic system provides simulation results. Preliminary simulation results demonstrate that external magnetic field causes aggregation of nanoparticles while they flow in the vessel. This is a promising result --in accordance with similar experimental results- and encourages further investigation on the nanoparticle-based self-assembly structures for use in nanorobotic drug delivery.

  20. High-resolution MRI of cranial nerves in posterior fossa at 3.0 T.

    PubMed

    Guo, Zi-Yi; Chen, Jing; Liang, Qi-Zhou; Liao, Hai-Yan; Cheng, Qiong-Yue; Fu, Shui-Xi; Chen, Cai-Xiang; Yu, Dan

    2013-02-01

    To evaluate the influence of high-resolution imaging obtainable with the higher field strength of 3.0 T on the visualization of the brain nerves in the posterior fossa. In total, 20 nerves were investigated on MRI of 12 volunteers each and selected for comparison, respectively, with the FSE sequences with 5 mm and 2 mm section thicknesses and gradient recalled echo (GRE) sequences acquired with a 3.0-T scanner. The MR images were evaluated by three independent readers who rated image quality according to depiction of anatomic detail and contrast with use of a rating scale. In general, decrease of the slice thickness showed a significant increase in the detection of nerves as well as in the image quality characteristics. Comparing FSE and GRE imaging, the course of brain nerves and brainstem vessels was visualized best with use of the three-dimensional (3D) pulse sequence. The comparison revealed the clear advantage of a thin section. The increased resolution enabled immediate identification of all brainstem nerves. GRE sequence most distinctly and confidently depicted pertinent structures and enables 3D reconstruction to illustrate complex relations of the brainstem. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  1. Development of a Hybrid EPR/NMR Coimaging System

    PubMed Central

    Samouilov, Alexandre; Caia, George L.; Kesselring, Eric; Petryakov, Sergey; Wasowicz, Tomasz; Zweier, Jay L.

    2010-01-01

    Electron paramagnetic resonance imaging (EPRI) is a powerful technique that enables spatial mapping of free radicals or other paramagnetic compounds; however, it does not in itself provide anatomic visualization of the body. Proton magnetic resonance imaging (MRI) is well suited to provide anatomical visualization. A hybrid EPR/NMR coimaging instrument was constructed that utilizes the complementary capabilities of both techniques, superimposing EPR and proton-MR images to provide the distribution of paramagnetic species in the body. A common magnet and field gradient system is utilized along with a dual EPR and proton-NMR resonator assembly, enabling coimaging without the need to move the sample. EPRI is performed at ~1.2 GHz/~40 mT and proton MRI is performed at 16.18 MHz/~380 mT; hence the method is suitable for whole-body coimaging of living mice. The gradient system used is calibrated and controlled in such a manner that the spatial geometry of the two acquired images is matched, enabling their superposition without additional postprocessing or marker registration. The performance of the system was tested in a series of phantoms and in vivo applications by mapping the location of a paramagnetic probe in the gastrointestinal (GI) tract of mice. This hybrid EPR/NMR coimaging instrument enables imaging of paramagnetic molecules along with their anatomic localization in the body. PMID:17659621

  2. Biocytin-Derived MRI Contrast Agent for Longitudinal Brain Connectivity Studies

    PubMed Central

    2011-01-01

    To investigate the connectivity of brain networks noninvasively and dynamically, we have developed a new strategy to functionalize neuronal tracers and designed a biocompatible probe that can be visualized in vivo using magnetic resonance imaging (MRI). Furthermore, the multimodal design used allows combined ex vivo studies with microscopic spatial resolution by conventional histochemical techniques. We present data on the functionalization of biocytin, a well-known neuronal tract tracer, and demonstrate the validity of the approach by showing brain networks of cortical connectivity in live rats under MRI, together with the corresponding microscopic details, such as fibers and neuronal morphology under light microscopy. We further demonstrate that the developed molecule is the first MRI-visible probe to preferentially trace retrograde connections. Our study offers a new platform for the development of multimodal molecular imaging tools of broad interest in neuroscience, that capture in vivo the dynamics of large scale neural networks together with their microscopic characteristics, thereby spanning several organizational levels. PMID:22860157

  3. Longitudinal 2-point dixon muscle magnetic resonance imaging in becker muscular dystrophy.

    PubMed

    Bonati, Ulrike; Schmid, Maurice; Hafner, Patricia; Haas, Tanja; Bieri, Oliver; Gloor, Monika; Fischmann, Arne; Fischer, Dirk

    2015-06-01

    Quantitative MRI techniques detect disease progression in myopathies more sensitively than muscle function measures or conventional MRI. To date, only conventional MRI data using visual rating scales are available for measurement of disease progression in Becker muscular dystrophy (BMD). In 3 patients with BMD (mean age 36.8 years), the mean fat fraction (MFF) of the thigh muscles was assessed by MRI at baseline and at 1-year follow-up using a 2-point Dixon approach (2PD). The motor function measurement scale (MFM) was used for clinical assessment. The mean MFF of all muscles at baseline was 61.6% (SD 7.6). It increased by 3.7% to 65.3% (SD 4.7) at follow-up. The severity of muscle involvement varied between various muscle groups. As in other myopathies, 2PD can quantify fatty muscle degeneration in BMD and can detect disease progression in a small sample size and at relatively short imaging intervals. © 2015 Wiley Periodicals, Inc.

  4. In vivo magnetic resonance imaging of type I collagen scaffold in rat: improving visualization of bladder and subcutaneous implants.

    PubMed

    Sun, Yi; Geutjes, Paul; Oosterwijk, Egbert; Heerschap, Arend

    2014-12-01

    Noninvasive monitoring of implanted scaffolds is important to understand their behavior and role in tissue engineering, in particular to follow their degradation and interaction with host tissue. Magnetic resonance imaging (MRI) is well suited for this goal, but its application is often hampered by the low contrast of scaffolds that are prepared from biomaterials such as type I collagen. The aim of this study was to test iron oxide particles incorporation in improving their MRI contrasts, and to follow their degradation and tissue interactions. Scaffolds with and without iron oxide particles were implanted either subcutaneously or on the bladder of rats. At predetermined time points, in vivo MRI were obtained and tissues were then harvested for histology analysis and transmission electron microscopy. The result showed that the incorporation of iron oxide particles improved MRI contrast of the implants, providing information on their location, shapes, and degradation. Second, the host tissue reaction to the type I collagen implants could be observed in both MRI and histology. Finally, MRI also revealed that the degradation and host tissue reaction of iron particles-loaded scaffolds differed between subcutaneous and bladder implantation, which was substantiated by histology.

  5. Functional magnetic resonance imaging in clinical practice: State of the art and science.

    PubMed

    Barras, Christen D; Asadi, Hamed; Baldeweg, Torsten; Mancini, Laura; Yousry, Tarek A; Bisdas, Sotirios

    2016-11-01

    Functional magnetic resonance imaging (fMRI) has become a mainstream neuroimaging modality in the assessment of patients being evaluated for brain tumour and epilepsy surgeries. Thus, it is important for doctors in primary care settings to be well acquainted with the present and potential future applications, as well as limitations, of this modality. The objective of this article is to introduce the theoretical principles and state-of-the-art clinical applications of fMRI in brain tumour and epilepsy surgery, with a focus on the implications for clinical primary care. fMRI enables non-invasive functional mapping of specific cortical tasks (eg motor, language, memory-based, visual), revealing information about functional localisation, anatomical variation in cortical function, and disease effects and adaptations, including the fascinating phenomenon of brain plasticity. fMRI is currently ordered by specialist neurologists and neurosurgeons for the purposes of pre-surgical assessment, and within the context of an experienced multidisciplinary team to prepare, conduct and interpret the scan. With an increasing number of patients undergoing fMRI, general practitioners can expect questions about the current and emerging role of fMRI in clinical care from these patients and their families.

  6. Evaluation of vascular variations at cerebellopontine angle by 3D T2WI magnetic-resonance imaging in patients with vertigo.

    PubMed

    Beyazal Celiker, Fatma; Dursun, Engin; Celiker, Metin; Durakoglugil, Tugba; Beyazal, Mehmet; Inecikli, Mehmet Fatih; Ozgur, Abdulkadir; Terzi, Suat

    2017-01-01

    Vascular loops of the anterior-inferior cerebellar artery (AICA) at the cerebellopontine angle (CPA) are considered related to auditory-vestibular symptoms. Clinical association of these anatomical aberrations, which can be grouped together as vascular compression syndromes, is controversial. Magnetic resonance imaging (MRI) is widely used to visualize this anatomical region, given its high sensitivity and specificity. To elucidate the clinical relationship of vertigo symptoms with vascular loop compression syndrome by evaluating the neurovascular contacts of the vestibulocochlear nerve (VCN) and AICA at the CPA and internal auditory canal via high-resolution MRI. The study included 417 patients (178 with vertigo and 239 without vertigo) undergoing MRI for various clinical causes. MRI scans were assessed to study the presence of vascular abnormalities at the CPA. According to our findings, type 1 vascular variation was observed most frequently in both sides. MRI findings were similar for the patients with and without vertigo. Identifying the prevalence of the vascular loops of the AICA primarily depends on diagnostic technique, and our results identified a slightly higher prevalence than those of previous studies, which might be partly related to the high-sensitivity of 3-dimensional T2-weighted MRI.

  7. A Novel Liposomal Nanoparticle for the Imaging of Amyloid Plaque by Magnetic Resonance Imaging.

    PubMed

    Tanifum, Eric A; Ghaghada, Ketan; Vollert, Craig; Head, Elizabeth; Eriksen, Jason L; Annapragada, Ananth

    2016-01-01

    Amyloid binding molecules with greater hydrophilicity than existing ligands were synthesized. The lead candidate ET6-21 bound amyloid fibrils, and amyloid deposits in dog brain and human brain tissue ex vivo. The ligand was used to prepare novel amyloid-targeted liposomal nanoparticles. The preparation was tested in the Tg2576 and TetO/APP mouse models of amyloid deposition. Gd chelates and Indocyanine green were included in the particles for visualization by MRI and near-infrared microscopy. Upon intravenous injection, the particles successfully traversed the blood-brain barrier in these mice, and bound to the plaques. Magnetic resonance imaging (T1-MRI) conducted 4 days after injection demonstrated elevated signal in the brains of mice with amyloid plaques present. No signal was observed in amyloid-negative mice, or in amyloid-positive mice injected with an untargeted version of the same agent. The MRI results were confirmed by immunohistochemical and fluorescent microscopic examination of mouse brain sections, showing colocalization of the fluorescent tags and amyloid deposits.

  8. What does magnetic resonance imaging add to the prenatal ultrasound diagnosis of facial clefts?

    PubMed

    Mailáth-Pokorny, M; Worda, C; Krampl-Bettelheim, E; Watzinger, F; Brugger, P C; Prayer, D

    2010-10-01

    Ultrasound is the modality of choice for prenatal detection of cleft lip and palate. Because its accuracy in detecting facial clefts, especially isolated clefts of the secondary palate, can be limited, magnetic resonance imaging (MRI) is used as an additional method for assessing the fetus. The aim of this study was to investigate the role of fetal MRI in the prenatal diagnosis of facial clefts. Thirty-four pregnant women with a mean gestational age of 26 (range, 19-34) weeks underwent in utero MRI, after ultrasound examination had identified either a facial cleft (n = 29) or another suspected malformation (micrognathia (n = 1), cardiac defect (n = 1), brain anomaly (n = 2) or diaphragmatic hernia (n = 1)). The facial cleft was classified postnatally and the diagnoses were compared with the previous ultrasound findings. There were 11 (32.4%) cases with cleft of the primary palate alone, 20 (58.8%) clefts of the primary and secondary palate and three (8.8%) isolated clefts of the secondary palate. In all cases the primary and secondary palate were visualized successfully with MRI. Ultrasound imaging could not detect five (14.7%) facial clefts and misclassified 15 (44.1%) facial clefts. The MRI classification correlated with the postnatal/postmortem diagnosis. In our hands MRI allows detailed prenatal evaluation of the primary and secondary palate. By demonstrating involvement of the palate, MRI provides better detection and classification of facial clefts than does ultrasound alone. Copyright © 2010 ISUOG. Published by John Wiley & Sons, Ltd.

  9. Use magnetic resonance imaging to assess articular cartilage

    PubMed Central

    Wang, Yuanyuan; Wluka, Anita E.; Jones, Graeme; Ding, Changhai

    2012-01-01

    Magnetic resonance imaging (MRI) enables a noninvasive, three-dimensional assessment of the entire joint, simultaneously allowing the direct visualization of articular cartilage. Thus, MRI has become the imaging modality of choice in both clinical and research settings of musculoskeletal diseases, particular for osteoarthritis (OA). Although radiography, the current gold standard for the assessment of OA, has had recent significant technical advances, radiographic methods have significant limitations when used to measure disease progression. MRI allows accurate and reliable assessment of articular cartilage which is sensitive to change, providing the opportunity to better examine and understand preclinical and very subtle early abnormalities in articular cartilage, prior to the onset of radiographic disease. MRI enables quantitative (cartilage volume and thickness) and semiquantitative assessment of articular cartilage morphology, and quantitative assessment of cartilage matrix composition. Cartilage volume and defects have demonstrated adequate validity, accuracy, reliability and sensitivity to change. They are correlated to radiographic changes and clinical outcomes such as pain and joint replacement. Measures of cartilage matrix composition show promise as they seem to relate to cartilage morphology and symptoms. MRI-derived cartilage measurements provide a useful tool for exploring the effect of modifiable factors on articular cartilage prior to clinical disease and identifying the potential preventive strategies. MRI represents a useful approach to monitoring the natural history of OA and evaluating the effect of therapeutic agents. MRI assessment of articular cartilage has tremendous potential for large-scale epidemiological studies of OA progression, and for clinical trials of treatment response to disease-modifying OA drugs. PMID:22870497

  10. Functional Brain Activity Changes after 4 Weeks Supplementation with a Multi-Vitamin/Mineral Combination: A Randomized, Double-Blind, Placebo-Controlled Trial Exploring Functional Magnetic Resonance Imaging and Steady-State Visual Evoked Potentials during Working Memory.

    PubMed

    White, David J; Cox, Katherine H M; Hughes, Matthew E; Pipingas, Andrew; Peters, Riccarda; Scholey, Andrew B

    2016-01-01

    This study explored the neurocognitive effects of 4 weeks daily supplementation with a multi-vitamin and -mineral combination (MVM) in healthy adults (aged 18-40 years). Using a randomized, double-blind, placebo-controlled design, participants underwent assessments of brain activity using functional Magnetic Resonance Imaging (fMRI; n = 32, 16 females) and Steady-State Visual Evoked Potential recordings (SSVEP; n = 39, 20 females) during working memory and continuous performance tasks at baseline and following 4 weeks of active MVM treatment or placebo. There were several treatment-related effects suggestive of changes in functional brain activity associated with MVM administration. SSVEP data showed latency reductions across centro-parietal regions during the encoding period of a spatial working memory task following 4 weeks of active MVM treatment. Complementary results were observed with the fMRI data, in which a subset of those completing fMRI assessment after SSVEP assessment ( n = 16) demonstrated increased BOLD response during completion of the Rapid Visual Information Processing task (RVIP) within regions of interest including bilateral parietal lobes. No treatment-related changes in fMRI data were observed in those who had not first undergone SSVEP assessment, suggesting these results may be most evident under conditions of fatigue. Performance on the working memory and continuous performance tasks did not significantly differ between treatment groups at follow-up. In addition, within the fatigued fMRI sample, increased RVIP BOLD response was correlated with the change in number of target detections as part of the RVIP task. This study provides preliminary evidence of changes in functional brain activity during working memory associated with 4 weeks of daily treatment with a multi-vitamin and -mineral combination in healthy adults, using two distinct but complementary measures of functional brain activity.

  11. Functional Brain Activity Changes after 4 Weeks Supplementation with a Multi-Vitamin/Mineral Combination: A Randomized, Double-Blind, Placebo-Controlled Trial Exploring Functional Magnetic Resonance Imaging and Steady-State Visual Evoked Potentials during Working Memory

    PubMed Central

    White, David J.; Cox, Katherine H. M.; Hughes, Matthew E.; Pipingas, Andrew; Peters, Riccarda; Scholey, Andrew B.

    2016-01-01

    This study explored the neurocognitive effects of 4 weeks daily supplementation with a multi-vitamin and -mineral combination (MVM) in healthy adults (aged 18–40 years). Using a randomized, double-blind, placebo-controlled design, participants underwent assessments of brain activity using functional Magnetic Resonance Imaging (fMRI; n = 32, 16 females) and Steady-State Visual Evoked Potential recordings (SSVEP; n = 39, 20 females) during working memory and continuous performance tasks at baseline and following 4 weeks of active MVM treatment or placebo. There were several treatment-related effects suggestive of changes in functional brain activity associated with MVM administration. SSVEP data showed latency reductions across centro-parietal regions during the encoding period of a spatial working memory task following 4 weeks of active MVM treatment. Complementary results were observed with the fMRI data, in which a subset of those completing fMRI assessment after SSVEP assessment (n = 16) demonstrated increased BOLD response during completion of the Rapid Visual Information Processing task (RVIP) within regions of interest including bilateral parietal lobes. No treatment-related changes in fMRI data were observed in those who had not first undergone SSVEP assessment, suggesting these results may be most evident under conditions of fatigue. Performance on the working memory and continuous performance tasks did not significantly differ between treatment groups at follow-up. In addition, within the fatigued fMRI sample, increased RVIP BOLD response was correlated with the change in number of target detections as part of the RVIP task. This study provides preliminary evidence of changes in functional brain activity during working memory associated with 4 weeks of daily treatment with a multi-vitamin and -mineral combination in healthy adults, using two distinct but complementary measures of functional brain activity. PMID:27994548

  12. Magnetic resonance imaging of the kinked fetal brain stem: a sign of severe dysgenesis.

    PubMed

    Stroustrup Smith, Annemarie; Levine, Deborah; Barnes, Patrick D; Robertson, Richard L

    2005-12-01

    Magnetic resonance imaging (MRI) allows visualization of the fetal brain stem in a manner not previously possible. A "kinked" brain stem is a sign of severe neurodysgenesis. The purpose of this series was to describe cases of a kinked brain stem detected on prenatal MRI and to discuss the possible genetic and syndromic etiologies. Seven cases of a kinked brain stem on fetal MRI (gestational age range, 18-34 weeks) were reviewed and correlated with other clinical, genetic, imaging, and autopsy findings. In all cases, there was associated cerebellar hypogenesis. Additional findings were ventriculomegaly (4 cases), cerebral hypogenesis (3 cases), microcephaly (4 cases), schizencephaly (1 case), cephalocele (1 case), hypogenesis of the corpus callosum (1 case), and hydrocephalus (1 case). In 2 cases, prenatal sonography misidentified the kinked brain stem as the cerebellum. A kinked brain stem is an indicator of severe neurodysgenesis arising early in gestation. Magnetic resonance imaging provides the necessary resolution to detect this sign and delineate any associated anomalies in utero to assist with further genetic evaluation, management, and counseling.

  13. Feature space analysis of MRI

    NASA Astrophysics Data System (ADS)

    Soltanian-Zadeh, Hamid; Windham, Joe P.; Peck, Donald J.

    1997-04-01

    This paper presents development and performance evaluation of an MRI feature space method. The method is useful for: identification of tissue types; segmentation of tissues; and quantitative measurements on tissues, to obtain information that can be used in decision making (diagnosis, treatment planning, and evaluation of treatment). The steps of the work accomplished are as follows: (1) Four T2-weighted and two T1-weighted images (before and after injection of Gadolinium) were acquired for ten tumor patients. (2) Images were analyed by two image analysts according to the following algorithm. The intracranial brain tissues were segmented from the scalp and background. The additive noise was suppressed using a multi-dimensional non-linear edge- preserving filter which preserves partial volume information on average. Image nonuniformities were corrected using a modified lowpass filtering approach. The resulting images were used to generate and visualize an optimal feature space. Cluster centers were identified on the feature space. Then images were segmented into normal tissues and different zones of the tumor. (3) Biopsy samples were extracted from each patient and were subsequently analyzed by the pathology laboratory. (4) Image analysis results were compared to each other and to the biopsy results. Pre- and post-surgery feature spaces were also compared. The proposed algorithm made it possible to visualize the MRI feature space and to segment the image. In all cases, the operators were able to find clusters for normal and abnormal tissues. Also, clusters for different zones of the tumor were found. Based on the clusters marked for each zone, the method successfully segmented the image into normal tissues (white matter, gray matter, and CSF) and different zones of the lesion (tumor, cyst, edema, radiation necrosis, necrotic core, and infiltrated tumor). The results agreed with those obtained from the biopsy samples. Comparison of pre- to post-surgery and radiation feature spaces confirmed that the tumor was not present in the second study but radiation necrosis was generated as a result of radiation.

  14. Multicontrast multiecho FLASH MRI for targeting the subthalamic nucleus.

    PubMed

    Xiao, Yiming; Beriault, Silvain; Pike, G Bruce; Collins, D Louis

    2012-06-01

    The subthalamic nucleus (STN) is one of the most common stimulation targets for treating Parkinson's disease using deep brain stimulation (DBS). This procedure requires precise placement of the stimulating electrode. Common practice of DBS implantation utilizes microelectrode recording to locate the sites with the correct electrical response after an initial location estimate based on a universal human brain atlas that is linearly scaled to the patient's anatomy as seen on the preoperative images. However, this often results in prolonged surgical time and possible surgical complications since the small-sized STN is difficult to visualize on conventional magnetic resonance (MR) images and its intersubject variability is not sufficiently considered in the atlas customization. This paper proposes a multicontrast, multiecho MR imaging (MRI) method that directly delineates the STN and other basal ganglia structures through five co-registered image contrasts (T1-weighted navigation image, R2 map, susceptibility-weighted imaging (phase, magnitude and fusion image)) obtained within a clinically acceptable time. The image protocol was optimized through both simulation and in vivo experiments to obtain the best image quality. Taking advantage of the multiple echoes and high readout bandwidths, no interimage registration is required since all images are produced in one acquisition, and image distortion and chemical shift are reduced. This MRI protocol is expected to mitigate some of the shortcomings of the state-of-the-art DBS implantation methods. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Shifting Visual Perspective During Retrieval Shapes Autobiographical Memories

    PubMed Central

    St Jacques, Peggy L.; Szpunar, Karl K.; Schacter, Daniel L.

    2016-01-01

    The dynamic and flexible nature of memories is evident in our ability to adopt multiple visual perspectives. Although autobiographical memories are typically encoded from the visual perspective of our own eyes they can be retrieved from the perspective of an observer looking at our self. Here, we examined the neural mechanisms of shifting visual perspective during long-term memory retrieval and its influence on online and subsequent memories using functional magnetic resonance imaging (fMRI). Participants generated specific autobiographical memories from the last five years and rated their visual perspective. In a separate fMRI session, they were asked to retrieve the memories across three repetitions while maintaining the same visual perspective as their initial rating or by shifting to an alternative perspective. Visual perspective shifting during autobiographical memory retrieval was supported by a linear decrease in neural recruitment across repetitions in the posterior parietal cortices. Additional analyses revealed that the precuneus, in particular, contributed to both online and subsequent changes in the phenomenology of memories. Our findings show that flexibly shifting egocentric perspective during autobiographical memory retrieval is supported by the precuneus, and suggest that this manipulation of mental imagery during retrieval has consequences for how memories are retrieved and later remembered. PMID:27989780

  16. [Associative Learning between Orientation and Color in Early Visual Areas].

    PubMed

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2017-08-01

    Associative learning is an essential neural phenomenon where the contingency of different items increases after training. Although associative learning has been found to occur in many brain regions, there is no clear evidence that associative learning of visual features occurs in early visual areas. Here, we developed an associative decoded functional magnetic resonance imaging (fMRI) neurofeedback (A-DecNef) to determine whether associative learning of color and orientation can be induced in early visual areas. During the three days' training, A-DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was simultaneously, physically presented to participants. Consequently, participants' perception of "red" was significantly more frequently than that of "green" in an achromatic vertical grating. This effect was also observed 3 to 5 months after training. These results suggest that long-term associative learning of two different visual features such as color and orientation, was induced most likely in early visual areas. This newly extended technique that induces associative learning may be used as an important tool for understanding and modifying brain function, since associations are fundamental and ubiquitous with respect to brain function.

  17. Magnetic Resonance Imaging Tracking of Ferumoxytol-Labeled Human Neural Stem Cells: Studies Leading to Clinical Use

    PubMed Central

    Gutova, Margarita; Frank, Joseph A.; D'Apuzzo, Massimo; Khankaldyyan, Vazgen; Gilchrist, Megan M.; Annala, Alexander J.; Metz, Marianne Z.; Abramyants, Yelena; Herrmann, Kelsey A.; Ghoda, Lucy Y.; Najbauer, Joseph; Brown, Christine E.; Blanchard, M. Suzette; Lesniak, Maciej S.; Kim, Seung U.; Barish, Michael E.

    2013-01-01

    Numerous stem cell-based therapies are currently under clinical investigation, including the use of neural stem cells (NSCs) as delivery vehicles to target therapeutic agents to invasive brain tumors. The ability to monitor the time course, migration, and distribution of stem cells following transplantation into patients would provide critical information for optimizing treatment regimens. No effective cell-tracking methodology has yet garnered clinical acceptance. A highly promising noninvasive method for monitoring NSCs and potentially other cell types in vivo involves preloading them with ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) to enable cell tracking using magnetic resonance imaging (MRI). We report here the preclinical studies that led to U.S. Food and Drug Administration approval for first-in-human investigational use of ferumoxytol to label NSCs prior to transplantation into brain tumor patients, followed by surveillance serial MRI. A combination of heparin, protamine sulfate, and ferumoxytol (HPF) was used to label the NSCs. HPF labeling did not affect cell viability, growth kinetics, or tumor tropism in vitro, and it enabled MRI visualization of NSC distribution within orthotopic glioma xenografts. MRI revealed dynamic in vivo NSC distribution at multiple time points following intracerebral or intravenous injection into glioma-bearing mice that correlated with histological analysis. Preclinical safety/toxicity studies of intracerebrally administered HPF-labeled NSCs in mice were also performed, and they showed no significant clinical or behavioral changes, no neuronal or systemic toxicities, and no abnormal accumulation of iron in the liver or spleen. These studies support the clinical use of ferumoxytol labeling of cells for post-transplant MRI visualization and tracking. PMID:24014682

  18. Impact of Virtual and Augmented Reality Based on Intraoperative Magnetic Resonance Imaging and Functional Neuronavigation in Glioma Surgery Involving Eloquent Areas.

    PubMed

    Sun, Guo-Chen; Wang, Fei; Chen, Xiao-Lei; Yu, Xin-Guang; Ma, Xiao-Dong; Zhou, Ding-Biao; Zhu, Ru-Yuan; Xu, Bai-Nan

    2016-12-01

    The utility of virtual and augmented reality based on functional neuronavigation and intraoperative magnetic resonance imaging (MRI) for glioma surgery has not been previously investigated. The study population consisted of 79 glioma patients and 55 control subjects. Preoperatively, the lesion and related eloquent structures were visualized by diffusion tensor tractography and blood oxygen level-dependent functional MRI. Intraoperatively, microscope-based functional neuronavigation was used to integrate the reconstructed eloquent structure and the real head and brain, which enabled safe resection of the lesion. Intraoperative MRI was used to verify brain shift during the surgical process and provided quality control during surgery. The control group underwent surgery guided by anatomic neuronavigation. Virtual and augmented reality protocols based on functional neuronavigation and intraoperative MRI provided useful information for performing tailored and optimized surgery. Complete resection was achieved in 55 of 79 (69.6%) glioma patients and 20 of 55 (36.4%) control subjects, with average resection rates of 95.2% ± 8.5% and 84.9% ± 15.7%, respectively. Both the complete resection rate and average extent of resection differed significantly between the 2 groups (P < 0.01). Postoperatively, the rate of preservation of neural functions (motor, visual field, and language) was lower in controls than in glioma patients at 2 weeks and 3 months (P < 0.01). Combining virtual and augmented reality based on functional neuronavigation and intraoperative MRI can facilitate resection of gliomas involving eloquent areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Robust isotropic super-resolution by maximizing a Laplace posterior for MRI volumes

    NASA Astrophysics Data System (ADS)

    Han, Xian-Hua; Iwamoto, Yutaro; Shiino, Akihiko; Chen, Yen-Wei

    2014-03-01

    Magnetic resonance imaging can only acquire volume data with finite resolution due to various factors. In particular, the resolution in one direction (such as the slice direction) is much lower than others (such as the in-plane direction), yielding un-realistic visualizations. This study explores to reconstruct MRI isotropic resolution volumes from three orthogonal scans. This proposed super- resolution reconstruction is formulated as a maximum a posterior (MAP) problem, which relies on the generation model of the acquired scans from the unknown high-resolution volumes. Generally, the deviation ensemble of the reconstructed high-resolution (HR) volume from the available LR ones in the MAP is represented as a Gaussian distribution, which usually results in some noise and artifacts in the reconstructed HR volume. Therefore, this paper investigates a robust super-resolution by formulating the deviation set as a Laplace distribution, which assumes sparsity in the deviation ensemble based on the possible insight of the appeared large values only around some unexpected regions. In addition, in order to achieve reliable HR MRI volume, we integrates the priors such as bilateral total variation (BTV) and non-local mean (NLM) into the proposed MAP framework for suppressing artifacts and enriching visual detail. We validate the proposed robust SR strategy using MRI mouse data with high-definition resolution in two direction and low-resolution in one direction, which are imaged in three orthogonal scans: axial, coronal and sagittal planes. Experiments verifies that the proposed strategy can achieve much better HR MRI volumes than the conventional MAP method even with very high-magnification factor: 10.

  20. Caffeine Increases the Linearity of the Visual BOLD Response

    PubMed Central

    Liu, Thomas T.; Liau, Joy

    2009-01-01

    Although the blood oxygenation level dependent (BOLD) signal used in most functional magnetic resonance imaging (fMRI) studies has been shown to exhibit nonlinear characteristics, most analyses assume that the BOLD signal responds in a linear fashion to stimulus. This assumption of linearity can lead to errors in the estimation of the BOLD response, especially for rapid event-related fMRI studies. In this study, we used a rapid event-related design and Volterra kernel analysis to assess the effect of a 200 mg oral dose of caffeine on the linearity of the visual BOLD response. The caffeine dose significantly (p < 0.02) increased the linearity of the BOLD response in a sample of 11 healthy volunteers studied on a 3 Tesla MRI system. In addition, the agreement between nonlinear and linear estimates of the hemodynamic response function was significantly increased (p= 0.013) with the caffeine dose. These findings indicate that differences in caffeine usage should be considered as a potential source of bias in the analysis of rapid event-related fMRI studies. PMID:19854278

Top