Science.gov

Sample records for imaging passive active

  1. Generating passive NIR images from active LIDAR

    NASA Astrophysics Data System (ADS)

    Hagstrom, Shea; Broadwater, Joshua

    2016-05-01

    Many modern LIDAR platforms contain an integrated RGB camera for capturing contextual imagery. However, these RGB cameras do not collect a near-infrared (NIR) color channel, omitting information useful for many analytical purposes. This raises the question of whether LIDAR data, collected in the NIR, can be used as a substitute for an actual NIR image in this situation. Generating a LIDAR-based NIR image is potentially useful in situations where another source of NIR, such as satellite imagery, is not available. LIDAR is an active sensing system that operates very differently from a passive system, and thus requires additional processing and calibration to approximate the output of a passive instrument. We examine methods of approximating passive NIR images from LIDAR for real-world datasets, and assess differences with true NIR images.

  2. The active-passive continuous-wave terahertz imaging system

    NASA Astrophysics Data System (ADS)

    Dolganova, Irina N.; Zaytsev, Kirill I.; Metelkina, Anna A.; Yurchenko, Stanislav O.

    2016-08-01

    Active and passive terahertz (THz) imaging have recently become essential instruments of various THz applications. In this paper the active- and passive-mode THz imaging systems are studied and the hybrid active-passive THz imaging system is suggested. The concept of image contrast was used to compare the active and passive THz imaging results. In order to achieve better image quality the hybrid system is considered to be effective. The main advantage of the proposed system is the combination of the self-emitted radiation of the object with the back scattered source radiation. The experimental results demonstrate that the active-passive modality of THz imaging system allows retrieving maximum information about the object. An approach to synthesise the active-passive THz images was proposed using the false-color representation.

  3. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and

  4. Experiences from long range passive and active imaging

    NASA Astrophysics Data System (ADS)

    Grönwall, Christina; Gustafsson, David; Steinvall, Ove; Tolt, Gustav

    2015-10-01

    We present algorithm evaluations for ATR of small sea vessels. The targets are at km distance from the sensors, which means that the algorithms have to deal with images affected by turbulence and mirage phenomena. We evaluate previously developed algorithms for registration of 3D-generating laser radar data. The evaluations indicate that some robustness to turbulence and mirage induced uncertainties can be handled by our probabilistic-based registration method. We also assess methods for target classification and target recognition on these new 3D data. An algorithm for detecting moving vessels in infrared image sequences is presented; it is based on optical flow estimation. Detection of moving target with an unknown spectral signature in a maritime environment is a challenging problem due to camera motion, background clutter, turbulence and the presence of mirage. First, the optical flow caused by the camera motion is eliminated by estimating the global flow in the image. Second, connected regions containing significant motions that differ from camera motion is extracted. It is assumed that motion caused by a moving vessel is more temporally stable than motion caused by mirage or turbulence. Furthermore, it is assumed that the motion caused by the vessel is more homogenous with respect to both magnitude and orientation, than motion caused by mirage and turbulence. Sufficiently large connected regions with a flow of acceptable magnitude and orientation are considered target regions. The method is evaluated on newly collected sequences of SWIR and MWIR images, with varying targets, target ranges and background clutter. Finally we discuss a concept for combining passive and active imaging in an ATR process. The main steps are passive imaging for target detection, active imaging for target/background segmentation and a fusion of passive and active imaging for target recognition.

  5. MCT SWIR modules for passive and active imaging applications

    NASA Astrophysics Data System (ADS)

    Breiter, R.; Benecke, M.; Eich, D.; Figgemeier, H.; Weber, A.; Wendler, J.; Sieck, A.

    2016-05-01

    Based on AIM's state-of-the-art MCT IR technology, detector modules for the SWIR spectral range have been developed, fabricated and characterized. While LPE grown MCT FPAs with extended 2.5μm cut-off have been fabricated and integrated also MBE grown MCT on GaAs is considered for future production. Two imaging applications have been in focus operating either in passive mode by making use of e.g. the night glow, or in active mode by laser illumination for gated viewing. Dedicated readout integrated circuits (ROIC), realized in 0.18μm Si-CMOS technology providing the required functionality for passive imaging and gated imaging, have been designed and implemented. For both designs a 640x512 15μm pitch format was chosen. The FPAs are integrated in compact dewar cooler configurations using AIM's split linear coolers. A command and control electronics (CCE) provides supply voltages, biasing, clocks, control and video digitization for easy system interfacing. For imaging under low-light conditions a low-noise 640x512 15μm pitch ROIC with CTIA input stages and correlated double sampling was designed. The ROIC provides rolling shutter and snapshot integration. To reduce size, weight, power and cost (SWaP-C) a 640x512 format detector in a 10μm pitch is under development. The module makes use of the extended SWIR spectral cut-off up to 2.5μm. To be used for active gated-viewing operation SWIR MCT avalanche photodiodes have been implemented and characterized on FPA level in a 640x512 15μm pitch format. The specific ROIC provides also the necessary functions for range gate control and triggering by the laser illumination. First lab and field tests of a gated viewing demonstrator have been carried out. The paper will present the development status and performance results of AIM's MCT based SWIR Modules for imaging applications.

  6. Anisotropic Elastography for Local Passive Properties and Active Contractility of Myocardium from Dynamic Heart Imaging Sequence

    PubMed Central

    Wang, Ge; Sun, L. Z.

    2006-01-01

    Major heart diseases such as ischemia and hypertrophic myocardiopathy are accompanied with significant changes in the passive mechanical properties and active contractility of myocardium. Identification of these changes helps diagnose heart diseases, monitor therapy, and design surgery. A dynamic cardiac elastography (DCE) framework is developed to assess the anisotropic viscoelastic passive properties and active contractility of myocardial tissues, based on the chamber pressure and dynamic displacement measured with cardiac imaging techniques. A dynamic adjoint method is derived to enhance the numerical efficiency and stability of DCE. Model-based simulations are conducted using a numerical left ventricle (LV) phantom with an ischemic region. The passive material parameters of normal and ischemic tissues are identified during LV rapid/reduced filling and artery contraction, and those of active contractility are quantified during isovolumetric contraction and rapid/reduced ejection. It is found that quasistatic simplification in the previous cardiac elastography studies may yield inaccurate material parameters. PMID:23165032

  7. Passive and Active Fast-Neutron Imaging in Support of Advanced Fuel Cycle Initiative Safeguards Campaign

    SciTech Connect

    Blackston, Matthew A; Hausladen, Paul

    2010-04-01

    Results from safeguards-related passive and active coded-aperture fast-neutron imaging measurements of plutonium and highly enriched uranium (HEU) material configurations performed at Idaho National Laboratory s Zero Power Physics Reactor facility are presented. The imaging measurements indicate that it is feasible to use fast neutron imaging in a variety of safeguards-related tasks, such as monitoring storage, evaluating holdup deposits in situ, or identifying individual leached hulls still containing fuel. The present work also presents the first demonstration of imaging of differential die away fast neutrons.

  8. Solid state active/passive night vision imager using continuous-wave laser diodes and silicon focal plane arrays

    NASA Astrophysics Data System (ADS)

    Vollmerhausen, Richard H.

    2013-04-01

    Passive imaging offers covertness and low power, while active imaging provides longer range target acquisition without the need for natural or external illumination. This paper describes a focal plane array (FPA) concept that has the low noise needed for state-of-the-art passive imaging and the high-speed gating needed for active imaging. The FPA is used with highly efficient but low-peak-power laser diodes to create a night vision imager that has the size, weight, and power attributes suitable for man-portable applications. Video output is provided in both the active and passive modes. In addition, the active mode is Class 1 eye safe and is not visible to the naked eye or to night vision goggles.

  9. Analysis of time-resolved interaction force mode AFM imaging using active and passive probes.

    PubMed

    Giray Oral, Hasan; Parlak, Zehra; Levent Degertekin, F

    2012-09-01

    We present an in-depth analysis of time-resolved interaction force (TRIF) mode imaging for atomic force microscopy (AFM). A nonlinear model of an active AFM probe, performing simultaneous topography and material property imaging on samples with varying elasticity and adhesion is implemented in Simulink®. The model is capable of simulating various imaging modes, probe structures, sample material properties, tip-sample interaction force models, and actuation and feedback schemes. For passive AFM cantilevers, the model is verified by comparing results from the literature. As an example of an active probe, the force sensing integrated readout and active tip (FIRAT) probe is used. Simulation results indicate that the active and damped nature of FIRAT provides a significant level of control over the force applied to the sample, minimizing sample indentation and topography error. Active tip control (ATC) preserves constant contact time during force control for stable contact while preventing the loss of material property information such as elasticity and adhesive force. Simulation results are verified by TRIF mode imaging of the samples with both soft and stiff regions. PMID:22813887

  10. Passive and active imaging at 94 GHz for environmental remote sensing

    NASA Astrophysics Data System (ADS)

    Macfarlane, David G.; Robertson, Duncan A.; Cassidy, Scott L.; Odbert, Henry M.; James, Mike R.; Pinkerton, Harry; Wadge, Geoff

    2013-05-01

    We report on the use of the All-weather Volcano Topography Imaging Sensor (AVTIS) 94 GHz dual mode radar/radiometric imager for environmental monitoring. The FMCW radar yields 3D maps of the terrain whilst the passive radiometer records brightness temperature maps of the scene. AVTIS is a low power portable instrument and has been used operationally to survey terrain at ranges up to 6 km. AVTIS was originally developed for the ground-based measurement of active volcanoes and has been used successfully to measure the Arenal Volcano in Costa Rica and the Soufrière Hills Volcano on Montserrat. However, additional environmental remote sensing applications are emerging for this technology and we will present details of how the instrument is used to perform terrain mapping and thermal surveys of outdoor scenes. The extraction of digital elevation maps is the primary function of the AVTIS radar mode. We review this process covering range drift compensation, radar cross section (RCS) histogram analysis and thresholding, and georeferencing to GPS. Additionally, we will present how careful calibration enables RCS imaging of terrain and the extraction of the intrinsic reflectivity of the terrain material (normalized RCS, or sigma-nought) which can potentially be used to classify terrain types. We have validated the passive mode imagery against infrared thermal imagery and they show good agreement once the differences in spatial resolution are accounted for. This comparison also reveals differences in propagation due to obscurants (steam, gas, ash) in the two wavebands.

  11. A passive-flow microfluidic device for imaging latent HIV activation dynamics in single T cells

    PubMed Central

    Gearhart, Larisa M.; Miller-Jensen, Kathryn

    2015-01-01

    Quantifying cell-to-cell variability in drug response dynamics is important when evaluating therapeutic efficacy. For example, optimizing latency reversing agents (LRAs) for use in a clinical “activate-and-kill” strategy to purge the latent HIV reservoir in patients requires minimizing heterogeneous viral activation dynamics. To evaluate how heterogeneity in latent HIV activation varies across a range of LRAs, we tracked drug-induced response dynamics in single cells via live-cell imaging using a latent HIV–GFP reporter virus in a clonal Jurkat T cell line. To enable these studies in suspension cells, we designed a simple method to capture an array of single Jurkat T cells using a passive-flow microfluidic device. Our device, which does not require external pumps or tubing, can trap hundreds of cells within minutes with a high retention rate over 12 hours of imaging. Using this device, we quantified heterogeneity in viral activation stimulated by transcription factor (TF) activators and histone deacetylase (HDAC) inhibitors. Generally, TF activators resulted in both faster onset of viral activation and faster rates of production, while HDAC inhibitors resulted in more uniform onset times, but more heterogeneous rates of production. Finally, we demonstrated that while onset time of viral gene expression and rate of viral production together predict total HIV activation, rate and onset time were not correlated within the same individual cell, suggesting that these features are regulated independently. Overall, our results reveal drug-specific patterns of noisy HIV activation dynamics not previously identified in static single-cell assays, which may require consideration for the most effective activate-and-kill regime. PMID:26138068

  12. A passive-flow microfluidic device for imaging latent HIV activation dynamics in single T cells.

    PubMed

    Ramji, Ramesh; Wong, Victor C; Chavali, Arvind K; Gearhart, Larisa M; Miller-Jensen, Kathryn

    2015-09-01

    Quantifying cell-to-cell variability in drug response dynamics is important when evaluating therapeutic efficacy. For example, optimizing latency reversing agents (LRAs) for use in a clinical "activate-and-kill" strategy to purge the latent HIV reservoir in patients requires minimizing heterogeneous viral activation dynamics. To evaluate how heterogeneity in latent HIV activation varies across a range of LRAs, we tracked drug-induced response dynamics in single cells via live-cell imaging using a latent HIV-GFP reporter virus in a clonal Jurkat T cell line. To enable these studies in suspension cells, we designed a simple method to capture an array of single Jurkat T cells using a passive-flow microfluidic device. Our device, which does not require external pumps or tubing, can trap hundreds of cells within minutes with a high retention rate over 12 hours of imaging. Using this device, we quantified heterogeneity in viral activation stimulated by transcription factor (TF) activators and histone deacetylase (HDAC) inhibitors. Generally, TF activators resulted in both faster onset of viral activation and faster rates of production, while HDAC inhibitors resulted in more uniform onset times, but more heterogeneous rates of production. Finally, we demonstrated that while onset time of viral gene expression and rate of viral production together predict total HIV activation, rate and onset time were not correlated within the same individual cell, suggesting that these features are regulated independently. Overall, our results reveal drug-specific patterns of noisy HIV activation dynamics not previously identified in static single-cell assays, which may require consideration for the most effective activate-and-kill regime.

  13. Passive adaptive imaging through turbulence

    NASA Astrophysics Data System (ADS)

    Tofsted, David

    2016-05-01

    Standard methods for improved imaging system performance under degrading optical turbulence conditions typically involve active adaptive techniques or post-capture image processing. Here, passive adaptive methods are considered where active sources are disallowed, a priori. Theoretical analyses of short-exposure turbulence impacts indicate that varying aperture sizes experience different degrees of turbulence impacts. Smaller apertures often outperform larger aperture systems as turbulence strength increases. This suggests a controllable aperture system is advantageous. In addition, sub-aperture sampling of a set of training images permits the system to sense tilts in different sub-aperture regions through image acquisition and image cross-correlation calculations. A four sub-aperture pattern supports corrections involving five realizable operating modes (beyond tip and tilt) for removing aberrations over an annular pattern. Progress to date will be discussed regarding development and field trials of a prototype system.

  14. Registering Active and Passive IMAGE RPI Datasets with the Virtual Wave Observatory

    NASA Astrophysics Data System (ADS)

    Galkin, I. A.; Fung, S.; King, T. A.; Reinisch, B. W.

    2008-12-01

    Development of the Virtual Wave Observatory (VWO) for acquired active/passive plasma wave and radiation datasets will be a significant step forward for the Heliophysics community in its efforts to make wave-specific science data searchable, understandable, and usable. The first phase of the VWO project commenced in September 2008 with the goal of converting existing custom database storing wave data acquired by the Radio Plasma Imager (RPI) on the NASA IMAGE satellite into the VxO realm and, specifically, the SPASE Data Model. The RPI dataset comprises 1.2 million active and 0.8 million passive stepped-frequency measurements whose exploration incurs substantial expense of data search and expert interpretation. Our attention is drawn to the ability of the VWO not only to organize numeric and display data records in the SPASE-compatible manner, but most importantly, provide the essential means to capture the wave research community knowledge in accompanying metadata so as to let users understand the VWO data collections and search them by phenomena and context conditions. To that end, we pursue to extend the SPASE model to include wave-relevant terms and to develop a VWO annotation service to provide searchable data interpretations to the scientists who may not be a wave expert. The SPASE Data Model provides several means to describe data sets in a unified manner, forging them together in a three large categories, (1) numeric data, (2) display data, and (3) catalogs. Whereas numeric data resources simply point to the instrument data, the other two categories refer to the presentation of derived and interpreted information. We consider images of the RPI data as derived products that required investment in time and effort to create, especially if their author provided interpretation of visible signatures and optimized the visualization settings to highlight the signatures. When such interpretations are available, they can be used to further group RPI data in categories

  15. Combined High-Resolution Active and Passive Imaging of Ocean Surface Winds from Aircraft

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Piepmeier, J. R.; McIntosh, R. E.; Swift, C. T.; Carswell, J. R.; Donnelly, W. J.; Knapp, E.; Westwater, E. R.; Irisov, V. I.; Fedor, L. S.; Vandemark, D. C.

    1997-01-01

    A unique complement of passive and active microwave imaging and sensing instruments for observing ocean surface emission and scattering signatures were integrated onto the NASA Wallops Flight Facility's Orion P-3B aircraft (N426NA) for the purpose of studying the signature of ocean surface winds. The complement included: (1) a, four-band (X, K, Ka, and W) tri-polarimetric scanning radiometer (PSR), (2) a C-band ocean surface scatterometer (CSCAT), (3) a Ka-band conical-scanning polarimetric radiometer (KASPR), (4) a nadir-viewing Ka-band polarimetric radiometer, (KAPOL), (5) a 21- and 31-GHz zenith-viewing cloud and water vapor radiometer (CWVR), and (6) a radar ocean wave spectrometer (ROWS). The above Ocean Winds Imaging (OWI) complement was flown during January-March, 1997 over the Labrador Sea. Conically-scanned brightness temperature and backscatter imagery were observed over open ocean for a variety of wind speeds and cloud conditions. Presented herein are the results of a preliminary intercomparison of data from several of the OWI instruments.

  16. Active and passive acoustic imaging inside a large-scale polyaxial hydraulic fracture test

    SciTech Connect

    Glaser, S.D.; Dudley, J.W. II; Shlyapobersky, J.

    1999-07-01

    An automated laboratory hydraulic fracture experiment has been assembled to determine what rock and treatment parameters are crucial to improving the efficiency and effectiveness of field hydraulic fractures. To this end a large (460 mm cubic sample) polyaxial cell, with servo-controlled X,Y,Z, pore pressure, crack-mouth-opening-displacement, and bottom hole pressure, was built. Active imaging with embedded seismic diffraction arrays images the geometry of the fracture. Preliminary tests indicate fracture extent can be imaged to within 5%. Unique embeddible high-fidelity particle velocity AE sensors were designed and calibrated to allow determination of fracture source kinematics.

  17. A study of the feasibility and performance of an active/passive imager using silicon focal plane arrays and incoherent continuous wave laser diodes

    NASA Astrophysics Data System (ADS)

    Vollmerhausen, Richard H.

    This dissertation describes an active/passive imager (API) that provides reliable, nighttime, target acquisition in a man-portable package with effective visual range of about 4 kilometers. The reflective imagery is easier to interpret than currently used thermal imagery. Also, in the active mode, the API provides performance equivalent to the big-aperture, thermal systems used on weapons platforms like tanks and attack helicopters. This dissertation describes the research needed to demonstrate both the feasibility and utility of the API. Part of the research describes implementation of a silicon focal plane array (SFPA) capable of both active and passive imaging. The passive imaging mode exceeds the nighttime performance of currently fielded, man-portable sensors. Further, when scene illumination is insufficient for passive imaging, the low dark current of SFPA makes it possible to use continuous wave laser diodes (CWLD) to add an active imaging mode. CWLD have advantages of size, efficiency, and improved eye safety when compared to high peak-power diodes. Because of the improved eye safety, the API provides user-demanded features like video output and extended range gates in the active as well as passive imaging modes. Like any other night vision device, the API depends on natural illumination of the scene for passive operation. Although it has been known for decades that "starlight" illumination is actually from diffuse airglow emissions, the research described in this dissertation provides the first estimates of the global and temporal variation of ground illumination due to airglow. A third related element of the current research establishes the impact of atmospheric aerosols on API performance. We know from day experience that atmospheric scattering of sunlight into the imager line-of-sight can blind the imager and drastically degrade performance. Atmospheric scattering of sunlight is extensively covered in the literature. However, previous literature did not

  18. W-026, acceptance test report imaging passive/active neutron(IPAN) (submittal {number_sign}54.3 - C3)

    SciTech Connect

    Watson, T.L.

    1997-02-21

    In the Spring of 1996, Site Acceptance Tests were performed for the 2 Imaging Passive/Active Neutron (IPAN) assay systems installed in the WRAP I Facility. This report includes the test documentation and the completed test checklists, with comments and resolutions. All testing was completed, with comments resolved by August 1996.

  19. Passive imaging with pulsed ultrasound insonations.

    PubMed

    Haworth, Kevin J; Mast, T Douglas; Radhakrishnan, Kirthi; Burgess, Mark T; Kopechek, Jonathan A; Huang, Shao-Ling; McPherson, David D; Holland, Christy K

    2012-07-01

    Previously, passive cavitation imaging has been described in the context of continuous-wave high-intensity focused ultrasound thermal ablation. However, the technique has potential use as a feedback mechanism for pulsed-wave therapies, such as ultrasound-mediated drug delivery. In this paper, results of experiments and simulations are reported to demonstrate the feasibility of passive cavitation imaging using pulsed ultrasound insonations and how the images depend on pulsed ultrasound parameters. The passive cavitation images were formed from channel data that was beamformed in the frequency domain. Experiments were performed in an invitro flow phantom with an experimental echo contrast agent, echogenic liposomes, as cavitation nuclei. It was found that the pulse duration and envelope have minimal impact on the image resolution achieved. The passive cavitation image amplitude scales linearly with the cavitation emission energy. Cavitation images for both stable and inertial cavitation can be obtained from the same received data set.

  20. Evaluation of Vibration Response Imaging (VRI) Technique and Difference in VRI Indices Among Non-Smokers, Active Smokers, and Passive Smokers

    PubMed Central

    Jiang, Hongying; Chen, Jichao; Cao, Jinying; Mu, Lan; Hu, Zhenyu; He, Jian

    2015-01-01

    Background Vibration response imaging (VRI) is a new technology for lung imaging. Active smokers and non-smokers show differences in VRI findings, but no data are available for passive smokers. The aim of this study was to evaluate the use of VRI and to assess the differences in VRI findings among non-smokers, active smokers, and passive smokers. Material/Methods Healthy subjects (n=165: 63 non-smokers, 56 active smokers, and 46 passive smokers) with normal lung function were enrolled. Medical history, physical examination, lung function test, and VRI were performed for all subjects. Correlation between smoking index and VRI scores (VRIS) were performed. Results VRI images showed progressive and regressive stages representing the inspiratory and expiratory phases bilaterally in a vertical and synchronized manner in non-smokers. Vibration energy curves with low expiratory phase and plateau were present in 6.35% and 3.17%, respectively, of healthy non-smokers, 41.07% and 28.60% of smokers, and 39.13% and 30.43% of passive smokers, respectively. The massive energy peak in the non-smokers, smokers, and passive-smokers was 1.77±0.27, 1.57±0.29, and 1.66±0.33, respectively (all P<0.001). A weak but positive correlation was observed between VRIS and smoking index. Conclusions VRI can intuitively show the differences between non-smokers and smokers. VRI revealed that passive smoking can also harm the lungs. VRI could be used to visually persuade smokers to give up smoking. PMID:26212715

  1. Passive terahertz imaging for security application

    NASA Astrophysics Data System (ADS)

    Guo, Lan-tao; Deng, Chao; Zhao, Yuan-meng; Zhang, Cun-lin

    2013-08-01

    The passive detection is safe for passengers and operators as no radiation. Therefore, passive terahertz (THz) imaging can be applied to human body security check. Imaging in the THz band offers the unique property of being able to identify object through a range of materials. Therefore passive THz imaging is meaningful for security applications. This attribute has always been of interest to both the civil and military marks with applications. We took advantage of a single THz detector and a trihedral scanning mirror to propose another passive THz beam scanning imaging method. This method overcame the deficiencies of the serious decline in image quality due to the movement of the focused mirror. We exploited a THz scanning mirror with a trihedral scanning mirror and an ellipsoidal mirror to streamline the structure of the system and increase the scanning speed. Then the passive THz beam scanning imaging system was developed based on this method. The parameters were set as follows: the best imaging distance was 1.7m, the image height was 2m, the image width was 1m, the minimum imaging time of per frame was 8s, and the minimum resolution was 4cm. We imaged humans with different objects hidden under their clothes, such as fruit knife, belt buckle, mobile phone, screwdriver, bus cards, keys and other items. All the tested stuffs could be detected and recognized from the image.

  2. AGE RELATED DIFFERENCES IN STRAIN RATE TENSOR OF THE MEDIAL GASTROCNEMIUS MUSCLE DURING PASSIVE PLANTARFLEXION AND ACTIVE ISOMETRIC CONTRACTION USING VELOCITY ENCODED MR IMAGING

    PubMed Central

    Sinha, Usha; Malis, Vadim; Csapo, Robert; Moghadasi, Ali; Kinugasa, Ryuta; Sinha, Shantanu

    2014-01-01

    Purpose The strain rate (SR) tensor measures the principal directions and magnitude of the instantaneous deformation; this study aims to track age related changes in the 2D SR tensor in the medial gastrocnemius during passive joint rotation and active isometric contraction. Methods SR tensors were derived from velocity encoded magnetic resonance phase-contrast images in nine young (28 yrs) and eight senior (78 yrs) women. Strain rates along and in the cross-section of the fiber were calculated from the SR tensor and used to derive the out-plane SR. Age related and regional differences in the SR eigenvalues, orientation, and the angle between the SR and muscle fiber (SR-fiber angle) were statistically analyzed. Results SR along the fiber was significantly different between the cohorts during isometric contraction with higher values in the young (P<0.05). The SR-fiber angle was larger in the young for both motion types but this difference was not statistically significant. Significant regional differences in the SR indices was seen in passive joint rotation (P<0.05) for both cohorts. Conclusion SR mapping reflects age related and regional differences during active and passive motion respectively; this may arise from differences in contractility (active motion) and elastic properties (active and passive motion). PMID:25046255

  3. Active and passive-source imaging of the Cascadia subduction zone using both onshore and offshore data

    NASA Astrophysics Data System (ADS)

    Janiszewski, H. A.; Abers, G. A.; Carton, H. D.; Webb, S. C.; Gaherty, J. B.; Trehu, A. M.

    2013-12-01

    The Cascadia subduction zone is characterized by the subduction of young lithosphere with relatively little seismicity, despite evidence of prehistoric earthquakes, and a thick incoming sediment section that feeds the plate interface. It has been suggested that the thrust zone forms a high-porosity channel of near-lithostatic pressure to 40 km depth, but stronger metasediments may also explain many observations. To test these hypotheses, we analyze new data and integrate results from both active and passive-source seismic studies of Cascadia that sample the interplate thrust zone. In June-July 2012, fifteen seismometers were deployed in Washington from the coast to 140 km inland to record airguns from the R/V Langseth along a linear trench-perpendicular profile. We also analyze broadband data from the coincident onshore CAFE (2006-08) broadband high-density array, which provided high-resolution receiver function images of the downgoing plate, and with the offshore Grays Harbor array of the Cascadia Initiative (CI). In the active-source data, arrivals are observed at up to 140 km offset from the stations, the farthest of which are likely turning waves that travel in the slab mantle. Signals from all but the farthest inland stations are dominated by strong reverberating signals at 20-90 km offset. Preliminary calculations indicate that some of these signals have apparent velocity and timing consistent with waves that reflect off the plate interface or just above it. Bounce points for these rays map a zone of high reflectivity extending ~15-20 km on either side of the coastline. Some aspects of the signals may indicate an origin on or near the plate boundary. In addition, these reflections directly underlie CAFE stations where receiver functions have been obtained on land and the CI broadband stations where receiver functions are being obtained offshore, allowing for direct comparison and integration of all three datasets. The CI stations present several challenges

  4. [Passive smoking--active killer].

    PubMed

    Palavra, Irena Rojnić; Franelić, Iva Pejnović; Milanović, Sanja Musić; Puljić, Kresimir

    2013-01-01

    Although still not perceived in this way, passive smoking is a public health issue of great importance. World Health Organization estimates that as a result of passive exposure to tobacco smoke each year 600,000 people die, of which 165,000 children. There are 33% of men, 35% of women and 40% of children who do not smoke, but are exposed to second hand smoke, and still only 11% of the world population is protected by adequate smoke-free legislation. Scientific literature provides evidence that passive exposure to tobacco smoke can result in numerous adverse health effects: asthma and allergies, respiratory infections and (middle) ear infections, cancers of various localization, accelerated atherosclerosis and cardiovascular diseases, retardation of growth and development in children, and in pregnancy it can lead to congenital anomalies and premature birth as well as lower body weight and length of the child. Certainly, the scariest consequence of all is sudden infant death syndrome, also called "death in the crib". Smoke-free policies have proven their effectiveness, but while implementing the laws, it is necessary to raise public awareness of the hazards of, both active and passive, exposure to tobacco smoke. PMID:24490334

  5. Active and Passive Hybrid Sensor

    NASA Technical Reports Server (NTRS)

    Carswell, James R.

    2010-01-01

    A hybrid ocean wind sensor (HOWS) can map ocean vector wind in low to hurricane-level winds, and non-precipitating and precipitating conditions. It can acquire active and passive measurements through a single aperture at two wavelengths, two polarizations, and multiple incidence angles. Its low profile, compact geometry, and low power consumption permits installation on air craft platforms, including high-altitude unmanned aerial vehicles (UAVs).

  6. Brain activation associated with active and passive lower limb stepping

    PubMed Central

    Jaeger, Lukas; Marchal-Crespo, Laura; Wolf, Peter; Riener, Robert; Michels, Lars; Kollias, Spyros

    2014-01-01

    Reports about standardized and repeatable experimental procedures investigating supraspinal activation in patients with gait disorders are scarce in current neuro-imaging literature. Well-designed and executed tasks are important to gain insight into the effects of gait-rehabilitation on sensorimotor centers of the brain. The present study aims to demonstrate the feasibility of a novel imaging paradigm, combining the magnetic resonance (MR)-compatible stepping robot (MARCOS) with sparse sampling functional magnetic resonance imaging (fMRI) to measure task-related BOLD signal changes and to delineate the supraspinal contribution specific to active and passive stepping. Twenty-four healthy participants underwent fMRI during active and passive, periodic, bilateral, multi-joint, lower limb flexion and extension akin to human gait. Active and passive stepping engaged several cortical and subcortical areas of the sensorimotor network, with higher relative activation of those areas during active movement. Our results indicate that the combination of MARCOS and sparse sampling fMRI is feasible for the detection of lower limb motor related supraspinal activation. Activation of the anterior cingulate and medial frontal areas suggests motor response inhibition during passive movement in healthy participants. Our results are of relevance for understanding the neural mechanisms underlying gait in the healthy. PMID:25389396

  7. Compressive passive millimeter wave imager

    SciTech Connect

    Gopalsami, Nachappa; Liao, Shaolin; Elmer, Thomas W; Koehl, Eugene R; Heifetz, Alexander; Raptis, Apostolos C

    2015-01-27

    A compressive scanning approach for millimeter wave imaging and sensing. A Hadamard mask is positioned to receive millimeter waves from an object to be imaged. A subset of the full set of Hadamard acquisitions is sampled. The subset is used to reconstruct an image representing the object.

  8. Passive millimeter-wave imaging

    NASA Technical Reports Server (NTRS)

    Young, Stephen K.; Davidheiser, Roger A.; Hauss, Bruce; Lee, Paul S. C.; Mussetto, Michael; Shoucri, Merit M.; Yujiri, Larry

    1993-01-01

    Millimeter-wave hardware systems are being developed. Our approach begins with identifying and defining the applications. System requirements are then specified based on mission needs using our end-to-end performance model. The model was benchmarked against existing data bases and, where data is deficient, it is acquired via field measurements. The derived system requirements are then validated with the appropriate field measurements using our imaging testbeds and hardware breadboards. The result is a final system that satisfies all the requirements of the target mission.

  9. Gap between active and passive solar heating

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  10. Improvement of passive THz camera images

    NASA Astrophysics Data System (ADS)

    Kowalski, Marcin; Piszczek, Marek; Palka, Norbert; Szustakowski, Mieczyslaw

    2012-10-01

    Terahertz technology is one of emerging technologies that has a potential to change our life. There are a lot of attractive applications in fields like security, astronomy, biology and medicine. Until recent years, terahertz (THz) waves were an undiscovered, or most importantly, an unexploited area of electromagnetic spectrum. The reasons of this fact were difficulties in generation and detection of THz waves. Recent advances in hardware technology have started to open up the field to new applications such as THz imaging. The THz waves can penetrate through various materials. However, automated processing of THz images can be challenging. The THz frequency band is specially suited for clothes penetration because this radiation does not point any harmful ionizing effects thus it is safe for human beings. Strong technology development in this band have sparked with few interesting devices. Even if the development of THz cameras is an emerging topic, commercially available passive cameras still offer images of poor quality mainly because of its low resolution and low detectors sensitivity. Therefore, THz image processing is very challenging and urgent topic. Digital THz image processing is a really promising and cost-effective way for demanding security and defense applications. In the article we demonstrate the results of image quality enhancement and image fusion of images captured by a commercially available passive THz camera by means of various combined methods. Our research is focused on dangerous objects detection - guns, knives and bombs hidden under some popular types of clothing.

  11. Active and passive seismic imaging of the Precordilleran crust, fore-arc of the North-Chilean subduction zone (Central Andes)

    NASA Astrophysics Data System (ADS)

    Wenske, Ina; Hellwig, Olaf; Buske, Stefan; Wigger, Peter; Shapiro, Serge A.

    2014-05-01

    In the fore-arc of the Chilean subduction zone the prominent trench-parallel fault systems can be traced for several thousand kilometers in the north-south direction. These fault systems possibly crosscut parts or the entire crust and are expected to have a close relationship to transient processes of the subduction earthquake cycle. With the motivation to image and characterize the structural inventory and the processes that occur in the vicinity of these large-scale fault zones, we are currently performing a combined analysis of active and passive seismic data sets. The active-seismic data analysis is intended to provide images of the faults at depth and allow linking surface information to subsurface structures. The correlation of the active seismic data with the observed seismicity around these fault systems complements the image and potentially reveals the origin and the nature of the seismicity (including tremors) bound to these fault systems. In 1996, an approximately 350 km long, west-east running reflection seismic profile was acquired to image the entire crust of the Central Andean fore-arc system (North Chile; ANCORP96 seismic line). Several features such as the downgoing plate (Nazca reflector) and the Quebrada Blanca Bright Spot at mid-crustal level were clearly imaged using both standard CMP processing and Kirchhoff prestack depth migration. The latter proved to be more successful in coping with the low data coverage and varying data quality. However, the original images did not provide conclusive information on the upper crust (< 10 km depth) due to the sparse acquisition geom- etry and the insufficient removal of source-generated noise. The major goal of our current re-processing of the ANCORP96 reflection seismic data set is to provide improved images of the upper and middle crust, Thereby, resolving the shallow and perhaps steeply dipping segments of the major fault systems, which were not detected by the original processing. This is done by using

  12. Design of a back-illuminated, crystallographically etched, silicon-on-sapphire avalanche photodiode with monolithically integrated microlens, for dual-mode passive & active imaging arrays

    NASA Astrophysics Data System (ADS)

    Stern, Alvin G.; Cole, Daniel C.

    2008-12-01

    There is a growing need in space and environmental research applications for dual-mode, passive and active 2D and 3D ladar imaging methods. To fill this need, an advanced back-illuminated avalanche photodiode (APD) design is presented based on crystallographically etched (100) epitaxial silicon on R-plane sapphire (SOS), enabling single photon sensitive, solid-state focal plane arrays (FPAs) with wide dynamic range, supporting passive and active imaging capability in a single FPA. When (100) silicon is properly etched with KOH:IPA:H2O solution through a thermally grown oxide mask, square based pyramidal frustum or mesa arrays result with the four mesa sidewalls of the APD formed by (111) silicon planes that intersect the (100) planes at a crystallographic angle, Φc = 54.7°. The APD device is fabricated in the mesa using conventional silicon processing technology. Detectors are back-illuminated through light focusing microlenses fabricated in the thinned, AR-coated sapphire substrate. The APDs share a common, front-side anode contact, made locally at the base of each device mesa. A low resistance (Al) or (Cu) metal anode grid fills the space between pixels and also inhibits optical cross-talk. SOS-APD arrays are indium bump-bonded to CMOS readout ICs to produce hybrid FPAs. The quantum efficiency for the square 27 µm pixels exceeds 50% for 250 nm < λ < 400 nm and exceeds 80% for 400 nm < λ < 700 nm. The sapphire microlenses compensate detector quantum efficiency loss resulting from the mesa geometry and yield 100% sensitive-area-fill-factor arrays, limited in size only by the wafer diameter.

  13. Market ecology of active and passive investors

    NASA Astrophysics Data System (ADS)

    Capocci, Andrea; Zhang, Yi-Cheng

    2001-09-01

    We study the role of active and passive investors in an investment market with uncertainties. Active investors concentrate on a single or a few stocks with a given probability of determining the quality of them. Passive investors spread their investment uniformly, resembling buying the market index. In this toy market stocks are introduced as good and bad. If a stock receives sufficient investment it will survive, otherwise die. Active players exert a selective pressure since they can determine to an extent the investment quality. We show that the active players provide the driving force, whereas the passive ones act as free riders. While their gains do not differ too much, we show that the active players enjoy an edge. Their presence also provides better gains to the passive players and stocks themselves.

  14. Passivation of fluorinated activated charcoal

    SciTech Connect

    Del Cul, G.D.; Trowbridge, L.D.; Simmons, D.W.; Williams, D.F.; Toth, L.M.

    1997-10-01

    The Molten Salt Reactor Experiment (MSRE), at the Oak Ridge National Laboratory has been shut down since 1969 when the fuel salt was drained from the core into two Hastelloy N tanks at the reactor site. In 1995, a multiyear project was launched to remediate the potentially hazardous conditions generated by the movement of fissile material and reactive gases from the storage tanks into the piping system and an auxiliary charcoal bed (ACB). The top 12 in. of the ACB is known by gamma scan and thermal analysis to contain about 2.6 kg U-233. According to the laboratory tests, a few feet of fluorinated charcoal are believed to extend beyond the uranium front. The remainder of the ACB should consist of unreacted charcoal. Fluorinated charcoal, when subjected to rapid heating, can decompose generating gaseous products. Under confined conditions, the sudden exothermic decomposition can produce high temperatures and pressures of near-explosive characteristics. Since it will be necessary to drill and tap the ACB to allow installation of piping and instrumentation for remediation and recovery activities, it is necessary to chemically convert the reactive fluorinated charcoal into a more stable material. Ammonia can be administered to the ACB as a volatile denaturing agent that results in the conversion of the C{sub x}F to carbon and ammonium fluoride, NH{sub 4}F. The charcoal laden with NH{sub 4}F can then be heated without risking any sudden decomposition. The only consequence of heating the treated material will be the volatilization of NH{sub 4}F as a mixture of NH{sub 3} and HF, which would primarily recombine as NH{sub 4}F on surfaces below 200 C. The planned scheme for the ACB denaturing is to flow diluted ammonia gas in steps of increasing NH{sub 3} concentration, 2% to 50%, followed by the injection of pure ammonia. This report summarizes the planned passivation treatment scheme to stabilize the ACB and remove the potential hazards. It also includes basic information

  15. Nondiffuse elastic and anelastic passive imaging.

    PubMed

    Mulargia, Francesco; Castellaro, Silvia

    2010-03-01

    The property at the basis of passive acoustic imaging is that, taken any two points, one of them can be seen as the source of the waves and the other as the recording station. This property, which was shown to hold also in nondiffuse fields, is here exploited: (1) to allow an undistorted passive imaging through the simple use of the statistical mode to estimate wave velocity, (2) to determine the azimuth of the instantaneous Huygens sources of the noise wavefield, and (3) to measure, provided that the noise bandwidth is wide with respect to that of the local system, the material dissipation constant as a function of frequency. The authors applied this theory to study the seismic noise field in the Ravenna, North-Central Italy, shore area and found it capable to provide velocity dispersion curves matching those of independent surveys, to track the sources of seismic noise to a few major firms in Ravenna port, with the prevailing source switching at the time scale of seconds, and to measure the dissipation quality factor Q at approximately 20 independent of frequency in the range 1-30 Hz. PMID:20329839

  16. Passive Seismic Reflectivity Imaging with Ocean-Bottom Cable Data

    NASA Astrophysics Data System (ADS)

    Hohl, D.; Mateeva, A.

    2005-12-01

    The idea of imaging the subsurface reflectivity distribution by correlating long traces of seismic ``noise'' (i.e. seismic data recorded without active sources) goes back more than 30 years [1]. To this day, passive seismic reflectivity imaging has not been exploited for business use in the E&P industry. The conditions for successful passive seismic reflection imaging have greatly improved over the past few years, and the prize of cheap continuous sourceless seismic imaging and possibly monitoring is still large. Nearly unlimited quantities of very high quality passive noise data are now available from permanent 4C ocean bottom cable (OBC) installations. In the present contribution, we report our initial results for single-line (2D) OBC data collected in the North Sea and GOM. The OBCs used for the experiment are of length 6-10 km with 4C receivers spaced 50 m apart. They are deployed in both shallow and deep water over large hydrocarbon reservoirs. Passive noise data were recorded for 8-24 h periods, sometimes several times, and months apart. In the analysis presented here only the hydrophone records are used, and the data from all recording periods are used together to produce a single 2D migrated reflectivity section. We observe that environmental noise (e.g. boat and rig activity) play an important role for imaging and usually requires pre-migration seismic processing steps to filter out unwanted signals. At the core of our image generation and processing sequence is the crosscorrelation of noise trace pairs and subsequent prestack time migration [1] with a velocity model established for the active-source OBC data processing. We compute 4 sec of lag time to either side of t=0. After removing unwanted signals (e.g. seafloor interface waves) from these ``virtual shot gathers'' one can clearly detect the linear-moveout direct water wave with velocity 1500 m/s, and a linear interface wave with velocity 2000 m/s. Other ``events'' with moveout are visible, but the

  17. Super-resolution analysis for passive microwave images using FIPOCS

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Wu, Jin; Wang, Jin; Adjouadi, Malek

    2013-03-01

    improve application of passive microwave imaging for object detection. In this study, we propose the FIPOCS (Fractal interpolation with Improved Projection onto Convex Sets) technique to enhance resolution. The experimental result shows that the resolution of passive microwave image is improved when utilizing the fractal interpolation to the LR image before applying the IPOCS technique.

  18. Real-time computer treatment of THz passive device images with the high image quality

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  19. Active colloids that slosh through passive matrices

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Granick, Steve

    Studies of natural and artificial active matter have focused on systems with a large mismatch of the time and length scales for active and passive elements, but in a variety of non-equilibrium condensed matter systems, including numerous biological processes, actively driven elements have a crowded environment of surrounding passive ``solvent'' elements of comparable size. Here we study self-propelled colloidal particles in a passive matrix of comparable size. Particles with high activity take straight lines and sharp turns through the soft 2-D crystal matrix to ensure rapid healing of the crystal structure. Effective attraction between active particles arises when the concentration of active particles or the hardness of the matrix increases; active particles tend to segregate in the grain boundaries of the crystal matrix.

  20. Sunspot Time Series: Passive and Active Intervals

    NASA Astrophysics Data System (ADS)

    Zięba, S.; Nieckarz, Z.

    2014-07-01

    Solar activity slowly and irregularly decreases from the first spotless day (FSD) in the declining phase of the old sunspot cycle and systematically, but also in an irregular way, increases to the new cycle maximum after the last spotless day (LSD). The time interval between the first and the last spotless day can be called the passive interval (PI), while the time interval from the last spotless day to the first one after the new cycle maximum is the related active interval (AI). Minima of solar cycles are inside PIs, while maxima are inside AIs. In this article, we study the properties of passive and active intervals to determine the relation between them. We have found that some properties of PIs, and related AIs, differ significantly between two group of solar cycles; this has allowed us to classify Cycles 8 - 15 as passive cycles, and Cycles 17 - 23 as active ones. We conclude that the solar activity in the PI declining phase (a descending phase of the previous cycle) determines the strength of the approaching maximum in the case of active cycles, while the activity of the PI rising phase (a phase of the ongoing cycle early growth) determines the strength of passive cycles. This can have implications for solar dynamo models. Our approach indicates the important role of solar activity during the declining and the rising phases of the solar-cycle minimum.

  1. Vertical Diffusivities of Active and Passive Tracers

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Cheng, Y.; Howard, A. M.

    2010-01-01

    The climate models that include a carbon-cycle need the vertical diffusivity of a passive tracer. Since an expression for the latter is not available, it has been common practice to identify it with that of salt. The identification is questionable since T, S are active, not passive tracers. We present the first derivation of the diffusivity of a passive tracer in terms of Ri (Richardson number) and Rq (density ratio, ratio of salinity over temperature z-gradients). The following results have emerged: (a) The passive tracer diffusivity is an algebraic function of Ri, Rq. (b) In doubly stable regimes (DS, partial derivative of T with respect to z > 0, partial derivative of S with respect to z < 0), the passive scalar diffusivity is nearly the same as that of salt/heat for any values of Rq < 0 and Ri > 0. (c) In DC regimes (diffusive convection, partial derivative of T with respect to z < 0, partial derivative of S with respect to z < 0, Rq > 1), the passive scalar diffusivity is larger than that of salt. At Ri = O(1), it can be more than twice as large. (d) In SF regimes (salt fingers, partial derivative of T with respect to z > 0, partial derivative of S with respect to z > 0, Rq < 1), the passive scalar diffusivity is smaller than that of salt. At Ri = O(1), it can be less than half of it. (e) The passive tracer diffusivity predicted at the location of NATRE (North Atlantic Tracer Release Experiment) is discussed. (f) Perhaps the most relevant conclusion is that the common identification of the tracer diffusivity with that of salt is valid only in DS regimes. In the Southern Ocean, where there is the largest CO2 absorption, the dominant regime is diffusive convection discussed in (c) above.

  2. Passive and active tension in single cardiac myofibrils.

    PubMed Central

    Linke, W A; Popov, V I; Pollack, G H

    1994-01-01

    Single myofibrils were isolated from chemically skinned rabbit heart and mounted in an apparatus described previously (Fearn et al., 1993; Linke et al., 1993). We measured the passive length-tension relation and active isometric force, both normalized to cross sectional area. Myofibrillar cross sectional area was calculated based on measurements of myofibril diameter from both phase-contrast images and electron micrographs. Passive tension values up to sarcomere lengths of approximately 2.2 microns were similar to those reported in larger cardiac muscle specimens. Thus, the element responsible for most, if not all, passive force of cardiac muscle at physiological sarcomere lengths appears to reside within the myofibrils. Above 2.2 microns, passive tension continued to rise, but not as steeply as reported in multicellular preparations. Apparently, structures other than the myofibrils become increasingly important in determining the magnitude of passive tension at these stretched lengths. Knowing the myofibrillar component of passive tension allowed us to infer the stress-strain relation of titin, the polypeptide thought to support passive force in the sarcomere. The elastic modulus of titin is 3.5 x 10(6) dyn cm-2, a value similar to that reported for elastin. Maximum active isometric tension in the single myofibril at sarcomere lengths of 2.1-2.3 microns was 145 +/- 35 mN/mm2 (mean +/- SD; n = 15). This value is comparable with that measured in fixed-end contractions of larger cardiac specimens, when the amount of nonmyofibrillar space in those preparations is considered. However, it is about 4 times lower than the maximum active tension previously measured in single skeletal myofibrils under similar conditions (Bartoo et al., 1993). Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 7 PMID:7948691

  3. Multipurpose active/passive motion compensation system

    SciTech Connect

    Sullivan, R.A.; Clements, R.E.; Davenport, M.R.

    1984-05-01

    A microprocessor-controlled active/passive motion compensation system has been developed for deploying a variety of geotechnical in-situ testing devices with mobile drilling rigs from low-cost service vessels. The light-weight rotary heave compensator incorporates a hydraulic motor as the compensator actuator and a servo-controlled closed loop pump to reduce the air storage and power requirements. Unique features of the system are the use of inertial sensors to measure three components of boat motion, the ability to run the system in active/passive or passive modes, and the ability to automatically lower the drillstring at a constant velocity while maintaining motion compensation. Quantitative measurements made during sea trials offshore California yielded motion compensation accuracy approaching 98 percent which is much better than the compensation achieved with passive systems. Results are presented from offshore in-situ testing with a cone penetrometer, a vane shear device, and a suspension PS logger. The system can also be used for other offshore applications.

  4. PCM Passive Cooling System Containing Active Subsystems

    NASA Technical Reports Server (NTRS)

    Blanding, David E.; Bass, David I.

    2005-01-01

    A multistage system has been proposed for cooling a circulating fluid that is subject to intermittent intense heating. The system would be both flexible and redundant in that it could operate in a basic passive mode, either sequentially or simultaneously with operation of a first, active cooling subsystem, and either sequentially or simultaneously with a second cooling subsystem that could be active, passive, or a combination of both. This flexibility and redundancy, in combination with the passive nature of at least one of the modes of operation, would make the system more reliable, relative to a conventional cooling system. The system would include a tube-in-shell heat exchanger, within which the space between the tubes would be filled with a phase-change material (PCM). The circulating hot fluid would flow along the tubes in the heat exchanger. In the basic passive mode of operation, heat would be conducted from the hot fluid into the PCM, wherein the heat would be stored temporarily by virtue of the phase change.

  5. 26 CFR 1.469-2 - Passive activity loss.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... than a passive activity and as an interest in property held for investment for any period during which... paragraph (c)(2)(iii) as used in an activity other than a passive activity and as held for investment for... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Passive activity loss. 1.469-2 Section...

  6. Propulsion by active and passive airfoil oscillation

    NASA Astrophysics Data System (ADS)

    Mackowski, A. W.; Williamson, C. H. K.

    2013-11-01

    Oscillating airfoils have been the subject of much research both as a mechanism of propulsion in engineering devices as well as a model of understanding how fish, birds, and insects produce thrust and maneuvering forces. Additionally, the jet or wake generated by an oscillating airfoil exhibits a multitude of vortex patterns, which are an interesting study in their own right. We present PIV measurements of the vortex flow behind an airfoil undergoing controlled pitching oscillations at moderate Reynolds number. As a method of propulsion, oscillating foils have been found to be capable performers when undergoing both pitching and heaving motions [Anderson et al. 1998]. While an airfoil undergoing only pitching motion is a relatively inefficient propulsor, we examine the effect of adding passive dynamics to the system: for example, actuated pitching with a passive spring in the heave direction. Practically speaking, a mechanical system with such an arrangement has the potential to reduce the cost and complexity of an oscillating airfoil propulsor. To study an airfoil undergoing both active and passive motion, we employ our ``cyber-physical fluid dynamics'' technique [Mackowski & Williamson, 2011] to simulate the effects of passive dynamics in a physical experiment.

  7. Passive synthetic aperture radar imaging of ground moving targets

    NASA Astrophysics Data System (ADS)

    Wacks, Steven; Yazici, Birsen

    2012-05-01

    In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.

  8. Modeling of active and passive nonlinear metamaterials

    NASA Astrophysics Data System (ADS)

    Colestock, Patrick L.; Reiten, Matthew T.; O'Hara, John F.

    2012-11-01

    We develop general results for nonlinear metamaterials based on simple circuit models that reflect the elementary nonlinear behavior of the medium. In particular, we consider both active and passive nonlinearities which can lead to gain, harmonic generation and a variety of nonlinear waves depending on circuit parameters and signal amplitude. We show that the medium can exhibit a phase transition to a synchronized state and derive conditions for the transformation based on a widely used multiple time scale approach that leads to the well-known Complex Ginzburg-Landau equation. Further, we examine the variety of nonlinear waves that can exist in such systems, and we present numerical results for both active and passive metamaterial cases.

  9. Passive millimeter wave imaging sensors for commercial markets.

    PubMed

    Lynch, Jonathan J; Macdonald, Perry A; Moyer, Harris P; Nagele, Robert G

    2010-07-01

    We describe the development of passive millimeter wave imaging sensors, operating at W band, that are currently being manufactured for commercial markets using standard automated assembly processes. A description of HRL Laboratories' millimeter wave imaging chipset is presented, focusing on parameters that limit sensor performance, such as detector 1/f noise, low noise amplifier noise figure, and gain drift. We conclude with a discussion of ongoing research and development in passive millimeter wave imaging and performance improvements that can be expected for future imaging sensors.

  10. Remote Ultra-low Light Imaging (RULLI) For Space Situational Awareness (SSA): Modeling And Simulation Results For Passive And Active SSA

    SciTech Connect

    Thompson, David C; Shirey, Robert L; Roggemann, Michael C; Gudimetla, Rao

    2008-01-01

    Remote Ultra-Low Light Imaging detectors are photon limited detectors developed at Los Alamos National Laboratories. RULLI detectors provide a very high degree of temporal resolution for the arrival times of detected photoevents, but saturate at a photo-detection rate of about 10{sup 6} photo-events per second. Rather than recording a conventional image, such as output by a charged coupled device (CCD) camera, the RULLI detector outputs a data stream consisting of the two-dimensional location, and time of arrival of each detected photo-electron. Hence, there is no need to select a specific exposure time to accumulate photo-events prior to the data collection with a RULLI detector this quantity can be optimized in post processing. RULLI detectors have lower peak quantum efficiency (from as low as 5% to perhaps as much as 40% with modern photocathode technology) than back-illuminated CCD's (80% or higher). As a result of these factors, and the associated analyses of signal and noise, we have found that RULLI detectors can play two key new roles in SSA: passive imaging of exceedingly dim objects, and three-dimensional imaging of objects illuminated with an appropriate pulsed laser. In this paper we describe the RULLI detection model, compare it to a conventional CCD detection model, and present analytic and simulation results to show the limits of performance of RULLI detectors used for SSA applications at AMOS field site.

  11. Active versus passive damping in large flexible structures

    NASA Technical Reports Server (NTRS)

    Slater, Gary L.; Mclaren, Mark D.

    1991-01-01

    Optimal passive and active damping control can be considered in the context of a general control/structure optimization problem. Using a mean square output response approach, it is shown that the weight sensitivity of the active and passive controllers can be used to determine an optimal mix of active and passive elements in a flexible structure.

  12. Passive Fully Polarimetric W-Band Millimeter-Wave Imaging

    SciTech Connect

    Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.; McMakin, Douglas L.; Tedeschi, Jonathan R.; Harris, Robert V.; Mendoza, Albert; Hall, Thomas E.; Hatchell, Brian K.; Valdez, Patrick LJ

    2012-04-01

    We present the theory, design, and experimental results obtained from a scanning passive W-band fully polarimetric imager. Passive millimeter-wave imaging offers persistent day/nighttime imaging and the ability to penetrate dust, clouds and other obscurants, including clothing and dry soil. The single-pixel scanning imager includes both far-field and near-field fore-optics for investigation of polarization phenomena. Using both fore-optics, a variety of scenes including natural and man-made objects was imaged and these results are presented showing the utility of polarimetric imaging for anomaly detection. Analysis includes conventional Stokes-parameter based approaches as well as multivariate image analysis methods.

  13. Passive millimeter-wave imaging: seeing in very poor visibility

    NASA Astrophysics Data System (ADS)

    Appleby, Roger; Price, Sean; Gleed, David G.; Lettington, Alan H.

    1995-06-01

    It is more common to use the visible or infrared regions to image although it is possible to use millimeter waves. Passive millimeter wave imaging, however, has the advantage of being able to see in poor weather conditions such as in thick fog. The images, unlike radar signatures, have a natural appearance that can be easily interpreted. The spatial resolution of these imagers is limited by the aperture size and choice of operating frequency. Novel signal processing algorithms have been applied to improve the spatial resolution. Millimeter wave imagers detect slight temperature differences in the scene and using current technology it is possible to sense changes as low as 0.2 K whilst the contrast between an aircraft and its background can be as high as 200 K. A millimetric imager has been used at London Heathrow airport to demonstrate the high quality of the images that can be obtained. Aircraft can be recognized, runways and grass delineated and complex areas such as gates imaged. A qualitative comparison has been made of radar, thermal imaging and passive millimeter wave imaging for ground movement control. The possibility of deploying a passive millimeter wave imager on a commercial aircraft and of using it as part of an enhanced vision system is also discussed.

  14. Passive millimeter-wave cross polarization imaging and phenomenology

    NASA Astrophysics Data System (ADS)

    Stein, E. Lee, Jr.; Schuetz, Christopher A.; Martin, Richard D.; Samluk, Jesse P.; Wilson, John P.; Mackrides, Daniel G.; Murakowski, Janusz A.; Murakowski, Maciej; Prather, Dennis W.

    2009-05-01

    Passive millimeter-wave (mmW) imaging has many specific defense, security and safety applications, due to the fact that all terrestrial bodies above absolute zero are emissive, and these wavelengths are not scattered by normal obscurants such as haze, fog, smoke, dust, sandstorms, clouds, or fabrics. We have previously demonstrated results from the construction of a 94 GHz passive mmW far-field imaging system utilizing optical upconversion, which imaged in only horizontal polarization. The effective radiometric temperature of an object is a combination of the object's surface and scattered radiometric temperatures. The surface radiometric temperature is a function of the object's emissivity, which is polarization dependent. Imaging with radiometric temperature data from both polarizations will allow a greater identification of the scene being imaged, and allow the recognition of subtle features which were not previously observable. This additional functionality is accomplished through the installation of added equipment and programming on our system, thus allowing the simultaneous data collection of imagery in both polarizations. Herein, we present our experimental procedures, results and passive mmW images obtained by using our far-field imaging system, a brief discussion of the phenomenology observed through the application of these techniques, as well as the preliminary details regarding our work on a 3-D passive mmW simulator capable of true physical polarization dependent effective emissivity and reflectivity rendering, based on the open-source Blender engine.

  15. Bacteriological evaluation of passive ultrasonic activation.

    PubMed

    Spoleti, Pablo; Siragusa, Martha; Spoleti, María Julia

    2003-01-01

    The purpose of this study was to evaluate the influence of passive ultrasonic activation on root canal disinfection. Sixty human teeth (group A: upper incisors, group B: upper canines, and group C: distobuccal root of first upper molars) were selected and sterilized in an autoclave. A standardized inoculum was placed into the canals, and they were incubated for 72 h at 37 degrees C. Then, they were divided into subgroup 1, which received sterile saline (SS) as an irrigant, and subgroup 2, which received sterile saline with passive ultrasonic activation (SU). The endodontic treatment was performed with a crown-down technique. Bacteriological identification of surviving colonies was carried out. Surviving colonies were higher when ultrasonics was not used (group A: SS: x 32.13, SU: x 13.53; group B: SS: x 53.70, SU: x 44.60; group C: SS: x 39.16, SU: x 29.40). The homogeneity proportion tests to compare the results of both subgroups showed that the surviving proportions were higher (p = 0.01) when the ultrasonic activation was not used. PMID:12540211

  16. Passive and active EO sensing close to the sea surface

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Persson, Rolf; Berglund, Folke; Öhgren, Johan; Gustafsson, Frank

    2014-10-01

    The present paper investigates the use of an eye-safe laser rangefinder at 1.5 μm and TV/IR imaging to obtain information on atmospheric properties at various paths close to the sea surface. On one day active/passive imaging NIR and SWIR systems were also used. The paper will describe the experimental equipment and the results from measurements of atmospheric backscatter as well as TV and IR images of test targets along a 1.8 km path close to the Baltic Sea. The site also contained a weather station and a scintillometer for logging weather and turbulence parameters. Results correlating the lidar attenuation with the imaging performance will be given and compared with models.

  17. Passive versus active mitigation cost analysis

    SciTech Connect

    Parazin, R.J.; Galbraith, J.D.

    1995-04-01

    The scope of this task is to assess the impact of mitigation alternatives for Tanks 241-SY-101 and 241-SY-103 on the Project W-236A Multi-Function Waste Tank Facility. This assessment and other related tasks are part of an Action Plan Path Forward prepared by the Tank Waste Remediation System (TWRS) Life Extension and Transition Program. Task 3.7 of the Action Plan for Project W-236A MWTF analyzed the comparative cost/risk of two hydrogen gas mitigation alternatives (active versus passive) to recommend the most appropriate course of action to resolve the hydrogen gas safety issue. The qualitative success of active mitigation has been demonstrated through Tank 241-SY-101 testing. Passive mitigation has not been demonstrated but will be validated by laboratory test work performed under Task 3.1 of the Action Plan. It is assumed for this assessment that the uncertainties associated with the performance of either alternative is comparable. Determining alternative specific performance measures beyond those noted are not in the scope of this effort.

  18. Active and passive computed tomography for nondestructive assay

    SciTech Connect

    Bernardi, R T; Camp, D E; Clard, D; Jackson, J A; Martz, H E, Decman, D J; Roberson, G P

    1998-10-28

    Traditional gamma-ray methods used to characterize nuclear waste introduce errors that are related to non-uniform measurement responses associated with unknown radioactive source and matrix material distributions. These errors can be reduced by applying an active and passive tomographic technique (A&PCT) developed at the Lawrence Livermore National Laboratory (LLNL). The technique uses an external radioactive source and active tomography to map the attenuation within a waste barrel as a function of mono-energetic gamma-ray energy. Passive tomography is used to localize and identify specific radioactive waste within the same container. Reconstruction of the passive data using the attenuation maps at specific energies allows internal waste radioactivity to be corrected for any overlying heterogeneous materials, thus yielding an absolute assay of the waste activity. LLNL and Bio-Imaging Research, Inc. have collaborated in a technology transfer effort to integrate an A&PCT assay system into a mobile waste characterization trailer. This mobile system has participated in and passed several formal DOE-sponsored performance demonstrations, tests and evaluations. The system is currently being upgraded with multiple detectors to improve throughput, automated gamma-ray analysis code to simplify the assay, and a new emission reconstruction code to improve accuracy

  19. Passive imaging technology in aphasia therapy.

    PubMed

    Burke, Kiernan; Franklin, Sue; Gowan, Olive

    2011-10-01

    We describe a brief pilot study undertaken to investigate the potential benefit(s) of using a SenseCam in aphasia therapy. Five post-stroke persons with aphasia and their caregivers agreed to participate. Each person with aphasia wore the SenseCam for 1 day during the daytime. Slide shows and printed images were created from the images obtained and presented at a (videotaped) weekly group conversation session. Therapists' observations, reflections, and opinions were subsequently elicited in a group interview and online survey. Wearable, sensor-triggered automatic imaging devices offer potential advantages over both conventional cameras and generic pictures when used in aphasia therapy. We identified three advantages of a SenseCam over conventional imaging methods: Images can be acquired without the presence of the researcher, no action is required by the wearer for image acquisition and the continuous point of view is that of the wearer. Acquired images are of personal relevance to the wearer and may have greater efficacy for the person with aphasia in aiding conversation, and for the speech language therapist in setting functional language goals. PMID:21391108

  20. Passive and active middle ear implants

    PubMed Central

    Beutner, Dirk; Hüttenbrink, Karl-Bernd

    2011-01-01

    Besides eradication of chronic middle ear disease, the reconstruction of the sound conduction apparatus is a major goal of modern ear microsurgery. The material of choice in cases of partial ossicular replacement prosthesis is the autogenous ossicle. In the event of more extensive destruction of the ossicular chain diverse alloplastic materials, e.g. metals, ceramics, plastics or composits are used for total reconstruction. Their specialised role in conducting sound energy within a half-open implant bed sets high demands on the biocompatibility as well as the acoustic-mechanic properties of the prosthesis. Recently, sophisticated titanium middle ear implants allowing individual adaptation to anatomical variations are widely used for this procedure. However, despite modern developments, hearing restoration with passive implants often faces its limitations due to tubal-middle-ear dysfunction. Here, implantable hearing aids, successfully used in cases of sensorineural hearing loss, offer a promising alternative. This article reviews the actual state of affairs of passive and active middle ear implants. PMID:22073102

  1. Landmine detection using passive hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    McFee, John E.; Anger, Cliff; Achal, Steve; Ivanco, Tyler

    2007-04-01

    Airborne hyperspectral imaging has been studied since the late 1980s as a tool to detect minefields for military countermine operations and for level I clearance for humanitarian demining. Hyperspectral imaging employed on unmanned ground vehicles may also be used to augment or replace broadband imagers to detect individual mines. This paper will discuss the ability of different optical wavebands - the visible/near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) - to detect surface-laid and buried mines. The phenomenology that determines performance in the different bands is discussed. Hyperspectral imagers have usually been designed and built for general purpose remote sensing applications and often do not meet the requirements of mine detection. The DRDC mine detection research program has sponsored the development by Itres Research of VNIR, SWIR and TIR instruments specifically intended for mine detection. The requirements for such imagers are described, as well as the instruments. Some results of mine detection experiments are presented. To date, reliable day time detection of surface-laid mines in non-real-time, independent of solar angle, time of day and season has been demonstrated in the VNIR and SWIR. Real-time analysis, necessary for military applications, has been demonstrated from low speed ground vehicles and recently from airborne platforms. Reliable, repeatable detection of buried mines has yet to be demonstrated, although a recently completed TIR hyperspectral imager will soon be tested for such a capability.

  2. The Soil Moisture Active Passive (SMAP) applications activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier satellite missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission 1 is under development by NASA and is scheduled for launch late in 2014. The SMAP mea...

  3. Passive Detection of Paint-Doctored JPEG Images

    NASA Astrophysics Data System (ADS)

    Zhao, Yu Qian; Shih, Frank Y.; Shi, Yun Q.

    Image painting is an image doctoring method to remove particular objects. In this paper, a novel passive detection method for paint-doctored JPEG images is proposed when the doctored image is saved in an uncompressed format or in the JPEG compressed format. We detect the doctored region by computing the average of sum of absolute difference images between the doctored image and a resaved JPEG compressed image at different quality factors. There are several advantages of the proposed method: first, it can detect the doctored region accurately even if the doctored region is small in size; second, it can detect multiple doctored regions in the same image; third, it can detect the doctored region automatically and does not need any manual operation; finally, the computation is simple. Experimental results show that the proposed method can detect the paint-doctored regions efficiently and accurately.

  4. Active and passive contributions to spatial learning.

    PubMed

    Chrastil, Elizabeth R; Warren, William H

    2012-02-01

    It seems intuitively obvious that active exploration of a new environment will lead to better spatial learning than will passive exposure. However, the literature on this issue is decidedly mixed-in part, because the concept itself is not well defined. We identify five potential components of active spatial learning and review the evidence regarding their role in the acquisition of landmark, route, and survey knowledge. We find that (1) idiothetic information in walking contributes to metric survey knowledge, (2) there is little evidence as yet that decision making during exploration contributes to route or survey knowledge, (3) attention to place-action associations and relevant spatial relations contributes to route and survey knowledge, although landmarks and boundaries appear to be learned without effort, (4) route and survey information are differentially encoded in subunits of working memory, and (5) there is preliminary evidence that mental manipulation of such properties facilitates spatial learning. Idiothetic information appears to be necessary to reveal the influence of attention and, possibly, decision making in survey learning, which may explain the mixed results in desktop virtual reality. Thus, there is indeed an active advantage in spatial learning, which manifests itself in the task-dependent acquisition of route and survey knowledge.

  5. Identification of passive millimeter-wave images using neural networks

    NASA Astrophysics Data System (ADS)

    Sundstrom, Bryce M.; Min, Kwang-Shik

    1993-09-01

    Recent developments in passive millimeter-wave imaging technology are remarkable. Images of objects obtained through clouds and fog are almost indistinguishable from similar scenes taken under clear conditions. Of particular interest is the ability to image metal targets beneath camouflage, tents, polymers, wooden shelters, and certain levels of ceramic materials. A brief description of this emerging technology will be followed by several convincing examples of images to support the claims made above. Once image formation is complete, the technique of identifying objects in the image using neural networks is similar to the schemes utilized in previous Wright Laboratory Armament directorate implementations of Automatic Target Identification work for electro-optical and infrared images.

  6. Passive Microwave Spectral Imaging of Amospheric Structure

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Rosenkranz, Philip W.

    1998-01-01

    The primary objective of this research was to improve the scientific foundation necessary to full realization of the meteorological potential of the NOAA Advanced Microwave Sounding Unit (AMSU) recently first launched on the NOAA-15 satellite in May, 1998. These advances were made in four main areas: (1) improvements, based on aircraft observations, in the atmospheric transmittance expressions used for interpreting AMSU and similar data; (2) development of neural network retrieval methods for cloud top altitude estimates of approximately 1-km accuracy under cirrus shields--the altitude is that of the larger ice particles aloft, which is related to precipitation rate; (3) analysis of early AMSU flight data with respect to its precipitation sensitivity and fine-scale thermal structure; and (4) improvements to the 54-GHz and 118-GHz MTS aircraft imaging spectrometer now operating on the NASA ER-2 aircraft. More specifically, the oxygen transmittance expressions near 118 GHz were in better agreement with aircraft data when the temperature dependence exponent of the 118.75-GHz linewidth was increased from the MPM92 value (Liebe et al., 1992) of 0.8 to 0.97+/-0.03. In contrast, the observations 52.5-55.8 GHz were consistent with the MPM92 model. Neural networks trained on comparisons of 118-GHz spectral data and coincident stereoscopic video images of convective cells observed from 20-km altitude yielded agreement in their peak altitudes within as little as 1.36 km rms, much of which is stereoscopic error. Imagery using these methods produced useful characterizations for Cyclone Oliver in 1993 and other storms (Schwartz et al., 1996; Spina et al., 1998). Similar neural network techniques yielded simulated rms errors in relative humidity retrievals of 6-14 percent over ocean and 6-15 percent over land at pressure levels from 1013 to 131 mbar (Cabrera-Mercader and Staelin, 1995).

  7. 26 CFR 1.469-3 - Passive activity credit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 6 2013-04-01 2013-04-01 false Passive activity credit. 1.469-3 Section 1.469-3...) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-3 Passive activity credit. (a)-(d) (e) Coordination with section 38(b). Any credit described in section 38(b) (1) through (5)...

  8. 26 CFR 1.469-3 - Passive activity credit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Passive activity credit. 1.469-3 Section 1.469-3...) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-3 Passive activity credit. (a)-(d) (e) Coordination with section 38(b). Any credit described in section 38(b) (1) through (5)...

  9. 26 CFR 1.469-3 - Passive activity credit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Passive activity credit. 1.469-3 Section 1.469-3...) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-3 Passive activity credit. (a)-(d) (e) Coordination with section 38(b). Any credit described in section 38(b) (1) through (5)...

  10. Investigations on time stability of passive THz imaging

    NASA Astrophysics Data System (ADS)

    Kowalski, Marcin; Palka, Norbert; Zyczkowski, Marek; Szustakowski, Mieczyslaw

    2014-10-01

    Terahertz radiation is within the frequency range from 100 GHz to 10THz. This radiation has specific characteristics in terms of imaging. The radiation is harmless to the human body because the energy transferred by electromagnetic waves in this range of frequencies are very small thus there is no ionization of matter. The development of imaging devices and exploration of new spectral bands is a chance to introduce new equipment for assuring public safety. It has been proved that objects hidden under clothing can be detected and visualized using terahertz (THz) cameras. However, passive THz cameras still offer too low image resolution for objects recognition. In order to determine the properties of terahertz imaging for detection of hidden objects several aspects need to be considered. Taking into account the fact that the image captured by the terahertz camera reflects the spatial distribution of the relative temperature of the observed objects, the effect of the measurement time on the imaging capabilities should be examined. A very important aspect is the influence of the type (material composition) of coating material, as well as the type of an object hidden under clothing (size and material). The purpose of the studies is to investigate the time stability of passive THz imaging on 250 GHz for detection of concealed objects. In the article, we present the measurement setup, the measurement methodology as well as the initial results of measurements with various types of clothing and test objects.

  11. Design of a silicon avalanche photodiode pixel with integrated laser diode using back-illuminated crystallographically etched silicon-on-sapphire with monolithically integrated microlens for dual-mode passive and active imaging arrays

    NASA Astrophysics Data System (ADS)

    Stern, Alvin G.

    2010-08-01

    There is a growing need in scientific research applications for dual-mode, passive and active 2D and 3D LADAR imaging methods. To fill this need, an advanced back-illuminated silicon avalanche photodiode (APD) design is presented using a novel silicon-on-sapphire substrate incorporating a crystalline aluminum nitride (AlN) antireflective layer between the silicon and R-plane sapphire. This allows integration of a high quantum efficiency silicon APD with a gallium nitride (GaN) laser diode in each pixel. The pixel design enables single photon sensitive, solid-state focal plane arrays (FPAs) with wide dynamic range, supporting passive and active imaging capability in a single FPA. When (100) silicon is properly etched with TMAH solution, square based pyramidal frustum or mesa arrays result with the four mesa sidewalls of the APD formed by (111) silicon planes that intersect the (100) planes at a crystallographic angle, φ c = 54.7°. The APD device is fabricated in the mesa using conventional silicon processing technology. The GaN laser diode is fabricated by epitaxial growth inside of an inverted, etched cavity in the silicon mesa. Microlenses are fabricated in the thinned, and AR-coated sapphire substrate. The APDs share a common, front-side anode contact, and laser diodes share a common cathode. A low resistance (Al) or (Cu) metal anode grid fills the space between pixels and also inhibits optical crosstalk. SOS-APD arrays are flip-chip bump-bonded to CMOS readout ICs to produce hybrid FPAs. The square 27 μm emitter-detector pixel achieves SNR > 1 in active detection mode for Lambert surfaces at 1,000 meters.

  12. Hemispherical reflectance model for passive images in an outdoor environment.

    PubMed

    Kim, Charles C; Thai, Bea; Yamaoka, Neil; Aboutalib, Omar

    2015-05-01

    We present a hemispherical reflectance model for simulating passive images in an outdoor environment where illumination is provided by natural sources such as the sun and the clouds. While the bidirectional reflectance distribution function (BRDF) accurately produces radiance from any objects after the illumination, using the BRDF in calculating radiance requires double integration. Replacing the BRDF by hemispherical reflectance under the natural sources transforms the double integration into a multiplication. This reduces both storage space and computation time. We present the formalism for the radiance of the scene using hemispherical reflectance instead of BRDF. This enables us to generate passive images in an outdoor environment taking advantage of the computational and storage efficiencies. We show some examples for illustration.

  13. Hazardous cloud imaging: a new way of using passive infrared.

    PubMed

    Flanigan, D F

    1997-09-20

    A modeling and simulation study of the limits of remote detection by passive IR has led to a new concept for the remote detection of hazardous clouds. A passive IR signature model was developed with the Edgewood Research, Development, and Engineering Center IR spectral data bases used as input for chemicals and biologicals and with the atmospheric transmittance model used for MODTRAN. The cloud travel and dispersion model, VLSTRACK, was used to simulate chemical and biological clouds. An easily applied spectral discrimination technique was developed with a standard Mathematica version of linear programming. All these were melded with Mathematica to produce images of three threat clouds: Sarin, mustard, and an unnamed biological. The hazardous cloud imager is a spatially scanning Fourier transform IR on the same level of complexity as conventional remote detectors, but is capable of greater sensitivity and moving operation.

  14. NASA Soil Moisture Active Passive (SMAP) Applications

    NASA Astrophysics Data System (ADS)

    Orr, Barron; Moran, M. Susan; Escobar, Vanessa; Brown, Molly E.

    2014-05-01

    The launch of the NASA Soil Moisture Active Passive (SMAP) mission in 2014 will provide global soil moisture and freeze-thaw measurements at moderate resolution (9 km) with latency as short as 24 hours. The resolution, latency and global coverage of SMAP products will enable new applications in the fields of weather, climate, drought, flood, agricultural production, human health and national security. To prepare for launch, the SMAP mission has engaged more than 25 Early Adopters. Early Adopters are users who have a need for SMAP-like soil moisture or freeze-thaw data, and who agreed to apply their own resources to demonstrate the utility of SMAP data for their particular system or model. In turn, the SMAP mission agreed to provide Early Adopters with simulated SMAP data products and pre-launch calibration and validation data from SMAP field campaigns, modeling, and synergistic studies. The applied research underway by Early Adopters has provided fundamental knowledge of how SMAP data products can be scaled and integrated into users' policy, business and management activities to improve decision-making efforts. This presentation will cover SMAP applications including weather and climate forecasting, vehicle mobility estimation, quantification of greenhouse gas emissions, management of urban potable water supply, and prediction of crop yield. The presentation will end with a discussion of potential international applications with focus on the ESA/CEOS TIGER Initiative entitled "looking for water in Africa", the United Nations (UN) Convention to Combat Desertification (UNCCD) which carries a specific mandate focused on Africa, the UN Framework Convention on Climate Change (UNFCCC) which lists soil moisture as an Essential Climate Variable (ECV), and the UN Food and Agriculture Organization (FAO) which reported a food and nutrition crisis in the Sahel.

  15. Passive Seismic Imaging of the Ruby Mountains Core Complex, Nevada

    NASA Astrophysics Data System (ADS)

    Litherland, M.; Klemperer, S. L.

    2015-12-01

    We investigate the deep crustal structure of the Ruby Mountains Core Complex (RMCC) using data collected from the Ruby Mountains Seismic Experiment. This project, part of the Earthscope Flexible Array program, deployed 50 passive broadband stations across the RMCC from 2010 to 2012. Previous investigations of the area have included extensive surface mapping and active seismic profiles across the surrounding basins, but better imaging beneath the mountain range is needed to understand the tectonic processes that formed the RMCC. The RMCC exhibits typical core-complex structure of deep crustal rocks exhumed to the surface beneath a gently dipping detachment, with a thick mylonitic shear zone directly underlying the detachment. In the RMCC, the westward dip of the detachment, the ~1km-thick mylonite zone formed in the Paleogene, and a south-to-north increase in metamorphic grade provide targets for imaging. We used common conversion point stacking of receiver functions to produce 3 profiles of structural discontinuities beneath the RMCC: one along the axis of the RMCC, and two crossing lines, one in the northern RMCC, and one in the southern part of the range. Due to the deep sedimentary basins surrounding the RMCC, various de-multiple processes were required to reduce the effects of basin reverberations. To better constrain the velocity structure of the area, we used ambient-noise tomography, and finally, we produced a joint inversion of our receiver functions and ambient-noise data. We observe a mostly flat Moho at about 30 km depth beneath the RMCC that dips slightly to the south, with faint mid-crustal converters that also dip south at ~30°. In the southern RMCC, the Moho dips ~20° westward, but this is not observed in the northern RMCC. This suggests that much of the exhumation involved in the RMCC formation likely involved ductile flow that left a mostly flat Moho, but more recent processes also may have left observable changes in lower-crustal structure.

  16. Passive and Active Fiber Optic Components

    NASA Astrophysics Data System (ADS)

    Digonnet, Michel Jean-Francois

    This thesis is concerned with the development and characterization of both passive and active fiber-optic components for applications in single-mode fiber systems, in particular in the new technology of fiber sensors and signal processors. These components include single-mode fiber directional couplers, vital to many optical fiber systems, all-fiber wavelength multiplexers, with potential applications in communication systems and active fiber devices, and single-crystal fiber lasers and amplifiers as miniature light sources and signal regenerators. The fiber directional couplers involved in this work, fabricated by a polishing process, are described in detail. Experimental characterization of their coupling, loss and unique tuning properties, and their respective dependence on the coupler geometrical parameters, are reported. A theoretical model of fiber-to-fiber coupling is also developed and shown to be a very useful and accurate tool in the design and study of this type of fiber couplers. The dependence of the coupling properties of fiber couplers on the signal wavelength is studied both theoretically and experimentally for applications in wavelength division multiplexing. All-fiber multiplexers exhibiting a good wavelength selectivity and unique tunability are described and shown to operate according to the coupler model. Work on active fiber devices explores the potential of the new technology of single-crystal fibers grown by the laser-heated floating-zone technique. The status of crystal fiber growth is reported, together with the basic physical and optical characteristics of these fibers. A theoretical model of the effects of fiber model structure on the gain and laser operation of active fibers is also developed to predict the performance of lasers and amplifiers in a fiber form. Several conceptual pumping schemes are described which offer solutions to the difficult problem of optically pumping small diameter fiber amplifiers. The experimental

  17. Confocal imaging to quantify passive transport across biomimetic lipid membranes.

    PubMed

    Li, Su; Hu, Peichi; Malmstadt, Noah

    2010-09-15

    The ability of a molecule to pass through the plasma membrane without the aid of any active cellular mechanisms is central to that molecule's pharmaceutical characteristics. Passive transport has been understood in the context of Overton's rule, which states that more lipophilic molecules cross membrane lipid bilayers more readily. Existing techniques for measuring passive transport lack reproducibility and are hampered by the presence of an unstirred layer (USL) that dominates transport across the bilayer. This report describes assays based on spinning-disk confocal microscopy (SDCM) of giant unilamellar vesicles (GUVs) that allow for the detailed investigation of passive transport processes and mechanisms. This approach allows the concentration field to be directly observed, allowing membrane permeability to be determined easily from the transient concentration profile data. A series of molecules of increasing hydrophilicity was constructed, and the transport of these molecules into GUVs was observed. The observed permeability trend is consistent with Overton's rule. However, the values measured depart from the simple partition-diffusion proportionality model of passive transport. This technique is easy to implement and has great promise as an approach to measure membrane transport. It is optimally suited to precise quantitative measurements of the dependence of passive transport on membrane properties.

  18. Optimum mix of passive and active control of space structures

    NASA Technical Reports Server (NTRS)

    Rogers, Lynn; Richards, Ken

    1987-01-01

    The objective of this research was to test vibration suppression (settling time and jitter) of a large space structure (LSS) characterized by low frequency high global vibration modes. Five percent passive damping in a large truss was analyzed, tested and correlated. A representative system article re-target analysis shows that modest levels of passive damping dramatically reduce the control energy required. LSS must incorporate passive damping from the outset. The LSS system performance will not be met by either active or passive damping alone.

  19. Prescribing Activities that Engage Passive Residents. An Innovative Method

    PubMed Central

    Kolanowski, Ann; Buettner, Linda

    2009-01-01

    Individuals with dementia are often passive, which places them at risk for further cognitive and functional decline. Recreational activities have been used in research to reduce passive behaviors, but systematic reviews of these studies have found modest effect sizes for many activities. In this article, we describe the further theoretical development of an innovative method for prescribing activities that have a high likelihood of engaging nursing home residents who are passive and present examples for research application and clinical practice. This method may increase the effect size of activity interventions and encourage more widespread adoption of nonpharmacological interventions in practice. PMID:18274300

  20. Passive millimeter-wave imaging with compressive sensing

    NASA Astrophysics Data System (ADS)

    Gopalsami, Nachappa; Liao, Shaolin; Elmer, Thomas W.; Koehl, Eugene R.; Heifetz, Alexander; Raptis, Apostolos C.; Spinoulas, Leonidas; Katsaggelos, Aggelos K.

    2012-09-01

    Passive millimeter-wave (PMMW) imagers using a single radiometer, called single pixel imagers, employ raster scanning to produce images. A serious drawback of such a single pixel imaging system is the long acquisition time needed to produce a high-fidelity image, arising from two factors: (a) the time to scan the whole scene pixel by pixel and (b) the integration time for each pixel to achieve adequate signal to noise ratio. Recently, compressive sensing (CS) has been developed for single-pixel optical cameras to significantly reduce the imaging time and at the same time produce high-fidelity images by exploiting the sparsity of the data in some transform domain. While the efficacy of CS has been established for single-pixel optical systems, its application to PMMW imaging is not straightforward due to its (a) longer wavelength by three to four orders of magnitude that suffers high diffraction losses at finite size spatial waveform modulators and (b) weaker radiation intensity, for example, by eight orders of magnitude less than that of infrared. We present the development and implementation of a CS technique for PMMW imagers and shows a factor-of-ten increase in imaging speed.

  1. Nondestructive assay using active and passive computed tomography

    SciTech Connect

    Roberson, G. P. ,LLNL

    1998-07-01

    The United States Department of Energy (DOE) has over 600,000 transuranic (TRU) waste drums temporarily stored at nearly 40 sites within the United States. Contents of these drums must be characterized before they are transported for permanent disposal. Traditional gamma-ray methods used to characterize nuclear waste introduce errors that are related to nonuniform measurement responses associated with unknown radioactive source and matrix material distributions. These errors can be reduced by application of tomographic techniques, that measure these distributions. The Lawrence Livermore National Laboratory (LLNL) has developed two tomographic-based waste assay systems. They use external radioactive sources and tomography-protocol to map the attenuation within a waste drum as a function of mono-energetic gamma-ray energy in waste containers. Passive tomography is used to localize and identify specific radioactive waste contents within the same waste containers. Reconstruction of the passive data via the active images allows internal waste radioactivities in a drum to be corrected for any overlying heterogeneous materials, thus yielding an absolute assay of the waste radioactivities. Calibration of both systems requires only point source measurements and are independent of matrix materials. The first system is housed at LLNL and was developed to study and validate research concepts. The second system is being developed with Bioimaging Research, Inc. (BIR) and is housed within a mobile waste characterization trailer. This system has traveled to three DOE facilities to demonstrate the active and passive computed tomography capability. Both systems have participated in and successfully passed the requirements of formal DOE-sponsored intercomparison studies. The systems have measured approximately 1 to 100 grains of plutonium within a variety of waste matrix materials. Laboratory and field results from these two systems over the past several years show that both systems

  2. Passive millimeter-wave imaging for concealed article detection

    NASA Astrophysics Data System (ADS)

    Lovberg, John A.; Galliano, Joseph A., Jr.; Clark, Stuart E.

    1997-02-01

    Passive-millimeter-wave imaging (PMI) provides a powerful sensing tool for law enforcement, allowing an unobtrusive means for detecting concealed weapons, explosives, or contraband on persons or in baggage. Natural thermal emissions at millimeter wavelengths from bodies, guns, explosives, and other articles pass easily through clothing or other concealment materials, where they can be detected and converted into conventional 2-dimensional images. A new implementation of PMI has demonstrated a large-area, near- real-time staring capability for personnel inspection at standoff ranges of greater than 10 meters. In this form, PMI does not require operator cuing based on subjective 'profiles' of suspicious appearance or behaviors, which may otherwise be construed as violations of civil rights. To the contrary, PMI detects and images heat generated by any object with no predisposition as to its nature or function (e.g. race or gender of humans). As a totally passive imaging tool, it generates no radio-frequency or other radiation which might raise public health concerns. Specifics of the new PMI architecture are presented along with a host of imaging data representing the current state- of-the-art.

  3. Analysis of scapular kinematics during active and passive arm elevation

    PubMed Central

    Kai, Yoshihiro; Gotoh, Masafumi; Takei, Kazuto; Madokoro, Kazuya; Imura, Takeshi; Murata, Shin; Morihara, Toru; Shiba, Naoto

    2016-01-01

    [Purpose] Early postoperative passive motion exercise after arthroscopic rotator cuff repair remains controversial. To better understand this issue, this study was aimed at evaluating scapular kinematics and muscle activities during passive arm elevation in healthy subjects. [Subjects and Methods] The dominant shoulders of 27 healthy subjects were examined. Electromagnetic sensors attached to the scapula, thorax, and humerus were used to determine three-dimensional scapular kinematics during active arm elevation with or without external loads and passive arm elevation. Simultaneously, the activities of seven shoulder muscles were recorded with surface and intramuscular fine-wire electrodes. [Results] Compared with active arm elevation, passive elevation between 30° and 100° significantly decreased the scapular upward rotation and increased the glenohumeral elevation angle. However, no significant differences in scapular posterior tilt and external rotation were observed between active and passive arm elevation, and scapular plane kinematics were not affected by muscle activity. [Conclusion] Unlike active motion with or without an external load, passive arm elevation significantly decreased the scapular upward rotation and significantly increased the mid-range glenohumeral elevation. These data, which suggest that passive arm elevation should be avoided during the early postoperative period, may expand the understanding of rehabilitation after arthroscopic rotator cuff repair. PMID:27390438

  4. Advances in passive imaging elements with micromirror array

    NASA Astrophysics Data System (ADS)

    Maekawa, Satoshi; Nitta, Kouichi; Matoba, Osamu

    2008-02-01

    We have proposed a new passive imaging optics which consists of a grid array of micro roof mirrors working as dihedral corner reflectors. Although this element forms mirror-like images at opposite side of objects, the images are real. Because the imaging principle of the proposed element is based on accumulation of rays, the design of each light path makes many kinds of devices possible. So, we propose two variations of such a device. One device consists of an array of micro retroreflectors and a half mirror, and it can also form real mirror-like images. The advantage of this device is wide range of view, because the displacement of each retororeflector is not limited on a plane unlike the roof mirror grid array. The other consists of an array of long dihedral corner reflectors. Although this structure has been already known as a roof mirror array, it can be used for imaging. This device forms two heterogeneous images. One is real at the same side of an object, and the other is virtual at the opposite side. This is a conjugate imaging optics of a slit mirror array whose mirror surface is perpendicular to the device surface. The advantage of a roor mirror array is that the real image has horizontal parallax and can be seen in air naturally.

  5. Passive synthetic aperture hitchhiker imaging of ground moving targets--Part 1: image formation and velocity estimation.

    PubMed

    Wacks, Steven; Yazici, Birsen

    2014-06-01

    In the Part 1 of this two-part study, we present a method of imaging and velocity estimation of ground moving targets using passive synthetic aperture radar. Such a system uses a network of small, mobile receivers that collect scattered waves due to transmitters of opportunity, such as commercial television, radio, and cell phone towers. Therefore, passive imaging systems have significant cost, manufacturing, and stealth advantages over active systems. We describe a novel generalized Radon transform-type forward model and a corresponding filtered-backprojection-type image formation and velocity estimation method. We form a stack of position images over a range of hypothesized velocities, and show that the targets can be reconstructed at the correct position whenever the hypothesized velocity is equal to the true velocity of targets. We then use entropy to determine the most accurate velocity and image pair for each moving target. We present extensive numerical simulations to verify the reconstruction method. Our method does not require a priori knowledge of transmitter locations and transmitted waveforms. It can determine the location and velocity of multiple targets moving at different velocities. Furthermore, it can accommodate arbitrary imaging geometries. In Part 2, we present the resolution analysis and analysis of positioning errors in passive SAR images due to erroneous velocity estimation. PMID:24815619

  6. Passive synthetic aperture hitchhiker imaging of ground moving targets--Part 1: image formation and velocity estimation.

    PubMed

    Wacks, Steven; Yazici, Birsen

    2014-06-01

    In the Part 1 of this two-part study, we present a method of imaging and velocity estimation of ground moving targets using passive synthetic aperture radar. Such a system uses a network of small, mobile receivers that collect scattered waves due to transmitters of opportunity, such as commercial television, radio, and cell phone towers. Therefore, passive imaging systems have significant cost, manufacturing, and stealth advantages over active systems. We describe a novel generalized Radon transform-type forward model and a corresponding filtered-backprojection-type image formation and velocity estimation method. We form a stack of position images over a range of hypothesized velocities, and show that the targets can be reconstructed at the correct position whenever the hypothesized velocity is equal to the true velocity of targets. We then use entropy to determine the most accurate velocity and image pair for each moving target. We present extensive numerical simulations to verify the reconstruction method. Our method does not require a priori knowledge of transmitter locations and transmitted waveforms. It can determine the location and velocity of multiple targets moving at different velocities. Furthermore, it can accommodate arbitrary imaging geometries. In Part 2, we present the resolution analysis and analysis of positioning errors in passive SAR images due to erroneous velocity estimation.

  7. Technology advances in active and passive microwave sensing through 1985

    NASA Technical Reports Server (NTRS)

    Barath, F. T.

    1977-01-01

    As a result of a growing awareness by the remote sensing community of the unique capabilities of passive and active microwave sensors, these instruments are expected to grow in the next decade in numbers, versatility and complexity. The Nimbus-G and Seasat-A Scanning Multichannel Microwave Spectrometer (SMMR), the Seasat-A radar altimeter, scatterometer and synthetic aperture radar represent the first systematic attempt at exploring a wide variety of applications utilizing microwave sensing techniques and are indicators of the directions in which the pertinent technology is likely to evolve. The trend is toward high resolution multi-frequency imagers spanning wide frequency ranges and wide swaths requiring sophisticated receivers, real-time data processors and most importantly, complex antennas.

  8. Advances in Inner Magnetosphere Passive and Active Wave Research

    NASA Technical Reports Server (NTRS)

    Green, James L.; Fung, Shing F.

    2004-01-01

    This review identifies a number of the principal research advancements that have occurred over the last five years in the study of electromagnetic (EM) waves in the Earth's inner magnetosphere. The observations used in this study are from the plasma wave instruments and radio sounders on Cluster, IMAGE, Geotail, Wind, Polar, Interball, and others. The data from passive plasma wave instruments have led to a number of advances such as: determining the origin and importance of whistler mode waves in the plasmasphere, discovery of the source of kilometric continuum radiation, mapping AKR source regions with "pinpoint" accuracy, and correlating the AKR source location with dipole tilt angle. Active magnetospheric wave experiments have shown that long range ducted and direct echoes can be used to obtain the density distribution of electrons in the polar cap and along plasmaspheric field lines, providing key information on plasmaspheric filling rates and polar cap outflows.

  9. Passive shortwave infrared technology and hyperspectral imaging for maritime applications

    NASA Astrophysics Data System (ADS)

    Judd, K. Peter; Waterman, James R.; Nichols, J. M.

    2010-04-01

    We present image data and discuss naval sensing applications of SWIR and Hyperspectral SWIR imaging in littoral and marine environments under various light conditions. These environments prove to be challenging for persistent surveillance applications as light levels may vary over several orders of magnitude within and from scene to scene. Additional difficulties include imaging over long water paths where marine haze and turbulence tend to degrade radiation transmission, and discrimination of low contrast objects under low-light and night imaging. Image data obtained from two separate passive sensor systems, both of which are built around an RVS large format (1280 x 1024) InGaAs FPA with high dynamic range and low noise electronics, are presented. The SWIR camera imager is equipped with a custom 300 mm focal length f/2 narrow field-of-view (6° diagonal) refractive telescope. The Hyperspectral imager has a custom selectable 900/1800 mm focal length telescope with corresponding 1.55°/0.79° field-of-view and fnumbers of 3/6 respectively. The sensor uses 1280 pixels in the spatial direction and a window of 192 are used for the spectral and operates at a nominal frame rate of 120 Hz. To assess field performance of the SWIR/Hyperspectral imagers, comparison is made to output from a scientific grade VNIR camera and two state-of-the-art low-light sensors.

  10. Biological aerosol detection with combined passive-active infrared measurements

    NASA Astrophysics Data System (ADS)

    Ifarraguerri, Agustin I.; Vanderbeek, Richard G.; Ben-David, Avishai

    2004-12-01

    A data collection experiment was performed in November of 2003 to measure aerosol signatures using multiple sensors, all operating in the long-wave infrared. The purpose of this data collection experiment was to determine whether combining passive hyperspectral and LIDAR measurements can substantially improve biological aerosol detection performance. Controlled releases of dry aerosols, including road dust, egg albumin and two strains of Bacillus Subtilis var. Niger (BG) spores were performed using the ECBC/ARTEMIS open-path aerosol test chamber located in the Edgewood Area of Aberdeen Proving Grounds, MD. The chamber provides a ~ 20' path without optical windows. Ground truth devices included 3 aerodynamic particle sizers, an optical particle size spectrometer, 6 nephelometers and a high-volume particle sampler. Two sensors were used to make measurements during the test: the AIRIS long-wave infrared imaging spectrometer and the FAL CO2 LIDAR. The AIRIS and FAL data sets were analyzed for detection performance relative to the ground truth. In this paper we present experimental results from the individual sensors as well as results from passive-active sensor fusion. The sensor performance is presented in the form of receiver operating characteristic curves.

  11. The Sandia MEMS passive shock sensor : FY07 maturation activities.

    SciTech Connect

    Houston, Jack E.; Blecke, Jill; Mitchell, John Anthony; Wittwer, Jonathan W.; Crowson, Douglas A.; Clemens, Rebecca C.; Walraven, Jeremy Allen; Epp, David S.; Baker, Michael Sean

    2008-08-01

    This report describes activities conducted in FY07 to mature the MEMS passive shock sensor. The first chapter of the report provides motivation and background on activities that are described in detail in later chapters. The second chapter discusses concepts that are important for integrating the MEMS passive shock sensor into a system. Following these two introductory chapters, the report details modeling and design efforts, packaging, failure analysis and testing and validation. At the end of FY07, the MEMS passive shock sensor was at TRL 4.

  12. Mesoscopics of ultrasound and seismic waves: application to passive imaging

    NASA Astrophysics Data System (ADS)

    Larose, É.

    2006-05-01

    This manuscript deals with different aspects of the propagation of acoustic and seismic waves in heterogeneous media, both simply and multiply scattering ones. After a short introduction on conventional imaging techniques, we describe two observations that demonstrate the presence of multiple scattering in seismic records: the equipartition principle, and the coherent backscattering effect (Chap. 2). Multiple scattering is related to the mesoscopic nature of seismic and acoustic waves, and is a strong limitation for conventional techniques like medical or seismic imaging. In the following part of the manuscript (Chaps. 3 5), we present an application of mesoscopic physics to acoustic and seismic waves: the principle of passive imaging. By correlating records of ambient noise or diffuse waves obtained at two passive sensors, it is possible to reconstruct the impulse response of the medium as if a source was placed at one sensor. This provides the opportunity of doing acoustics and seismology without a source. Several aspects of this technique are presented here, starting with theoretical considerations and numerical simulations (Chaps. 3, 4). Then we present experimental applications (Chap. 5) to ultrasound (passive tomography of a layered medium) and to seismic waves (passive imaging of California, and the Moon, with micro-seismic noise). Physique mésoscopique des ultrasons et des ondes sismiques : application à l'imagerie passive. Cet article de revue rassemble plusieurs aspects fondamentaux et appliqués de la propagation des ondes acoustiques et élastiques dans les milieux hétérogènes, en régime de diffusion simple ou multiple. Après une introduction sur les techniques conventionelles d'imagerie sismique et ultrasonore, nous présentons deux expériences qui mettent en évidence la présence de diffusion multiple dans les enregistrements sismologiques : l'équipartition des ondes, et la rétrodiffusion cohérente (Chap. 2). La diffusion multiple des

  13. Passive and active recognition of one's own face.

    PubMed

    Sugiura, M; Kawashima, R; Nakamura, K; Okada, K; Kato, T; Nakamura, A; Hatano, K; Itoh, K; Kojima, S; Fukuda, H

    2000-01-01

    Facial identity recognition has been studied mainly with explicit discrimination requirement and faces of social figures in previous human brain imaging studies. We performed a PET activation study with normal volunteers in facial identity recognition tasks using the subject's own face as visual stimulus. Three tasks were designed so that the activation of the visual representation of the face and the effect of sustained attention to the representation could be separately examined: a control-face recognition task (C), a passive own-face recognition task (no explicit discrimination was required) (P), and an active own-face recognition task (explicit discrimination was required) (A). Increased skin conductance responses during recognition of own face were seen in both task P and task A, suggesting the occurrence of psychophysiological changes during recognition of one's own face. The left fusiform gyrus, the right supramarginal gyrus, the left putamen, and the right hypothalamus were activated in tasks P and A compared with task C. The left fusiform gyrus and the right supramarginal gyrus are considered to be involved in the representation of one's own face. The activation in the right supramarginal gyrus may be associated with the representation of one's own face as a part of one's own body. The prefrontal cortices, the right anterior cingulate, the right presupplementary motor area, and the left insula were specifically activated during task A compared with tasks C and P, indicating that these regions may be involved in the sustained attention to the representation of one's own face. PMID:10686115

  14. Target recognition in passive terahertz image of human body

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Zhao, Yuan-meng; Deng, Chao; Zhang, Cun-lin; Li, Yue

    2014-11-01

    THz radiation can penetrate through many nonpolar dielectric materials and can be used for nondestructive/noninvasive sensing and imaging of targets under nonpolar, nonmetallic covers or containers. Thus using THz systems to "see through" concealing barriers (i.e. packaging, corrugated cardboard, clothing) has been proposed as a new security screening method. Objects that can be detected by THz include concealed weapons, explosives, and chemical agents under clothing. Passive THz imaging system can detect THz wave from human body without transmit any electromagnetic wave, and the suspicious objects will become visible because the THz wave is blocked by this items. We can find out whether or not someone is carrying dangerous objects through this image. In this paper, the THz image enhancement, segmentation and contour extraction algorithms were studied to achieve effective target image detection. First, the terahertz images are enhanced and their grayscales are stretched. Then we apply global threshold segmentation to extract the target, and finally the targets are marked on the image. Experimental results showed that the algorithm proposed in this paper can extract and mark targets effectively, so that people can identify suspicious objects under clothing quickly. The algorithm can significantly improve the usefulness of the terahertz security apparatus.

  15. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  16. A Comparison between Lightning Activity and Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Kevin, Driscoll T.; Hugh, Christian J.; Goodman, Steven J.

    1999-01-01

    A recent examination of data from the Lightning Imaging Sensor (LIS) and the TRMM Microwave Imager (TMI) suggests that storm with the highest frequency of lightning also possess the most pronounced microwave scattering signatures at 37 and 85 GHz. This study demonstrates a clear dependence between lightning and the passive microwave measurements, and accentuates how direct the relationship really is between cloud ice and lightning activity. In addition, the relationship between the quantity of ice content and the frequency of lightning (not just the presence of lightning) , is consistent throughout the seasons in a variety of regimes. Scatter plots will be presented which show the storm-averaged brightness temperatures as a function of the lightning density of the storms (L/Area) . In the 85 GHz and 37 GHz scatter plots, the brightness temperature is presented in the form Tb = k1 x log10(L/Area) + k2, where the slope of the regression, k1, is 58 for the 85 GHz relationship and 30.7 for the 37 GHz relationship. The regression for both these fits showed a correlation of 0.76 (r2 = 0.58), which is quite promising considering the simple procedure used to make the comparisons, which have not yet even been corrected for the view angle differences between the instruments, or the polarization corrections in the microwave imager.

  17. Detection of chemical pollutants by passive LWIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Dubé, Denis

    2012-09-01

    Toxic industrial chemicals (TICs) represent a major threat to public health and security. Their detection constitutes a real challenge to security and first responder's communities. One promising detection method is based on the passive standoff identification of chemical vapors emanating from the laboratory under surveillance. To investigate this method, the Department of National Defense and Public Safety Canada have mandated Defense Research and Development Canada (DRDC) - Valcartier to develop and test passive Long Wave Infrared (LWIR) hyperspectral imaging (HSI) sensors for standoff detection. The initial effort was focused to address the standoff detection and identification of toxic industrial chemicals (TICs) and precursors. Sensors such as the Multi-option Differential Detection and Imaging Fourier Spectrometer (MoDDIFS) and the Improved Compact ATmospheric Sounding Interferometer (iCATSI) were developed for this application. This paper describes the sensor developments and presents initial results of standoff detection and identification of TICs and precursors. The standoff sensors are based on the differential Fourier-transform infrared (FTIR) radiometric technology and are able to detect, spectrally resolve and identify small leak plumes at ranges in excess of 1 km. Results from a series of trials in asymmetric threat type scenarios will be presented. These results will serve to establish the potential of the method for standoff detection of TICs precursors and surrogates.

  18. Passive millimeter-wave imaging model application and validation

    NASA Astrophysics Data System (ADS)

    Blume, Bradley T.; Chenault, David B.

    1997-06-01

    The military use of millimeter wave radiometers has been studied since the 1960's. It is only recently that advances in the technology have made passive millimeter wave (PMMW) systems practical. It is well established that metal targets will have a large contrast ratio versus the background in the millimeter wave (MMW) regime and that atmospheric propagation through clouds, fog and light rain is possible. The limitations have been the noise figures of the detectors, the size of the systems, and the cost of the systems. Through the advent of millimeter wave monolithic integrated circuits technology, MMW devices are becoming smaller, more sensitive, and less expensive. In addition many efforts are currently under way to develop PMMW array imaging devices. This renewed interest has likewise brought forth the need for passive millimeter wave system modeling capabilities. To fill this need, Nichols Research Corporation has developed for Eglin AFB a physics-based image synthesis code, capable of modeling the dominant effects in the MMW regime. This code has been developed to support the development of the next generation of PMMW seeker systems. This paper will describe the phenomenology of PMMW signatures, the Irma software, validation of the Irma models and the application of the models to both Air Force and Navy problems.

  19. Imaging of Passive Scalar Fields by Filtered Rayleigh Scattering

    NASA Astrophysics Data System (ADS)

    Kearney, Sean; Grasser, Thomas; Beresh, Steven; Schefer, Robert

    2002-11-01

    Filtered Rayleigh Scattering (FRS) is a molecular-filter-based, laser-diagnostic approach for multiparameter flowfield imaging that has been gaining popularity over the past 5-10 years [1]. Advantages of FRS for noninvasive gas-phase imaging include: (1) elimination of particle or chemical seeding requirements, (2) increased optical noise rejection allowing imaging close to walls and in "dirty" laboratory environments, (3) imaging of multiple flowfield parameters with a single diagnostic. In this work, the construction and performance of a FRS optical system for passive scalar imaging at Sandia National Laboratories is presented. Data were obtained in an open lab where no special precautions for the elimination of room particulate were made. Results from nonreacting jets and from a premixed flame are shown. Temperature imaging in a nonreacting, steady calibration jet reveals the precision of the time-averaged FRS thermometry results to be ±20 K, or 4of the characteristic temperature difference, while the single-laser-pulse precision is degraded to approximately ±40-50 K. These results are adequate for combustion thermometry purposes. Relative to the jet temperature measurements, species concentration imaging of a buoyant helium jet displays increased signal dynamic range and further improved precision. Reacting flow measurements from the combustion-product region of a methane-air Hencken-type premixed flame are also presented and a comparison of FRS and coherent anti-Stokes Raman scattering (CARS) experiments to calculated adiabatic-equilibrium product temperatures is made which validates the suitability of our FRS instrument for combustion temperature imaging. [1]G.S. Elliott, N. Glumac, and C.D. Carter, Meas. Sci. Tech., 12, 452, 2001.

  20. Development of passive submillimeter-wave video imaging systems

    NASA Astrophysics Data System (ADS)

    Heinz, Erik; May, Torsten; Born, Detlef; Zieger, Gabriel; Peiselt, Katja; Brömel, Anika; Anders, Solveig; Zakosarenko, Vyacheslav; Krause, Torsten; Krüger, André; Schulz, Marco; Meyer, Hans-Georg

    2013-05-01

    Passive submillimeter wave imaging is a concept that has been in the focus of interest as a promising technology for security applications for a number of years. It utilizes the unique optical properties of submillimeter waves and promises an alternative to millimeter-wave and X-ray backscattering portals for personal security screening in particular. Possible application scenarios demand sensitive, fast, and fleixible high-quality imaging techniques. Considering the low radiometric contrast of indoor scenes in the submillimeter range, this objective calls for an extremely high detector sensitivity that can only be achieved using cooled detectors. Our approach to this task is a series of passives standoff video cameras for the 350 GHz band that represent an evolving concept and a continuous development since 2007. The cameras utilize arrays of superconducting transition-edge sensors (TES), i.e. cryogenic microbolometers, as radiation detectors. The TES are operate at temperatures below 1K, cooled by a closed-cycle cooling system, and coupled to superconducting readout electronics. By this means, background limited photometry (BLIP) mode is achieved providing the maximum possible signal to noise ratio. At video rates, this leads to a pixel NETD well below 1K. The imaging system is completed by reflector optics based on free-form mirrors. For object distances of 3-10m, a field of view up to 2m height and a diffraction-limited spatial resolution in the order of 1-2cm is provided. Opto-mechanical scanning systems are part of the optical setup and capable frame rates up to 25 frames per second. Both spiraliform and linear scanning schemes have been developed.

  1. Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging.

    PubMed

    Haworth, Kevin J; Raymond, Jason L; Radhakrishnan, Kirthi; Moody, Melanie R; Huang, Shao-Ling; Peng, Tao; Shekhar, Himanshu; Klegerman, Melvin E; Kim, Hyunggun; McPherson, David D; Holland, Christy K

    2016-02-01

    Angioplasty and stenting of a stenosed artery enable acute restoration of blood flow. However, restenosis or a lack of re-endothelization can subsequently occur depending on the stent type. Cavitation-mediated drug delivery is a potential therapy for these conditions, but requires that particular types of cavitation be induced by ultrasound insonation. Because of the heterogeneity of tissue and stochastic nature of cavitation, feedback mechanisms are needed to determine whether the sustained bubble activity is induced. The objective of this study was to determine the feasibility of passive cavitation imaging through a metal stent in a flow phantom and an animal model. In this study, an endovascular stent was deployed in a flow phantom and in porcine femoral arteries. Fluorophore-labeled echogenic liposomes, a theragnostic ultrasound contrast agent, were injected proximal to the stent. Cavitation images were obtained by passively recording and beamforming the acoustic emissions from echogenic liposomes insonified with a low-frequency (500 kHz) transducer. In vitro experiments revealed that the signal-to-noise ratio for detecting stable cavitation activity through the stent was greater than 8 dB. The stent did not significantly reduce the signal-to-noise ratio. Trans-stent cavitation activity was also detected in vivo via passive cavitation imaging when echogenic liposomes were insonified by the 500-kHz transducer. When stable cavitation was detected, delivery of the fluorophore into the arterial wall was observed. Increased echogenicity within the stent was also observed when echogenic liposomes were administered. Thus, both B-mode ultrasound imaging and cavitation imaging are feasible in the presence of an endovascular stent in vivo. Demonstration of this capability supports future studies to monitor restenosis with contrast-enhanced ultrasound and pursue image-guided ultrasound-mediated drug delivery to inhibit restenosis.

  2. NASA's Soil Moisture Active Passive (SMAP) Observatory

    NASA Technical Reports Server (NTRS)

    Kellogg, Kent; Thurman, Sam; Edelstein, Wendy; Spencer, Michael; Chen, Gun-Shing; Underwood, Mark; Njoku, Eni; Goodman, Shawn; Jai, Benhan

    2013-01-01

    The SMAP mission will produce high-resolution and accurate global maps of soil moisture and its freeze/thaw state using data from a non-imaging synthetic aperture radar and a radiometer, both operating at L-band.

  3. The relationships between active extensibility, and passive and active stiffness of the knee flexors.

    PubMed

    Blackburn, J Troy; Padua, Darin A; Riemann, Bryan L; Guskiewicz, Kevin M

    2004-12-01

    Insufficient active knee flexor stiffness may predispose the anterior cruciate ligament to injury. Insufficient passive stiffness may result in insufficient active stiffness. Similarly, higher levels of musculotendinous extensibility may inhibit active and passive muscle stiffness, potentially contributing to an increased risk of injury. The literature is both limited and inconsistent concerning relationships between extensibility, passive stiffness, and active stiffness. Extensibility was measured as the maximal active knee extension angle from a supine position with the hip flexed to 90 degrees . Passive stiffness was calculated as the slope of the moment-angle curve resulting from passive knee extension. Active stiffness was assessed via acceleration associated with damped oscillatory motion about the knee. Stepwise multiple regression indicated that passive stiffness accounted for 25% of active muscle stiffness variance. The linear combination of extensibility and passive stiffness explained only 2% more variance compared to passive stiffness alone. Musculotendinous extensibility was moderately related to passive muscle stiffness, and weakly related to active muscle stiffness. The moderate relationship observed between active and passive stiffness emphasizes the dependence of active muscle stiffness on cross-bridge formation, and the relatively smaller contribution from parallel elastic tissues. Additionally, heightened extensibility does not appear to be a predisposing factor for reduced muscle stiffness. PMID:15491843

  4. Hybrid Active/Passive Jet Engine Noise Suppression System

    NASA Technical Reports Server (NTRS)

    Parente, C. A.; Arcas, N.; Walker, B. E.; Hersh, A. S.; Rice, E. J.

    1999-01-01

    A novel adaptive segmented liner concept has been developed that employs active control elements to modify the in-duct sound field to enhance the tone-suppressing performance of passive liner elements. This could potentially allow engine designs that inherently produce more tone noise but less broadband noise, or could allow passive liner designs to more optimally address high frequency broadband noise. A proof-of-concept validation program was undertaken, consisting of the development of an adaptive segmented liner that would maximize attenuation of two radial modes in a circular or annular duct. The liner consisted of a leading active segment with dual annuli of axially spaced active Helmholtz resonators, followed by an optimized passive liner and then an array of sensing microphones. Three successively complex versions of the adaptive liner were constructed and their performances tested relative to the performance of optimized uniform passive and segmented passive liners. The salient results of the tests were: The adaptive segmented liner performed well in a high flow speed model fan inlet environment, was successfully scaled to a high sound frequency and successfully attenuated three radial modes using sensor and active resonator arrays that were designed for a two mode, lower frequency environment.

  5. Near field 3D scene simulation for passive microwave imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wu, Ji

    2006-10-01

    Scene simulation is a necessary work in near field passive microwave remote sensing. A 3-D scene simulation model of microwave radiometric imaging based on ray tracing method is present in this paper. The essential influencing factors and general requirements are considered in this model such as the rough surface radiation, the sky radiation witch act as the uppermost illuminator in out door circumstance, the polarization rotation of the temperature rays caused by multiple reflections, and the antenna point spread function witch determines the resolution of the model final outputs. Using this model we simulate a virtual scene and analyzed the appeared microwave radiometric phenomenology, at last two real scenes of building and airstrip were simulated for validating the model. The comparison between the simulation and field measurements indicates that this model is completely feasible in practice. Furthermore, we analyzed the signatures of model outputs, and achieved some underlying phenomenology of microwave radiation witch is deferent with that in optical and infrared bands.

  6. Passive three-dimensional imaging using polarimetric diversity.

    PubMed

    Sadjadi, Firooz A

    2007-02-01

    The results of experiments in developing a method for extracting three-dimensional information from a scene by means of a polarimetric passive imaging sensor are summarized. This sensor provides a full Stokes vector at each sensor pixel location from which degree and angle of linear polarization are computed. The angle of linear polarization provides the azimuth angle of the surface normal vector. The depression angle of this surface normal vector is obtained in terms of the emitting object's index of refraction from the solution of an equation derived from Fresnel equations, Snell's law, and percent of linear polarization. Results of the application of this approach to simulated infrared polarimetric data are provided. PMID:17215928

  7. The Soil Moisture Active Passive (SMAP) Applications Activity

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Moran, Susan; Escobar, Vanessa; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier satellite missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission 1 is under development by NASA and is scheduled for launch late in 2014. The SMAP measurements will allow global and high-resolution mapping of soil moisture and its freeze/thaw state at resolutions from 3-40 km. These measurements will have high value for a wide range of environmental applications that underpin many weather-related decisions including drought and flood guidance, agricultural productivity estimation, weather forecasting, climate predictions, and human health risk. In 2007, NASA was tasked by The National Academies to ensure that emerging scientific knowledge is actively applied to obtain societal benefits by broadening community participation and improving means for use of information. SMAP is one of the first missions to come out of this new charge, and its Applications Plan forms the basis for ensuring its commitment to its users. The purpose of this paper is to outline the methods and approaches of the SMAP applications activity, which is designed to increase and sustain the interaction between users and scientists involved in mission development.

  8. Passive 350 GHz Video Imaging Systems for Security Applications

    NASA Astrophysics Data System (ADS)

    Heinz, E.; May, T.; Born, D.; Zieger, G.; Anders, S.; Zakosarenko, V.; Meyer, H.-G.; Schäffel, C.

    2015-10-01

    Passive submillimeter-wave imaging is a concept that has been in the focus of interest as a promising technology for personal security screening for a number of years. In contradiction to established portal-based millimeter-wave scanning techniques, it allows for scanning people from a distance in real time with high throughput and without a distinct inspection procedure. This opens up new possibilities for scanning, which directly address an urgent security need of modern societies: protecting crowds and critical infrastructure from the growing threat of individual terror attacks. Considering the low radiometric contrast of indoor scenes in the submillimeter range, this objective calls for an extremely high detector sensitivity that can only be achieved using cooled detectors. Our approach to this task is a series of passive standoff video cameras for the 350 GHz band that represent an evolving concept and a continuous development since 2007. Arrays of superconducting transition-edge sensors (TES), operated at temperatures below 1 K, are used as radiation detectors. By this means, background limited performance (BLIP) mode is achieved, providing the maximum possible signal to noise ratio. At video rates, this leads to a temperature resolution well below 1 K. The imaging system is completed by reflector optics based on free-form mirrors. For object distances of 5-25 m, a field of view up to 2 m height and a diffraction-limited spatial resolution in the order of 1-2 cm is provided. Opto-mechanical scanning systems are part of the optical setup and capable of frame rates of up to 25 frames per second.

  9. Passive THz Imaging with Superconducting NbN microbolometer Arrays

    NASA Astrophysics Data System (ADS)

    Helistö, Panu

    2007-03-01

    Passive THz imaging applications indoors require temperature difference resolution well below 1 K and integration times down to 0.1 ms. Recently we have shown that such resolution, approaching the photon noise limit, can be achieved using an antenna-coupled superconducting microwire bolometer with about 10 K transition temperature. The bolometer signal is read out with a low-noise room-temperature amplifier, thus eliminating the need for SQUID amplifiers. The readout method utilizes electro-thermal feedback at the I-V curve minimum of a voltage-biased bolometer. At this working point, the very high power gain of the bolometer makes noise matching of the readout to the detector straightforward. The readout amplifier can be used with transition bolometers and calorimeters operating even at mK temperatures. We are presently developing a video-rate THz imager for concealed weapon detection, utilizing conical scanning and a 128-pixel NbN bolometer array, cooled down to 4 K with a pulse-tube cryocooler. We will characterize the bolometer arrays and the readout electrically and compare the results with the theory. We will also present the design of the system and results of preliminary imaging experiments. The work is done in collaboration between VTT, Millilab and NIST.

  10. 26 CFR 1.469-3T - Passive activity credit (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Passive activity credit (temporary). 1.469-3T... TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-3T Passive activity credit (temporary). (a) Computation of passive activity credit. The taxpayer's passive...

  11. 26 CFR 1.469-3T - Passive activity credit (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Passive activity credit (temporary). 1.469-3T... TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-3T Passive activity credit (temporary). (a) Computation of passive activity credit. The taxpayer's passive...

  12. 26 CFR 1.469-3T - Passive activity credit (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 6 2013-04-01 2013-04-01 false Passive activity credit (temporary). 1.469-3T... TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-3T Passive activity credit (temporary). (a) Computation of passive activity credit. The taxpayer's passive...

  13. Separating active and passive influences on stomatal control of transpiration.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2014-04-01

    Motivated by studies suggesting that the stomata of ferns and lycophytes do not conform to the standard active abscisic acid (ABA) -mediated stomatal control model, we examined stomatal behavior in a conifer species (Metasequoia glyptostroboides) that is phylogenetically midway between the fern and angiosperm clades. Similar to ferns, daytime stomatal closure in response to moderate water stress seemed to be a passive hydraulic process in M. glyptostroboides immediately alleviated by rehydrating excised shoots. Only after prolonged exposure to more extreme water stress did active ABA-mediated stomatal closure become important, because foliar ABA production was triggered after leaf turgor loss. The influence of foliar ABA on stomatal conductance and stomatal aperture was highly predictable and additive with the passive hydraulic influence. M. glyptostroboides thus occupies a stomatal behavior type intermediate between the passively controlled ferns and the characteristic ABA-dependent stomatal closure described in angiosperm herbs. These results highlight the importance of considering phylogeny as a major determinant of stomatal behavior.

  14. Active and passive computed tomography algorithm with a constrained conjugate gradient solution

    SciTech Connect

    Goodman, D.; Jackson, J. A.; Martz, H. E.; Roberson, G. P.

    1998-10-01

    An active and passive computed tomographic technique (A&PCT) has been developed at the Lawrence Livermore National Laboratory (LLNL). The technique uses an external radioactive source and active tomography to map the attenuation within a waste drum as a function of mono-energetic gamma-ray energy. Passive tomography is used to localize and identify specific radioactive waste within the same container. The passive data is corrected for attenuation using the active data and this yields a quantitative assay of drum activity. A&PCT involves the development of a detailed system model that combines the data from the active scans with the geometry of the imaging system. Using the system model, iterative optimization techniques are used to reconstruct the image from the passive data. Requirements for high throughput yield measured emission levels in waste barrels that are too low to apply optimization techniques involving the usual Gaussian statistics. In this situation a Poisson distribution, typically used for cases with low counting statistics, is used to create an effective maximum likelihood estimation function. An optimization algorithm, Constrained Conjugate Gradient (CCG), is used to determine a solution for A&PCT quantitative assay. CCG, which was developed at LLNL, has proven to be an efficient and effective optimization method to solve limited-data problems. A detailed explanation of the algorithms used in developing the model and optimization codes is given.

  15. Passive millimetre wave imaging for ballistic missile launch detection

    NASA Astrophysics Data System (ADS)

    Higgins, Christopher J.; Salmon, Neil A.

    2008-10-01

    QinetiQ has used a suite of modelling tools to predict the millimetric plume signatures from a range of ballistic missile types, based on the accepted theory that Bremsstrahlung emission, generated by the collision of free electrons with neutral species in a rocket motor plume, is the dominant signature mechanism. Plume signatures in terms of radiation temperatures varied from a few hundred Kelvin to over one thousand Kelvin, and were predicted to be dependent on emission frequency, propellant type and missile thrust. Two types of platform were considered for the passive mmw imager launch detection system; a High Altitude Platform Station (HAPS) and a satellite based platform in low, mid and geosynchronous earth orbits. It was concluded that the optimum operating frequency for a HAPS based imager would be 35GHz with a 4.5m aperture and a sensitivity of 20mK providing visibility through 500 vertical feet of cloud. For a satellite based platform with a nadir view, the optimum frequency is 220 GHz. With such a system, in a low earth orbit at an altitude of 320km, with a sensitivity of 20mK, a 29cm aperture would be desirable.

  16. Passive synthetic aperture imaging with limited noise sources

    NASA Astrophysics Data System (ADS)

    Garnier, Josselin

    2016-09-01

    We consider a passive synthetic aperture imaging problem. A single moving receiver antenna records random signals generated by one or several distant noise sources and backscattered by one or several reflectors. The sources emit noise signals modeled by stationary random processes. The reflectors can be imaged by summing the autocorrelation functions of the received signals computed over successive time windows, corrected for Doppler factors and migrated by appropriate travel times. In particular, the Doppler effect plays an important role and it can be used for resolution enhancement. When the noise source positions are not known, the reflector can be localized with an accuracy proportional to the reciprocal of the noise bandwidth, even when only a very small number of sources are available. When the noise source positions are known, the reflector can be localized with a cross range resolution proportional to the carrier wavelength and inversely proportional to the length of the receiver trajectory (i.e. the synthetic aperture), and with a range resolution proportional to the reciprocal of the bandwidth, even with only one noise source.

  17. Active and Passive Perceptual Learning in the Visually Impaired.

    ERIC Educational Resources Information Center

    Conrod, Beverley E.; And Others

    1986-01-01

    Active and passive perceptual training methods were tested with 30 macular degeneration patients to improve their residual vision. The main conclusion was that perceptual training may contribute to successful visual adjustment and that the effect of training is not limited to a particular level of visual impairment. (Author/CL)

  18. 77 FR 15003 - Passive Activity Losses and Credits Limited; Hearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... Internal Revenue Service 26 CFR Part 1 RIN 1545-BJ33 Passive Activity Losses and Credits Limited; Hearing AGENCY: Internal Revenue Service (IRS), Treasury. ] ACTION: Notice of public hearing on proposed rulemaking. SUMMARY: This document provides notice of public hearing on proposed rulemaking regarding...

  19. Active and passive noise control using electroactive polymer actuators (EAPAs)

    NASA Astrophysics Data System (ADS)

    Ramanathan, Kartik; Zhu, Bei; Chang, Woosuk; Varadan, Vasundara V.; Varadan, Vijay K.

    1999-06-01

    Electro-active polymer actuators (EAPA) have been a topic of research interest in the recent decades due to their ability to produce large strains under the influence of relatively low electric fields as compared to commercially available actuators. This paper investigates the feasibility of EAPA for active and passive cabin noise control. The passive damping characteristics of EAPA were determined, by measuring the transmission loss of four samples of various thickness and composition in an anechoic chamber in the 200 - 2000 Hz frequency range. This was then compared to that of Plexiglas and silicone rubber sheets of comparable thickness. The transmission loss of EAPA and Plexiglas were observed to be about the same. The transmission loss of EAPA was greater than that of silicone rubber, of the same thickness. The experimental and theoretical results computed using the mass law agree well. EAPA produces a strain of 0.006 for an applied field of 1 V/m. The ability of EAPA to potentially provide active as well as passive damping in the low to intermediate frequency range, along with being light- weight, pliable and transparent, makes it attractive for noise control applications as active/passive windows or wall papers.

  20. The soil moisture active passive (SMAP) mission and validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in October 2014. This satellite is the culmination of basic research and applications development over the past thirty years. During most of this period, research and development o...

  1. The Soil Moisture Active/Passive Mission (SMAP)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active/Passive (SMAP) mission will deliver global views of soil moisture content and its freeze/thaw state that are critical terrestrial water cycle state variables. Polarized measurements obtained with a shared antenna L-band radar and radiometer system will allow accurate estima...

  2. Soil Moisture Active Passive Satellite Status and Recent Validation Results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission was launched in January, 2015 and began its calibration and validation (cal/val) phase in May, 2015. Cal/Val will begin with a focus on instrument measurements, brightness temperature and backscatter, and evolve to the geophysical products that include...

  3. The Soil Moisture Active and Passive (SMAP) Mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council’s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen f...

  4. Soil Moisture Active Passive Validation Experiment 2008 (SMAPVEX08)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive Mission (SMAP) is currently addressing issues related to the development and selection of soil moisture retrieval algorithms. Several forums have identified a number of specific questions that require supporting field experiments. Addressing these issues as soon as p...

  5. SMAPVEX08: Soil Moisture Active Passive Validation Experiment 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive Mission (SMAP) is currently addressing issues related to the development and selection of retrieval algorithms as well as refining the mission design and instruments. Some of these issues require resolution as soon as possible. Several forums had identified specific ...

  6. Enhanced Passive and Active Processing of Syllables in Musician Children

    ERIC Educational Resources Information Center

    Chobert, Julie; Marie, Celine; Francois, Clement; Schon, Daniele; Besson, Mireille

    2011-01-01

    The aim of this study was to examine the influence of musical expertise in 9-year-old children on passive (as reflected by MMN) and active (as reflected by discrimination accuracy) processing of speech sounds. Musician and nonmusician children were presented with a sequence of syllables that included standards and deviants in vowel frequency,…

  7. Passive and Active Sensing Technologies for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  8. Neural Substrates Underlying the Passive Observation and Active Control of Translational Egomotion

    PubMed Central

    Chen, Ching-fu; Sereno, Martin I.

    2015-01-01

    Moving or static obstacles often get in the way while walking in daily life. Avoiding obstacles involves both perceptual processing of motion information and controlling appropriate defensive movements. Several higher-level motion areas, including the ventral intraparietal area (VIP), medial superior temporal area, parieto-insular vestibular cortex (PIVC), areas V6 and V6A, and cingulate sulcus visual area, have been identified in humans by passive viewing of optic flow patterns that simulate egomotion and object motion. However, the roles of these areas in the active control of egomotion in the real world remain unclear. Here, we used functional magnetic resonance imaging (fMRI) to map the neural substrates underlying the passive observation and active control of translational egomotion in humans. A wide-field virtual reality environment simulated a daily scenario where doors randomly swing outward while walking in a hallway. The stimuli of door-dodging events were essentially the same in two event-related fMRI experiments, which compared passive and active dodges in response to swinging doors. Passive dodges were controlled by a computer program, while active dodges were controlled by the subject. Passive dodges activated several higher-level areas distributed across three dorsal motion streams in the temporal, parietal, and cingulate cortex. Active dodges most strongly activated the temporal–vestibular stream, with peak activation located in the right PIVC. Other higher-level motion areas including VIP showed weaker to no activation in active dodges. These results suggest that PIVC plays an active role in sensing and guiding translational egomotion that moves an observer aside from impending obstacles. PMID:25762672

  9. Comparative evaluation of passive, active, and passive-active distraction techniques on pain perception during local anesthesia administration in children.

    PubMed

    Abdelmoniem, Soad A; Mahmoud, Sara A

    2016-05-01

    Local anesthesia forms the backbone of pain control techniques and is necessary for a painless dental procedure. Nevertheless, administering a local anesthetic injection is among the most anxiety-provoking procedures to children. This study was performed to compare the efficacy of different distraction techniques (passive, active, and passive-active) on children's pain perception during local anesthesia administration. A total of 90 children aged four to nine years, requiring inferior alveolar nerve block for primary molar extraction, were included in this study and randomly divided into three groups according to the distraction technique employed during local anesthesia administration. Passive distraction group: the children were instructed to listen to a song on headphones; Active distraction group: the children were instructed to move their legs up and down alternatively; and Passive-active distraction group: this was a combination between both techniques. Pain perception during local anesthesia administration was evaluated by the Sounds, Eyes, and Motor (SEM) scale and Wong Baker FACES® Pain Rating Scale. There was an insignificant difference between the three groups for SEM scale and Wong Baker FACES Pain Rating Scale at P = 0.743 and P = 0.112 respectively. The examined distraction techniques showed comparable results in reducing pain perception during local anesthesia administration.

  10. 26 CFR 1.1398-1 - Treatment of passive activity losses and passive activity credits in individuals' title 11 cases.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 11 2011-04-01 2011-04-01 false Treatment of passive activity losses and..., 1992. This section applies to cases commencing on or after November 9, 1992. (2) Cases commencing before November 9, 1992—(i) Election required. This section applies to a case commencing before...

  11. 26 CFR 1.1398-1 - Treatment of passive activity losses and passive activity credits in individuals' title 11 cases.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 11 2013-04-01 2013-04-01 false Treatment of passive activity losses and..., 1992. This section applies to cases commencing on or after November 9, 1992. (2) Cases commencing before November 9, 1992—(i) Election required. This section applies to a case commencing before...

  12. Comparative evaluation of passive, active, and passive-active distraction techniques on pain perception during local anesthesia administration in children

    PubMed Central

    Abdelmoniem, Soad A.; Mahmoud, Sara A.

    2015-01-01

    Local anesthesia forms the backbone of pain control techniques and is necessary for a painless dental procedure. Nevertheless, administering a local anesthetic injection is among the most anxiety-provoking procedures to children. This study was performed to compare the efficacy of different distraction techniques (passive, active, and passive-active) on children’s pain perception during local anesthesia administration. A total of 90 children aged four to nine years, requiring inferior alveolar nerve block for primary molar extraction, were included in this study and randomly divided into three groups according to the distraction technique employed during local anesthesia administration. Passive distraction group: the children were instructed to listen to a song on headphones; Active distraction group: the children were instructed to move their legs up and down alternatively; and Passive-active distraction group: this was a combination between both techniques. Pain perception during local anesthesia administration was evaluated by the Sounds, Eyes, and Motor (SEM) scale and Wong Baker FACES® Pain Rating Scale. There was an insignificant difference between the three groups for SEM scale and Wong Baker FACES Pain Rating Scale at P = 0.743 and P = 0.112 respectively. The examined distraction techniques showed comparable results in reducing pain perception during local anesthesia administration. PMID:27222759

  13. Diffusion of passive particles in active suspensions

    NASA Astrophysics Data System (ADS)

    Mussler, Matthias; Rafai, Salima; John, Thomas; Peyla, Philippe; Wagner, Christian

    2013-11-01

    We study how an active suspension consisting of a definite volume fraction of the microswimmer Chlamydomonas Reinhardtii modifies the Brownian movement of small to medium size microspheres. We present measurements and simulations of trajectories of microspheres with a diameter of 20 μm in suspensions of Chlamydomonas Reinhardtii, a so called ``puller,'' and show that the mean squared displacement of such trajectories consist of parabolic and a linear part. The linear part is due to the hydrodynamic noise of the microswimmers while the parabolic part is a consequence of directed motion events that occur randomly, when a microsphere is transported by a microswimmer on a timescale that is in higher order of magnitude than the Brownian like hydrodynamic interaction. In addition, we theoretically describe this effect with a dimensional analysis that takes the force dipole model used to describe ``puller'' like Chlamydomonas Reinhardtii into account.

  14. Active and Passive Smoking and Fecundability in Danish Pregnancy Planners

    PubMed Central

    Radin, Rose G.; Hatch, Elizabeth E.; Rothman, Kenneth J.; Mikkelsen, Ellen M.; Sørensen, Henrik Toft; Riis, Anders H.; Wise, Lauren A.

    2014-01-01

    Objective To investigate the extent to which fecundability is associated with active smoking, time since smoking cessation, and passive smoking. Design Prospective cohort study. Setting Denmark, 2007–2011. Patients 3,773 female pregnancy planners aged 18–40 years. Intervention None. Main Outcome Measures Self-reported pregnancy. Fecundability ratios (FR) and 95% confidence intervals (CI) were estimated using a proportional probabilities model that adjusted for menstrual cycle at risk and potential confounders. Results Among current smokers, smoking duration ≥10 years was associated with reduced fecundability compared with never smokers (FR=0.85, 95% CI: 0.72–1.00). Former smokers who had smoked ≥10 pack-years had reduced fecundability regardless of when they quit smoking (1–1.9 years FR=0.83, 95% CI: 0.54–1.27; ≥2 years FR=0.73, 95% CI: 0.53–1.02). Among never smokers, the FRs were 1.04 (95% CI: 0.89–1.21) for passive smoking in early life and 0.92 (95% CI: 0.82–1.03) for passive smoking in adulthood. Conclusions Among Danish pregnancy planners, cumulative exposure to active cigarette smoking was associated with delayed conception among current and former smokers. Time since smoking cessation and passive smoking were not appreciably associated with fecundability. PMID:24746741

  15. A passive autofocus system by using standard deviation of the image on a liquid lens

    NASA Astrophysics Data System (ADS)

    Rasti, Pejman; Kesküla, Arko; Haus, Henry; Schlaak, Helmut F.; Anbarjafari, Gholamreza; Aabloo, Alvo; Kiefer, Rudolf

    2015-04-01

    Today most of applications have a small camera such as cell phones, tablets and medical devices. A micro lens is required in order to reduce the size of the devices. In this paper an auto focus system is used in order to find the best position of a liquid lens without any active components such as ultrasonic or infrared. In fact a passive auto focus system by using standard deviation of the images on a liquid lens which consist of a Dielectric Elastomer Actuator (DEA) membrane between oil and water is proposed.

  16. Combined passive and active shimming for in vivo MR spectroscopy at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Juchem, Christoph; Muller-Bierl, Bernd; Schick, Fritz; Logothetis, Nikos K.; Pfeuffer, Josef

    2006-12-01

    The use of high magnetic fields increases the sensitivity and spectral dispersion in magnetic resonance spectroscopy (MRS) of brain metabolites. Practical limitations arise, however, from susceptibility-induced field distortions, which are increased at higher magnetic field strengths. Solutions to this problem include optimized shimming, provided that active, i.e., electronic, shimming can operate over a sufficient range. To meet our shim requirements, which were an order of magnitude greater than the active shim capacity of our 7 T MR system, we developed a combined passive and active shim approach. Simple geometries of ferromagnetic shim elements were derived and numerically optimized to generate a complete set of second-order spherical harmonic shim functions in a modular manner. The major goals of the shim design were maximization of shim field accuracy and ease of practical implementation. The theoretically optimized ferro-shim geometries were mounted on a cylindrical surface and placed inside the magnet bore, surrounding the subject's head and the RF coil. Passive shimming generated very strong shim fields and eliminated the worst of the field distortions, after which the field was further optimized by flexible and highly accurate active shimming. Here, the passive-shimming procedure was first evaluated theoretically, then applied in phantom studies and subsequently validated for in vivo1H MRS in the macaque visual cortex. No artifacts due to the passive shim setup were observed; adjustments were reproducible between sessions. The modularity and the reduction to two pieces per shim term in this study is an important simplification that makes the method applicable also for passive shimming within single sessions. The feasibility of very strong, flexible and high-quality shimming via a combined approach of passive and active shimming is of great practical relevance for MR imaging and spectroscopy at high field strengths where shim power is limited or where

  17. Passive forgery detection using discrete cosine transform coefficient analysis in JPEG compressed images

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Shian; Tsay, Jyh-Jong

    2016-05-01

    Passive forgery detection aims to detect traces of image tampering without the need for prior information. With the increasing demand for image content protection, passive detection methods able to identify image tampering areas are increasingly needed. However, most current passive approaches either work only for image-level JPEG compression detection and cannot localize region-level forgery, or suffer from high-false detection rates in localizing altered regions. This paper proposes an effective approach based on discrete cosine transform coefficient analysis for the detection and localization of altered regions of JPEG compressed images. This approach can also work with altered JPEG images resaved in JPEG compressed format with different quality factors. Experiments with various tampering methods such as copy-and-paste, image completion, and composite tampering, show that the proposed approach is able to effectively detect and localize altered areas and is not sensitive to image contents such as edges and textures.

  18. Possible way for increasing the quality of imaging from THz passive device

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Deng, Chao; Zhao, Yuan-meng; Zhang, Cun-lin; Zhang, Xin

    2011-11-01

    Using the passive THz imaging system developed by the CNU-THz laboratory, we capture the passive THz image of human body with forbidden objects hidden under opaque clothes. We demonstrate the possibility of significant improving the quality of the image. Our approach bases on the application of spatial filters, developed by us for computer treatment of passive THz imaging. The THz imaging system is constructed with accordance to well known passive THz imaging principles and to the THz quasi-optical theory. It contains a scanning mechanism, which has a detector approximately with 1200μm central wavelength, a data acquisition card and a microcomputer. To get a clear imaging of object we apply a sequence of the spatial filters to the image and spectral transforms of the image. The treatment of imaging from the passive THz device is made by computer code. The performance time of treatment of the image, containing about 5000 pixels, is less than 0.1 second. To illustrate the efficiency of developed approach we detect the liquid explosive, knife, pistol and metal plate hidden under opaque clothes. The results obtained demonstrate the high efficiency of our approach for the detection and recognition of the hidden objects and are very promising for the real security application.

  19. Active and passive stabilization of body pitch in insect flight

    PubMed Central

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J.; Chang, Song; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2013-01-01

    Flying insects have evolved sophisticated sensory–motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots. PMID:23697713

  20. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1990-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells. 10 figs., 2 tabs.

  1. Active and passive stabilization of body pitch in insect flight.

    PubMed

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J; Chang, Song; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2013-08-01

    Flying insects have evolved sophisticated sensory-motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots.

  2. Eye movements and hazard perception in active and passive driving

    PubMed Central

    Mackenzie, Andrew K.; Harris, Julie M.

    2015-01-01

    ABSTRACT Differences in eye movement patterns are often found when comparing passive viewing paradigms to actively engaging in everyday tasks. Arguably, investigations into visuomotor control should therefore be most useful when conducted in settings that incorporate the intrinsic link between vision and action. We present a study that compares oculomotor behaviour and hazard reaction times across a simulated driving task and a comparable, but passive, video-based hazard perception task. We found that participants scanned the road less during the active driving task and fixated closer to the front of the vehicle. Participants were also slower to detect the hazards in the driving task. Our results suggest that the interactivity of simulated driving places increased demand upon the visual and attention systems than simply viewing driving movies. We offer insights into why these differences occur and explore the possible implications of such findings within the wider context of driver training and assessment. PMID:26681913

  3. Phase Segregation of Passive Advective Particles in an Active Medium

    NASA Astrophysics Data System (ADS)

    Das, Amit; Polley, Anirban; Rao, Madan

    2016-02-01

    Localized contractile configurations or asters spontaneously appear and disappear as emergent structures in the collective stochastic dynamics of active polar actomyosin filaments. Passive particles which (un)bind to the active filaments get advected into the asters, forming transient clusters. We study the phase segregation of such passive advective scalars in a medium of dynamic asters, as a function of the aster density and the ratio of the rates of aster remodeling to particle diffusion. The dynamics of coarsening shows a violation of Porod behavior; the growing domains have diffuse interfaces and low interfacial tension. The phase-segregated steady state shows strong macroscopic fluctuations characterized by multiscaling and intermittency, signifying rapid reorganization of macroscopic structures. We expect these unique nonequilibrium features to manifest in the actin-dependent molecular clustering at the cell surface.

  4. The NASA Soil Moisture Active Passive (SMAP) Mission: Overview

    NASA Technical Reports Server (NTRS)

    O'Neill, Peggy; Entekhabi, Dara; Njoku, Eni; Kellogg, Kent

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council?s Decadal Survey [1]. Its mission design consists of L-band radiometer and radar instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every 2-3 days. The combined active/passive microwave soil moisture product will have a spatial resolution of 10 km and a mean latency of 24 hours. In addition, the SMAP surface observations will be combined with advanced modeling and data assimilation to provide deeper root zone soil moisture and net ecosystem exchange of carbon. SMAP is expected to launch in the late 2014 - early 2015 time frame.

  5. Active and passive stabilization of body pitch in insect flight.

    PubMed

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J; Chang, Song; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2013-08-01

    Flying insects have evolved sophisticated sensory-motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots. PMID:23697713

  6. Passive and active adaptive management: Approaches and an example

    USGS Publications Warehouse

    Williams, B.K.

    2011-01-01

    Adaptive management is a framework for resource conservation that promotes iterative learning-based decision making. Yet there remains considerable confusion about what adaptive management entails, and how to actually make resource decisions adaptively. A key but somewhat ambiguous distinction in adaptive management is between active and passive forms of adaptive decision making. The objective of this paper is to illustrate some approaches to active and passive adaptive management with a simple example involving the drawdown of water impoundments on a wildlife refuge. The approaches are illustrated for the drawdown example, and contrasted in terms of objectives, costs, and potential learning rates. Some key challenges to the actual practice of AM are discussed, and tradeoffs between implementation costs and long-term benefits are highlighted. ?? 2010 Elsevier Ltd.

  7. The terminal quality of life and passive or active euthanasia.

    PubMed

    Daikos, G K

    1990-01-01

    The problems presented by the different categories of dying people are briefly discussed from the point of view of terminal quality of life. Euthanasia is used in its broader meaning, including both passive and active aspects. Passive euthanasia (PE) is exercised by withholding advanced or basic life support measures, the commonest form being do not resuscitate orders (DNR). Some data on its application are presented. Active euthanasia (AE), which has been proposed and being applied to a limited extent lately, is criticized as leading the physician and the Society onto risky ground. A position is being taken against it. Decision making, examples of guidelines, legal, philosophical and spiritual considerations are discussed. Wisdom and loving care should be exercised by the physician to assist people in their terminal phases and to alleviate their suffering. That there is not a single answer to the problem is discussed.

  8. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1991-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells.

  9. Reprocessing the Historical Satellite Passive Microwave Record at Enhanced Spatial Resolutions using Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Hardman, M.; Brodzik, M. J.; Long, D. G.; Paget, A. C.; Armstrong, R. L.

    2015-12-01

    Beginning in 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Currently available global gridded passive microwave data sets serve a diverse community of hundreds of data users, but do not meet many requirements of modern Earth System Data Records (ESDRs) or Climate Data Records (CDRs), most notably in the areas of intersensor calibration, quality-control, provenance and consistent processing methods. The original gridding techniques were relatively primitive and were produced on 25 km grids using the original EASE-Grid definition that is not easily accommodated in modern software packages. Further, since the first Level 3 data sets were produced, the Level 2 passive microwave data on which they were based have been reprocessed as Fundamental CDRs (FCDRs) with improved calibration and documentation. We are funded by NASA MEaSUREs to reprocess the historical gridded data sets as EASE-Grid 2.0 ESDRs, using the most mature available Level 2 satellite passive microwave (SMMR, SSM/I-SSMIS, AMSR-E) records from 1978 to the present. We have produced prototype data from SSM/I and AMSR-E for the year 2003, for review and feedback from our Early Adopter user community. The prototype data set includes conventional, low-resolution ("drop-in-the-bucket" 25 km) grids and enhanced-resolution grids derived from the two candidate image reconstruction techniques we are evaluating: 1) Backus-Gilbert (BG) interpolation and 2) a radiometer version of Scatterometer Image Reconstruction (SIR). We summarize our temporal subsetting technique, algorithm tuning parameters and computational costs, and include sample SSM/I images at enhanced resolutions of up to 3 km. We are actively

  10. Passive imaging of hydrofractures in the South Belridge diatomite

    SciTech Connect

    Ilderton, D.C.; Patzek, T.W.; Rector, J.W.; Vinegar, H.J.

    1996-03-01

    The authors present the results of a seismic analysis of two hydrofractures spanning the entire diatomite column (1,110--1,910 ft or 338--582 m) in Shell`s Phase 2 steam drive pilot in South Belridge, California. These hydrofractures were induced at two depths (1,110--1,460 and 1,560--1,910 ft) and imaged passively using the seismic energy released during fracturing. The arrivals of shear waves from the cracking rock (microseismic events) were recorded at a 1 ms sampling rate by 56 geophones in three remote observation wells, resulting in 10 GB of raw data. These arrival times were then inverted for the event locations, from which the hydrofracture geometry was inferred. A five-dimensional conjugate-gradient algorithm with a depth-dependent, but otherwise constant shear wave velocity model (CVM) was developed for the inversions. To validate CVM, they created a layered shear wave velocity model of the formation and used it to calculate synthetic arrival times from known locations chosen at various depths along the estimated fracture plane. These arrival times were then inverted with CVM and the calculated locations compared with the known ones, quantifying the systematic error associated with the assumption of constant shear wave velocity. They also performed Monte Carlo sensitivity analyses on the synthetic arrival times to account for all other random errors that exist in field data. After determining the limitations of the inversion algorithm, they hand-picked the shear wave arrival times for both hydrofractures and inverted them with CVM.

  11. Passive and active structural monitoring experience: Civil engineering applications

    NASA Astrophysics Data System (ADS)

    Thompson, L. D.; Westermo, B. D.; Crum, D. B.; Law, W. R.; Trombi, R. G.

    2000-05-01

    State Departments of Transportation and regional city government officials are beginning to view the long-term monitoring of infrastructure as being beneficial for structural damage accumulation assessment, condition based maintenance, life extension, and post-earthquake or -hurricane (-tornado, -typhoon, etc.) damage assessment. Active and passive structural monitoring systems were installed over the last few years to monitor concerns in a wide range of civil infrastructure applications. This paper describes the monitoring technologies and systems employed for such applications. Bridge system applications were directed at monitoring corrosion damage accumulation, composite reinforcements for life extension, general service cracking damage related to fatigue and overloads, and post-earthquake damage. Residential system applications were directed primarily at identifying damage accumulation and post-earthquake damage assessment. A professional sports stadium was monitored for isolated ground instability problems and for post-earthquake damage assessment. Internet-based, remote, data acquisition system experience is discussed with examples of long-term passive and active system data collected from many of the individual sites to illustrate the potential for both passive and active structural health monitoring. A summary of system-based operating characteristics and key engineering recommendations are provided to achieve specific structural monitoring objectives for a wide range of civil infrastructure applications.

  12. Aquarius Active-Passive RFI Environment at L-Band

    NASA Technical Reports Server (NTRS)

    Le Vine, David M.; De Matthaeis, Paolo

    2014-01-01

    Active/Passive instrument combinations (i.e., radiometer and radar) are being developed at L-band for remote sensing of sea surface salinity and soil moisture. Aquarius is already in orbit and SMAP is planned for launch in the Fall of 2014. Aquarius has provided for the first time a simultaneous look at the Radio Frequency Interference (RFI) environment from space for both active and passive instruments. The RFI environment for the radiometer observations is now reasonably well known and examples from Aquarius are presented in this manuscript that show that RFI is an important consideration for the scatterometer as well. In particular, extensive areas of the USA, Europe and Asia exhibit strong RFI in both the radiometer band at 1.41 GHz and in the band at 1.26 GHz employed by the Aquarius scatterometer. Furthermore, in areas such as the USA, where RFI at 1.4 GHz is relatively well controlled, RFI in the scatterometer band maybe the limiting consideration for the operation of combination active/passive instruments.

  13. Assimilation of Passive and Active Microwave Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.

    2012-01-01

    Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.

  14. Passive versus active local microrheology in mammalian cells and amoebae

    NASA Astrophysics Data System (ADS)

    Riviere, C.; Gazeau, F.; Marion, S.; Bacri, J.-C.; Wilhelm, C.

    2004-12-01

    We compare in this paper the rotational magnetic microrheology detailed by Marion et al [18] and Wilhelm et al [19] to the passive tracking microrheology. The rotational microrheology has been designed to explore, using magnetic rotating probes, the local intracellular microenvironment of living cells in terms of viscoelasticity. Passive microrheology techniques is based on the analysis of spontaneous diffusive motions of Brownian probes. The dependence of mean square displacement (MSD) with the time then directly reflects the type of movement (sub-, hyper- or diffusive motions). Using the same intracellular probes, we performed two types of measurements (active and passive). Based on the fluctuation-dissipation theorem, one should obtain the same information from the both techniques in a thermally equilibrium system. Interestingly, our measurements differ, and the discordances directly inform on active biological processes, which add to thermally activated fluctuations in our out-of equilibrium systems. In both cell models used, mammalian Hela cells and amoebae Entamoeba Histolytica, a hyper-diffusive regime at a short time is observed, which highlights the presence of an active non-thermal driving force, acting on the probe. However, the nature of this active force in mammalian cells and amoebae is different, according to their different phenotypes. In mammalian cells active processes are governed by the transport, via molecular motors, on the microtubule network. In amoebae, which are highly motile cells free of microtubule network, the active processes are dominated by strong fluxes of cytoplasm driven by extension of pseudopodia, in random directions, leading to an amplitude of motion one order of magnitude higher than for mammalian cells. Figs 7, Refs 32.

  15. Electrical image of passive mantle upwelling beneath the northern East Pacific Rise.

    PubMed

    Key, Kerry; Constable, Steven; Liu, Lijun; Pommier, Anne

    2013-03-28

    Melt generated by mantle upwelling is fundamental to the production of new oceanic crust at mid-ocean ridges, yet the forces controlling this process are debated. Passive-flow models predict symmetric upwelling due to viscous drag from the diverging tectonic plates, but have been challenged by geophysical observations of asymmetric upwelling that suggest anomalous mantle pressure and temperature gradients, and by observations of concentrated upwelling centres consistent with active models where buoyancy forces give rise to focused convective flow. Here we use sea-floor magnetotelluric soundings at the fast-spreading northern East Pacific Rise to image mantle electrical structure to a depth of about 160 kilometres. Our data reveal a symmetric, high-conductivity region at depths of 20-90 kilometres that is consistent with partial melting of passively upwelling mantle. The triangular region of conductive partial melt matches passive-flow predictions, suggesting that melt focusing to the ridge occurs in the porous melting region rather than along the shallower base of the thermal lithosphere. A deeper conductor observed east of the ridge at a depth of more than 100 kilometres is explained by asymmetric upwelling due to viscous coupling across two nearby transform faults. Significant electrical anisotropy occurs only in the shallowest mantle east of the ridge axis, where high vertical conductivity at depths of 10-20 kilometres indicates localized porous conduits. This suggests that a coincident seismic-velocity anomaly is evidence of shallow magma transport channels rather than deeper off-axis upwelling. We interpret the mantle electrical structure as evidence that plate-driven passive upwelling dominates this ridge segment, with dynamic forces being negligible. PMID:23538832

  16. Electrical image of passive mantle upwelling beneath the northern East Pacific Rise.

    PubMed

    Key, Kerry; Constable, Steven; Liu, Lijun; Pommier, Anne

    2013-03-28

    Melt generated by mantle upwelling is fundamental to the production of new oceanic crust at mid-ocean ridges, yet the forces controlling this process are debated. Passive-flow models predict symmetric upwelling due to viscous drag from the diverging tectonic plates, but have been challenged by geophysical observations of asymmetric upwelling that suggest anomalous mantle pressure and temperature gradients, and by observations of concentrated upwelling centres consistent with active models where buoyancy forces give rise to focused convective flow. Here we use sea-floor magnetotelluric soundings at the fast-spreading northern East Pacific Rise to image mantle electrical structure to a depth of about 160 kilometres. Our data reveal a symmetric, high-conductivity region at depths of 20-90 kilometres that is consistent with partial melting of passively upwelling mantle. The triangular region of conductive partial melt matches passive-flow predictions, suggesting that melt focusing to the ridge occurs in the porous melting region rather than along the shallower base of the thermal lithosphere. A deeper conductor observed east of the ridge at a depth of more than 100 kilometres is explained by asymmetric upwelling due to viscous coupling across two nearby transform faults. Significant electrical anisotropy occurs only in the shallowest mantle east of the ridge axis, where high vertical conductivity at depths of 10-20 kilometres indicates localized porous conduits. This suggests that a coincident seismic-velocity anomaly is evidence of shallow magma transport channels rather than deeper off-axis upwelling. We interpret the mantle electrical structure as evidence that plate-driven passive upwelling dominates this ridge segment, with dynamic forces being negligible.

  17. New opportunities for quality enhancing of images captured by passive THz camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2014-10-01

    As it is well-known, the passive THz camera allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Obviously, efficiency of using the passive THz camera depends on its temperature resolution. This characteristic specifies possibilities of the detection for concealed object: minimal size of the object; maximal distance of the detection; image quality. Computer processing of the THz image may lead to many times improving of the image quality without any additional engineering efforts. Therefore, developing of modern computer code for its application to THz images is urgent problem. Using appropriate new methods one may expect such temperature resolution which will allow to see banknote in pocket of a person without any real contact. Modern algorithms for computer processing of THz images allow also to see object inside the human body using a temperature trace on the human skin. This circumstance enhances essentially opportunity of passive THz camera applications for counterterrorism problems. We demonstrate opportunities, achieved at present time, for the detection both of concealed objects and of clothes components due to using of computer processing of images captured by passive THz cameras, manufactured by various companies. Another important result discussed in the paper consists in observation of both THz radiation emitted by incandescent lamp and image reflected from ceramic floorplate. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp., and Capital Normal University (Beijing, China). All algorithms for computer processing of the THz images under consideration in this paper were developed by Russian part of author list. Keywords: THz wave, passive imaging camera, computer processing, security screening, concealed and forbidden objects, reflected image, hand seeing, banknote seeing, ceramic floorplate, incandescent lamp.

  18. Passive and Active Detection of Clouds: Comparisons between MODIS and GLAS Observations

    NASA Technical Reports Server (NTRS)

    Mahesh, Ashwin; Gray, Mark A.; Palm, Stephen P.; Hart, William D.; Spinhirne, James D.

    2003-01-01

    The Geoscience Laser Altimeter System (GLAS), launched on board the Ice, Cloud and Land Elevation Satellite in January 2003 provides space-borne laser observations of atmospheric layers. GLAS provides opportunities to validate passive observations of the atmosphere for the first time from space with an active optical instrument. Data from the Moderate Resolution Imaging Spectrometer aboard the Aqua satellite is examined along with GLAS observations of cloud layers. In more than three-quarters of the cases, MODIS scene identification from spectral radiances agrees with GLAS. Disagreement between the two platforms is most significant over snow-covered surfaces in the northern hemisphere. Daytime clouds detected by GLAS are also more easily seen in the MODIS data as well, compared to observations made at night. These comparisons illustrate the capabilities of active remote sensing to validate and assess passive measurements, and also to complement them in studies of atmospheric layers.

  19. Are passive red spirals truly passive?. The current star formation activity of optically red disc galaxies

    NASA Astrophysics Data System (ADS)

    Cortese, L.

    2012-07-01

    We used GALEX ultraviolet and WISE 22 μm observations to investigate the current star formation activity of the optically red spirals recently identified as part of the Galaxy Zoo project. These galaxies were accurately selected from the Sloan Digital Sky Survey as pure discs with low or no current star formation activity, representing one of the best optically selected samples of candidate passive spirals. However, we show that these galaxies are not only still forming stars at a significant rate (≳1 M⊙ yr-1) but, more importantly, their star formation activity is not different from that of normal star-forming discs of the same stellar mass (M∗ ≳ 1010.2 M⊙). Indeed, these systems lie on the UV-optical blue sequence, even without any corrections for internal dust attenuation, and they follow the same specific star formation rate vs. stellar mass relation of star-forming galaxies. Our findings clearly show that at high stellar masses, optical colours do not allow to distinguish between actively star-forming and truly quiescent systems.

  20. Phenomenology Studies Using a Scanning Fully Polarimetric Passive W-Band Millimeter Wave Imager

    SciTech Connect

    Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.; McMakin, Douglas L.; Tedeschi, Jonathan R.; Hall, Thomas E.; Hatchell, Brian K.; Valdez, Patrick LJ

    2011-05-01

    We present experimental results obtained from a scanning passive W-band fully polarimetric imager. In addition to a conventional approach to polarimetric image analysis in which the Stokes I, Q, U, and V images were formed and displayed, we present an alternative method for polarimetric image exploitation based upon multivariate image analysis (MIA). MIA uses principal component analysis (PCA) and 2D scatter or score plots to identify various pixel classes in the image compared with the more conventional scene-based image analysis approaches. Multivariate image decomposition provides a window into the complementary interplay between spatial and statistical correlations contained in the data.

  1. The Effect of Repetitive Passive and Active Movements on Proprioception Ability in Forearm Supination

    PubMed Central

    Kwon, OhSung; Lee, SeungWon; Lee, YoungWoo; Seo, DongKwon; Jung, SangWoo; Choi, WonJae

    2013-01-01

    [Purpose] This study was conducted in order to investigate the effect of repetitive passive movement and repetitive active movement on proprioception in forearm supination. [Subjects] This study had a cross-sectional design. Twenty-three right-handed healthy subjects were recruited. All subjects randomly received both repetitive passive movement and repetitive active movement (repetitive passive/active movement at 120°/s with 60 repetitions over a 0–80° range). Active and passive joint repositioning of all subjects was measured using the error score for position sense, both before and after repositioning intervention. [Results] In the repetitive passive movement test, there was a statistically significant decrease in the pre- versus post-repositioning error scores in the active and passive angle examinations. In the repetitive active movement test, there was a statistically significant increase in pre- versus post-repositioning error scores in the active and passive angle examinations. In the comparison of position sense, there was a statistically significant decrease in both active and passive angle repositioning error scores in repetitive passive movement versus repetitive active movement. [Conclusion] Repetitive passive movement improved the proprioception results for forearm supination, compared to repetitive active movement. Results of this study indicate that repetitive passive movement can be recommended to clinicians for rehabilitation therapy as it provides greater proprioception benefits. PMID:24259808

  2. Comparison of epicardial deformation in passive and active isolated rabbit hearts

    NASA Astrophysics Data System (ADS)

    Ho, Andrew; Tang, Liang; Chiang, Fu-Pen; Lin, Shien-Fong

    2007-02-01

    Mechanical deformation of isolated rabbit hearts through passive inflation techniques have been a viable form of replicating heart motion, but its relation to the heart's natural active contractions remain unclear. The mechanical properties of the myocardium may show diverse characteristics while in tension and compression. In this study, epicardial strain was measured with the assistance of computer-aided speckle interferometry (CASI)1. CASI tracks the movement of clusters of particles for measuring epicardial deformation. The heart was cannulated and perfused with Tyrode's solution. Silicon carbide particles were applied onto the myocardium to form random speckle pattern images while the heart was allowed to actively contract and stabilize. High resolution videos (1000x1000 pixels) of the left ventricle were taken with a complementary metal oxide semiconductor (CMOS) camera as the heart was actively contracting through electrical pacing at various cycle lengths between 250-800 ms. A latex balloon was then inserted into the left ventricle via left atrium and videos were taken as the balloon was repeatedly inflated and deflated at controlled volumes (1-3 ml/cycle). The videos were broken down into frames and analyzed through CASI. Active contractions resulted in non-uniform circular epicardial and uniaxial contractions at different stages of the motion. In contrast, the passive heart demonstrated very uniform expansion and contraction originating from the source of the latex balloon. The motion of the active heart caused variations in deformation, but in comparison to the passive heart, had a more enigmatic displacement field. The active heart demonstrated areas of large displacement and others with relatively no displacement. Application of CASI was able to successfully distinguish the motions between the active and passive hearts.

  3. Passive immunization and active vaccination against Hendra and Nipah viruses.

    PubMed

    Broder, C C

    2013-01-01

    Hendra virus and Nipah virus are viral zoonoses first recognized in the mid and late 1990's and are now categorized as the type species of the genus Henipavirus within the family Paramyxoviridae. Their broad species tropism together with their capacity to cause severe and often fatal disease in both humans and animals make Hendra and Nipah "overlap agents" and significant biosecurity threats. The development of effective vaccination strategies to prevent or treat henipavirus infection and disease has been an important area of research. Here, henipavirus active and passive vaccination strategies that have been examined in animal challenge models of Hendra and Nipah virus disease are summarized and discussed.

  4. Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb

    PubMed Central

    Ache, Jan M.

    2012-01-01

    Limb movements can be driven by muscle contractions, external forces, or intrinsic passive forces. For lightweight limbs like those of insects or small vertebrates, passive forces can be large enough to overcome the effects of gravity and may even generate limb movements in the absence of active muscle contractions. Understanding the sources and actions of such forces is therefore important in understanding motor control. We describe passive properties of the femur-tibia joint of the locust hind leg. The resting angle is determined primarily by passive properties of the relatively large extensor tibiae muscle and is influenced by the history of activation of the fast extensor tibiae motor neuron. The resting angle is therefore better described as a history-dependent resting state. We selectively stimulated different flexor tibiae motor neurons to generate a range of isometric contractions of the flexor tibiae muscle and then stimulated the fast extensor tibiae motor neuron to elicit active tibial extensions. Residual forces in the flexor muscle have only a small effect on subsequent active extensions, but the effect is larger for distal than for proximal flexor motor neurons and varies with the strength of flexor activation. We conclude that passive properties of a lightweight limb make substantial and complex contributions to the resting state of the limb that must be taken into account in the patterning of neuronal control signals driving its active movements. Low variability in the effects of the passive forces may permit the nervous system to accurately predict their contributions to behavior. PMID:22357791

  5. Active versus passive maintenance of visual nonverbal memory.

    PubMed

    McKeown, Denis; Holt, Jessica; Delvenne, Jean-Francois; Smith, Amy; Griffiths, Benjamin

    2014-08-01

    Forgetting over the short term has challenged researchers for more than a century, largely because of the difficulty of controlling what goes on within the memory retention interval. But the "recent-negative-probe" procedure offers a valuable paradigm, by examining the influences of (presumably) unattended memoranda from prior trials. Here we used a recent-probe task to investigate forgetting for visual nonverbal short-term memory. The target stimuli (two visually presented abstract shapes) on a trial were followed after a retention interval by a probe, and participants indicated whether the probe matched one of the target items. Proactive interference, and hence memory for old trial probes, was observed, whereby participants were slowed in rejecting a nonmatching probe on the current trial that nevertheless matched a target item on the previous trial (a recent-negative probe). The attraction of the paradigm is that, by uncovering proactive influences of past-trial probe stimuli, it can be argued that active maintenance in memory of those probes is unlikely. In two experiments, we recorded such proactive interference of prior-trial items over a range of interstimulus (ISI) and intertrial (ITI) intervals (between 1 and 6 s, respectively). Consistent with a proposed two-process memory conception (the active-passive memory model, or APM), actively maintained memories on current trials decayed, but passively "maintained," or unattended, visual memories of stimuli on past trials did not. PMID:24390797

  6. Chronic Cellular Imaging of Mouse Visual Cortex During Operant Behavior and Passive Viewing

    PubMed Central

    Andermann, Mark L.; Kerlin, A. M.; Reid, R. C.

    2010-01-01

    Nearby neurons in mammalian neocortex demonstrate a great diversity of cell types and connectivity patterns. The importance of this diversity for computation is not understood. While extracellular recording studies in visual cortex have provided a particularly rich description of behavioral modulation of neural activity, new methods are needed to dissect the contribution of specific circuit elements in guiding visual perception. Here, we describe a method for three-dimensional cellular imaging of neural activity in the awake mouse visual cortex during active discrimination and passive viewing of visual stimuli. Head-fixed mice demonstrated robust discrimination for many hundred trials per day after initial task acquisition. To record from multiple neurons during operant behavior with single-trial resolution and minimal artifacts, we built a sensitive microscope for two-photon calcium imaging, capable of rapid tracking of neurons in three dimensions. We demonstrate stable recordings of cellular calcium activity during discrimination behavior across hours, days, and weeks, using both synthetic and genetically encoded calcium indicators. When combined with molecular and genetic technologies in mice (e.g., cell-type specific transgenic labeling), this approach allows the identification of neuronal classes in vivo. Physiological measurements from distinct classes of neighboring neurons will enrich our understanding of the coordinated roles of diverse elements of cortical microcircuits in guiding sensory perception and perceptual learning. Further, our method provides a high-throughput, chronic in vivo assay of behavioral influences on cellular activity that is applicable to a wide range of mouse models of neurologic disease. PMID:20407583

  7. Passive and active EO sensing of small surface vessels

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Berglund, Folke; Allard, Lars; Öhgren, Johan; Larsson, Hâkan; Amselem, Elias; Gustafsson, Frank; Repasi, Endre; Lutzmann, Peter; Göhler, Benjamin; Hammer, Marcus; McEwen, Kennedy; McEwan, Ken

    2015-10-01

    The detection and classification of small surface targets at long ranges is a growing need for naval security. This paper will present an overview of a measurement campaign which took place in the Baltic Sea in November 2014. The purpose was to test active and passive EO sensors (10 different types) for the detection, tracking and identification of small sea targets. The passive sensors were covering the visual, SWIR, MWIR and LWIR regions. Active sensors operating at 1.5 μm collected data in 1D, 2D and 3D modes. Supplementary sensors included a weather station, a scintillometer, as well as sensors for positioning and attitude determination of the boats. Three boats in the class 4-9 meters were used as targets. After registration of the boats at close range they were sent out to 5-7 km distance from the sensor site. At the different ranges the target boats were directed to have different aspect angles relative to the direction of observation. Staff from IOSB Fraunhofer in Germany and from Selex (through DSTL) in UK took part in the tests beside FOI who was arranging the trials. A summary of the trial and examples of data and imagery will be presented.

  8. Assimilation of passive and active microwave soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Draper, C. S.; Reichle, R. H.; De Lannoy, G. J. M.; Liu, Q.

    2012-02-01

    Near-surface soil moisture observations from the active microwave ASCAT and the passive microwave AMSR-E satellite instruments are assimilated, both separately and together, into the NASA Catchment land surface model over 3.5 years using an ensemble Kalman filter. The impact of each assimilation is evaluated using in situ soil moisture observations from 85 sites in the US and Australia, in terms of the anomaly time series correlation-coefficient, R. The skill gained by assimilating either ASCAT or AMSR-E was very similar, even when separated by land cover type. Over all sites, the mean root-zone R was significantly increased from 0.45 for an open-loop, to 0.55, 0.54, and 0.56 by the assimilation of ASCAT, AMSR-E, and both, respectively. Each assimilation also had a positive impact over each land cover type sampled. For maximum accuracy and coverage it is recommended that active and passive microwave observations be assimilated together.

  9. Active-to-Passive Environmental Cleanup Transition Strategies - 13220

    SciTech Connect

    Gaughan, Thomas F.; Aylward, Robert S.; Denham, Miles E.; Looney, Brian B.; Whitaker, Wade C.; Mills, Gary L.

    2013-07-01

    The Savannah River Site uses a graded approach to environmental cleanup. The selection of groundwater and vadose zone remediation technologies for a specific contamination area is based on the size, contaminant type, contaminant concentration, and configuration of the plume. These attributes are the result of the nature and mass of the source of contamination and the subsurface characteristics in the area of the plume. Many large plumes consist of several zones that are most efficiently addressed with separate complementary corrective action/remedial technologies. The highest concentrations of contaminants are found in the source zone. The most robust, high mass removal technologies are often best suited for remediation of the source zone. In the primary plume zone, active remedies, such as pump-and-treat, may be necessary to remove contaminants and exert hydraulic control of the plume. In the dilute fringe zone, contaminants are generally lower in concentration and can often be treated with passive techniques. A key determination in achieving an acceptable and cost-effective end state for a given waste unit is when to transition from an active treatment system to a more passive or natural approach (e.g., monitored natural attenuation or enhanced attenuation). This paper will discuss the considerations for such a transition as well as provide examples of successful transitions at the Savannah River Site. (authors)

  10. Propulsion by passive filaments and active flagella near boundaries.

    PubMed

    Evans, Arthur A; Lauga, Eric

    2010-10-01

    Confinement and wall effects are known to affect the kinematics and propulsive characteristics of swimming microorganisms. When a solid body is dragged through a viscous fluid at constant velocity, the presence of a wall increases fluid drag, and thus the net force required to maintain speed has to increase. In contrast, recent optical trapping experiments have revealed that the propulsive force generated by human spermatozoa is decreased by the presence of boundaries. Here, we use a series of simple models to analytically elucidate the propulsive effects of a solid boundary on passively actuated filaments and model flagella. For passive flexible filaments actuated periodically at one end, the presence of the wall is shown to increase the propulsive forces generated by the filaments in the case of displacement-driven actuation, while it decreases the force in the case of force-driven actuation. In the case of active filaments as models for eukaryotic flagella, we demonstrate that the manner in which a solid wall affects propulsion cannot be known a priori, but is instead a nontrivial function of the flagellum frequency, wavelength, its material characteristics, the manner in which the molecular motors self-organize to produce oscillations (prescribed activity model or self-organized axonemal beating model), and the boundary conditions applied experimentally to the tethered flagellum. In particular, we show that in some cases, the increase in fluid friction induced by the wall can lead to a change in the waveform expressed by the flagella, which results in a decrease in their propulsive force.

  11. Propulsion by passive filaments and active flagella near boundaries

    NASA Astrophysics Data System (ADS)

    Evans, Arthur A.; Lauga, Eric

    2010-10-01

    Confinement and wall effects are known to affect the kinematics and propulsive characteristics of swimming microorganisms. When a solid body is dragged through a viscous fluid at constant velocity, the presence of a wall increases fluid drag, and thus the net force required to maintain speed has to increase. In contrast, recent optical trapping experiments have revealed that the propulsive force generated by human spermatozoa is decreased by the presence of boundaries. Here, we use a series of simple models to analytically elucidate the propulsive effects of a solid boundary on passively actuated filaments and model flagella. For passive flexible filaments actuated periodically at one end, the presence of the wall is shown to increase the propulsive forces generated by the filaments in the case of displacement-driven actuation, while it decreases the force in the case of force-driven actuation. In the case of active filaments as models for eukaryotic flagella, we demonstrate that the manner in which a solid wall affects propulsion cannot be known a priori, but is instead a nontrivial function of the flagellum frequency, wavelength, its material characteristics, the manner in which the molecular motors self-organize to produce oscillations (prescribed activity model or self-organized axonemal beating model), and the boundary conditions applied experimentally to the tethered flagellum. In particular, we show that in some cases, the increase in fluid friction induced by the wall can lead to a change in the waveform expressed by the flagella, which results in a decrease in their propulsive force.

  12. Passive and active control of boundary layer transition

    NASA Astrophysics Data System (ADS)

    Nosenchuck, Daniel Mark

    It is well known that laminar-turbulent boundary layer transition is initiated by the formation of Tollmien-Schlichting laminar instability waves. The amplification rates of these waves are strongly dependent on the shape of the boundary layer velocity profile. Consequently, the transition process can be controlled by modifying the velocity profile. This can be accomplished by controlling the pressure gradient (dp/dx), using boundary layer suction, installing surface roughness elements, or by surface heating or cooling. Methods used to modify the transition process through changes in the mean velocity profile are called "passive" in this paper. There exists a large set of experiments and theory on the application of passive methods for boundary layer control. In the present work only surface heating will be addressed.Transition measurements were made on a heated flat plate in water. Results are presented for several plate wall temperature distributions. An increase by a factor of 2.5 in transition Reynolds number was observed for a 5°C isothermal wall overheat. Buoyancy effects on transition were minimal due to the small Richardson and Grashof numbers encountered in the experiments.The amplification of laminar instability waves is comparatively to process, taking place over many boundary layer thicknesses. After the slow amplification of the laminar instability waves, transition occurs by a strong three dimensional dynamic instability. It appears possible to attenuate (or reinforce) the instability waves by introducing amplitude-and phase-controlled perturbations into the laminar boundary layer using feedback control system. This method is called "active" control and forms the larger part of the research reported in this thesis.A combination of sensors, activators and feedback control electronics is required for active control. The sensors used in the experiments are flush-mounted hot film wall shear robes. A new type of activator was developed using thin, flush

  13. Passive millimetre-wave imaging and how it differs from terahertz imaging.

    PubMed

    Appleby, R

    2004-02-15

    It is well known that millimetre-wave systems can penetrate poor weather, dust and smoke far better than infrared or visible systems. Imaging in this band offers the opportunity to be able to navigate and perform surveillance in these conditions of poor visibility. Furthermore, the ability to penetrate dielectrics such as plastic and cloth has opened up the opportunity of detecting weapons and contraband hidden under people's clothing. The optical properties of materials have a direct impact on the applicability of imaging systems. In the terahertz band solids have absorptions which can be assigned to vibrational modes. Lattice modes occur at the lowest frequencies and polythene, for example, has a lattice mode at 2.4 THz. Solids have no such absorptions in the millimetre bands (30-300 GHz) and image contrast is produced by differences in transmission, reflection and absorption. A novel, real-time, mechanically scanned, passive millimetre-wave imager has been designed. The antenna elements are based on a combination of a Schmidt camera and a conical scanner, both of which have their origins in optical systems. Polarization techniques, which were developed for operation in the centimetric band, are used to fold the optics. Both 35 GHz and 94 GHz versions have been constructed. PMID:15306527

  14. Fluctuation driven active molecular transport in passive channel proteins

    NASA Astrophysics Data System (ADS)

    Kosztin, Ioan

    2006-03-01

    Living cells interact with their extracellular environment through the cell membrane, which acts as a protective permeability barrier for preserving the internal integrity of the cell. However, cell metabolism requires controlled molecular transport across the cell membrane, a function that is fulfilled by a wide variety of transmembrane proteins, acting as either passive or active transporters. In this talk it is argued that, contrary to the general belief, in active cell membranes passive and spatially asymmetric channel proteins can act as active transporters by consuming energy from nonequilibrium fluctuations fueled by cell metabolism. This assertion is demonstrated in the case of the E. coli aquaglyceroporin GlpF channel protein, whose high resolution crystal structure is manifestly asymmetric. By calculating the glycerol flux through GlpF within the framework of a stochastic model, it is found that, as a result of channel asymmetry, glycerol uptake driven by a concentration gradient is enhanced significantly in the presence of non-equilibrium fluctuations. Furthermore, the enhancement caused by a ratchet-like mechanism is larger for the outward, i.e., from the cytoplasm to the periplasm, flux than for the inward one, suggesting that the same non-equilibrium fluctuations also play an important role in protecting the interior of the cell against poisoning by excess uptake of glycerol. Preliminary data on water and sugar transport through aquaporin and maltoporin channels, respectively, are indicative of the universality of the proposed nonequilibrium-fluctuation-driven active transport mechanism. This work was supported by grants from the Univ. of Missouri Research Board, the Institute for Theoretical Sciences and the Department of Energy (DOE Contract W-7405-ENG-36), and the National Science Foundation (FIBR-0526854).

  15. Airborne Active and Passive L-Band Observations in Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12)

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Yueh, S. H.; Chazanoff, S.; Jackson, T. J.; McNairn, H.; Bullock, P.; Wiseman, G.; Berg, A. A.; Magagi, R.; Njoku, E. G.

    2012-12-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in October 2014. The objective of the mission is global mapping of soil moisture and freeze/thaw state. Merging of active and passive L-band observations of the mission will enable unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrieval. For pre-launch algorithm development and validation the SMAP project and NASA coordinated a field campaign named as SMAPVEX12 (Soil Moisture Active Passive Validation Experiment 2012) together with Agriculture and Agri-Food Canada in the vicinity of Winnipeg, Canada in June-July, 2012. The main objective of SMAPVEX12 was acquisition of data record that features long-time series with varying soil moisture and vegetation conditions (for testing the application of time-series approach) over aerial domain of multiple parallel lines (for spatial disaggregation studies). The coincident active and passive L-band data were acquired using the Passive Active L-band System (PALS), which is an airborne radiometer and radar developed for testing L-band retrieval algorithms. For SMAPVEX12 PALS was installed on a Twin Otter aircraft. The flight plan included flights at two altitudes. The higher altitude was used to map the whole experiment domain and the lower altitude was used to obtain measurements over a specific set of field sites. The spatial resolution (and swath) of the radar and radiometer from low altitude was about 600 m and from high altitude about 1500 m. The PALS acquisitions were complemented with high resolution (~10 m) L-band SAR measurements carried out by UAVSAR instrument on-board G-III aircraft. The campaign ran from June 7 until July 19. The PALS instrument conducted 17 brightness temperature and backscatter measurement flights and the UAVSAR conducted 14 backscatter measurement flights. The airborne data acquisition was supported by

  16. A Large-N Mixed Sensor Active + Passive Seismic Array near Sweetwater, TX

    NASA Astrophysics Data System (ADS)

    Barklage, M.; Hollis, D.; Gridley, J. M.; Woodward, R.; Spriggs, N.

    2014-12-01

    A collaborative high-density seismic survey using broadband and short period seismic sensors was conducted March 7 - April 30, 2014 near Sweetwater, TX. The objective of the survey was to use a combination of controlled source shot slices and passive seismic recordings recorded by multiple types of sensors with different bandwidths and sensitivities to image the subsurface. The broadband component of the survey consisted of 25 continuously recording seismic stations comprised of 20 Trillium Compact Posthole sensors from Nanometrics and 5 Polar Trillium 120PHQs from the IRIS/PASSCAL Instrument Center (PIC). The broadband stations also utilized 25 Centaur digitizers from Nanometrics as well as 25 polar quick deploy enclosures from the PIC. The broadband array was designed to maximize horizontal traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. The short period component of the survey consisted of 2639 receiver locations using Zland nodes from NodalSeismic. The nodes are further divided into 3 sub-arrays: 1) outlier array 2) active source array 3) backbone array. The outlier array consisted of 25 continuously recording nodes distributed around the edge of the survey at a distance of ~5 km from the survey boundary, and provided valuable constraints to passive data analysis techniques at the edge of the survey boundary. The active source patch consisted of densely spaced nodes that were designed to record signals from a Vibroseis source truck for active source reflection processing and imaging. The backbone array consisted of 292 nodes that covered the entirety of the survey area to maximize the value of the passive data analysis. By utilizing continuous recording and smartly designed arrays for measuring local and regional earthquakes we can incorporate velocity information derived from passive data analysis into the active source processing workflow to produce a superior subsurface

  17. Microwave remote sensing: Active and passive. Volume 1 - Microwave remote sensing fundamentals and radiometry

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1981-01-01

    The three components of microwave remote sensing (sensor-scene interaction, sensor design, and measurement techniques), and the applications to geoscience are examined. The history of active and passive microwave sensing is reviewed, along with fundamental principles of electromagnetic wave propagation, antennas, and microwave interaction with atmospheric constituents. Radiometric concepts are reviewed, particularly for measurement problems for atmospheric and terrestrial sources of natural radiation. Particular attention is given to the emission by atmospheric gases, clouds, and rain as described by the radiative transfer function. Finally, the operation and performance characteristics of radiometer receivers are discussed, particularly for measurement precision, calibration techniques, and imaging considerations.

  18. Maternal Active and Passive Smoking and Hypertensive Disorders of Pregnancy

    PubMed Central

    Engel, Stephanie M.; Scher, Erica; Wallenstein, Sylvan; Savitz, David A.; Alsaker, Elin R.; Trogstad, Lill; Magnus, Per

    2014-01-01

    Background The inverse association between prenatal smoking and preeclampsia is puzzling, given the increased risks of prematurity and low birthweight associated with both smoking and preeclampsia. We analyzed the Norwegian Mother and Child Birth Cohort (MoBa) to determine whether the associations varied by timing of prenatal smoking. Methods We conducted an analysis of 74,439 singleton pregnancies with completed second- and third- trimester questionnaires. Active and passive smoke exposure by trimester were determined by maternal self-report, and covered the period of preconception through approximately 30 weeks’ gestation. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Results Rates of active smoking declined dramatically during pregnancy: for trimester 1, 23%; trimester 2, 9%; and trimester 3, 8%. Active smoking in the third trimester was associated with reduced odds of preeclampsia and gestational hypertension, with the strongest association among continuous smokers (for preeclampsia, OR = 0.57 [95% CI = 0.46–0.70]). Women who quit smoking before the third trimester had approximately the same risk of preeclampsia and gestational hypertension as nonsmokers. There was some evidence of dose-response, with the heaviest smokers (more than eight cigarettes per day) having the lowest risks of preeclampsia (0.48 [0.32–0.73]) and gestational hypertension (0.51 [0.28–0.95]). There was little evidence of an association with passive smoking exposure. Conclusion The association between smoking and preeclampsia varies substantially according to the timing and intensity of exposure. A better understanding of the biologic pathways that underlie these associations may provide important clues to the etiology of preeclampsia and the development of effective clinical interventions. PMID:23429405

  19. Fully Polarimetric Passive W-band Millimeter Wave Imager for Wide Area Search

    SciTech Connect

    Tedeschi, Jonathan R.; Bernacki, Bruce E.; Sheen, David M.; Kelly, James F.; McMakin, Douglas L.

    2013-09-27

    We describe the design and phenomenology imaging results of a fully polarimetric W-band millimeter wave (MMW) radiometer developed by Pacific Northwest National Laboratory for wide-area search. Operating from 92 - 94 GHz, the W-band radiometer employs a Dicke switching heterodyne design isolating the horizontal and vertical mm-wave components with 40 dB of polarization isolation. Design results are presented for both infinite conjugate off-axis parabolic and finite conjugate off-axis elliptical fore-optics using optical ray tracing and diffraction calculations. The received linear polarizations are down-converted to a microwave frequency band and recombined in a phase-shifting network to produce all six orthogonal polarization states of light simultaneously, which are used to calculate the Stokes parameters for display and analysis. The resulting system performance produces a heterodyne receiver noise equivalent delta temperature (NEDT) of less than 150m Kelvin. The radiometer provides novel imaging capability by producing all four of the Stokes parameters of light, which are used to create imagery based on the polarization states associated with unique scattering geometries and their interaction with the down welling MMW energy. The polarization states can be exploited in such a way that man-made objects can be located and highlighted in a cluttered scene using methods such as image comparison, color encoding of Stokes parameters, multivariate image analysis, and image fusion with visible and infrared imagery. We also present initial results using a differential imaging approach used to highlight polarization features and reduce common-mode noise. Persistent monitoring of a scene using the polarimetric passive mm-wave technique shows great promise for anomaly detection caused by human activity.

  20. Estimation of passive and active properties in the human heart using 3D tagged MRI.

    PubMed

    Asner, Liya; Hadjicharalambous, Myrianthi; Chabiniok, Radomir; Peresutti, Devis; Sammut, Eva; Wong, James; Carr-White, Gerald; Chowienczyk, Philip; Lee, Jack; King, Andrew; Smith, Nicolas; Razavi, Reza; Nordsletten, David

    2016-10-01

    Advances in medical imaging and image processing are paving the way for personalised cardiac biomechanical modelling. Models provide the capacity to relate kinematics to dynamics and-through patient-specific modelling-derived material parameters to underlying cardiac muscle pathologies. However, for clinical utility to be achieved, model-based analyses mandate robust model selection and parameterisation. In this paper, we introduce a patient-specific biomechanical model for the left ventricle aiming to balance model fidelity with parameter identifiability. Using non-invasive data and common clinical surrogates, we illustrate unique identifiability of passive and active parameters over the full cardiac cycle. Identifiability and accuracy of the estimates in the presence of controlled noise are verified with a number of in silico datasets. Unique parametrisation is then obtained for three datasets acquired in vivo. The model predictions show good agreement with the data extracted from the images providing a pipeline for personalised biomechanical analysis.

  1. Three-dimensional passive millimeter-wave imaging and depth estimation

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon; Lee, Dong-Su; Lee, Hyoung; Son, Jung-Young; Guschin, Vladimir P.

    2010-04-01

    We address three-dimensional passive millimeter-wave imaging (MMW) and depth estimation for remote objects. The MMW imaging is very useful for the harsh environment such as fog, smoke, snow, sandstorm, and drizzle. Its penetrating property into clothing provides a great advantage to security and defense systems. In this paper, the featurebased passive MMW stereo-matching process is proposed to estimate the distance of the concealed object under clothing. It will be shown that the proposed method can estimate the distance of the concealed object.

  2. Spacecraft Environmental Testing SMAP (Soil, Moisture, Active, Passive)

    NASA Technical Reports Server (NTRS)

    Fields, Keith

    2014-01-01

    Testing a complete full up spacecraft to verify it will survive the environment, in which it will be exposed to during its mission, is a formidable task in itself. However, the ''test like you fly'' philosophy sometimes gets compromised because of cost, design and or time. This paper describes the thermal-vacuum and mass properties testing of the Soil Moisture Active Passive (SMAP) earth orbiting satellite. SMAP will provide global observations of soil moisture and freeze/thaw state (the hydrosphere state). SMAP hydrosphere state measurements will be used to enhance understanding of processes that link the water, energy, and carbon cycles, and to extend the capabilities of weather and climate prediction models. It will explain the problems encountered, and the solutions developed, which minimized the risk typically associated with such an arduous process. Also discussed, the future of testing on expensive long lead-time spacecraft. Will we ever reach the ''build and shoot" scenario with minimal or no verification testing?

  3. Active/passive mode-locked laser oscillator

    DOEpatents

    Fountain, William D.; Johnson, Bertram C.

    1977-01-01

    A Q-switched/mode-locked Nd:YAG laser oscillator employing simultaneous active (electro-optic) and passive (saturable absorber) loss modulation within the optical cavity is described. This "dual modulation" oscillator can produce transform-limited pulses of duration ranging from about 30 psec to about 5 nsec with greatly improved stability compared to other mode-locked systems. The pulses produced by this system lack intrapulse frequency or amplitude modulation, and hence are idealy suited for amplification to high energies and for other applications where well-defined pulses are required. Also, the pulses of this system have excellent interpulse characteristics, wherein the optical noise between the individual pulses of the pulse train has a power level well below the power of the peak pulse of the train.

  4. Waves in active and passive periodic structures - A review

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1976-01-01

    The theory and recent applications of waves in periodic structures are reviewed. Both the Floquet and coupled waves approach are analyzed in some detail. The theoretical part of the paper includes wave propagation in unbounded and bounded active or passive periodic media, wave scattering from periodic boundaries, source radiation (dipole, Cerenkov, transition, and Smith-Purcell) in periodic media, and pulse transmission through a periodic slab. The applications part covers the recent development in a variety of fields: distributed feedback oscillators, filters, mode converters, couplers, second-harmonic generators, deflectors, modulators, and transducers in the fields of integrated optics and integrated surface acoustics. Work on insect compound eyes, mechanical structures, ocean waves, pulse compressions, temperature waves, and cholesteric liquid crystals, and particles interaction with crystals is briefly reviewed, especially in the case of zeolite crystals and superlattices. Recent advances in fabrication techniques for very fine gratings are also covered.

  5. Dense range map reconstruction from a versatile robotic sensor system with an active trinocular vision and a passive binocular vision

    NASA Astrophysics Data System (ADS)

    Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck

    2008-04-01

    One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.

  6. Dense range map reconstruction from a versatile robotic sensor system with an active trinocular vision and a passive binocular vision.

    PubMed

    Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck

    2008-04-10

    One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.

  7. Using Passive Cavitation Images to Classify High-Intensity Focused Ultrasound Lesions

    PubMed Central

    Haworth, Kevin J.; Salgaonkar, Vasant A.; Corregan, Nicholas M.; Holland, Christy K.; Mast, T. Douglas

    2015-01-01

    Passive cavitation imaging provides spatially resolved monitoring of cavitation emissions. However the diffraction limit of a linear imaging array results in relatively poor range resolution. Poor range resolution has limited prior analyses of the spatial specificity and sensitivity of passive cavitation imaging for predicting thermal lesion formation. In this study, this limitation is overcome by orienting a linear array orthogonal to the HIFU propagation direction and performing passive imaging. Fourteen lesions were formed in ex vivo bovine liver samples as a result of 1.1 MHz continuous-wave ultrasound exposure. The lesions were classified as focal, “tadpole”, or pre-focal based on their shape and location. Passive cavitation images were beam-formed from emissions at the fundamental, harmonic, ultraharmonic, and inharmonic frequencies with an established algorithm. Using the area under a receiver operator characteristic curve (AUROC), fundamental, harmonic, and ultraharmonic emissions were shown to be significant predictors of lesion formation for all lesion types. For both harmonic and ultraharmonic emissions, pre-focal lesions were classified most successfully (AUROC values of 0.87 and 0.88, respectively), followed by tadpole lesions (AUROC values of 0.77 and 0.64, respectively), and focal lesions (AUROC values of 0.65 and 0.60, respectively). PMID:26051309

  8. Active versus Passive Teaching Styles: An Empirical Study of Student Learning Outcomes

    ERIC Educational Resources Information Center

    Michel, Norbert; Cater, John James, III; Varela, Otmar

    2009-01-01

    This study compares the impact of an active teaching approach and a traditional (or passive) teaching style on student cognitive outcomes. Across two sections of an introductory business course, one class was taught in an active or nontraditional manner, with a variety of active learning exercises. The second class was taught in a passive or…

  9. Sympathetic activity during passive heat stress in healthy aged humans

    PubMed Central

    Gagnon, Daniel; Schlader, Zachary J; Crandall, Craig G

    2015-01-01

    Abstract Cardiovascular adjustments during heat stress are generally attenuated in healthy aged humans, which could be due to lower increases in sympathetic activity compared to the young. We compared muscle sympathetic nerve activity (MSNA) between 11 young (Y: 28 ± 4 years) and 10 aged (A: 70 ± 5 years) subjects prior to and during passive heating. Furthermore, MSNA responses were compared when a cold pressor test (CPT) and lower body negative pressure (LBNP) were superimposed upon heating. Baseline MSNA burst frequency (Y: 15 ± 4 vs. A: 31 ± 3 bursts min−1, P ≤ 0.01) and burst incidence (Y: 26 ± 8 vs. A: 50 ± 7 bursts (100 cardiac cycles (CC))−1, P ≤ 0.01) were greater in the aged. Heat stress increased core temperature to a similar extent in both groups (Y: +1.2 ± 0.1 vs. A: +1.2 ± 0.0°C, P = 0.99). Absolute levels of MSNA remained greater in the aged during heat stress (burst frequency: Y: 47 ± 6 vs. A: 63 ± 11 bursts min−1, P ≤ 0.01; burst incidence: Y: 48 ± 8 vs. A: 67 ± 9 bursts (100 CC)−1, P ≤ 0.01); however, the increase in both variables was similar between groups (both P ≥ 0.1). The CPT and LBNP further increased MSNA burst frequency and burst incidence, although the magnitude of increase was similar between groups (both P ≥ 0.07). These results suggest that increases in sympathetic activity during heat stress are not attenuated in healthy aged humans. Key points Cardiovascular adjustments to heat stress are attenuated in healthy aged individuals, which could contribute to their greater prevalence of heat-related illnesses and deaths during heat waves. The attenuated cardiovascular adjustments in the aged could be due to lower increases in sympathetic nerve activity during heat stress. We examined muscle sympathetic nerve activity (MSNA) and plasma catecholamine concentrations in healthy young and aged individuals during whole-body passive heat stress. The main finding

  10. Resolving the active versus passive conundrum for head direction cells.

    PubMed

    Shinder, M E; Taube, J S

    2014-06-13

    Head direction (HD) cells have been identified in a number of limbic system structures. These cells encode the animal's perceived directional heading in the horizontal plane and are dependent on an intact vestibular system. Previous studies have reported that the responses of vestibular neurons within the vestibular nuclei are markedly attenuated when an animal makes a volitional head turn compared to passive rotation. This finding presents a conundrum in that if vestibular responses are suppressed during an active head turn how is a vestibular signal propagated forward to drive and update the HD signal? This review identifies and discusses four possible mechanisms that could resolve this problem. These mechanisms are: (1) the ascending vestibular signal is generated by more than just vestibular-only neurons, (2) not all vestibular-only neurons contributing to the HD pathway have firing rates that are attenuated by active head turns, (3) the ascending pathway may be spared from the affects of the attenuation in that the HD system receives information from other vestibular brainstem sites that do not include vestibular-only cells, and (4) the ascending signal is affected by the inhibited vestibular signal during an active head turn, but the HD circuit compensates and uses the altered signal to accurately update the current HD. Future studies will be needed to decipher which of these possibilities is correct.

  11. Passive Spectroscopy Bolometers, Grating- And X-Ray Imaging Crystal Spectrometers

    SciTech Connect

    Bitter, M; Hill, K W; Scott, S; Paul, S; Ince-Cushmann, A; Reinke, M; Rice, J; Beiersdorfer, P; Gu, M F; Lee, S G; Broennimann, C; Eikenberry, E F

    2007-11-07

    This tutorial gives a brief introduction into passive spectroscopy and describes the working principles of bolometers, a high-resolution grating spectrometer, and a novel X-ray imaging crystal spectrometer, which is of particular interest for profile measurements of the ion temperature and plasma rotation velocity on ITER and future burning plasma experiments.

  12. [Investigation on remote measurement of air pollution by a method of infrared passive scanning imaging].

    PubMed

    Jiao, Yang; Xu, Liang; Gao, Min-Guang; Feng, Ming-Chun; Jin, Ling; Tong, Jing-Jing; Li, Sheng

    2012-07-01

    Passive remote sensing by Fourier-transform infrared (FTIR) spectrometry allows detection of air pollution. However, for the localization of a leak and a complete assessment of the situation in the case of the release of a hazardous cloud, information about the position and the distribution of a cloud is essential. Therefore, an imaging passive remote sensing system comprising an interferometer, a data acquisition and processing software, scan system, a video system, and a personal computer has been developed. The remote sensing of SF6 was done. The column densities of all directions in which a target compound has been identified may be retrieved by a nonlinear least squares fitting algorithm and algorithm of radiation transfer, and a false color image is displayed. The results were visualized by a video image, overlaid by false color concentration distribution image. The system has a high selectivity, and allows visualization and quantification of pollutant clouds.

  13. Progress in passive submillimeter-wave video imaging

    NASA Astrophysics Data System (ADS)

    Heinz, Erik; May, Torsten; Born, Detlef; Zieger, Gabriel; Peiselt, Katja; Zakosarenko, Vyacheslav; Krause, Torsten; Krüger, André; Schulz, Marco; Bauer, Frank; Meyer, Hans-Georg

    2014-06-01

    Since 2007 we are developing passive submillimeter-wave video cameras for personal security screening. In contradiction to established portal-based millimeter-wave scanning techniques, these are suitable for stand-off or stealth operation. The cameras operate in the 350GHz band and use arrays of superconducting transition-edge sensors (TES), reflector optics, and opto-mechanical scanners. Whereas the basic principle of these devices remains unchanged, there has been a continuous development of the technical details, as the detector array, the scanning scheme, and the readout, as well as system integration and performance. The latest prototype of this camera development features a linear array of 128 detectors and a linear scanner capable of 25Hz frame rate. Using different types of reflector optics, a field of view of 1×2m2 and a spatial resolution of 1-2 cm is provided at object distances of about 5-25m. We present the concept of this camera and give details on system design and performance. Demonstration videos show its capability for hidden threat detection and illustrate possible application scenarios.

  14. Passive millimeter-wave imaging - A tool for remote sensing

    NASA Technical Reports Server (NTRS)

    Suess, Helmut; Gruener, Konrad; Wilson, William J.

    1989-01-01

    This paper describes a program of airborne radiometric imaging at 90 GHz and 140 GHz. Using high sensitivity (below 1 K) and high angular resolution (0.5-1.0 degree), high quality images have been made. The following measurements are discussed: cloud and fog penetration at 90 GHz, discrimination between agricultural and urban areas, discrimination between different vegetation types, detection of vehicles on roads, detection and classification of airports and airplanes, ship detection and quantitative oil spill sensing. The application of information enhancement techniques with automatic and real time application aspects is also described, and results of applied techniques for contrast and contour enhancement are shown.

  15. Passive Standoff Detection of RDX Residues on Metal Surfaces via Infrared Hyperspectral Imaging

    SciTech Connect

    Blake, Thomas A.; Kelly, James F.; Gallagher, Neal B.; Gassman, Paul L.; Johnson, Timothy J.

    2009-09-01

    Hyperspectral images of galvanized steel plates, each containing a stain of RDX, were recorded using a commercial longwave infrared imaging spectrometer. Demonstrations of passive RDX chemical detection at areal dosages between 16 and 90 µg / cm2 were carried out over practical stand-off ranges between 14 and 50 m. Efforts to develop better chemical anomaly and target detection through chemometric analyses are described.

  16. Sparse aperture 3D passive image sensing and recognition

    NASA Astrophysics Data System (ADS)

    Daneshpanah, Mehdi

    The way we perceive, capture, store, communicate and visualize the world has greatly changed in the past century Novel three dimensional (3D) imaging and display systems are being pursued both in academic and industrial settings. In many cases, these systems have revolutionized traditional approaches and/or enabled new technologies in other disciplines including medical imaging and diagnostics, industrial metrology, entertainment, robotics as well as defense and security. In this dissertation, we focus on novel aspects of sparse aperture multi-view imaging systems and their application in quantum-limited object recognition in two separate parts. In the first part, two concepts are proposed. First a solution is presented that involves a generalized framework for 3D imaging using randomly distributed sparse apertures. Second, a method is suggested to extract the profile of objects in the scene through statistical properties of the reconstructed light field. In both cases, experimental results are presented that demonstrate the feasibility of the techniques. In the second part, the application of 3D imaging systems in sensing and recognition of objects is addressed. In particular, we focus on the scenario in which only 10s of photons reach the sensor from the object of interest, as opposed to hundreds of billions of photons in normal imaging conditions. At this level, the quantum limited behavior of light will dominate and traditional object recognition practices may fail. We suggest a likelihood based object recognition framework that incorporates the physics of sensing at quantum-limited conditions. Sensor dark noise has been modeled and taken into account. This framework is applied to 3D sensing of thermal objects using visible spectrum detectors. Thermal objects as cold as 250K are shown to provide enough signature photons to be sensed and recognized within background and dark noise with mature, visible band, image forming optics and detector arrays. The results

  17. Passive, integrated measurement of indoor radon using activated carbon.

    PubMed

    George, A C

    1984-04-01

    Activated carbon canisters were tested to determine their adsorption and retention characteristics for radon. Our tests conducted indoors under typical conditions of temperature and relative humidity indicate that simple, inexpensive and maintenance-free passive devices containing 150-200 g of activated carbon can measure radon conveniently and adequately. The amount of radon absorbed in the collector is determined by counting the gamma rays from the decay products of radon. The lower limit of detection for radon is 0.2 pCi/l. for an exposure of 72 hr. Greater sensitivity can be obtained with larger counting systems and devices containing carbon with more surface area. Tests in a residential building and in a test chamber indicate that the measured radon in the canister is proportional to the mean concentration of radon during the period of exposure when correction for relative humidity is made. For practical situations encountered indoors, the device yields results accurate to within +/- 20%. Results from field measurements indicate that the use of the device is feasible.

  18. Passive and Active Stabilization of Liquid Bridges in Low Gravity

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Thiessen, David B.; Marr-Lyon, Mark J.; Wei, Wei; Niederhaus, Charles E.; Truong, Duc K.

    2001-01-01

    Tests are planned in the low gravity environment of the International Space Station (ISS) of new methods for the suppression of the capillary instability of liquid bridges. Our suppression methods are unusual in that they are not limited to liquid bridges having very special properties and may impact a variety of low-gravity and earth-based technologies. There are two main approaches to be investigated: (1) Passive Acoustic Stabilization (PAS); and (2) Active Electrostatic Stabilization (AES). In PAS, the suppression of the mode growth is accomplished by placing the bridge in an acoustic field having the appropriate properties such that the acoustic radiation pressure automatically pulls outward on the thinnest portion of the bridge. In AES, the bridge deformation is sensed optically and counteracted by actively adjusting the electrostatic Maxwell stresses via two ring electrodes concentric with the slightly conducting bridge to offset the growth of the unstable mode. While the present work emphasizes cylindrical bridges, the methods need not be restricted to that case. The methods to be explored are relevant to the suppression of capillary instabilities in floating zone crystal growth, breakup of liquid jets and columns, bubbles, and annular films as well as the management of coolants or propellants in low-gravity.

  19. [Specific features of fear conditioning expression in active and passive rabbits].

    PubMed

    2013-11-01

    The active and passive rabbits selected previously on the basis of their behavior in open field and light-dark test, were subjected to fear conditioning using pairing light (4 s) with footshocks (10 Hz, 0.5 s). Heart rate and respiration rate were measured during the classical fear conditioning. Heart rate and respiration rate decreased in response to light before footshock in case of passive-defensive reaction. There were no heart rate and respiration rate reduction in the course of the active defensive reaction. In active rabbits, as compared to passive ones, the frequency of active locomotors reactions and heart rate were higher, the decrease of respiration rate to light was observed at later stages of training, and the detected bradycardia was not stable. Thus, based upon vegetative characteristics, the active rabbits had lower level of fear than passive ones. The active or passive behavioral strategies of animals were preserved during fear conditioning.

  20. Scanning L Band Active Passive Validation Experiment 2013

    NASA Astrophysics Data System (ADS)

    Joseph, A. T.; Kim, E. J.; Faulkner, T.; Patel, H.; Cosh, M. H.

    2014-12-01

    SLAP (Scanning L-band Active Passive) comprises of a fully polarimetric L-band radiometer and fully polarimetric L-band radar with a shared antenna. SLAP is designed to be compatible with several aircrafts; specifically, C-23, Twin Otter, P-3, and C-130. SLAP is designed for simplicity, accuracy, & reliability. It leverages, as much as possible, existing instruments, hardware, and software in order to minimize cost, time, and risk.The SLAP airborne/ground campaign is designed to conduct flight testing and ground truth for the airborne instrument. The campaign took place the third week of December 2013 in Eastern Shore, MD. SLAP contributes to the NASA's core mission because of its ability to serve as an airborne simulator for the SMAP (Soil Moisture Active Passive) satellite mission, one of NASA's flagship missions scheduled to launch in January 2015. A 3-day aircraft validation campaign was conducted where the new SLAP instrument flew three separate days over the proposed sampling region. The study area is a mixed agriculture and forest site located about 1 hour east of Washington, DC on the Eastern Shore (of the Chesapeake Bay). This region is located on the Delmarva Peninsula. The advantages of the selected site are: (1) Site was used before in previous field campaign (SMAPVEX08) (2) ARS HRSL has some established sampling sites within region (3) Dynamic variation in land cover (4) Variety of plant structures and densities. The goal of this campaign was to fly the instrument over the proposed site before a rain event, then have 2 other flights after the rain event to capture a dry down. In conjunction with the aircraft, there was in-situ ground sampling. Ground observations were collected concurrent with aircraft flights. These included soil moisture, soil temperature, surface temperature, surface roughness and vegetation parameters. Forest sites were monitored with small temporary networks of in situ sensors installed prior to the first flight. Soil moisture was

  1. Early results of the Soil Moisture Active Passive Validation Experiment (SMAPVEX15)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In August of 2015, the Soil Moisture Active Passive Validation Experiment (SMAPVEX15) was conducted to provide a high resolution soil moisture dataset for the calibration/validation of the Soil Moisture Active Passive Mission (SMAP). The Upper San Pedro River Basin and the USDA-ARS Walnut Gulch LTAR...

  2. The Relationship Between Passive and Active Vocabularies: Effects of Language Learning Context.

    ERIC Educational Resources Information Center

    Laufer, Batia; Paribakht, T. Sima

    1998-01-01

    Investigated the relationships among three types of vocabulary knowledge (passive, controlled active, and free active) within the same individuals, taking four variables into consideration: passive vocabulary size, language learning context, second (L2) for foreign (FL), length of residence in L2 context, and, among the Canadians, knowledge of…

  3. Biomarkers of Induced Active and Passive Smoking Damage

    PubMed Central

    Lodovici, Maura; Bigagli, Elisabetta

    2009-01-01

    In addition to the well-known link between smoking and lung cancer, large epidemiological studies have shown a relationship between smoking and cancers of the nose, oral cavity, oropharynx, larynx, esophagus, pancreas, bladder, kidney, stomach, liver, colon and cervix, as well as myeloid leukemia. Epidemiological evidence has reported a direct link between exposure of non-smokers to environmental tobacco smoke and disease, most notably, lung cancer. Much evidence demonstrates that carcinogenic-DNA adducts are useful markers of tobacco smoke exposure, providing an integrated measurement of carcinogen intake, metabolic activation, and delivery to the DNA in target tissues. Monitoring accessible surrogate tissues, such as white blood cells or bronchoalveolar lavage (BAL) cells, also provides a means of investigating passive and active tobacco exposure in healthy individuals and cancer patients. Levels of DNA adducts measured in many tissues of smokers are significantly higher than in non-smokers. While some studies have demonstrated an association between carcinogenic DNA adducts and cancer in current smokers, no association has been observed in ex or never smokers. The role of genetic susceptibility in the development of smoking related-cancer is essential. In order to establish whether smoking-related DNA adducts are biomarkers of tobacco smoke exposure and/or its carcinogenic activity we summarized all data that associated tobacco smoke exposure and smoking-related DNA adducts both in controls and/or in cancer cases and studies where the effect of genetic polymorphisms involved in the activation and deactivation of carcinogens were also evaluated. In the future we hope we will be able to screen for lung cancer susceptibility by using specific biomarkers and that subjects of compared groups can be stratified for multiple potential modulators of biomarkers, taking into account various confounding factors. PMID:19440419

  4. Impact of hydrodynamics on effective interactions in suspensions of active and passive matter.

    PubMed

    Krafnick, Ryan C; García, Angel E

    2015-02-01

    Passive particles exhibit unique properties when immersed in an active bath of self-propelling entities. In particular, an effective attraction can appear between particles that repel each other when in a passive solution. Here we numerically study the effect of hydrodynamics on an active-passive hybrid system, where we observe qualitative differences as compared to simulations with excluded volume effects alone. The results shed light on an existing discrepancy in pair lifetimes between simulation and experiment, due to the hydrodynamically enhanced stability of coupled passive particles. PMID:25768506

  5. Impact of hydrodynamics on effective interactions in suspensions of active and passive matter

    NASA Astrophysics Data System (ADS)

    Krafnick, Ryan C.; García, Angel E.

    2015-02-01

    Passive particles exhibit unique properties when immersed in an active bath of self-propelling entities. In particular, an effective attraction can appear between particles that repel each other when in a passive solution. Here we numerically study the effect of hydrodynamics on an active-passive hybrid system, where we observe qualitative differences as compared to simulations with excluded volume effects alone. The results shed light on an existing discrepancy in pair lifetimes between simulation and experiment, due to the hydrodynamically enhanced stability of coupled passive particles.

  6. Soil moisture active passive (SMAP) satellite status and cal/val activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in November 2014. This satellite is the culmination of basic research and applications development over the past thirty years. During most of this period, research and development ...

  7. Passive Joint Forces Are Tuned to Limb Use in Insects and Drive Movements without Motor Activity

    PubMed Central

    Ache, Jan M.; Matheson, Thomas

    2013-01-01

    Summary Background Limb movements are generally driven by active muscular contractions working with and against passive forces arising in muscles and other structures. In relatively heavy limbs, the effects of gravity and inertia predominate, whereas in lighter limbs, passive forces intrinsic to the limb are of greater consequence. The roles of passive forces generated by muscles and tendons are well understood, but there has been little recognition that forces originating within joints themselves may also be important, and less still that these joint forces may be adapted through evolution to complement active muscle forces acting at the same joint. Results We examined the roles of passive joint forces in insect legs with different arrangements of antagonist muscles. We first show that passive forces modify actively generated movements of a joint across its working range, and that they can be sufficiently strong to generate completely passive movements that are faster than active movements observed in natural behaviors. We further demonstrate that some of these forces originate within the joint itself. In legs of different species adapted to different uses (walking, jumping), these passive joint forces complement the balance of strength of the antagonist muscles acting on the joint. We show that passive joint forces are stronger where they assist the weaker of two antagonist muscles. Conclusions In limbs where the dictates of a key behavior produce asymmetry in muscle forces, passive joint forces can be coadapted to provide the balance needed for the effective generation of other behaviors. PMID:23871240

  8. Realistic Instrumentation Platform for Active and Passive Optical Remote Sensing.

    PubMed

    Brydegaard, Mikkel; Merdasa, Aboma; Gebru, Alem; Jayaweera, Hiran; Svanberg, Sune

    2016-02-01

    We describe the development of a novel versatile optical platform for active and passive remote sensing of environmental parameters. Applications include assessment of vegetation status and water quality. The system is also adapted for ecological studies, such as identification of flying insects including agricultural pests. The system is based on two mid-size amateur astronomy telescopes, continuous-wave diode lasers at different wavelengths ranging from violet to the near infrared, and detector facilities including quadrant photodiodes, two-dimensional and line scan charge-coupled device cameras, and a compact digital spectrometer. Application examples include remote Ramanlaser-induced fluorescence monitoring of water quality at 120 m distance, and insect identification at kilometer ranges using the recorded wing beat frequency and its spectrum of overtones. Because of the low cost this developmental platform is very suitable for advanced research projects in developing countries and has, in fact, been multiplied during hands-on workshops and is now being used by a number of groups at African universities.

  9. Confronting Passive and Active Sensors with Non-Gaussian Statistics

    PubMed Central

    Rodríguez-Gonzálvez, Pablo.; Garcia-Gago, Jesús.; Gomez-Lahoz, Javier.; González-Aguilera, Diego.

    2014-01-01

    This paper has two motivations: firstly, to compare the Digital Surface Models (DSM) derived by passive (digital camera) and by active (terrestrial laser scanner) remote sensing systems when applied to specific architectural objects, and secondly, to test how well the Gaussian classic statistics, with its Least Squares principle, adapts to data sets where asymmetrical gross errors may appear and whether this approach should be changed for a non-parametric one. The field of geomatic technology automation is immersed in a high demanding competition in which any innovation by one of the contenders immediately challenges the opponents to propose a better improvement. Nowadays, we seem to be witnessing an improvement of terrestrial photogrammetry and its integration with computer vision to overcome the performance limitations of laser scanning methods. Through this contribution some of the issues of this “technological race” are examined from the point of view of photogrammetry. A new software is introduced and an experimental test is designed, performed and assessed to try to cast some light on this thrilling match. For the case considered in this study, the results show good agreement between both sensors, despite considerable asymmetry. This asymmetry suggests that the standard Normal parameters are not adequate to assess this type of data, especially when accuracy is of importance. In this case, standard deviation fails to provide a good estimation of the results, whereas the results obtained for the Median Absolute Deviation and for the Biweight Midvariance are more appropriate measures. PMID:25196104

  10. Active and passive microwave measurements of soil moisture in FIFE

    SciTech Connect

    Wang, J.R. ); Gogineni, S.P.; Ampe, J. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper reports on the application of active and passive microwave measurement systems to the simultaneous determination of soil moisture. These systems have been tested on common targets very few times. Here C and X band scatterometer data from a helicopter base is compared with L band push broom microwave radiometer (PBMR) data taken from the NASA C-130 aircraft. The regions sampled over FIFE encompass areas with different surface treatments. The scatterometers proved to be sensitive to soil moisture over most of the areas studied, while the radiometer lost sensitivity in regions which had been unburned for years, and which thus had substantial dead organic accumulation. The correlation of soil moisture and backscattered signal was observed to increase with off normal angles.

  11. Realistic Instrumentation Platform for Active and Passive Optical Remote Sensing.

    PubMed

    Brydegaard, Mikkel; Merdasa, Aboma; Gebru, Alem; Jayaweera, Hiran; Svanberg, Sune

    2016-02-01

    We describe the development of a novel versatile optical platform for active and passive remote sensing of environmental parameters. Applications include assessment of vegetation status and water quality. The system is also adapted for ecological studies, such as identification of flying insects including agricultural pests. The system is based on two mid-size amateur astronomy telescopes, continuous-wave diode lasers at different wavelengths ranging from violet to the near infrared, and detector facilities including quadrant photodiodes, two-dimensional and line scan charge-coupled device cameras, and a compact digital spectrometer. Application examples include remote Ramanlaser-induced fluorescence monitoring of water quality at 120 m distance, and insect identification at kilometer ranges using the recorded wing beat frequency and its spectrum of overtones. Because of the low cost this developmental platform is very suitable for advanced research projects in developing countries and has, in fact, been multiplied during hands-on workshops and is now being used by a number of groups at African universities. PMID:26772187

  12. The Soil Moisture Active and Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Nijoku, Eni G.; ONeill, Peggy E.; Kellogg, Kent H.; Crow, Wade T.; Edelstein, Wendy N.; Entin, Jared K.; Goodman, Shawn D.; Jackson, Thomas J.; Johnson, Joel; Kimball, John; Piepmeier, Jeffrey R.; Koster, Randal D.; McDonald, Kyle C.; Moghaddam, Mahta; Moran, Susan; Reichle, Rolf; Shi, J. C.; Spencer, Michael W.; Thurman, Samuel W.; Tsang, Leung; VanZyl, Jakob

    2009-01-01

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen from thawed land surfaces. Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy and carbon transfers between land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP soil moisture and freeze/thaw timing observations will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes. The SMAP mission concept would utilize an L-band radar and radiometer. These instruments will share a rotating 6-meter mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. The SMAP instruments provide direct measurements of surface conditions. In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and estimates of land surface-atmosphere exchanges of water, energy and carbon. SMAP is scheduled for a 2014 launch date

  13. The NASA Soil Moisture Active Passive (SMAP) Mission Formulation

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni; ONeill, Peggy; Kellogg, Kent; Entin, Jared

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier projects recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission is in formulation phase and it is scheduled for launch in 2014. The SMAP mission is designed to produce high-resolution and accurate global mapping of soil moisture and its freeze/thaw state using an instrument architecture that incorporates an L-band (1.26 GHz) radar and an L-band (1.41 GHz) radiometer. The simultaneous radar and radiometer measurements will be combined to derive global soil moisture mapping at 9 [km] resolution with a 2 to 3 days revisit and 0.04 [cm3 cm-3] (1 sigma) soil water content accuracy. The radar measurements also allow the binary detection of surface freeze/thaw state. The project science goals address in water, energy and carbon cycle science as well as provide improved capabilities in natural hazards applications.

  14. Passive and active optical fibers for space and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Alam, Mansoor; Abramczyk, Jaroslaw; Farroni, Julia; Manyam, Upendra; Guertin, Douglas

    2006-08-01

    Being the new frontier of science and technology, as the near earth space begins to attract attention, low cost and rapidly deployable earth observation satellites are becoming more important. Among other things these satellites are expected to carry out missions in the general areas of science and technology, remote sensing, national defense and telecommunications. Except for critical missions, constraints of time and money practically mandate the use of commercial-off-the-shelf (COTS) components as the only viable option. The near earth space environment (~50-50000 miles) is relatively hostile and among other things components/devices/systems are exposed to ionizing radiation. Photonic devices/systems are and will continue to be an integral part of satellites and their payloads. The ability of such devices/systems to withstand ionizing radiation is of extreme importance. Qualification of such devices/systems is time consuming and very expensive. As a result, manufacturers of satellites and their payloads have started to ask for radiation performance data on components from the individual vendors. As an independent manufacturer of both passive and active specialty silica optical fibers, Nufern is beginning to address this issue. Over the years, Nufern has developed fiber designs, compositions and processes to make radiation hard fibers. Radiation performance data (both gamma and proton) of a variety of singlemode (SM), multimode (MM), polarization maintaining (PM) and rare-earth doped (RED) fibers that find applications in space environment are presented.

  15. Passive and active launch vibration studies in the LVIS program

    NASA Astrophysics Data System (ADS)

    Edberg, Donald L.; Bartos, Bruce; Goodding, James C.; Wilke, Paul S.; Davis, Torey

    1998-06-01

    A U.S. Air Force-sponsored team consisting of Boeing (formerly McDonnell Douglas), Honeywell Satellite Systems, and CSA Engineering has developed technology to reduce the vibration felt by an isolated payload during launch. Spacecraft designers indicate that a launch vibration isolation system (LVIS) could provide significant cost benefits in payload design, testing, launch, and lifetime. This paper contains developments occurring since those reported previously. Simulations, which included models of a 6,500 pound spacecraft, an isolating payload attach fitting (PAF) to replace an existing PAF, and the Boeing Delta II launch vehicle, were used to generate PAF performance requirements for the desired levels of attenuation. Hardware was designed to meet the requirements. The isolating PAF concept replaces portions of a conventional metallic fitting with hydraulic- pneumatic struts featuring a unique hydraulic cross-link feature that stiffens under rotation to meet rocking restrictions. The pneumatics provide low-stiffness longitudinal support. Two demonstration isolating PAF struts were designed, fabricated and tested to determine their stiffness and damping characteristics and to verify the performance of the hydraulic crosslink concept. Measurements matched analytical predictions closely. An active closed-loop control system was simulated to assess its potential isolation performance. A factor of 100 performance increase over the passive case was achieved with minor weight addition and minimal power consumption.

  16. Passive Synthetic Aperture Hitchhiker Imaging of Ground Moving Targets - Part 2: Performance Analysis.

    PubMed

    Wacks, Steven; Yazici, Birsen

    2014-07-01

    In Part 1 of this work, we present a passive synthetic aperture imaging and velocity estimation method for ground moving targets using a network of passive receivers. The method involves inversion of a Radon transform type forward model via a novel filtered backprojection approach combined with entropy optimization. The method is applicable to noncooperative transmitters of opportunity where the transmitter locations and transmitted waveforms are unknown. Furthermore, it can image multiple targets moving at different velocities in arbitrary imaging geometries. In this paper, we present a detailed analysis of the performance of our method. First the resolution analysis in position and velocity spaces is presented. The analysis identifies several factors that contribute positively or negativity towards position and velocity resolution. Next, we present a novel theory to analyze and predict smearing artifacts in position images due to error in velocity estimation of moving targets. Specifically, we show that small errors in the velocity estimation result in small positioning errors. We present extensive numerical simulations to demonstrate the theoretical results. While our primary interest lies in radar, the theory, methods and algorithms introduced in our work are also applicable to passive acoustic, seismic, and microwave imaging. PMID:25020091

  17. Passive Synthetic Aperture Hitchhiker Imaging of Ground Moving Targets - Part 2: Performance Analysis.

    PubMed

    Wacks, Steven; Yazici, Birsen

    2014-07-01

    In Part 1 of this work, we present a passive synthetic aperture imaging and velocity estimation method for ground moving targets using a network of passive receivers. The method involves inversion of a Radon transform type forward model via a novel filtered backprojection approach combined with entropy optimization. The method is applicable to noncooperative transmitters of opportunity where the transmitter locations and transmitted waveforms are unknown. Furthermore, it can image multiple targets moving at different velocities in arbitrary imaging geometries. In this paper, we present a detailed analysis of the performance of our method. First the resolution analysis in position and velocity spaces is presented. The analysis identifies several factors that contribute positively or negativity towards position and velocity resolution. Next, we present a novel theory to analyze and predict smearing artifacts in position images due to error in velocity estimation of moving targets. Specifically, we show that small errors in the velocity estimation result in small positioning errors. We present extensive numerical simulations to demonstrate the theoretical results. While our primary interest lies in radar, the theory, methods and algorithms introduced in our work are also applicable to passive acoustic, seismic, and microwave imaging.

  18. Characterization of the passive component of force enhancement following active stretching of skeletal muscle.

    PubMed

    Herzog, W; Schachar, R; Leonard, T R

    2003-10-01

    The mechanisms causing the steady-state force enhancement following active skeletal muscle stretching are not well understood. Recently, we found direct evidence that part of the force enhancement is associated with the engagement of a passive component. In this study, we reproduced the conditions that give consistent passive force enhancement and evaluated the mechanical properties of this passive force enhancement so as to gain insight into its source. The three primary results were that (1). the passive force enhancement is long lasting (>25 s), (2). passive force enhancement was reduced in a dose-dependent manner by the amount of shortening preceding active muscle stretching, and (3). passive force enhancement could be abolished 'instantaneously' by shortening-stretching the passive muscle by an amount equivalent to the active stretch magnitude. Together with the remaining results, we conclude that the source of the passive force enhancement must be arranged in parallel with the contractile force, it must consist of a viscoelastic molecular spring whose stiffness characteristic can be reset by shortening, and it must have a characteristic length that is governed by the length of the contractile components, possibly the sarcomeres. Based on these results, the molecular spring titin emerges as a possible candidate for the passive component of the steady-state force enhancement observed in this and previous studies.

  19. Demonstration of Passive W-Band Millimeter Wave Imaging Using Optical Upconversion Detection Methodology with Applications

    NASA Astrophysics Data System (ADS)

    Samluk, Jesse P.; Schuetz, Christopher A.; Dillon, Thomas; Martin, Richard D.; Stein, E. Lee; Mackrides, Daniel G.; Wilson, John; Robbins, Andrew; Shi, Shouyuan; Chen, Caihua; Yao, Peng; Shireen, Rownak; Macario, Julien; Prather, Dennis W.

    2012-11-01

    Millimeter wave (mmW) imaging has enjoyed a measure of success due to the unique properties of imaging in this spectral region, some of which are still being discovered. For example, a key advantage of mmW imaging is the ability to penetrate through various atmospheric obscurants, including fog, dust, sand, and smoke, due to its longer wavelengths as compared to visible or infrared imaging. Various methods of imaging with mmW energy exist, such as direct detection, downconversion, and upconversion, where this manuscript focuses on the latter. Until now, passive imaging using an optical upconversion method was limited to Q-band frequencies due to the lack of commercially available parts, namely a sufficiently high frequency optical modulator. To overcome this limitation, a custom-built modulator using in-house fabrication facilities was realized to allow imaging within the W-band frequency range (75-110 GHz). Therefore, in this manuscript we report new results of passive imaging in the W-band frequency range using a unique optical upconversion technique, where the higher frequency operation allows for greater detail in the imagery thus collected.

  20. Active and passive immunisation against respiratory syncytial virus.

    PubMed

    Zambon, M

    1999-01-01

    RSV is a major cause of respiratory illness in infants under 2 years of age. Evidence is accumulating that it is also underestimated as a cause of respiratory infection in adults, the elderly and immunocompromised individuals. Active interventions to control the impact of RSV infection have been hampered by a lack of understanding of the immune response to RSV in different age groups. A number of different strategies for developing RSV vaccines have been pursued, including live attenuated vaccines, genetically engineered live and subunit vaccines and peptide vaccines with varying degrees of success. The target populations for RSV vaccines include infants, the elderly and women of childbearing age, but the efficacy of different vaccines may differ according to age. Desirable immune responses and immune correlates of protection to RSV in humans remain uncertain and determining these is critical for introduction of any vaccines. Prophylaxis and treatment of RSV in infants using human immunoglobulin containing high titres of RSV specific neutralising antibody (RSV-Ig) has shown limited success in different infant populations. Prophylaxis of premature infants with RSV-Ig, particularly those with bronchopulmonary dysplasia, has demonstrated limited clinical efficacy against RSV. In contrast, there are significant safety concerns for use of this preparation for prophylaxis in infants with congenital heart disease and no demonstrable efficacy in treatment of RSV disease in healthy infants. The cost of the preparation will limit use to highly selected infant groups. Production of humanized monoclonal antibodies to RSV offers another potential passive immunotherapy intervention for RSV, with increased specific activity and reduced side effects, although its use remains experimental. PMID:10578118

  1. Target identification and navigation performance modeling of a passive millimeter wave imager.

    PubMed

    Jacobs, Eddie L; Furxhi, Orges

    2010-07-01

    Human task performance using a passive interferometric millimeter wave imaging sensor is modeled using a task performance modeling approach developed by the U.S. Army Night Vision and Electronic Sensors Directorate. The techniques used are illustrated for an imaging system composed of an interferometric antenna array, optical upconversion, and image formation using a shortwave infrared focal plane array. Two tasks, target identification and pilotage, are modeled. The effects of sparse antenna arrays on task performance are considered. Applications of this model include system trade studies for concealed weapon identification, navigation in fog, and brownout conditions. PMID:20648126

  2. Target identification and navigation performance modeling of a passive millimeter wave imager.

    PubMed

    Jacobs, Eddie L; Furxhi, Orges

    2010-07-01

    Human task performance using a passive interferometric millimeter wave imaging sensor is modeled using a task performance modeling approach developed by the U.S. Army Night Vision and Electronic Sensors Directorate. The techniques used are illustrated for an imaging system composed of an interferometric antenna array, optical upconversion, and image formation using a shortwave infrared focal plane array. Two tasks, target identification and pilotage, are modeled. The effects of sparse antenna arrays on task performance are considered. Applications of this model include system trade studies for concealed weapon identification, navigation in fog, and brownout conditions.

  3. Active and Passive RF Components for High-Power Systems

    NASA Astrophysics Data System (ADS)

    Tantawi, Sami G.; Nantista, Christopher D.

    2002-08-01

    In recent years, R&D for pulse compression and power distribution systems for the Next Linear Collider has led to the invention of many novel rf components, some of which must handle up to 600 MW of pulsed power at X-band. These include passive waveguide components, active switch designs, and non-reciprocal devices. Among the former is a class of multi-moded, highly efficient rf components based on planar geometries with overmoded rectangular ports. Multi-moding allows us, by means of input phasing, to direct power to different locations through the same waveguide. Planar symmetry allows the height to be increased to improve power handling capacity. Features that invite breakdown, such as coupling slots, irises and H-plane septa, are avoided. This class includes hybrids, directional couplers, an eight-port superhybrid/dual-mode launcher, a mode-selective extractor, mode-preserving bends, a rectangular mode converter, and mode-mixers. We are able to utilize such rectangular waveguide components in systems incorporating low-loss, circular waveguide delay lines by means of specially designed tapers that efficiently transform multiple rectangular waveguide modes into their corresponding circular waveguide modes, specifically TE10 and TE20 into circular TE11 and TE01. These extremely compact tapers can replace well-known mode converters such as the Marie type. Another component, a reflective TE01-TE02 mode converter in circular waveguide, allows us to double the delay in reflective or resonant delay lines. Ideas for multi-megawatt active components, such as switches, have also been pursued. Power-handling capacity for these is increased by making them also highly overmoded. We present a design methodology for active rf magnetic components which are suitable for pulse compression systems of future X-band linear colliders. We also present an active switch based on a PIN diode array. This component comprises an array of active elements arranged so that the electric fields

  4. Comparison of active and passive microwave signatures of Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, M. R.; Crawford, J. P.; Cavalieri, D. J.; Holt, B.; Carsey, F. D.

    1990-01-01

    In March 1988, overlapping active and passive microwave instrument data were acquired over Arctic sea ice using the NASA DC-8 aircraft equipped with multifrequency, variable polarization SAR and radiometer. Flights were conducted as a series of coordinated underflights of the DMSP SSM/I satellite radiometer in order to validate ice products derived from the SSM/I radiances. Subsequent flights by an NRL P-3 aircraft enabled overlapping high-resolution, single frequency image data to be acquired over the same regions using a Ka-band scanning microwave radiometer. In this paper, techniques are discussed for the accurate coregistration of the three aircraft datasets. Precise coregistration to an accuracy of 100 m plus or minus 25 m has, for the first time, enabled the detailed comparison of temporally and spatially coincident active and passive airborne microwave datasets. Preliminary results from the intercomparisons indicate that the SAR has highly frequency- and polarization-dependent signatures, which at 5.3 GHz (C-band) show an extremely high correlation with the 37 GHz radiometric temperatures.

  5. 26 CFR 1.469-2T - Passive activity loss (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... building for three years preceding the sale and at all times during that period used seven floors of the... TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-2T Passive... amount of the taxpayer's passive activity loss for the taxable year for purposes of section 469 and...

  6. 26 CFR 1.469-2T - Passive activity loss (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... building for three years preceding the sale and at all times during that period used seven floors of the... TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-2T Passive... amount of the taxpayer's passive activity loss for the taxable year for purposes of section 469 and...

  7. 26 CFR 1.469-2T - Passive activity loss (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... building for three years preceding the sale and at all times during that period used seven floors of the... TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-2T Passive... amount of the taxpayer's passive activity loss for the taxable year for purposes of section 469 and...

  8. NASA Soil Moisture Active Passive (SMAP) Mission Formulation

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni; ONeill, Peggy; Kellogg, Kent; Entin, Jared

    2011-01-01

    The Soil Moisture Active Passive (SMAP) Mission is one of the first Earth observation satellites being formulated by NASA in response to the 2007 National Research Council s Earth Science Decadal Survey [1]. SMAP s measurement objectives are high-resolution global measurements of near-surface soil moisture and its freeze-thaw state. These measurements would allow significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. The soil moisture control of these fluxes is a key factor in the performance of atmospheric models used for weather forecasts and climate projections. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. Knowledge gained from SMAP s planned observations can help mitigate these natural hazards, resulting in potentially great economic and societal benefits. SMAP measurements would also yield high resolution spatial and temporal mapping of the frozen or thawed condition of the surface soil and vegetation. Observations of soil moisture and freeze/thaw timing over the boreal latitudes will contribute to reducing a major uncertainty in quantifying the global carbon balance and help resolve an apparent missing carbon sink over land. The SMAP mission would utilize an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna (see Figure 1) [2]. The radar and radiometer instruments would be carried onboard a 3-axis stabilized spacecraft in a 680 km polar orbit with an 8-day repeating ground track. The instruments are planned to provide high-resolution and high-accuracy global maps of soil moisture at 10 km resolution and freeze/thaw at 3 km resolution, every two to three days (see Table 1 for a list of science data products). The mission is adopting a number of approaches to identify and mitigate potential terrestrial radio frequency interference (RFI). These approaches are being incorporated into the radiometer and radar flight hardware and

  9. Integrated passive/active vibration absorber for multi-story buildings

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina J.; Ahmadi, Goodarz; Horta, Lucas G.

    1995-01-01

    Passive isolator, active vibration absorber, and an integrated passive/active (hybrid) control are studied for their effectiveness in reducing structural vibration under seismic excitations. For the passive isolator, a laminated rubber bearing base isolator which has been studied and used extensively by researchers and seismic designers is considered. An active vibration absorber concept, which can provide guaranteed closed-loop stability with minimum knowledge of the controlled system, is used to reduce the passive isolator displacement and to suppress the top floor vibration. A three-story building model is used for the numerical simulation. The performance of an active vibration absorber and a hybrid vibration controller in reducing peak structural responses is compared with the passively isolated structural response and with absence of vibration control systems under the N00W component of El Centro 1940 and N90W component of the Mexico City earthquake excitation records. The results show that the integrated passive/active vibration control system is most effective in suppressing the peak structural acceleration for the El Centro 1940 earthquake when compared with the passive or active vibration absorber alone. The active vibration absorber, however, is the only system that suppresses the peak acceleration of the structure for the Mexico City 1985 earthquake.

  10. Aerosol identification using a hybrid active/passive system

    NASA Astrophysics Data System (ADS)

    D'Amico, Francis M.; Moon, Raphael P.; Davidson, Charles E.

    2005-08-01

    Recent experimental work has shown that passive systems such as hyperspectral FTIR and frequency-tunable IR cameras have application in detection of biological aerosols. This provided the motivation for a new detection technique, which we call Aerosol Ranging Spectroscopy (ARS), whereby a scattering LIDAR is used to augment passive spectrometer data to determine the location and optical depth of the aerosol plume. When the two systems are co-aligned or boresighted, the hybrid data product provides valuable enhancements for signal exploitation of the passive spectral data. This paper presents the motivation and theoretical basis for the ARS technique. A prototype implementation of an ARS system will also be described, along with preliminary results from recent outdoor field experiments.

  11. Automatic detection of hidden threats in the TeraSCREEN passive millimeter-wave imaging subsystem

    NASA Astrophysics Data System (ADS)

    Madhogaria, Satish; Schikora, Marek

    2015-05-01

    Passive millimeter-wave imaging systems can play a significant role in security applications. Especially, the detection of hidden threats for border security is a growing field. In this paper we propose a novel approach for automatic threat detection using multiple 94 GHz passive millimeter-wave images. Herein, we discuss four steps essential to solving the task: pre-processing, region-of-interest extraction, threat extraction in each frame and, finally, intelligent fusion of the results from all frames. Besides, showing that the proposed method works reliably for the data-set at hand, we also discuss the advantages of using this method in contrast to state-of-the-art methods.

  12. Investigation of antenna pattern constraints for passive geosynchronous microwave imaging radiometers

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Skofronick, G. M.

    1992-01-01

    Progress by investigators at Georgia Tech in defining the requirements for large space antennas for passive microwave Earth imaging systems is reviewed. In order to determine antenna constraints (e.g., the aperture size, illumination taper, and gain uncertainty limits) necessary for the retrieval of geophysical parameters (e.g., rain rate) with adequate spatial resolution and accuracy, a numerical simulation of the passive microwave observation and retrieval process is being developed. Due to the small spatial scale of precipitation and the nonlinear relationships between precipitation parameters (e.g., rain rate, water density profile) and observed brightness temperatures, the retrieval of precipitation parameters are of primary interest in the simulation studies. Major components of the simulation are described as well as progress and plans for completion. The overall goal of providing quantitative assessments of the accuracy of candidate geosynchronous and low-Earth orbiting imaging systems will continue under a separate grant.

  13. NOTE: Off-resonance positive contrast imaging of a passive endomyocardial catheter in swine

    NASA Astrophysics Data System (ADS)

    Dharmakumar, Rohan; Koktzoglou, Ioannis; Tang, Richard; Harris, Kathleen R.; Beohar, Nirat; Li, Debiao

    2008-07-01

    The use of off-resonance methods in interventional MRI may be valuable since active devices that provide positive signal enhancements are currently not approved for human use. This study investigated the capacity of a low flip angle steady-state free precession (FLAPS) method for generating off-resonance positive contrast surrounding a susceptibility-shifted endomyocardial Stiletto catheter in excised swine hearts and in live swine. Consistent with theory, discernable positive contrast surrounding the interventional device was visualized under ex-vivo (CNR of 24 ± 2.1 in the left ventricular (LV) chamber and 18 ± 2.7 in LV myocardium) and in-vivo conditions (CNR of 22 ± 3.9 in aorta, 16 ± 4.1 in the LV chamber and 13 ± 0.9 in LV myocardium). The findings show that off-resonance imaging with the FLAPS method may be used for passive device visualization with positive contrast. Further studies are necessary prior to clinical translation.

  14. Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging.

    PubMed

    Maïsetti, Olivier; Hug, François; Bouillard, Killian; Nordez, Antoine

    2012-04-01

    The passive elastic properties of a muscle-tendon complex are usually estimated from the relationship between the joint angle and the passive resistive torque, although the properties of the different structures crossing the joint cannot be easily assessed. This study aimed to determine the passive mechanical properties of the gastrocnemius medialis muscle (GM) using supersonic shear imaging (SSI) that allows the measurement of localized muscle shear modulus (μ). The SSI of the GM was taken for 7 subjects during passive ankle dorsiflexion at a range of knee positions performed on an isokinetic dynamometer. The relationship between normalized μ and the length of the gastrocnemius muscle-tendon units (GMTU) was very well fitted to an exponential model (0.944passive muscle force, and highlight its clinical applicability to evaluate the passive properties of mono- and bi-articular muscles.

  15. The Significance of Turning Passive Into Active in Control Mastery Theory

    PubMed Central

    FOREMAN, STEVEN A.

    1996-01-01

    Turning passive into active was first described by Freud but was later given expanded importance by Weiss. This new conceptualization of turning passive into active as an interpersonal communication and test has made a major contribution to the clinical treatment of difficult patients. This article reviews "control mastery" theory and puts its notion of passive-into-active testing into perspective with regard to Freud’s original conception as well as other conceptions, such as identification with the aggressor and projective identification. Formulation and the treatment of patients are illustrated with clinical examples. PMID:22700271

  16. Motion correction for passive radiation imaging of small vessels in ship-to-ship inspections

    DOE PAGES

    Ziock, Klaus -Peter; Boehnen, Chris Bensing; Ernst, Joseph M.; Fabris, Lorenzo; Hayward, Jason P.; Karnowski, Thomas Paul; Paquit, Vincent C.; Patlolla, Dilip Reddy; Trombino, David

    2015-09-05

    Passive radiation detection remains one of the most acceptable means of ascertaining the presence of illicit nuclear materials. In maritime applications it is most effective against small to moderately sized vessels, where attenuation in the target vessel is of less concern. Unfortunately, imaging methods that can remove source confusion, localize a source, and avoid other systematic detection issues cannot be easily applied in ship-to-ship inspections because relative motion of the vessels blurs the results over many pixels, significantly reducing system sensitivity. This is particularly true for the smaller watercraft, where passive inspections are most valuable. We have developed a combinedmore » gamma-ray, stereo visible-light imaging system that addresses this problem. Data from the stereo imager are used to track the relative location and orientation of the target vessel in the field of view of a coded-aperture gamma-ray imager. Using this information, short-exposure gamma-ray images are projected onto the target vessel using simple tomographic back-projection techniques, revealing the location of any sources within the target. Here,the complex autonomous tracking and image reconstruction system runs in real time on a 48-core workstation that deploys with the system.« less

  17. Motion correction for passive radiation imaging of small vessels in ship-to-ship inspections

    NASA Astrophysics Data System (ADS)

    Ziock, K. P.; Boehnen, C. B.; Ernst, J. M.; Fabris, L.; Hayward, J. P.; Karnowski, T. P.; Paquit, V. C.; Patlolla, D. R.; Trombino, D. G.

    2016-01-01

    Passive radiation detection remains one of the most acceptable means of ascertaining the presence of illicit nuclear materials. In maritime applications it is most effective against small to moderately sized vessels, where attenuation in the target vessel is of less concern. Unfortunately, imaging methods that can remove source confusion, localize a source, and avoid other systematic detection issues cannot be easily applied in ship-to-ship inspections because relative motion of the vessels blurs the results over many pixels, significantly reducing system sensitivity. This is particularly true for the smaller watercraft, where passive inspections are most valuable. We have developed a combined gamma-ray, stereo visible-light imaging system that addresses this problem. Data from the stereo imager are used to track the relative location and orientation of the target vessel in the field of view of a coded-aperture gamma-ray imager. Using this information, short-exposure gamma-ray images are projected onto the target vessel using simple tomographic back-projection techniques, revealing the location of any sources within the target. The complex autonomous tracking and image reconstruction system runs in real time on a 48-core workstation that deploys with the system.

  18. Motion correction for passive radiation imaging of small vessels in ship-to-ship inspections

    SciTech Connect

    Ziock, Klaus -Peter; Boehnen, Chris Bensing; Ernst, Joseph M.; Fabris, Lorenzo; Hayward, Jason P.; Karnowski, Thomas Paul; Paquit, Vincent C.; Patlolla, Dilip Reddy; Trombino, David

    2015-09-05

    Passive radiation detection remains one of the most acceptable means of ascertaining the presence of illicit nuclear materials. In maritime applications it is most effective against small to moderately sized vessels, where attenuation in the target vessel is of less concern. Unfortunately, imaging methods that can remove source confusion, localize a source, and avoid other systematic detection issues cannot be easily applied in ship-to-ship inspections because relative motion of the vessels blurs the results over many pixels, significantly reducing system sensitivity. This is particularly true for the smaller watercraft, where passive inspections are most valuable. We have developed a combined gamma-ray, stereo visible-light imaging system that addresses this problem. Data from the stereo imager are used to track the relative location and orientation of the target vessel in the field of view of a coded-aperture gamma-ray imager. Using this information, short-exposure gamma-ray images are projected onto the target vessel using simple tomographic back-projection techniques, revealing the location of any sources within the target. Here,the complex autonomous tracking and image reconstruction system runs in real time on a 48-core workstation that deploys with the system.

  19. Real-time outdoor concealed-object detection with passive millimeter wave imaging.

    PubMed

    Yeom, Seokwon; Lee, Dong-Su; Son, Jung-Young; Jung, Min-Kyoo; Jang, YuShin; Jung, Sang-Won; Lee, Seok-Jae

    2011-01-31

    Millimeter wave imaging is finding rapid adoption in security applications such as the detection of objects concealed under clothing. A passive imaging system can be realized as a stand-off type sensor that can operate in open spaces, both indoors and outdoors. In this paper, we address real-time outdoor concealed-object detection and segmentation with a radiometric imaging system operating in the W-band. The imaging system is equipped with a dielectric lens and a receiver array operating at around 94 GHz. Images are analyzed by multilevel segmentation to identify a concealed object. Each level of segmentation comprises vector quantization, expectation-maximization, and Bayesian decision making to cluster pixels on the basis of a Gaussian mixture model. In addition, we describe a faster process that adopts only vector quantization for the first level segmentation. Experiments confirm that the proposed methods provide fast and reliable detection and segmentation for a moving human subject carrying a concealed gun.

  20. Passive Markers for Tracking Surgical Instruments in Real-Time 3-D Ultrasound Imaging

    PubMed Central

    Stoll, Jeffrey; Ren, Hongliang; Dupont, Pierre E.

    2013-01-01

    A family of passive echogenic markers is presented by which the position and orientation of a surgical instrument can be determined in a 3-D ultrasound volume, using simple image processing. Markers are attached near the distal end of the instrument so that they appear in the ultrasound volume along with the instrument tip. They are detected and measured within the ultrasound image, thus requiring no external tracking device. This approach facilitates imaging instruments and tissue simultaneously in ultrasound-guided interventions. Marker-based estimates of instrument pose can be used in augmented reality displays or for image-based servoing. Design principles for marker shapes are presented that ensure imaging system and measurement uniqueness constraints are met. An error analysis is included that can be used to guide marker design and which also establishes a lower bound on measurement uncertainty. Finally, examples of marker measurement and tracking algorithms are presented along with experimental validation of the concepts. PMID:22042148

  1. Cross-Sectional Nakagami Images in Passive Stretches Reveal Damage of Injured Muscles.

    PubMed

    Lin, Shih-Ping; Lin, Yi-Hsun; Fan, Shih-Chen; Huang, Bu-Miin; Lin, Wei-Yin; Wang, Shyh-Hau; Shung, K Kirk; Su, Fong-Chin; Wu, Chia-Ching

    2016-01-01

    Muscle strain is still awanting a noninvasive quantitatively diagnosis tool. High frequency ultrasound (HFU) improves image resolution for monitoring changes of tissue structures, but the biomechanical factors may influence ultrasonography during injury detection. We aim to illustrate the ultrasonic parameters to present the histological damage of overstretched muscle with the consideration of biomechanical factors. Gastrocnemius muscles from mice were assembled and ex vivo passive stretching was performed before or after injury. After injury, the muscle significantly decreased mechanical strength. Ultrasonic images were obtained by HFU at different deformations to scan in cross and longitudinal orientations of muscle. The ultrasonography was quantified by echogenicity and Nakagami parameters (NP) for structural evaluation and correlated with histological results. The injured muscle at its original length exhibited decreased echogenicity and NP from HFU images. Cross-sectional ultrasonography revealed a loss of correlation between NP and passive muscle stretching that suggested a special scatterer pattern in the cross section of injured muscle. The independence of NP during passive stretching of injured muscle was confirmed by histological findings in ruptured collagen fibers, decreased muscle density, and increased intermuscular fiber space. Thus, HFU analysis of NP in cross section represents muscle injury that may benefit the clinical diagnosis. PMID:27034946

  2. Cross-Sectional Nakagami Images in Passive Stretches Reveal Damage of Injured Muscles

    PubMed Central

    Lin, Shih-Ping; Lin, Yi-Hsun; Fan, Shih-Chen; Huang, Bu-Miin; Lin, Wei-Yin; Wang, Shyh-Hau; Shung, K. Kirk; Su, Fong-Chin; Wu, Chia-Ching

    2016-01-01

    Muscle strain is still awanting a noninvasive quantitatively diagnosis tool. High frequency ultrasound (HFU) improves image resolution for monitoring changes of tissue structures, but the biomechanical factors may influence ultrasonography during injury detection. We aim to illustrate the ultrasonic parameters to present the histological damage of overstretched muscle with the consideration of biomechanical factors. Gastrocnemius muscles from mice were assembled and ex vivo passive stretching was performed before or after injury. After injury, the muscle significantly decreased mechanical strength. Ultrasonic images were obtained by HFU at different deformations to scan in cross and longitudinal orientations of muscle. The ultrasonography was quantified by echogenicity and Nakagami parameters (NP) for structural evaluation and correlated with histological results. The injured muscle at its original length exhibited decreased echogenicity and NP from HFU images. Cross-sectional ultrasonography revealed a loss of correlation between NP and passive muscle stretching that suggested a special scatterer pattern in the cross section of injured muscle. The independence of NP during passive stretching of injured muscle was confirmed by histological findings in ruptured collagen fibers, decreased muscle density, and increased intermuscular fiber space. Thus, HFU analysis of NP in cross section represents muscle injury that may benefit the clinical diagnosis. PMID:27034946

  3. Real-time image processing for passive mmW imagery

    NASA Astrophysics Data System (ADS)

    Kozacik, Stephen; Paolini, Aaron; Bonnett, James; Harrity, Charles; Mackrides, Daniel; Dillon, Thomas E.; Martin, Richard D.; Schuetz, Christopher A.; Kelmelis, Eric; Prather, Dennis W.

    2015-05-01

    The transmission characteristics of millimeter waves (mmWs) make them suitable for many applications in defense and security, from airport preflight scanning to penetrating degraded visual environments such as brownout or heavy fog. While the cold sky provides sufficient illumination for these images to be taken passively in outdoor scenarios, this utility comes at a cost; the diffraction limit of the longer wavelengths involved leads to lower resolution imagery compared to the visible or IR regimes, and the low power levels inherent to passive imagery allow the data to be more easily degraded by noise. Recent techniques leveraging optical upconversion have shown significant promise, but are still subject to fundamental limits in resolution and signal-to-noise ratio. To address these issues we have applied techniques developed for visible and IR imagery to decrease noise and increase resolution in mmW imagery. We have developed these techniques into fieldable software, making use of GPU platforms for real-time operation of computationally complex image processing algorithms. We present data from a passive, 77 GHz, distributed aperture, video-rate imaging platform captured during field tests at full video rate. These videos demonstrate the increase in situational awareness that can be gained through applying computational techniques in real-time without needing changes in detection hardware.

  4. Passive millimeter wave imaging and spectroscopy system for terrestrial remote sensing

    NASA Astrophysics Data System (ADS)

    Gopalsami, Nachappa; Liao, Shaolin; Koehl, Eugene R.; Elmer, Thomas W.; Heifetz, Alexander; Chien, Hual-Te; Raptis, Apostolos C.

    2010-04-01

    We have built a passive millimeter wave imaging and spectroscopy system with a 15-channel filter bank in the 146-154 GHz band for terrestrial remote sensing. We had built the spectroscopy system first and have now retrofitted an imaging element to it as a single pixel imager. The imaging element consisted of a 15-cm-diameter imaging lens fed to a corrugated scalar horn. Image acquisition is carried out by scanning the lens with a 2-axis translation stage. A LabVIEW-based software program integrates the imaging and spectroscopy systems with online display of spectroscopic information while the system scans each pixel position. The software also allows for integrating the image intensity of all 15 channels to increase the signal-to-noise ratio by a factor of ~4 relative to single channel image. The integrated imaging and spectroscopy system produces essentially 4-D data in which spatial data are along 2 dimensions, spectral data are in the 3rd dimension, and time is the 4th dimension. The system performance was tested by collecting imaging and spectral data with a 7.5-cm-diameter and 1m long gas cell in which test chemicals were introduced against a liquid nitrogen background.

  5. Tracking moving targets in complex environments by fusing active and passive sensors

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Ben G.; Liu, Li; Wang, Yun; Cheng, Zhanqi

    2007-04-01

    We present a novel algorithm for tracking with ladar sensors to aid in navigation, guidance and control systems, suitable for applications to unmanned air vehicles. The methods we employ are based on Bayesian segmentation, optical flow, active contour and Bayesian particle tracking. The algorithm herein holds several significant advantages over traditional tracking methods. The first step in the process is the optimal segmentation of images to enhance the targets and extract them from background clutter and noise. The Bayesian approach to segmentation allows the use of intensity (passive) and range (active) imagery to find targets. Optical flow generalizes and improves correlation techniques for locating objects within a frame, allowing for aspect angle and range changes. With optical flow, we may infer relative velocities on a pixel-by-pixel basis. Active contours are ideally suited to both target-sparse and target-rich environments. The energy approach to determining contours allows the merging and separating of potential targets in an automatic manner. Bayesian particle tracking techniques are used to track the contours over time. The algorithm is tested successfully on experimental and simulated ladar data (using both intensity and range data) as well as sequences of video imageries. The streamlined processing, from obtaining the image data (of size 805x148 pixels) to detecting the moving target to wrapping an active contour on the target, takes less than one second of clock time and provides very accurate predictions of the target location in future frames.

  6. Stress Sensitive Healthy Females Show Less Left Amygdala Activation in Response to Withdrawal-Related Visual Stimuli under Passive Viewing Conditions

    ERIC Educational Resources Information Center

    Baeken, Chris; Van Schuerbeek, Peter; De Raedt, Rudi; Vanderhasselt, Marie-Anne; De Mey, Johan; Bossuyt, Axel; Luypaert, Robert

    2012-01-01

    The amygdalae are key players in the processing of a variety of emotional stimuli. Especially aversive visual stimuli have been reported to attract attention and activate the amygdalae. However, as it has been argued that passively viewing withdrawal-related images could attenuate instead of activate amygdalae neuronal responses, its role under…

  7. Dynamics of Piton de la Fournaise volcano observed by passive image interferometry with multiple references

    NASA Astrophysics Data System (ADS)

    Sens-Schönfelder, Christoph; Pomponi, Eraldo; Peltier, Aline

    2014-04-01

    Activity of Piton de la Fournaise (PdF) volcano in La Réunion Island modifies the seismic velocities within the edifice. Using the 2010 and 2011 data from a network of 21 seismic stations in the vicinity of PdF, changes of seismic velocities are investigated using passive image interferometry, i.e. interferometry of seismic noise correlations. As noise correlations change significantly over time in response to volcanic activity, a method is presented that allows us to measure continuous long term velocity changes with high and constant accuracy by using multiple periods as reference. A long term velocity increase is found that averages about 0.25% per year. This trend is superimposed by short term changes that exhibit a clear connection with summit seismo-tectonic earthquakes indicating the effect of volcanic activity. Characteristic signatures of velocity changes are identified for post-eruptive periods of deflation that show an increase of velocity associated with subsidence observed by GPS. Periods of pre-eruptive inflation are characterized by decreasing velocity. Seismic crises can be associated with either increasing or decreasing velocity depending on whether the magma movement leads to deflation due to an eruption emptying the shallow plumbing system or to inflation caused by a non-eruptive intrusion. With a simple assumption about the spatial sensitivity of the measurements both processes are found to have the strongest effect in the central summit area of the volcano which also shows the strongest surface displacements during the time investigated here. We do not observe a dependence of the velocity change on the location of the erupting fissures, instead the distribution of changes for the three inflation periods and the two eruptions are similar indicating that the velocity changes observed here reflect the dynamics of a shallow magma reservoir rather than the effect of the eruption at the surface.

  8. Three-dimensional passive seismic waveform imaging around the SAFOD site, California, using the generalized Radon transform

    NASA Astrophysics Data System (ADS)

    Zhang, Haijiang; Wang, Ping; van der Hilst, Robert D.; Toksoz, M. Nafi; Thurber, Clifford; Zhu, Lupei

    2009-12-01

    We apply a three-dimensional (3D) generalized Radon transform (GRT) to scattered P-waves from 575 local earthquakes recorded at 68 temporary network stations for passive-source imaging of (near-vertical) structures close to the San Andreas Fault Observatory at Depth (SAFOD) site. The GRT image profiles through or close by the SAFOD site reveal near-vertical reflectors close to the fault zone as well as in the granite to the southwest and the Franciscan mélange to the northeast of the main fault. Although slightly lower in resolution, these structures are generally similar to features in 2D images produced with steep-dip prestack seismic migration of data from active source seismic reflection and refraction surveys. Our GRT images, however, also reveal several vertical reflectors to the northeast of the SAF that do not appear in the migration images but which are consistent with local geology. These results suggest that in a seismically active area, inverse scattering of earthquake data (for instance with the GRT) can be a viable and, in 3D, economic alternative to an active source survey.

  9. Numerical simulation study on active and passive hydroforming process optimization of box shaped part

    NASA Astrophysics Data System (ADS)

    Zeng, Y. P.; Dong, J. L.; He, T. D.; Wang, B.

    2016-08-01

    Low qualified rate and inferior quality frequently occurring in the general deep drawing process of a certain box-shaped part, now use hydroforming to optimize forming process, in order to study the effect of hydroforming for improving the quality and formability, purposed five process schemes: general deep drawing, active hydroforming, passive hydroforming, general deep drawing combined with active hydroforming, passive combined with active hydroforming. Each process was simulated by finite element simulation and results were analysed. The results indicate the passive combined with active hydroforming is the best scheme which can obtain smallest thickness thinning and satisfactory formability, then optimized hydroforming pressure, blank holder force subsequently by adjust the simulation parameters. Research result proves that active/passive hydroforming is a new method for complex parts forming.

  10. Regulation of adult cardiocyte growth: effects of active and passive mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, M. L.; Janes, D. M.; Barclay, M. M.; Harger, L.; Decker, R. S.

    1997-01-01

    Fluctuations in hemodynamic load have been documented to modulate contractile protein turnover and myofibrillar structure in the heart; however, the relative importance of active and passive loading in regulating adult cardiocyte growth remains unresolved. To address this issue at the cellular level, adult feline cardiocytes were cultured either on Silastic membranes or plastic surfaces. Cardiocyte-laden membranes were stretched 10% of their rest length to enhance passive loading, whereas heart cells cultured on plastic or Silastic were field stimulated at 1 Hz to mimic active loading. Turnover of contractile proteins and structural integrity of the contractile-cytoskeletal apparatus were monitored for periods ranging from 4 to 72 h. Active and passive loading elevated contractile protein synthesis nearly equally (approximately 50%) and promoted the attachment of remodeled myofibrils to vinculin-positive focal contacts and/or costameres during the first 24 h of loading. Thereafter, rates of contractile protein synthesis returned to control values in passively stretched heart cells but remained elevated in field-stimulated cultures. The fractional rate of growth was increased significantly (approximately 8%/day) in electrically paced cells, whereas in passively stretched cardiocytes the growth rate rose only modestly (approximately 2%/day). Changes in the rate of myocyte growth appeared more closely correlated with the development of focal contacts and myofibril remodeling than with changes in myofibrillar protein turnover per se. 2,3-Butanedione monoxime, nifedipine, and, to a lesser extent, ryanodine blocked field-stimulated contractile protein synthesis and myofibrillar remodeling but had no impact on protein turnover or myofibril reassembly in passively loaded cardiocytes. The results of these experiments imply that both active and passive loading stimulate contractile protein turnover and myofibril remodeling, but the generation of active tension accelerates

  11. Concealed weapons detection with an improved passive millimeter-wave imager

    NASA Astrophysics Data System (ADS)

    Martin, Christopher A.; Kolinko, Vladimir G.

    2004-08-01

    Trex Enterprises has developed a second-generation passive millimeter-wave imaging system for detection of concealed weapons and explosives at standoff ranges. Passive millimeter-wave sensors form an image from naturally emitted blackbody radiation in the millimeter-wave portion of the electromagnetic spectrum. Radiation at this wavelength passes through most types of clothing, allowing the user to acquire an image of any articles on a suspect"s person that differ significantly from the human body in their reflectivity or radiometric temperature at millimeter-wave wavelengths. Trex Enterprises previously demonstrated a first-generation concealed weapon detection system with the ability to detect handguns and knives under heavy clothing at a range of 27". The second-generation imager, while similar in concept, has an improved field-of-view and a much reduced size and weight. The imager is to be put through a battery of tests by both Trex Enterprises and the National Institute Of Justice to determine its ability to detect both metallic and non-metallic knives and handguns as well as various types of explosive devices. The tests will be conducted indoors and outdoors at various ranges.

  12. Detection of blood oxygen level by noninvasive passive spectral imaging of skin

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam; Ramella-Roman, Jessica C.

    2008-02-01

    A compact optical hyperspectral imager that can detect both spectral and polarization signatures was used for passive noninvasive imaging of human skin. This vibration-insensitive imager uses an acousto-optic tunable filter (AOTF) as a spectral selection element and an electronically tunable liquid crystal variable retarder (LCVR) as a polarization device. Such an imager is ideally suited to provide both agile spectral and polarization signatures and can be readily used for real time in vivo medical imaging applications. Operation of this imager and image acquisition is fully computer controlled. This imager covers visible to near-infrared (VNIR) region from 400 to 800 nm with a 10 nm spectral resolution at 600 nm and uses a TeO II AOTF with a 15×15 mm2 linear aperture and a 4.2° angular aperture. At each wavelength 640×480 images with two orthogonal polarization are captured and a total of 41 spectral images are collected to form an image cube. A commercial Si CCD camera was used along with off-the-shelf lenses, mirrors and irises. We carried out experiments with a human subject and controlled the blood perfusion in the individual arm and finger by using a pressure cuff and a rubber band, respectively. Images were captured by illuminating the subject with a white light lamp source and imaging it from a distance. When the hyperspectral image analysis was performed we could observe the effects of skin deoxygenation. In this paper we will described our instrument, the experimental setup, the images obtained and the analysis results.

  13. Modeling Chemical Detection Sensitivities of Active and Passive Remote Sensing Systems

    SciTech Connect

    Scharlemann, E T

    2003-07-28

    During nearly a decade of remote sensing programs under the auspices of the U. S. Department of Energy (DOE), LLNL has developed a set of performance modeling codes--called APRS--for both Active and Passive Remote Sensing systems. These codes emphasize chemical detection sensitivity in the form of minimum detectable quantities with and without background spectral clutter and in the possible presence of other interfering chemicals. The codes have been benchmarked against data acquired in both active and passive remote sensing programs at LLNL and Los Alamos National Laboratory (LANL). The codes include, as an integral part of the performance modeling, many of the data analysis techniques developed in the DOE's active and passive remote sensing programs (e.g., ''band normalization'' for an active system, principal component analysis for a passive system).

  14. A model-based approach for detection of objects in low resolution passive millimeter wave images

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Tang, Yuan-Liang; Devadiga, Sadashiva

    1993-01-01

    A model-based vision system to assist the pilots in landing maneuvers under restricted visibility conditions is described. The system was designed to analyze image sequences obtained from a Passive Millimeter Wave (PMMW) imaging system mounted on the aircraft to delineate runways/taxiways, buildings, and other objects on or near runways. PMMW sensors have good response in a foggy atmosphere, but their spatial resolution is very low. However, additional data such as airport model and approximate position and orientation of aircraft are available. These data are exploited to guide our model-based system to locate objects in the low resolution image and generate warning signals to alert the pilots. Also analytical expressions were derived from the accuracy of the camera position estimate obtained by detecting the position of known objects in the image.

  15. Active and passive multispectral scanner for earth resources applications: An advanced applications flight experiment

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.; Peterson, L. M.; Thomson, F. J.; Work, E. A.; Kriegler, F. J.

    1977-01-01

    The development of an experimental airborne multispectral scanner to provide both active (laser illuminated) and passive (solar illuminated) data from a commonly registered surface scene is discussed. The system was constructed according to specifications derived in an initial programs design study. The system was installed in an aircraft and test flown to produce illustrative active and passive multi-spectral imagery. However, data was not collected nor analyzed for any specific application.

  16. Scanning L-Band Active Passive (SLAP) - Recent Results from an Airborne Simulator for SMAP

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2015-01-01

    Scanning L-band Active Passive (SLAP) is a recently-developed NASA airborne instrument specially tailored to simulate the new Soil Moisture Active Passive (SMAP) satellite instrument suite. SLAP conducted its first test flights in December, 2013 and participated in its first science campaign-the IPHEX ground validation campaign of the GPM mission-in May, 2014. This paper will present results from additional test flights and science observations scheduled for 2015.

  17. Active and passive electrical and seismic time-lapse monitoring of earthen embankments

    NASA Astrophysics Data System (ADS)

    Rittgers, Justin Bradley

    In this dissertation, I present research involving the application of active and passive geophysical data collection, data assimilation, and inverse modeling for the purpose of earthen embankment infrastructure assessment. Throughout the dissertation, I identify several data characteristics, and several challenges intrinsic to characterization and imaging of earthen embankments and anomalous seepage phenomena, from both a static and time-lapse geophysical monitoring perspective. I begin with the presentation of a field study conducted on a seeping earthen dam, involving static and independent inversions of active tomography data sets, and self-potential modeling of fluid flow within a confined aquifer. Additionally, I present results of active and passive time-lapse geophysical monitoring conducted during two meso-scale laboratory experiments involving the failure and self-healing of embankment filter materials via induced vertical cracking. Identified data signatures and trends, as well as 4D inversion results, are discussed as an underlying motivation for conducting subsequent research. Next, I present a new 4D acoustic emissions source localization algorithm that is applied to passive seismic monitoring data collected during a full-scale embankment failure test. Acoustic emissions localization results are then used to help spatially constrain 4D inversion of collocated self-potential monitoring data. I then turn to time-lapse joint inversion of active tomographic data sets applied to the characterization and monitoring of earthen embankments. Here, I develop a new technique for applying spatiotemporally varying structural joint inversion constraints. The new technique, referred to as Automatic Joint Constraints (AJC), is first demonstrated on a synthetic 2D joint model space, and is then applied to real geophysical monitoring data sets collected during a full-scale earthen embankment piping-failure test. Finally, I discuss some non-technical issues related to

  18. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    NASA Astrophysics Data System (ADS)

    Mathe, Vikas L.; Varma, Vijay; Raut, Suyog; Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R. K.; Bhoraskar, Sudha V.; Das, Asoka K.

    2016-04-01

    Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  19. Evaluation of multichannel Wiener filters applied to fine resolution passive microwave images of first-year sea ice

    NASA Technical Reports Server (NTRS)

    Full, William E.; Eppler, Duane T.

    1993-01-01

    The effectivity of multichannel Wiener filters to improve images obtained with passive microwave systems was investigated by applying Wiener filters to passive microwave images of first-year sea ice. Four major parameters which define the filter were varied: the lag or pixel offset between the original and the desired scenes, filter length, the number of lines in the filter, and the weight applied to the empirical correlation functions. The effect of each variable on the image quality was assessed by visually comparing the results. It was found that the application of multichannel Wiener theory to passive microwave images of first-year sea ice resulted in visually sharper images with enhanced textural features and less high-frequency noise. However, Wiener filters induced a slight blocky grain to the image and could produce a type of ringing along scan lines traversing sharp intensity contrasts.

  20. The influence of active and passive smoking on the cardiorespiratory fitness of adults

    PubMed Central

    2014-01-01

    Background The aim of this study was to analyze the influence of active and passive smoking on cardiorespiratory responses in asymptomatic adults during a sub-maximal-exertion incremental test. Methods The participants (n = 43) were divided into three different groups: active smokers (n = 14; aged 36.5 ± 8 years), passive smokers (n = 14; aged 34.6 ± 11.9 years) and non-smokers (n = 15; aged 30 ± 8.1 years). They all answered the Test for Nicotine Dependence and underwent anthropometric evaluation, spirometry and ergospirometry according to the Bruce Treadmill Protocol. Results VO2max differed statistically between active and non-smokers groups (p < 0.001) and between non-smokers and passive group (p=0.022). However, there was no difference between the passive and active smokers groups (p=0.053). Negative and significant correlations occurred between VO2max and age (r = - 0.401, p = 0.044), percentage of body fat (r = - 0.429, p = 0.011), and waist circumference (WC) (r = - 0.382, p = 0.025). Conclusion VO2max was significantly higher in non-smokers compared to active smokers and passive smokers. However, the VO2max of passive smokers did not differ from active smokers. PMID:25009739

  1. A practical fan-beam design and reconstruction algorithm for Active and Passive Computed Tomography of radioactive waste barrels

    NASA Astrophysics Data System (ADS)

    Roy, Tushar; More, M. R.; Ratheesh, Jilju; Sinha, Amar

    2015-09-01

    Active and Passive CT (A&PCT) of waste barrels is mostly carried out in parallel beam configuration due to its relative ease of implementation. This necessitates either using a single detector-source pair and translating the barrel or using multiple detector-source pairs for increasing the scanning speed. Additionally, because the use of bulky HPGe detectors may limit the number of detectors used in both active and passive modes, we propose to use 1″×1″ LaBr3(Ce) scintillators. This paper describes a practical fan-beam reconstruction for A&PCT imaging of waste barrels. A fan beam system model has been computed analytically and reconstruction done using MLEM algorithm. The results are compared with analytical reconstruction.

  2. Using image reconstruction methods to enhance gridded resolutionfor a newly calibrated passive microwave climate data record

    NASA Astrophysics Data System (ADS)

    Paget, A. C.; Brodzik, M. J.; Gotberg, J.; Hardman, M.; Long, D. G.

    2014-12-01

    Spanning over 35 years of Earth observations, satellite passive microwave sensors have generated a near-daily, multi-channel brightness temperature record of observations. Critical to describing and understanding Earth system hydrologic and cryospheric parameters, data products derived from the passive microwave record include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. While swath data are valuable to oceanographers due to the temporal scales of ocean phenomena, gridded data are more valuable to researchers interested in derived parameters at fixed locations through time and are widely used in climate studies. We are applying recent developments in image reconstruction methods to produce a systematically reprocessed historical time series NASA MEaSUREs Earth System Data Record, at higher spatial resolutions than have previously been available, for the entire SMMR, SSM/I-SSMIS and AMSR-E record. We take advantage of recently released, recalibrated SSM/I-SSMIS swath format Fundamental Climate Data Records. Our presentation will compare and contrast the two candidate image reconstruction techniques we are evaluating: Backus-Gilbert (BG) interpolation and a radiometer version of Scatterometer Image Reconstruction (SIR). Both BG and SIR use regularization to trade off noise and resolution. We discuss our rationale for the respective algorithm parameters we have selected, compare results and computational costs, and include prototype SSM/I images at enhanced resolutions of up to 3 km. We include a sensitivity analysis for estimating sensor measurement response functions critical to both methods.

  3. Modeling passive millimeter wave imaging sensor performance for discriminating small watercraft.

    PubMed

    Boettcher, Evelyn J; Krapels, Keith; Driggers, Ron; Garcia, Jose; Schuetz, Christopher; Samluk, Jesse; Stein, Lee; Kiser, William; Visnansky, Andrew; Grata, Jeremy; Wikner, David; Harris, Russ

    2010-07-01

    Passive millimeter wave (pmmW) imagers are quickly becoming practical sensor candidates for military and nonmilitary tasks. Our focus was to adapt the Night Vision [U.S. Army Research Development and Engineering Command, Communications and Electronics Research Development and Engineering Center, Night Vision and Electronics Sensors Directorate (NVESD)] passive thermal infrared imager performance models and apply them to pmmW imaging systems for prediction of field performance for the task of small watercraft and boat identification. The Night Vision Lab's infrared sensor model has been evolving since the 1950s, with the most current model being NVThermIP [Night Vision Thermal and Image Processing (NVThermIP) Model Users Manual, Rev. 9 (U.S. Army RDECON, CERDEC, NVESD, 2006)]. It has wide recognition as an engineering tool for sensor evaluation. This effort included collecting pmmW signatures for a representative set of targets, conducting an observer perception experiment, and deriving the task difficulty criteria that can be used in NVThermIP for identification of boats. The task difficulty criteria are used by designers and managers to create systems capable of meeting specific performance criteria in the field.

  4. Modeling passive millimeter wave imaging sensor performance for discriminating small watercraft.

    PubMed

    Boettcher, Evelyn J; Krapels, Keith; Driggers, Ron; Garcia, Jose; Schuetz, Christopher; Samluk, Jesse; Stein, Lee; Kiser, William; Visnansky, Andrew; Grata, Jeremy; Wikner, David; Harris, Russ

    2010-07-01

    Passive millimeter wave (pmmW) imagers are quickly becoming practical sensor candidates for military and nonmilitary tasks. Our focus was to adapt the Night Vision [U.S. Army Research Development and Engineering Command, Communications and Electronics Research Development and Engineering Center, Night Vision and Electronics Sensors Directorate (NVESD)] passive thermal infrared imager performance models and apply them to pmmW imaging systems for prediction of field performance for the task of small watercraft and boat identification. The Night Vision Lab's infrared sensor model has been evolving since the 1950s, with the most current model being NVThermIP [Night Vision Thermal and Image Processing (NVThermIP) Model Users Manual, Rev. 9 (U.S. Army RDECON, CERDEC, NVESD, 2006)]. It has wide recognition as an engineering tool for sensor evaluation. This effort included collecting pmmW signatures for a representative set of targets, conducting an observer perception experiment, and deriving the task difficulty criteria that can be used in NVThermIP for identification of boats. The task difficulty criteria are used by designers and managers to create systems capable of meeting specific performance criteria in the field. PMID:20648122

  5. Comparison of methods for super-resolving passive millimeter wave images

    NASA Astrophysics Data System (ADS)

    Gleed, David G.; Lettington, Alan H.; Hong, Qi H.

    1996-11-01

    We present our results to date on the application of super- resolution techniques to passive millimeter-wave imagery and discuss the merits of both linear and non-linear methods giving an indication of the improvement which can be obtained. Passive millimeter-wave imagery is potentially useful where poor weather visibility is required. Its spatial resolution, however, is severely restricted due to the diffraction limit of the optics. Super-resolution methods may be used to increase this spatial resolution but often at the expense of processing time. Linear methods may be implemented in real time whereas non-linear methods which are required to restore images with lost spatial frequencies are more time consuming. There is clearly a trade-off between resolution and processing time. In order to make any useful comparisons it is necessary to quantify any improvements, we do this by investigating the resolution and spatial frequency content of the images. We have applied our super-resolution algorithms to conventional images as well as millimetric bar pattern images which were acquired at 94 and 140 GHz. These methods give excellent results, providing a significant quantifiable increase in spatial resolution with only a small reduction in the final signal to noise ratio. Comparisons will be made between the results obtained with various super-resolution algorithms.

  6. [ACTIVE AND PASSIVE DISCRIMINATION OF MOVING SOUNDS: RHYTHMIC ACTIVITY OF HUMAN BRAIN].

    PubMed

    Shestopalova, L B; Petropavlovskaia, E A; Nikitin, N I; Vaitulevich, S Ph

    2015-12-01

    The spectral dynamics of the EEG rhythmicity during active and passive discrimination of stationary and moving sound stimuli presented according to the oddball paradigm were investigated. Standard stimuli represented stationary midline sounds. Deviant stimuli simulated smooth and stepwise sound source motion (to the left/right from head midline) produced by linear and stepwise changes of interaural time delay. Significant changes of the brain oscillations were found in the frequency range of 3-30 Hz. The dynamics of the moving deviant stimuli (smooth vs. stepwise) had greater impact on theta-rhythm power in active listening conditions: a stronger theta-power increase was evoked by the stepwise sound motion as compared to smooth motion. Significant increase in theta-power was also observed with rightward sound displacement as compared to leftward displacements. Active deviant discrimination reduced alpha-power (8-11 Hz) mostly during smooth deviant motion. The power increase of lower alpha-oscillations (12-15 Hz) was stronger with step- wise motion than with smooth motion of deviants. The interhemispheric asymmetry of beta-power decrease in active conditions (as compared to passive) was found in the whole beta-range. The sup- pression of beta-power was stronger at the right hemisphere than at the midline or left hemisphere and showed no dependence on spatial properties of the deviant stimuli. This asymmetry may be related to selective attention to task-relevant sounds and with preparation to motor response. Generally, active auditory discrimination resulted in stronger deviant-related changes of the wide-ranged EEG spectral power than passive discrimination with attentional tuning to task-irrelevant stimuli.

  7. Super-resolution of turbulent passive scalar images using data assimilation

    NASA Astrophysics Data System (ADS)

    Zille, Pascal; Corpetti, Thomas; Shao, Liang; Xu, Chen

    2016-02-01

    In this paper, the problem of improving the quality of low-resolution passive scalar image sequences is addressed. This situation, known as "image super-resolution" in computer vision, aroused to our knowledge very few applications in the field of fluid visualization. Yet, in most image acquisition devices, the spatial resolution of the acquired data is limited by the sensor physical properties, while users often require higher-resolution images for further processing and analysis of the system of interest. The originality of the approach presented in this paper is to link the image super-resolution process together with the large eddy simulation framework in order to derive a complete super-resolution technique. We first start by defining two categories of fine-scale components we aim to reconstruct. Then, using a deconvolution procedure as well as data assimilation tools, we show how to partially recover some of these missing components within the low-resolution images while ensuring the temporal consistency of the solution. This method is evaluated using both synthetic and real image data. Finally, we demonstrate how the produced high-resolution images can improve a posteriori analysis such as motion field estimation.

  8. NASA's Soil Moisture Active and Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Kellogg, Kent; Njoku, Eni; Thurman, Sam; Edelstein, Wendy; Jai, Ben; Spencer, Mike; Chen, Gun-Shing; Entekhabi, Dara; O'Neill, Peggy; Piepmeier, Jeffrey; Brown, Molly; Savinell, Chris; Entin, Jared; Ianson, Eric

    2010-01-01

    The Soil Moisture Active-Passive (SMAP) Mission is one of the first Earth observation satellites being formulated by NASA in response to the 2007 National Research Council s Decadal Survey. SMAP will make global measurements of soil moisture at the Earth's land surface and its freeze-thaw state. These measurements will allow significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. Knowledge gained from SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP observations of soil moisture and freeze/thaw timing over the boreal latitudes will also reduce a major uncertainty in quantifying the global carbon balance and help to resolve an apparent missing carbon sink over land. The SMAP mission concept will utilize an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna flying in a 680 km polar orbit with an 8-day exact ground track repeat aboard a 3-axis stabilized spacecraft to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. In addition, the SMAP project will use these surface observations with advanced modeling and data assimilation to provide estimates of deeper root-zone soil moisture and net ecosystem exchange of carbon. SMAP recently completed its Phase A Mission Concept Study Phase for NASA and transitioned into Phase B (Formulation and Detailed Design). A number of significant accomplishments occurred during this initial phase of mission development. The SMAP project held several open meetings to solicit community feedback on possible science algorithms, prepared preliminary draft Algorithm Theoretical Basis Documents (ATBDs) for each mission science product, and established a prototype algorithm testbed to enable testing and evaluation of the

  9. When passives are easier than actives: two case studies of aphasic comprehension.

    PubMed

    Druks, J; Marshall, J C

    1995-06-01

    We outline a range of previous theoretical accounts of agrammatic comprehension in patients with Broca's aphasia. Specific attention is paid to patterns of preserved and impaired understanding of reversible actives and passives. We note that no prior account will allow for the existence of patients who show better comprehension of passives than actives. In three experiments, we compare and contrast the performance of two patients whose syntactic comprehension ability is in complementary distribution. The first patient (M.H.) performs well on simple actives, active questions, and active existentials, but is below chance on their corresponding passives. The second patient (B.M.) is at chance on simple actives, active questions and active existentials while scoring significantly above chance on their respective passives. We interpret both patterns of response in terms of the distinction drawn by Case theory between structural and inherent Case. The first patient's grammar cannot assign either structural or inherent Case and she must accordingly apply a non-linguistic linear strategy to assign thematic roles in all sentences. The second patient (B.M.) has a specific impairment of structural Case; he can accordingly not interpret actives (where Case is assigned configurationally) but can interpret passives (where Case is assigned lexically). PMID:7634762

  10. How Does Brain Activation Differ in Children with Unilateral Cerebral Palsy Compared to Typically Developing Children, during Active and Passive Movements, and Tactile Stimulation? An fMRI Study

    ERIC Educational Resources Information Center

    Van de Winckel, Ann; Klingels, Katrijn; Bruyninckx, Frans; Wenderoth, Nici; Peeters, Ron; Sunaert, Stefan; Van Hecke, Wim; De Cock, Paul; Eyssen, Maria; De Weerdt, Willy; Feys, Hilde

    2013-01-01

    The aim of the functional magnetic resonance imaging (fMRI) study was to investigate brain activation associated with active and passive movements, and tactile stimulation in 17 children with right-sided unilateral cerebral palsy (CP), compared to 19 typically developing children (TD). The active movements consisted of repetitive opening and…

  11. Active and realistic passive marijuana exposure tested by three immunoassays and GC/MS in urine

    SciTech Connect

    Mule, S.J.; Lomax, P.; Gross, S.J.

    1988-05-01

    Human urine samples obtained before and after active and passive exposure to marijuana were analyzed by immune kits (Roche, Amersham, and Syva) and gas chromatography/mass spectrometry (GC/MS). Seven of eight subjects were positive for the entire five-day test period with one immune kit. The latter correlated with GC/MS in 98% of the samples. Passive inhalation experiments under conditions likely to reflect realistic exposure resulted consistently in less than 10 ng/mL of cannabinoids. The 10-100-ng/mL cannabinoid concentration range essential for detection of occasional and moderate marijuana users is thus unaffected by realistic passive inhalation.

  12. Curvature-induced activation of a passive tracer in an active bath

    NASA Astrophysics Data System (ADS)

    Mallory, S. A.; Valeriani, C.; Cacciuto, A.

    2014-09-01

    We use numerical simulations to study the motion of a large asymmetric tracer immersed in a low-density suspension of self-propelled particles in two dimensions. Specifically, we analyze how the curvature of the tracer affects its translational and rotational motion in an active environment. We find that even very small amounts of curvature are sufficient for the active bath to impart directed motion to the tracer, which results in its effective activation. We propose simple scaling arguments to characterize this induced activity in terms of the curvature of the tracer and the strength of the self-propelling force. Our results suggest new ways of controlling the transport properties of passive tracers in an active medium by carefully tailoring their geometry.

  13. Curvature-induced activation of a passive tracer in an active bath.

    PubMed

    Mallory, S A; Valeriani, C; Cacciuto, A

    2014-09-01

    We use numerical simulations to study the motion of a large asymmetric tracer immersed in a low-density suspension of self-propelled particles in two dimensions. Specifically, we analyze how the curvature of the tracer affects its translational and rotational motion in an active environment. We find that even very small amounts of curvature are sufficient for the active bath to impart directed motion to the tracer, which results in its effective activation. We propose simple scaling arguments to characterize this induced activity in terms of the curvature of the tracer and the strength of the self-propelling force. Our results suggest new ways of controlling the transport properties of passive tracers in an active medium by carefully tailoring their geometry. PMID:25314448

  14. Active and Passive Fatigue in Simulated Driving: Discriminating Styles of Workload Regulation and Their Safety Impacts

    PubMed Central

    Saxby, Dyani J.; Matthews, Gerald; Warm, Joel S.; Hitchcock, Edward M.; Neubauer, Catherine

    2015-01-01

    Despite the known dangers of driver fatigue, it is a difficult construct to study empirically. Different forms of task-induced fatigue may differ in their effects on driver performance and safety. Desmond and Hancock (2001) defined active and passive fatigue states that reflect different styles of workload regulation. In 2 driving simulator studies we investigated the multidimensional subjective states and safety outcomes associated with active and passive fatigue. Wind gusts were used to induce active fatigue, and full vehicle automation to induce passive fatigue. Drive duration was independently manipulated to track the development of fatigue states over time. Participants were undergraduate students. Study 1 (N = 108) focused on subjective response and associated cognitive stress processes, while Study 2 (N = 168) tested fatigue effects on vehicle control and alertness. In both studies the 2 fatigue manipulations produced different patterns of subjective response reflecting different styles of workload regulation, appraisal, and coping. Active fatigue was associated with distress, overload, and heightened coping efforts, whereas passive fatigue corresponded to large-magnitude declines in task engagement, cognitive underload, and reduced challenge appraisal. Study 2 showed that only passive fatigue reduced alertness, operationalized as speed of braking and steering responses to an emergency event. Passive fatigue also increased crash probability, but did not affect a measure of vehicle control. Findings support theories that see fatigue as an outcome of strategies for managing workload. The distinction between active and passive fatigue is important for assessment of fatigue and for evaluating automated driving systems which may induce dangerous levels of passive fatigue. PMID:24041288

  15. Standoff passive video imaging at 350 GHz with 251 superconducting detectors

    NASA Astrophysics Data System (ADS)

    Becker, Daniel; Gentry, Cale; Smirnov, Ilya; Ade, Peter; Beall, James; Cho, Hsiao-Mei; Dicker, Simon; Duncan, William; Halpern, Mark; Hilton, Gene; Irwin, Kent; Li, Dale; Paulter, Nicholas; Reintsema, Carl; Schwall, Robert; Tucker, Carole

    2014-06-01

    Millimeter wavelength radiation holds promise for detection of security threats at a distance, including suicide bomb belts and maritime threats in poor weather. The high sensitivity of superconducting Transition Edge Sensor (TES) detectors makes them ideal for passive imaging of thermal signals at these wavelengths. We have built a 350 GHz video-rate imaging system using a large-format array of feedhorn-coupled TES bolometers. The system operates at a standoff distance of 16m to 28m with a spatial resolution of 1:4 cm (at 17m). It currently contains one 251-detector subarray, and will be expanded to contain four subarrays for a total of 1004 detectors. The system has been used to take video images which reveal the presence of weapons concealed beneath a shirt in an indoor setting. We present a summary of this work.

  16. Passive multispectral imaging polarimeter for remote atmospheric and surface studies: design based on optical coatings.

    PubMed

    Pellicori, Samuel F; Burke, Elliot

    2016-02-20

    The passive imaging polarimeter architecture is based on optical coatings and thereby avoids the complexities of current systems that use rotating polarizers, phase-modulating retarders, and birefringent elements. Coatings on stationary elements separate spectral regions and their polarized components to simultaneously produce images of the Stokes linear polarization intensities in fields of view (FOVs) ≥30°. Wavelength and FOV coverages are limited only by the telescope and relay optics employed. The images are collected in identical spectral passbands that can extend from UV to shortwave IR. An example relevant to remote sensing in the 360-900 nm range is given. An on-board calibration and stability monitor is included. PMID:26906581

  17. Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging

    NASA Astrophysics Data System (ADS)

    Wright, Andrew A.; Martin, Richard D.; Schuetz, Christopher A.; Shi, Shouyuan; Zhang, Yifei; Yao, Peng; Shreve, Kevin P.; Dillon, Thomas E.; Mackrides, Daniel G.; Harrity, Charles E.; Prather, Dennis W.

    2016-05-01

    This paper will discuss the development of a millimeter-wave (mm-wave) receiver module used in a sparse array passive imaging system. Using liquid crystal polymer (LCP) technology and low power InP low noise amplifiers (LNA), enables the integration of the digital circuitry along with the RF components onto a single substrate significantly improves the size, weight, power, and cost (SWaP-C) of the mm-wave receiver module compared to previous iterations of the module. Also comparing with previous generation modules, the operating frequency has been pushed from 77 GHz to 95 GHz in order to improve the resolution of the captured image from the sparse array imaging system.

  18. Large Area Imaging Detector for Long-Range, Passive Detection Of Fissile Material

    SciTech Connect

    Ziock, K P; Craig, W W; Fabris, L; Lanza, R C; Gallagher, S; Horn, B P; Madden, N W

    2004-07-30

    Recent events highlight the increased risk of a terrorist attack using either a nuclear or a radiological weapon. One of the key needs to counter such a threat is long-range detection of nuclear material. Theoretically, gamma-ray emissions from such material should allow passive detection to distances greater than 100 m. However, detection at this range has long been thought impractical due to fluctuating levels of natural background radiation. These fluctuations are the major source of uncertainty in detection and mean that sensitivity cannot be increased simply by increasing detector size. Recent work has shown that this problem can be overcome through the use of imaging techniques. In this paper we describe the background problems, the advantages of imaging and the construction of a prototype, large-area (0.57 m{sup 2}) gamma-ray imager to detect nuclear materials at distances of {approx}100 m.

  19. Large Area Imaging Detector for Long-Range, Passive Detection of Fissile Material

    SciTech Connect

    Ziock, K P; Craig, W W; Fabris, L; Lanza, R C; Gallagher, S; Horn, B P; Madden, N W

    2003-10-29

    Recent events highlight the increased risk of a terrorist attack using either a nuclear or a radiological weapon. One of the key needs to counter such a threat is long-range detection of nuclear material. Theoretically, gamma-ray emissions from such material should allow passive detection to distances greater than 100 m. However, detection at this range has long been thought impractical due to fluctuating levels of natural background radiation. These fluctuations are the major source of uncertainty in detection and mean that sensitivity cannot be increased simply by increasing detector size. Recent work has shown that this problem can be overcome through the use of imaging techniques. In this paper we describe the background problems, the advantages of imaging and the construction of a prototype, large-area (0.57 m{sup 2}) gamma-ray imager to detect nuclear materials at distances of {approx}100 m.

  20. First demonstration of a vehicle mounted 250GHz real time passive imager

    NASA Astrophysics Data System (ADS)

    Mann, Chris

    2009-05-01

    This paper describes the design and performance of a ruggedized passive Terahertz imager, the frequency of operation is a 40GHz band centred around 250GHz. This system has been specifically targeted at vehicle mounted operation, outdoors in extreme environments. The unit incorporates temperature stabilization along with an anti-vibration chassis and is sealed to allow it to be used in a dusty environment. Within the system, a 250GHz heterodyne detector array is mated with optics and scanner to allow real time imaging out to 100 meters. First applications are envisaged to be stand-off, person borne IED detection to 30 meters but the unique properties in this frequency band present other potential uses such as seeing through smoke and fog. The possibility for use as a landing aid is discussed. A detailed description of the system design and video examples of typical imaging output will be presented.

  1. Study of passive and active optical waveguides: Synthesis, processing and characterization of materials

    NASA Astrophysics Data System (ADS)

    Yoshida, Makoto

    Photonics uses photons for information and image processing, and has been touted as the technology of the 21 st century. An optical waveguide is a key component of an optical integrated circuit which is the optical analog of an electrical integrated circuit (IC). Electrical transistor IC technology resulted in an enormous impact on society, and it changed our life styles from the age of the vacuum tube. The advent of the optical integrated circuit is expected to have the same impact on society as the electronic IC. Various optical circuit elements are interrelated to materials, therefore, the study and the better understanding of materials and processing have been receiving a great deal of attention. My research focuses on the study of optical waveguide materials and their processings in terms of passive and active optical waveguides. The first target was to establish a method for measuring the refractive index and optical propagation loss of optical waveguides. The second target was to develop passive waveguide materials which can route, split and combine optical signals on a substrate. There are several requirements for waveguiding, such as high optical transparency, proper refractive index, and proper thickness. The sol-gel technique was used to meet the requirements, and several types of organic: inorganic composite materials were developed. The third target involved the development of processing methods to fabricate channel waveguides using the above-mentioned passive and active waveguide materials. Selective laser densification was developed for sol-gel composite materials. Use of trenched substrates and photobleaching were also studied. The last target was to develop an active material which could process optical signals using the electrooptic effect. A crosslinked urethane polymer with a newly synthesized chromophore was used due to its high thermal stability and optical transparency. In order to obtain second order nonlinearity, macroscopic molecular

  2. Rapid increases in ventilation accompany the transition from passive to active movement.

    PubMed

    Bell, Harold J; Duffin, James

    2006-06-01

    We used a novel movement transition technique to look for evidence of a rapid onset drive to breathe related to the active component of exercise in humans. Ten volunteers performed the following transitions in a specially designed tandem exercise chair apparatus: rest to passive movement, passive to active movement, and rest to active movement. The transition from rest to active exercise was accompanied by an immediate increase in ventilation, as was the transition from rest to passive leg movement (Delta = 6.06 +/- 1.09 l min(-1), p < 0.001 and Delta = 3.30 +/- 0.57 l min(-1), p = 0.002, respectively). When subjects actively assumed the leg movements, ventilation again increased immediately and significantly (Delta = 2.55 +/- 0.52 l min(-1), p = 0.032). Ventilation at the first point of active exercise was the same when started either from rest or from a background of passive leg movement (p = 1.00). We conclude that the use of a transition from passive to active leg movements in humans recruits a ventilatory drive related to the active component of exercise, and this can be discerned as a rapid increase in breathing.

  3. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    SciTech Connect

    Fehm, Thomas Felix; Razansky, Daniel; Deán-Ben, Xosé Luís

    2014-10-27

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  4. A framework of passive millimeter-wave imaging simulation for typical ground scenes

    NASA Astrophysics Data System (ADS)

    Yan, Luxin; Ge, Rui; Zhong, Sheng

    2009-10-01

    Passive millimeter-wave (PMMW) imaging offers advantages over visible and IR imaging in having better all weather performance. However the PMMW imaging sensors are state-of-the-art to date, sometimes it is required to predict and evaluate the performance of a PMMW sensor under a variety of weather, terrain and sensor operational conditions. The PMMW scene simulation is an efficient way. This paper proposes a framework of the PMMW simulation for ground scenes. Commercial scene modeling software, Multigen and Vega, are used to generate the multi-viewpoint and multi-scale description for natural ground scenes with visible images. The background and objects in the scene are classified based on perceptive color clusters and mapped with different materials. Further, the radiometric temperature images of the scene are calculated according to millimeter wave phenomenology: atmospheric propagation and emission including sky temperature, weather conditions, and physical temperature. Finally, the simulated output PMMW images are generated by applying the sensor characteristics such as the aperture size, data sample scheme and system noise. Tentative results show the simulation framework can provide reasonable scene's PMMW image with high fidelity.

  5. Passive and active protection from ionizing radiation in space: new activities and perspectives.

    NASA Astrophysics Data System (ADS)

    Spillantini, Piero

    Very intense Solar Cosmic Ray (SCR) events are rare, but not predictable, and can be lethal to a not protected crew in deep space. A ‘life saving’ system must therefore be provided also in short duration manned missions. Passive and active ‘life saving’ system will be revised and discussed. Galactic Cosmic Rays (GCR) instead flow continuously, have a moderate intensity but the accumulation of their effects can have consequences to human health in long duration (≥one year) mission in deep space, and a ‘health saving’ system should be provided. Passive systems are not applicable and recourse has to be made to active systems based on powerful magnetic fields for deviating particles from the habitat where crew members live and work. The activities of last decade are revised and two scenarios are evaluated and discussed: (1) magnetic toroidal systems for mitigating the radiation dose in the relatively large (≅100m3) habitat of interplanetary spaceships; (2) very large magnetic systems for protecting a large habitat (≈500m3) of an inhabited station that should operate for many decades in deep space. Effectiveness, complexity, involved engineering problems and perspectives are outlined and discussed for both the scenarios. They are nowadays studied and evaluated by a cooperative project supported by the European Union that will be illustrated in a dedicated talk.

  6. Development of passive submillimeter-wave video imaging systems for security applications

    NASA Astrophysics Data System (ADS)

    Heinz, Erik; May, Torsten; Born, Detlef; Zieger, Gabriel; Brömel, Anika; Anders, Solveig; Zakosarenko, Vyacheslav; Krause, Torsten; Krüger, André; Schulz, Marco; Bauer, Frank; Meyer, Hans-Georg

    2012-10-01

    Passive submillimeter-wave imaging is a concept that has been in the focus of interest as a promising technology for security applications for a number of years. It utilizes the unique optical properties of submillimeter waves and promises an alternative to millimeter-wave and X-ray backscattering portals for personal security screening in particular. Possible application scenarios demand sensitive, fast, and flexible high-quality imaging techniques. Considering the low radiometric contrast of indoor scenes in the submillimeter range, this objective calls for an extremely high detector sensitivity that can only be achieved using cooled detectors. Our approach to this task is a series of passive standoff video cameras for the 350 GHz band that represent an evolving concept and a continuous development since 2007. The cameras utilize arrays of superconducting transition-edge sensors (TES), i. e. cryogenic microbolometers, as radiation detectors. The TES are operated at temperatures below 1 K, cooled by a closed-cycle cooling system, and coupled to superconducting readout electronics. By this means, background limited photometry (BLIP) mode is achieved providing the maximum possible signal to noise ratio. At video rates, this leads to a pixel NETD well below 1K. The imaging system is completed by reflector optics based on free-form mirrors. For object distances of 3-10 m, a field of view up to 2m height and a diffraction-limited spatial resolution in the order of 1-2 cm is provided. Opto-mechanical scanning systems are part of the optical setup and capable frame rates up to 25 frames per second. Both spiraliform and linear scanning schemes have been developed. Several electronic and software components are used for system control, signal amplification, and data processing. Our objective is the design of an application-ready and user-friendly imaging system. For application in real world security screening scenarios, it can be extended using image processing and

  7. Active-passive gradient shielding for MRI acoustic noise reduction.

    PubMed

    Edelstein, William A; Kidane, Tesfaye K; Taracila, Victor; Baig, Tanvir N; Eagan, Timothy P; Cheng, Yu-Chung N; Brown, Robert W; Mallick, John A

    2005-05-01

    An important source of MRI acoustic noise-magnet cryostat warm-bore vibrations caused by eddy-current-induced forces-can be mitigated by a passive metal shield mounted on the outside of a vibration-isolated, vacuum-enclosed shielded gradient set. Finite-element (FE) calculations for a z-gradient indicate that a 2-mm-thick Cu layer wrapped on the gradient assembly can decrease mechanical power deposition in the warm bore and reduce warm-bore acoustic noise production by about 25 dB. Eliminating the conducting warm bore and other magnet parts as significant acoustic noise sources could lead to the development of truly quiet, fully functioning MRI systems with noise levels below 70 dB.

  8. Real-time concealed-object detection and recognition with passive millimeter wave imaging.

    PubMed

    Yeom, Seokwon; Lee, Dong-Su; Jang, Yushin; Lee, Mun-Kyo; Jung, Sang-Won

    2012-04-23

    Millimeter wave (MMW) imaging is finding rapid adoption in security applications such as concealed object detection under clothing. A passive MMW imaging system can operate as a stand-off type sensor that scans people in both indoors and outdoors. However, the imaging system often suffers from the diffraction limit and the low signal level. Therefore, suitable intelligent image processing algorithms would be required for automatic detection and recognition of the concealed objects. This paper proposes real-time outdoor concealed-object detection and recognition with a radiometric imaging system. The concealed object region is extracted by the multi-level segmentation. A novel approach is proposed to measure similarity between two binary images. Principal component analysis (PCA) regularizes the shape in terms of translation and rotation. A geometric-based feature vector is composed of shape descriptors, which can achieve scale and orientation-invariant and distortion-tolerant property. Class is decided by minimum Euclidean distance between normalized feature vectors. Experiments confirm that the proposed methods provide fast and reliable recognition of the concealed object carried by a moving human subject.

  9. Passive, real-time millimeter wave imaging for degraded visual environment mitigation

    NASA Astrophysics Data System (ADS)

    Dillon, Thomas E.; Schuetz, Christopher A.; Martin, Richard D.; Mackrides, Daniel G.; Shi, Shouyuan; Yao, Peng; Shreve, Kevin; Harrity, Charles; Prather, Dennis W.

    2015-05-01

    Degraded visual environments create dangerous conditions for aircraft pilots due to loss of situational awareness and/or ground reference, which can result in accidents during navigation or landing. Imaging in millimeter wave spectral bands offers the ability to maintain pilot's situational awareness despite DVE with a "see-through" imaging modality. Millimeter waves exhibit low atmospheric attenuation as well as low scattering loss from airborne particulates, e.g. blowing sand, dust, fog, and other visual obscurants. As such, Phase Sensitive Innovations (PSI) has developed a passive, real-time mmW imager to mitigate brownout dangers for rotorcraft. The imager consists of a distributed aperture array with conversion of detected mmW signals to optical frequencies for processing and image formation. Recently we performed operationally representative flight testing of our sensor while imaging various natural and manmade objects. Here we present imagery collected during these tests as it confirms the performance of the sensor technology and illustrates phenomenology encountered in the mmW spectrum.

  10. The Planned Soil Moisture Active Passive (SMAP) Mission L-Band Radar/Radiometer Instrument

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Wheeler, Kevin; Chan, Samuel; Piepmeier, Jeffrey; Hudson, Derek; Medeiros, James

    2011-01-01

    The Soil Moisture Active/Passive (SMAP) mission is a NASA mission identified by the NRC 'decadal survey' to measure both soil moisture and freeze/thaw state from space. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. The instrument system has completed the preliminary design review (PDR) stage, and detailed instrument design has begun. In addition to providing an overview of the instrument design, two recent design modifications are discussed: 1) The addition of active thermal control to the instrument spun side to provide a more stable, settable thermal environment for the radiometer electronics, and 2) A 'sequential transmit' strategy for the two radar polarization channels which allows a single high-power amplifier to be used.

  11. Analysis of passive motion of para- and retropharyngeal structures during swallowing using dynamic magnetic resonance imaging.

    PubMed

    Chitose, Shun-ichi; Haraguchi, Masahiro; Nagata, Shuji; Katayama, Reiji; Sato, Kiminori; Fukahori, Mioko; Sueyoshi, Shintaro; Kurita, Takashi; Abe, Toshi; Nakashima, Tadashi

    2014-06-01

    The purpose of this study was to analyze passive motion of the para- and retropharyngeal space (PRS) during swallowing using dynamic magnetic resonance imaging (MRI). We conducted a preliminary study involving 30 healthy volunteers who underwent dynamic MRI. Consecutive MRI axial images were obtained by examining the plane parallel to the hard palate at the level of the anterior inferior corner of C2. Anterior displacement of the posterior pharyngeal wall (PPW) was measured as a motion index of pharyngeal contraction. The displacement and internal angle of the bilateral external and internal carotid arteries (ECA and ICA) and the bilateral centroids of the PRS area, as well as the increase in PRS area, were calculated at rest and at maximum pharyngeal contraction. In most participants, the bilateral ECA, ICA, and centroids were anterointernally displaced by pharyngeal contraction. The normalized ECA displacement (r = 0.64, r (2) = 0.41), normalized ICA displacement (r = 0.60, r (2) = 0.37), and normalized centroid displacement (r = 0.43, r (2) = 0.19) were more than moderately positively correlated with the normalized PPW displacement. The normalized PRS area increase (r = 0.35, r (2) = 0.12) was weakly positively correlated with the normalized PPW displacement. These results revealed that PRS area increased as the ECA and ICA were drawn anterointernally via its passive motion by pharyngeal contraction.

  12. Passive Infrared Hyperspectral Imaging for Standoff Detection of Tetryl Explosive Residue on a Steel Surface

    SciTech Connect

    Gallagher, Neal B.; Kelly, James F.; Blake, Thomas A.

    2010-06-15

    A commercial imaging FTIR spectrometer that operates between 850 and 1300 cm{sup -1} was used to passively image a galvanized steel plate stained with a residue of the explosive tetryl (2,4,6,N-tetranitro-N-methylaniline). The tetryl was coated onto the plate in a 30 cm diameter spot with an areal dosage of 90 {mu}g tetryl/cm{sup 2}. The stain on the plate was easily detected at standoff distances of 14 and 31 m by examining the hyperspectral data cubes using maximum autocorrelation factors and a slight modification to a generalized least squares target detection algorithm. End-member extraction showed good comparison in a few key bands between the target end-member and laboratory reflectance spectra; however, significant differences were also observed

  13. How does brain activation differ in children with unilateral cerebral palsy compared to typically developing children, during active and passive movements, and tactile stimulation? An fMRI study.

    PubMed

    Van de Winckel, Ann; Klingels, Katrijn; Bruyninckx, Frans; Wenderoth, Nici; Peeters, Ron; Sunaert, Stefan; Van Hecke, Wim; De Cock, Paul; Eyssen, Maria; De Weerdt, Willy; Feys, Hilde

    2013-01-01

    The aim of the functional magnetic resonance imaging (fMRI) study was to investigate brain activation associated with active and passive movements, and tactile stimulation in 17 children with right-sided unilateral cerebral palsy (CP), compared to 19 typically developing children (TD). The active movements consisted of repetitive opening and closing of the hand. For passive movements, an MRI-compatible robot moved the finger up and down. Tactile stimulation was provided by manually stroking the dorsal surface of the hand with a sponge cotton cloth. In both groups, contralateral primary sensorimotor cortex activation (SM1) was seen for all tasks, as well as additional contralateral primary somatosensory cortex (S1) activation for passive movements. Ipsilateral cerebellar activity was observed in TD children during all tasks, but only during active movements in CP children. Of interest was additional ipsilateral SM1 recruitment in CP during active movements as well as ipsilateral S1 activation during passive movements and tactile stimulation. Another interesting new finding was the contralateral cerebellum activation in both groups during different tasks, also in cerebellar areas not primarily linked to the sensorimotor network. Active movements elicited significantly more brain activation in CP compared to TD children. In both groups, active movements displayed significantly more brain activation compared to passive movements and tactile stimulation.

  14. Console video games, postural activity, and motion sickness during passive restraint.

    PubMed

    Chang, Chih-Hui; Pan, Wu-Wen; Chen, Fu-Chen; Stoffregen, Thomas A

    2013-08-01

    We examined the influence of passive restraint on postural activity and motion sickness in individuals who actively controlled a potentially nauseogenic visual motion stimulus (a driving video game). Twenty-four adults (20.09 ± 1.56 years; 167.80 ± 7.94 cm; 59.02 ± 9.18 kg) were recruited as participants. Using elastic bands, standing participants were passively restrained at the head, shoulders, hips, and knees. During restraint, participants played (i.e., controlled) a driving video game (a motorcycle race), for 50 min. During game play, we recorded the movement of the head and torso, using a magnetic tracking system. Following game play, participants answered a forced choice, yes/no question about whether they were motion sick, and were assigned to sick and well groups on this basis. In addition, before and after game play, participants completed the Simulator Sickness Questionnaire, which provided numerical ratings of the severity of individual symptoms. Five of 24 participants (20.83 %) reported motion sickness. Participants moved despite being passively restrained. Both the magnitude and the temporal dynamics of movement differed between the sick and well groups. The results show that passive restraint of the body can reduce motion sickness when the nauseogenic visual stimulus is under participants' active control and confirm that motion sickness is preceded by distinct patterns of postural activity even during passive restraint.

  15. Active Imaging through Cirrus Clouds.

    PubMed

    Landesman, B; Kindilien, P; Pierson, R; Matson, C; Mosley, D

    1997-11-24

    The presence of clouds of ice particles in the uplink and downlink path of an illumination beam can severely impede the performance of an active imaging system. Depending on the optical depth of the cloud, i.e., its density and depth, the beam can be completely scattered and extinguished, or the beam can pass through the cloud with some fraction attenuated, scattered, and depolarized. In particular, subvisual cirrus clouds, i.e., high, thin cirrus clouds that cannot be observed from the ground, can affect the properties and alignment of both uplink and downlink beams. This paper discusses the potential for active imaging in the presence of cirrus clouds. We document field data results from an active imaging experiment conducted several years ago, which the authors believe to show the effects of cirrus clouds on an active imaging system. To verify these conclusions, we include the results of a simulation of the interaction of a coherent illumination scheme with a cirrus cloud.

  16. Elasticity-induced force reversal between active spinning particles in dense passive media

    PubMed Central

    Aragones, J. L.; Steimel, J. P.; Alexander-Katz, A.

    2016-01-01

    The self-organization of active particles is governed by their dynamic effective interactions. Such interactions are controlled by the medium in which such active agents reside. Here we study the interactions between active agents in a dense non-active medium. Our system consists of actuated, spinning, active particles embedded in a dense monolayer of passive, or non-active, particles. We demonstrate that the presence of the passive monolayer alters markedly the properties of the system and results in a reversal of the forces between active spinning particles from repulsive to attractive. The origin of such reversal is due to the coupling between the active stresses and elasticity of the system. This discovery provides a mechanism for the interaction between active agents in complex and structured media, opening up opportunities to tune the interaction range and directionality via the mechanical properties of the medium. PMID:27112961

  17. Elasticity-induced force reversal between active spinning particles in dense passive media.

    PubMed

    Aragones, J L; Steimel, J P; Alexander-Katz, A

    2016-04-26

    The self-organization of active particles is governed by their dynamic effective interactions. Such interactions are controlled by the medium in which such active agents reside. Here we study the interactions between active agents in a dense non-active medium. Our system consists of actuated, spinning, active particles embedded in a dense monolayer of passive, or non-active, particles. We demonstrate that the presence of the passive monolayer alters markedly the properties of the system and results in a reversal of the forces between active spinning particles from repulsive to attractive. The origin of such reversal is due to the coupling between the active stresses and elasticity of the system. This discovery provides a mechanism for the interaction between active agents in complex and structured media, opening up opportunities to tune the interaction range and directionality via the mechanical properties of the medium.

  18. Elasticity-induced force reversal between active spinning particles in dense passive media

    NASA Astrophysics Data System (ADS)

    Aragones, J. L.; Steimel, J. P.; Alexander-Katz, A.

    2016-04-01

    The self-organization of active particles is governed by their dynamic effective interactions. Such interactions are controlled by the medium in which such active agents reside. Here we study the interactions between active agents in a dense non-active medium. Our system consists of actuated, spinning, active particles embedded in a dense monolayer of passive, or non-active, particles. We demonstrate that the presence of the passive monolayer alters markedly the properties of the system and results in a reversal of the forces between active spinning particles from repulsive to attractive. The origin of such reversal is due to the coupling between the active stresses and elasticity of the system. This discovery provides a mechanism for the interaction between active agents in complex and structured media, opening up opportunities to tune the interaction range and directionality via the mechanical properties of the medium.

  19. Active and Passive Spatial Learning in Human Navigation: Acquisition of Graph Knowledge

    ERIC Educational Resources Information Center

    Chrastil, Elizabeth R.; Warren, William H.

    2015-01-01

    It is known that active exploration of a new environment leads to better spatial learning than does passive visual exposure. We ask whether specific components of active learning differentially contribute to particular forms of spatial knowledge--the "exploration-specific learning hypothesis". Previously, we found that idiothetic…

  20. Active versus Passive Proprioceptive Straight-Ahead Pointing in Normal Subjects

    ERIC Educational Resources Information Center

    Chokron, Sylvie; Colliot, Pascale; Atzeni, Thierry; Bartolomeo, Paolo; Ohlmann, Theophile

    2004-01-01

    Eighty blindfolded healthy female subjects participated in an active and a passive straight-ahead pointing task to study the estimation of the subjective sagittal middle in the presence or absence of an active haptic exploration. Subjects were to point straight-ahead with their left or right index finger starting from different right- or…

  1. Active and Passive Spatial Learning in Human Navigation: Acquisition of Survey Knowledge

    ERIC Educational Resources Information Center

    Chrastil, Elizabeth R.; Warren, William H.

    2013-01-01

    It seems intuitively obvious that active exploration of a new environment would lead to better spatial learning than would passive visual exposure. It is unclear, however, which components of active learning contribute to spatial knowledge, and previous literature is decidedly mixed. This experiment tests the contributions of 4 components to…

  2. The cognitive-behavioral system of leadership: cognitive antecedents of active and passive leadership behaviors.

    PubMed

    Dóci, Edina; Stouten, Jeroen; Hofmans, Joeri

    2015-01-01

    In the present paper, we propose a cognitive-behavioral understanding of active and passive leadership. Building on core evaluations theory, we offer a model that explains the emergence of leaders' active and passive behaviors, thereby predicting stable, inter-individual, as well as variable, intra-individual differences in both types of leadership behavior. We explain leaders' stable behavioral tendencies by their fundamental beliefs about themselves, others, and the world (core evaluations), while their variable, momentary behaviors are explained by the leaders' momentary appraisals of themselves, others, and the world (specific evaluations). By introducing interactions between the situation the leader enters, the leader's beliefs, appraisals, and behavior, we propose a comprehensive system of cognitive mechanisms that underlie active and passive leadership behavior. PMID:26441721

  3. Spatiotemporal analysis of soil moisture in using active and passive remotely sensed data and ground observations

    NASA Astrophysics Data System (ADS)

    Li, H.; Fang, B.; Lakshmi, V.

    2015-12-01

    Abstract: Soil moisture plays a vital role in ecosystem, biological processes, climate, weather and agriculture. The Soil Moisture Active Passive (SMAP) improves data by combining the advantages and avoiding the limitation of passive microwave remote sensing (low resolution), and active microwave (challenge of soil moisture retrieval). This study will advance the knowledge of the application of soil moisture by using the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) data as well as data collected at Walnut Gulch Arizona in August 2015 during SMAPVEX15. Specifically, we will analyze the 5m radar data from Unmanned Airborne Vehicle Synthetic Aperture Radar (UAVSAR) to study spatial variability within the PALS radiometer pixel. SMAPVEX12/15 and SMAP data will also be analyzed to evaluate disaggregation algorithms. The analytical findings will provide valuable information for policy-makers to initiate and adjust protocols and regulations for protecting land resources and improving environmental conditions. Keywords: soil moisture, Remote Sensing (RS), spatial statistic

  4. Early results of the Soil Moisture Active Passive Validation Experiment (SMAPVEX15)

    NASA Astrophysics Data System (ADS)

    Cosh, M. H.; Jackson, T. J.; Colliander, A.; Goodrich, D. C.; Holifield Collins, C.; McKee, L.; Kim, S.; Yueh, S. H.

    2015-12-01

    In August of 2015, the Soil Moisture Active Passive Validation Experiment (SMAPVEX15) was conducted to provide a high resolution soil moisture dataset for the calibration/validation of the Soil Moisture Active Passive Mission (SMAP). The Upper San Pedro River Basin and the USDA-ARS Walnut Gulch LTAR Watershed provides the infrastructure for the experiment with its extensive soil moisture and soil temperature network. A total of seven aircraft flights are planned for the Passive Active L-Band Scanning instrument (PALS) to provide a high resolution soil moisture map for a variety of soil moisture conditions across the domain. Extensive surface roughness, vegetation and soil rock fraction mapping was conducted to provide a ground truth estimate of the many ancillary datasets used in the SMAP soil moisture algorithms. A review of the methodologies employed in the experiment, as well as initial findings will be discussed.

  5. The cognitive-behavioral system of leadership: cognitive antecedents of active and passive leadership behaviors

    PubMed Central

    Dóci, Edina; Stouten, Jeroen; Hofmans, Joeri

    2015-01-01

    In the present paper, we propose a cognitive-behavioral understanding of active and passive leadership. Building on core evaluations theory, we offer a model that explains the emergence of leaders’ active and passive behaviors, thereby predicting stable, inter-individual, as well as variable, intra-individual differences in both types of leadership behavior. We explain leaders’ stable behavioral tendencies by their fundamental beliefs about themselves, others, and the world (core evaluations), while their variable, momentary behaviors are explained by the leaders’ momentary appraisals of themselves, others, and the world (specific evaluations). By introducing interactions between the situation the leader enters, the leader’s beliefs, appraisals, and behavior, we propose a comprehensive system of cognitive mechanisms that underlie active and passive leadership behavior. PMID:26441721

  6. Variability in measurement of swimming forces: a meta-analysis of passive and active drag.

    PubMed

    Havriluk, Rod

    2007-03-01

    An analysis was conducted to identify sources of true and error variance in measuring swimming drag force to draw valid conclusions about performance factor effects. Passive drag studies were grouped according to methodological differences: tow line in pool, tow line in flume, and carriage in tow tank. Active drag studies were grouped according to the theoretical basis: added and/or subtracted drag (AAS), added drag with equal power assumption (AAE), and no added drag (ANA). Data from 36 studies were examined using frequency distributions and meta-analytic procedures. It was concluded that two active methods (AAE and ANA) had sources of systematic error and that one active method (AAS) measured an effect that was different from that measured by passive methods. Consistency in drag coefficient (Cd) values across all three passive methods made it possible to determine the effects of performance factors.

  7. Effect of active vs. passive recovery on repeat suicide run time.

    PubMed

    Graham, James E; Douglas Boatwright, J; Hunskor, Martha J; Howell, Dan C

    2003-05-01

    This study was conducted to evaluate the difference between active and passive recovery methods during successive suicide runs by Division I women's collegiate basketball athletes (n = 14). Testing consisted of sprinting suicides on the basketball court using both traditional (short) and reverse-sequence (long) protocols. Two 90-second recovery methods were used, passive (standing still) and active (slow self-paced jogging). Although successive run time was reduced by a mean of 0.55 seconds after passive recovery relative to active, it did not reach significance (p = 0.09). Likewise, the difference between long and short line versions was nonsignificant (p = 0.41). Therefore, neither line sequence nor 90-second recovery technique appears to influence subsequent run time when performing 2 maximal-effort suicides. PMID:12741874

  8. Effect of active vs. passive recovery on repeat suicide run time.

    PubMed

    Graham, James E; Douglas Boatwright, J; Hunskor, Martha J; Howell, Dan C

    2003-05-01

    This study was conducted to evaluate the difference between active and passive recovery methods during successive suicide runs by Division I women's collegiate basketball athletes (n = 14). Testing consisted of sprinting suicides on the basketball court using both traditional (short) and reverse-sequence (long) protocols. Two 90-second recovery methods were used, passive (standing still) and active (slow self-paced jogging). Although successive run time was reduced by a mean of 0.55 seconds after passive recovery relative to active, it did not reach significance (p = 0.09). Likewise, the difference between long and short line versions was nonsignificant (p = 0.41). Therefore, neither line sequence nor 90-second recovery technique appears to influence subsequent run time when performing 2 maximal-effort suicides.

  9. 3D shoulder kinematics for static vs dynamic and passive vs active testing conditions.

    PubMed

    Robert-Lachaine, Xavier; Allard, Paul; Godbout, Véronique; Begon, Mickael

    2015-09-18

    Shoulder motion analysis provides clinicians with references of normal joint rotations. Shoulder joints orientations assessment is often based on series of static positions, while clinicians perform either passive or active tests and exercises mostly in dynamic. These conditions of motion could modify joint coordination and lead to discrepancies with the established references. Hence, the objective was to evaluate the influence of static vs dynamic and passive vs active testing conditions on shoulder joints orientations. Twenty asymptomatic subjects setup with 45 markers on the upper limb and trunk were tracked by an optoelectronic system. Static positions (30°, 60°, 90° and 120° of thoracohumeral elevation) and dynamic motion both in active condition and passively mobilised by an examiner were executed. Three-dimensional sternoclavicular, acromioclavicular, scapulothoracic and glenohumeral joint angles (12 in total) representing the distal segment orientation relative to the proximal segment orientation were estimated using a shoulder kinematical chain model. Separate four-way repeated measures ANOVA were applied on the 12 joint angles with factors of static vs dynamic, passive vs active, thoracohumeral elevation angle (30°, 60°, 90° and 120°) and plane of elevation (frontal and sagittal). Scapulothoracic lateral rotation progressed more during arm elevation in static than in dynamic gaining 4.2° more, and also in passive than in active by 6.6°. Glenohumeral elevation increased more during arm elevation in active than in passive by 4.4°. Shoulder joints orientations are affected by the testing conditions, which should be taken into consideration for data acquisition, inter-study comparison or clinical applications.

  10. Passive and active exercises are similarly effective in elderly nursing home residents

    PubMed Central

    Takahashi, Takeshi; Takeshima, Nobuo; Rogers, Nicole L.; Rogers, Michael E.; Islam, Mohammod Monirul

    2015-01-01

    [Purpose] The aim of this study was to compare the efficacy of passive motion exercise and active motion exercise on functional fitness in elderly nursing home residents. [Subjects and Methods] Twenty-three (female 22 and male 1) nursing home residents (84.8±4.3 yr) volunteered for this study. They were divided into a passive motion exercise group (n=12) and an active motion exercise group (n=11) and performed 30-min sessions of training twice a week for 12 weeks. Functional fitness (Arm Curl, Chair Stand, Up & Go, Sit & Reach, Back Scratch, functional Reach, and 12-min Walk tests) was evaluated before and after the intervention. [Results] No significant baseline difference was noted between the groups in measured variables. Following the 12 week intervention, no significant interaction (group × time) was noted in functional fitness variables between the groups, except for the functional reach scores (active motion exercise 40%, passive motion exercise 9%). Significant improvement over time was noted in passive motion exercise group in Arm Curl (19%), Chair Stand (15%), Up & Go (6%), and 12-min Walk (12%) scores; and in the active motion exercise group in Arm Curl (14%), Chair Stand (19%), Up & Go (11%), functional Reach (40%) and 12-min Walk (13%) scores. The adherence rates in the passive and active motion exercise groups were 95.8% and 93.1% respectively. [Conclusion] Passive motion exercise and active motion exercise were found to be similarly effective for improving the functional fitness of elderly nursing home residents. PMID:26504320

  11. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

    PubMed Central

    Cendrero-Mateo, M. Pilar; Moran, M. Susan; Papuga, Shirley A.; Thorp, K.R.; Alonso, L.; Moreno, J.; Ponce-Campos, G.; Rascher, U.; Wang, G.

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. PMID:26482242

  12. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments.

    PubMed

    Cendrero-Mateo, M Pilar; Moran, M Susan; Papuga, Shirley A; Thorp, K R; Alonso, L; Moreno, J; Ponce-Campos, G; Rascher, U; Wang, G

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management.

  13. Vaginal cone use in passive and active phases in patients with stress urinary incontinence

    PubMed Central

    Haddad, Jorge Milhem; Ribeiro, Ricardo Muniz; Bernardo, Wanderley Marques; Abrão, Maurício Simões; Baracat, Edmund Chada

    2011-01-01

    OBJECTIVE: To evaluate vaginal cone therapy in two phases, passive and active, in women with stress urinary incontinence. METHODS: A prospective study was conducted at the Department of Obstetrics and Gynecology, São Paulo University, Brazil. Twenty-four women with a clinical and urodynamic diagnosis of stress urinary incontinence were treated with vaginal cones in a passive phase (without voluntary contractions of the pelvic floor) and an active phase (with voluntary contractions), each of which lasted three months. Clinical complaints, a functional evaluation of the pelvic floor, a pad test, and bladder neck mobility were analyzed before and after each phase. RESULTS: Twenty-one patients completed the treatment. The reduction in absolute risk with the pad test was 0.38 (p<0.034) at the end of the passive phase and 0.67 (p<0.0001) at the end of the active phase. The reduction in absolute risk with the pelvic floor evaluation was 0.62 (p<0.0001) at the end of the passive phase and 0.77 (p<0.0001) at the end of the active phase. The reduction in absolute risk of bladder neck mobility was 0.38 (p<0.0089) at the end of the passive phase and 0.52 (p<0.0005) at the end of the active phase. Complete reversal of symptomatology was observed in 12 (57.1%) patients, and satisfaction was expressed by 19 (90.4%). CONCLUSION: Using vaginal cones in the passive phase, as other researchers did, was effective. Inclusion of the active phase led to additional improvement in all of the study parameters evaluated in women with stress urinary incontinence. Randomized studies are needed, however, to confirm these results. PMID:21789381

  14. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-01-01

    Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position

  15. 26 CFR 1.469-2 - Passive activity loss.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the value of the building. Accordingly, an amount equal to A's net rental activity income from the... amount of A's gross rental activity income from the building for 1997 equal to A's net rental activity...)(2)(iii): Example 1. A acquires a building on January 1, 1993, and uses the building in a trade...

  16. 26 CFR 1.469-2 - Passive activity loss.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the value of the building. Accordingly, an amount equal to A's net rental activity income from the... amount of A's gross rental activity income from the building for 1997 equal to A's net rental activity...)(2)(iii): Example 1. A acquires a building on January 1, 1993, and uses the building in a trade...

  17. The surface geometry of inherited joint and fracture trace patterns resulting from active and passive deformation

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Gold, D. P.

    1974-01-01

    Hypothetical models are considered for detecting subsurface structure from the fracture or joint pattern, which may be influenced by the structure and propagated to the surface. Various patterns of an initially orthogonal fracture grid are modeled according to active and passive deformation mechanisms. In the active periclinal structure with a vertical axis, fracture frequency increased both over the dome and basin, and remained constant with decreasing depth to the structure. For passive periclinal features such as a reef or sand body, fracture frequency is determined by the arc of curvature and showed a reduction over the reefmound and increased over the basin.

  18. Passive and active plasma deceleration for the compact disposal of electron beams

    SciTech Connect

    Bonatto, A.; Schroeder, C. B.; Vay, J.-L.; Geddes, C. G. R.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2015-08-15

    Plasma-based decelerating schemes are investigated as compact alternatives for the disposal of high-energy beams (beam dumps). Analytical solutions for the energy loss of electron beams propagating in passive and active (laser-driven) schemes are derived. These solutions, along with numerical modeling, are used to investigate the evolution of the electron distribution, including energy chirp and total beam energy. In the active beam dump scheme, a laser-driver allows a more homogeneous beam energy extraction and drastically reduces the energy chirp observed in the passive scheme. These concepts could benefit applications requiring overall compactness, such as transportable light sources, or facilities operating at high beam power.

  19. Characterizing EPR-Mediated Passive Drug Targeting using Contrast-Enhanced Functional Ultrasound Imaging

    PubMed Central

    Theek, Benjamin; Gremse, Felix; Kunjachan, Sijumon; Fokong, Stanley; Pola, Robert; Pechar, Michal; Deckers, Roel; Storm, Gert; Ehling, Josef; Kiessling, Fabian; Lammers, Twan

    2014-01-01

    The Enhanced Permeability and Retention (EPR) effect is extensively used in drug delivery research. Taking into account that EPR is a highly variable phenomenon, we have here set out to evaluate if contrast-enhanced functional ultrasound (ceUS) imaging can be employed to characterize EPR-mediated passive drug targeting to tumors. Using standard fluorescence molecular tomography (FMT) and two different protocols for hybrid computed tomography-fluorescence molecular tomography (CT-FMT), the tumor accumulation of a ~10 nm-sized near-infrared-fluorophore-labeled polymeric drug carrier (pHPMA-Dy750) was evaluated in CT26 tumor-bearing mice. In the same set of animals, two different ceUS techniques (2D MIOT and 3D B-mode imaging) were employed to assess tumor vascularization. Subsequently, the degree of tumor vascularization was correlated with the degree of EPR-mediated drug targeting. Depending on the optical imaging protocol used, the tumor accumulation of the polymeric drug carrier ranged from 5-12% of the injected dose. The degree of tumor vascularization, determined using ceUS, varied from 4-11%. For both hybrid CT-FMT protocols, a good correlation between the degree of tumor vascularization and the degree of tumor accumulation was observed, with in the case of reconstructed CT-FMT, correlation coefficients of ~0.8 and p-values of <0.02. These findings indicate that ceUS can be used to characterize and predict EPR, and potentially also to pre-selecting patients likely to respond to passively tumor-targeted nanomedicine treatments. PMID:24631862

  20. Geometrical configurations of unphased diffraction-limited antennas in passive millimetre-wave imaging systems for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Serenelli, Roberto

    2004-12-01

    This paper analyzes simple imaging configurations to scan a human body, suitable as passive or active millimetre-wave imaging systems for concealed weapon detection (CWD). The first cylindrical configuration allows a 360 degrees scan: N unphased diffraction-limited antennas each of size L are placed on a circular support surrounding the subject (allowing scanning in the horizontal plane with N non-overlapping independent beams), and this circle is mechanically displaced over the whole body height. An analytical formula gives the maximum obtainable spatial resolution for different dimensions of the circular scanning device and operating frequencies, and the number of receivers achieving this optimal resolution. Constraints to be taken into account are diffraction, the usable total length of the circle, and the full coverage by the N beams over the subject, which is modelled as a cylinder with variable radius, coaxial with the scanning circle. Numerical calculations of system resolution are shown for different operating microwave (MW) and millimetre-wave (MMW) frequencies; in order to study off-axis performances, situations where the subject is not coaxial with the scanning device are also considered. For the case of a parallelepiped to be imaged instead of a cylinder, a linear array configuration is analyzed similarly to the circular one. A theoretical study is carried out to design other curved arrays, filled with unphased diffraction-limited antennas, for the imaging of linear subjects with finer resolution. Finally, the application of such configurations is considered for the design of active imaging systems, and different system architectures are discussed.

  1. Alkyl Passivation and Amphiphilic Polymer Coating of Silicon Nanocrystals for Diagnostic Imaging

    PubMed Central

    Hessel, Colin M.; Rasch, Michael R.; Hueso, Jose L.; Goodfellow, Brian W.; Akhavan, Vahid A.; Puvanakrishnan, Priyaveena; Tunnell, James W.

    2011-01-01

    We show a method to produce biocompatible polymer-coated silicon (Si) nanocrystals for medical imaging. Silica-embedded Si nanocrystals are formed by HSQ thermolysis. The nanocrystals are then liberated from the oxide and terminated with Si-H bonds by HF etching, followed by alkyl monolayer passivation by thermal hydrosilylation. The Si nanocrystals have an average diameter of 2.1 ± 0.6 nm and photoluminesce (PL) with a peak emission wavelength of 650 nm, which lies within the transmission window of 650–900 nm that is useful for biological imaging. The hydrophobic Si nanocrystals are then coated with an amphiphilic polymer for dispersion in aqueous media with pH ranging between 7 and 10 and ionic strength between 30 mM and 2 M, while maintaining a bright and stable PL and a hydrodynamic radius of only 20 nm. Fluorescence imaging of polymer-coated Si nanocrystals in a biological tissue host is demonstrated, showing the potential for in vivo imaging. PMID:20818646

  2. Implementation of Active Thermal Control (ATC) for the Soil Moisture Active and Passive (SMAP) Radiometer

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Kwack, Eug; French, Richard; Dawson, Douglas; Hoffman, Pamela

    2014-01-01

    NASA's Earth Observing Soil Moisture Active and Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 kilometer near-polar, sun-synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its three year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 revolutions per minute, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within three days. In order to make the necessary precise surface emission measurements from space, the electronics and hardware associated with the radiometer must meet tight short-term (instantaneous and orbital) and long-term (monthly and mission) thermal stabilities. Maintaining these tight thermal stabilities is quite challenging because the sensitive electronics are located on a fast spinning platform that can either be in full sunlight or total eclipse, thus exposing them to a highly transient environment. A passive design approach was first adopted early in the design cycle as a low-cost solution. With careful thermal design efforts to cocoon and protect all sensitive components, all stability requirements were met passively. Active thermal control (ATC) was later added after the instrument Preliminary Design Review (PDR) to mitigate the threat of undetected gain glitches, not for thermal-stability reasons. Gain glitches are common problems with radiometers during missions, and one simple way to avoid gain glitches is to use the in-flight set point programmability that ATC

  3. Active and passive cigarette smoking and breast cancer risk: results from the EPIC cohort.

    PubMed

    Dossus, Laure; Boutron-Ruault, Marie-Christine; Kaaks, Rudolf; Gram, Inger T; Vilier, Alice; Fervers, Béatrice; Manjer, Jonas; Tjonneland, Anne; Olsen, Anja; Overvad, Kim; Chang-Claude, Jenny; Boeing, Heiner; Steffen, Annika; Trichopoulou, Antonia; Lagiou, Pagona; Sarantopoulou, Maria; Palli, Domenico; Berrino, Franco; Tumino, Rosario; Vineis, Paolo; Mattiello, Amalia; Bueno-de-Mesquita, H Bas; van Duijnhoven, Franzel J B; Bakker, Marieke F; Peeters, Petra Hm; Weiderpass, Elisabete; Bjerkaas, Eivind; Braaten, Tonje; Menéndez, Virginia; Agudo, Antonio; Sanchez, Maria-Jose; Amiano, Pilar; Tormo, Maria-Jose; Barricarte, Aurelio; Butt, Salma; Khaw, Kay-Tee; Wareham, Nicholas; Key, Tim J; Travis, Ruth C; Rinaldi, Sabina; McCormack, Valerie; Romieu, Isabelle; Cox, David G; Norat, Teresa; Riboli, Elio; Clavel-Chapelon, Françoise

    2014-04-15

    Recent cohort studies suggest that increased breast cancer risks were associated with longer smoking duration, higher pack-years and a dose-response relationship with increasing pack-years of smoking between menarche and first full-term pregnancy (FFTP). Studies with comprehensive quantitative life-time measures of passive smoking suggest an association between passive smoking dose and breast cancer risk. We conducted a study within the European Prospective Investigation into Cancer and Nutrition to examine the association between passive and active smoking and risk of invasive breast cancer and possible effect modification by known breast cancer risk factors. Among the 322,988 women eligible for the study, 9,822 developed breast cancer (183,608 women with passive smoking information including 6,264 cases). When compared to women who never smoked and were not being exposed to passive smoking at home or work at the time of study registration, current, former and currently exposed passive smokers were at increased risk of breast cancer (hazard ratios (HR) [95% confidence interval (CI)] 1.16 [1.05-1.28], 1.14 [1.04-1.25] and 1.10 [1.01-1.20], respectively). Analyses exploring associations in different periods of life showed the most important increase in risk with pack-years from menarche to FFTP (1.73 [1.29-2.32] for every increase of 20 pack-years) while pack-years smoked after menopause were associated with a significant decrease in breast cancer risk (HR = 0.53, 95% CI: 0.34-0.82 for every increase of 20 pack-years). Our results provide an important replication, in the largest cohort to date, that smoking (passively or actively) increases breast cancer risk and that smoking between menarche and FFTP is particularly deleterious.

  4. Active and passive cigarette smoking and breast cancer risk: results from the EPIC cohort.

    PubMed

    Dossus, Laure; Boutron-Ruault, Marie-Christine; Kaaks, Rudolf; Gram, Inger T; Vilier, Alice; Fervers, Béatrice; Manjer, Jonas; Tjonneland, Anne; Olsen, Anja; Overvad, Kim; Chang-Claude, Jenny; Boeing, Heiner; Steffen, Annika; Trichopoulou, Antonia; Lagiou, Pagona; Sarantopoulou, Maria; Palli, Domenico; Berrino, Franco; Tumino, Rosario; Vineis, Paolo; Mattiello, Amalia; Bueno-de-Mesquita, H Bas; van Duijnhoven, Franzel J B; Bakker, Marieke F; Peeters, Petra Hm; Weiderpass, Elisabete; Bjerkaas, Eivind; Braaten, Tonje; Menéndez, Virginia; Agudo, Antonio; Sanchez, Maria-Jose; Amiano, Pilar; Tormo, Maria-Jose; Barricarte, Aurelio; Butt, Salma; Khaw, Kay-Tee; Wareham, Nicholas; Key, Tim J; Travis, Ruth C; Rinaldi, Sabina; McCormack, Valerie; Romieu, Isabelle; Cox, David G; Norat, Teresa; Riboli, Elio; Clavel-Chapelon, Françoise

    2014-04-15

    Recent cohort studies suggest that increased breast cancer risks were associated with longer smoking duration, higher pack-years and a dose-response relationship with increasing pack-years of smoking between menarche and first full-term pregnancy (FFTP). Studies with comprehensive quantitative life-time measures of passive smoking suggest an association between passive smoking dose and breast cancer risk. We conducted a study within the European Prospective Investigation into Cancer and Nutrition to examine the association between passive and active smoking and risk of invasive breast cancer and possible effect modification by known breast cancer risk factors. Among the 322,988 women eligible for the study, 9,822 developed breast cancer (183,608 women with passive smoking information including 6,264 cases). When compared to women who never smoked and were not being exposed to passive smoking at home or work at the time of study registration, current, former and currently exposed passive smokers were at increased risk of breast cancer (hazard ratios (HR) [95% confidence interval (CI)] 1.16 [1.05-1.28], 1.14 [1.04-1.25] and 1.10 [1.01-1.20], respectively). Analyses exploring associations in different periods of life showed the most important increase in risk with pack-years from menarche to FFTP (1.73 [1.29-2.32] for every increase of 20 pack-years) while pack-years smoked after menopause were associated with a significant decrease in breast cancer risk (HR = 0.53, 95% CI: 0.34-0.82 for every increase of 20 pack-years). Our results provide an important replication, in the largest cohort to date, that smoking (passively or actively) increases breast cancer risk and that smoking between menarche and FFTP is particularly deleterious. PMID:24590452

  5. VESAS: a novel concept for fully-electronic passive MW imaging

    NASA Astrophysics Data System (ADS)

    Schreiber, Eric; Peichl, Markus; Jirousek, Matthias; Suess, Helmut

    2013-05-01

    These days passive microwave (MW) remote sensing has found many applications. For example, in Earth observation missions, it is possible to estimate the salinity of oceans, the soil moisture of landscapes, or to extract atmospheric parameters like the liquid water content of clouds [1, 2, 3]. Due to the penetration capabilities of microwaves through many dielectric materials, and the purely passive character of this kind of remote sensing, this technique nowadays is considered as well in many security and reconnaissance applications (e.g. observation of sensitive areas, detection of concealed objects, trough-wall imaging, etc.). Presently different imaging principles for MW radiometry are possible. Most of them still are based on pure mechanical scanning or they combine this with electronic scanning by using parts of a focal plane array [4]. Due to many advantages, the technological trend is going towards fully-electronic beam steering or two-dimensional focal plane arrays. These systems are able to achieve high frame rates, but they are still very expensive because of a significantly higher number of receiver modules, compared to a mechanical scanning system. In our approach a novel concept for a Ka band fully-electronic wide swath MW imaging radiometer system is introduced [5]. It is based on a combination of beam steering by frequency shift for one scanning direction using a slotted-waveguide antenna, and the application of aperture synthesis in the other. In the following a proof of concept is outlined using a two-element interferometer system called VESAS (Voll elektronischer Scanner mit Apertursynthese) demonstrator. The advantage of using the aperture synthesis technique is the possibility to implement minimal redundant sparse arrays without a degradation of the antenna pattern. In combination with the beam steering by frequency shift, one requires a one dimensional receiver/antenna array for a two dimensional imaging, hence a low-cost, fully-electronic wide

  6. Active/passive scanning. [airborne multispectral laser scanners for agricultural and water resources applications

    NASA Technical Reports Server (NTRS)

    Woodfill, J. R.; Thomson, F. J.

    1979-01-01

    The paper deals with the design, construction, and applications of an active/passive multispectral scanner combining lasers with conventional passive remote sensors. An application investigation was first undertaken to identify remote sensing applications where active/passive scanners (APS) would provide improvement over current means. Calibration techniques and instrument sensitivity are evaluated to provide predictions of the APS's capability to meet user needs. A preliminary instrument design was developed from the initial conceptual scheme. A design review settled the issues of worthwhile applications, calibration approach, hardware design, and laser complement. Next, a detailed mechanical design was drafted and construction of the APS commenced. The completed APS was tested and calibrated in the laboratory, then installed in a C-47 aircraft and ground tested. Several flight tests completed the test program.

  7. Heat transfer measurements in ONERA supersonic and hypersonic wind tunnels using passive and active infrared thermography

    NASA Astrophysics Data System (ADS)

    Balageas, D.; Boscher, D.; Deom, A.; Gardette, G.

    Over the past few years, a major intellectual and technical investment has been made at ONERA to use data acquisition systems and data reduction procedures using an infrared camera as a detector under routine wind tunnel conditions. This allows a really quantitative mapping of heat transfer rate distributions on models in supersonic and hypersonic flows. Sufficient experience has now been acquired to allow us to give an overview of: (1) the systems and data reduction procedures developed for both passive and active methods; (2) typical results obtained on various configurations such as supersonic axisymmetrical flow around an ogival body (passive and active thermography), heat flux modulation in the reattachment zone of a flap in hypersonic regime, transitional heating on very slightly blunted spheroconical bodies in hypersonic flows, and materials testing in high-enthalpy hypersonic flow (passive thermography).

  8. Application of active spaceborne remote sensing for understanding biases between passive cloud water path retrievals

    NASA Astrophysics Data System (ADS)

    Lebsock, Matthew; Su, Hui

    2014-07-01

    Bias between the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) version 2 and the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 5.1 cloud liquid water path (Wc) products are explored with the aid of coincident active observations from the CloudSat radar and the CALIPSO lidar. In terms of detection, the active observations provide precise separation of cloudy from clear sky and precipitating from nonprecipitating clouds. In addition, they offer a unique quantification of precipitation water path (Wp) in warm clouds. They also provide an independent quantification of Wc that is based on an accurate surface reference technique, which is an independent arbiter between the two passive approaches. The results herein establish the potential for CloudSat and CALIPSO to provide an independent assessment of bias between the conventional passive remote sensing methods from reflected solar and emitted microwave radiation. After applying a common data filter to the observations to account for sampling biases, AMSR-E is biased high relative to MODIS in the global mean by 26.4 gm-2. The RMS difference in the regional patterns is 32.4 gm-2, which highlights a large geographical dependence in the bias which is related to the tropical transitions from stratocumulus to cumulus cloud regimes. The contributions of four potential sources for this bias are investigated by exploiting the active observations: (1) bias in MODIS related to solar zenith angle dependence accounts for -2.3 gm-2, (2) bias in MODIS due to undersampling of cloud edges accounts for 4.2 gm-2, (3) a wind speed and water vapor-dependent "clear-sky biase" in the AMSR-E retrieval accounts for 6.3 gm-2, and (4) evidence suggests that much of the remaining 18 gm-2 bias is related to the assumed partitioning of the observed emission signal between cloud and precipitation water in the AMSR-E retrieval. This is most evident through the correlations between the regional mean patterns of Wp and the Wc

  9. A Comparison of Active and Passive Methods for Control of Hypersonic Boundary Layers on Airbreathing Configurations

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.

    2003-01-01

    Active and passive methods for control of hypersonic boundary layers have been experimentally examined in NASA Langley Research Center wind tunnels on a Hyper-X model. Several configurations for forcing transition using passive discrete roughness elements and active mass addition, or blowing, methods were compared in two hypersonic facilities, the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air tunnels. Heat transfer distributions, obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the nominal Mach 7 flight trajectory of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For the passive roughness examination, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The prior passive roughness study resulted in a swept ramp configuration being selected for the Mach 7 flight vehicle that was scaled to be roughly 0.6 of the calculated boundary layer thickness. For the active jet blowing study, the blowing manifold pressure was systematically varied for each configuration, while monitoring the mass flow, to determine the jet penetration height with schlieren and transition movement with the phosphor system for comparison to the passive results. All the blowing concepts tested were adequate for providing transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model static pressure or higher.

  10. Seismic response of torsionally coupled building with passive and semi-active stiffness dampers

    NASA Astrophysics Data System (ADS)

    Mevada, Snehal V.; Jangid, R. S.

    2015-03-01

    The seismic response of single-storey, one-way asymmetric building with passive and semi-active variable stiffness dampers is investigated. The governing equations of motion are derived based on the mathematical model of asymmetric building. The seismic response of the system is obtained by numerically solving the equations of motion using state-space method under different system parameters. The switching and resetting control laws are considered for the semi-active devices. The important parameters considered are eccentricity ratio of superstructure, uncoupled lateral time period and ratio of uncoupled torsional to lateral frequency. The effects of these parameters are investigated on peak lateral, torsional and edge displacements and accelerations as well as on damper control forces. The comparative performance is investigated for asymmetric building installed with passive stiffness and semi-active stiffness dampers. It is shown that the semi-active stiffness dampers reduce the earthquake-induced displacements and accelerations significantly as compared to passive stiffness dampers. Also, the effects of torsional coupling on effectiveness of passive dampers in reducing displacements and accelerations are found to be more significant to the variation of eccentricity as compared to semi-active stiffness dampers.

  11. Re-active Passive (RAP) Devices for Control of Noise Transmission through a Panel

    NASA Technical Reports Server (NTRS)

    Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Daniel L.

    2008-01-01

    Re-Active Passive (RAP) devices have been developed to control low frequency (<1000 Hz) noise transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The RAP device uses passive constrained layer damping to cover the relatively high frequency range (>200 Hz), reactive distributed vibration absorber) to cover the medium frequency range (75 to 250 Hz), and active control for controlling low frequencies (<200 Hz). The device was applied to control noise transmission through a panel mounted in a transmission loss test facility. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three RAP devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 grams to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.

  12. Passive and Active Protective Clothing against High-Power Laser Radiation

    NASA Astrophysics Data System (ADS)

    Hennigs, C.; Hustedt, M.; Kaierle, S.; Wenzel, D.; Markstein, S.; Hutter, A.

    The main objective of the work described in this paper was the development of passive and active protective clothing for the protection of the human skin against accidental laser irradiation and of active protective curtains. Here, the passive systems consist of functional multi-layer textiles, providing a high level of passive laser resistance. In addition, the active functional multi-layer textiles incorporate sensors that detect laser exposure and are, by means of a safety control, able to deactivate the laser beam automatically.Due to the lack of regulations for testing and qualifying textiles to be used as laser PPE, test methods were defined and validated. Additionally, corresponding testing set-ups were developed.Finally, the gap with respect to standardization was bridged by the definition of a test procedure and the requirements with respect to laser PPE.The developments were demonstrated by a set of tailored functional passive and active laser-protective clothing prototypes (gloves, jackets, aprons, trousers) and active curtains as well as by a prototype testing rig, providing the possibility to perform the specified low-power and high-power textile test procedure.

  13. Estimation and Mapping of Coastal Mangrove Biomass Using Both Passive and Active Remote Sensing Method

    NASA Astrophysics Data System (ADS)

    Yiqiong, L.; Lu, W.; Zhou, J.; Gan, W.; Cui, X.; Lin, G., Sr.

    2015-12-01

    Mangrove forests play an important role in global carbon cycle, but carbon stocks in different mangrove forests are not easily measured at large scale. In this research, both active and passive remote sensing methods were used to estimate the aboveground biomass of dominant mangrove communities in Zhanjiang National Mangrove Nature Reserve in Guangdong, China. We set up a decision tree including spectral, texture, position and geometry indexes to achieve mangrove inter-species classification among 5 main species named Aegiceras corniculatum, Aricennia marina, Bruguiera gymnorrhiza, Kandelia candel, Sonneratia apetala by using 5.8m multispectral ZY-3 images. In addition, Lidar data were collected and used to obtain the canopy height of different mangrove species. Then, regression equations between the field measured aboveground biomass and the canopy height deduced from Lidar data were established for these mangrove species. By combining these results, we were able to establish a relatively accurate method for differentiating mangrove species and mapping their aboveground biomass distribution at the estuary scale, which could be applied to mangrove forests in other regions.

  14. Damping SOFIA: passive and active damping for the Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Maly, Joseph R.; Keas, Paul J.; Glaese, Roger M.

    2001-07-01

    The Stratospheric Observatory For Infrared Astronomy, SOFIA is being developed by NASA and the German space agency, Deutschen Zentrum fur Luft- und Raumfahrt (DLR), with an international contractor team. The 2.5-meter reflecting telescope of SOFIA will be the world's largest airborne telescope. Flying in an open cavity on a modified 747 aircraft, SOFIA will perform infrared astronomy while cruising at 41,000 feet and while being buffeted by a 550- mile-per-hour slipstream. A primary system requirement of SOFIA is tracking stability of 0.2 arc-seconds, and a 3-axis pointing control model has been used to evaluate the feasibility of achieving this kind of stability. The pointing control model shows that increased levels of damping in certain elastic modes of the telescope assembly will help achieve the tracking stability goal and also expand the bandwidth of the attitude controller. This paper describes the preliminary work that has been done to approximate the reduction in image motion yielded by various structure configurations that use reaction masses to attenuate the flexible motions of the telescope structure. Three approaches are considered: passive tuned-mass dampers, active-mass dampers, and attitude control with reaction-mass actuators. Expected performance improvements for each approach, and practical advantages and disadvantages associated with each are presented.

  15. Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements

    NASA Astrophysics Data System (ADS)

    Chen, B.; Huang, J.; Minnis, P.; Hu, Y.; Yi, Y.; Liu, Z.; Zhang, D.; Wang, X.

    2010-02-01

    The version 2 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) dust layer detection method, which is based only on lidar measurements, misclassified about 43% dust layers (mainly dense dust layer) as cloud layers over the Taklamakan Desert. To address this problem, a new method was developed by combining the CALIPSO Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and passive Infrared Imaging Radiometer (IIR) measurements. This combined lidar and IR measurement (hereafter, CLIM) method uses the IIR tri-spectral IR brightness temperatures to discriminate between ice cloud and dense dust layers, and lidar measurements alone to detect thin dust and water cloud layers. The brightness temperature difference between 10.60 and 12.05 μm (BTD11-12) is typically negative for dense dust and generally positive for ice cloud, but it varies from negative to positive for thin dust layers, which the CALIPSO lidar correctly identifies. Results show that the CLIM method could significantly reduce misclassification rates to as low as ~7% for the active dust season of spring 2008 over the Taklamakan Desert. The CLIM method also revealed 18% more dust layers having greatly intensified backscatter between 1.8 and 4 km altitude over the source region compared to the CALIPSO version 2 data. These results allow a more accurate assessment of the effect of dust on climate.

  16. Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements

    NASA Astrophysics Data System (ADS)

    Chen, B.; Huang, J.; Minnis, P.; Hu, Y.; Yi, Y.; Liu, Z.; Zhang, D.; Wang, X.

    2010-05-01

    The version 2 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) dust layer detection method, which is based only on lidar measurements, misclassified about 43% dust layers (mainly dense dust layers) as cloud layers over the Taklamakan Desert. To address this problem, a new method was developed by combining the CALIPSO Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and passive Infrared Imaging Radiometer (IIR) measurements. This combined lidar and IR measurement (hereafter, CLIM) method uses the IIR tri-spectral IR brightness temperatures to discriminate between ice cloud and dense dust layers, and lidar measurements alone to detect thin dust and water cloud layers. The brightness temperature difference between 10.60 and 12.05 μm (BTD11-12) is typically negative for dense dust and generally positive for ice cloud, but it varies from negative to positive for thin dust layers, which the CALIPSO lidar correctly identifies. Results show that the CLIM method could significantly reduce misclassification rates to as low as ~7% for the active dust season of spring 2008 over the Taklamakan Desert. The CLIM method also revealed 18% more dust layers having greatly intensified backscatter between 1.8 and 4 km altitude over the source region compared to the CALIPSO version 2 data. These results allow a more accurate assessment of the effect of dust on climate.

  17. 1/ f-Noise Analysis in Passive Millimeter Wave Imaging Front End Using Zero Biased Detector

    NASA Astrophysics Data System (ADS)

    Yang, F.; Wang, Z. X.; Meng, H. F.; Dou, W. B.

    2015-12-01

    Noise equivalent temperature difference (NETD) is the critical parameter for passive imaging detection. A modelling of the sensitivity performance including the f -1-type low flicker noise (1/ f-noise) influence is presented, specifically investigated on the 1/ f-noise to the sensitivity performance and the trade-offs between the low-noise amplifier (LNA)'s gain and the video frequency bandwidth. Measurement bench is set up, and results confirm that low-frequency modulation to the signal helps in improving the sensitivity performance. Based on the measurement results, it is concluded that signal power influences the 1/ f-noise properties in detection diode. The amplifier's output power is suggested to be lower than -30 dBm at least. This level is much lower than the point of P1dB (1 dB compressed point of the LNA).

  18. Passive radiation detection using optically active CMOS sensors

    NASA Astrophysics Data System (ADS)

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and β particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  19. Passive and active pulse stacking scheme for pulse shaping

    DOEpatents

    Harney, Robert C.; Schipper, John F.

    1977-01-01

    Apparatus and method for producing a sequence of radiation pulses with a pulse envelope of time variation which is controllable by an external electromagnetic signal applied to an active medium or by a sectored reflector, through which the radiation passes.

  20. [Passive remote measurement of flame infrared image by a FTIR scanning imaging system].

    PubMed

    Liu, Zhi-Ming; Gao, Min-Guang; Liu, Wen-Qing; Lu, Yi-Huai; Zhang, Tian-Shu; Xu, Liang; Wei, Xiu-Li

    2008-11-01

    The present paper introduced a FTIR scanning imaging system. This system is based on the combination of a FTIR spectrometer and a scanning mirror. So it has the advantage of FTIR spectrometer: non-contact, real-time, celerity, nicety and high sensitivity. Through scanning mirror, the authors can obtain the space information of targets. The authors used this system to measure the flames infrared emission spectra of three alcohol burners at a flat roof in our laboratory. According to Planck's law, the authors calculated the relative temperature of from each spectrum. These temperature data formed an array. The authors used matlab software to plot the infrared images of target and contrasted them with video image. They were consistent with each other very well. This experiment allowed us to obtain the temperature distribution of three alcohol burners' flames, and provide identification, visualization, and quantification of pollutant clouds.

  1. Detection of septic transfusion reactions to platelet transfusions by active and passive surveillance.

    PubMed

    Hong, Hong; Xiao, Wenbin; Lazarus, Hillard M; Good, Caryn E; Maitta, Robert W; Jacobs, Michael R

    2016-01-28

    Septic transfusion reactions (STRs) resulting from transfusion of bacterially contaminated platelets are a major hazard of platelet transfusion despite recent interventions. Active and passive surveillance for bacterially contaminated platelets was performed over 7 years (2007-2013) by culture of platelet aliquots at time of transfusion and review of reported transfusion reactions. All platelet units had been cultured 24 hours after collection and released as negative. Five sets of STR criteria were evaluated, including recent AABB criteria; sensitivity and specificity of these criteria, as well as detection by active and passive surveillance, were determined. Twenty of 51,440 platelet units transfused (0.004%; 389 per million) were bacterially contaminated by active surveillance and resulted in 5 STRs occurring 9 to 24 hours posttransfusion; none of these STRs had been reported by passive surveillance. STR occurred only in neutropenic patients transfused with high bacterial loads. A total of 284 transfusion reactions (0.55%) were reported by passive surveillance. None of these patients had received contaminated platelets. However, 6 to 93 (2.1%-32.7%) of these 284 reactions met 1 or more STR criteria, and sensitivity of STR criteria varied from 5.1% to 45.5%. These results document the continued occurrence of bacterial contamination of platelets resulting in STR in neutropenic patients, failure of passive surveillance to detect STR, and lack of specificity of STR criteria. These findings highlight the limitations of reported national STR data based on passive surveillance and the need to implement further measures to address this problem such as secondary testing or use of pathogen reduction technologies.

  2. A passive-active neutron device for assaying remote-handled transuranic waste

    SciTech Connect

    Estep, R.J.; Coop, K.L.; Deane, T.M.; Lujan, J.E.

    1989-01-01

    A combined passive-active neutron assay device was constructed for assaying remote-handled transuranic waste. A study of matrix and source position effects in active assays showed that a knowledge of the source position alone is not sufficient to correct for position-related errors in highly moderating or absorbing matrices. An alternate function for the active assay of solid fuel pellets was derived, although the efficacy of this approach remains to be established. 4 refs., 7 figs., 1 tab.

  3. Passive vs. Active Control of Rhythmic Ball Bouncing: The Role of Visual Information

    ERIC Educational Resources Information Center

    Siegler, Isabelle A.; Bardy, Benoit G.; Warren, William H.

    2010-01-01

    The simple task of bouncing a ball on a racket offers a model system for studying how human actors exploit the physics and information of the environment to control their behavior. Previous work shows that people take advantage of a passively stable solution for ball bouncing but can also use perceptual information to actively stabilize bouncing.…

  4. Radio-Frequency Interference (RFI) Mitigation for the Soil, Moisture Active/Passive (SMAP) Radiometer

    NASA Technical Reports Server (NTRS)

    Bradley, Damon; Brambora, Cliff; Wong, Mark Englin; Miles, Lynn; Durachka, David; Farmer, Brian; Mohammed, Priscilla; Piepmier, Jeff; Medeiros, Jim; Martin Neil; Garcia, Rafael

    2010-01-01

    The presence of anthropogenic RFI is expected to adversely impact soil moisture measurement by NASA s Soil Moisture Active Passive mission. The digital signal processing approach and preliminary design for detecting and mitigating this RFI is presented in this paper. This approach is largely based upon the work of Johnson and Ruf.

  5. NASA’s Soil Moisture Active Passive (SMAP) mission and opportunities for applications users

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission is one of four first-tier missions recommended by the National Research Council's Committee on Earth Science and Applications from Space. Set to launch in 2014, SMAP soil moisture and freeze/thaw measurements will have an accuracy, resolution, and glob...

  6. FOSTERING APPLICATIONS OPPORTUNITIES FOR THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council’s (NRC’s) Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. SMAP will ma...

  7. Fostering Application Opportunites for the NASA Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Moran, M. Susan; O'Neill, Peggy E.; Entekhabi, Dara; Njoku, Eni G.; Kellogg, Kent H.

    2010-01-01

    The NASA Soil Moisture Active Passive (SMAP) Mission will provide global observations of soil moisture and freeze/thaw state from space. We outline how priority applications contributed to the SMAP mission measurement requirements and how the SMAP mission plans to foster applications and applied science.

  8. Utilization of active microwave roughness measurements to improve passive microwave soil moisture estimates over bare soils

    NASA Technical Reports Server (NTRS)

    Theis, S. W.; Blanchard, B. J.; Blanchard, A. J.

    1984-01-01

    Multisensor aircraft data were used to establish the potential of the active microwave sensor response to be used to compensate for roughness in the passive microwave sensor's response to soil moisture. Only bare fields were used. It is found that the L-band radiometer's capability to estimate soil moisture significantly improves when surface roughness is accounted for with the scatterometers.

  9. Utilization of active microwave roughness measurements to improve passive microwave soil moisture estimates over bare soils

    NASA Technical Reports Server (NTRS)

    Theis, S. W.; Blanchard, A. J.; Blanchard, B. J.

    1986-01-01

    Multisensor aircraft data were used to establish the potential of the active microwave sensor response to be used to compensate for roughness in the passive microwave sensor's response to soil moisture. Only bare fields were used. It is found that the L-band radiometer's capability to estimate soil moisture significantly improves when surface roughness is accounted for with the scatterometers.

  10. 26 CFR 1.469-2T - Passive activity loss (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... year exceed the passive activity gross income for the taxable year. (2) Cross references. See paragraph... or business of performing such services or selling such property, but only if credit is customarily... such entity. (4) Cross reference. For special rules applicable to certain gross income from a trade...

  11. Temperatures Achieved in Human and Canine Neocortex During Intraoperative Passive or Active Focal Cooling

    PubMed Central

    Han, Rowland H.; Yarbrough, Chester K.; Patterson, Edward E.; Yang, Xiao-Feng; Miller, John W.; Rothman, Steven M.; D'Ambrosio, Raimondo

    2015-01-01

    Focal cortical cooling inhibits seizures and prevents acquired epileptogenesis in rodents. To investigate the potential clinical utility of this treatment modality, we examined the thermal characteristics of canine and human brain undergoing active and passive surface cooling in intraoperative settings. Four patients with intractable epilepsy were treated in a standard manner. Before the resection of a neocortical epileptogenic focus, multiple intraoperative studies of active (custom-made cooled irrigation-perfused grid) and passive (stainless steel probe) cooling were performed. We also actively cooled the neocortices of two dogs with perfused grids implanted for 2 hours. Focal surface cooling of the human brain causes predictable depth-dependent cooling of the underlying brain tissue. Cooling of 0.6–2°C was achieved both actively and passively to a depth of 10–15 mm from the cortical surface. The perfused grid permitted comparable and persistent cooling of canine neocortex when the craniotomy was closed. Thus, the human cortex can easily be cooled with the use of simple devices such as a cooling grid or a small passive probe. These techniques provide pilot data for the design of a permanently implantable device to control intractable epilepsy. PMID:25902001

  12. Geochemical discrimination of siliciclastic sediments from active and passive margin settings

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.; Armstrong-Altrin, John S.

    2016-03-01

    Discrimination of active and passive margins is important from both academic and economic aspects. This can only be successfully achieved, however, if there are major compositional differences among sediments derived from different continental margins. A worldwide database of active and passive margin settings was established from published major and trace element geochemical data of Neogene to Quaternary siliciclastic sediments. These data were used to evaluate the performance of existing discrimination diagrams, which were shown to work unsatisfactorily with success values of mostly between 0% and 30%. Because these diagrams were not based on a statistically coherent methodology, we proposed two new discriminant functions from linear discriminant analysis of multinormally distributed isometric log-transformed ratios of major and combined major and trace elements. These new diagrams showed very high percent success values of about 87%-97% and 84%-86% for the active and passive margins, respectively, for the original database. Excellent performance of the multidimensional diagrams and related discriminant functions was confirmed from 11 test studies involving Quaternary to Holocene siliciclastic sediments from known tectonic margins. The expected result of an active or passive margin was obtained, with most samples plotting correctly in the respective field.

  13. Variability in Measurement of Swimming Forces: A Meta-Analysis of Passive and Active Drag

    ERIC Educational Resources Information Center

    Havriluk, Rod

    2007-01-01

    An analysis was conducted to identify sources of true and error variance in measuring swimming drag force to draw valid conclusions about performance factor effects. Passive drag studies were grouped according to methodological differences: tow line in pool, tow line in flume, and carriage in tow tank. Active drag studies were grouped according to…

  14. VOLATILE ORGANIC COMPOUNDS AS BREATH BIOMARKERS FOR ACTIVE AND PASSIVE SMOKING

    EPA Science Inventory

    Real-time breath measurement technology was used to investigate the suitability of some volatile organic compounds (VOCs) to serve as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to toba...

  15. Influence of Passive and Active Vestibular Stimulation and Balance of Young Children.

    ERIC Educational Resources Information Center

    Gabert, Trent E.; And Others

    1982-01-01

    Sixty six-to eight-year-olds with below-average scores on three balance tests received active, passive or no vestibular stimulation over a five-week period. Balance scores improved for all groups on one or more tests. Improvement could not be related to vestibular stimulation. (Author/RD)

  16. 26 CFR 1.469-3T - Passive activity credit (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... allocable to passive activities for 1988 is zero. Although B's net operating loss for the taxable year is... partner in calendar year partnership P. P purchases a building in 1987 and, in 1987, 1988, and 1989, incurs rehabilitation costs with respect to the building. The building is placed in service in the...

  17. 26 CFR 1.469-3T - Passive activity credit (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... allocable to passive activities for 1988 is zero. Although B's net operating loss for the taxable year is... partner in calendar year partnership P. P purchases a building in 1987 and, in 1987, 1988, and 1989, incurs rehabilitation costs with respect to the building. The building is placed in service in the...

  18. Validation of the Soil Moisture Active Passive mission using USDA-ARS experimental watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The calibration and validation program of the Soil Moisture Active Passive mission (SMAP) relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The USDA Agricultural Research Service operates several experimental watersheds wh...

  19. Passive and Active Vibrations Allow Self-Organization in Large-Scale Electromechanical Systems

    NASA Astrophysics Data System (ADS)

    Buscarino, Arturo; Fortuna, Carlo Famoso Luigi; Frasca, Mattia

    2016-06-01

    In this paper, the role of passive and active vibrations for the control of nonlinear large-scale electromechanical systems is investigated. The mathematical model of the system is discussed and detailed experimental results are shown in order to prove that coupling the effects of feedback and vibrations elicited by proper control signals makes possible to regularize imperfect uncertain large-scale systems.

  20. Initial validation of the Soil Moisture Active Passive mission using USDA-ARS watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) Mission was launched in January 2015 to measure global surface soil moisture. The calibration and validation program of SMAP relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The U...

  1. Passive vs. active control of rhythmic ball bouncing: the role of visual information.

    PubMed

    Siegler, Isabelle A; Bardy, Benoît G; Warren, William H

    2010-06-01

    The simple task of bouncing a ball on a racket offers a model system for studying how human actors exploit the physics and information of the environment to control their behavior. Previous work shows that people take advantage of a passively stable solution for ball bouncing but can also use perceptual information to actively stabilize bouncing. In this article, we investigate (a) active and passive contributions to the control of bouncing, (b) the visual information in the ball's trajectory, and (c) how it modulates the parameters of racket oscillation. We used a virtual ball bouncing apparatus to manipulate the coefficient of restitution alpha and gravitational acceleration g during steady-state bouncing (Experiment 1) and sudden transitions (Experiment 2) to dissociate informational variables. The results support a form of mixed control, based on the half-period of the ball's trajectory, in which racket oscillation is actively regulated on every cycle in order to keep the system in or near the passively stable region. The mixed control mode may be a general strategy for integrating passive stability with active stabilization in perception-action systems.

  2. Corticomotor excitability of wrist flexor and extensor muscles during active and passive movement.

    PubMed

    Chye, Lilian; Nosaka, Ken; Murray, Lynda; Edwards, Dylan; Thickbroom, Gary

    2010-08-01

    The excitability of the corticospinal projection to upper and lower limbs is constantly modulated during voluntary and passive movement; however a direct comparison during a comparable movement has not been reported. In the present study we used transcranial magnetic stimulation (TMS) to compare corticomotor excitability to the extensor and flexor carpi radialis (ECR/FCR) muscles of the forearm during voluntary rhythmic wrist movement (through 45 degrees of range), during a matched (for range and rhythm) passive movement of the wrist, and while the wrist was stationary (in mid-range). TMS was delivered when the wrist was in the neutral position. With passive and active movement, and for both FCR and ECR, corticomotor excitability was reduced during lengthening relative to shortening phases of movement. With active movement, this pattern was maintained and superimposed on an overall increase in excitability to both muscles that was greater for the ECR. The results favor a common pattern of excitability changes shared by extensor and flexor muscles as they undergo lengthening and shortening, which may be mediated by afferent input during both passive and active movement. This is combined with an overall increase in excitability associated with active movement that is greater for extensor muscles perhaps due to differences in the strength of the corticomotor projection to these muscles.

  3. Assimilation of active and passive microwave observations for improved estimates of soil moisture and crop growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Ensemble Kalman Filter-based data assimilation framework that links a crop growth model with active and passive (AP) microwave models was developed to improve estimates of soil moisture (SM) and vegetation biomass over a growing season of soybean. Complementarities in AP observations were incorpo...

  4. Passive smoking, active smoking, and education: their relationship to weight history in women in Geneva.

    PubMed Central

    Bernstein, M; Morabia, A; Héritier, S; Katchatrian, N

    1996-01-01

    OBJECTIVES: This study was undertaken to determine the relationship of education and tobacco smoke to lifetime weight history in women. METHODS: Information on passive smoking, active smoking, and weight history was collected from 928 women aged 29 to 74 years selected from the general population of Geneva, Switzerland. Multivariate analysis of variance was performed for weight, weight at age 20, and weight changes since age 20. RESULTS: Education was inversely related to weight at age 20, current weight, and weight gain since age 20. The least educated group had a current weight of 4 kg more than the most educated group. Differences across smoking categories were small: passive smokers had the highest current weight (63.4 kg) and former active smokers had the lowest (60.4 kg). Weight gain since age 20 tended to be smaller in former and current active smokers (5.5 to 7.2 kg) than in passive smokers (8.3 to 10.4 kg) and those never exposed (9.1 kg). CONCLUSIONS: In this sample, education was an important predictor of women's current weight and weight history. Passive and active smoking had little long-term effect on weight. PMID:8806379

  5. Recent Developments in Active and Passive Distributed Temperature Sensing for Soil Moisture Monitoring

    NASA Astrophysics Data System (ADS)

    Steele-Dunne, S. C.; Dong, J.; Hoes, O.; Van De Giesen, N.; Sayde, C.; Ochsner, T. E.; Selker, J. S.

    2015-12-01

    In this presentation we will review recent developments in both active and passive Distributed Temperature Sensing (DTS) for soil moisture monitoring. DTS involves using fiber-optic cables to measure temperature at sub-meter resolution along cables up to several kilometers in length. Soil thermal properties depend on soil moisture. Hence, temperature variations either in response to externally-applied heating (active) or the response to net radiation (passive) can be monitored and used to infer soil moisture. DTS occupies a unique measurement niche, potentially providing soil moisture information at sub-meter resolution over extents on the order of km at sub-daily time steps. It complements observations from point sensors to other innovative measurement techniques like cosmic ray neutron detection methods and GPS reflectometry. DTS is being developed as a tool for the validation of soil moisture observations from remote sensing and for hydrological field investigations. Here, we will discuss both technological and theoretical advances in active and passive DTS for soil moisture monitoring. We will present data from new installations in the Netherlands and the USA to illustrate recent developments. In particular, we will focus on the value of combining temperature observations from DTS with physical models using data assimilation. In addition to yielding improved soil moisture and temperature profile estimates, recent research has shown the potential to also derive information on the soil thermal and hydraulic properties. We will conclude by outlining the current challenges, with particular emphasis on combining active and passive DTS.

  6. Direct laser writing for active and passive high-Q polymer microdisks on silicon.

    PubMed

    Grossmann, Tobias; Schleede, Simone; Hauser, Mario; Beck, Torsten; Thiel, Michael; von Freymann, Georg; Mappes, Timo; Kalt, Heinz

    2011-06-01

    We report the fabrication of high-Q polymeric microdisks on silicon via direct laser writing utilizing two-photon absorption induced polymerization. The quality factors of the passive cavities are above 10(6) in the 1300 nm wavelength region. The flexible three-dimensional (3D) lithography method allows for the fabrication of different cavity thicknesses on the same substrate, useful for rapid prototyping of active and passive optical microcavities. Microdisk lasers are realized by doping the resist with dye, resulting in laser emission at visible wavelengths.

  7. New Combined L-band Active/Passive Soil Moisture Retrieval Algorithm Optimized for Argentine Plains

    NASA Astrophysics Data System (ADS)

    Bruscantini, C. A.; Grings, F. M.; Salvia, M.; Ferrazzoli, P.; Karszenbaum, H.

    2015-12-01

    The ability of L-band passive microwave satellite observations to provide soil moisture (mv) measurements is well known. Despite its high sensitivity to near-surface mv, radiometric technology suffers from having a relatively low spatial resolution. Conversely active microwave observations, although their finer resolution, are difficult to be interpreted for mv content due to the confounding effects of vegetation and roughness. There have been and there are strong motivations for the realization of satellite missions that carry passive and active microwave instruments on board. This has also led to important contributions in algorithm development. In this line of work, NASA-CONAE SAC-D/Aquarius mission had on board an L band radiometer and scatterometer. This was followed by the launch of NASA SMAP mission (Soil Moisture Active Passive), as well as several airborne campaigns that provide active and passive measurements. Within this frame, a new combined active/passive mv retrieval algorithm is proposed by deriving an analytical expression of brightness temperature and radar backscattering relation using explicit semi-empirical models. Simple models (i.e. that can be easily inverted and have relatively low amount of ancillary parameters) were selected: ω-τ model (Jackson et al., 1982, Water Resources Research) and radar-only model (Narvekar et al., 2015, IEEE Transactions on Geoscience and Remote Sensing). A major challenge involves coupling the active and passive models to be consistent with observations. Coupling equations can be derived using theoretical active/passive high-order radiative transfer models, such as 3D Numerical Method of Maxwell equations (Zhou et al., 2004, IEEE Transactions on Geoscience and Remote Sensing) and Tor Vergata (Ferrazzoli et al., 1995,Remote Sensing of Environment) models. In this context, different coupling equations can be optimized for different land covers using theoretical forward models with specific parametrization for each

  8. Classification methods for monitoring Arctic sea ice using OKEAN passive/active two-channel microwave data

    USGS Publications Warehouse

    Belchansky, Gennady I.; Douglas, David C.

    2000-01-01

    This paper presents methods for classifying Arctic sea ice using both passive and active (2-channel) microwave imagery acquired by the Russian OKEAN 01 polar-orbiting satellite series. Methods and results are compared to sea ice classifications derived from nearly coincident Special Sensor Microwave Imager (SSM/I) and Advanced Very High Resolution Radiometer (AVHRR) image data of the Barents, Kara, and Laptev Seas. The Russian OKEAN 01 satellite data were collected over weekly intervals during October 1995 through December 1997. Methods are presented for calibrating, georeferencing and classifying the raw active radar and passive microwave OKEAN 01 data, and for correcting the OKEAN 01 microwave radiometer calibration wedge based on concurrent 37 GHz horizontal polarization SSM/I brightness temperature data. Sea ice type and ice concentration algorithms utilized OKEAN's two-channel radar and passive microwave data in a linear mixture model based on the measured values of brightness temperature and radar backscatter, together with a priori knowledge about the scattering parameters and natural emissivities of basic sea ice types. OKEAN 01 data and algorithms tended to classify lower concentrations of young or first-year sea ice when concentrations were less than 60%, and to produce higher concentrations of multi-year sea ice when concentrations were greater than 40%, when compared to estimates produced from SSM/I data. Overall, total sea ice concentration maps derived independently from OKEAN 01, SSM/I, and AVHRR satellite imagery were all highly correlated, with uniform biases, and mean differences in total ice concentration of less than four percent (sd<15%).

  9. Sp receiver function imaging of a passive margin: Transect across Texas's Gulf Coastal Plain

    NASA Astrophysics Data System (ADS)

    Ainsworth, Ryan; Pulliam, Jay; Gurrola, Harold; Evanzia, Dominic

    2014-09-01

    The Gulf Coast of Texas has been the subject of intensive geological and geophysical investigation in pursuit of hydrocarbons but studies that penetrate beyond the upper crust are limited to a few refraction profiles and regional surface wave investigations. The passing of EarthScope's Transportable Array has facilitated regional investigations of the lithosphere but its 70-km station spacing does not allow many important tectonic features to be imaged. A broadband seismic transect across the Texas Gulf Coastal Plain was therefore performed in order to image deep structure beneath this passive margin and the transition to the neighboring craton. A 2D Sp receiver function common conversion point (CCP) stacked image produced for this transect reveals several discontinuities in the sub-crustal lithosphere. The region nearest the shoreline is underlain by an anomalous ∼18 km thick low velocity layer that produces a strong negative pulse in the Sp receiver functions. The drop in velocity is too large to be due to any reasonable change in Fe or Mg content but could be produced by partial melt or mantle hydration. It is unlikely that partial melt would still be found in a 160-180-year-old passive margin, such as the Gulf Coast, but hydration, possibly introduced by a through-going Balcones fault system, and resulting serpentinization could produce the observed anomaly. An event with negative polarity appears at a depth of ∼110 km, which we interpret to be the lithosphere-asthenosphere boundary (LAB). Thermal variations alone would not produce a sufficiently sharp discontinuity to be imaged by Sp converted phases. Recent shear-wave splitting studies revealed unusually large delay times in this region, along with fast polarization directions that differ from measurements on the Laurentian craton. Large delay times may imply significant flow, which could also produce frictional heating, due to shearing, and partial melt, which would steepen the velocity gradients. An

  10. Deficits in Agency in Schizophrenia, and Additional Deficits in Body Image, Body Schema, and Internal Timing, in Passivity Symptoms

    PubMed Central

    Graham, Kyran T.; Martin-Iverson, Mathew T.; Holmes, Nicholas P.; Jablensky, Assen; Waters, Flavie

    2014-01-01

    Individuals with schizophrenia, particularly those with passivity symptoms, may not feel in control of their actions, believing them to be controlled by external agents. Cognitive operations that contribute to these symptoms may include abnormal processing in agency as well as body representations that deal with body schema and body image. However, these operations in schizophrenia are not fully understood, and the questions of general versus specific deficits in individuals with different symptom profiles remain unanswered. Using the projected-hand illusion (a digital video version of the rubber-hand illusion) with synchronous and asynchronous stroking (500 ms delay), and a hand laterality judgment task, we assessed sense of agency, body image, and body schema in 53 people with clinically stable schizophrenia (with a current, past, and no history of passivity symptoms) and 48 healthy controls. The results revealed a stable trait in schizophrenia with no difference between clinical subgroups (sense of agency) and some quantitative (specific) differences depending on the passivity symptom profile (body image and body schema). Specifically, a reduced sense of self-agency was a common feature of all clinical subgroups. However, subgroup comparisons showed that individuals with passivity symptoms (both current and past) had significantly greater deficits on tasks assessing body image and body schema, relative to the other groups. In addition, patients with current passivity symptoms failed to demonstrate the normal reduction in body illusion typically seen with a 500 ms delay in visual feedback (asynchronous condition), suggesting internal timing problems. Altogether, the results underscore self-abnormalities in schizophrenia, provide evidence for both trait abnormalities and state changes specific to passivity symptoms, and point to a role for internal timing deficits as a mechanistic explanation for external cues becoming a possible source of self-body input

  11. Passive/Active Microwave Soil Moisture Disaggregation Using SMAPVEX12 Data

    NASA Astrophysics Data System (ADS)

    Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T. J.; Colliander, A.

    2015-12-01

    The SMAPVEX12 experiment was conducted during June-July 2012 in Manitoba, Canada with the goal of collecting remote sensing data and ground measurements for the development and testing of soil moisture retrieval algorithms under different vegetation and soil conditions for the SMAP (Soil Moisture Active Passive) satellite launched in January 2015. The aircraft based soil moisture data provided by the passive/active microwave sensor PALS (Passive and Active L and S band System) has a nominal spatial resolution of 1500 m. In this study, a change detection algorithm is used for disaggregation of coarse passive microwave soil moisture retrievals with radar backscatter coefficients obtained with the higher spatial resolution UAVSAR (Unmanned Air Vehicle Synthetic Aperture Radar). The accuracy of the disaggregated change in soil moisture was evaluated using ground based soil moisture measurements. Results show that the disaggregation products are well correlated to in situ measurements. Based on the R2, the highest resolution disaggregated product at 5 m exhibits soil moisture heterogeneity that reflects the distribution of the crops. The difference of spatial standard deviation between the disaggregated and in situ soil moisture ranges from <0.001-0.131 m3/m3 also proves the spatial capability of the change detection algorithm at 5 m scale.

  12. Study on development of active-passive rehabilitation system for upper limbs: Hybrid-PLEMO

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Jin, Y.; Fukushima, K.; Akai, H.; Furusho, J.

    2009-02-01

    In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. Active-type (motor-driven) haptic devices can realize a lot of varieties of haptics. But they basically require high-cost safety system. On the other hand, passive-type (brake-based) haptic devices have inherent safety. However, the passive robot system has strong limitation on varieties of haptics. There are not sufficient evidences to clarify how the passive/active haptics effect to the rehabilitation of motor skills. In this paper, we developed an active-passive-switchable rehabilitation system with ER clutch/brake device named "Hybrid-PLEMO" in order to address these problems. In this paper, basic structures and haptic control methods of the Hybrid-PLEMO are described.

  13. Physiologic Responses Produced by Active and Passive Personal Cooling Vests

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Luna, Bernadette

    2000-01-01

    Personal thermoregulatory systems which provide chest cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to document and compare the subjects' response to three cooling vests in their recommended configurations. The Life Enhancement Tech (LET) lightweight active cooling vest with cap, the MicroClimate Systems Change of Phase garment (MCS), and the Steele Vest were each used to cool the chest regions of 12 male and 8 female Healthy subjects (21 to 69 yr.) in this study. The subjects, seated in an upright position at normal room temperature (approx. 22 C), were tested for 60 min. with one of the cooling garments. The LET active garment had an initial coolant fluid inlet temperature of 60 F, and was ramped down to 50 F. Oral, right and left ear canal temperatures were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; and respiration were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. For men, all three vests had similar, significant cooling effects. Decreases in the average rectal temperature, oral temperature, and ear canal temperatures were approximately 0.2 C, 0.2 C and 0.1 C, respectively. In contrast to the men, the female subjects wearing the MCS and Steel vests had similar cooling responses in which the core temperature remained elevated and oral and ear canal temperatures did not drop. The LET active garment cooled most of the female subjects in this study; rectal, oral and ear temperature decreased about 0.2 C, 0.3 C and 0.3 C, respectively. These results show that the garment configurations tested do not elicit a similar thermal response in all subjects. A gender difference is evident. The LET active garment configuration was most effective in decreasing temperatures of the female subjects; the MCS

  14. a Comparison Between Active and Passive Techniques for Underwater 3d Applications

    NASA Astrophysics Data System (ADS)

    Bianco, G.; Gallo, A.; Bruno, F.; Muzzupappa, M.

    2011-09-01

    In the field of 3D scanning, there is an increasing need for more accurate technologies to acquire 3D models of close range objects. Underwater exploration, for example, is very hard to perform due to the hostile conditions and the bad visibility of the environment. Some application fields, like underwater archaeology, require to recover tridimensional data of objects that cannot be moved from their site or touched in order to avoid possible damages. Photogrammetry is widely used for underwater 3D acquisition, because it requires just one or two digital still or video cameras to acquire a sequence of images taken from different viewpoints. Stereo systems composed by a pair of cameras are often employed on underwater robots (i.e. ROVs, Remotely Operated Vehicles) and used by scuba divers, in order to survey archaeological sites, reconstruct complex 3D structures in aquatic environment, estimate in situ the length of marine organisms, etc. The stereo 3D reconstruction is based on the triangulation of corresponding points on the two views. This requires to find in both images common points and to match them (correspondence problem), determining a plane that contains the 3D point on the object. Another 3D technique, frequently used in air acquisition, solves this point-matching problem by projecting structured lighting patterns to codify the acquired scene. The corresponding points are identified associating a binary code in both images. In this work we have tested and compared two whole-field 3D imaging techniques (active and passive) based on stereo vision, in underwater environment. A 3D system has been designed, composed by a digital projector and two still cameras mounted in waterproof housing, so that it can perform the various acquisitions without changing the configuration of optical devices. The tests were conducted in a water tank in different turbidity conditions, on objects with different surface properties. In order to simulate a typical seafloor, we used

  15. [Rectal temperature in active and passive rats during desynchronosis and under melatonin treatment ].

    PubMed

    Pertsov, S S

    2005-03-01

    Effects of phase shifts in circadian rhythms and of melatonin administration on rectal temperature in rats with different activity were studied in the open-field test on 176 Wistar rats kept under conditions of natural or shifted light-darkness period. Under normal light-darkness conditions, the amplitude of diurnal variation in rectal temperature was higher in active rats as compared with passive ones. A shift in the light-darkness conditions inverted the circadian rhythm of rectal temperature and augmented the difference between daytime and night time temperatures in passive and, particularly, in active rats. Melatonin effect depended on dose and time of administration. 1 mg/kg Melatonin enhanced the amplitude of diurnal rhythms of energy metabolism in behaviourally active rats. These changes seem to contribute to adaptive reconstruction in the organism during desynchronosis. PMID:15881881

  16. "Active" and "passive" learning of three-dimensional object structure within an immersive virtual reality environment.

    PubMed

    James, K H; Humphrey, G K; Vilis, T; Corrie, B; Baddour, R; Goodale, M A

    2002-08-01

    We used a fully immersive virtual reality environment to study whether actively interacting with objects would effect subsequent recognition, when compared with passively observing the same objects. We found that when participants learned object structure by actively rotating the objects, the objects were recognized faster during a subsequent recognition task than when object structure was learned through passive observation. We also found that participants focused their study time during active exploration on a limited number of object views, while ignoring other views. Overall, our results suggest that allowing active exploration of an object during initial learning can facilitate recognition of that object, perhaps owing to the control that the participant has over the object views upon which they can focus. The virtual reality environment is ideal for studying such processes, allowing realistic interaction with objects while maintaining experimenter control. PMID:12395554

  17. Tau-based therapeutics for Alzheimer's disease: active and passive immunotherapy.

    PubMed

    Panza, Francesco; Solfrizzi, Vincenzo; Seripa, Davide; Imbimbo, Bruno P; Lozupone, Madia; Santamato, Andrea; Tortelli, Rosanna; Galizia, Ilaria; Prete, Camilla; Daniele, Antonio; Pilotto, Alberto; Greco, Antonio; Logroscino, Giancarlo

    2016-09-01

    Pharmacological manipulation of tau protein in Alzheimer's disease included microtubule-stabilizing agents, tau protein kinase inhibitors, tau aggregation inhibitors, active and passive immunotherapies and, more recently, inhibitors of tau acetylation. Animal studies have shown that both active and passive approaches can remove tau pathology and, in some cases, improve cognitive function. Two active vaccines targeting either nonphosphorylated (AAD-vac1) and phosphorylated tau (ACI-35) have entered Phase I testing. Notwithstanding, the recent discontinuation of the monoclonal antibody RG7345 for Alzheimer's disease, two other antitau antibodies, BMS-986168 and C2N-8E12, are also currently in Phase I testing for progressive supranuclear palsy. After the recent impressive results in animal studies obtained by salsalate, the dimer of salicylic acid, inhibitors of tau acetylation are being actively pursued. PMID:27485083

  18. Silver Nanoclusters with Specific Ion Recognition Modulated by Ligand Passivation toward Fluorimetric and Colorimetric Copper Analysis and Biological Imaging.

    PubMed

    Sun, Zongzhao; Li, Shuying; Jiang, Yao; Qiao, Yuchun; Zhang, Liyan; Xu, Lulu; Liu, Jinghui; Qi, Wei; Wang, Hua

    2016-01-01

    Silver nanoclusters were synthesized and passivated by glutathione (GSH) ligand, with high aqueous stability and powerful red fluorescence and UV-vis yellow colour. Importantly, the specific recognition of the AgNCs was modulated from Hg(2+) ions to Cu(2+) ions upon the GSH passivation, of which the unique GSH-Cu(2+) chelating reaction could conduct the fluorescence quenching of AgNCs. Strong UV-vis absorbance of GSH-passivated AgNCs could also be realized depending on the Cu(2+) levels. Moreover, the Cu(2+)-induced loss of fluorescence and UV-vis absorbance of GSH-passivated AgNCs could be well restored by using stronger Cu(2+) chelating agent. A simultaneous and reversible fluorimetric and colorimetric sensing method was thereby developed for probing Cu(2+) ions in blood with high sensitivity and selectivity. Subsequently, the fluorescence-trackable imaging for live tissues and cells was demonstrated towards the analysis Cu(2+) ions using GSH-passivated AgNCs as the fluorescent probes. This study indicates that the use of functional ligands like GSH could not only modulate the specific ion recognition of AgNCs, but also endow them the high aqueous stability and powerful red fluorescence towards the wide applications for ion sensing and biological imaging in the complicated media like blood. PMID:26847593

  19. Silver Nanoclusters with Specific Ion Recognition Modulated by Ligand Passivation toward Fluorimetric and Colorimetric Copper Analysis and Biological Imaging

    PubMed Central

    Sun, Zongzhao; Li, Shuying; Jiang, Yao; Qiao, Yuchun; Zhang, Liyan; Xu, Lulu; Liu, Jinghui; Qi, Wei; Wang, Hua

    2016-01-01

    Silver nanoclusters were synthesized and passivated by glutathione (GSH) ligand, with high aqueous stability and powerful red fluorescence and UV-vis yellow colour. Importantly, the specific recognition of the AgNCs was modulated from Hg2+ ions to Cu2+ ions upon the GSH passivation, of which the unique GSH-Cu2+ chelating reaction could conduct the fluorescence quenching of AgNCs. Strong UV-vis absorbance of GSH-passivated AgNCs could also be realized depending on the Cu2+ levels. Moreover, the Cu2+-induced loss of fluorescence and UV-vis absorbance of GSH-passivated AgNCs could be well restored by using stronger Cu2+ chelating agent. A simultaneous and reversible fluorimetric and colorimetric sensing method was thereby developed for probing Cu2+ ions in blood with high sensitivity and selectivity. Subsequently, the fluorescence-trackable imaging for live tissues and cells was demonstrated towards the analysis Cu2+ ions using GSH-passivated AgNCs as the fluorescent probes. This study indicates that the use of functional ligands like GSH could not only modulate the specific ion recognition of AgNCs, but also endow them the high aqueous stability and powerful red fluorescence towards the wide applications for ion sensing and biological imaging in the complicated media like blood. PMID:26847593

  20. Silver Nanoclusters with Specific Ion Recognition Modulated by Ligand Passivation toward Fluorimetric and Colorimetric Copper Analysis and Biological Imaging

    NASA Astrophysics Data System (ADS)

    Sun, Zongzhao; Li, Shuying; Jiang, Yao; Qiao, Yuchun; Zhang, Liyan; Xu, Lulu; Liu, Jinghui; Qi, Wei; Wang, Hua

    2016-02-01

    Silver nanoclusters were synthesized and passivated by glutathione (GSH) ligand, with high aqueous stability and powerful red fluorescence and UV-vis yellow colour. Importantly, the specific recognition of the AgNCs was modulated from Hg2+ ions to Cu2+ ions upon the GSH passivation, of which the unique GSH-Cu2+ chelating reaction could conduct the fluorescence quenching of AgNCs. Strong UV-vis absorbance of GSH-passivated AgNCs could also be realized depending on the Cu2+ levels. Moreover, the Cu2+-induced loss of fluorescence and UV-vis absorbance of GSH-passivated AgNCs could be well restored by using stronger Cu2+ chelating agent. A simultaneous and reversible fluorimetric and colorimetric sensing method was thereby developed for probing Cu2+ ions in blood with high sensitivity and selectivity. Subsequently, the fluorescence-trackable imaging for live tissues and cells was demonstrated towards the analysis Cu2+ ions using GSH-passivated AgNCs as the fluorescent probes. This study indicates that the use of functional ligands like GSH could not only modulate the specific ion recognition of AgNCs, but also endow them the high aqueous stability and powerful red fluorescence towards the wide applications for ion sensing and biological imaging in the complicated media like blood.

  1. Active and passive smoking and risk of breast cancer: a meta-analysis.

    PubMed

    Macacu, Alina; Autier, Philippe; Boniol, Mathieu; Boyle, Peter

    2015-11-01

    Studies on active and passive tobacco smoking and breast cancer have found inconsistent results. A meta-analysis of observational studies on tobacco smoking and breast cancer occurrence was conducted based on systematic searches for studies with retrospective (case-control) and prospective (cohort) designs. Eligible studies were identified, and relative risk measurements were extracted for active and passive tobacco exposures. Random-effects meta-analyses were used to compute summary relative risks (SRR). Heterogeneity of results between studies was evaluated using the (I (2)) statistics. For ever active smoking, in 27 prospective studies, the SRR for breast cancer was 1.10 (95 % CI [1.09-1.12]) with no heterogeneity (I (2) = 0 %). In 44 retrospective studies, the SRR was 1.08 (95 % CI [1.02-1.14]) with high heterogeneity (I (2) = 59 %). SRRs for current active smoking were 1.13 (95 % CI [1.09-1.17]) in 27 prospective studies and 1.08 (95 % CI [0.97-1.20]) in 22 retrospective studies. The results were stable across different subgroup analyses, notably pre/post-menopause, alcohol consumption adjustments, including/excluding passive smokers from the referent group. For ever passive smoking, in 11 prospective studies, the SRR for breast cancer was 1.07 (95 % CI [1.02-1.13]) with no heterogeneity (I (2) = 1 %). In 20 retrospective studies, the SRR was 1.30 (95 % CI [1.10-1.54]) with high heterogeneity (I (2) = 74 %). Too few prospective studies were available for meaningful subgroup analyses. There is consistent evidence for a moderate increase in the risk of breast cancer in women who smoke tobacco. The evidence for a moderate increase in risk with passive smoking is more substantial than a few years ago.

  2. Angiogenic response to passive movement and active exercise in individuals with peripheral arterial disease.

    PubMed

    Hoier, B; Walker, M; Passos, M; Walker, P J; Green, A; Bangsbo, J; Askew, C D; Hellsten, Y

    2013-12-01

    Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher (P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ∼27% lower (P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase (P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients.

  3. Active and passive smoking and risk of breast cancer: a meta-analysis.

    PubMed

    Macacu, Alina; Autier, Philippe; Boniol, Mathieu; Boyle, Peter

    2015-11-01

    Studies on active and passive tobacco smoking and breast cancer have found inconsistent results. A meta-analysis of observational studies on tobacco smoking and breast cancer occurrence was conducted based on systematic searches for studies with retrospective (case-control) and prospective (cohort) designs. Eligible studies were identified, and relative risk measurements were extracted for active and passive tobacco exposures. Random-effects meta-analyses were used to compute summary relative risks (SRR). Heterogeneity of results between studies was evaluated using the (I (2)) statistics. For ever active smoking, in 27 prospective studies, the SRR for breast cancer was 1.10 (95 % CI [1.09-1.12]) with no heterogeneity (I (2) = 0 %). In 44 retrospective studies, the SRR was 1.08 (95 % CI [1.02-1.14]) with high heterogeneity (I (2) = 59 %). SRRs for current active smoking were 1.13 (95 % CI [1.09-1.17]) in 27 prospective studies and 1.08 (95 % CI [0.97-1.20]) in 22 retrospective studies. The results were stable across different subgroup analyses, notably pre/post-menopause, alcohol consumption adjustments, including/excluding passive smokers from the referent group. For ever passive smoking, in 11 prospective studies, the SRR for breast cancer was 1.07 (95 % CI [1.02-1.13]) with no heterogeneity (I (2) = 1 %). In 20 retrospective studies, the SRR was 1.30 (95 % CI [1.10-1.54]) with high heterogeneity (I (2) = 74 %). Too few prospective studies were available for meaningful subgroup analyses. There is consistent evidence for a moderate increase in the risk of breast cancer in women who smoke tobacco. The evidence for a moderate increase in risk with passive smoking is more substantial than a few years ago. PMID:26546245

  4. Effects of active vs. passive recovery on repeated rugby-specific exercises.

    PubMed

    Jougla, A; Micallef, J P; Mottet, D

    2010-05-01

    The aim of this study was to determine the effects of active vs. passive recovery on performance of a rugby-specific intermittent test in rugby union players. Seven male rugby players (20.6+/-0.5 yrs; 181.9+/-10.0 cm; 94.5+/-12.8 kg) performed in random order, over two separate sessions, a specific repeated-sprint rugby test, the Narbonne test (6 x 4 consecutive actions: 1, scrummaging; 2, agility sprinting; 3, tackling; 4, straight sprinting) with 30s of passive or active recovery (running at 50% of maximal aerobic speed). The Narbonne tests were completed before (pre-test) and after (post-test) a 30-min rugby match. During the Narbonne test, scrum forces, agility and sprint times, heart rate and rate of perceived exertion were measured. Scrum forces were lower in active (74.9+/-13.4 kg) than in passive recovery (90.4+/-20.9 kg), only during the post-test (p<0.05). Fatigue index (%) (p<0.05) and total sprint time (s) (p<0.01) were significantly greater in active than in passive recovery, both during the pre-test (11.5+/-5.7% vs. 6.7+/-4.5% and 18.1+/-1.3s vs. 16.9+/-0.9s) and the post-test (7.3+/-3.3% vs. 4.3+/-1.5% and 18.3+/-1.6s vs. 16.9+/-1.1s). Consequently, the results indicated that passive recovery enabled better performance during the Narbonne test. However, it is obviously impractical to suggest that players should stand still during and following repeated-sprint bouts: the players have to move to ensure they have taken an optimal position. PMID:19560972

  5. Active and Passive Sensing from Geosynchronous and Libration Orbits

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Raymond, Carol; Hildebrand, Peter

    2003-01-01

    The development of the LEO (EOS) missions has led the way to new technologies and new science discoveries. However, LEO measurements alone cannot cost effectively produce high time resolution measurements needed to move the science to the next level. Both GEO and the Lagrange points, L1 and L2, provide vantage points that will allow higher time resolution measurements. GEO is currently being exploited by weather satellites, but the sensors currently operating at GEO do not provide the spatial or spectral resolution needed for atmospheric trace gas, ocean or land surface measurements. It is also may be possible to place active sensors in geostationary orbit. It seems clear, that the next era in earth observation and discovery will be opened by sensor systems operating beyond near earth orbit.

  6. IMAGINE project: a low cost, high performance, monolithic passive mm-wave imager front-end

    NASA Astrophysics Data System (ADS)

    Alexander, N.; Frijlink, P.; Hendricks, J.; Limiti, E.; Löffler, S.; Macdonald, C.; Maher, H.; Pettersson, L.; Platt, D.; Rice, P.; Riester, M.; Schulze, D.; Vassilev, V.

    2012-10-01

    The FP7 Research for SME project IMAGINE - a low cost, high performance monolithic passive mm-wave imager front-end is described in this paper. The main innovation areas for the project are: i) the development of a 94 GHz radiometer chipset and matching circuits suitable for monolithic integration. The chipset consists of a W-band low noise amplifier, fabricated using the commercially available OMMIC D007IH GaAs mHEMT process, and a zero bias resonant interband tunneling diode, fabricated using a patented epi-layer structure that is lattice matched to the same D007IH process; ii) the development of a 94 GHz antenna adapted for low cost manufacturing methods with performance suitable for real-time imaging; iii) the development of a low cost liquid crystal polymer PCB build-up technology with performance suitable for the integration and assembly of a 94 GHz radiometer module; iv) the assembly of technology demonstrator modules. The results achieved in these areas are presented.

  7. Simulated radiance profiles for automating the interpretation of airborne passive multi-spectral infrared images.

    PubMed

    Sulub, Yusuf; Small, Gary W

    2008-10-01

    Methodology is developed for simulating the radiance profiles acquired from airborne passive multispectral infrared imaging measurements of ground sources of volatile organic compounds (VOCs). The simulation model allows the superposition of pure-component laboratory spectra of VOCs onto spectral backgrounds that simulate those acquired during field measurements conducted with a downward-looking infrared line scanner mounted on an aircraft flying at an altitude of 2000-3000 ft (approximately 600-900 m). Wavelength selectivity in the line scanner is accomplished through the use of a multichannel Hg:Cd:Te detector with up to 16 integrated optical filters. These filters allow the detection of absorption and emission signatures of VOCs superimposed on the upwelling infrared background radiance within the instrumental field of view (FOV). By combining simulated radiance profiles containing analyte signatures with field-collected background signatures, supervised pattern recognition methods can be employed to train automated classifiers for use in detecting the signatures of VOCs during field measurements. The targeted application for this methodology is the use of the imaging system to detect releases of VOCs during emergency response scenarios. In the work described here, the simulation model is combined with piecewise linear discriminant analysis to build automated classifiers for detecting ethanol and methanol. Field data collected during controlled releases of ethanol, as well as during a methanol release from an industrial facility, are used to evaluate the methodology.

  8. Screening vehicles for stowaways using aperture synthesis passive millimetre wave imaging

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.; Bowring, Nick

    2015-10-01

    This paper presents part of a feasibility study into the use of the aperture synthesis passive imaging technique to screen vehicles for persons. The aperture synthesis technique is introduced and shown how in the near-field regime of a vehicle screening scenario that a three-dimensional imaging capability is possible. A suggested antenna receiver array is presented and the three-dimensional point spread function which this enables is calculated by simulation. This shows that over the majority of the inside of the vehicle the spatial resolution in all three spatial dimensions is of or less than the radiation wavelength, which at the suggested operational radiation frequency of 20 GHz is 1.5 cm. A radiation transport model that estimates the radiation temperatures of persons and backgrounds when viewing the vehicle either from the side or the top is presented, such a model being useful in the design of vehicle screening systems and as a basis for interpretation codes to assist operators in recognising persons in vehicles.

  9. Active and passive smoking, IL6, ESR1, and breast cancer risk

    PubMed Central

    Curtin, Karen; Giuliano, Anna R.; Sweeney, Carol; Baumgartner, Richard; Edwards, Sandra; Wolff, Roger K.; Baumgartner, Kathy B.; Byers, Tim

    2008-01-01

    We evaluated the association between smoking and risk of breast cancer in non-Hispanic white (NHW) and Hispanic or American Indian (HAI) women living in the Southwestern United States. Data on lifetime exposure to active and passive smoke data were available from 1527 NHW cases and 1601 NHW controls; 798 HAI cases and 924 HAI controls. Interleukin 6 (IL6) and Estrogen Receptor alpha (ESR1) polymorphisms were assessed in conjunction with smoking. Pack-years of smoking (≥15) were associated with increased risk of pre-menopausal breast cancer among NHW women (OR 1.6, 95% CI 1.1–2. 4). Passive smoke increased risk of pre-menopausal breast cancer for HAI women (OR 1.9, 95% CI 1.1–3.1 everyone; OR 2.3, 95% CI 1.2–4.5 nonsmokers). HAI pre-menopausal women who were exposed to 10+ h of passive smoke per week and had the rs2069832 IL6 GG genotype had over a fourfold increased risk of breast cancer (OR 4.4, 95% CI 1.5–12.8; P for interaction 0.01). Those with the ESR1 Xba1 AA genotype had a threefold increased risk of breast cancer if they smoked ≥15 pack-years relative to non-smokers (P interaction 0.01). These data suggest that breast cancer risk is associated with active and passive smoking. PMID:17594514

  10. Design for active and passive flutter suppression and gust alleviation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karpel, M.

    1981-01-01

    Analytical design techniques for active and passive control of aeroelastic systems are based on a rational approximation of the unsteady aerodynamic loads in the entire Laplace domain, which yields matrix equations of motion with constant coefficients. Some existing schemes are reviewed, the matrix Pade approximant is modified, and a technique which yields a minimal number of augmented states for a desired accuracy is presented. The state-space aeroelastic model is used to design an active control system for simultaneous flutter suppression and gust alleviation. The design target is for a continuous controller which transfers some measurements taken on the vehicle to a control command applied to a control surface. Structural modifications are formulated in a way which enables the treatment of passive flutter suppression system with the same procedures by which active control systems are designed.

  11. A hybrid active/passive exhaust noise control system for locomotives

    NASA Astrophysics Data System (ADS)

    Remington, Paul J.; Knight, J. Scott; Hanna, Doug; Rowley, Craig

    2005-01-01

    A prototype hybrid system consisting of active and passive components for controlling far-field locomotive exhaust noise has been designed, assembled, and tested on a locomotive. The system consisted of a resistive passive silencer for controlling high-frequency broadband noise and a feedforward multiple-input, multiple-output active control system for suppressing low-frequency tonal noise. The active system used ten roof-mounted bandpass speaker enclosures with 2-12-in. speakers per enclosure as actuators, eight roof-mounted electret microphones as residual sensors, and an optical tachometer that sensed locomotive engine speed as a reference sensor. The system was installed on a passenger locomotive and tested in an operating rail yard. Details of the system are described and the near-field and far-field noise reductions are compared against the design goal. .

  12. A hybrid active/passive exhaust noise control system for locomotives.

    PubMed

    Remington, Paul J; Knight, J Scott; Hanna, Doug; Rowley, Craig

    2005-01-01

    A prototype hybrid system consisting of active and passive components for controlling far-field locomotive exhaust noise has been designed, assembled, and tested on a locomotive. The system consisted of a resistive passive silencer for controlling high-frequency broadband noise and a feedforward multiple-input, multiple-output active control system for suppressing low-frequency tonal noise. The active system used ten roof-mounted bandpass speaker enclosures with 2-12-in. speakers per enclosure as actuators, eight roof-mounted electret microphones as residual sensors, and an optical tachometer that sensed locomotive engine speed as a reference sensor. The system was installed on a passenger locomotive and tested in an operating rail yard. Details of the system are described and the near-field and far-field noise reductions are compared against the design goal.

  13. A hybrid active/passive exhaust noise control system for locomotives.

    PubMed

    Remington, Paul J; Knight, J Scott; Hanna, Doug; Rowley, Craig

    2005-01-01

    A prototype hybrid system consisting of active and passive components for controlling far-field locomotive exhaust noise has been designed, assembled, and tested on a locomotive. The system consisted of a resistive passive silencer for controlling high-frequency broadband noise and a feedforward multiple-input, multiple-output active control system for suppressing low-frequency tonal noise. The active system used ten roof-mounted bandpass speaker enclosures with 2-12-in. speakers per enclosure as actuators, eight roof-mounted electret microphones as residual sensors, and an optical tachometer that sensed locomotive engine speed as a reference sensor. The system was installed on a passenger locomotive and tested in an operating rail yard. Details of the system are described and the near-field and far-field noise reductions are compared against the design goal. PMID:15704399

  14. Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2003-01-01

    A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.

  15. Sustainable Passive and Active Remedial Measures of Creeping Bedrock Slopes: Two Case Studies from Austria

    NASA Astrophysics Data System (ADS)

    Moser, Michael; Weidner, Stefan

    Two case studies involving the large-scale and deep-seated creeping of slopes in southern Austria are discussed. In both instances passive and active remedial measures were applied to help mitigate the landslide hazard. At the first site, geodetic and extensometer measurements indicated movements averaging up to > 50 cm/year with a maximum of 352 cm occurring in one year. Previous active measures consisting of rigid structures were destroyed and replaced by flexible protective engineering works. The second case study involves an intensive geodetic monitoring program. Here, averaged yearly velocities are found up to > 30 cm/year. Active remedial measures consisted of stream diversion and protective engineering works. Both cases show the importance of a comprehensive passive remediation program.

  16. Life cycle assessment of active and passive groundwater remediation technologies

    NASA Astrophysics Data System (ADS)

    Bayer, Peter; Finkel, Michael

    2006-02-01

    the valuation of FGS due to the associated emissions that are harmful to human health. In view of that, environmental credits can be achieved by selecting a mineral-based wall instead of sheet piles for the funnel construction and by minimising the steel consumption for the gate construction. Granular activated carbon (GAC) is exclusively considered as the treatment material, both in-situ and on-site. Here it is identified as an additional main determinant of the relative assessment of the technologies since it is continuously consumed.

  17. [From passive to active: policies for Latin American emigrants].

    PubMed

    Maletta, H

    1988-12-01

    benefits to the country. Such factors as inclusive citizenship policies for spouses and children born abroad, provisions for absentee voting, communication and information programs, and recognition of education and professional title conferred abroad would help motivate a continuing interest in the country of origin. The 2nd policy goal should be to create concrete channels for different types of emigrant activities that would benefit the country of origin. This operational side of emigration policy would provide channels for the return to the country of capital and goods accumulated by the emigrant and would provide for cooperation in scientific endeavors, business and investment, and for social and humanitarian projects.

  18. [From passive to active: policies for Latin American emigrants].

    PubMed

    Maletta, H

    1988-12-01

    benefits to the country. Such factors as inclusive citizenship policies for spouses and children born abroad, provisions for absentee voting, communication and information programs, and recognition of education and professional title conferred abroad would help motivate a continuing interest in the country of origin. The 2nd policy goal should be to create concrete channels for different types of emigrant activities that would benefit the country of origin. This operational side of emigration policy would provide channels for the return to the country of capital and goods accumulated by the emigrant and would provide for cooperation in scientific endeavors, business and investment, and for social and humanitarian projects. PMID:12282249

  19. Life cycle assessment of active and passive groundwater remediation technologies.

    PubMed

    Bayer, Peter; Finkel, Michael

    2006-02-10

    the valuation of FGS due to the associated emissions that are harmful to human health. In view of that, environmental credits can be achieved by selecting a mineral-based wall instead of sheet piles for the funnel construction and by minimising the steel consumption for the gate construction. Granular activated carbon (GAC) is exclusively considered as the treatment material, both in-situ and on-site. Here it is identified as an additional main determinant of the relative assessment of the technologies since it is continuously consumed.

  20. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  1. Comparison of active and passive methods for radon exhalation from a high-exposure building material.

    PubMed

    Abbasi, A; Mirekhtiary, F

    2013-12-01

    The radon exhalation rates and radon concentrations in granite stones used in Iran were measured by means of a high-resolution high purity Germanium gamma-spectroscopy system (passive method) and an AlphaGUARD model PQ 2000 (active method). For standard rooms (4.0 × 5.0 m area × 2.8 height) where ground and walls have been covered by granite stones, the radon concentration and the radon exhalation rate by two methods were calculated. The activity concentrations of (226)Ra in the selected granite samples ranged from 3.8 to 94.2 Bq kg(-1). The radon exhalation rate from the calculation of the (226)Ra activity concentration was obtained. The radon exhalation rates were 1.31-7.86 Bq m(-2)h(-1). The direction measurements using an AlphaGUARD were from 218 to 1306 Bq m(-3) with a mean of 625 Bq m(-3). Also, the exhalation rates measured by the passive and active methods were compared and the results of this study were the same, with the active method being 22 % higher than the passive method. PMID:23798709

  2. Comparison of active and passive methods for radon exhalation from a high-exposure building material.

    PubMed

    Abbasi, A; Mirekhtiary, F

    2013-12-01

    The radon exhalation rates and radon concentrations in granite stones used in Iran were measured by means of a high-resolution high purity Germanium gamma-spectroscopy system (passive method) and an AlphaGUARD model PQ 2000 (active method). For standard rooms (4.0 × 5.0 m area × 2.8 height) where ground and walls have been covered by granite stones, the radon concentration and the radon exhalation rate by two methods were calculated. The activity concentrations of (226)Ra in the selected granite samples ranged from 3.8 to 94.2 Bq kg(-1). The radon exhalation rate from the calculation of the (226)Ra activity concentration was obtained. The radon exhalation rates were 1.31-7.86 Bq m(-2)h(-1). The direction measurements using an AlphaGUARD were from 218 to 1306 Bq m(-3) with a mean of 625 Bq m(-3). Also, the exhalation rates measured by the passive and active methods were compared and the results of this study were the same, with the active method being 22 % higher than the passive method.

  3. Comparison of submarine gully morphologies in passive and active margin settings

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Shumaker, L.; Johnstone, S.; Graham, S. A.

    2015-12-01

    Passive and active tectonic margins have inherently different hypsometry, due to local patterns of deformation and subsequent impacts on the style of sedimentation. One way we can analyze and compare the two settings is through observation of submarine gullies, which are small channel features that form along the continental slope as it descends to the ocean floor. By documenting the geometries of gullies that have formed on passive margins and gullies that have formed on active margins, we attempt to distinguish differences in gully morphologies in these two settings. We manually mapped over 600 gullies and interfluves from shaded relief and contour maps generated from bathymetric data across the globe, including the coast of California, the Beaufort Sea, and the Black Sea. We extrapolated and plotted elevation profiles of the gullies along their downslope distance, and compared a range of gully properties, such as length, spacing, and slope, to look at the correlations among those elements of gullies and their tectonic setting. We find that gullies forming on active margins show the greatest variability in their slopes, exhibiting both the steepest and the shallowest slopes of the dataset. The slopes of the passive margin gullies fall within the range of the active margin gully slopes, but interestingly, we note patterns in the ranges of gully steepness at different localities. These results differ from our our anticipation that active margin gullies are steeper than passive margin gullies, but suggest that gullies in all settings display a variety of morphologies. Additional mapping of active margin gullies will better determine if there are morphological differences between the two settings.

  4. A calibration concept for passive MW imaging using beam steering by frequency shift and aperture synthesis

    NASA Astrophysics Data System (ADS)

    Schreiber, Eric; Peichl, Markus; Jirousek, Matthias

    2013-10-01

    Passive microwave (MW) remote sensing is used in Earth observation missions for example to estimate the salinity of oceans or the soil moisture of landscapes. In these cases the absolute brightness temperature numbers are important for sufficient accuracy of the estimated geo-physical parameters. Consequently a suitable system calibration network is required. At DLR a radiometric demonstrator for fully-electronic MW imaging was set up at Ka-band, which is based on a combination of beam steering by frequency shift using a broadband slotted-waveguide antenna for one scanning direction, and the application of aperture synthesis for the other direction. Aperture synthesis is well known from radio astronomy, but it is still a new imaging principle for Earth observation or security applications. Hence as well new calibration techniques have to be developed for this kind of scanning mechanism. In this paper a novel approach for a noise-source based calibration method taking into account the antenna losses will be introduced. When using aperture synthesis techniques to determine the absolute brightness temperature values, it is very important, among other things, to know the exact phase transfer function of the system in order to achieve the desired radiometric resolution. Consequently our approach enables phase calibration as well. The paper outlines a proof of concept for this calibration method using a two-element interferometer called VESAS (Voll Elektronischer Scanner mit AperturSynthese) as a demonstrator. The functionality of the demonstrator and the proof of concept of the imaging principle mentioned before are written in detail in [1].

  5. Modulating the field-effect passivation at the SiO2/c-Si interface: Analysis and verification of the photoluminescence imaging under applied bias method

    NASA Astrophysics Data System (ADS)

    Haug, Halvard; Olibet, Sara; Nordseth, Ørnulf; Stensrud Marstein, Erik

    2013-11-01

    In this paper, we study the surface passivation properties of thermally oxidized silicon wafers with controlled surface band bending, using a recently developed characterization technique combining calibrated photoluminescence imaging with the application of an external voltage over the rear side passivation layer. Various aspects of the technique and possible errors in the determination of the effective surface recombination velocity are discussed, including lateral carrier diffusion, leakage currents, and optical effects related to the presence of metal electrodes on the investigated samples. In order to quantitatively describe the recombination activity at the SiO2/c-Si interface and the effect of fixed charges in the oxide layer, the measured effective carrier lifetime vs. voltage curves have been analyzed in the framework of an extended Shockley-Read Hall recombination model. Furthermore, the results have been compared with corresponding results from microwave detected photoconductance decay measurements after depositing corona charges. We find an excellent agreement between the two techniques and between complementary measurements of the oxide charge density. Photoluminescence imaging under applied bias gives fast and repeatable measurements and allows for simultaneous data collection from multiple areas on the sample, and has thus been proven to be powerful tool for quantitative characterization of surface passivation layers.

  6. Comparative study of active and passive sensing with AE and PWAS transducers

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Giurgiutiu, Victor; Yu, Jianguo; Ziehl, Paul; Zhao, Liuxian

    2012-04-01

    Monitoring of fatigue cracking in bridges using a combined passive and active scheme has been approached by the authors. Passive Acoustic Emission (AE) monitoring has shown to be able to detect crack growth behavior by picking up the stress waves resulting from the breathing of cracks while active ultrasonic pulsing can quantitatively assess structural integrity by sensing out an interrogating pulse and receive the structural reflections from the discontinuity. In this paper, we present a comparative study of active and passive sensing with two types of transducers: (a) AE transducers, and (b) embeddable piezoelectric wafer active sensors (PWAS). The study was performed experimentally on steel plates. Both pristine and damaged (notched) conditions were considered. For active sensing, pitchcatch configuration was examined in which one transducer was the transmitter and another transducer acted as the receiver. The ping signal was generated by the AE hardware/software package AEwin. For passive sensing, 0.5-mm lead breaks were executed both on top and on the edge of the plate. The comparative nature of the study was achieved by having the AE and PWAS transducers placed on the same location but on the opposite sides of the plate. The paper presents the main findings of this study in terms of (a) signal strength; (b) signal-to-noise (S/N) ratio; (c) waveform clarity; (d) waveform Fourier spectrum contents and bandwidth; (e) capability to detect and localize AE source; (f) capability to detect and localize damage. The paper performs a critical discussion of the two sensing methodologies, conventional AE transducers vs. PWAS transducers.

  7. Telencephalic neural activation following passive avoidance learning in a terrestrial toad.

    PubMed

    Puddington, Martín M; Daneri, M Florencia; Papini, Mauricio R; Muzio, Rubén N

    2016-12-15

    The present study explores passive avoidance learning and its neural basis in toads (Rhinella arenarum). In Experiment 1, two groups of toads learned to move from a lighted compartment into a dark compartment. After responding, animals in the experimental condition were exposed to an 800-mM strongly hypertonic NaCl solution that leads to weight loss. Control animals received exposure to a 300-mM slightly hypertonic NaCl solution that leads to neither weight gain nor loss. After 10 daily acquisition trials, animals in the experimental group showed significantly longer latency to enter the dark compartment. Additionally, 10 daily trials in which both groups received the 300-mM NaCl solution after responding eliminated this group effect. Thus, experimental animals showed gradual acquisition and extinction of a passive avoidance respond. Experiment 2 replicated the gradual acquisition effect, but, after the last trial, animals were sacrificed and neural activation was assessed in five brain regions using AgNOR staining for nucleoli-an index of brain activity. Higher activation in the experimental animals, relative to controls, was observed in the amygdala and striatum. Group differences in two other regions, lateral pallium and septum, were borderline, but nonsignificant, whereas group differences in the medial pallium were nonsignificant. These preliminary results suggest that a striatal-amygdala activation could be a key component of the brain circuit controlling passive avoidance learning in amphibians. The results are discussed in relation to the results of analogous experiments with other vertebrates.

  8. Municipal waste stabilization in a reactor with an integrated active and passive aeration system.

    PubMed

    Kasinski, Slawomir; Slota, Monika; Markowski, Michal; Kaminska, Anna

    2016-04-01

    To test whether an integrated passive and active aeration system could be an effective solution for aerobic decomposition of municipal waste in technical conditions, a full-scale composting reactor was designed. The waste was actively aerated for 5d, passively aerated for 35 d, and then actively aerated for 5d, and the entire composting process was monitored. During the 45-day observation period, changes in the fractional, morphological and physico-chemical characteristics of the waste at the top of the reactor differed from those in the center of the reactor. The fractional and morphological analysis made during the entire process of stabilization, showed the total reduction of organic matter measured of 82 wt% and 86 wt% at the respective depths. The reduction of organic matter calculated using the results of Lost of Ignition (LOI) and Total Organic Carbon (TOC) showed, respectively, 40.51-46.62% organic matter loss at the top and 45.33-53.39% in the center of the reactor. At the end of the process, moisture content, LOI and TOC at the top were 3.29%, 6.10% and 4.13% higher, respectively, than in the center. The results showed that application of passive aeration in larger scale simultaneously allows the thermophilic levels to be maintained during municipal solid waste composting process while not inhibiting microbial activity in the reactor.

  9. Active, passive and snapshot exploration in a virtual environment: influence on scene memory, reorientation and path memory.

    PubMed

    Gaunet, F; Vidal, M; Kemeny, A; Berthoz, A

    2001-06-01

    We investigated the importance of active, passive and snapshot exploration on spatial memory in a virtual city. The exploration consisted in traveling along a series of streets. 'Active exploration' was performed by giving directions to the subject who controlled his displacement with a joystick. During 'passive' exploration, the travel was imposed by the computer. Finally, during 'snapshot exploration', simple views of the scene were presented sequentially every 4 m. Travel velocity was the same in all cases. The three visual exploration modes were compared with three spatial memory measures: (1) scene recognition, (2) at the end of the path, reorientation toward the departure point and (3) drawings of the path shape. Scene recognition and estimation of the direction of the starting point of the path were not affected by the mode of exploration. In contrast, reproduction of the shape of the path was affected: the errors of reproduction were greater for the snapshot exploration than for the other two conditions; there was no difference between the other two conditions. These results suggest that (1) 2D image features from a visual scene are memorized. Moreover, (2) pointing towards the origin of the path relies on motion duration integration or a frame of reference integrated during displacement. Finally, (3) drawing the path shape involves a deliberate reconstruction process.

  10. Active and passive shielding design optimization and technical solutions for deep sensitivity hard x-ray focusing telescopes

    NASA Astrophysics Data System (ADS)

    Malaguti, G.; Pareschi, G.; Ferrando, P.; Caroli, E.; Di Cocco, G.; Foschini, L.; Basso, S.; Del Sordo, S.; Fiore, F.; Bonati, A.; Lesci, G.; Poulsen, J. M.; Monzani, F.; Stevoli, A.; Negri, B.

    2005-08-01

    The 10-100 keV region of the electromagnetic spectrum contains the potential for a dramatic improvement in our understanding of a number of key problems in high energy astrophysics. A deep inspection of the universe in this band is on the other hand still lacking because of the demanding sensitivity (fraction of μCrab in the 20-40 keV for 1 Ms integration time) and imaging (≈ 15" angular resolution) requirements. The mission ideas currently being proposed are based on long focal length, grazing incidence, multi-layer optics, coupled with focal plane detectors with few hundreds μm spatial resolution capability. The required large focal lengths, ranging between 8 and 50 m, can be realized by means of extendable optical benches (as foreseen e.g. for the HEXITSAT, NEXT and NuSTAR missions) or formation flight scenarios (e.g. Simbol-X and XEUS). While the final telescope design will require a detailed trade-off analysis between all the relevant parameters (focal length, plate scale value, angular resolution, field of view, detector size, and sensitivity degradation due to detector dead area and telescope vignetting), extreme attention must be dedicated to the background minimization. In this respect, key issues are represented by the passive baffling system, which in case of large focal lengths requires particular design assessments, and by the active/passive shielding geometries and materials. In this work, the result of a study of the expected background for a hard X-ray telescope is presented, and its implication on the required sensitivity, together with the possible implementation design concepts for active and passive shielding in the framework of future satellite missions, are discussed.

  11. Detection Thresholds of Falling Snow from Satellite-Borne Active and Passive Sensors

    NASA Technical Reports Server (NTRS)

    Jackson, Gail

    2012-01-01

    Precipitation, including rain and snow, is a critical part of the Earth's energy and hydrology cycles. In order to collect information on the complete global precipitation cycle and to understand the energy budget in terms of precipitation, uniform global estimates of both liquid and frozen precipitation must be collected. Active observations of falling snow are somewhat easier to estimate since the radar will detect the precipitation particles and one only needs to know surface temperature to determine if it is liquid rain or snow. The challenges of estimating falling snow from passive spaceborne observations still exist though progress is being made. While these challenges are still being addressed, knowledge of their impact on expected retrieval results is an important key for understanding falling snow retrieval estimations. Important information to assess falling snow retrievals includes knowing thresholds of detection for active and passive sensors, various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types. For example, can a lake effect snow system with low (2.5 km) cloud tops having an ice water content (Iwe) at the surface of 0.25 g m-3 and dendrite snowflakes be detected? If this information is known, we can focus retrieval efforts on detectable storms and concentrate advances on achievable results. Here, the focus is to determine thresholds of detection for falling snow for various snow conditions over land and lake surfaces. The analysis relies on simulated Weather Research Forecasting (WRF) simulations of falling snow cases since simulations provide all the information to determine the measurements from space and the ground truth. Results are presented for active radar at Ku, Ka, and W-band and for passive radiometer channels from 10 to 183 GHz (Skofronick-Jackson, et al. submitted to IEEE TGRS, April 2012). The notable results show: (1) the W-Band radar has detection thresholds more

  12. Adaptation to visual and proprioceptive rearrangement - Origin of the differential effectiveness of active and passive movements

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.

    1977-01-01

    Experiments were conducted to measure and compare the accuracy with which subjects pointed to visual targets before and after an exposure period in which they received systematic proprioceptive misinformation about the locations of visual targets. The crucial factor determining whether adaptation will be elicited is shown to be the presence of a discordance in the positional information being conveyed over two different sensory modalities. Another experiment was carried out to study the effectiveness of active and passive movements in eliciting adaptation when the subjects were exposed to a systematic discordance between the visual and proprioceptive locations of external targets without being permitted sight of their hands. Superiority of active over passive movements in producing adaptation to visual rearrangement is due to the greater accuracy of position sense information about voluntarily moved limbs, partly derived from the contribution of muscle afferent signals.

  13. Simulation of active and passive millimeter-wave (35 GHz) sensors by time series analysis

    NASA Astrophysics Data System (ADS)

    Strenzwilk, D. F.; Maruyama, R. T.

    1982-11-01

    Analog voltage signals from a millimeter-wave (MMW) radiometer (passive sensor) and radar (active sensor) were collected over varying grassy terrains at Aberdeen Proving Ground (APG), Maryland in July 1980. These measurements were made as part of continuing studies of MMW sensors for smart munitions. The signals were digitized at a rate of 2,000 observations per second and then analyzed by the Box and Jenkins time series approach. This analysis reports on the characterization of these data sets. The passive time series signals resulted in a simple autoregressive-moving average process, similar to a previous set of data taken at Rome Air Development Center in Rome, N.Y. by Ballistic Research Laboratory. On the other hand, the radar data (active sensor) required a data transformation to enhance the analysis. In both cases the signals were well characterized using the Box-Jenkins time series approach.

  14. Simulation of Series Active and Passive Power Filter Combination System to Mitigate Current Source Harmonics

    NASA Astrophysics Data System (ADS)

    Yusof, Yushaizad; Rahim, Nasrudin Abd.

    2009-08-01

    This paper discusses a combination three phase system of series active power filter and passive power filter used to mitigate current source harmonics produced by a three phase diode rectifier with capacitive loads. A control method based on synchronous reference frame (SRF) is implemented to compensate for the current harmonics. Computer simulation and modelling of the combined filter system is carried out using Matlab/Simulink Power System Blockset (PSB) software. The single tuned passive power filters suppress 5th and 7th order current harmonics, while the series active power filter acts as a harmonic isolator between the source and load. Hence, the proposed system performs very well in mitigating source current harmonics to the level that comply the harmonic standard such as IEEE 519-1992.

  15. Active and passive calcium transport systems in plant cells. Progress report, May 1986--January 1991

    SciTech Connect

    Sze, H.

    1991-12-31

    The ability to change cytoplasmic Ca{sup 2+} levels ([Ca{sup 2+}]) by cells has made this cation a key regulator of many biological processes. Cytoplasmic [Ca{sup 2+}] is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic [Ca{sup 2+}] and active Ca{sup 2+} transport systems that lower cytosolic [Ca{sup 2+}]. The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells.

  16. Active-passive correlation spectroscopy - A new technique for identifying ocean color algorithm spectral regions

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1986-01-01

    A new active-passive airborne data correlation technique has been developed which allows the validation of existing in-water oceoan color algorithms and the rapid search, identification, and evaluation of new sensor band locations and algorithm wavelength intervals. Thus far, applied only in conjunction with the spectral curvature algorithm (SCA), the active-passive correlation spectroscopy (APCS) technique shows that (1) the usual 490-nm (center-band) chlorophyll SCA could satisfactorily be placed anywhere within the nominal 460-510-nm interval, and (2) two other spectral regions, 645-660 and 680-695 nm, show considerable promise for chlorophyll pigment measurement. Additionally, the APCS method reveals potentially useful wavelength regions (at 600 and about 670 nm) of very low chlorophyll-in-water spectral curvature into which accessory pigment algorithms for phycoerythrin might be carefully positioned. In combination, the APCS and SCA methods strongly suggest that significant information content resides within the seemingly featureless ocean color spectrum.

  17. A multifrequency evaluation of active and passive microwave sensors for oil spill detection and assessment

    NASA Technical Reports Server (NTRS)

    Fenner, R. G.; Reid, S. C.; Solie, C. H.

    1980-01-01

    An evaluation is given of how active and passive microwave sensors can best be used in oil spill detection and assessment. Radar backscatter curves taken over oil spills are presented and their effect on synthetic aperture radar (SAR) imagery are discussed. Plots of microwave radiometric brightness variations over oil spills are presented and discussed. Recommendations as to how to select the best combination of frequency, viewing angle, and sensor type for evaluation of various aspects of oil spills are also discussed.

  18. Compact and highly-efficient polarization independent vertical resonant couplers for active-passive monolithic integration.

    PubMed

    Galarza, Marko; Van Thourhout, Dries; Baets, Roel; Lopez-Amo, Manuel

    2008-06-01

    Compact low-loss polarization independent vertical coupling between a 1.55 microm InGaAsP bulk active waveguide and a passive waveguide based on bimodal interference is presented. Simulation results show low coupling loss (<0.1 dB) over coupler lengths more than 5 times shorter than using the adiabatic design. The concept avoids submicron photolithographic features and shows acceptable fabrication tolerances.

  19. The correlation of active and passive microwave data for the Skylab S-193 sensor

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1993-01-01

    This paper presents the results of the correlation analysis of the Skylab S-193 13.9 GHz Radiometer/Scatterometer data. Computer analysis of the S-193 data shows more than 50 percent of the radiometer and scatterometer data are uncorrelated. The correlation coefficients computed for the data gathered over various ground scenes indicates the desirability of using both active and passive sensors for the determination of various Earth phenomena.

  20. The Correlation of Active and Passive Microwave Outputs for the Skylab S-193 Sensor

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1976-01-01

    This paper presents the results of the correlation analysis of the Skylab S-193 13.9 GHz Radiometer/Scatterometer data. Computer analysis of the S-193 data shows more than 50 percent of the radiometer and scatterometer data are uncorrelated. The correlation coefficients computed for the data gathered over various ground scenes indicates the desirability of using both active and passive sensors for the determination of various Earth phenomena.

  1. The Effect of Passive versus Active Recovery on Power Output over Six Repeated Wingate Sprints

    ERIC Educational Resources Information Center

    Lopez, Egla-Irina D.; Smoliga, James M.; Zavorsky, Gerald S.

    2014-01-01

    Purpose: The aim of this study was to examine the effect of active versus passive recovery on 6 repeated Wingate tests (30-s all-out cycling sprints on a Velotron ergometer). Method: Fifteen healthy participants aged 29 (SD = 8) years old (body mass index = 23 [3] kg/m[superscript 2]) participated in 3 sprint interval training sessions separated…

  2. Improved detection and false alarm rejection for chemical vapors using passive hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Marinelli, William J.; Miyashiro, Rex; Gittins, Christopher M.; Konno, Daisei; Chang, Shing; Farr, Matt; Perkins, Brad

    2013-05-01

    Two AIRIS sensors were tested at Dugway Proving Grounds against chemical agent vapor simulants. The primary objectives of the test were to: 1) assess performance of algorithm improvements designed to reduce false alarm rates with a special emphasis on solar effects, and 3) evaluate performance in target detection at 5 km. The tests included 66 total releases comprising alternating 120 kg glacial acetic acid (GAA) and 60 kg triethyl phosphate (TEP) events. The AIRIS sensors had common algorithms, detection thresholds, and sensor parameters. The sensors used the target set defined for the Joint Service Lightweight Chemical Agent Detector (JSLSCAD) with TEP substituted for GA and GAA substituted for VX. They were exercised at two sites located at either 3 km or 5 km from the release point. Data from the tests will be presented showing that: 1) excellent detection capability was obtained at both ranges with significantly shorter alarm times at 5 km, 2) inter-sensor comparison revealed very comparable performance, 3) false alarm rates < 1 incident per 10 hours running time over 143 hours of sensor operations were achieved, 4) algorithm improvements eliminated both solar and cloud false alarms. The algorithms enabling the improved false alarm rejection will be discussed. The sensor technology has recently been extended to address the problem of detection of liquid and solid chemical agents and toxic industrial chemical on surfaces. The phenomenology and applicability of passive infrared hyperspectral imaging to this problem will be discussed and demonstrated.

  3. Active and Passive Smoking and the Incidence of Asthma in the Black Women’s Health Study

    PubMed Central

    Castro-Webb, Nelsy; Yu, Jeffrey; O’Connor, George T.; Palmer, Julie R.; Rosenberg, Lynn

    2015-01-01

    Rationale: Evidence linking active or passive smoking to the incidence of adult-onset asthma is inconsistent with both positive and inverse associations being reported. Most previous studies of active smoking have not accounted for passive smoke exposure, which may have introduced bias. Objectives: To assess the separate associations of active and passive smoking to the incidence of adult-onset asthma in the U.S. Black Women’s Health Study, a prospective cohort of African American women followed since 1995 with mailed biennial questionnaires. Methods: Active smoking status was reported at baseline and updated on all follow-up questionnaires. Passive smoke exposure during childhood, adolescence, and adulthood was ascertained in 1997. Asthma cases comprised women who reported doctor-diagnosed asthma with concurrent asthma medication use. Cox regression models were used to derive multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) for former and current smoking and for passive smoking among nonsmokers compared with a reference category of never active or passive smokers. Measurements and Main Results: Among 46,182 participants followed from 1995 to 2011, 1,523 reported incident asthma. The multivariable HRs for former active smoking, current active smoking, and passive smoking only were, respectively, 1.36 (95% CI, 1.11–1.67), 1.43 (95% CI, 1.15–1.77), and 1.21 (95% CI, 1.00–1.45), compared with never active/passive smoking. Conclusions: In this large population with 16 years of follow-up, active smoking increased the incidence of adult-onset asthma, and passive smoke exposure increased the risk among nonsmokers. Continued efforts to reduce exposure to tobacco smoke may have a beneficial effect on the incidence of adult-onset asthma. PMID:25387276

  4. Bumblebees minimize control challenges by combining active and passive modes in unsteady winds

    PubMed Central

    Ravi, Sridhar; Kolomenskiy, Dmitry; Engels, Thomas; Schneider, Kai; Wang, Chun; Sesterhenn, Jörn; Liu, Hao

    2016-01-01

    The natural wind environment that volant insects encounter is unsteady and highly complex, posing significant flight-control and stability challenges. It is critical to understand the strategies insects employ to safely navigate in natural environments. We combined experiments on free flying bumblebees with high-fidelity numerical simulations and lower-order modeling to identify the mechanics that mediate insect flight in unsteady winds. We trained bumblebees to fly upwind towards an artificial flower in a wind tunnel under steady wind and in a von Kármán street formed in the wake of a cylinder. Analysis revealed that at lower frequencies in both steady and unsteady winds the bees mediated lateral movement with body roll - typical casting motion. Numerical simulations of a bumblebee in similar conditions permitted the separation of the passive and active components of the flight trajectories. Consequently, we derived simple mathematical models that describe these two motion components. Comparison between the free-flying live and modeled bees revealed a novel mechanism that enables bees to passively ride out high-frequency perturbations while performing active maneuvers at lower frequencies. The capacity of maintaining stability by combining passive and active modes at different timescales provides a viable means for animals and machines to tackle the challenges posed by complex airflows. PMID:27752047

  5. Evaluation of multiple-frequency, active and passive acoustics as surrogates for bedload transport

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Pachman, Gregory; Lorang, Mark; Tonolla, Diego

    2015-01-01

    The use of multiple-frequency, active acoustics through deployment of acoustic Doppler current profilers (ADCPs) shows potential for estimating bedload in selected grain size categories. The U.S. Geological Survey (USGS), in cooperation with the University of Montana (UM), evaluated the use of multiple-frequency, active and passive acoustics as surrogates for bedload transport during a pilot study on the Kootenai River, Idaho, May 17-18, 2012. Four ADCPs with frequencies ranging from 600 to 2000 kHz were used to measure apparent moving bed velocities at 20 stations across the river in conjunction with physical bedload samples. Additionally, UM scientists measured the sound frequencies of moving particles with two hydrophones, considered passive acoustics, along longitudinal transects in the study reach. Some patterns emerged in the preliminary analysis which show promise for future studies. Statistically significant relations were successfully developed between apparent moving bed velocities measured by ADCPs with frequencies 1000 and 1200 kHz and bedload in 0.5 to 2.0 mm grain size categories. The 600 kHz ADCP seemed somewhat sensitive to the movement of gravel bedload in the size range 8.0 to 31.5 mm, but the relation was not statistically significant. The passive hydrophone surveys corroborated the sample results and could be used to map spatial variability in bedload transport and to select a measurement cross-section with moving bedload for active acoustic surveys and physical samples.

  6. Ethnic differences in thermoregulatory responses during resting, passive and active heating: application of Werner's adaptation model.

    PubMed

    Lee, Joo-Young; Wakabayashi, Hitoshi; Wijayanto, Titis; Hashiguchi, Nobuko; Saat, Mohamed; Tochihara, Yutaka

    2011-12-01

    For the coherent understanding of heat acclimatization in tropical natives, we compared ethnic differences between tropical and temperate natives during resting, passive and active heating conditions. Experimental protocols included: (1) a resting condition (an air temperature of 28°C with 50% RH), (2) a passive heating condition (28°C with 50% RH; leg immersion in a hot tub at a water temperature of 42°C), and (3) an active heating condition (32°C with 70% RH; a bicycle exercise). Morphologically and physically matched tropical natives (ten Malaysian males, MY) and temperate natives (ten Japanese males, JP) participated in all three trials. The results saw that: tropical natives had a higher resting rectal temperature and lower hand and foot temperatures at rest, smaller rise of rectal temperature and greater temperature rise in bodily extremities, and a lower sensation of thirst during passive and active heating than the matched temperate natives. It is suggested that tropical natives' homeostasis during heating is effectively controlled with the improved stability in internal body temperature and the increased capability of vascular circulation in extremities, with a lower thirst sensation. The enhanced stability of internal body temperature and the extended thermoregulatory capability of vascular circulation in the extremities of tropical natives can be interpreted as an interactive change to accomplish a thermal dynamic equilibrium in hot environments. These heat adaptive traits were explained by Wilder's law of initial value and Werner's process and controller adaptation model.

  7. Initial evaluation of an active/passive structural neural system for health monitoring of composite materials

    NASA Astrophysics Data System (ADS)

    Kirikera, G. R.; Lee, J. W.; Schulz, M. J.; Ghoshal, A.; Sundaresan, M. J.; Allemang, R. J.; Shanov, V. N.; Westheider, H.

    2006-10-01

    Structural health monitoring is an underlying technology that can help to ensure safe operation and provide cost effective maintenance of advanced composite structures. While several general methods of health monitoring have evolved in recent years, there is still the goal of reducing the overall cost of applying health monitoring to large structures. Data acquisition hardware typically consumes most of the investment in a structural monitoring system. On a conventional system based on acoustic emission monitoring, a separate high sampling rate data acquisition channel is needed for each sensor to convert analog signals to digital signals to locate damage. Other methods of damage detection are likewise complicated, and require many sensors and actuators, auxiliary signal processing, and data storage instrumentation. This paper proposes a structural neural system that uses firing of sensor neurons to reduce the number of data acquisition channels needed for damage detection. The neural system can perform passive acoustic emission sensing or active wave propagation monitoring. A prototype structural neural system with four sensor inputs was built and tested, and experimental results are presented in the paper. One signal output from the structural neural system is used to predict the location of damage. A second signal provides the time domain response of the sensors. Therefore, passive and active health monitoring can be performed using two channels of data acquisition. The structural neural system significantly reduces the data acquisition hardware required for health monitoring, and combines some of the advantages that exist individually for passive and active health monitoring.

  8. Comparing passive and active hearing: spectral analysis of transient sounds in bats.

    PubMed

    Goerlitz, Holger R; Hübner, Mathias; Wiegrebe, Lutz

    2008-06-01

    In vision, colour constancy allows the evaluation of the colour of objects independent of the spectral composition of a light source. In the auditory system, comparable mechanisms have been described that allows the evaluation of the spectral shape of sounds independent of the spectral composition of ambient background sounds. For echolocating bats, the evaluation of spectral shape is vitally important both for the analysis of external sounds and the analysis of the echoes of self-generated sonar emissions. Here, we investigated how the echolocating bat Phyllostomus discolor evaluates the spectral shape of transient sounds both in passive hearing and in echolocation as a specialized mode of active hearing. Bats were trained to classify transients of different spectral shape as low- or highpass. We then assessed how the spectral shape of an ambient background noise influenced the spontaneous classification of the transients. In the passive-hearing condition, the bats spontaneously changed their classification boundary depending on the spectral shape of the background. In the echo-acoustic condition, the classification boundary did not change although the background- and spectral-shape manipulations were identical in the two conditions. These data show that auditory processing differs between passive and active hearing: echolocation represents an independent mode of active hearing with its own rules of auditory spectral analysis.

  9. Effects of Active Versus Passive Group Music Therapy on Preadolescents with Emotional, Learning, and Behavioral Disorders.

    PubMed

    Montello; Coons

    1999-01-01

    This study attempted to compare the behavioral effects of active, rhythm-based group music therapy vs. those of passive, listening-based group music therapy on preadolescents with emotional, learning, and behavioral disorders. It was hypothesized that preadolescents who participated in active music therapy would more significantly improve target behaviors than those involved in passive music therapy. Achenbach's Teacher Report Form (TRF) was used to confirm changes among subjects in attention, motivation, and hostility as rated by homeroom teachers. Twelve music therapy sessions were conducted over a 4-month period with three different groups of subjects (n = 16), with two groups participating in active music therapy and the other receiving passive music therapy. Results indicate that subjects improved significantly after receiving both music therapy interventions. The most significant change in subjects was found on the aggression/hostility scale. These results suggest that group music therapy can facilitate the process of serf-expression in emotionally disturbed/learning disabled adolescents and provide a channel for transforming frustration, anger, and aggression into the experience of creativity and self-mastery. Discussion of results also includes recommendations for chousing one music therapy approach over another based on personality types and/or clinical diagnoses of subjects.

  10. Active resonant subwavelength grating for scannerless range imaging sensors.

    SciTech Connect

    Kemme, Shanalyn A.; Nellums, Robert O.; Boye, Robert R.; Peters, David William

    2006-11-01

    In this late-start LDRD, we will present a design for a wavelength-agile, high-speed modulator that enables a long-term vision for the THz Scannerless Range Imaging (SRI) sensor. It takes the place of the currently-utilized SRI micro-channel plate which is limited to photocathode sensitive wavelengths (primarily in the visible and near-IR regimes). Two of Sandia's successful technologies--subwavelength diffractive optics and THz sources and detectors--are poised to extend the capabilities of the SRI sensor. The goal is to drastically broaden the SRI's sensing waveband--all the way to the THz regime--so the sensor can see through image-obscuring, scattering environments like smoke and dust. Surface properties, such as reflectivity, emissivity, and scattering roughness, vary greatly with the illuminating wavelength. Thus, objects that are difficult to image at the SRI sensor's present near-IR wavelengths may be imaged more easily at the considerably longer THz wavelengths (0.1 to 1mm). The proposed component is an active Resonant Subwavelength Grating (RSG). Sandia invested considerable effort on a passive RSG two years ago, which resulted in a highly-efficient (reflectivity greater than gold), wavelength-specific reflector. For this late-start LDRD proposal, we will transform the passive RSG design into an active laser-line reflector.

  11. Integrated homeland security system with passive thermal imaging and advanced video analytics

    NASA Astrophysics Data System (ADS)

    Francisco, Glen; Tillman, Jennifer; Hanna, Keith; Heubusch, Jeff; Ayers, Robert

    2007-04-01

    A complete detection, management, and control security system is absolutely essential to preempting criminal and terrorist assaults on key assets and critical infrastructure. According to Tom Ridge, former Secretary of the US Department of Homeland Security, "Voluntary efforts alone are not sufficient to provide the level of assurance Americans deserve and they must take steps to improve security." Further, it is expected that Congress will mandate private sector investment of over $20 billion in infrastructure protection between 2007 and 2015, which is incremental to funds currently being allocated to key sites by the department of Homeland Security. Nearly 500,000 individual sites have been identified by the US Department of Homeland Security as critical infrastructure sites that would suffer severe and extensive damage if a security breach should occur. In fact, one major breach in any of 7,000 critical infrastructure facilities threatens more than 10,000 people. And one major breach in any of 123 facilities-identified as "most critical" among the 500,000-threatens more than 1,000,000 people. Current visible, nightvision or near infrared imaging technology alone has limited foul-weather viewing capability, poor nighttime performance, and limited nighttime range. And many systems today yield excessive false alarms, are managed by fatigued operators, are unable to manage the voluminous data captured, or lack the ability to pinpoint where an intrusion occurred. In our 2006 paper, "Critical Infrastructure Security Confidence Through Automated Thermal Imaging", we showed how a highly effective security solution can be developed by integrating what are now available "next-generation technologies" which include: Thermal imaging for the highly effective detection of intruders in the dark of night and in challenging weather conditions at the sensor imaging level - we refer to this as the passive thermal sensor level detection building block Automated software detection

  12. Comparing effects of active and passive restoration on the Middle Fork John Day River, NE Oregon

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.; Goslin, M.

    2015-12-01

    Since 2000, cattle grazing has been eliminated on over 14 km of the upper Middle Fork John Day. Starting in 2008, active restoration (log structures with dug pools, woody vegetation planting, and modifications to increase channel-floodplain hydrologic connectivity) was implemented on nearly 6 km within the cattle exclosure length. Implementation of active and passive restoration strategies in the same and adjacent reaches allows comparison of these two approaches. We have been monitoring these reaches since 2008. Unexpectedly in response to grazing exclosure, a native sedge, Carex nudata (torrent sedge), has exploded in population. C. nudata grows in the active channel, anchoring itself tightly to the gravel-cobble river bed with a dense root network. As a result, C. nudata has changed erosion and sedimentation patterns including bank erosion, channel bed scour, and island formation. We present data on fish cover increases due to C. nudata and log structures, and on channel complexity before and after restoration. Both active and passive restorations are increasing channel complexity and juvenile fish cover, although in different ways. Fish cover provided by active and passive restoration are similar in area but different in depth and position, with C. nudata fish cover generally shallower and partly mid-channel. Residual pool depth is larger in log structure pools than in C. nudata scour pools, but C. nudata pools are more numerous in some reaches. By producing frequent, small scour features and small islands, it can be argued that C. nudata is increasing hydraulic complexity more than the large, meander-bend pools at log structures, but this is hard to quantify. C. nudata has also stabilized active bars, perhaps changing the bedload sediment budget. Positive habitat benefits of active restoration appear to be greater in the short term, but over the long term (20 years or more) effects of C. nudata may be comparable or greater.

  13. Application of active and passive neutron non destructive assay methods to concrete radioactive waste drums

    NASA Astrophysics Data System (ADS)

    Jallu, F.; Passard, C.; Brackx, E.

    2011-09-01

    This paper deals with the application of non-destructive neutron measurement methods to control and characterize 200 l radioactive waste drums filled with a concrete matrix. Due to its composition, and particularly to hydrogen, concrete penalizes the use of such methods to quantify uranium (U) and plutonium (Pu) components, which are mainly responsible of the α-activity of the waste. The determination of the alpha activity is the main objective of neutron measurements, in view to verify acceptance criteria in surface storage. Calibration experiments of the Active Neutron Interrogation (ANI) method lead to Detection Limit Masses (DLM) of about 1 mg of 239Pu eff in the total counting mode, and of about 10 mg of 239Pu eff in the coincidence counting mode, in case of a homogeneous Pu source and measurement times between one and two hours. Monte Carlo calculation results show a very satisfactory agreement between experimental values and calculated ones. Results of the application of passive and active neutron methods to control two real drums are presented in the last part of the paper. They show a good agreement between measured data and values declared by the waste producers. The main difficulties that had to be overcome are the low neutron signal in passive and active coincidence counting modes due to concrete, the analysis of the passive neutron signal in presence of 244Cm in the drum, which is a strong spontaneous fission neutron emitter, the variation of the active background with the concrete composition, and the analysis of the active prompt neutron signal due to the simultaneous presence of U and Pu in the drums.

  14. Sensitivity of Active and Passive Microwave Observations to Soil Moisture during Growing Corn

    NASA Astrophysics Data System (ADS)

    Judge, J.; Monsivais-Huertero, A.; Liu, P.; De Roo, R. D.; England, A. W.; Nagarajan, K.

    2011-12-01

    Soil moisture (SM) in the root zone is a key factor governing water and energy fluxes at the land surface and its accurate knowledge is critical to predictions of weather and near-term climate, nutrient cycles, crop-yield, and ecosystem productivity. Microwave observations, such as those at L-band, are highly sensitive to soil moisture in the upper few centimeters (near-surface). The two satellite-based missions dedicated to soil moisture estimation include, the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission and the planned NASA Soil Moisture Active/Passive (SMAP) [4] mission. The SMAP mission will include active and passive sensors at L-band to provide global observations of SM, with a repeat coverage of every 2-3 days. These observations can significantly improve root zone soil moisture estimates through data assimilation into land surface models (LSMs). Both the active (radar) and passive (radiometer) microwave sensors measure radiation quantities that are functions of soil dielectric constant and exhibit similar sensitivities to SM. In addition to the SM sensitivity, radar backscatter is highly sensitive to roughness of soil surface and scattering within the vegetation. These effects may produce a much larger dynamic range in backscatter than that produced due to SM changes alone. In this study, we discuss the field observations of active and passive signatures of growing corn at L-band from several seasons during the tenth Microwave, Water and Energy Balance Experiment (MicroWEX-10) conducted in North Central Florida, and to understand the sensitivity of these signatures to soil moisture under dynamic vegetation conditions. The MicroWEXs are a series of season-long field experiments conducted during the growing seasons of sweet corn, cotton, and energy cane over the past six years (for example, [22]). The corn was planted on July 5 and harvested on September 23, 2011 during MicroWEX-10. The size of the field was 0.04 km2 and the soils

  15. Active Flexion in Weight Bearing Better Correlates with Functional Outcomes of Total Knee Arthroplasty than Passive Flexion

    PubMed Central

    Song, Young Dong; Jain, Nimash; Kang, Yeon Gwi; Kim, Tae Yune

    2016-01-01

    Purpose Correlations between maximum flexion and functional outcomes in total knee arthroplasty (TKA) patients are reportedly weak. We investigated whether there are differences between passive maximum flexion in nonweight bearing and other types of maximum flexion and whether the type of maximum flexion correlates with functional outcomes. Materials and Methods A total of 210 patients (359 knees) underwent preoperative evaluation and postoperative follow-up evaluations (6, 12, and 24 months) for the assessment of clinical outcomes including maximum knee flexion. Maximum flexion was measured under five conditions: passive nonweight bearing, passive weight bearing, active nonweight bearing, and active weight bearing with or without arm support. Data were analyzed for relationships between passive maximum flexion in nonweight bearing by Pearson correlation analyses, and a variance comparison between measurement techniques via paired t test. Results We observed substantial differences between passive maximum flexion in nonweight bearing and the other four maximum flexion types. At all time points, passive maximum flexion in nonweight bearing correlated poorly with active maximum flexion in weight bearing with or without arm support. Active maximum flexion in weight bearing better correlated with functional outcomes than the other maximum flexion types. Conclusions Our study suggests active maximum flexion in weight bearing should be reported together with passive maximum flexion in nonweight bearing in research on the knee motion arc after TKA. PMID:27274468

  16. Brain activation patterns resulting from learning letter forms through active self-production and passive observation in young children

    PubMed Central

    Kersey, Alyssa J.; James, Karin H.

    2013-01-01

    Although previous literature suggests that writing practice facilitates neural specialization for letters, it is unclear if this facilitation is driven by the perceptual feedback from the act of writing or the actual execution of the motor act. The present study addresses this issue by measuring the change in BOLD signal in response to hand-printed letters, unlearned cursive letters, and cursive letters that 7-year-old children learned actively, by writing, and passively, by observing an experimenter write. Brain activation was assessed using fMRI while perceiving letters—in both cursive and manuscript forms. Results showed that active training led to increased recruitment of the sensori-motor network associated with letter perception as well as the insula and claustrum, but passive observation did not. This suggests that perceptual networks for newly learned cursive letters are driven by motor execution rather than by perceptual feedback. PMID:24069007

  17. Brain activation patterns resulting from learning letter forms through active self-production and passive observation in young children.

    PubMed

    Kersey, Alyssa J; James, Karin H

    2013-01-01

    Although previous literature suggests that writing practice facilitates neural specialization for letters, it is unclear if this facilitation is driven by the perceptual feedback from the act of writing or the actual execution of the motor act. The present study addresses this issue by measuring the change in BOLD signal in response to hand-printed letters, unlearned cursive letters, and cursive letters that 7-year-old children learned actively, by writing, and passively, by observing an experimenter write. Brain activation was assessed using fMRI while perceiving letters-in both cursive and manuscript forms. Results showed that active training led to increased recruitment of the sensori-motor network associated with letter perception as well as the insula and claustrum, but passive observation did not. This suggests that perceptual networks for newly learned cursive letters are driven by motor execution rather than by perceptual feedback.

  18. A large difference in the progenitor masses of active and passive galaxies in the EAGLE simulation

    NASA Astrophysics Data System (ADS)

    Clauwens, Bart; Franx, Marijn; Schaye, Joop

    2016-11-01

    Cumulative number density matching of galaxies is a method to observationally connect descendent galaxies to their typical main progenitors at higher redshifts and thereby to assess the evolution of galaxy properties. The accuracy of this method is limited due to galaxy merging and scatter in the stellar mass growth history of individual galaxies. Behroozi et al. (2013) have introduced a refinement of the method, based on abundance matching of observed galaxies to the Bolshoi dark-matter-only simulation. The EAGLE cosmological hydro-simulation is well suited to test this method, because it reproduces the observed evolution of the galaxy stellar mass function and the passive fraction. We find agreement with the Behroozi et al. (2013) method for the complete sample of main progenitors of z = 0 galaxies, but we also find a strong dependence on the current star formation rate. Passive galaxies with a stellar mass up to 10^10.75 Msun have a completely different median mass history than active galaxies of the same mass. This difference persists if we only select central galaxies. This means that the cumulative number density method should be applied separately to active and passive galaxies. Even then, the typical main progenitor of a z = 0 galaxy already spans two orders of magnitude in stellar mass at z = 2.

  19. Separating Active and Passive Influences on Stomatal Control of Transpiration[OPEN

    PubMed Central

    McAdam, Scott A.M.; Brodribb, Timothy J.

    2014-01-01

    Motivated by studies suggesting that the stomata of ferns and lycophytes do not conform to the standard active abscisic acid (ABA) -mediated stomatal control model, we examined stomatal behavior in a conifer species (Metasequoia glyptostroboides) that is phylogenetically midway between the fern and angiosperm clades. Similar to ferns, daytime stomatal closure in response to moderate water stress seemed to be a passive hydraulic process in M. glyptostroboides immediately alleviated by rehydrating excised shoots. Only after prolonged exposure to more extreme water stress did active ABA-mediated stomatal closure become important, because foliar ABA production was triggered after leaf turgor loss. The influence of foliar ABA on stomatal conductance and stomatal aperture was highly predictable and additive with the passive hydraulic influence. M. glyptostroboides thus occupies a stomatal behavior type intermediate between the passively controlled ferns and the characteristic ABA-dependent stomatal closure described in angiosperm herbs. These results highlight the importance of considering phylogeny as a major determinant of stomatal behavior. PMID:24488969

  20. Passive and Active Microwave Remote Sensing of Precipitation and Latent Heating Distributions in the Tropics from TRMM

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Haddad, Ziad S.; Tao, Wei-Kuo; Wang, Yansen; Lang, Stephen E.; Braun, Scott A.; Chiu, Christine; Wang, Jian-Jian

    2002-01-01

    Passive and active microwave remote sensing data are analyzed to identify signatures of precipitation and vertical motion in tropical convection. A database of cloud/radiative model simulations is used to quantify surface rain rates and latent heating profiles that are consistent with these signatures. At satellite footprint-scale (approximately 10 km), rain rate and latent heating estimates are subject to significant random errors, but by averaging the estimates in space and time, random errors are substantially reduced, Bias errors have been minimized by improving the microphysics in the supporting cloud/radiative model simulations, and by imposing a consistent definition of remotely-sensed and model-simulated convective/stratiform rain coverage. Remotely-sensed precipitation and latent heating distributions in the tropics are derived from Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave/ Imager (SSM/ I) sensor data. The prototype Version 6 TRMM passive microwave algorithm typically yields average heating profiles with maxima between 6 and 7 km altitude for organized mesoscale convective systems. Retrieved heating profiles for individual convective systems are compared to coincident estimates based upon a combination of dual-Doppler radar and rawinsonde data. Also, large-scale latent heating distributions are compared to estimates derived from a simpler technique that utilizes observations of surface rain rate and stratiform rain proportion to infer vertical heating structure. Results of these tests will be presented at the conference.

  1. Scanning L-Band Active Passive (SLAP)—FLIGHT Results from a New Airborne Simulator for Smap

    NASA Astrophysics Data System (ADS)

    Kim, E. J.; Faulkner, T.; Wu, A.; Patel, H.

    2014-12-01

    1. Introduction and BackgroundThis paper introduces a new NASA airborne instrument, the Scanning L-band Active Passive (SLAP), which is specially tailored to simulate SMAP. 2. Description of SLAPSLAP has both passive (radiometer) and active (radar) microwave L-band imaging capabilities. The radiometer observes at 1.4 GHz using duplicate front end hardware from the SMAP satellite radiometer. It also includes a duplicate of the digital backend development unit for SMAP, thus the novel Radio Frequency Interference (RFI) detection and mitigation features and algorithms for SMAP are duplicated with very high fidelity in SLAP. The digital backend provides 4-Stokes polarization capability. The real-aperture radar operates in the 1215-1300 MHz band with quad-pol capability. Radar and radiometer share one antenna via diplexers that are spare units from the Aquarius satellite instrument. 3. Flight ResultsSLAP's initial flights were conducted in Dec 2013 over the eastern shore of Maryland and successfully demonstrated radiometer imaging over 2 full SMAP 36x36 km grid cells at 1km resolution within 3 hrs, easily meeting the SMAP post-launch cal/val airborne mapping requirements. A second flight on the same day also demonstrated SLAP's quick-turn abilities and high-resolution/wide-swath capabilities with 200m resolution across a 1500m swath from 2000 ft AGL. Additional flights were conducted as part of the GPM iPHEX campaign in May, 2014. 4. ConclusionThis paper presents flight data and imagery, as well as details of the radiometer and radar performance and calibration. The paper will also describe the mission performance achievable on the King Air and other platforms.

  2. Passive exposures of children to volatile trihalomethanes during domestic cleaning activities of their parents

    SciTech Connect

    Andra, Syam S.; Charisiadis, Pantelis; Karakitsios, Spyros; Sarigiannis, Denis A.; Makris, Konstantinos C.

    2015-01-15

    Domestic cleaning has been proposed as a determinant of trihalomethanes (THMs) exposure in adult females. We hypothesized that parental housekeeping activities could influence children's passive exposures to THMs from their mere physical presence during domestic cleaning. In a recent cross-sectional study (n=382) in Cyprus [41 children (<18y) and 341 adults (≥18y)], we identified 29 children who met the study's inclusion criteria. Linear regression models were applied to understand the association between children sociodemographic variables, their individual practices influencing ingestion and noningestion exposures to ΣTHMs, and their urinary THMs levels. Among the children-specific variables, age alone showed a statistically significant inverse association with their creatinine-adjusted urinary ΣTHMs (r{sub S}=−0.59, p<0.001). A positive correlation was observed between urinary ΣTHMs (ng g{sup −1}) of children and matched-mothers (r{sub S}=0.52, p=0.014), but this was not the case for their matched-fathers (r{sub S}=0.39, p=0.112). Time spent daily by the matched-mothers for domestic mopping, toilet and other cleaning activities using chlorine-based cleaning products was associated with their children's urinary THMs levels (r{sub S}=0.56, p=0.007). This trend was not observed between children and their matched-fathers urinary ΣTHMs levels, because of minimum amount of time spent by the latter in performing domestic cleaning. The proportion of variance of creatinine-unadjusted and adjusted urinary ΣTHMs levels in children that was explained by the matched-mothers covariates was 76% and 74% (p<0.001), respectively. A physiologically-based pharmacokinetic model adequately predicted urinary chloroform excretion estimates, being consistent with the corresponding measured levels. Our findings highlighted the influence of mothers' domestic cleaning activities towards enhancing passive THMs exposures of their children. The duration of such activities could be

  3. Three-dimensional integration of passive and active polymer waveguide devices

    NASA Astrophysics Data System (ADS)

    Garner, Sean Matthew

    This thesis presents the design, fabrication, and experimental results of three dimensionally integrated optics. This vertical and horizontal integration of polymer waveguide structures increases the integration density, reduces interconnection routing difficulties, and expands the functional diversity of adjacent devices. The devices discussed depend on the fabrication of vertical slopes using unconventional photolithography and reactive ion etching techniques. The slopes produced allow fully functional three dimensionally integrated optics that incorporate both passive and active waveguide elements. Passive structures such as vertical waveguide bends, power splitters, and polarization splitters enable three dimensional routing of the optical power among multiple vertical levels. Single mode vertical waveguide bends are demonstrated with polarization insensitive excess losses of 0.2dB. These waveguide structures incorporated bending angles up to 1.5°. Three dimensional 1 x 4 splitters, possess excess losses of 0.5dB and show the ability to fabricate complex waveguide structures in both the horizontal and vertical directions. These vertical power splitters showed controllable power splitting ratios in the output waveguides by controlling the spin cast film thickness within 0.5μM and the slope angle within 0.5°. The vertical polarization splitters incorporated birefringent polymer materials to create an adiabatic mode splitter. These possessed power extinction ratios of about 15dB for both input polarizations. The passive structures of vertical waveguide bends, power splitters, and polarization splitters enable practical three dimensional integrated optics by providing vertical routing capability of the optical signal analogous to those typically found in conventional two dimensional waveguide interconnects. Three dimensionally integrated active devices such as low-loss hybrid modulators and vertically integrated modulator designs create fully functional

  4. Understanding Active and Passive Users: The Effects of an Active User Using Normal, Hard and Unreliable Technologies on User Assessment of Trust in Technology and Co-User

    PubMed Central

    Montague, Enid; JieXu

    2011-01-01

    The aim of this study was to understand how passive users perceive the trustworthiness of active users and technologies under varying technological conditions. An experimental study was designed to vary the functioning of technologies that active users interacted with, while passive users observed these interactions. Active and passive user ratings of technology and partner were collected. Exploratory data analysis suggests that passive users developed perceptions of technologies based on the functioning of the technology and how the active user interacted with the technologies. Findings from this research have implications for the design of technologies in environments where active and passive users interact with technologies in different ways. Future work in this area should explore interventions that lead to enhanced affective engagement and trust calibration. PMID:22192788

  5. Function of reactive oxygen species during animal development: passive or active?

    PubMed

    Covarrubias, Luis; Hernández-García, David; Schnabel, Denhí; Salas-Vidal, Enrique; Castro-Obregón, Susana

    2008-08-01

    Oxidative stress is considered causal of aging and pathological cell death, however, very little is known about its function in the natural processes that support the formation of an organism. It is generally thought that cells must continuously protect themselves from the possible damage caused by reactive oxygen species (ROS) (passive ROS function). However, presently, ROS are recognized as physiologically relevant molecules that mediate cell responses to a variety of stimuli, and the activities of several molecules, some developmentally relevant, are directly or indirectly regulated by oxidative stress (active ROS function). Here we review recent data that are suggestive of specific ROS functions during development of animals, particularly mammals.

  6. Evaluation of active and passive transport processes in corneas extracted from preserved rabbit eyes.

    PubMed

    Majumdar, Soumyajit; Hingorani, Tushar; Srirangam, Ramesh

    2010-04-01

    In vitro transcorneal permeability studies are an important screening tool in drug development. The objective of this research is to examine the feasibility of using corneas isolated from preserved rabbit eyes as a model for permeability evaluation. Eyes from male New Zealand White rabbits were used immediately or were stored overnight in phosphate-buffered saline (PBS) or Hanks balanced salt solution (HBSS) over wet ice. Integrity of isolated corneas was evaluated by measuring the TEER and by determining the permeability of paracellular and transcellular markers. Active transport was assessed by measuring transcorneal permeability of selected amino acids. Esterase activity was estimated using p-nitrophenyl assay. In all cases, corneas from freshly enucleated eyes were compared to those isolated from the day-old preserved eyes. Transcellular and paracellular passive diffusion was not affected by the storage medium and observed to be similar in the fresh and preserved eye models. However, amino acid transporters demonstrated lower functional activity in corneas excised from eyes preserved in PBS. Moreover, preserved eyes displayed almost 1.5-fold lower esterase activity in the corneal tissue. Thus, corneas isolated from day-old eyes, preserved in HBSS, closely mimics freshly excised rabbit corneas in terms of both active and passive transport characteristics but possesses slightly reduced enzymatic activity.

  7. Effect of lexical cues on the production of active and passive sentences in Broca's and Wernicke's aphasia

    PubMed Central

    Faroqi-Shah, Yasmeen; Thompson, Cynthia K.

    2011-01-01

    This study compared the sentence production abilities of individuals with Broca's and Wernicke's aphasia in an attempt to explore the extent to which impaired lexical retrieval impedes sentence production. The ability to produce active and passive reversible and non-reversible sentences was examined when varying amounts of lexical information was provided. The results showed that both Wernicke's and Broca's aphasic individuals were impaired in passive sentence production and that these difficulties were not overcome when lexical cues (the relevant nouns and uninflected verb) were provided. However when auxiliary and past tense morphemes were provided along with the verb stem, production of passive sentences improved drastically for both groups. Analysis of error patterns, however, revealed differences between the two groups, suggesting that Broca's aphasic subjects mayfind passive sentences difficult due to problems with retrieving the relevant grammatical morphemes. Subjects with Wernicke's aphasia may have been unable to automatically access the passive sentence structure. PMID:12744953

  8. Intercomparison and intercalibration of passive/active radon and active radon progeny instruments and methods in North America

    SciTech Connect

    George, A.C.; Tu, Keng W.

    1993-06-01

    An intercomparison and intercalibration exercise for radon and radon progeny measurements made with active and passive instruments was held at EML from October 22--30,1992. Twenty-five participants submitted 96 passive integrating devices, eight active devices for radon, and seven integrating devices for potential alpha energy concentration (PAEC). In addition, 40 grab samples for radon progeny analysis were taken by five groups that participated in person during the intercomparison. The results reported to EML indicate that the majority of the participants (70%) obtained mean results within 10% of the EML reference value. Although the instruments used in this exercise are based on different principles of collection and detection, they all appear reliable. However, in some instances there seemed to be some minor problems with quality control and calibration bias. Also, the large counting errors for the PAEC experienced by some of the participants can be minimized by using higher sampling air flow rates without sacrificing instrument portability.

  9. Detection of Rare Antimicrobial Resistance Profiles by Active and Passive Surveillance Approaches.

    PubMed

    Mather, Alison E; Reeve, Richard; Mellor, Dominic J; Matthews, Louise; Reid-Smith, Richard J; Dutil, Lucie; Haydon, Daniel T; Reid, Stuart W J

    2016-01-01

    Antimicrobial resistance (AMR) surveillance systems are generally not specifically designed to detect emerging resistances and usually focus primarily on resistance to individual drugs. Evaluating the diversity of resistance, using ecological metrics, allows the assessment of sampling protocols with regard to the detection of rare phenotypes, comprising combinations of resistances. Surveillance data of phenotypic AMR of Canadian poultry Salmonella Heidelberg and swine Salmonella Typhimurium var. 5- were used to contrast active (representative isolates derived from healthy animals) and passive (diagnostic isolates) surveillance and assess their suitability for detecting emerging resistance patterns. Although in both datasets the prevalences of resistance to individual antimicrobials were not significantly different between the two surveillance systems, analysis of the diversity of entire resistance phenotypes demonstrated that passive surveillance of diagnostic isolates detected more unique phenotypes. Whilst the most appropriate surveillance method will depend on the relevant objectives, under the conditions of this study, passive surveillance of diagnostic isolates was more effective for the detection of rare and therefore potentially emerging resistance phenotypes. PMID:27391966

  10. Detection of Rare Antimicrobial Resistance Profiles by Active and Passive Surveillance Approaches

    PubMed Central

    Mather, Alison E.; Reeve, Richard; Mellor, Dominic J.; Matthews, Louise; Reid-Smith, Richard J.; Haydon, Daniel T.; Reid, Stuart W. J.

    2016-01-01

    Antimicrobial resistance (AMR) surveillance systems are generally not specifically designed to detect emerging resistances and usually focus primarily on resistance to individual drugs. Evaluating the diversity of resistance, using ecological metrics, allows the assessment of sampling protocols with regard to the detection of rare phenotypes, comprising combinations of resistances. Surveillance data of phenotypic AMR of Canadian poultry Salmonella Heidelberg and swine Salmonella Typhimurium var. 5- were used to contrast active (representative isolates derived from healthy animals) and passive (diagnostic isolates) surveillance and assess their suitability for detecting emerging resistance patterns. Although in both datasets the prevalences of resistance to individual antimicrobials were not significantly different between the two surveillance systems, analysis of the diversity of entire resistance phenotypes demonstrated that passive surveillance of diagnostic isolates detected more unique phenotypes. Whilst the most appropriate surveillance method will depend on the relevant objectives, under the conditions of this study, passive surveillance of diagnostic isolates was more effective for the detection of rare and therefore potentially emerging resistance phenotypes. PMID:27391966

  11. Application of a passive/active autoparametric cantilever beam absorber with PZT actuator for Duffing systems

    NASA Astrophysics Data System (ADS)

    Silva-Navarro, G.; Abundis-Fong, H. F.; Vazquez-Gonzalez, B.

    2013-04-01

    An experimental investigation is carried out on a cantilever-type passive/active autoparametric vibration absorber, with a PZT patch actuator, to be used in a primary damped Duffing system. The primary system consists of a mass, viscous damping and a cubic stiffness provided by a soft helical spring, over which is mounted a cantilever beam with a PZT patch actuator actively controlled to attenuate harmonic and resonant excitation forces. With the PZT actuator on the cantilever beam absorber, cemented to the base of the beam, the auto-parametric vibration absorber is made active, thus enabling the possibility to control the effective stiffness and damping associated to the passive absorber and, as a consequence, the implementation of an active vibration control scheme able to preserve, as possible, the autoparametric interaction as well as to compensate varying excitation frequencies and parametric uncertainty. This active vibration absorber employs feedback information from a high resolution optical encoder on the primary Duffing system and an accelerometer on the tip beam absorber, a strain gage on the base of the beam, feedforward information from the excitation force and on-line computations from the nonlinear approximate frequency response, parameterized in terms of a proportional gain provided by a voltage input to the PZT actuator, thus modifying the closed-loop dynamic stiffness and providing a mechanism to asymptotically track an optimal, robust and stable attenuation solution on the primary Duffing system. Experimental results are included to describe the dynamic and robust performance of the overall closed-loop system.

  12. Imaging the lithosphere of rifted passive margins using waveform tomography: North Atlantic, South Atlantic and beyond

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergei; Schaeffer, Andrew; Celli, Nicolas Luca

    2016-04-01

    Lateral variations in seismic velocities in the upper mantle reflect variations in the temperature of the rocks at depth. Seismic tomography thus provides a proxy for lateral changes in the temperature and thickness of the lithosphere. It can map the deep boundaries between tectonic blocks with different properties and age of the lithosphere. Our 3D tomographic models of the upper mantle and the crust at the Atlantic and global scales are constrained by an unprecedentedly large global dataset of broadband waveform fits (over one million seismograms) and provide improved resolution of the lithosphere, compared to other available models. The most prominent high-velocity anomalies, seen down to 150-200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons, including those in North America, Greenland, northern and eastern Europe, Africa and South America. The dominant, large-scale, low-velocity feature is the global system of mid-ocean ridges, with broader low-velocity regions near hotspots, including Iceland. Currently active continental rifts show highly variable expression in the upper mantle, from pronounced low velocities to weak anomalies; this correlates with the amount of magmatism within the rift zone. Rifted passive margins have typically undergone cooling since the rifting and show more subtle variations in their seismic-velocity structure. Their thermal structure and evolution, however, are also shaped by 3D geodynamic processes since their formation, including cooling by the adjacent cratonic blocks inland and heating by warm oceanic asthenosphere.

  13. Images of an Activated Asteroid

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    In late April of this year, asteroid P/2016 G1 (PANSTARRS) was discovered streaking through space, a tail of dust extending behind it. What caused this asteroids dust activity?Asteroid or Comet?Images of asteroid P/2016 G1 at three different times: late April, late May, and mid June. The arrow in the center panel points out an asymmetric feature that can be explained if the asteroid initially ejected material in a single direction, perhaps due to an impact. [Moreno et al. 2016]Asteroid P/2016 G1 is an interesting case: though it has the orbital elements of a main-belt asteroid it orbits at just under three times the EarthSun distance, with an eccentricity of e ~ 0.21 its appearance is closer to that of a comet, with a dust tail extending 20 behind it.To better understand the nature and cause of this unusual asteroids activity, a team led by Fernando Moreno (Institute of Astrophysics of Andalusia, in Spain) performed deep observations of P/2016 G1 shortly after its discovery. The team used the 10.4-meter Great Canary Telescope to image the asteroid over the span of roughly a month and a half.A Closer Look at P/2016 G1P/2016 G1 lies in the inner region of the main asteroid belt, so it is unlikely to have any ices that suddenly sublimated, causing the outburst. Instead, Moreno and collaborators suggest that the asteroids tail may have been caused by an impact that disrupted the parent body.To test this idea, the team used computer simulations to model their observations of P/2016 G1s dust tail. Based on their models, they demonstrate that the asteroid was likely activated on February 10 2016 roughly 350 days before it reached perihelion in its orbit and its activity was a short-duration event, lasting only ~24 days. The teams models indicate that over these 24 days, the asteroid lost around 20 million kilograms of dust, and at its maximum activity level, it was ejecting around 8 kg/s!Comparison of the observation from late May (panel a) and two models: one in which

  14. Active and passive computed tomography mixed waste focus area final report

    SciTech Connect

    Roberson, G P

    1998-08-19

    The Mixed Waste Focus Area (MWFA) Characterization Development Strategy delineates an approach to resolve technology deficiencies associated with the characterization of mixed wastes. The intent of this strategy is to ensure the availability of technologies to support the Department of Energy's (DOE) mixed waste low-level or transuranic (TRU) contaminated waste characterization management needs. To this end the MWFA has defined and coordinated characterization development programs to ensure that data and test results necessary to evaluate the utility of non-destructive assay technologies are available to meet site contact handled waste management schedules. Requirements used as technology development project benchmarks are based in the National TRU Program Quality Assurance Program Plan. These requirements include the ability to determine total bias and total measurement uncertainty. These parameters must be completely evaluated for waste types to be processed through a given nondestructive waste assay system constituting the foundation of activities undertaken in technology development projects. Once development and testing activities have been completed, Innovative Technology Summary Reports are generated to provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory's (LLNL) is developing the Active and Passive Computed Tomography (A&PCT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of .their classification; low level, transuranic or provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non

  15. X-Band Active-Passive Rf Pulse Compressor with Plasma Switches

    SciTech Connect

    Vikharev, A.L.; Ivanov, O.A.; Gorbachev, A.M.; Lobaev, M.A.; Isaev, V.A.; Tantawi, S.G.; Lewandowski, J.R.; Hirshfield, J.L.; /Omega-P, New Haven /Yale U.

    2012-04-27

    As proposed by SLAC, the efficiency of a pulse compressor of the SLED-II type could be increased by changing both the phase of the microwave source and the coupling coefficient of the delay line. In the existing SLED-II system at frequency 11.4 GHz, the resonant delay line is coupled with the source via an iris with a constant reflection coefficient. Replacement of the iris with an active component makes it possible to create an active SLED-II system. In this paper, the use of plasma switches as the active elements is discussed. Plasma switches have been developed and tested at a high-power level for production of flattop compressed pulses. Active switching of SLED-II has demonstrated a marked increase in efficiency (by 20%) and power gain (by 37%) as compared with passive switching. The active compressor has produced 173 ns rf flattop output pulses with a power of about 112 MW.

  16. Integrated active and passive control design methodology for the LaRC CSI evolutionary model

    NASA Technical Reports Server (NTRS)

    Voth, Christopher T.; Richards, Kenneth E., Jr.; Schmitz, Eric; Gehling, Russel N.; Morgenthaler, Daniel R.

    1994-01-01

    A general design methodology to integrate active control with passive damping was demonstrated on the NASA LaRC CSI Evolutionary Model (CEM), a ground testbed for future large, flexible spacecraft. Vibration suppression controllers designed for Line-of Sight (LOS) minimization were successfully implemented on the CEM. A frequency-shaped H2 methodology was developed, allowing the designer to specify the roll-off of the MIMO compensator. A closed loop bandwidth of 4 Hz, including the six rigid body modes and the first three dominant elastic modes of the CEM was achieved. Good agreement was demonstrated between experimental data and analytical predictions for the closed loop frequency response and random tests. Using the Modal Strain Energy (MSE) method, a passive damping treatment consisting of 60 viscoelastically damped struts was designed, fabricated and implemented on the CEM. Damping levels for the targeted modes were more than an order of magnitude larger than for the undamped structure. Using measured loss and stiffness data for the individual damped struts, analytical predictions of the damping levels were very close to the experimental values in the (1-10) Hz frequency range where the open loop model matched the experimental data. An integrated active/passive controller was successfully implemented on the CEM and was evaluated against an active-only controller. A two-fold increase in the effective control bandwidth and further reductions of 30 percent to 50 percent in the LOS RMS outputs were achieved compared to an active-only controller. Superior performance was also obtained compared to a High-Authority/Low-Authority (HAC/LAC) controller.

  17. Telencephalic neural activation following passive avoidance learning in a terrestrial toad.

    PubMed

    Puddington, Martín M; Daneri, M Florencia; Papini, Mauricio R; Muzio, Rubén N

    2016-12-15

    The present study explores passive avoidance learning and its neural basis in toads (Rhinella arenarum). In Experiment 1, two groups of toads learned to move from a lighted compartment into a dark compartment. After responding, animals in the experimental condition were exposed to an 800-mM strongly hypertonic NaCl solution that leads to weight loss. Control animals received exposure to a 300-mM slightly hypertonic NaCl solution that leads to neither weight gain nor loss. After 10 daily acquisition trials, animals in the experimental group showed significantly longer latency to enter the dark compartment. Additionally, 10 daily trials in which both groups received the 300-mM NaCl solution after responding eliminated this group effect. Thus, experimental animals showed gradual acquisition and extinction of a passive avoidance respond. Experiment 2 replicated the gradual acquisition effect, but, after the last trial, animals were sacrificed and neural activation was assessed in five brain regions using AgNOR staining for nucleoli-an index of brain activity. Higher activation in the experimental animals, relative to controls, was observed in the amygdala and striatum. Group differences in two other regions, lateral pallium and septum, were borderline, but nonsignificant, whereas group differences in the medial pallium were nonsignificant. These preliminary results suggest that a striatal-amygdala activation could be a key component of the brain circuit controlling passive avoidance learning in amphibians. The results are discussed in relation to the results of analogous experiments with other vertebrates. PMID:27498147

  18. Multimodal integration of self-motion cues in the vestibular system: active versus passive translations.

    PubMed

    Carriot, Jerome; Brooks, Jessica X; Cullen, Kathleen E

    2013-12-11

    The ability to keep track of where we are going as we navigate through our environment requires knowledge of our ongoing location and orientation. In response to passively applied motion, the otolith organs of the vestibular system encode changes in the velocity and direction of linear self-motion (i.e., heading). When self-motion is voluntarily generated, proprioceptive and motor efference copy information is also available to contribute to the brain's internal representation of current heading direction and speed. However to date, how the brain integrates these extra-vestibular cues with otolith signals during active linear self-motion remains unknown. Here, to address this question, we compared the responses of macaque vestibular neurons during active and passive translations. Single-unit recordings were made from a subgroup of neurons at the first central stage of sensory processing in the vestibular pathways involved in postural control and the computation of self-motion perception. Neurons responded far less robustly to otolith stimulation during self-generated than passive head translations. Yet, the mechanism underlying the marked cancellation of otolith signals did not affect other characteristics of neuronal responses (i.e., baseline firing rate, tuning ratio, orientation of maximal sensitivity vector). Transiently applied perturbations during active motion further established that an otolith cancellation signal was only gated in conditions where proprioceptive sensory feedback matched the motor-based expectation. Together our results have important implications for understanding the brain's ability to ensure accurate postural and motor control, as well as perceptual stability, during active self-motion.

  19. Biological effects of passive versus active scanning proton beams on human lung epithelial cells.

    PubMed

    Gridley, Daila S; Pecaut, Michael J; Mao, Xiao W; Wroe, Andrew J; Luo-Owen, Xian

    2015-02-01

    The goal was to characterize differences in cell response after exposure to active beam scanning (ABS) protons compared to a passive delivery system. Human lung epithelial (HLE) cells were evaluated at various locations along the proton depth dose profile. The dose delivered at the Bragg peak position was essentially identical (∼4 Gy) with the two techniques, but depth dose data showed that ABS resulted in lower doses at entry and more rapid drop-off after the peak. Average dose rates for the passive and ABS beams were 1.1 Gy/min and 5.1 Gy/min, respectively; instantaneous dose rates were 19.2 Gy/min and 2,300 Gy/min (to a 0.5 × 0.5 mm(2) voxel). Analysis of DNA synthesis was based on (3)H-TdR incorporation. Quantitative real-time polymerase chain reaction (RT-PCR) was done to determine expression of genes related to p53 signaling and DNA damage; a total of 152 genes were assessed. Spectral karyotyping and analyses of the Golgi apparatus and cytokines produced by the HLE cells were also performed. At or near the Bragg peak position, ABS protons resulted in a greater decrease in DNA synthesis compared to passively delivered protons. Genes with >2-fold change (P < 0.05 vs. 0 Gy) after passive proton irradiation at one or more locations within the Bragg curve were BTG2, CDKN1A, IFNB1 and SIAH1. In contrast, many more genes had >2-fold difference with ABS protons: BRCA1, BRCA2, CDC25A, CDC25C, CCNB2, CDK1, DMC1, DNMT1, E2F1, EXO1, FEN1, GADD45A, GTSE1, IL-6, JUN, KRAS, MDM4, PRC1, PTTG1, RAD51, RPA1, TNF, WT1, XRCC2, XRCC3 and XRCC6BP1. Spectral karyotyping revealed numerous differences in chromosomal abnormalities between the two delivery systems, especially at or near the Bragg peak. Percentage of cells staining for the Golgi apparatus was low after exposure to passive and active proton beams. Studies such as this are needed to ensure patient safety and make modifications in ABS delivery, if necessary.

  20. Fueling and imaging brain activation.

    PubMed

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron-astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  1. Fueling and imaging brain activation

    PubMed Central

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  2. Synergism of active and passive microwave data for estimating bare surface soil moisture

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Njoku, Eni G.; Wegmueller, Urs

    1993-01-01

    Active and passive microwave sensors were applied effectively to the problem of estimating the surface soil moisture in a variety of environmental conditions. Research to date has shown that both types of sensors are also sensitive to the surface roughness and the vegetation cover. In estimating the soil moisture, the effect of the vegetation and roughness are often corrected either by acquiring multi-configuration (frequency and polarization) data or by adjusting the surface parameters in order to match the model predictions to the measured data. Due to the limitations on multi-configuration spaceborne data and the lack of a priori knowledge of the surface characteristics for parameter adjustments, it was suggested that the synergistic use of the sensors may improve the estimation of the soil moisture over the extreme range of naturally occurring soil and vegetation conditions. To investigate this problem, the backscattering and emission from a bare soil surface using the classical rough surface scattering theory were modeled. The model combines the small perturbation and the Kirchhoff approximations in conjunction with the Peak formulation to cover a wide range of surface roughness parameters with respect to frequency for both active and passive measurements. In this approach, the same analytical method was used to calculate the backscattering and emissivity. Therefore, the active and passive simulations can be combined at various polarizations and frequencies in order to estimate the soil moisture more actively. As a result, it is shown that (1) the emissivity is less dependent on the surface correlation length, (2) the ratio of the backscattering coefficient (HH) over the surface reflectivity (H) is almost independent of the soil moisture for a wide range of surface roughness, and (3) this ratio can be approximated as a linear function of the surface rms height. The results were compared with the data obtained by a multi-frequency radiometer

  3. Active Immunity Induced by Passive IgG Post-Exposure Protection against Ricin

    PubMed Central

    Hu, Charles Chen; Yin, Junfei; Chau, Damon; Cherwonogrodzky, John W.; Hu, Wei-Gang

    2014-01-01

    Therapeutic antibodies can confer an instant protection against biothreat agents when administered. In this study, intact IgG and F(ab’)2 from goat anti-ricin hyperimmune sera were compared for the protection against lethal ricin mediated intoxication. Similar ricin-binding affinities and neutralizing activities in vitro were observed between IgG and F(ab’)2 when compared at the same molar concentration. In a murine ricin intoxication model, both IgG and F(ab’)2 could rescue 100% of the mice by one dose (3 nmol) administration of antibodies 1 hour after 5 × LD50 ricin challenge. Nine days later, when the rescued mice received a second ricin challenge (5 × LD50), only the IgG-treated mice survived; the F(ab’)2-treated mice did not. The experimental design excluded the possibility of residual goat IgG responsible for the protection against the second ricin challenge. Results confirmed that the active immunity against ricin in mice was induced quickly following the passive delivery of a single dose of goat IgG post-exposure. Furthermore, it was demonstrated that the induced active immunity against ricin in mice lasted at least 5 months. Therefore, passive IgG therapy not only provides immediate protection to the victim after ricin exposure, but also elicits an active immunity against ricin that subsequently results in long term protection. PMID:24451844

  4. Speech recognition in noise with active and passive hearing protectors: a comparative study.

    PubMed

    Bockstael, Annelies; De Coensel, Bert; Botteldooren, Dick; D'Haenens, Wendy; Keppler, Hannah; Maes, Leen; Philips, Birgit; Swinnen, Freya; Bart, Vinck

    2011-06-01

    The perceived negative influence of standard hearing protectors on communication is a common argument for not wearing them. Thus, "augmented" protectors have been developed to improve speech intelligibility. Nevertheless, their actual benefit remains a point of concern. In this paper, speech perception with active earplugs is compared to standard passive custom-made earplugs. The two types of active protectors included amplify the incoming sound with a fixed level or to a user selected fraction of the maximum safe level. For the latter type, minimal and maximal amplification are selected. To compare speech intelligibility, 20 different speech-in-noise fragments are presented to 60 normal-hearing subjects and speech recognition is scored. The background noise is selected from realistic industrial noise samples with different intensity, frequency, and temporal characteristics. Statistical analyses suggest that the protectors' performance strongly depends on the noise condition. The active protectors with minimal amplification outclass the others for the most difficult and the easiest situations, but they also limit binaural listening. In other conditions, the passive protectors clearly surpass their active counterparts. Subsequently, test fragments are analyzed acoustically to clarify the results. This provides useful information for developing prototypes, but also indicates that tests with human subjects remain essential. PMID:21682395

  5. A model-based approach for detection of objects in low resolution passive-millimeter wave images

    NASA Technical Reports Server (NTRS)

    Tang, Yuan-Liang; Devadiga, Sadashiva; Kasturi, Rangachar; Harris, Randall L., Sr.

    1993-01-01

    We describe a model-based vision system to assist pilots in landing maneuvers under restricted visibility conditions. The system was designed to analyze image sequences obtained from a Passive Millimeter Wave (PMMW) imaging system mounted on the aircraft to delineate runways/taxiways, buildings, and other objects on or near runways. PMMW sensors have good response in a foggy atmosphere; but, their spatial resolution is very low. However, additional data such as airport model and approximate position and orientation of aircraft are available. We exploit these data to guide our model-based system to locate objects in the low resolution image and generate warning signals to alert the pilots. We also derive analytical expressions for the accuracy of the camera position estimate obtained by detecting the position of known objects in the image.

  6. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Anagnostou, Emmanouil N.; Olson, William S.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated using both simulated and airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) satellite multi-frequency active and passive observations. These observations are characterized by various spatial and sampling resolutions. This makes the retrieval problem mathematically more difficult and ill-determined because the quality of information decreases with decreasing resolution. A model that, given reflectivity profiles and a small set of parameters (including the cloud water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure is used to minimize the differences between simulated and observed brightness temperatures. The retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and reflectivities and airborne observation strong are convolved at the resolution of the TRMM instruments and retrievals are performed and analyzed relative to the reference data used in observations synthesis. An illustration of the possible use of the technique in satellite rainfall estimation is presented through an application to TRMM data. The study suggests improvements in combined active and passive retrievals even when the instruments resolutions are significantly different. Future work needs to better quantify the retrievals performance, especially in connection with satellite applications, and the uncertainty of the models used in retrieval.

  7. Integration of Active and Passive Safety Technologies--A Method to Study and Estimate Field Capability.

    PubMed

    Hu, Jingwen; Flannagan, Carol A; Bao, Shan; McCoy, Robert W; Siasoco, Kevin M; Barbat, Saeed

    2015-11-01

    The objective of this study is to develop a method that uses a combination of field data analysis, naturalistic driving data analysis, and computational simulations to explore the potential injury reduction capabilities of integrating passive and active safety systems in frontal impact conditions. For the purposes of this study, the active safety system is actually a driver assist (DA) feature that has the potential to reduce delta-V prior to a crash, in frontal or other crash scenarios. A field data analysis was first conducted to estimate the delta-V distribution change based on an assumption of 20% crash avoidance resulting from a pre-crash braking DA feature. Analysis of changes in driver head location during 470 hard braking events in a naturalistic driving study found that drivers' head positions were mostly in the center position before the braking onset, while the percentage of time drivers leaning forward or backward increased significantly after the braking onset. Parametric studies with a total of 4800 MADYMO simulations showed that both delta-V and occupant pre-crash posture had pronounced effects on occupant injury risks and on the optimal restraint designs. By combining the results for the delta-V and head position distribution changes, a weighted average of injury risk reduction of 17% and 48% was predicted by the 50th percentile Anthropomorphic Test Device (ATD) model and human body model, respectively, with the assumption that the restraint system can adapt to the specific delta-V and pre-crash posture. This study demonstrated the potential for further reducing occupant injury risk in frontal crashes by the integration of a passive safety system with a DA feature. Future analyses considering more vehicle models, various crash conditions, and variations of occupant characteristics, such as age, gender, weight, and height, are necessary to further investigate the potential capability of integrating passive and DA or active safety systems. PMID

  8. Passive and active microrheology for cross-linked F-actin networks in vitro.

    PubMed

    Lee, Hyungsuk; Ferrer, Jorge M; Nakamura, Fumihiko; Lang, Matthew J; Kamm, Roger D

    2010-04-01

    Actin filament (F-actin) is one of the dominant structural constituents in the cytoskeleton. Orchestrated by various actin-binding proteins (ABPs), F-actin is assembled into higher-order structures such as bundles and networks that provide mechanical support for the cell and play important roles in numerous cellular processes. Although mechanical properties of F-actin networks have been extensively studied, the underlying mechanisms for network elasticity are not fully understood, in part because different measurements probe different length and force scales. Here, we developed both passive and active microrheology techniques using optical tweezers to estimate the mechanical properties of F-actin networks at a length scale comparable to cells. For the passive approach we tracked the motion of a thermally fluctuating colloidal sphere to estimate the frequency-dependent complex shear modulus of the network. In the active approach, we used an optical trap to oscillate an embedded microsphere and monitored the response in order to obtain network viscoelasticity over a physiologically relevant force range. While both active and passive measurements exhibit similar results at low strain, the F-actin network subject to high strain exhibits non-linear behavior which is analogous to the strain-hardening observed in macroscale measurements. Using confocal and total internal reflection fluorescent microscopy, we also characterize the microstructure of reconstituted F-actin networks in terms of filament length, mesh size and degree of bundling. Finally, we propose a model of network connectivity by investigating the effect of filament length on the mechanical properties and structure. PMID:19883801

  9. Synergistic use of active and passive microwave in soil moisture estimation

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Chauhan, N.; Jackson, T.; Saatchi, S.

    1992-01-01

    Data gathered during the MACHYDRO experiment in central Pennsylvania in July 1990 have been utilized to study the synergistic use of active and passive microwave systems for estimating soil moisture. These data sets were obtained during an eleven-day period with NASA's Airborne Synthetic Aperture Radar (AIRSAR) and Push-Broom Microwave Radiometer (PBMR) over an instrumented watershed which included agricultural fields with a number of different crop covers. Simultaneous ground truth measurements were also made in order to characterize the state of vegetation and soil moisture under a variety of meteorological conditions. A combination algorithm is presented as applied to a representative corn field in the MACHYDRO watershed.

  10. Active and passive calcium transport systems in plant cells: Progress report, January 1986--June 1989

    SciTech Connect

    Sze, H.

    1989-01-01

    The objectives of this proposal are to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells. Several different energy-dependent Ca transport systems have been identified and characterized from oat root tissue (a monocot tissue) and carrot suspension cells (a dicot tissue). They are described in more detail below. I also have included in this progress report our continuing studies to understand the mode of action of the Helminthosporium maydis T toxin. This study was initially supported by a preceding DOE grant. The time needed to complete the study overlapped partly with the present grant period.

  11. Capability and limitation study of the DDT passive-active neutron waste assay instrument

    SciTech Connect

    Nicholas, N.J.; Coop, K.L.; Estep, R.J.

    1992-05-01

    The differential-dieaway-technique passive-active neutron assay system is widely used by transuranic waste generators to certify their drummed waste for eventual shipment to the Waste Isolation Pilot Plant (WIPP). Stricter criteria being established for waste emplacement at the WIPP site has led to a renewed interest in improvements to and a better understanding of current nondestructive assay (NDA) techniques. Our study includes the effects of source position, extreme matrices, high neutron backgrounds, and source self-shielding to explore the system`s capabilities and limitations and to establish a basis for comparison with other NDA systems. 11 refs.

  12. Capability and limitation study of the DDT passive-active neutron waste assay instrument

    SciTech Connect

    Nicholas, N.J.; Coop, K.L.; Estep, R.J.

    1992-05-01

    The differential-dieaway-technique passive-active neutron assay system is widely used by transuranic waste generators to certify their drummed waste for eventual shipment to the Waste Isolation Pilot Plant (WIPP). Stricter criteria being established for waste emplacement at the WIPP site has led to a renewed interest in improvements to and a better understanding of current nondestructive assay (NDA) techniques. Our study includes the effects of source position, extreme matrices, high neutron backgrounds, and source self-shielding to explore the system's capabilities and limitations and to establish a basis for comparison with other NDA systems. 11 refs.

  13. Active and passive compensation of APPLE II-introduced multipole errors through beam-based measurement

    NASA Astrophysics Data System (ADS)

    Chung, Ting-Yi; Huang, Szu-Jung; Fu, Huang-Wen; Chang, Ho-Ping; Chang, Cheng-Hsiang; Hwang, Ching-Shiang

    2016-08-01

    The effect of an APPLE II-type elliptically polarized undulator (EPU) on the beam dynamics were investigated using active and passive methods. To reduce the tune shift and improve the injection efficiency, dynamic multipole errors were compensated using L-shaped iron shims, which resulted in stable top-up operation for a minimum gap. The skew quadrupole error was compensated using a multipole corrector, which was located downstream of the EPU for minimizing betatron coupling, and it ensured the enhancement of the synchrotron radiation brightness. The investigation methods, a numerical simulation algorithm, a multipole error correction method, and the beam-based measurement results are discussed.

  14. Performance of an active/passive hybrid solar system utilizing vapor transport

    SciTech Connect

    Hedstrom, J.C.

    1984-01-01

    Vapor-phase heat-transport systems are being tested in two of the passive test cells at Los Alamos. The systems consist of an active fin-and-tube collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector with a pump or with a self-pumping scheme. A computer model was developed to predict the behavior of the system, after which the computer was used to predict the annual performance of these systems in five cities. The report compares the measured and the predicted results as well as the system's sensitivity to several parameters.

  15. Soil Moisture Active Passive (SMAP) Mission Level 4 Carbon (L4_C) Product Specification Document

    NASA Technical Reports Server (NTRS)

    Glassy, Joe; Kimball, John S.; Jones, Lucas; Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project.

  16. Cat vestibular neurons that exhibit different responses to active and passive yaw head rotations

    NASA Technical Reports Server (NTRS)

    Robinson, F. R.; Tomko, D. L.

    1987-01-01

    Neurons in the vestibular nuclei were recorded in alert cats during voluntary yaw rotations of the head and during the same rotations delivered with a turntable driven from a record of previous voluntary movements. During both voluntary and passive rotations, 35 percent (6/17) of neurons tested responded at higher rates or for a larger part of the movement during voluntary movements than during the same rotations delivered with the turntable. Neck sensory input was evaluated separately in many of these cells and can account qualitatively for the extra firing present during active movement.

  17. Cost-effective and monitoring-active technique for TDM-passive optical networks

    NASA Astrophysics Data System (ADS)

    Chi, Chang-Chia; Lin, Hong-Mao; Tarn, Chen-Wen; Lin, Huang-Liang

    2014-08-01

    A reliable, detection-active and cost-effective method which employs the hello and heartbeat signals for branched node distinguishing to monitor fiber fault in any branch of distribution fibers of a time division multiplexing passive optical network (TDM-PON) is proposed. With this method, the material cost of building an optical network monitor system for a TDM-PON with 168 ONUs and the time of identifying a multiple branch faults is significantly reduced in a TDM-PON system of any scale. A fault location in a 1 × 32 TDM-PON system using this method to identify the fault branch is demonstrated.

  18. Active and Passive Application of the Phosphoric Acid on the Bond Strength of Lithium Disilicate.

    PubMed

    Giraldo, Tatiana Cardona; Villada, Vanessa Roldan; Castillo, Mauricio Peña; Gomes, Osnara Maria Mongruel; Bittencourt, Bruna Fortes; Dominguez, John Alexis

    2016-01-01

    The objective of this study was to evaluate the effect of passive or active phosphoric acid (PA) application after hydrofluoric acid (HA) treatment on the microshear bond strength of lithium disilicate. Thirty ceramic discs were made with IPS Emax 2 (10 mm thick and 10 mm diameter). The specimens were divided into 3 groups, A: 9.6% HA application; AF: 9.6% HA application + cleaning with 37% PA in passive mode and AFF: 9.6% HA application + cleaning with 37% PA in active mode. For the microshear test, four tygons (0.9 mm diameter and 0.2 mm high) were filled with resin cement (RelyX Ultimate) and placed on the ceramic disks. After testing, the fracture modes were examined under scanning electron microscopy. Data were analyzed by one-way ANOVA and Tukey's post test (α=0.05). The bond strength values were significantly higher in Group AFF (11.0±2.5 MPa) compared with group A (8.1±2.6 MPa) (p<0.002). AF group was not statistically different (9.4±2.5 MPa) from Group A. It was concluded that the active application of 37% PA after 9.6% HA increases the microshear bond strength values between the resin cement and lithium disilicate ceramic.

  19. The influence of yaw motion on the perception of active vs passive visual curvilinear displacement.

    PubMed

    Savona, Florian; Stratulat, Anca Melania; Roussarie, Vincent; Bourdin, Christophe

    2015-01-01

    Self-motion perception, which partly determines the realism of dynamic driving simulators, is based on multisensory integration. However, it remains unclear how the brain integrates these cues to create adequate motion perception, especially for curvilinear displacements. In the present study, the effect of visual, inertial and visuo-inertial cues (concordant or discordant bimodal cues) on self-motion perception was analyzed. Subjects were asked to evaluate (externally produced) or produce (self-controlled) curvilinear displacements as accurately as possible. The results show systematic overestimation of displacement, with better performance for active subjects than for passive ones. Furthermore, it was demonstrated that participants used unimodal or bimodal cues differently in performing their activity. When passive, subjects systematically integrated visual and inertial cues even when discordant, but with weightings that depended on the dynamics. On the contrary, active subjects were able to reject the inertial cue when the discordance became too high, producing self-motion perception on the basis of more reliable information. Thereby, multisensory integration seems to follow a non-linear integration model of, i.e., the cues' weight changes with the cue reliability and/or the intensity of the stimuli, as reported by previous studies. These results represent a basis for the adaptation of motion cueing algorithms are developed for dynamic driving simulators, by taking into account the dynamics of simulated motion in line with the status of the participants (driver or passenger).

  20. Women and lung cancer: a comparison of active and passive smokers with nonexposed nonsmokers.

    PubMed

    Miller, G H; Golish, J A; Cox, C E; Chacko, D C

    1994-01-01

    Prior to the 1920s, lung cancer was a rare disease. However, the current increase in lung cancer appears to parallel the increase in smoking for both men and women with a 30- to 50-year delay. National lung cancer deaths continue to rise, with over 168,000 total deaths estimated in 1992. Women are now showing higher percentage increases in lung cancer than men from active smoking. The data from the Erie County Study on Smoking and Health (ECSSH), a population study, were used to measure the effects of both active and passive smoking on women's lung cancer mortality. The three major categories of exposure (no known or minimal exposure, passive smoking exposed, and active smoking) were used in the analyses. The results from the population data in Erie County, PA, were based on 528 nonexposed nonsmoking women, 3138 exposed nonsmoking women, and 1747 smoking women. Deaths due to lung cancer as a percentage of total deaths excluding traumatic deaths were 0.2% for the nonexposed nonsmoking women, 0.9% for the exposed nonsmoking women, and 8.0% for women who smoked. The data showed that women smokers died of lung cancer at a rate 9 times greater than exposed nonsmokers and 42 times greater than nonexposed nonsmokers.

  1. Attenuation Properties of Fontainebleau Sandstone During True-Triaxial Deformation using Active and Passive Ultrasonics

    NASA Astrophysics Data System (ADS)

    Goodfellow, S. D.; Tisato, N.; Ghofranitabari, M.; Nasseri, M. H. B.; Young, R. P.

    2015-11-01

    Active and passive ultrasonic methods were used to study the evolution of attenuation properties in a sample of Fontainebleau sandstone during true-triaxial deformation. A cubic sample of Fontainebleau sandstone (80 mm × 80 mm × 80 mm) was deformed under true-triaxial stresses until failure. From the stress state: σ _3 = 5 MPa and σ _1 = σ _2 = 35 MPa, σ _1 was increased at a constant displacement rate until the specimen failed. Acoustic emission (AE) activity was monitored by 18 piezoelectric sensors and bandpass filtered between 100 kHz and 1 MHz. A source location analysis was performed on discrete AE data harvested from the continuous record where 48,502 events were locatable inside the sample volume. AE sensors were sequentially pulsed during periodic P-wave surveys among 135 raypaths. Analytical solutions for Biot, squirt flow, viscous shear, and scattering attenuation were used to discuss to observed attenuation at various stages of the experiment. We concluded that initial attenuation anisotropy was stress induced and resulted from friction and squirt flow. Later attenuation of the high-frequency spectrum was attributed to scattering as a result of the formation of large macroscopic vertical fractures. Passive (AE) ultrasonic data produced similar information to that from active data but with enhanced temporal and spacial resolution.

  2. Ethanol effects on active and passive Na+ flux in toad bladder.

    PubMed

    Amaranath, L; Anton, A H

    1977-11-01

    Ethanol, like other anesthetics, has been reported to interfere with active Na+ transport in living membranes. In an attempt to elucidate the mechanism by which ethanol exerts this action, we tested in the toad bladder membrane: 1) the effect of ethanol on active Na+ transport, 2) the interaction of ethanol with vasopressin on Na+ transport, and 3) the effect of ethanol on passive Na+ flux. We found that, a) 1-500 microgram/ml of ethanol stimulated, and 10,000 microgram/ml depressed active Na+ transport; b) the combined effect of stimulating concentrations of ethanol and vasopressin, although suggestive of a positive interaction, might have arisen by chance (p = 0.08); c) depressant concentrations of ethanol failed to suppress the stimulation by vasopressin; and d) passive Na+ flux in bladders treated with ouabain and ethacrynic acid was not affected by ethanol (1-100 microgram/ml). These results indicate that ethanol in concentrations ranging from 1 to 10,000 microgram/ml does not block ATP/ATPase Na+ pump but apparently exerts a dose-dependent, stimulant-depressant effect on Na+ channels in the membrane.

  3. Comparison of metabolic and biomechanic responses to active vs. passive warm-up procedures before physical exercise.

    PubMed

    Brunner-Ziegler, Sophie; Strasser, Barbara; Haber, Paul

    2011-04-01

    Active warm-up before physical exercise is a widely accepted practice to enhance physical performance, whereas data on modalities to passively raise tissue temperature are rare. The study compared the effect of active vs. passive warm-up procedures before exercise on energy supply and muscle strength performance. Twenty young, male volunteers performed 3 spiroergometer-test series without prior warm-up and after either an active or passive warm-up procedure. Oxygen uptake (VO2), heart rate (HR), pH value, and lactate were determined at 80% of individual VO2max values and during recovery. Comparing no prior warm-up with passive warm-up, pH values were lower at the fourth test minute (p < 0.004), and lactate values were higher at the sixth and third minutes of recovery (p < 0.01 and p < 0.010, respectively), after no prior warm-up. Comparing active with passive warm-up, HR was lower, and VO2 values were higher at the fourth and sixth test minutes (p < 0.033 and p < 0.011, respectively, and p < 0.015 and p < 0.022, respectively) after active warm-up. Differentiation between active and passive warm-up was more pronounced than between either warm-up or no warm-up. Conditions that may promote improved performance were more present after active vs. passive warm-up. Thus, athletes may reach the metabolic steady state faster after active warm-up. PMID:20733525

  4. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    SciTech Connect

    Gregor P. Henze; Moncef Krarti

    2003-12-17

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigates the merits of harnessing both storage media concurrently in the context of predictive optimal control. This topical report describes the demonstration of the model-based predictive optimal control for active and passive building thermal storage inventory in a test facility in real-time using time-of-use differentiated electricity prices without demand charges. The laboratory testing findings presented in this topical report cover the second of three project phases. The novel supervisory controller successfully executed a three-step procedure consisting of (1) short-term weather prediction, (2) optimization of control strategy over the next planning horizon using a calibrated building model, and (3) post-processing of the optimal strategy to yield a control command for the current time step that can be executed in the test facility. The primary and secondary building mechanical systems were effectively orchestrated by the model-based predictive optimal controller in real-time while observing comfort and operational constraints. The findings reveal that when the optimal controller is given imperfect weather fore-casts and when the building model used for planning control strategies does not match the actual building perfectly, measured utility costs savings relative to conventional building operation can be substantial. This requires that the facility under control lends itself to passive storage utilization and the building model

  5. Evaluation of Precipitation Detection over Various Surfaces from Passive Microwave Imagers and Sounders

    NASA Technical Reports Server (NTRS)

    Munchak, S. Joseph; Skofronick-Jackson, Gail

    2012-01-01

    During the middle part of this decade a wide variety of passive microwave imagers and sounders will be unified in the Global Precipitation Measurement (GPM) mission to provide a common basis for frequent (3 hr), global precipitation monitoring. The ability of these sensors to detect precipitation by discerning it from non-precipitating background depends upon the channels available and characteristics of the surface and atmosphere. This study quantifies the minimum detectable precipitation rate and fraction of precipitation detected for four representative instruments (TMI, GMI, AMSU-A, and AMSU-B) that will be part of the GPM constellation. Observations for these instruments were constructed from equivalent channels on the SSMIS instrument on DMSP satellites F16 and F17 and matched to precipitation data from NOAA's National Mosaic and QPE (NMQ) during 2009 over the continuous United States. A variational optimal estimation retrieval of non-precipitation surface and atmosphere parameters was used to determine the consistency between the observed brightness temperatures and these parameters, with high cost function values shown to be related to precipitation. The minimum detectable precipitation rate, defined as the lowest rate for which probability of detection exceeds 50%, and the detected fraction of precipitation, are reported for each sensor, surface type (ocean, coast, bare land, snow cover) and precipitation type (rain, mix, snow). The best sensors over ocean and bare land were GMI (0.22 mm/hr minimum threshold and 90% of precipitation detected) and AMSU (0.26 mm/hr minimum threshold and 81% of precipitation detected), respectively. Over coasts (0.74 mm/hr threshold and 12% detected) and snow-covered surfaces (0.44 mm/hr threshold and 23% detected), AMSU again performed best but with much lower detection skill, whereas TMI had no skill over these surfaces. The sounders (particularly over water) benefited from the use of re-analysis data (vs. climatology) to

  6. Fusion of satellite active and passive microwave data for sea ice type concentration estimates

    SciTech Connect

    Beaven, S.G.; Gogineni, S.; Carsey, F.D.

    1996-09-01

    Young first-year sea ice is nearly as important as open water in modulating heat flux between the ocean and atmosphere in the Arctic. Just after the onset of freeze-up, first-year ice is in the early stages of growth and will consist of young first-year and thin ice. The distribution of sea ice in this thickness range impacts heat transfer in the Arctic. Therefore, improving the estimates of ice concentrations in this thickness range is significant. NASA Team Algorithm (NTA) for passive microwave data inaccurately classifies sea ice during the melt and freeze-up seasons because it misclassifies multiyear ice as first-year ice. The authors developed a hybrid fusion technique for incorporating multiyear ice information derived form synthetic aperture radar (SAR) images into a passive microwave algorithm to improve ice type concentration estimates. First, they classified SAR images using a dynamic thresholding technique and estimated the multiyear ice concentration. Then they used the SAR-derived multiyear ice concentration constrain the NTA and obtained an improved first-year ice concentration estimate. They computed multiyear and first-year ice concentration estimates over a region in the eastern-central Arctic in which field observations of ice and in situ radar backscatter measurements were performed. With the NTA alone, the first-year ice concentration in the study area varied between 0.11 and 0.40, while the multiyear ice concentration varied form 0.63 to 0.39. With the hybrid fusion technique, the first-year ice concentration varied between 0.08 and 0.23 and the multiyear ice concentration was between 0.62 and 0.66. The fused estimates of first-year and multiyear ice concentration appear to be more accurate than NTA, based on ice observations that were logged aboard the US Coast Guard icebreaker Polar Star in the study area during 1991.

  7. Hinode Captures Images of Solar Active Region

    NASA Video Gallery

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  8. Investigating Baseline, Alternative and Copula-based Algorithm for combining Airborne Active and Passive Microwave Observations in the SMAP Context

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Lorenz, C.; Jagdhuber, T.; Laux, P.; Hajnsek, I.; Kunstmann, H.; Entekhabi, D.; Vereecken, H.

    2015-12-01

    The objective of the NASA Soil Moisture Active & Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments will be a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer (PLMR2) and the active L-band system F-SAR of DLR were flown simultaneously on the same platform on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e. all types of land cover and experimental monitoring sites with in situ sensors. Here, we used the obtained data sets as a test-bed for the analysis of three active-passive fusion techniques: A) The SMAP baseline algorithm: Disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture, B), the SMAP alternative algorithm: Estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter and C) Copula-based combination of active and passive microwave data. For method C empirical Copulas were generated and theoretical Copulas fitted both on the level of the raw products brightness temperature and backscatter as well as two soil moisture products. Results indicate that the regression parameters for method A and B are dependent on the radar vegetation index (RVI). Similarly, for method C the best performance was gained by generating separate Copulas for individual land use classes. For more in-depth analyses longer time series are necessary as can obtained by airborne campaigns, therefore, the methods will be applied to SMAP data.

  9. Soil moisture estimation by airborne active and passive microwave remote sensing: A test-bed for SMAP fusion algorithms

    NASA Astrophysics Data System (ADS)

    Montzka, Carsten; Bogena, Heye; Jagdhuber, Thomas; Hajnsek, Irena; Horn, Ralf; Reigber, Andreas; Hasan, Sayeh; Rüdiger, Christoph; Jaeger, Marc; Vereecken, Harry

    2014-05-01

    The objective of the NASA Soil Moisture Active & Passive (SMAP) mission is to provide global measurements of soil moisture and its freeze/thaw state. The SMAP launch is currently planned for 2014-2015. The SMAP measurement approach is to integrate L-band radar and L-band radiometer as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. The radar and radiometer measurements can be effectively combined to derive soil moisture maps that approach the accuracy of radiometer-only retrievals, but with a higher resolution (being able to approach the radar resolution under some conditions). Aircraft and tower-based instruments will be a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment in Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer (PLMR2) and the active L-band system DLR F-SAR were flown on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e. all types of land cover and experimental monitoring sites. These data are used as a test-bed for the analysis of existing and development of new active-passive fusion techniques. A synergistic use of the two signals can help to decouple soil moisture effects from the effects of vegetation (or roughness) in a better way than in the case of a single instrument. In this study, we present and evaluate three approaches for the fusion of active and passive microwave records for an enhanced representation of the soil moisture status: i) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data, ii) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture, and iii) fusion of two single-source soil moisture products from radar and radiometer.

  10. Event-Related Beta EEG Changes During Active, Passive Movement and Functional Electrical Stimulation of the Lower Limb.

    PubMed

    Qiu, Shuang; Yi, Weibo; Xu, Jiapeng; Qi, Hongzhi; Du, Jingang; Wang, Chunfang; He, Feng; Ming, Dong

    2016-02-01

    A number of electroencephalographic (EEG) studies have reported on event-related desynchronization/synchronization (ERD/ERS) during active movements, passive movements, and the movements induced by functional electrical stimulation (FES). However, the quantitative differences in ERD values and affected frequency bands associated with the lower limb have not been discussed. The goal of this paper was to quantitatively compare the ERD patterns during active movement, passive movement and FES-induced movement of the lower limb. 64-channel EEG signals were recorded to investigate the brain oscillatory patterns during active movement, passive movement and FES-induced movement of the lower limb in twelve healthy subjects. And passive movement and FES-induced movement were also performed in a hemiplegic stroke patient. For healthy subjects, FES-induced movement presented significantly higher characteristic frequency of central beta ERD while there was no significant difference in ERD values compared with active or passive movement. Meanwhile, beta ERD values of FES-induced movement were significantly correlated with those of active movement, and spatial distribution of beta ERD pattern for FES-induced movement was more correlated with that for active movement. In addition, the stroke patient presented central ERD patterns during FES-induced movement, while no ERD with similar frequencies could be found during passive movement. This work implies that the EEG oscillatory pattern under FES-induced movement tends more towards active movement instead of passive movement. The quantification of ERD patterns could be expected as a potential technique to evaluate the brain response during FES-induced movement. PMID:26441422

  11. A Low-Noise CMOS THz Imager Based on Source Modulation and an In-Pixel High-Q Passive Switched-Capacitor N-Path Filter.

    PubMed

    Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian

    2016-01-01

    This paper presents the first low noise complementary metal oxide semiconductor (CMOS) deletedCMOS terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31 × 31 focal plane array has been fully integrated in a 0 . 13 μ m standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0 . 2 μ V RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0 . 6 nW at 270 GHz and 0 . 8 nW at 600 GHz. PMID:26950131

  12. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging

    NASA Astrophysics Data System (ADS)

    Jones, Ryan M.; Hynynen, Kullervo

    2016-01-01

    Computed tomography (CT)-based aberration corrections are employed in transcranial ultrasound both for therapy and imaging. In this study, analytical and numerical approaches for calculating aberration corrections based on CT data were compared, with a particular focus on their application to transcranial passive imaging. Two models were investigated: a three-dimensional full-wave numerical model (Connor and Hynynen 2004 IEEE Trans. Biomed. Eng. 51 1693-706) based on the Westervelt equation, and an analytical method (Clement and Hynynen 2002 Ultrasound Med. Biol. 28 617-24) similar to that currently employed by commercial brain therapy systems. Trans-skull time delay corrections calculated from each model were applied to data acquired by a sparse hemispherical (30 cm diameter) receiver array (128 piezoceramic discs: 2.5 mm diameter, 612 kHz center frequency) passively listening through ex vivo human skullcaps (n  =  4) to emissions from a narrow-band, fixed source emitter (1 mm diameter, 516 kHz center frequency). Measurements were taken at various locations within the cranial cavity by moving the source around the field using a three-axis positioning system. Images generated through passive beamforming using CT-based skull corrections were compared with those obtained through an invasive source-based approach, as well as images formed without skull corrections, using the main lobe volume, positional shift, peak sidelobe ratio, and image signal-to-noise ratio as metrics for image quality. For each CT-based model, corrections achieved by allowing for heterogeneous skull acoustical parameters in simulation outperformed the corresponding case where homogeneous parameters were assumed. Of the CT-based methods investigated, the full-wave model provided the best imaging results at the cost of computational complexity. These results highlight the importance of accurately modeling trans-skull propagation when calculating CT-based aberration corrections

  13. Considerations for an active and passive scanner to assay nuclear waste drums

    SciTech Connect

    Martz, H.E.; Azevedo, S.G.; Roberson, G.P.; Schneberk, D.J.; Koenig, Z.M.; Camp, D.C. )

    1990-06-08

    Radioactive wastes are generated at many DOE laboratories, military facilities, fuel fabrication and enrichment plants, reactors, hospitals, and university research facilities. At all of these sites, wastes must be separated, packaged, categorized, and packed into some sort of container--usually 208-L (55-gal) drums--for shipment to waste-storage sites. Prior to shipment, the containers must be labeled, assayed, and certified; the assay value determines the ultimate disposition of the waste containers. An accurate nondestructive assay (NDA) method would identify all the radioisotopes present and provide a quantitative measurement of their activity in the drum. In this way, waste containers could be routed in the most cost-effective manner and without having to reopen them. Currently, the most common gamma-ray method used to assay nuclear waste drums is segmented gamma-ray scanning (SGS) spectrometer that crudely measures only the amount of {sup 235}U or {sup 239}Pu present in the drum. This method uses a spatially-averaged, integrated, emitted gamma-ray-intensity value. The emitted intensity value is corrected by an assumed constant-attenuation value determined by a spatially-averaged, transmission (or active) measurement. Unfortunately, this typically results in an inaccurate determination of the radioactive activities within a waste drum because this measurement technique is valid only for homogeneous-attenuation or known drum matrices. However, since homogeneous-attenuation matrices are not common and may be unknown, other NDA techniques based on active and Passive CT (A PCT) are under development. The active measurement (ACT) yields a better attenuation matrix for the drum, while the passive measurement (PCT) more accurately determines the identity of the radioisotopes present and their activities. 9 refs., 2 figs.

  14. Pair and Cluster Formation in Hybrid Active-Passive Matter Suspensions

    NASA Astrophysics Data System (ADS)

    Krafnick, Ryan; Garcia, Angel

    2015-03-01

    Systems composed of self-propelling entities, dubbed active matter, are ubiquitous in nature, from flocks of birds and schools of fish to swarms of bacteria and catalytic nanomotors. These systems (both biological and industrial) have applications ranging from micron-scale cargo manipulation and directed transport to water remediation and material processing. When added to a solution with passive (non-self-propelling) particles, active matter leads to new and altered system properties. For example, the diffusion of passive particles increases by orders of magnitude in typical systems, leading to a raised effective temperature. Additionally, particles that normally repel each other exhibit effective attractions which can lead to pair formation and clustering. The nature of these effects depends on both the mechanical collisions of swimmers and the hydrodynamic flow fields they propagate. We computationally examine the effect and dependence of various system parameters, such as particle shape and density, on these properties. This work was funded by NIH grant GM086801 and NSF grant MCB-1050966.

  15. Clicks, whistles and pulses: Passive and active signal use in dolphin communication

    NASA Astrophysics Data System (ADS)

    Herzing, Denise L.

    2014-12-01

    The search for signals out of noise is a problem not only with radio signals from the sky but in the study of animal communication. Dolphins use multiple modalities to communicate including body postures, touch, vision, and most elaborately sound. Like SETI radio signal searches, dolphin sound analysis includes the detection, recognition, analysis, and interpretation of signals. Dolphins use both passive listening and active production to communicate. Dolphins use three main types of acoustic signals: frequency modulated whistles (narrowband with harmonics), echolocation (broadband clicks) and burst pulsed sounds (packets of closely spaced broadband clicks). Dolphin sound analysis has focused on frequency-modulated whistles, yet the most commonly used signals are burst-pulsed sounds which, due to their graded and overlapping nature and bimodal inter-click interval (ICI) rates are hard to categorize. We will look at: 1) the mechanism of sound production and categories of sound types, 2) sound analysis techniques and information content, and 3) examples of lessons learned in the study of dolphin acoustics. The goal of this paper is to provide perspective on how animal communication studies might provide insight to both passive and active SETI in the larger context of searching for life signatures.

  16. Comparative study of torque expression among active and passive self-ligating and conventional brackets

    PubMed Central

    Franco, Érika Mendonça Fernandes; Valarelli, Fabrício Pinelli; Fernandes, João Batista; Cançado, Rodrigo Hermont; de Freitas, Karina Maria Salvatore

    2015-01-01

    Abstract Objective: The aim of this study was to compare torque expression in active and passive self-ligating and conventional brackets. Methods: A total of 300 segments of stainless steel wire 0.019 x 0.025-in and six different brands of brackets (Damon 3MX, Portia, In-Ovation R, Bioquick, Roth SLI and Roth Max) were used. Torque moments were measured at 12°, 24°, 36° and 48°, using a wire torsion device associated with a universal testing machine. The data obtained were compared by analysis of variance followed by Tukey test for multiple comparisons. Regression analysis was performed by the least-squares method to generate the mathematical equation of the optimal curve for each brand of bracket. Results: Statistically significant differences were observed in the expression of torque among all evaluated bracket brands in all evaluated torsions (p < 0.05). It was found that Bioquick presented the lowest torque expression in all tested torsions; in contrast, Damon 3MX bracket presented the highest torque expression up to 36° torsion. Conclusions: The connection system between wire/bracket (active, passive self-ligating or conventional with elastic ligature) seems not to interfere in the final torque expression, the latter being probably dependent on the interaction between the wire and the bracket chosen for orthodontic mechanics. PMID:26691972

  17. Active and Passive Interferometric Fringe Stabilization for Quantum Communications in Space

    NASA Astrophysics Data System (ADS)

    Chapman, Joseph; Graham, Trent; Kwiat, Paul

    2015-05-01

    In interferometry, the relative phase between the paths is liable to drift over time due to environmental factors, i.e., vibrations in the components and from turbulence and temperature fluctuations in the air. If time-bin encoded photons are received from a moving space platform, e.g., a satellite or the International Space Station, there would be an additional large relative temporal shift because of the movement of the source toward or away from the receiver. This shift would alter the temporal coherence of adjacent timebins-as measured by a suitable temporally-unbalanced interferometer-in addition to the relative phase errors from the environment. To achieve accurate measurements in this situation, the interferometer needs to be stabilized against phase drifts. We have employed an active and passive stabilization scheme for a double unbalanced Mach-Zehnder interferometer configuration; while passive damping reduces most of the phase drift due to vibrations and fluctuations from the air, we designed and implemented an active feedback correction system to stabilize the remaining phase drift and the simulated temporal drift.

  18. The Soil Moisture Active and Passive Mission (SMAP): Science and Applications

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni

    2009-01-01

    The Soil Moisture Active and Passive mission (SMAP) will provide global maps of soil moisture content and surface freeze/thaw state. Global measurements of these variables are critical for terrestrial water and carbon cycle applications. The SMAP observatory consists of two multipolarization L-band sensors, a radar and radiometer, that share a deployable-mesh reflector antenna. The combined observations from the two sensors will allow accurate estimation of soil moisture at hydrometeorological (10 km) and hydroclimatological (40 km) spatial scales. The rotating antenna configuration provides conical scans of the Earth surface at a constant look angle. The wide-swath (1000 km) measurements will allow global mapping of soil moisture and its freeze/thaw state with 2-3 days revisit. Freeze/thaw in boreal latitudes will be mapped using the radar at 3 km resolution with 1-2 days revisit. The synergy of active and passive observations enables measurements of soil moisture and freeze/thaw state with unprecedented resolution, sensitivity, area coverage and revisit.

  19. The Development of an Intelligent Hybrid Active-passive Vibration Isolator

    NASA Astrophysics Data System (ADS)

    Shuai, Changgeng; Ma, Jianguo; Rustighi, Emiliano

    2016-09-01

    A hybrid active-passive vibration isolator made up of electromagnetic actuator and air spring in parallel can be used to effectively isolate the broadband and line spectrum vibration of mechanical equipment simultaneously. However, due to its reliability and safety problems caused by the impact, its application in ships is limited. In this paper, an impact- resistant structure and an air gap self-sensing method of the passive-active hybrid vibration isolator are proposed and developed on the base of modelling, simulation and analysis. A thin magnetic rubber is filled into the air gap of electromagnetic actuator, which can avoid rigid collision between the armature and the permanent magnet under the action of impact. A suspension armature structure including pre-compression spring is suggested, which can automatically compensate the deformation caused by impact and protect the coil and permanent magnet from impact damage. An air gap self-sensing method is developed through detecting the voltage between the input and output terminals of actuator, which is verified by experiments.

  20. Nd:YAG laser with passive-active mode-locking

    NASA Astrophysics Data System (ADS)

    Zhao, Weijiang; Chen, Zhenlei; Ren, Deming; Qu, Yanchen; Mo, Shuang; Huang, Jinjer; Andreev, Yury M.; Gorobets, Vadim A.; Petukhov, Vladimir O.; Zemlyanov, Aleksei A.

    2008-03-01

    All solid-state flash-lamp pumped passive-active mode-locked Nd3+:YAG laser is designed and experimentally studded. Saturation absorber Cr4+:YAG with initial transparency 25 and 47% are used as a passive Q-switcher and acousto-optical fused quartz modulator as an active mode-locker. Efficient length of the laser cavity with fixed mirror positions (1.45 m spaced) is droved by changes of 100% flat mirror for concave mirrors with different focus lengths. Changeable output mirrors with transparencies of 15 and 50% are used. Driving of the cavity parameters, laser and acousto-optical modulator power supply voltages let us to control output pulse train and single pulse parameters. As it goes from the analyses of oscillograms fixed with pyroelectric detector (τ=0.5 ns) and 1 GHz oscilloscope, over 95% of pulse output energy has been mode-locked. Average duration of the pulse train envelope of 5 to 50 single pulses at FWHM has been droved within 50 to 600 ns. When this single pulse duration is controlled but did not exceed 2 ns.