Science.gov

Sample records for imaging praechirurgische funktionelle

  1. Funktionelle Elektrostimulation Paraplegischer Patienten

    PubMed Central

    2014-01-01

    Functional Electrical Stimulation on Paraplegic Patients. We report on clinical and physiological effects of 8 months Functional Electrical Stimulation (FES) of quadriceps femoris muscle on 16 paraplegic patients. Each patient had muscle biopsies, CT-muscle diameter measurements, knee extension strength testing carried out before and after 8 months FES training. Skin perfusion was documented through infrared telethermography and xenon clearance, muscle perfusion was recorded through thallium scintigraphy. After 8 months FES training baseline skin perfusion showed 86 % increase, muscle perfusion was augmented by 87 %. Muscle fiber diameters showed an average increase of 59 % after 8 months FES training. Muscles in patients with spastic paresis as well as in patients with denervation showed an increase in aerob and anaerob muscle enzymes up to the normal range. Even without axonal neurotropic substances FES was able to demonstrate fiberhypertrophy, enzyme adaptation and intracellular structural benefits in denervated muscles. The increment in muscle area as visible on CT-scans of quadriceps femoris was 30 % in spastic paraplegia and 10 % in denervated patients respectively. FES induced changes were less in areas not directly underneath the surface electrodes. We strongly recommend the use of Kern’s current for FES in denervated muscles to induce tetanic muscle contractions as we formed a very critical opinion of conventional exponential current. In patients with conus-cauda-lesions FES must be integrated into modern rehabilitation to prevent extreme muscle degeneration and decubital ulcers. Using FES we are able to improve metabolism and induce positive trophic changes in our patients lower extremities. In spastic paraplegics the functions „rising and walking“ achieved through FES are much better training than FES ergometers. Larger muscle masses are activated and an increased heart rate is measured, therefore the impact on cardiovascular fitness and metabolism is much greater. This effectively addresses and prevents all problems which result from inactivity in paraplegic patients. PMID:26913132

  2. Image

    SciTech Connect

    Marsh, Amber; Harsch, Tim; Pitt, Julie; Firpo, Mike; Lekin, April; Pardes, Elizabeth

    2007-08-31

    The computer side of the IMAGE project consists of a collection of Perl scripts that perform a variety of tasks; scripts are available to insert, update and delete data from the underlying Oracle database, download data from NCBI's Genbank and other sources, and generate data files for download by interested parties. Web scripts make up the tracking interface, and various tools available on the project web-site (image.llnl.gov) that provide a search interface to the database.

  3. IMAGES, IMAGES, IMAGES

    SciTech Connect

    Marcus, A.

    1980-07-01

    The role of images of information (charts, diagrams, maps, and symbols) for effective presentation of facts and concepts is expanding dramatically because of advances in computer graphics technology, increasingly hetero-lingual, hetero-cultural world target populations of information providers, the urgent need to convey more efficiently vast amounts of information, the broadening population of (non-expert) computer users, the decrease of available time for reading texts and for decision making, and the general level of literacy. A coalition of visual performance experts, human engineering specialists, computer scientists, and graphic designers/artists is required to resolve human factors aspects of images of information. The need for, nature of, and benefits of interdisciplinary effort are discussed. The results of an interdisciplinary collaboration are demonstrated in a product for visualizing complex information about global energy interdependence. An invited panel will respond to the presentation.

  4. Image Calibration

    NASA Technical Reports Server (NTRS)

    Peay, Christopher S.; Palacios, David M.

    2011-01-01

    Calibrate_Image calibrates images obtained from focal plane arrays so that the output image more accurately represents the observed scene. The function takes as input a degraded image along with a flat field image and a dark frame image produced by the focal plane array and outputs a corrected image. The three most prominent sources of image degradation are corrected for: dark current accumulation, gain non-uniformity across the focal plane array, and hot and/or dead pixels in the array. In the corrected output image the dark current is subtracted, the gain variation is equalized, and values for hot and dead pixels are estimated, using bicubic interpolation techniques.

  5. Indexing Images.

    ERIC Educational Resources Information Center

    Rasmussen, Edie M.

    1997-01-01

    Focuses on access to digital image collections by means of manual and automatic indexing. Contains six sections: (1) Studies of Image Systems and their Use; (2) Approaches to Indexing Images; (3) Image Attributes; (4) Concept-Based Indexing; (5) Content-Based Indexing; and (6) Browsing in Image Retrieval. Contains 105 references. (AEF)

  6. Photothermal imaging

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitry; Antonishina, Elena

    1995-02-01

    An automated image analysis system with two imaging regimes is described. Photothermal (PT) effect is used for imaging of a temperature field or absorption structure of the sample (the cell) with high sensitivity and spatial resolution. In a cell study PT-technique enables imaging of live non-stained cells, and the monitoring of the cell shape/structure. The system includes a dual laser illumination unit coupled to a conventional optical microscope. A sample chamber provides automated or manual loading of up to 3 samples and cell positioning. For image detection a 256 X 256 10-bit CCD-camera is used. The lasers, scanning stage, and camera are controlled by PC. The system provides optical (transmitted light) image, probe laser optical image, and PT-image acquisition. Operation rate is 1 - 1.5 sec per cell for a cycle: cell positioning -- 3 images acquisition -- image parameters calculation. A special database provides image/parameters storage, presentation, and cell diagnostic according to quantitative image parameters. The described system has been tested during live and stained blood cell studies. PT-images of the cells have been used for cell differentiation. In experiments with the red blood cells (RBC) that originate from normal and anaemia blood parameters for disease differentiation have been found. For white blood cells in PT-images the details of cell structure have found that absent in their optical images.

  7. Medical Imaging.

    ERIC Educational Resources Information Center

    Barker, M. C. J.

    1996-01-01

    Discusses four main types of medical imaging (x-ray, radionuclide, ultrasound, and magnetic resonance) and considers their relative merits. Describes important recent and possible future developments in image processing. (Author/MKR)

  8. Proof Image

    ERIC Educational Resources Information Center

    Kidron, Ivy; Dreyfus, Tommy

    2014-01-01

    The emergence of a proof image is often an important stage in a learner's construction of a proof. In this paper, we introduce, characterize, and exemplify the notion of proof image. We also investigate how proof images emerge. Our approach starts from the learner's efforts to construct a justification without (or before) attempting any…

  9. Image alignment

    SciTech Connect

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  10. Intracranial imaging.

    PubMed Central

    Gibson, M.; Cook, G.; Al-Kutoubi, A.

    1996-01-01

    This article concentrates on the imaging of intracranial structures and outlines some basic imaging strategies for common clinical presentations. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 PMID:8935596

  11. Image Processing

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Electronic Imagery, Inc.'s ImageScale Plus software, developed through a Small Business Innovation Research (SBIR) contract with Kennedy Space Flight Center for use on space shuttle Orbiter in 1991, enables astronauts to conduct image processing, prepare electronic still camera images in orbit, display them and downlink images to ground based scientists for evaluation. Electronic Imagery, Inc.'s ImageCount, a spin-off product of ImageScale Plus, is used to count trees in Florida orange groves. Other applications include x-ray and MRI imagery, textile designs and special effects for movies. As of 1/28/98, company could not be located, therefore contact/product information is no longer valid.

  12. Imaging genomics

    PubMed Central

    Thompson, Paul M.; Martin, Nicholas G.; Wright, Margaret J.

    2010-01-01

    Purpose of review Imaging genomics is an emerging field that is rapidly identifying genes that influence the brain, cognition, and risk for disease. Worldwide, thousands of individuals are being scanned with high-throughput genotyping (genome-wide scans), and new imaging techniques [high angular resolution diffusion imaging and resting state functional magnetic resonance imaging (MRI)] that provide fine-grained measures of the brain’s structural and functional connectivity. Along with clinical diagnosis and cognitive testing, brain imaging offers highly reproducible measures that can be subjected to genetic analysis. Recent findings Recent studies of twin, pedigree, and population-based datasets have discovered several candidate genes that consistently show small to moderate effects on brain measures. Many studies measure single phenotypes from the images, such as hippocampal volume, but voxel-wise genomic methods can plot the profile of genetic association at each 3D point in the brain. This exploits the full arsenal of imaging statistics to discover and replicate gene effects. Summary Imaging genomics efforts worldwide are now working together to discover and replicate many promising leads. By studying brain phenotypes closer to causative gene action, larger gene effects are detectable with realistic sample sizes obtainable from meta-analysis of smaller studies. Imaging genomics has broad applications to dementia, mental illness, and public health. PMID:20581684

  13. Body Imaging

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Magnetic Resonance Imaging (MRI) and Computer-aided Tomography (CT) images are often complementary. In most cases, MRI is good for viewing soft tissue but not bone, while CT images are good for bone but not always good for soft tissue discrimination. Physicians and engineers in the Department of Radiology at the University of Michigan Hospitals are developing a technique for combining the best features of MRI and CT scans to increase the accuracy of discriminating one type of body tissue from another. One of their research tools is a computer program called HICAP. The program can be used to distinguish between healthy and diseased tissue in body images.

  14. Multispectral imaging and image processing

    NASA Astrophysics Data System (ADS)

    Klein, Julie

    2014-02-01

    The color accuracy of conventional RGB cameras is not sufficient for many color-critical applications. One of these applications, namely the measurement of color defects in yarns, is why Prof. Til Aach and the Institute of Image Processing and Computer Vision (RWTH Aachen University, Germany) started off with multispectral imaging. The first acquisition device was a camera using a monochrome sensor and seven bandpass color filters positioned sequentially in front of it. The camera allowed sampling the visible wavelength range more accurately and reconstructing the spectra for each acquired image position. An overview will be given over several optical and imaging aspects of the multispectral camera that have been investigated. For instance, optical aberrations caused by filters and camera lens deteriorate the quality of captured multispectral images. The different aberrations were analyzed thoroughly and compensated based on models for the optical elements and the imaging chain by utilizing image processing. With this compensation, geometrical distortions disappear and sharpness is enhanced, without reducing the color accuracy of multispectral images. Strong foundations in multispectral imaging were laid and a fruitful cooperation was initiated with Prof. Bernhard Hill. Current research topics like stereo multispectral imaging and goniometric multispectral measure- ments that are further explored with his expertise will also be presented in this work.

  15. Blurred Image

    ERIC Educational Resources Information Center

    Conde, Maryse

    1975-01-01

    The growing influence of Western culture has greatly affected African women's status and image in the traditional society. Working women are confronted with the dilemma of preserving family traditions while changing their behavior and image to become members of the labor force. (MR)

  16. Diagnostic Imaging

    MedlinePlus

    Diagnostic imaging lets doctors look inside your body for clues about a medical condition. A variety of machines and techniques can create pictures of the structures and activities inside your body. The type of imaging your doctor uses depends on your symptoms and ...

  17. Cerenkov imaging.

    PubMed

    Das, Sudeep; Thorek, Daniel L J; Grimm, Jan

    2014-01-01

    Cerenkov luminescence (CL) has been used recently in a plethora of medical applications like imaging and therapy with clinically relevant medical isotopes. The range of medical isotopes used is fairly large and expanding. The generation of in vivo light is useful since it circumvents depth limitations for excitation light. Cerenkov luminescence imaging (CLI) is much cheaper in terms of infrastructure than positron emission tomography (PET) and is particularly useful for imaging of superficial structures. Imaging can basically be done using a sensitive camera optimized for low-light conditions, and it has a better resolution than any other nuclear imaging modality. CLI has been shown to effectively diagnose disease with regularly used PET isotope ((18)F-FDG) in clinical setting. Cerenkov luminescence tomography, Cerenkov luminescence endoscopy, and intraoperative Cerenkov imaging have also been explored with positive conclusions expanding the current range of applications. Cerenkov has also been used to improve PET imaging resolution since the source of both is the radioisotope being used. Smart imaging agents have been designed based on modulation of the Cerenkov signal using small molecules and nanoparticles giving better insight of the tumor biology. PMID:25287690

  18. Imaging Genetics

    ERIC Educational Resources Information Center

    Munoz, Karen E.; Hyde, Luke W.; Hariri, Ahmad R.

    2009-01-01

    Imaging genetics is an experimental strategy that integrates molecular genetics and neuroimaging technology to examine biological mechanisms that mediate differences in behavior and the risks for psychiatric disorder. The basic principles in imaging genetics and the development of the field are discussed.

  19. Imaging Atherosclerosis

    PubMed Central

    Tarkin, Jason M.; Dweck, Marc R.; Evans, Nicholas R.; Takx, Richard A.P.; Brown, Adam J.; Tawakol, Ahmed; Fayad, Zahi A.

    2016-01-01

    Advances in atherosclerosis imaging technology and research have provided a range of diagnostic tools to characterize high-risk plaque in vivo; however, these important vascular imaging methods additionally promise great scientific and translational applications beyond this quest. When combined with conventional anatomic- and hemodynamic-based assessments of disease severity, cross-sectional multimodal imaging incorporating molecular probes and other novel noninvasive techniques can add detailed interrogation of plaque composition, activity, and overall disease burden. In the catheterization laboratory, intravascular imaging provides unparalleled access to the world beneath the plaque surface, allowing tissue characterization and measurement of cap thickness with micrometer spatial resolution. Atherosclerosis imaging captures key data that reveal snapshots into underlying biology, which can test our understanding of fundamental research questions and shape our approach toward patient management. Imaging can also be used to quantify response to therapeutic interventions and ultimately help predict cardiovascular risk. Although there are undeniable barriers to clinical translation, many of these hold-ups might soon be surpassed by rapidly evolving innovations to improve image acquisition, coregistration, motion correction, and reduce radiation exposure. This article provides a comprehensive review of current and experimental atherosclerosis imaging methods and their uses in research and potential for translation to the clinic. PMID:26892971

  20. Image fusion

    NASA Technical Reports Server (NTRS)

    Pavel, M.

    1993-01-01

    The topics covered include the following: a system overview of the basic components of a system designed to improve the ability of a pilot to fly through low-visibility conditions such as fog; the role of visual sciences; fusion issues; sensor characterization; sources of information; image processing; and image fusion.

  1. Cerenkov Imaging

    PubMed Central

    Das, Sudeep; Thorek, Daniel L.J.; Grimm, Jan

    2014-01-01

    Cerenkov luminescence (CL) has been used recently in a plethora of medical applications like imaging and therapy with clinically relevant medical isotopes. The range of medical isotopes used is fairly large and expanding. The generation of in vivo light is useful since it circumvents depth limitations for excitation light. Cerenkov luminescence imaging (CLI) is much cheaper in terms of infrastructure than positron emission tomography (PET) and is particularly useful for imaging of superficial structures. Imaging can basically be done using a sensitive camera optimized for low-light conditions, and it has a better resolution than any other nuclear imaging modality. CLI has been shown to effectively diagnose disease with regularly used PET isotope (18F-FDG) in clinical setting. Cerenkov luminescence tomography, Cerenkov luminescence endoscopy, and intraoperative Cerenkov imaging have also been explored with positive conclusions expanding the current range of applications. Cerenkov has also been used to improve PET imaging resolution since the source of both is the radioisotope being used. Smart imaging agents have been designed based on modulation of the Cerenkov signal using small molecules and nanoparticles giving better insight of the tumor biology. PMID:25287690

  2. Retinal Imaging and Image Analysis

    PubMed Central

    Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan

    2011-01-01

    Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships. PMID:21743764

  3. Raman Imaging

    NASA Astrophysics Data System (ADS)

    Stewart, Shona; Priore, Ryan J.; Nelson, Matthew P.; Treado, Patrick J.

    2012-07-01

    The past decade has seen an enormous increase in the number and breadth of imaging techniques developed for analysis in many industries, including pharmaceuticals, food, and especially biomedicine. Rather than accept single-dimensional forms of information, users now demand multidimensional assessment of samples. High specificity and the need for little or no sample preparation make Raman imaging a highly attractive analytical technique and provide motivation for continuing advances in its supporting technology and utilization. This review discusses the current tools employed in Raman imaging, the recent advances, and the major applications in this ever-growing analytical field.

  4. Medical Imaging.

    ERIC Educational Resources Information Center

    Jaffe, C. Carl

    1982-01-01

    Describes principle imaging techniques, their applications, and their limitations in terms of diagnostic capability and possible adverse biological effects. Techniques include film radiography, computed tomography, nuclear medicine, positron emission tomography (PET), ultrasonography, nuclear magnetic resonance, and digital radiography. PET has…

  5. Body Imaging

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images.

  6. Body Imaging

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images. In this photograph, a patient undergoes an open MRI.

  7. Imaging System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1100C Virtual Window is based on technology developed under NASA Small Business Innovation (SBIR) contracts to Ames Research Center. For example, under one contract Dimension Technologies, Inc. developed a large autostereoscopic display for scientific visualization applications. The Virtual Window employs an innovative illumination system to deliver the depth and color of true 3D imaging. Its applications include surgery and Magnetic Resonance Imaging scans, viewing for teleoperated robots, training, and in aviation cockpit displays.

  8. Diagnostic imaging.

    PubMed

    Morris, Peter; Perkins, Alan

    2012-04-21

    Physical techniques have always had a key role in medicine, and the second half of the 20th century in particular saw a revolution in medical diagnostic techniques with the development of key imaging instruments: x-ray imaging and emission tomography (nuclear imaging and PET), MRI, and ultrasound. These techniques use the full width of the electromagnetic spectrum, from gamma rays to radio waves, and sound. In most cases, the development of a medical imaging device was opportunistic; many scientists in physics laboratories were experimenting with simple x-ray images within the first year of the discovery of such rays, the development of the cyclotron and later nuclear reactors created the opportunity for nuclear medicine, and one of the co-inventors of MRI was initially attempting to develop an alternative to x-ray diffraction for the analysis of crystal structures. What all these techniques have in common is the brilliant insight of a few pioneering physical scientists and engineers who had the tenacity to develop their inventions, followed by a series of technical innovations that enabled the full diagnostic potential of these instruments to be realised. In this report, we focus on the key part played by these scientists and engineers and the new imaging instruments and diagnostic procedures that they developed. By bringing the key developments and applications together we hope to show the true legacy of physics and engineering in diagnostic medicine. PMID:22516558

  9. Stellar Imager

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    2007-01-01

    The Stellar Imager (SI) is one of NASA's "Vision Missions" - concepts for future, space-based, strategic missions that could enormously increase our capabilities for observing the Cosmos. SI is designed as a UV/Optical Interferometer which will enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI, with a characteristic angular resolution of 0.1 milli-arcseconds at 2000 Angstroms, represents an advance in image detail of several hundred times over that provided by the Hubble Space Telescope. The Stellar Imager will zoom in on what today-with few exceptions - we only know as point sources, revealing processes never before seen, thus providing a tool as fundamental to astrophysics as the microscope is to the study of life on Earth. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. It's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. Stellar Imager is included as a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap (May, 2005) and as such is a candidate mission for the 2025-2030 timeframe. An artist's drawing of the current "baseline" concept for SI is presented.

  10. Medical imaging

    NASA Astrophysics Data System (ADS)

    Elliott, Alex

    2005-07-01

    Diagnostic medical imaging is a fundamental part of the practice of modern medicine and is responsible for the expenditure of considerable amounts of capital and revenue monies in healthcare systems around the world. Much research and development work is carried out, both by commercial companies and the academic community. This paper reviews briefly each of the major diagnostic medical imaging techniques—X-ray (planar and CT), ultrasound, nuclear medicine (planar, SPECT and PET) and magnetic resonance. The technical challenges facing each are highlighted, with some of the most recent developments. In terms of the future, interventional/peri-operative imaging, the advancement of molecular medicine and gene therapy are identified as potential areas of expansion.

  11. Imaging Hemodynamics

    PubMed Central

    Jennings, Dominique; Raghunand, Natarajan; Gillies, Robert J.

    2014-01-01

    Microvascular permeability is a pharmacologic indicator of tumor response to therapy, and it is expected that this biomarker will evolve into a clinical surrogate endpoint and be integrated into protocols for determining patient response to antiangiogenic or antivascular therapies. This review discusses the physiological context of vessel permeability in an imaging setting, how it is affected by active and passive transport mechanisms, and how it is described mathematically for both theoretical and complex dynamic microvessel membranes. Many research groups have established dynamic-enhanced imaging protocols for estimating this important parameter. This review discusses those imaging modalities, the advantages and disadvantages of each, and how they compare in terms of their ability to deliver information about therapy-associated changes in microvessel permeability in humans. Finally, this review discusses future directions and improvements needed in these areas. PMID:18506397

  12. Angiographic Imaging

    PubMed Central

    Morris, D. Christopher

    1986-01-01

    Angiographic imaging in 1986 employs not only conventional film arteriography and venography, but also digital subtraction angiography (DSA). Arteriography is still the best method of demonstrating pathology in patients with peripheral vascular disease. Transluminal angioplasty, its indications and results are discussed. Patients with suspected renovascular hypertension should be given intravenous DSA and, if pathology is demonstrated, renin sampling as well. Patients with severe, acute, life-threatening hemorrhage may have angiography not only to localize bleeding sites, but also to treat them by transcatheter embolization techniques. Various other angiographic techniques including venous sampling are discussed briefly. ImagesFigure 2Figure 3Figure 4Figure 5Figure 6Figure 7 PMID:21267204

  13. Musculoskeletal Imaging

    PubMed Central

    Connell, Douglas G.

    1986-01-01

    Musculoskeletal problems account for a significant portion of primary care medicine. Increase in the public awareness of physical fitness has led to an increase in both the incidence and appreciation of musculoskeletal disorders. This discussion considers the investigation of disorders involving the shoulder, wrist, foot, knee and pelvis. Emphasis is placed on new imaging techniques and their place in the investigation of these problems, as well as on their relationship to the more traditional modalities. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8Figure 9 PMID:21267198

  14. Brain Imaging

    PubMed Central

    Racine, Eric; Bar-Ilan, Ofek; Illes, Judy

    2007-01-01

    Advances in neuroscience are increasingly intersecting with issues of ethical, legal, and social interest. This study is an analysis of press coverage of an advanced technology for brain imaging, functional magnetic resonance imaging, that has gained significant public visibility over the past ten years. Discussion of issues of scientific validity and interpretation dominated over ethical content in both the popular and specialized press. Coverage of research on higher order cognitive phenomena specifically attributed broad personal and societal meaning to neuroimages. The authors conclude that neuroscience provides an ideal model for exploring science communication and ethics in a multicultural context. PMID:17330151

  15. Imaging sciences workshop

    SciTech Connect

    Candy, J.V.

    1994-11-15

    This workshop on the Imaging Sciences sponsored by Lawrence Livermore National Laboratory contains short abstracts/articles submitted by speakers. The topic areas covered include the following: Astronomical Imaging; biomedical imaging; vision/image display; imaging hardware; imaging software; Acoustic/oceanic imaging; microwave/acoustic imaging; computed tomography; physical imaging; imaging algorithms. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  16. Biblical Images.

    ERIC Educational Resources Information Center

    Nir, Yeshayahu

    1987-01-01

    Responds to Marjorie Munsterberg's review of "The Bible and the Image: The History of Photography in the Holy Land 1839-1899." Claims that Munsterberg provided an incomplete and inaccurate knowledge of the book's content, and that she considered Western pictorial traditions as the only valid measure in the study of the history of photography.…

  17. [Endometrial imaging].

    PubMed

    Lemercier, E; Genevois, A; Dacher, J N; Benozio, M; Descargues, G; Marpeau, L

    2000-12-01

    The diagnostic value of endovaginal sonography in benign or malignant endometrial pathology is high, increased by sonohysterography. Sonohysterography is useful in the diagnosis of endometrial thickness and to determine further investigations. MRI is accurate in the uterine adenomyosis diagnosis and is the imaging modality of choice for the preoperative endometrial cancer staging. PMID:11173754

  18. Narrowband Imaging

    NASA Astrophysics Data System (ADS)

    Goldman, Don S.

    The Hubble Space Telescope (HST) captured the attention of the world when it released its astounding image in 1995 of the Eagle Nebula (Messier 16) often called "The Pillars of Creation" (Fig. 1). It contained dark, billowing towers of gas and dust rising majestically into a background of glowing radiation. It told a story of new star formation.

  19. Inner Image

    ERIC Educational Resources Information Center

    Mollhagen, Nancy

    2004-01-01

    In this article, the author states that she has always loved self portraits but most teenagers do not enjoy looking too closely at their own faces in an effort to replicate them. Thanks to a new digital camera, she was able to use this new technology to inspire students to take a closer look at their inner image. Prior to the self-portrait…

  20. Forest Imaging

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA's Technology Applications Center, with other government and academic agencies, provided technology for improved resources management to the Cibola National Forest. Landsat satellite images enabled vegetation over a large area to be classified for purposes of timber analysis, wildlife habitat, range measurement and development of general vegetation maps.

  1. Photoacoustic imaging platforms for multimodal imaging

    PubMed Central

    2015-01-01

    Photoacoustic (PA) imaging is a hybrid biomedical imaging method that exploits both acoustical Epub ahead of print and optical properties and can provide both functional and structural information. Therefore, PA imaging can complement other imaging methods, such as ultrasound imaging, fluorescence imaging, optical coherence tomography, and multi-photon microscopy. This article reviews techniques that integrate PA with the above imaging methods and describes their applications. PMID:25754364

  2. Imaging bolometer

    DOEpatents

    Wurden, G.A.

    1999-01-19

    Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.

  3. Imaging bolometer

    SciTech Connect

    Wurden, Glen A.

    1999-01-01

    Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.

  4. Attosecond imaging.

    PubMed

    Vrakking, Marc J J

    2014-02-21

    The natural timescale for electron dynamics reaches down to the attosecond domain. Following the discovery of attosecond laser pulses, about a decade ago, attosecond science has developed into a vibrant, new research field, where the motion of single or multiple electrons and, in molecules, the coupling of electronic and nuclear motion, can be investigated, on attosecond to few-femtosecond timescales. Attosecond experiments require suitable observables. This review describes how "attosecond imaging", basing itself on kinetic energy and angle-resolved detection of photoelectrons and fragment ions using a velocity map imaging (VMI) spectrometer, has been exploited in a number of pump-probe experiments. The use of a VMI spectrometer in attosecond experiments has allowed the characterization of attosecond pulse trains and isolated attosecond pulses, the elucidation of continuum electron dynamics and wave packet interferometry in atomic photoionization and the observation of electron localization in dissociative molecular photoionization. PMID:24398785

  5. Brain imaging

    SciTech Connect

    Bradshaw, J.R.

    1989-01-01

    This book presents a survey of the various imaging tools with examples of the different diseases shown best with each modality. It includes 100 case presentations covering the gamut of brain diseases. These examples are grouped according to the clinical presentation of the patient: headache, acute headache, sudden unilateral weakness, unilateral weakness of gradual onset, speech disorders, seizures, pituitary and parasellar lesions, sensory disorders, posterior fossa and cranial nerve disorders, dementia, and congenital lesions.

  6. Imaging stress.

    PubMed

    Brielle, Shlomi; Gura, Rotem; Kaganovich, Daniel

    2015-11-01

    Recent innovations in cell biology and imaging approaches are changing the way we study cellular stress, protein misfolding, and aggregation. Studies have begun to show that stress responses are even more variegated and dynamic than previously thought, encompassing nano-scale reorganization of cytosolic machinery that occurs almost instantaneously, much faster than transcriptional responses. Moreover, protein and mRNA quality control is often organized into highly dynamic macromolecular assemblies, or dynamic droplets, which could easily be mistaken for dysfunctional "aggregates," but which are, in fact, regulated functional compartments. The nano-scale architecture of stress-response ranges from diffraction-limited structures like stress granules, P-bodies, and stress foci to slightly larger quality control inclusions like juxta nuclear quality control compartment (JUNQ) and insoluble protein deposit compartment (IPOD), as well as others. Examining the biochemical and physical properties of these dynamic structures necessitates live cell imaging at high spatial and temporal resolution, and techniques to make quantitative measurements with respect to movement, localization, and mobility. Hence, it is important to note some of the most recent observations, while casting an eye towards new imaging approaches that offer the possibility of collecting entirely new kinds of data from living cells.

  7. Imaging Borrelly

    USGS Publications Warehouse

    Soderblom, L.A.; Boice, D.C.; Britt, D.T.; Brown, R.H.; Buratti, B.J.; Kirk, R.L.; Lee, M.; Nelson, R.M.; Oberst, J.; Sandel, B.R.; Stern, S.A.; Thomas, N.; Yelle, R.V.

    2004-01-01

    The nucleus, coma, and dust jets of short-period Comet 19P/Borrelly were imaged from the Deep Space 1 spacecraft during its close flyby in September 2001. A prominent jet dominated the near-nucleus coma and emanated roughly normal to the long axis of nucleus from a broad central cavity. We show it to have remained fixed in position for more than 34 hr, much longer than the 26-hr rotation period. This confirms earlier suggestions that it is co-aligned with the rotation axis. From a combination of fitting the nucleus light curve from approach images and the nucleus' orientation from stereo images at encounter, we conclude that the sense of rotation is right-handed around the main jet vector. The inferred rotation pole is approximately perpendicular to the long axis of the nucleus, consistent with a simple rotational state. Lacking an existing IAU comet-specific convention but applying a convention provisionally adopted for asteroids, we label this the north pole. This places the sub-solar latitude at ???60?? N at the time of the perihelion with the north pole in constant sunlight and thus receiving maximum average insolation. ?? 2003 Elsevier Inc. All rights reserved.

  8. Imaging and radiology

    MedlinePlus

    ... imaging or a PET scan Ultrasound INTERVENTIONAL RADIOLOGY Interventional radiologists are doctors that use imaging such as CT, ultrasound, MRI and fluoroscopy to help guide procedures. The imaging ...

  9. Image Editing Via Searching Source Image

    NASA Astrophysics Data System (ADS)

    Yu, Han; Deng, Liang-Jian

    Image editing has important applications by changing the image texture, illumination, target location, etc. As an important application of Poisson equation, Poisson image editing processes images on the gradient domain and has been applied to seamless clone, selection editing, image denoising, etc. In this paper, we present a new application of Poisson image editing, which is based on searching source image. The main feature of the new application is all modifying information comes from the source image. Experimental results show that the proposed application performs well.

  10. Chest Imaging.

    PubMed

    Keijsers, Ruth G; Veltkamp, Marcel; Grutters, Jan C

    2015-12-01

    Chest imaging has a central role in the diagnosis and monitoring of sarcoidosis. For staging of pulmonary disease on chest radiograph, Scadding stages are still widely used. High-resolution CT (HRCT), however, is more accurate in visualizing the various manifestations of pulmonary sarcoidosis as well its complications. A generally accepted HRCT scoring system is lacking. Fluorodeoxyglucose F 18 positron emission tomography can visualize disease activity better than conventional makers in a significant proportion of patients. In patients with extensive changes on HRCT but no parenchymal fluorodeoxyglucose F 18 uptake, prudence with regard to initiation or intensification of immunosuppressive treatment is warranted. PMID:26593136

  11. Image Processor

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Texas Instruments Programmable Remapper is a research tool used to determine how to best utilize the part of a patient's visual field still usable by mapping onto his field of vision with manipulated imagery. It is an offshoot of a NASA program for speeding up, improving the accuracy of pattern recognition in video imagery. The Remapper enables an image to be "pushed around" so more of it falls into the functional portions in the retina of a low vision person. It works at video rates, and researchers hope to significantly reduce its size and cost, creating a wearable prosthesis for visually impaired people.

  12. Scrotal imaging

    PubMed Central

    Studniarek, Michał; Modzelewska, Elza

    2015-01-01

    Pathological lesions within the scrotum are relatively rare in imaging except for ultrasonography. The diseases presented in the paper are usually found in men at the age of 15–45, i.e. men of reproductive age, and therefore they are worth attention. Scrotal ultrasound in infertile individuals should be conducted on a routine basis owing to the fact that pathological scrotal lesions are frequently detected in this population. Malignant testicular cancers are the most common neoplasms in men at the age of 20–40. Ultrasound imaging is the method of choice characterized by the sensitivity of nearly 100% in the differentiation between intratesticular and extratesticular lesions. In the case of doubtful lesions that are not classified for intra-operative verification, nuclear magnetic resonance is applied. Computed tomography, however, is performed to monitor the progression of a neoplastic disease, in pelvic trauma with scrotal injury as well as in rare cases of scrotal hernias involving the ureters or a fragment of the urinary bladder. PMID:26674847

  13. Indexing Images: Testing an Image Description Template.

    ERIC Educational Resources Information Center

    Jorgensen, Corinne

    1996-01-01

    A template for pictorial image description to be used by novice image searchers in recording their descriptions of images was tested; image attribute classes derived in previous research were used to model the template. Results indicated that users may need training and/or more guidance to correctly assign descriptors to higher-level classes.…

  14. Speckle imaging algorithms for planetary imaging

    SciTech Connect

    Johansson, E.

    1994-11-15

    I will discuss the speckle imaging algorithms used to process images of the impact sites of the collision of comet Shoemaker-Levy 9 with Jupiter. The algorithms use a phase retrieval process based on the average bispectrum of the speckle image data. High resolution images are produced by estimating the Fourier magnitude and Fourier phase of the image separately, then combining them and inverse transforming to achieve the final result. I will show raw speckle image data and high-resolution image reconstructions from our recent experiment at Lick Observatory.

  15. Image resampling effects in mammographic image simulation.

    PubMed

    Yip, M; Mackenzie, A; Lewis, E; Dance, D R; Young, K C; Christmas, W; Wells, K

    2011-11-21

    This work describes the theory of resampling effects within the context of image simulation for mammographic images. The process of digitization associated with using digital imaging technology needs to be correctly addressed in any image simulation process. Failure to do so can lead to overblurring in the final synthetic image. A method for weighted neighbourhood averaging is described for non-integer scaling factors in resampling images. The use of the method is demonstrated by comparing simulated and real images of an edge test object acquired on two clinical mammography systems. Images were simulated using two setups: from idealized images and from images obtained with clinical systems. A Gaussian interpolation method is proposed as a single-step solution to modelling blurring filters for the simulation process.

  16. Reversible digital images

    NASA Astrophysics Data System (ADS)

    Knox, Keith T.

    1999-04-01

    A method has been developed to hide one image inside another with little loss in image quality. If the second image is a logo or watermark, then this method may be used to protect the ownership rights of the first image and to guarantee the authenticity of the image. The two images to be combined may be either black & white or color continuous tone images. A reversible image is created by incorporating the first image in the upper 4 bits and the second image in the lower 4 bits. When viewed normally, the reversible image appears to be the first image. To view the hidden image, the bits of the combined image are reversed, exchanging all of the lower and higher order bits. When viewed in the reversed mode, the image appears to be the second or hidden image. To maintain a high level of image quality for both images, two simultaneous error diffusion calculations are run to ensure that both views of the reversible image have the same visual appearance as the originals. Any alteration of one of the images locally destroys the other image at the site of the alterations. This provides a method to detect alterations of the original image.

  17. scikit-image: image processing in Python

    PubMed Central

    Schönberger, Johannes L.; Nunez-Iglesias, Juan; Boulogne, François; Warner, Joshua D.; Yager, Neil; Gouillart, Emmanuelle; Yu, Tony

    2014-01-01

    scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, http://scikit-image.org. PMID:25024921

  18. scikit-image: image processing in Python.

    PubMed

    van der Walt, Stéfan; Schönberger, Johannes L; Nunez-Iglesias, Juan; Boulogne, François; Warner, Joshua D; Yager, Neil; Gouillart, Emmanuelle; Yu, Tony

    2014-01-01

    scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, http://scikit-image.org.

  19. X-Ray Imaging

    MedlinePlus

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  20. Split image optical display

    DOEpatents

    Veligdan, James T.

    2007-05-29

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  1. Split image optical display

    DOEpatents

    Veligdan, James T.

    2005-05-31

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  2. Smart Image Enhancement Process

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J. (Inventor); Rahman, Zia-ur (Inventor); Woodell, Glenn A. (Inventor)

    2012-01-01

    Contrast and lightness measures are used to first classify the image as being one of non-turbid and turbid. If turbid, the original image is enhanced to generate a first enhanced image. If non-turbid, the original image is classified in terms of a merged contrast/lightness score based on the contrast and lightness measures. The non-turbid image is enhanced to generate a second enhanced image when a poor contrast/lightness score is associated therewith. When the second enhanced image has a poor contrast/lightness score associated therewith, this image is enhanced to generate a third enhanced image. A sharpness measure is computed for one image that is selected from (i) the non-turbid image, (ii) the first enhanced image, (iii) the second enhanced image when a good contrast/lightness score is associated therewith, and (iv) the third enhanced image. If the selected image is not-sharp, it is sharpened to generate a sharpened image. The final image is selected from the selected image and the sharpened image.

  3. What Is an Image?

    ERIC Educational Resources Information Center

    Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The article helps to understand the interpretation of an image by presenting as to what constitutes an image. A common feature in all images is the basic physical structure that can be described with a common set of terms.

  4. To Image...or Not to Image?

    ERIC Educational Resources Information Center

    Bruley, Karina

    1996-01-01

    Provides a checklist of considerations for installing document image processing with an electronic document management system. Other topics include scanning; indexing; the image file life cycle; benefits of imaging; document-driven workflow; and planning for workplace changes like postsorting, creating a scanning room, redeveloping job tasks and…

  5. Filter for biomedical imaging and image processing

    NASA Astrophysics Data System (ADS)

    Mondal, Partha P.; Rajan, K.; Ahmad, Imteyaz

    2006-07-01

    Image filtering techniques have numerous potential applications in biomedical imaging and image processing. The design of filters largely depends on the a priori, knowledge about the type of noise corrupting the image. This makes the standard filters application specific. Widely used filters such as average, Gaussian, and Wiener reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high-frequency details, making the image nonsmooth. An integrated general approach to design a finite impulse response filter based on Hebbian learning is proposed for optimal image filtering. This algorithm exploits the interpixel correlation by updating the filter coefficients using Hebbian learning. The algorithm is made iterative for achieving efficient learning from the neighborhood pixels. This algorithm performs optimal smoothing of the noisy image by preserving high-frequency as well as low-frequency features. Evaluation results show that the proposed finite impulse response filter is robust under various noise distributions such as Gaussian noise, salt-and-pepper noise, and speckle noise. Furthermore, the proposed approach does not require any a priori knowledge about the type of noise. The number of unknown parameters is few, and most of these parameters are adaptively obtained from the processed image. The proposed filter is successfully applied for image reconstruction in a positron emission tomography imaging modality. The images reconstructed by the proposed algorithm are found to be superior in quality compared with those reconstructed by existing PET image reconstruction methodologies.

  6. Imaging of testicular tumours.

    PubMed

    Owens, E J; Kabala, J; Goddard, P

    2004-01-01

    This article reviews the diagnosis, pathology and imaging of testicular tumours, predominantly germ cell tumours. It will discuss the imaging techniques used in their diagnosis, staging and surveillance.

  7. Far Ultraviolet Imaging from the Image Spacecraft

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Heetderks, H.; Frey, H. U.; Lampton, M.; Geller, S. P.; Stock, J. M.; Abiad, R.; Siegmund, O. H. W.; Tremsin, A. S.; Habraken, S.

    2000-01-01

    Direct imaging of the magnetosphere by the IMAGE spacecraft will be supplemented by observation of the global aurora. The IMAGE satellite instrument complement includes three Far Ultraviolet (FUV) instruments. The Wideband Imaging Camera (WIC) will provide broad band ultraviolet images of the aurora for maximum spatial and temporal resolution by imaging the LBH N2 bands of the aurora. The Spectrographic Imager (SI), a novel form of monochromatic imager, will image the aurora, filtered by wavelength. The proton-induced component of the aurora will be imaged separately by measuring the Doppler-shifted Lyman-a. Finally, the GEO instrument will observe the distribution of the geocoronal emission to obtain the neutral background density source for charge exchange in the magnetosphere. The FUV instrument complement looks radially outward from the rotating IMAGE satellite and, therefore, it spends only a short time observing the aurora and the Earth during each spin. To maximize photon collection efficiency and use efficiently the short time available for exposures the FUV auroral imagers WIC and SI both have wide fields of view and take data continuously as the auroral region proceeds through the field of view. To minimize data volume, the set of multiple images are electronically co-added by suitably shifting each image to compensate for the spacecraft rotation. In order to minimize resolution loss, the images have to be distort ion-corrected in real time. The distortion correction is accomplished using high speed look up tables that are pre-generated by least square fitting to polynomial functions by the on-orbit processor. The instruments were calibrated individually while on stationary platforms, mostly in vacuum chambers. Extensive ground-based testing was performed with visible and near UV simulators mounted on a rotating platform to emulate their performance on a rotating spacecraft.

  8. Image processing and recognition for biological images

    PubMed Central

    Uchida, Seiichi

    2013-01-01

    This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. PMID:23560739

  9. Modern Brain Tumor Imaging

    PubMed Central

    Barajas, Ramon F.; Cha, Soonmee

    2015-01-01

    The imaging and clinical management of patients with brain tumor continue to evolve over time and now heavily rely on physiologic imaging in addition to high-resolution structural imaging. Imaging remains a powerful noninvasive tool to positively impact the management of patients with brain tumor. This article provides an overview of the current state-of-the art clinical brain tumor imaging. In this review, we discuss general magnetic resonance (MR) imaging methods and their application to the diagnosis of, treatment planning and navigation, and disease monitoring in patients with brain tumor. We review the strengths, limitations, and pitfalls of structural imaging, diffusion-weighted imaging techniques, MR spectroscopy, perfusion imaging, positron emission tomography/MR, and functional imaging. Overall this review provides a basis for understudying the role of modern imaging in the care of brain tumor patients. PMID:25977902

  10. Quantum ghost imaging experiments

    NASA Astrophysics Data System (ADS)

    Meyers, Ronald E.; Deacon, Keith S.

    2009-08-01

    Since the first experiment achieving quantum ghost imaging of an opaque object, performed by the authors at the Army Research Laboratory, ghost imaging research has increased. That physics experiment resulting in the image of toy soldier created a new imaging paradigm. Prior to that all images of opaque objects were made by receiving patterns of the object from reflection and scattering of the light into a camera. In the ghost imaging experiment light patterns only came from the light source and the image was made from coincidences of those and photon counts of reflected and scattered photons received from the object. Since that original ghost imaging experiment, approximately thirteen years after ghost imaging of transmissive objects was introduced, ghost imaging is providing a new and proweful quantum tool for future improved imaging missions in the environment.

  11. Imaging Sciences Workshop Proceedings

    SciTech Connect

    Candy, J.V.

    1996-11-21

    This report contains the proceedings of the Imaging Sciences Workshop sponsored by C.A.S.LS., the Center for Advanced Signal & Image Sciences. The Center, established primarily to provide a forum where researchers can freely exchange ideas on the signal and image sciences in a comfortable intellectual environment, has grown over the last two years with the opening of a Reference Library (located in Building 272). The Technical Program for the 1996 Workshop include a variety of efforts in the Imaging Sciences including applications in the Microwave Imaging, highlighted by the Micro-Impulse Radar (MIR) system invented at LLNL, as well as other applications in this area. Special sessions organized by various individuals in Speech, Acoustic Ocean Imaging, Radar Ocean Imaging, Ultrasonic Imaging, and Optical Imaging discuss various applica- tions of real world problems. For the more theoretical, sessions on Imaging Algorithms and Computed Tomography were organized as well as for the more pragmatic featuring a session on Imaging Systems.

  12. Image management research

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1988-01-01

    Two types of research issues are involved in image management systems with space station applications: image processing research and image perception research. The image processing issues are the traditional ones of digitizing, coding, compressing, storing, analyzing, and displaying, but with a new emphasis on the constraints imposed by the human perceiver. Two image coding algorithms have been developed that may increase the efficiency of image management systems (IMS). Image perception research involves a study of the theoretical and practical aspects of visual perception of electronically displayed images. Issues include how rapidly a user can search through a library of images, how to make this search more efficient, and how to present images in terms of resolution and split screens. Other issues include optimal interface to an IMS and how to code images in a way that is optimal for the human perceiver. A test-bed within which such issues can be addressed has been designed.

  13. Multiscale Image Processing of Solar Image Data

    NASA Astrophysics Data System (ADS)

    Young, C.; Myers, D. C.

    2001-12-01

    It is often said that the blessing and curse of solar physics is too much data. Solar missions such as Yohkoh, SOHO and TRACE have shown us the Sun with amazing clarity but have also increased the amount of highly complex data. We have improved our view of the Sun yet we have not improved our analysis techniques. The standard techniques used for analysis of solar images generally consist of observing the evolution of features in a sequence of byte scaled images or a sequence of byte scaled difference images. The determination of features and structures in the images are done qualitatively by the observer. There is little quantitative and objective analysis done with these images. Many advances in image processing techniques have occured in the past decade. Many of these methods are possibly suited for solar image analysis. Multiscale/Multiresolution methods are perhaps the most promising. These methods have been used to formulate the human ability to view and comprehend phenomena on different scales. So these techniques could be used to quantitify the imaging processing done by the observers eyes and brains. In this work we present several applications of multiscale techniques applied to solar image data. Specifically, we discuss uses of the wavelet, curvelet, and related transforms to define a multiresolution support for EIT, LASCO and TRACE images.

  14. Image processor development with synthetic images

    NASA Astrophysics Data System (ADS)

    Guivens, Norman R., Jr.; Henshaw, Philip D.

    1992-03-01

    Many impressive developments in image simulation technology have led to extensive use of synthetic images in the motion picture industry for special effects and animation, and also in applications such as aircraft flight simulators. Although these images appear correct to the human eye, they generally are not suitable for development of image processing and machine vision applications because the logarithmic response of the human eye does not match the linear response of most electronic detectors. Synthetic images must accurately represent the effects which are present in detected images, whether produced by the source(s) of illumination, the scene itself, the medium through which the sensor is viewing the scene, the sensor system, or electronic circuits between the detector array and the processing system if they are to be useful for development and analysis of image processing (and machine vision) systems. Recent developments have led to the use of laser sensors for various machine vision applications including collision avoidance, wire detection and avoidance, intrusion detection, and underwater imaging systems. With recent developments in low cost laser systems, the use of these sensors for numerous applications relating to machine vision is likely to continue to expand for the foreseeable future. SPARTA's work in the area of image synthesis began with the development of a coherent laser radar simulation running on IBM and compatible personal computers, and has since branched into modeling of incoherent active and passive systems as well. SPARTA's current optical imaging sensor simulation, SENSORSIM, is written in ANSI standard FORTRAN '77 to ensure portability.

  15. Biomedical image processing

    SciTech Connect

    Huang, H.K.

    1981-01-01

    Biomedical image processing is a very broad field; it covers biomedical signal gathering, image forming, picture processing, and image display to medical diagnosis based on features extracted from images. This article reviews this topic in both its fundamentals and applications. In its fundamentals, some basic image processing techniques including outlining, deblurring, noise cleaning, filtering, search, classical analysis and texture analysis have been reviewed together with examples. The state-of-the-art image processing systems have been introduced and discussed in two categories: general purpose image processing systems and image analyzers. In order for these systems to be effective for biomedical applications, special biomedical image processing languages have to be developed. The combination of both hardware and software leads to clinical imaging devices. Two different types of clinical imaging devices have been discussed. There are radiological imagings which include radiography, thermography, ultrasound, nuclear medicine and CT. Among these, thermography is the most noninvasive but is limited in application due to the low energy of its source. X-ray CT is excellent for static anatomical images and is moving toward the measurement of dynamic function, whereas nuclear imaging is moving toward organ metabolism and ultrasound is toward tissue physical characteristics. Heart imaging is one of the most interesting and challenging research topics in biomedical image processing; current methods including the invasive-technique cineangiography, and noninvasive ultrasound, nuclear medicine, transmission, and emission CT methodologies have been reviewed.

  16. LandsatLook images

    USGS Publications Warehouse

    Jonescheit, Linda

    2011-01-01

    LandsatLook images are full resolution JPEG files derived from Landsat Level 1 data products. The images are compressed and stretched to create an image optimized for image selection and visual interpretation; it is not recommended that they be used in digital analysis.

  17. Adolescence and Body Image.

    ERIC Educational Resources Information Center

    Weinshenker, Naomi

    2002-01-01

    Discusses body image among adolescents, explaining that today's adolescents are more prone to body image distortions and dissatisfaction than ever and examining the historical context; how self-image develops; normative discontent; body image distortions; body dysmorphic disorder (BDD); vulnerability of boys (muscle dysmorphia); who is at risk;…

  18. Comparative cardiac imaging

    SciTech Connect

    Brundage, B.H.

    1990-01-01

    This book is designed to compare all major cardiac imaging techniques. All major imaging techniques - including conventional angiography, digital angiography, echocardiography and Doppler imaging, conventional radioisotope techniques, computed tomography, and magnetic resonance imaging - are covered in this text as they apply to the major cardiovascular disorders. There is brief coverage of positron emission tomography and an extensive presentation of ultrafast computed tomography.

  19. Image-Processing Educator

    NASA Technical Reports Server (NTRS)

    Gunther, F. J.

    1986-01-01

    Apple Image-Processing Educator (AIPE) explores ability of microcomputers to provide personalized computer-assisted instruction (CAI) in digital image processing of remotely sensed images. AIPE is "proof-of-concept" system, not polished production system. User-friendly prompts provide access to explanations of common features of digital image processing and of sample programs that implement these features.

  20. Seismic Imaging and Monitoring

    SciTech Connect

    Huang, Lianjie

    2012-07-09

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  1. Intravascular Photoacoustic Imaging

    PubMed Central

    Wang, Bo; Su, Jimmy L.; Karpiouk, Andrei B.; Sokolov, Konstantin V.; Smalling, Richard W.; Emelianov, Stanislav Y.

    2011-01-01

    Intravascular photoacoustic (IVPA) imaging is a catheter-based, minimally invasive, imaging modality capable of providing high-resolution optical absorption map of the arterial wall. Integrated with intravascular ultrasound (IVUS) imaging, combined IVPA and IVUS imaging can be used to detect and characterize atherosclerotic plaques building up in the inner lining of an artery. In this paper, we present and discuss various representative applications of combined IVPA/IVUS imaging of atherosclerosis, including assessment of the composition of atherosclerotic plaques, imaging of macrophages within the plaques, and molecular imaging of biomarkers associated with formation and development of plaques. In addition, imaging of coronary artery stents using IVPA and IVUS imaging is demonstrated. Furthermore, the design of an integrated IVUS/IVPA imaging catheter needed for in vivo clinical applications is discussed. PMID:21359138

  2. Image Processing Software

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Ames digital image velocimetry technology has been incorporated in a commercially available image processing software package that allows motion measurement of images on a PC alone. The software, manufactured by Werner Frei Associates, is IMAGELAB FFT. IMAGELAB FFT is a general purpose image processing system with a variety of other applications, among them image enhancement of fingerprints and use by banks and law enforcement agencies for analysis of videos run during robberies.

  3. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  4. Image Enhancement, Image Quality, and Noise

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Hines, Glenn D.

    2005-01-01

    The Multiscale Retinex With Color Restoration (MSRCR) is a non-linear image enhancement algorithm that provides simultaneous dynamic range compression, color constancy and rendition. The overall impact is to brighten up areas of poor contrast/lightness but not at the expense of saturating areas of good contrast/brightness. The downside is that with the poor signal-to-noise ratio that most image acquisition devices have in dark regions, noise can also be greatly enhanced thus affecting overall image quality. In this paper, we will discuss the impact of the MSRCR on the overall quality of an enhanced image as a function of the strength of shadows in an image, and as a function of the root-mean-square (RMS) signal-to-noise (SNR) ratio of the image.

  5. Lymphatic Imaging: Focus on Imaging Probes

    PubMed Central

    Niu, Gang; Chen, Xiaoyuan

    2015-01-01

    In view of the importance of sentinel lymph nodes (SLNs) in tumor staging and patient management, sensitive and accurate imaging of SLNs has been intensively explored. Along with the advance of the imaging technology, various contrast agents have been developed for lymphatic imaging. In this review, the lymph node imaging agents were summarized into three groups: tumor targeting agents, lymphatic targeting agents and lymphatic mapping agents. Tumor targeting agents are used to detect metastatic tumor tissue within LNs, lymphatic targeting agents aim to visualize lymphatic vessels and lymphangionesis, while lymphatic mapping agents are mainly for SLN detection during surgery after local administration. Coupled with various signal emitters, these imaging agents work with single or multiple imaging modalities to provide a valuable way to evaluate the location and metastatic status of SLNs. PMID:25897334

  6. Image based performance analysis of thermal imagers

    NASA Astrophysics Data System (ADS)

    Wegner, D.; Repasi, E.

    2016-05-01

    Due to advances in technology, modern thermal imagers resemble sophisticated image processing systems in functionality. Advanced signal and image processing tools enclosed into the camera body extend the basic image capturing capability of thermal cameras. This happens in order to enhance the display presentation of the captured scene or specific scene details. Usually, the implemented methods are proprietary company expertise, distributed without extensive documentation. This makes the comparison of thermal imagers especially from different companies a difficult task (or at least a very time consuming/expensive task - e.g. requiring the execution of a field trial and/or an observer trial). For example, a thermal camera equipped with turbulence mitigation capability stands for such a closed system. The Fraunhofer IOSB has started to build up a system for testing thermal imagers by image based methods in the lab environment. This will extend our capability of measuring the classical IR-system parameters (e.g. MTF, MTDP, etc.) in the lab. The system is set up around the IR- scene projector, which is necessary for the thermal display (projection) of an image sequence for the IR-camera under test. The same set of thermal test sequences might be presented to every unit under test. For turbulence mitigation tests, this could be e.g. the same turbulence sequence. During system tests, gradual variation of input parameters (e. g. thermal contrast) can be applied. First ideas of test scenes selection and how to assembly an imaging suite (a set of image sequences) for the analysis of imaging thermal systems containing such black boxes in the image forming path is discussed.

  7. Image registration method for medical image sequences

    DOEpatents

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  8. Parallel MR Imaging

    PubMed Central

    Deshmane, Anagha; Gulani, Vikas; Griswold, Mark A.; Seiberlich, Nicole

    2015-01-01

    Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact-free images from either the aliased images (SENSE-type reconstruction) or from the under-sampled data (GRAPPA-type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-hold times resulting in fewer motion-corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed. PMID:22696125

  9. Optical image encryption based on diffractive imaging.

    PubMed

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2010-11-15

    In this Letter, we propose a method for optical image encryption based on diffractive imaging. An optical multiple random phase mask encoding system is applied, and one of the phase-only masks is selected and laterally translated along a preset direction during the encryption process. For image decryption, a phase retrieval algorithm is proposed to extract a high-quality plaintext. The feasibility and effectiveness of the proposed method are demonstrated by numerical results. The proposed method can provide a new strategy instead of conventional interference methods, and it may open up a new research perspective for optical image encryption.

  10. Fast image decompression for telebrowsing of images

    NASA Technical Reports Server (NTRS)

    Miaou, Shaou-Gang; Tou, Julius T.

    1993-01-01

    Progressive image transmission (PIT) is often used to reduce the transmission time of an image telebrowsing system. A side effect of the PIT is the increase of computational complexity at the viewer's site. This effect is more serious in transform domain techniques than in other techniques. Recent attempts to reduce the side effect are futile as they create another side effect, namely, the discontinuous and unpleasant image build-up. Based on a practical assumption that image blocks to be inverse transformed are generally sparse, this paper presents a method to minimize both side effects simultaneously.

  11. Multispectral imaging for biometrics

    NASA Astrophysics Data System (ADS)

    Rowe, Robert K.; Corcoran, Stephen P.; Nixon, Kristin A.; Ostrom, Robert E.

    2005-03-01

    Automated identification systems based on fingerprint images are subject to two significant types of error: an incorrect decision about the identity of a person due to a poor quality fingerprint image and incorrectly accepting a fingerprint image generated from an artificial sample or altered finger. This paper discusses the use of multispectral sensing as a means to collect additional information about a finger that significantly augments the information collected using a conventional fingerprint imager based on total internal reflectance. In the context of this paper, "multispectral sensing" is used broadly to denote a collection of images taken under different polarization conditions and illumination configurations, as well as using multiple wavelengths. Background information is provided on conventional fingerprint imaging. A multispectral imager for fingerprint imaging is then described and a means to combine the two imaging systems into a single unit is discussed. Results from an early-stage prototype of such a system are shown.

  12. Future generation CT imaging.

    PubMed

    Walter, Deborah; De Man, Bruno; Iatrou, Maria; Edic, Peter M

    2004-02-01

    X-ray CT technology has been available for more than 30 years, yet continued technological advances have kept CT imaging at the forefront of medical imaging innovation. Consequently, the number of clinical CT applications has increased steadily. Other imaging modalities might be superior to CT imaging for some specific applications, but no other single modality is more often used in chest imaging today. Future technological developments in the area of high-resolution detectors, high-capacity x-ray tubes, advanced reconstruction algorithms, and improved visualization techniques will continue to expand the imaging capability. Future CT imaging technology will combine improved imaging capability with advanced and specific computer-assisted tools, which will expand the usefulness of CT imaging in many areas.

  13. Subroutines For Image Processing

    NASA Technical Reports Server (NTRS)

    Faulcon, Nettie D.; Monteith, James H.; Miller, Keith W.

    1988-01-01

    Image Processing Library computer program, IPLIB, is collection of subroutines facilitating use of COMTAL image-processing system driven by HP 1000 computer. Functions include addition or subtraction of two images with or without scaling, display of color or monochrome images, digitization of image from television camera, display of test pattern, manipulation of bits, and clearing of screen. Provides capability to read or write points, lines, and pixels from image; read or write at location of cursor; and read or write array of integers into COMTAL memory. Written in FORTRAN 77.

  14. Imager for Mars Pathfinder (IMP) image calibration

    USGS Publications Warehouse

    Reid, R.J.; Smith, P.H.; Lemmon, M.; Tanner, R.; Burkland, M.; Wegryn, E.; Weinberg, J.; Marcialis, R.; Britt, D.T.; Thomas, N.; Kramm, R.; Dummel, A.; Crowe, D.; Bos, B.J.; Bell, J.F.; Rueffer, P.; Gliem, F.; Johnson, J. R.; Maki, J.N.; Herkenhoff, K. E.; Singer, Robert B.

    1999-01-01

    The Imager for Mars Pathfinder returned over 16,000 high-quality images from the surface of Mars. The camera was well-calibrated in the laboratory, with <5% radiometric uncertainty. The photometric properties of two radiometric targets were also measured with 3% uncertainty. Several data sets acquired during the cruise and on Mars confirm that the system operated nominally throughout the course of the mission. Image calibration algorithms were developed for landed operations to correct instrumental sources of noise and to calibrate images relative to observations of the radiometric targets. The uncertainties associated with these algorithms as well as current improvements to image calibration are discussed. Copyright 1999 by the American Geophysical Union.

  15. A hyperspectral image projector for hyperspectral imagers

    NASA Astrophysics Data System (ADS)

    Rice, Joseph P.; Brown, Steven W.; Neira, Jorge E.; Bousquet, Robert R.

    2007-04-01

    We have developed and demonstrated a Hyperspectral Image Projector (HIP) intended for system-level validation testing of hyperspectral imagers, including the instrument and any associated spectral unmixing algorithms. HIP, based on the same digital micromirror arrays used in commercial digital light processing (DLP*) displays, is capable of projecting any combination of many different arbitrarily programmable basis spectra into each image pixel at up to video frame rates. We use a scheme whereby one micromirror array is used to produce light having the spectra of endmembers (i.e. vegetation, water, minerals, etc.), and a second micromirror array, optically in series with the first, projects any combination of these arbitrarily-programmable spectra into the pixels of a 1024 x 768 element spatial image, thereby producing temporally-integrated images having spectrally mixed pixels. HIP goes beyond conventional DLP projectors in that each spatial pixel can have an arbitrary spectrum, not just arbitrary color. As such, the resulting spectral and spatial content of the projected image can simulate realistic scenes that a hyperspectral imager will measure during its use. Also, the spectral radiance of the projected scenes can be measured with a calibrated spectroradiometer, such that the spectral radiance projected into each pixel of the hyperspectral imager can be accurately known. Use of such projected scenes in a controlled laboratory setting would alleviate expensive field testing of instruments, allow better separation of environmental effects from instrument effects, and enable system-level performance testing and validation of hyperspectral imagers as used with analysis algorithms. For example, known mixtures of relevant endmember spectra could be projected into arbitrary spatial pixels in a hyperspectral imager, enabling tests of how well a full system, consisting of the instrument + calibration + analysis algorithm, performs in unmixing (i.e. de-convolving) the

  16. Simpler images, better results

    NASA Astrophysics Data System (ADS)

    Chance, Britton

    1999-03-01

    The very rapid development of optical technology has followed a pattern similar to that of nuclear magnetic resonance: first, spectroscopy and then imaging. The accomplishments in spectroscopy have been significant--among them, early detection of hematomas and quantitative oximetry (assuming that time and frequency domain instruments are used). Imaging has progressed somewhat later. The first images were obtained in Japan and USA a few years ago, particularly of parietal stimulation of the human brain. Since then, rapid applications to breast and limb, together with higher resolution of the brain now make NIR imaging of functional activation and tumor detection readily available, reliable and affordable devices. The lecture has to do with the applications of imaging to these three areas, particularly to prefrontal imaging of cognitive function, of breast tumor detection, and of localized muscle activation in exercise. The imaging resolution achievable in functional activation appears to be FWHM of 4 mm. The time required for an image is a few seconds or even much less. Breast image detection at 50 microsecond(s) ec/pixel results in images obtainable in a few seconds or shorter times (bandwidths of the kHz are available). Finally, imaging of the body organs is under study in this laboratory, particularly in the in utero fetus. It appears that the photon migration theory now leads to the development of a wide number of images for human subject tissue spectroscopy and imaging.

  17. Photoacoustic imaging in biomedicine

    NASA Astrophysics Data System (ADS)

    Xu, Minghua; Wang, Lihong V.

    2006-04-01

    Photoacoustic imaging (also called optoacoustic or thermoacoustic imaging) has the potential to image animal or human organs, such as the breast and the brain, with simultaneous high contrast and high spatial resolution. This article provides an overview of the rapidly expanding field of photoacoustic imaging for biomedical applications. Imaging techniques, including depth profiling in layered media, scanning tomography with focused ultrasonic transducers, image forming with an acoustic lens, and computed tomography with unfocused transducers, are introduced. Special emphasis is placed on computed tomography, including reconstruction algorithms, spatial resolution, and related recent experiments. Promising biomedical applications are discussed throughout the text, including (1) tomographic imaging of the skin and other superficial organs by laser-induced photoacoustic microscopy, which offers the critical advantages, over current high-resolution optical imaging modalities, of deeper imaging depth and higher absorption contrasts, (2) breast cancer detection by near-infrared light or radio-frequency-wave-induced photoacoustic imaging, which has important potential for early detection, and (3) small animal imaging by laser-induced photoacoustic imaging, which measures unique optical absorption contrasts related to important biochemical information and provides better resolution in deep tissues than optical imaging.

  18. Hepatitis B virus (image)

    MedlinePlus

    Hepatitis B is also known as serum hepatitis and is spread through blood and sexual contact. It is ... population. This photograph is an electronmicroscopic image of hepatitis B virus particles. (Image courtesy of the Centers for ...

  19. The Power of Images

    ERIC Educational Resources Information Center

    Sherman, Vivian

    1977-01-01

    The role played by images in the course of human development is considered in this article; personal growth is defined at three different levels of imagery: the producer/consumer image, the humanistic, and the transpersonal. (JD)

  20. Weighted guided image filtering.

    PubMed

    Li, Zhengguo; Zheng, Jinghong; Zhu, Zijian; Yao, Wei; Wu, Shiqian

    2015-01-01

    It is known that local filtering-based edge preserving smoothing techniques suffer from halo artifacts. In this paper, a weighted guided image filter (WGIF) is introduced by incorporating an edge-aware weighting into an existing guided image filter (GIF) to address the problem. The WGIF inherits advantages of both global and local smoothing filters in the sense that: 1) the complexity of the WGIF is O(N) for an image with N pixels, which is same as the GIF and 2) the WGIF can avoid halo artifacts like the existing global smoothing filters. The WGIF is applied for single image detail enhancement, single image haze removal, and fusion of differently exposed images. Experimental results show that the resultant algorithms produce images with better visual quality and at the same time halo artifacts can be reduced/avoided from appearing in the final images with negligible increment on running times. PMID:25415986

  1. Preclinical lymphatic imaging.

    PubMed

    Zhang, Fan; Niu, Gang; Lu, Guangming; Chen, Xiaoyuan

    2011-08-01

    Noninvasive in vivo imaging of lymphatic vessels and lymphatic nodes is expected to fulfill the purpose of analyzing lymphatic vessels and their function, understanding molecular mechanisms of lymphangiogenesis and lymphatic spread of tumors, and utilizing lymphatic molecular markers as a prognostic or diagnostic indicator. In this review, we provide a comprehensive summary of in vivo imaging modalities for detecting lymphatic vessels, lymphatic drainage, and lymphatic nodes, which include conventional lymphatic imaging techniques such as dyes and radionuclide scintigraphy as well as novel techniques for lymphatic imaging such as optical imaging, computed tomography, magnetic resonance imaging, ultrasound, positron emission tomography using lymphatic biomarkers, photoacoustic imaging, and combinations of multiple modalities. The field of lymphatic imaging is ever evolving, and technological advances, combined with the development of new contrast agents, continue to improve the research of lymphatic vascular system in health and disease states as well as to improve the accuracy of diagnosis in the relevant diseases.

  2. Multi Spectral Imaging System

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A. (Inventor)

    1999-01-01

    An optical imaging system provides automatic co-registration of a plurality of multi spectral images of an object which are generated by a plurality of video cameras or other optical detectors. The imaging system includes a modular assembly of beam splitters, lens tubes, camera lenses and wavelength selective filters which facilitate easy reconfiguration and adjustment of the system for various applications. A primary lens assembly generates a real image of an object to be imaged on a reticle which is positioned at a fixed length from a beam splitter assembly. The beam splitter assembly separates a collimated image beam received from the reticle into multiple image beams, each of which is projected onto a corresponding one of a plurality of video cameras. The lens tubes which connect the beam splitter assembly to the cameras are adjustable in length to provide automatic co-registration of the images generated by each camera.

  3. Image tools for UNIX

    NASA Technical Reports Server (NTRS)

    Banks, David C.

    1994-01-01

    This talk features two simple and useful tools for digital image processing in the UNIX environment. They are xv and pbmplus. The xv image viewer which runs under the X window system reads images in a number of different file formats and writes them out in different formats. The view area supports a pop-up control panel. The 'algorithms' menu lets you blur an image. The xv control panel also activates the color editor which displays the image's color map (if one exists). The xv image viewer is available through the internet. The pbmplus package is a set of tools designed to perform image processing from within a UNIX shell. The acronym 'pbm' stands for portable bit map. Like xv, the pbm plus tool can convert images from and to many different file formats. The source code and manual pages for pbmplus are also available through the internet. This software is in the public domain.

  4. Medical Image Databases

    PubMed Central

    Tagare, Hemant D.; Jaffe, C. Carl; Duncan, James

    1997-01-01

    Abstract Information contained in medical images differs considerably from that residing in alphanumeric format. The difference can be attributed to four characteristics: (1) the semantics of medical knowledge extractable from images is imprecise; (2) image information contains form and spatial data, which are not expressible in conventional language; (3) a large part of image information is geometric; (4) diagnostic inferences derived from images rest on an incomplete, continuously evolving model of normality. This paper explores the differentiating characteristics of text versus images and their impact on design of a medical image database intended to allow content-based indexing and retrieval. One strategy for implementing medical image databases is presented, which employs object-oriented iconic queries, semantics by association with prototypes, and a generic schema. PMID:9147338

  5. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  6. Preclinical Lymphatic Imaging

    PubMed Central

    Zhang, Fan; Niu, Gang; Lu, Guangming; Chen, Xiaoyuan

    2011-01-01

    Non-invasive in vivo imaging of lymphatic vessels and lymphatic nodes is expected to fulfill the purpose of analyzing lymphatic vessels and their function, understanding molecular mechanisms of lymphangiogenesis and lymphatic spread of tumors, and utilizing lymphatic molecular markers as a prognostic or diagnostic indicator. In this review, we provide a comprehensive summary of in vivo imaging modalities for detecting lymphatic vessels, lymphatic drainage, lymphatic nodes, which include conventional lymphatic imaging techniques such as dyes and radionuclide scintigraphy as well as novel techniques for lymphatic imaging such as optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET) using lymphatic biomarkers, photoacoustic imaging and combinations of multiple modalities. The field of lymphatic imaging is ever evolving, and technological advances, combined with the development of new contrast agents, continue to improve the research of lymphatic vascular system in health and disease states as well as to improve the accuracy of diagnosis in the relevant diseases. PMID:20862613

  7. Overview of Imaging Tests

    MedlinePlus

    ... Mentioned In This Article Medical Dictionary Also of Interest (Quiz) Magnetic Resonance Imaging (MRI) (Video) Ear Pressure ... Tap here for the Professional Version Also of Interest Test your knowledge Magnetic resonance imaging (MRI) is ...

  8. Spectrographic imaging system

    DOEpatents

    Morris, Michael D.; Treado, Patrick J.

    1991-01-01

    An imaging system for providing spectrographically resolved images. The system incorporates a one-dimensional spatial encoding mask which enables an image to be projected onto a two-dimensional image detector after spectral dispersion of the image. The dimension of the image which is lost due to spectral dispersion on the two-dimensional detector is recovered through employing a reverse transform based on presenting a multiplicity of different spatial encoding patterns to the image. The system is especially adapted for detecting Raman scattering of monochromatic light transmitted through or reflected from physical samples. Preferably, spatial encoding is achieved through the use of Hadamard mask which selectively transmits or blocks portions of the image from the sample being evaluated.

  9. Video image position determination

    DOEpatents

    Christensen, Wynn; Anderson, Forrest L.; Kortegaard, Birchard L.

    1991-01-01

    An optical beam position controller in which a video camera captures an image of the beam in its video frames, and conveys those images to a processing board which calculates the centroid coordinates for the image. The image coordinates are used by motor controllers and stepper motors to position the beam in a predetermined alignment. In one embodiment, system noise, used in conjunction with Bernoulli trials, yields higher resolution centroid coordinates.

  10. Biomedical photoacoustic imaging

    PubMed Central

    Beard, Paul

    2011-01-01

    Photoacoustic (PA) imaging, also called optoacoustic imaging, is a new biomedical imaging modality based on the use of laser-generated ultrasound that has emerged over the last decade. It is a hybrid modality, combining the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging. In essence, a PA image can be regarded as an ultrasound image in which the contrast depends not on the mechanical and elastic properties of the tissue, but its optical properties, specifically optical absorption. As a consequence, it offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chomophores, but with greater penetration depth than purely optical imaging modalities that rely on ballistic photons. As well as visualizing anatomical structures such as the microvasculature, it can also provide functional information in the form of blood oxygenation, blood flow and temperature. All of this can be achieved over a wide range of length scales from micrometres to centimetres with scalable spatial resolution. These attributes lend PA imaging to a wide variety of applications in clinical medicine, preclinical research and basic biology for studying cancer, cardiovascular disease, abnormalities of the microcirculation and other conditions. With the emergence of a variety of truly compelling in vivo images obtained by a number of groups around the world in the last 2–3 years, the technique has come of age and the promise of PA imaging is now beginning to be realized. Recent highlights include the demonstration of whole-body small-animal imaging, the first demonstrations of molecular imaging, the introduction of new microscopy modes and the first steps towards clinical breast imaging being taken as well as a myriad of in vivo preclinical imaging studies. In this article, the underlying physical principles of the technique, its practical

  11. Image quality analyzer

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.; Botugina, N. N.; Emaleev, O. N.; Antoshkin, L. V.; Konyaev, P. A.

    2012-07-01

    Image quality analyzer (IQA) which used as device for efficiency analysis of adaptive optics application is described. In analyzer marketed possibility estimations quality of images on three different criterions of quality images: contrast, sharpnesses and the spectral criterion. At present given analyzer is introduced on Big Solar Vacuum Telescope in stale work that allows at observations to conduct the choice of the most contrasting images of Sun. Is it hereinafter planned use the analyzer in composition of the ANGARA adaptive correction system.

  12. Biomedical photoacoustic imaging.

    PubMed

    Beard, Paul

    2011-08-01

    Photoacoustic (PA) imaging, also called optoacoustic imaging, is a new biomedical imaging modality based on the use of laser-generated ultrasound that has emerged over the last decade. It is a hybrid modality, combining the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging. In essence, a PA image can be regarded as an ultrasound image in which the contrast depends not on the mechanical and elastic properties of the tissue, but its optical properties, specifically optical absorption. As a consequence, it offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chomophores, but with greater penetration depth than purely optical imaging modalities that rely on ballistic photons. As well as visualizing anatomical structures such as the microvasculature, it can also provide functional information in the form of blood oxygenation, blood flow and temperature. All of this can be achieved over a wide range of length scales from micrometres to centimetres with scalable spatial resolution. These attributes lend PA imaging to a wide variety of applications in clinical medicine, preclinical research and basic biology for studying cancer, cardiovascular disease, abnormalities of the microcirculation and other conditions. With the emergence of a variety of truly compelling in vivo images obtained by a number of groups around the world in the last 2-3 years, the technique has come of age and the promise of PA imaging is now beginning to be realized. Recent highlights include the demonstration of whole-body small-animal imaging, the first demonstrations of molecular imaging, the introduction of new microscopy modes and the first steps towards clinical breast imaging being taken as well as a myriad of in vivo preclinical imaging studies. In this article, the underlying physical principles of the technique, its practical

  13. Coherent imaging at FLASH

    NASA Astrophysics Data System (ADS)

    Chapman, H. N.; Bajt, S.; Barty, A.; Benner, W. H.; Bogan, M. J.; Boutet, S.; Cavalleri, A.; Duesterer, S.; Frank, M.; Hajdu, J.; Hau-Riege, S. P.; Iwan, B.; Marchesini, S.; Sakdinawat, A.; Sokolowski-Tinten, K.; Seibert, M. M.; Timneanu, N.; Treusch, R.; Woods, B. W.

    2009-09-01

    We have carried out high-resolution single-pulse coherent diffractive imaging at the FLASH free-electron laser. The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of an object before that object turns into a plasma and explodes. In particular we are developing imaging of biological specimens beyond conventional radiation damage resolution limits, developing imaging of ultrafast processes, and testing methods to characterize and perform single-particle imaging.

  14. High compression image and image sequence coding

    NASA Technical Reports Server (NTRS)

    Kunt, Murat

    1989-01-01

    The digital representation of an image requires a very large number of bits. This number is even larger for an image sequence. The goal of image coding is to reduce this number, as much as possible, and reconstruct a faithful duplicate of the original picture or image sequence. Early efforts in image coding, solely guided by information theory, led to a plethora of methods. The compression ratio reached a plateau around 10:1 a couple of years ago. Recent progress in the study of the brain mechanism of vision and scene analysis has opened new vistas in picture coding. Directional sensitivity of the neurones in the visual pathway combined with the separate processing of contours and textures has led to a new class of coding methods capable of achieving compression ratios as high as 100:1 for images and around 300:1 for image sequences. Recent progress on some of the main avenues of object-based methods is presented. These second generation techniques make use of contour-texture modeling, new results in neurophysiology and psychophysics and scene analysis.

  15. Image quality (IQ) guided multispectral image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  16. Nursing's Image on Campus.

    ERIC Educational Resources Information Center

    Woolley, Alma S.

    1981-01-01

    In studying the nurse's image at a liberal arts college, it was found that faculty and administrators view nurses as long-suffering drones. On the whole, the image of nursing was positive, with those who had the most contact with the nursing program having a more enlightened image. (CT)

  17. XVD Image Display Program

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.; Andres, Paul M.; Mortensen, Helen B.; Parizher, Vadim; McAuley, Myche; Bartholomew, Paul

    2009-01-01

    The XVD [X-Windows VICAR (video image communication and retrieval) Display] computer program offers an interactive display of VICAR and PDS (planetary data systems) images. It is designed to efficiently display multiple-GB images and runs on Solaris, Linux, or Mac OS X systems using X-Windows.

  18. Medical imaging systems

    SciTech Connect

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  19. Whole animal imaging

    PubMed Central

    Sandhu, Gurpreet Singh; Solorio, Luis; Broome, Ann-Marie; Salem, Nicolas; Kolthammer, Jeff; Shah, Tejas; Flask, Chris; Duerk, Jeffrey L.

    2015-01-01

    Translational research plays a vital role in understanding the underlying pathophysiology of human diseases, and hence development of new diagnostic and therapeutic options for their management. After creating an animal disease model, pathophysiologic changes and effects of a therapeutic intervention on them are often evaluated on the animals using immunohistologic or imaging techniques. In contrast to the immunohistologic techniques, the imaging techniques are noninvasive and hence can be used to investigate the whole animal, oftentimes in a single exam which provides opportunities to perform longitudinal studies and dynamic imaging of the same subject, and hence minimizes the experimental variability, requirement for the number of animals, and the time to perform a given experiment. Whole animal imaging can be performed by a number of techniques including x-ray computed tomography, magnetic resonance imaging, ultrasound imaging, positron emission tomography, single photon emission computed tomography, fluorescence imaging, and bioluminescence imaging, among others. Individual imaging techniques provide different kinds of information regarding the structure, metabolism, and physiology of the animal. Each technique has its own strengths and weaknesses, and none serves every purpose of image acquisition from all regions of an animal. In this review, a broad overview of basic principles, available contrast mechanisms, applications, challenges, and future prospects of many imaging techniques employed for whole animal imaging is provided. Our main goal is to briefly describe the current state of art to researchers and advanced students with a strong background in the field of animal research. PMID:20836038

  20. Digital Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bamberger, Casimir; Renz, Uwe; Bamberger, Andreas

    2011-06-01

    Methods to visualize the two-dimensional (2D) distribution of molecules by mass spectrometric imaging evolve rapidly and yield novel applications in biology, medicine, and material surface sciences. Most mass spectrometric imagers acquire high mass resolution spectra spot-by-spot and thereby scan the object's surface. Thus, imaging is slow and image reconstruction remains cumbersome. Here we describe an imaging mass spectrometer that exploits the true imaging capabilities by ion optical means for the time of flight mass separation. The mass spectrometer is equipped with the ASIC Timepix chip as an array detector to acquire the position, mass, and intensity of ions that are imaged by matrix-assisted laser desorption/ionization (MALDI) directly from the target sample onto the detector. This imaging mass spectrometer has a spatial resolving power at the specimen of (84 ± 35) μm with a mass resolution of 45 and locates atoms or organic compounds on a surface area up to ~2 cm2. Extended laser spots of ~5 mm2 on structured specimens allows parallel imaging of selected masses. The digital imaging mass spectrometer proves high hit-multiplicity, straightforward image reconstruction, and potential for high-speed readout at 4 kHz or more. This device demonstrates a simple way of true image acquisition like a digital photographic camera. The technology may enable a fast analysis of biomolecular samples in near future.

  1. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  2. Cancer imaging archive available

    Cancer.gov

    NCI’s Cancer Imaging Program has inaugurated The Cancer Imaging Archive (TCIA), a web-accessible and unique clinical imaging archive linked to The Cancer Genome Atlas (TCGA) tissue repository. It contains a large proportion of original, pre-surgical MRIs from cases that have been genomically characterized in TCGA.

  3. Image Acquisition Context

    PubMed Central

    Bidgood, W. Dean; Bray, Bruce; Brown, Nicolas; Mori, Angelo Rossi; Spackman, Kent A.; Golichowski, Alan; Jones, Robert H.; Korman, Louis; Dove, Brent; Hildebrand, Lloyd; Berg, Michael

    1999-01-01

    Objective: To support clinically relevant indexing of biomedical images and image-related information based on the attributes of image acquisition procedures and the judgments (observations) expressed by observers in the process of image interpretation. Design: The authors introduce the notion of “image acquisition context,” the set of attributes that describe image acquisition procedures, and present a standards-based strategy for utilizing the attributes of image acquisition context as indexing and retrieval keys for digital image libraries. Methods: The authors' indexing strategy is based on an interdependent message/terminology architecture that combines the Digital Imaging and Communication in Medicine (DICOM) standard, the SNOMED (Systematized Nomenclature of Human and Veterinary Medicine) vocabulary, and the SNOMED DICOM microglossary. The SNOMED DICOM microglossary provides context-dependent mapping of terminology to DICOM data elements. Results: The capability of embedding standard coded descriptors in DICOM image headers and image-interpretation reports improves the potential for selective retrieval of image-related information. This favorably affects information management in digital libraries. PMID:9925229

  4. Interpretation of Image Content.

    ERIC Educational Resources Information Center

    Pettersson, Rune

    1988-01-01

    Describes experiments and studies which investigated perception and image interpretation on different cognitive levels. Subjects were asked to name, describe, index, and assess image contents; write legends; create images; complete stories; illustrate stories; and produce informative materials. Results confirmed the theory of a dual stage…

  5. Intellectual Access to Images.

    ERIC Educational Resources Information Center

    Chen, Hsin-Liang; Rasmussen, Edie M.

    1999-01-01

    The increased availability of digital images is accompanied by a need for solutions to the problems inherent in indexing them for retrieval. Problems in image description and access are discussed, with a perspective on traditional and new solutions. Recent developments in intellectual access to images are surveyed and contrasted with…

  6. What Is Optical Imaging?

    ERIC Educational Resources Information Center

    Hespos, Susan J.

    2010-01-01

    This article introduces a promising new methodology called optical imaging. Optical imaging is used for measuring changes in cortical blood flow due to functional activation. The article outlines the pros and cons of using optical imaging for studying the brain correlates of perceptual, cognitive, and language development in infants and young…

  7. Displaying Images Of Planets

    NASA Technical Reports Server (NTRS)

    Martin, Michael D.; Evans, Frank; Nakamura, Daniel I.

    1991-01-01

    Interactive Image Display Program (IMDISP) is interactive image-displaying utility program for IBM personal computer (PC, XT, and AT models) and compatibles. Magnifications, contrasts, and/or subsampling selected for whole or partial images. IMDISP developed for use with CD-ROM (Compact Disk Read-Only Memory) storage system. Written in C language (94 percent) and Assembler (6 percent).

  8. Hyperspectral image processing methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral image processing refers to the use of computer algorithms to extract, store and manipulate both spatial and spectral information contained in hyperspectral images across the visible and near-infrared portion of the electromagnetic spectrum. A typical hyperspectral image processing work...

  9. Methods in Astronomical Image Processing

    NASA Astrophysics Data System (ADS)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  10. SWNT Imaging Using Multispectral Image Processing

    NASA Astrophysics Data System (ADS)

    Blades, Michael; Pirbhai, Massooma; Rotkin, Slava V.

    2012-02-01

    A flexible optical system was developed to image carbon single-wall nanotube (SWNT) photoluminescence using the multispectral capabilities of a typical CCD camcorder. The built in Bayer filter of the CCD camera was utilized, using OpenCV C++ libraries for image processing, to decompose the image generated in a high magnification epifluorescence microscope setup into three pseudo-color channels. By carefully calibrating the filter beforehand, it was possible to extract spectral data from these channels, and effectively isolate the SWNT signals from the background.

  11. An image processing algorithm for PPCR imaging

    NASA Astrophysics Data System (ADS)

    Cowen, Arnold R.; Giles, Anthony; Davies, Andrew G.; Workman, A.

    1993-09-01

    During 1990 The UK Department of Health installed two Photostimulable Phosphor Computed Radiography (PPCR) systems in the General Infirmary at Leeds with a view to evaluating the clinical and physical performance of the technology prior to its introduction into the NHS. An issue that came to light from the outset of the projects was the radiologists reservations about the influence of the standard PPCR computerized image processing on image quality and diagnostic performance. An investigation was set up by FAXIL to develop an algorithm to produce single format high quality PPCR images that would be easy to implement and allay the concerns of radiologists.

  12. Medical image file formats.

    PubMed

    Larobina, Michele; Murino, Loredana

    2014-04-01

    Image file format is often a confusing aspect for someone wishing to process medical images. This article presents a demystifying overview of the major file formats currently used in medical imaging: Analyze, Neuroimaging Informatics Technology Initiative (Nifti), Minc, and Digital Imaging and Communications in Medicine (Dicom). Concepts common to all file formats, such as pixel depth, photometric interpretation, metadata, and pixel data, are first presented. Then, the characteristics and strengths of the various formats are discussed. The review concludes with some predictive considerations about the future trends in medical image file formats.

  13. Future Imaging Sensor Capabilities

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Ando, K. J.

    1983-01-01

    Advanced imaging sensor technologies that are being developed for future NASA earth observation missions are discussed. These include the multilinear array, the Shuttle imaging spectrometer, and the Shuttle imaging radar. The principal specifications and functional descriptions of the instruments are presented, and it is shown that the advanced technologies will enable a synergistic approach to the use of VIS/IR and microwave imaging sensors for remote sensing research and applications. The key problems posed by these future imaging sensor technologies are discussed, with particular attention given to data rates, power consumption, and data processing.

  14. Imaging of the cerebrum.

    PubMed

    Kim, Paul E; Zee, Chi Shing

    2007-07-01

    The history of the development of cerebral imaging is a complex combination of the forces of innovation at both the individual and industrial levels. Principal paradigms of neuroimaging shifted as a result of technological breakthroughs, beginning with the discovery of x-rays and continuing with the development of computerized imaging to the latest imaging paradigm, nuclear magnetic resonance imaging. We discuss these landmarks in neuroimaging in historical context, with emphasis on the particularly rapid development of imaging technology during the past 30 to 40 years, including the most recent emerging technologies.

  15. Imaging of pericardial disease.

    PubMed

    Glockner, James F

    2003-02-01

    Pericardial pathology is most often identified by its effect on cardiac function. Echocardiography is usually performed first in evaluation of pericardial disease, but is occasionally limited or indeterminate. MR imaging is often helpful in these cases, offering superior soft tissue contrast and the ability to image the entire pericardium and its relationship to cardiac structure and function. Many of the techniques recently developed for myocardial imaging are equally applicable to the pericardium and frequently assist in the diagnosis of pericardial disease. In this article, the authors review MR imaging techniques for pericardial imaging, discuss the appearance of the normal pericardium, and illustrate pathologic and congenital conditions of the pericardium.

  16. Medical image file formats.

    PubMed

    Larobina, Michele; Murino, Loredana

    2014-04-01

    Image file format is often a confusing aspect for someone wishing to process medical images. This article presents a demystifying overview of the major file formats currently used in medical imaging: Analyze, Neuroimaging Informatics Technology Initiative (Nifti), Minc, and Digital Imaging and Communications in Medicine (Dicom). Concepts common to all file formats, such as pixel depth, photometric interpretation, metadata, and pixel data, are first presented. Then, the characteristics and strengths of the various formats are discussed. The review concludes with some predictive considerations about the future trends in medical image file formats. PMID:24338090

  17. Sinusoidal ghost imaging.

    PubMed

    Khamoushi, S M Mahdi; Nosrati, Yaser; Tavassoli, S Hassan

    2015-08-01

    We introduce sinusoidal ghost imaging (SGI), which uses 2D orthogonal sinusoidal patterns instead of random patterns in "computational ghost imaging" (CGI). Simulations and experiments are performed. In comparison with the"differential ghost imaging" algorithm that was used to improve the SNR of ghost imaging, results of SGI show about 3 orders of magnitude higher SNR, which can be reconstructed even with a much smaller number of patterns. More importantly, based on the results, SGI provides the great opportunity to generate innate processed images by predefined selection of patterns. This can speed up detection process considerably and paves the way for real applications. PMID:26258330

  18. Fourier plane imaging microscopy

    SciTech Connect

    Dominguez, Daniel Peralta, Luis Grave de; Alharbi, Nouf; Alhusain, Mdhaoui; Bernussi, Ayrton A.

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  19. Correlation Plenoptic Imaging.

    PubMed

    D'Angelo, Milena; Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging. PMID:27314718

  20. Correlation Plenoptic Imaging.

    PubMed

    D'Angelo, Milena; Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  1. Hip Imaging in Athletes: Sports Imaging Series.

    PubMed

    Agten, Christoph A; Sutter, Reto; Buck, Florian M; Pfirrmann, Christian W A

    2016-08-01

    Hip or groin pain in athletes is common and clinical presentation is often nonspecific. Imaging is a very important diagnostic step in the work-up of athletes with hip pain. This review article provides an overview on hip biomechanics and discusses strategies for hip imaging modalities such as radiography, ultrasonography, computed tomography, and magnetic resonance (MR) imaging (MR arthrography and traction MR arthrography). The authors explain current concepts of femoroacetabular impingement and the problem of high prevalence of cam- and pincer-type morphology in asymptomatic persons. With the main focus on MR imaging, the authors present abnormalities of the hip joint and the surrounding soft tissues that can occur in athletes: intraarticular and extraarticular hip impingement syndromes, labral and cartilage disease, microinstability of the hip, myotendinous injuries, and athletic pubalgia. (©) RSNA, 2016. PMID:27429142

  2. Annotating images by mining image search results.

    PubMed

    Wang, Xin-Jing; Zhang, Lei; Li, Xirong; Ma, Wei-Ying

    2008-11-01

    Although it has been studied for years by the computer vision and machine learning communities, image annotation is still far from practical. In this paper, we propose a novel attempt at model-free image annotation, which is a data-driven approach that annotates images by mining their search results. Some 2.4 million images with their surrounding text are collected from a few photo forums to support this approach. The entire process is formulated in a divide-and-conquer framework where a query keyword is provided along with the uncaptioned image to improve both the effectiveness and efficiency. This is helpful when the collected data set is not dense everywhere. In this sense, our approach contains three steps: 1) the search process to discover visually and semantically similar search results, 2) the mining process to identify salient terms from textual descriptions of the search results, and 3) the annotation rejection process to filter out noisy terms yielded by Step 2. To ensure real-time annotation, two key techniques are leveraged-one is to map the high-dimensional image visual features into hash codes, the other is to implement it as a distributed system, of which the search and mining processes are provided as Web services. As a typical result, the entire process finishes in less than 1 second. Since no training data set is required, our approach enables annotating with unlimited vocabulary and is highly scalable and robust to outliers. Experimental results on both real Web images and a benchmark image data set show the effectiveness and efficiency of the proposed algorithm. It is also worth noting that, although the entire approach is illustrated within the divide-and conquer framework, a query keyword is not crucial to our current implementation. We provide experimental results to prove this.

  3. Lensless Imaging and Sensing.

    PubMed

    Ozcan, Aydogan; McLeod, Euan

    2016-07-11

    High-resolution optical microscopy has traditionally relied on high-magnification and high-numerical aperture objective lenses. In contrast, lensless microscopy can provide high-resolution images without the use of any focusing lenses, offering the advantages of a large field of view, high resolution, cost-effectiveness, portability, and depth-resolved three-dimensional (3D) imaging. Here we review various approaches to lensless imaging, as well as its applications in biosensing, diagnostics, and cytometry. These approaches include shadow imaging, fluorescence, holography, superresolution 3D imaging, iterative phase recovery, and color imaging. These approaches share a reliance on computational techniques, which are typically necessary to reconstruct meaningful images from the raw data captured by digital image sensors. When these approaches are combined with physical innovations in sample preparation and fabrication, lensless imaging can be used to image and sense cells, viruses, nanoparticles, and biomolecules. We conclude by discussing several ways in which lensless imaging and sensing might develop in the near future. PMID:27420569

  4. Lensless Imaging and Sensing.

    PubMed

    Ozcan, Aydogan; McLeod, Euan

    2016-07-11

    High-resolution optical microscopy has traditionally relied on high-magnification and high-numerical aperture objective lenses. In contrast, lensless microscopy can provide high-resolution images without the use of any focusing lenses, offering the advantages of a large field of view, high resolution, cost-effectiveness, portability, and depth-resolved three-dimensional (3D) imaging. Here we review various approaches to lensless imaging, as well as its applications in biosensing, diagnostics, and cytometry. These approaches include shadow imaging, fluorescence, holography, superresolution 3D imaging, iterative phase recovery, and color imaging. These approaches share a reliance on computational techniques, which are typically necessary to reconstruct meaningful images from the raw data captured by digital image sensors. When these approaches are combined with physical innovations in sample preparation and fabrication, lensless imaging can be used to image and sense cells, viruses, nanoparticles, and biomolecules. We conclude by discussing several ways in which lensless imaging and sensing might develop in the near future.

  5. GOATS Image Projection Component

    NASA Technical Reports Server (NTRS)

    Haber, Benjamin M.; Green, Joseph J.

    2011-01-01

    When doing mission analysis and design of an imaging system in orbit around the Earth, answering the fundamental question of imaging performance requires an understanding of the image products that will be produced by the imaging system. GOATS software represents a series of MATLAB functions to provide for geometric image projections. Unique features of the software include function modularity, a standard MATLAB interface, easy-to-understand first-principles-based analysis, and the ability to perform geometric image projections of framing type imaging systems. The software modules are created for maximum analysis utility, and can all be used independently for many varied analysis tasks, or used in conjunction with other orbit analysis tools.

  6. Functions of images

    NASA Astrophysics Data System (ADS)

    Lehtonen, Juha; Andriyashin, Alexey; Parkkinen, Jussi; Leisti, Tuomas; Nyman, Göte

    2006-10-01

    The visual quality of images is outward in image presentation, compression and analysis. Depending on the use, the quality of images may give more information or more experiences to the viewer. However, the relations between mathematical and human methods for grouping the images are not obvious. For example, different humans think differently and so, they make the grouping differently. However, there may be some connections between image mathematical features and human selections. Here we try to find such relations that could give more possibilities for developing the actual quality of images for different purposes. In this study, we present some methods and preliminary results that are based on psychological tests to humans, MPEG-7 based features of the images and face detection methods. We also show some notes and questions belonging to this problem and plans for the future research.

  7. Compressive Optical Image Encryption

    PubMed Central

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong

    2015-01-01

    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume. PMID:25992946

  8. Speckle imaging of satellites

    SciTech Connect

    Fitch, J.P.; Lawrence, T.W.; Goodman, D.M.; Johansson, E.M.

    1991-12-01

    We performed a series of experiments using the Air Force Optical Station`s 1.6 m telescope and a bare CCD detector to capture speckle images of various satellites. The speckle images were processed with bispectral techniques for recovering image Fourier phase as well as projection onto convex sets for recovering image Fourier magnitude from the projected autocorrelation. Results of imaging point stars and binaries are shown as a baseline assessment of our technique. We have reconstructed high quality images of numerous satellites and will show reconstructions of a very familiar satellite: the Hubble Space Telescope. To our knowledge, this is the first demonstration of the use of bare CCDs for speckle imaging of relatively bright objects such as artificial satellites. 8 refs.

  9. Speckle imaging of satellites

    SciTech Connect

    Fitch, J.P.; Lawrence, T.W.; Goodman, D.M.; Johansson, E.M.

    1991-12-01

    We performed a series of experiments using the Air Force Optical Station's 1.6 m telescope and a bare CCD detector to capture speckle images of various satellites. The speckle images were processed with bispectral techniques for recovering image Fourier phase as well as projection onto convex sets for recovering image Fourier magnitude from the projected autocorrelation. Results of imaging point stars and binaries are shown as a baseline assessment of our technique. We have reconstructed high quality images of numerous satellites and will show reconstructions of a very familiar satellite: the Hubble Space Telescope. To our knowledge, this is the first demonstration of the use of bare CCDs for speckle imaging of relatively bright objects such as artificial satellites. 8 refs.

  10. Compressive Optical Image Encryption

    NASA Astrophysics Data System (ADS)

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong

    2015-05-01

    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume.

  11. First-photon imaging.

    PubMed

    Kirmani, Ahmed; Venkatraman, Dheera; Shin, Dongeek; Colaço, Andrea; Wong, Franco N C; Shapiro, Jeffrey H; Goyal, Vivek K

    2014-01-01

    Imagers that use their own illumination can capture three-dimensional (3D) structure and reflectivity information. With photon-counting detectors, images can be acquired at extremely low photon fluxes. To suppress the Poisson noise inherent in low-flux operation, such imagers typically require hundreds of detected photons per pixel for accurate range and reflectivity determination. We introduce a low-flux imaging technique, called first-photon imaging, which is a computational imager that exploits spatial correlations found in real-world scenes and the physics of low-flux measurements. Our technique recovers 3D structure and reflectivity from the first detected photon at each pixel. We demonstrate simultaneous acquisition of sub-pulse duration range and 4-bit reflectivity information in the presence of high background noise. First-photon imaging may be of considerable value to both microscopy and remote sensing.

  12. Applications of Molecular Imaging

    PubMed Central

    Galbán, Craig; Galbán, Stefanie; Van Dort, Marcian; Luker, Gary D.; Bhojani, Mahaveer S.; Rehemtualla, Alnawaz; Ross, Brian D.

    2015-01-01

    Today molecular imaging technologies play a central role in clinical oncology. The use of imaging techniques in early cancer detection, treatment response and new therapy development is steadily growing and has already significantly impacted clinical management of cancer. In this chapter we will overview three different molecular imaging technologies used for the understanding of disease biomarkers, drug development, or monitoring therapeutic outcome. They are (1) optical imaging (bioluminescence and fluorescence imaging) (2) magnetic resonance imaging (MRI), and (3) nuclear imaging (e.g, single photon emission computed tomography (SPECT) and positron emission tomography (PET)). We will review the use of molecular reporters of biological processes (e.g. apoptosis and protein kinase activity) for high throughput drug screening and new cancer therapies, diffusion MRI as a biomarker for early treatment response and PET and SPECT radioligands in oncology. PMID:21075334

  13. Portable Imaging Polarimeter and Imaging Experiments

    SciTech Connect

    PHIPPS,GARY S.; KEMME,SHANALYN A.; SWEATT,WILLIAM C.; DESCOUR,M.R.; GARCIA,J.P.; DERENIAK,E.L.

    1999-11-01

    Polarimetry is the method of recording the state of polarization of light. Imaging polarimetry extends this method to recording the spatially resolved state of polarization within a scene. Imaging-polarimetry data have the potential to improve the detection of manmade objects in natural backgrounds. We have constructed a midwave infrared complete imaging polarimeter consisting of a fixed wire-grid polarizer and rotating form-birefringent retarder. The retardance and the orientation angles of the retarder were optimized to minimize the sensitivity of the instrument to noise in the measurements. The optimal retardance was found to be 132{degree} rather than the typical 90{degree}. The complete imaging polarimeter utilized a liquid-nitrogen cooled PtSi camera. The fixed wire-grid polarizer was located at the cold stop inside the camera dewar. The complete imaging polarimeter was operated in the 4.42-5 {micro}m spectral range. A series of imaging experiments was performed using as targets a surface of water, an automobile, and an aircraft. Further analysis of the polarization measurements revealed that in all three cases the magnitude of circular polarization was comparable to the noise in the calculated Stokes-vector components.

  14. Uncooled thermal imaging and image analysis

    NASA Astrophysics Data System (ADS)

    Wang, Shiyun; Chang, Benkang; Yu, Chunyu; Zhang, Junju; Sun, Lianjun

    2006-09-01

    Thermal imager can transfer difference of temperature to difference of electric signal level, so can be application to medical treatment such as estimation of blood flow speed and vessel 1ocation [1], assess pain [2] and so on. With the technology of un-cooled focal plane array (UFPA) is grown up more and more, some simple medical function can be completed with un-cooled thermal imager, for example, quick warning for fever heat with SARS. It is required that performance of imaging is stabilization and spatial and temperature resolution is high enough. In all performance parameters, noise equivalent temperature difference (NETD) is often used as the criterion of universal performance. 320 x 240 α-Si micro-bolometer UFPA has been applied widely presently for its steady performance and sensitive responsibility. In this paper, NETD of UFPA and the relation between NETD and temperature are researched. several vital parameters that can affect NETD are listed and an universal formula is presented. Last, the images from the kind of thermal imager are analyzed based on the purpose of detection persons with fever heat. An applied thermal image intensification method is introduced.

  15. Medical Imaging: A Review

    NASA Astrophysics Data System (ADS)

    Ganguly, Debashis; Chakraborty, Srabonti; Balitanas, Maricel; Kim, Tai-Hoon

    The rapid progress of medical science and the invention of various medicines have benefited mankind and the whole civilization. Modern science also has been doing wonders in the surgical field. But, the proper and correct diagnosis of diseases is the primary necessity before the treatment. The more sophisticate the bio-instruments are, better diagnosis will be possible. The medical images plays an important role in clinical diagnosis and therapy of doctor and teaching and researching etc. Medical imaging is often thought of as a way to represent anatomical structures of the body with the help of X-ray computed tomography and magnetic resonance imaging. But often it is more useful for physiologic function rather than anatomy. With the growth of computer and image technology medical imaging has greatly influenced medical field. As the quality of medical imaging affects diagnosis the medical image processing has become a hotspot and the clinical applications wanting to store and retrieve images for future purpose needs some convenient process to store those images in details. This paper is a tutorial review of the medical image processing and repository techniques appeared in the literature.

  16. Image compression technique

    DOEpatents

    Fu, C.Y.; Petrich, L.I.

    1997-03-25

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  17. Image compression technique

    DOEpatents

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.

  18. Medical image processing system

    NASA Astrophysics Data System (ADS)

    Wang, Dezong; Wang, Jinxiang

    1994-12-01

    In this paper a medical image processing system is described. That system is named NAI200 Medical Image Processing System and has been appraised by Chinese Government. Principles and cases provided here. Many kinds of pictures are used in modern medical diagnoses, for example B-supersonic, X-ray, CT and MRI. Some times the pictures are not good enough for diagnoses. The noises interfere with real situation on these pictures. That means the image processing is needed. A medical image processing system is described in this paper. That system is named NAI200 Medical Image Processing System and has been appraised by Chinese Government. There are four functions in that system. The first part is image processing. More than thirty four programs are involved. The second part is calculating. The areas or volumes of single or multitissues are calculated. Three dimensional reconstruction is the third part. The stereo images of organs or tumors are reconstructed with cross-sections. The last part is image storage. All pictures can be transformed to digital images, then be stored in hard disk or soft disk. In this paper not only all functions of that system are introduced, also the basic principles of these functions are explained in detail. This system has been applied in hospitals. The images of hundreds of cases have been processed. We describe the functions combining real cases. Here we only introduce a few examples.

  19. Image processing in medicine

    NASA Astrophysics Data System (ADS)

    Dallas, William J.; Roehrig, Hans

    2001-12-01

    This article is divided into two parts: the first is an opinion, the second is a description. The opinion is that diagnostic medical imaging is not a detection problem. The description is of a specific medical image-processing program. Why the opinion? If medical imaging were a detection problem, then image processing would unimportant. However, image processing is crucial. We illustrate this fact using three examples ultrasound, magnetic resonance imaging and, most poignantly, computed radiography. Although the examples are anecdotal they are illustrative. The description is of the image-processing program ImprocRAD written by one of the authors (Dallas). First we will discuss the motivation for creating yet another image processing program including system characterization which is an area of expertise of one of the authors (Roehrig). We will then look at the structure of the program and finally, to the point, the specific application: mammographic diagnostic reading. We will mention rapid display of mammogram image sets and then discuss processing. In that context, we describe a real-time image-processing tool we term the MammoGlass.

  20. Introduction to computer image processing

    NASA Technical Reports Server (NTRS)

    Moik, J. G.

    1973-01-01

    Theoretical backgrounds and digital techniques for a class of image processing problems are presented. Image formation in the context of linear system theory, image evaluation, noise characteristics, mathematical operations on image and their implementation are discussed. Various techniques for image restoration and image enhancement are presented. Methods for object extraction and the problem of pictorial pattern recognition and classification are discussed.

  1. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael; Monacos, Steve; Nikzad, Shouleh

    2009-01-01

    Synthetic Foveal imaging Technology (SyFT) is an emerging discipline of image capture and image-data processing that offers the prospect of greatly increased capabilities for real-time processing of large, high-resolution images (including mosaic images) for such purposes as automated recognition and tracking of moving objects of interest. SyFT offers a solution to the image-data processing problem arising from the proposed development of gigapixel mosaic focal-plane image-detector assemblies for very wide field-of-view imaging with high resolution for detecting and tracking sparse objects or events within narrow subfields of view. In order to identify and track the objects or events without the means of dynamic adaptation to be afforded by SyFT, it would be necessary to post-process data from an image-data space consisting of terabytes of data. Such post-processing would be time-consuming and, as a consequence, could result in missing significant events that could not be observed at all due to the time evolution of such events or could not be observed at required levels of fidelity without such real-time adaptations as adjusting focal-plane operating conditions or aiming of the focal plane in different directions to track such events. The basic concept of foveal imaging is straightforward: In imitation of a natural eye, a foveal-vision image sensor is designed to offer higher resolution in a small region of interest (ROI) within its field of view. Foveal vision reduces the amount of unwanted information that must be transferred from the image sensor to external image-data-processing circuitry. The aforementioned basic concept is not new in itself: indeed, image sensors based on these concepts have been described in several previous NASA Tech Briefs articles. Active-pixel integrated-circuit image sensors that can be programmed in real time to effect foveal artificial vision on demand are one such example. What is new in SyFT is a synergistic combination of recent

  2. The NITRC image repository.

    PubMed

    Kennedy, David N; Haselgrove, Christian; Riehl, Jon; Preuss, Nina; Buccigrossi, Robert

    2016-01-01

    The Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC - www.nitrc.org) suite of services include a resources registry, image repository and a cloud computational environment to meet the needs of the neuroimaging researcher. NITRC provides image-sharing functionality through both the NITRC Resource Registry (NITRC-R), where bulk data files can be released through the file release system (FRS), and the NITRC Image Repository (NITRC-IR), a XNAT-based image data management system. Currently hosting 14 projects, 6845 subjects, and 8285 MRI imaging sessions, NITRC-IR provides a large array of structural, diffusion and resting state MRI data. Designed to be flexible about management of data access policy, NITRC provides a simple, free, NIH-funded service to support resource sharing in general, and image sharing in particular. PMID:26044860

  3. Spectral ensemble ghost imaging

    NASA Astrophysics Data System (ADS)

    Jha, Nandan

    2015-07-01

    In the last few years, the field of ghost imaging has seen many new developments. From computational ghost imaging to 3D gh.ost imaging, this field has shown many interesting applications. But the method of obtaining an image in ghost imaging experiments still requires data to be recorded over a long duration of time due to averaging over many shots of data. We propose a method to get the intensity correlated images in one shot by averaging over different wavelength components rather than different time components. We derive the maximum number of wavelength components that can be used for a given multi-wavelength source. The applicability of this scheme is finally verified by numerical simulations.

  4. Radiation imaging system

    DOEpatents

    Immel, David M.; Bobbit, III, John T.; Plummer, Jean R.; Folsom, Matthew D.; Serrato, Michael G.

    2016-03-22

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  5. Radiation imaging system

    DOEpatents

    Bobbitt, III, John T.; Immel, David M.; Folsom, Matthew D.; Plummer, Jean R.; Serrato, Michael G.

    2016-06-28

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  6. Integrated Dual Imaging Detector

    NASA Technical Reports Server (NTRS)

    Rust, David M.

    1999-01-01

    A new type of image detector was designed to simultaneously analyze the polarization of light at all picture elements in a scene. The integrated Dual Imaging detector (IDID) consists of a lenslet array and a polarizing beamsplitter bonded to a commercial charge coupled device (CCD). The IDID simplifies the design and operation of solar vector magnetographs and the imaging polarimeters and spectroscopic imagers used, for example, in atmosphere and solar research. When used in a solar telescope, the vector magnetic fields on the solar surface. Other applications include environmental monitoring, robot vision, and medical diagnoses (through the eye). Innovations in the IDID include (1) two interleaved imaging arrays (one for each polarization plane); (2) large dynamic range (well depth of 10(exp 5) electrons per pixel); (3) simultaneous readout and display of both images; and (4) laptop computer signal processing to produce polarization maps in field situations.

  7. BAOlab: Image processing program

    NASA Astrophysics Data System (ADS)

    Larsen, Søren S.

    2014-03-01

    BAOlab is an image processing package written in C that should run on nearly any UNIX system with just the standard C libraries. It reads and writes images in standard FITS format; 16- and 32-bit integer as well as 32-bit floating-point formats are supported. Multi-extension FITS files are currently not supported. Among its tools are ishape for size measurements of compact sources, mksynth for generating synthetic images consisting of a background signal including Poisson noise and a number of pointlike sources, imconvol for convolving two images (a “source” and a “kernel”) with each other using fast fourier transforms (FFTs) and storing the output as a new image, and kfit2d for fitting a two-dimensional King model to an image.

  8. Imaging arrangement and microscope

    SciTech Connect

    Pertsinidis, Alexandros; Chu, Steven

    2015-12-15

    An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.

  9. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor); Hoenk, Michael E. (Inventor); Nikzad, Shouleh (Inventor)

    2013-01-01

    Apparatuses and methods are disclosed that create a synthetic fovea in order to identify and highlight interesting portions of an image for further processing and rapid response. Synthetic foveal imaging implements a parallel processing architecture that uses reprogrammable logic to implement embedded, distributed, real-time foveal image processing from different sensor types while simultaneously allowing for lossless storage and retrieval of raw image data. Real-time, distributed, adaptive processing of multi-tap image sensors with coordinated processing hardware used for each output tap is enabled. In mosaic focal planes, a parallel-processing network can be implemented that treats the mosaic focal plane as a single ensemble rather than a set of isolated sensors. Various applications are enabled for imaging and robotic vision where processing and responding to enormous amounts of data quickly and efficiently is important.

  10. [Clinical imaging in psychiatry].

    PubMed

    Jabourian, A P; Benhamou, P A; Bitton, R

    1996-01-01

    Brain imaging has made surprisingly remarkable progress since the early, and now historic days, of invasive radiology, which has now been replaced with a number of spectacularly precise techniques: structural (CT Scan, MRI) and functional (PET, SPECT) imaging, direct imaging during neurosurgery, EEG and its computer-assisted derivatives, and transcerebral ultrasonography. We present five cases with two alleged autisms, a cerebral malaria, a panic disorder and to Parkinson disease with a depressive component. Using modern imaging methods the following respective diagnoses were arrived at: a left temporal cyst, a Sanfilippo mucopolysaccharidosis, a septum lucidum agenesis, a right temporal cyst, and a pituitary adenoma. These cases illustrate the scientific, emotional and philosophical impact, on physicians, and patients alike, of modern imaging technology. Neuroradiology, biochemistry and surgical imaging require a multi disciplinary approach and a perfect knowledge of psychiatric semeiology. In addition, they stimulate us to carefully reassess our sociocultural understanding to mental illness.

  11. Imaging beyond the proteome

    PubMed Central

    Chang, Pamela V.; Bertozzi, Carolyn R.

    2013-01-01

    Imaging technologies developed in the early 20th century achieved contrast solely by relying on macroscopic and morphological differences between the tissues of interest and the surrounding tissues. Since then, there has been a movement toward imaging at the cellular and molecular level in order to visualize biological processes. This rapidly growing field is known as molecular imaging. In the last decade, many methodologies for imaging proteins have emerged. However, most of these approaches cannot be extended to imaging beyond the proteome. Here, we highlight some of the recently developed technologies that enable imaging of non-proteinaceous molecules in the cell: lipids, signalling molecules, inorganic ions, glycans, nucleic acids, small-molecule metabolites, and protein post-translational modifications such as phosphorylation and methylation. PMID:22801420

  12. Imaging interferometric microscopy.

    PubMed

    Schwarz, Christian J; Kuznetsova, Yuliya; Brueck, S R J

    2003-08-15

    We introduce and demonstrate a new microscopy concept: imaging interferometric microscopy (IIM), which is related to holography, synthetic-aperture imaging, and off-axis-dark-field illumination techniques. IIM is a wavelength-division multiplex approach to image formation that combines multiple images covering different spatial-frequency regions to form a composite image with a resolution much greater than that permitted by the same optical system using conventional techniques. This new type of microscopy involves both off-axis coherent illumination and reinjection of appropriate zero-order reference beams. Images demonstrate high resolution, comparable with that of a high-numerical-aperture (NA) objective, while they retain the long working distance, the large depth of field, and the large field of view of a low-NA objective. A Fourier-optics model of IIM is in good agreement with the experiment. PMID:12943079

  13. imageMCR

    2011-09-27

    imageMCR is a user friendly software package that consists of a variety inputs to preprocess and analyze the hyperspectral image data using multivariate algorithms such as Multivariate Curve Resolution (MCR), Principle Component Analysis (PCA), Classical Least Squares (CLS) and Parallel Factor Analysis (PARAFAC). MCR provides a relative quantitative analysis of the hyperspectral image data without the need for standards, and it discovers all the emitting species (spectral pure components) present in an image, even thosemore » in which there is no a priori information. Once the spectral components are discovered, these spectral components can be used for future MCR analyses or used with CLS algorithms to quickly extract concentration image maps for each component within spectral image data sets.« less

  14. Video Toroid Cavity Imager

    DOEpatents

    Gerald, II, Rex E.; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  15. Advancing biomedical imaging

    PubMed Central

    Weissleder, Ralph; Nahrendorf, Matthias

    2015-01-01

    Imaging reveals complex structures and dynamic interactive processes, located deep inside the body, that are otherwise difficult to decipher. Numerous imaging modalities harness every last inch of the energy spectrum. Clinical modalities include magnetic resonance imaging (MRI), X-ray computed tomography (CT), ultrasound, and light-based methods [endoscopy and optical coherence tomography (OCT)]. Research modalities include various light microscopy techniques (confocal, multiphoton, total internal reflection, superresolution fluorescence microscopy), electron microscopy, mass spectrometry imaging, fluorescence tomography, bioluminescence, variations of OCT, and optoacoustic imaging, among a few others. Although clinical imaging and research microscopy are often isolated from one another, we argue that their combination and integration is not only informative but also essential to discovering new biology and interpreting clinical datasets in which signals invariably originate from hundreds to thousands of cells per voxel. PMID:26598657

  16. Nuclear medicine hepatobiliary imaging.

    PubMed

    Ziessman, Harvey A

    2010-02-01

    Nuclear medicine hepatobilary imaging (HIDA) is a time proven imaging methodology that uses radioactive drugs and specialized cameras to make imaging diagnoses based on physiology. HIDA radiopharmaceuticals are extracted by hepatocytes in the liver and cleared through the biliary system similar to bilirubin. The most common indication for HIDA imaging is acute cholecystitis, diagnosed by nonfilling of the gallbladder due to cystic duct obstruction. HIDA can detect high grade biliary obstruction prior to ductal dilatation; images reveal a persistent hepatogram without biliary clearance due to the high backpressure. HIDA also aids in the diagnosis of partial biliary obstruction due to stones, biliary stricture, and sphincter of Oddi obstruction. It can confirm biliary leakage postcholecystectomy and hepatic transplantation. Calculation of a gallbladder ejection fraction after cholecystokinin infusion is commonly used to diagnose chronic acalculous gallbladder disease. Diseased gallbladders do not contract. There are many other less common but valuable diagnostic indications for HIDA imaging. PMID:19879969

  17. Fractal image compression

    NASA Technical Reports Server (NTRS)

    Barnsley, Michael F.; Sloan, Alan D.

    1989-01-01

    Fractals are geometric or data structures which do not simplify under magnification. Fractal Image Compression is a technique which associates a fractal to an image. On the one hand, the fractal can be described in terms of a few succinct rules, while on the other, the fractal contains much or all of the image information. Since the rules are described with less bits of data than the image, compression results. Data compression with fractals is an approach to reach high compression ratios for large data streams related to images. The high compression ratios are attained at a cost of large amounts of computation. Both lossless and lossy modes are supported by the technique. The technique is stable in that small errors in codes lead to small errors in image data. Applications to the NASA mission are discussed.

  18. Visions image operating system

    SciTech Connect

    Kohler, R.R.; Hanson, A.R.

    1982-01-01

    The image operating system is a complete software environment specifically designed for dynamic experimentation in scene analysis. The IOS consists of a high-level interpretive control language (LISP) with efficient image operators in a noninterpretive language. The image operators are viewed as local operators to be applied in parallel at all pixels to a set of input images. In order to carry out complex image analysis experiments an environment conducive to such experimentation was needed. This environment is provided by the visions image operating system based on a computational structure known as a processing cone proposed by Hanson and Riseman (1974, 1980) and implemented on a VAX-11/780 running VMS. 6 references.

  19. Imaging the skin.

    PubMed

    Aspres, Nicholas; Egerton, Ian B; Lim, Adrian C; Shumack, Stephen P

    2003-02-01

    Since the discovery of X-rays, the use of imaging technology has continued to play an important role in medicine. Technological advancements have led to the development of various imaging modalities, most of which have been used to image organs deep within the human body. More recently, attention has focused on the application of imaging technology for evaluation of the skin. A variety of techniques are currently being used to examine the skin and these include specialized photography, surface microscopy, ultrasound, laser Doppler perfusion imaging, confocal microscopy, and magnetic resonance imaging. These modalities can provide information that can assist in the management of skin problems. Although many of these techniques are still undergoing research, they are showing promise as useful clinical tools in dermatology.

  20. Molecular imaging in oncology

    PubMed Central

    Dzik-Jurasz, A S K

    2004-01-01

    Cancer is a genetic disease that manifests in loss of normal cellular homeostatic mechanisms. The biology and therapeutic modulation of neoplasia occurs at the molecular level. An understanding of these molecular processes is therefore required to develop novel prognostic and early biomarkers of response. In addition to clinical applications, increased impetus for the development of such technologies has been catalysed by pharmaceutical companies investing in the development of molecular therapies. The discipline of molecular imaging therefore aims to image these important molecular processes in vivo. Molecular processes, however, operate at short length scales and concentrations typically beyond the resolution of clinical imaging. Solving these issues will be a challenge to imaging research. The successful implementations of molecular imaging in man will only be realised by the close co-operation amongst molecular biologists, chemists and the imaging scientists. PMID:18250026

  1. Biological Imaging Software Tools

    PubMed Central

    Eliceiri, Kevin W.; Berthold, Michael R.; Goldberg, Ilya G.; Ibáñez, Luis; Manjunath, B.S.; Martone, Maryann E.; Murphy, Robert F.; Peng, Hanchuan; Plant, Anne L.; Roysam, Badrinath; Stuurman, Nico; Swedlow, Jason R.; Tomancak, Pavel; Carpenter, Anne E.

    2013-01-01

    Few technologies are more widespread in modern biological laboratories than imaging. Recent advances in optical technologies and instrumentation are providing hitherto unimagined capabilities. Almost all these advances have required the development of software to enable the acquisition, management, analysis, and visualization of the imaging data. We review each computational step that biologists encounter when dealing with digital images, the challenges in that domain, and the overall status of available software for bioimage informatics, focusing on open source options. PMID:22743775

  2. Beam imaging sensor

    DOEpatents

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  3. Manual of diagnostic imaging

    SciTech Connect

    Gaylord, G.; Baker, S.; Davis, L.

    1988-01-01

    This book is on ordering and understanding the results of radiologic studies. Main sections are (I) Diagnostic Radiology serves as a basic introduction; (II) Diagnostic Modalities dedicates a chapter to each imaging modality in a clinical context, with a brief technical description and patient preparation guidelines; and (III) Organ System Imaging contains a chapter on each major organ system, covering the abilities and limitations of each modality to image a specific organ system and the significance of anatomic, physiologic, and general pathologic information.

  4. NMR imaging of materials

    SciTech Connect

    Vinegar, H.J.; Rothwell, W.P.

    1988-03-01

    A method for obtaining at least one petrophysical property of a porous material containing therein at least one preselected fluid, is described, comprising: NMR imaging the material to generate signals dependent upon both M(0) and T/sub 1/ and M(0) and T/sub 2/, generating separate M(0), T/sub 1/ and T/sub 2/ images from the signals, and determining at least one petrophysical property from at least one of the images.

  5. Images of Illness

    PubMed Central

    Longhurst, Mark F.

    1992-01-01

    The images we as physicians retain of our patients have a bearing on the evolution of our clinical behaviour and attributes. These images can enhance our diagnostic and therapeutic skills, increase our capacity to care for people with incurable diseases, and offer insights into our own emotional response. A recollection of five people with Parkinson's disease offers a college of images to give us further insights into the meaning of illness-for the patient and the physician. PMID:20469529

  6. Apple Image Processing Educator

    NASA Technical Reports Server (NTRS)

    Gunther, F. J.

    1981-01-01

    A software system design is proposed and demonstrated with pilot-project software. The system permits the Apple II microcomputer to be used for personalized computer-assisted instruction in the digital image processing of LANDSAT images. The programs provide data input, menu selection, graphic and hard-copy displays, and both general and detailed instructions. The pilot-project results are considered to be successful indicators of the capabilities and limits of microcomputers for digital image processing education.

  7. Image Processing Software

    NASA Technical Reports Server (NTRS)

    1992-01-01

    To convert raw data into environmental products, the National Weather Service and other organizations use the Global 9000 image processing system marketed by Global Imaging, Inc. The company's GAE software package is an enhanced version of the TAE, developed by Goddard Space Flight Center to support remote sensing and image processing applications. The system can be operated in three modes and is combined with HP Apollo workstation hardware.

  8. Multiple wavelength diffractive imaging

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Dilanian, Ruben A.; Teichmann, Sven; Abbey, Brian; Peele, Andrew G.; Williams, Garth J.; Hannaford, Peter; van Dao, Lap; Quiney, Harry M.; Nugent, Keith A.

    2009-02-01

    We demonstrate coherent diffraction imaging using multiple harmonics from a high-harmonic generation source. An algorithm is presented that builds the known incident spectrum into the reconstruction procedure with the result that the useable flux is increased by more than an order of magnitude. Excellent images are obtained with a resolution of (165±5)nm and compare very well with images from a scanning electron microscope.

  9. Grating image technology

    NASA Astrophysics Data System (ADS)

    Iwata, Fujio

    1995-07-01

    The word 'grating image' was first named by Toppan Printing Company, Ltd. It means that an image consists of grating dots. In 1988, we presented this new technology at the Optical Security Systems Symposium, in Switzerland. Then it was improved and applied in display application. Recently, it was further applied in 3D video systems. In this report, the development history and the recent situations of grating image technology are described.

  10. Shuttle imaging radar experiment

    USGS Publications Warehouse

    Elachi, C.; Brown, W.E.; Cimino, J.B.; Dixon, T.; Evans, D.L.; Ford, J.P.; Saunders, R.S.; Breed, C.; Masursky, H.; McCauley, J.F.; Schaber, G.; Dellwig, L.; England, A.; MacDonald, H.; Martin-Kaye, P.; Sabins, F.

    1982-01-01

    The shuttle imaging radar (SIR-A) acquired images of a variety of the earth's geologic areas covering about 10 million square kilometers. Structural and geomorphic features such as faults, folds, outcrops, and dunes are clearly visible in both tropical and arid regions. The combination of SIR-A and Seasat images provides additional information about the surface physical properties: topography and roughness. Ocean features were also observed, including large internal waves in the Andaman Sea. Copyright ?? 1982 AAAS.

  11. Diagnostic imaging of osteosarcoma

    SciTech Connect

    Seeger, L.L.; Gold, R.H.; Chandnani, V.P. )

    1991-09-01

    The diagnosis, treatment planning, and follow-up evaluation of osteosarcoma rely heavily on a variety of imaging techniques. Plain roentgenography, radionuclide bone scanning, computed tomography, and magnetic resonance imaging play important roles in defining local tumor extent, detecting metastatic disease, and monitoring for recurrent tumor. Invasive studies such as angiography are now rarely necessary. In the future, newer imaging modalities, including positron emission tomography, can be expected to become important tools for evaluation of these tumors. 23 references.

  12. Microscopy imaging device with advanced imaging properties

    SciTech Connect

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  13. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-10-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  14. Breast Imaging Artifacts.

    PubMed

    Odle, Teresa G

    2015-01-01

    Artifacts appear on breast images for a number of reasons. Radiologic technologists play an important role in identifying artifacts that can help or hinder breast cancer diagnosis and in minimizing artifacts that degrade image quality. This article describes various artifacts that occur in breast imaging, along with their causes. The article focuses on artifacts in mammography, with a heavy emphasis on digital mammography, and on magnetic resonance imaging of the breast. Artifacts in ultrasonography of the breast, digital breast tomosynthesis, and positron emission mammography also are discussed.

  15. Ferroelectric optical image comparator

    DOEpatents

    Butler, Michael A.; Land, Cecil E.; Martin, Stephen J.; Pfeifer, Kent B.

    1993-01-01

    A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image.

  16. Ferroelectric optical image comparator

    DOEpatents

    Butler, M.A.; Land, C.E.; Martin, S.J.; Pfeifer, K.B.

    1993-11-30

    A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image. 7 figures.

  17. Marked ghost imaging

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Chen, Xudong

    2014-06-01

    In recent years, ghost imaging has been widely applied in various areas, such as optical security. Here, we report how an object and multiple hidden marks can be simultaneously recovered by using only one rebuilt reference intensity sequence in ghost imaging. The reconstructed object can be clearly observed during the decoding, and multiple marks can be effectively hidden. This unique characteristic is established for ghost imaging system due to random selections of pixels from each reference intensity pattern, which also guarantees high security. This finding may open up a different research perspective for ghost-imaging-based security system.

  18. Contrast image correction method

    NASA Astrophysics Data System (ADS)

    Schettini, Raimondo; Gasparini, Francesca; Corchs, Silvia; Marini, Fabrizio; Capra, Alessandro; Castorina, Alfio

    2010-04-01

    A method for contrast enhancement is proposed. The algorithm is based on a local and image-dependent exponential correction. The technique aims to correct images that simultaneously present overexposed and underexposed regions. To prevent halo artifacts, the bilateral filter is used as the mask of the exponential correction. Depending on the characteristics of the image (piloted by histogram analysis), an automated parameter-tuning step is introduced, followed by stretching, clipping, and saturation preserving treatments. Comparisons with other contrast enhancement techniques are presented. The Mean Opinion Score (MOS) experiment on grayscale images gives the greatest preference score for our algorithm.

  19. Tomographic scanning imager.

    PubMed

    Hovland, Harald

    2009-07-01

    In tomographic scanning (TOSCA) imaging, light from a scene is focused onto a reticle mask using conical scan optics, and collected on a single element detector. Alternatively, one or several detectors replace the reticle. Tomographic processing techniques are then applied to the one-dimensional signal to reproduce a two-dimensional image. The TOSCA technique is presented in detail, including its mathematical foundations and some of its limitations. It is shown how TOSCA imaging can be used in a multispectral configuration, and compares well with more conventional alternatives both in simplicity and performance. Examples of image reconstruction using TOSCA techniques are shown. PMID:19582052

  20. Quantitative luminescence imaging system

    DOEpatents

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  1. Image Registration Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline (Editor)

    1997-01-01

    Automatic image registration has often been considered as a preliminary step for higher-level processing, such as object recognition or data fusion. But with the unprecedented amounts of data which are being and will continue to be generated by newly developed sensors, the very topic of automatic image registration has become and important research topic. This workshop presents a collection of very high quality work which has been grouped in four main areas: (1) theoretical aspects of image registration; (2) applications to satellite imagery; (3) applications to medical imagery; and (4) image registration for computer vision research.

  2. Wavelets meet genetic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Ping

    2005-08-01

    Genetic image analysis is an interdisciplinary area, which combines microscope image processing techniques with the use of biochemical probes for the detection of genetic aberrations responsible for cancers and genetic diseases. Recent years have witnessed parallel and significant progress in both image processing and genetics. On one hand, revolutionary multiscale wavelet techniques have been developed in signal processing and applied mathematics in the last decade, providing sophisticated tools for genetic image analysis. On the other hand, reaping the fruit of genome sequencing, high resolution genetic probes have been developed to facilitate accurate detection of subtle and cryptic genetic aberrations. In the meantime, however, they bring about computational challenges for image analysis. In this paper, we review the fruitful interaction between wavelets and genetic imaging. We show how wavelets offer a perfect tool to address a variety of chromosome image analysis problems. In fact, the same word "subband" has been used in the nomenclature of cytogenetics to describe the multiresolution banding structure of the chromosome, even before its appearance in the wavelet literature. The application of wavelets to chromosome analysis holds great promise in addressing several computational challenges in genetics. A variety of real world examples such as the chromosome image enhancement, compression, registration and classification will be demonstrated. These examples are drawn from fluorescence in situ hybridization (FISH) and microarray (gene chip) imaging experiments, which indicate the impact of wavelets on the diagnosis, treatments and prognosis of cancers and genetic diseases.

  3. Miniaturized handheld hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Wu, Huawen; Haibach, Frederick G.; Bergles, Eric; Qian, Jack; Zhang, Charlie; Yang, William

    2014-05-01

    A miniaturized hyperspectral imager is enabled with image sensor integrated with dispersing elements in a very compact form factor, removing the need for expensive, moving, bulky and complex optics that have been used in conventional hyperspectral imagers for decades. The result is a handheld spectral imager that can be installed on miniature UAV drones or conveyor belts in production lines. Eventually, small handhelds can be adapted for use in outpatient medical clinics for point-of-care diagnostics and other in-field applications.

  4. Quantitative luminescence imaging system

    DOEpatents

    Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

    1990-08-14

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

  5. Image Processing System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.

  6. Advanced image memory architecture

    NASA Astrophysics Data System (ADS)

    Vercillo, Richard; McNeill, Kevin M.

    1994-05-01

    A workstation for radiographic images, known as the Arizona Viewing Console (AVC), was developed at the University of Arizona Health Sciences Center in the Department of Radiology. This workstation has been in use as a research tool to aid us in investigating how a radiologist interacts with a workstation, to determine which image processing features are required to aid the radiologist, to develop user interfaces and to support psychophysical and clinical studies. Results from these studies have show a need to increase the current image memory's available storage in order to accommodate high resolution images. The current triple-ported image memory can be allocated to store any number of images up to a combined total of 4 million pixels. Over the past couple of years, higher resolution images have become easier to generate with the advent of laser digitizers and computed radiology systems. As part of our research, a larger 32 million pixel image memory for AVC has been designed to replace the existing image memory.

  7. Imaging in Neurooncology

    PubMed Central

    Jacobs, Andreas H.; Kracht, Lutz W.; Gossmann, Axel; Rüger, Maria A.; Thomas, Anne V.; Thiel, Alexander; Herholz, Karl

    2005-01-01

    Summary: Imaging in patients with brain tumors aims toward the determination of the localization, extend, type, and malignancy of the tumor. Imaging is being used for primary diagnosis, planning of treatment including placement of stereotaxic biopsy, resection, radiation, guided application of experimental therapeutics, and delineation of tumor from functionally important neuronal tissue. After treatment, imaging is being used to quantify the treatment response and the extent of residual tumor. At follow-up, imaging helps to determine tumor progression and to differentiate recurrent tumor growth from treatment-induced tissue changes, such as radiation necrosis. A variety of complementary imaging methods are currently being used to obtain all the information necessary to achieve the abovementioned goals. Computed tomography and magnetic resonance imaging (MRI) reveal mostly anatomical information on the tumor, whereas magnetic resonance spectroscopy and positron emission tomography (PET) give important information on the metabolic state and molecular events within the tumor. Functional MRI and functional PET, in combination with electrophysiological methods like transcranial magnetic stimulation, are being used to delineate functionally important neuronal tissue, which has to be preserved from treatment-induced damage, as well as to gather information on tumor-induced brain plasticity. In addition, optical imaging devices have been implemented in the past few years for the development of new therapeutics, especially in experimental glioma models. In summary, imaging in patients with brain tumors plays a central role in the management of the disease and in the development of improved imaging-guided therapies. PMID:15897954

  8. Sparse image reconstruction for molecular imaging.

    PubMed

    Ting, Michael; Raich, Raviv; Hero, Alfred O

    2009-06-01

    The application that motivates this paper is molecular imaging at the atomic level. When discretized at subatomic distances, the volume is inherently sparse. Noiseless measurements from an imaging technology can be modeled by convolution of the image with the system point spread function (psf). Such is the case with magnetic resonance force microscopy (MRFM), an emerging technology where imaging of an individual tobacco mosaic virus was recently demonstrated with nanometer resolution. We also consider additive white Gaussian noise (AWGN) in the measurements. Many prior works of sparse estimators have focused on the case when H has low coherence; however, the system matrix H in our application is the convolution matrix for the system psf. A typical convolution matrix has high coherence. This paper, therefore, does not assume a low coherence H. A discrete-continuous form of the Laplacian and atom at zero (LAZE) p.d.f. used by Johnstone and Silverman is formulated, and two sparse estimators derived by maximizing the joint p.d.f. of the observation and image conditioned on the hyperparameters. A thresholding rule that generalizes the hard and soft thresholding rule appears in the course of the derivation. This so-called hybrid thresholding rule, when used in the iterative thresholding framework, gives rise to the hybrid estimator, a generalization of the lasso. Estimates of the hyperparameters for the lasso and hybrid estimator are obtained via Stein's unbiased risk estimate (SURE). A numerical study with a Gaussian psf and two sparse images shows that the hybrid estimator outperforms the lasso.

  9. BMC Ecology image competition: the winning images

    PubMed Central

    2013-01-01

    BMC Ecology announces the winning entries in its inaugural Ecology Image Competition, open to anyone affiliated with a research institute. The competition, which received more than 200 entries from international researchers at all career levels and a wide variety of scientific disciplines, was looking for striking visual interpretations of ecological processes. In this Editorial, our academic Section Editors and guest judge Dr Yan Wong explain what they found most appealing about their chosen winning entries, and highlight a few of the outstanding images that didn’t quite make it to the top prize. PMID:23517630

  10. Magnetospheric Image Unfolding

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Grant was a three year grant funded under the Space Physics Supporting Research and Technology and Suborbital Program. Our objective was to develop automated techniques needed to unfold or "invert" global images of the magnetospheric ion populations obtained by the new magnetospheric imaging techniques (ENA, EUV) in anticipation of future missions such as the Magnetospheric Imager and, now, IMAGE. Our focus on the present three year grant is to determine the degree to which such images can quantitatively constrain the global electromagnetic properties of the magnetosphere. In a previous three year grant period we successfully automated a forward modeling inversion algorithm, demonstrated that these inversions are robust in the face of realistic instrumental considerations such as counting statistics and backgrounds, applied error analysis techniques to the extracted parameters using variational procedures, implemented very realistic magnetospheric test images to test the inversion algorithms using the Rice University Magnetospheric Specification Model, and began the process of generating parametric models with the flexibility to handle the realistic magnetospheric images (e.g. Roelof et al, 1992; 1993). Our plan for the present 3 year grant period was to complete the development of the inversion tools needed to handle realistic magnetospheric images, assess the degree to which global electrodynamics is quantitatively constrained by ENA images of the magnetosphere, and bring the inversion of EUV images up to the maturity that we will have achieved for the ENA imaging. Below the accomplishments of our three year effort are present followed by a list of our presentations and publications. The accomplishments of all three years are presented here, and thus some of these items appeared on interim progress reports.

  11. Phase Contrast Imaging

    SciTech Connect

    Menk, Ralf Hendrik

    2008-11-13

    All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift {phi} directly (using interference phenomena), the gradient {nabla}{sub {phi}}, or the Laplacian {nabla}{sup 2}{phi}. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1

  12. Multipurpose Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  13. Image correlation and sampling study

    NASA Technical Reports Server (NTRS)

    Popp, D. J.; Mccormack, D. S.; Sedwick, J. L.

    1972-01-01

    The development of analytical approaches for solving image correlation and image sampling of multispectral data is discussed. Relevant multispectral image statistics which are applicable to image correlation and sampling are identified. The general image statistics include intensity mean, variance, amplitude histogram, power spectral density function, and autocorrelation function. The translation problem associated with digital image registration and the analytical means for comparing commonly used correlation techniques are considered. General expressions for determining the reconstruction error for specific image sampling strategies are developed.

  14. The application of ghost imaging in infrared imaging detection technology

    NASA Astrophysics Data System (ADS)

    Peng, Hongtao; Yang, Zhaohua; Li, Dapeng; Wu, Ling-an

    2015-11-01

    Traditional imaging are mostly based on the principle of lens imaging which is simple but the imaging result is heavily dependent on the quality of detector. It is usual to increase the detector array density or reduce the size of pixels to improve the imaging resolution, especially for infrared imaging. It will decrease the light flux causing the noise enhance relatively and add the cost on the contrary. Besides, there is a novel imaging technology called ghost imaging. We present a new infrared imaging method named computational ghost imaging only using a bucket detector without spatial resolution, which avoiding the allocation of flux on the pixel dimension as well as reducing the cost.

  15. Television Images and Adolescent Girls' Body Image Disturbance.

    ERIC Educational Resources Information Center

    Botta, Renee A.

    1999-01-01

    Contributes to scholarship on the effects of media images on adolescents, using social-comparison theory and critical-viewing theory. Finds that media do have an impact on body-image disturbance. Suggests that body-image processing is the key to understanding how television images affect adolescent girls' body-image attitudes and behaviors. (SR)

  16. Medical imaging V: Image capture, formatting, and display

    SciTech Connect

    Kim, Y.

    1991-01-01

    This book is covered under the following topics: Digital image display I-V; Quality assurance I-V; Clinical image presentation I-V; Imaging systems; Image compression; Workstations; and Medical diagnostic imaging support system for military medicine and other federal agencies.

  17. Edge-based correlation image registration for multispectral imaging

    DOEpatents

    Nandy, Prabal

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  18. Text Indexing of Images Based on Graphical Image Content.

    ERIC Educational Resources Information Center

    Patrick, Timothy B.; Sievert, MaryEllen C.; Popescu, Mihail

    1999-01-01

    Describes an alternative method for indexing images in an image database. The method consists of manually indexing a selected reference image, and then using retrieval by graphical content to automatically transfer the manually assigned index terms from the reference image to the images to be indexed. (AEF)

  19. Automated image analysis of uterine cervical images

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Gu, Jia; Ferris, Daron; Poirson, Allen

    2007-03-01

    Cervical Cancer is the second most common cancer among women worldwide and the leading cause of cancer mortality of women in developing countries. If detected early and treated adequately, cervical cancer can be virtually prevented. Cervical precursor lesions and invasive cancer exhibit certain morphologic features that can be identified during a visual inspection exam. Digital imaging technologies allow us to assist the physician with a Computer-Aided Diagnosis (CAD) system. In colposcopy, epithelium that turns white after application of acetic acid is called acetowhite epithelium. Acetowhite epithelium is one of the major diagnostic features observed in detecting cancer and pre-cancerous regions. Automatic extraction of acetowhite regions from cervical images has been a challenging task due to specular reflection, various illumination conditions, and most importantly, large intra-patient variation. This paper presents a multi-step acetowhite region detection system to analyze the acetowhite lesions in cervical images automatically. First, the system calibrates the color of the cervical images to be independent of screening devices. Second, the anatomy of the uterine cervix is analyzed in terms of cervix region, external os region, columnar region, and squamous region. Third, the squamous region is further analyzed and subregions based on three levels of acetowhite are identified. The extracted acetowhite regions are accompanied by color scores to indicate the different levels of acetowhite. The system has been evaluated by 40 human subjects' data and demonstrates high correlation with experts' annotations.

  20. Fluorescent image tracking velocimeter

    DOEpatents

    Shaffer, Franklin D.

    1994-01-01

    A multiple-exposure fluorescent image tracking velocimeter (FITV) detects and measures the motion (trajectory, direction and velocity) of small particles close to light scattering surfaces. The small particles may follow the motion of a carrier medium such as a liquid, gas or multi-phase mixture, allowing the motion of the carrier medium to be observed, measured and recorded. The main components of the FITV include: (1) fluorescent particles; (2) a pulsed fluorescent excitation laser source; (3) an imaging camera; and (4) an image analyzer. FITV uses fluorescing particles excited by visible laser light to enhance particle image detectability near light scattering surfaces. The excitation laser light is filtered out before reaching the imaging camera allowing the fluoresced wavelengths emitted by the particles to be detected and recorded by the camera. FITV employs multiple exposures of a single camera image by pulsing the excitation laser light for producing a series of images of each particle along its trajectory. The time-lapsed image may be used to determine trajectory and velocity and the exposures may be coded to derive directional information.

  1. Photothermal imaging of melanin

    NASA Astrophysics Data System (ADS)

    Kerimo, Josef; DiMarzio, Charles A.

    2013-02-01

    We present photothermal images of melanin using modulation with two laser beams. Strong melanin absorption followed by efficient nonradiative relaxation caused heating and an increase in temperature. This temperature effect was used as an imaging contrast to detect melanin. Melanin from several samples including Sepia officinalis, black human hair, and live zebra fish, were imaged with a high signal-to-noise ratio. For the imaging, we focused two near infrared laser beams (pump and probe) collinearly with different wavelengths and the pump was modulated in amplitude. The thermally induced variations in the refractive index, at the modulation frequency, were detected by the scattering of the probe beam. The Photothermal method brings several imaging benefits including the lack of background interference and the possibility of imaging for an extended period of time without photodamage to the melanin. The dependence of the photothermal signal on the laser power, modulation frequency, and spatial offset of the probe is discussed. The new photothermal imaging method is promising and provides background-free and label-free imaging of melanin and can be implemented with low-cost CW lasers.

  2. Digital Image Access & Retrieval.

    ERIC Educational Resources Information Center

    Heidorn, P. Bryan, Ed.; Sandore, Beth, Ed.

    Recent technological advances in computing and digital imaging technology have had immediate and permanent consequences for visual resource collections. Libraries are involved in organizing and managing large visual resource collections. The central challenges in working with digital image collections mirror those that libraries have sought to…

  3. Imaging in liver transplantation

    PubMed Central

    Caruso, Settimo; Miraglia, Roberto; Maruzzelli, Luigi; Gruttadauria, Salvatore; Luca, Angelo; Gridelli, Bruno

    2009-01-01

    The aim of this study was to illustrate the role of non-invasive imaging tools such as ultrasonography, multi-detector row computed tomography, and magnetic resonance imaging in the evaluation of pediatric and adult liver recipients and potential liver donors, and in the detection of potential complications arising from liver transplantation. PMID:19222090

  4. Reading Violent Images

    ERIC Educational Resources Information Center

    Green, Gaye

    2004-01-01

    The power of images to convince, impact, illuminate, and provide long-lasting reminders of events underscores the significance of contemporary images to art education (Green, 1999). Incorporating such imagery into curriculum can, however, be a daunting enterprise. Relevant and compelling on the one hand, on the other, the undertaking can be…

  5. Image and Prestige Planning

    ERIC Educational Resources Information Center

    Ager, Dennis

    2005-01-01

    The aim of this paper is to clarify some notions about image and prestige planning. Starting from the Welsh example of language policy aiming to revitalise a language in danger of further decreasing in number of speakers and in centrality to Welsh life, definitions of four related terms are explored: image, status, prestige and identity. Paired…

  6. Heart imaging method

    SciTech Connect

    Collins, H. Dale; Gribble, R. Parks; Busse, Lawrence J.

    1991-01-01

    A method for providing an image of the human heart's electrical system derives time-of-flight data from an array of EKG electrodes and this data is transformed into phase information. The phase information, treated as a hologram, is reconstructed to provide an image in one or two dimensions of the electrical system of the functioning heart.

  7. Photoacoustic molecular imaging

    NASA Astrophysics Data System (ADS)

    Kiser, William L., Jr.; Reinecke, Daniel; DeGrado, Timothy; Bhattacharyya, Sibaprasad; Kruger, Robert A.

    2007-02-01

    It is well documented that photoacoustic imaging has the capability to differentiate tissue based on the spectral characteristics of tissue in the optical regime. The imaging depth in tissue exceeds standard optical imaging techniques, and systems can be designed to achieve excellent spatial resolution. A natural extension of imaging the intrinsic optical contrast of tissue is to demonstrate the ability of photoacoustic imaging to detect contrast agents based on optically absorbing dyes that exhibit well defined absorption peaks in the infrared. The ultimate goal of this project is to implement molecular imaging, in which Herceptin TM, a monoclonal antibody that is used as a therapeutic agent in breast cancer patients that over express the HER2 gene, is labeled with an IR absorbing dye, and the resulting in vivo bio-distribution is mapped using multi-spectral, infrared stimulation and subsequent photoacoustic detection. To lay the groundwork for this goal and establish system sensitivity, images were collected in tissue mimicking phantoms to determine maximum detection depth and minimum detectable concentration of Indocyanine Green (ICG), a common IR absorbing dye, for a single angle photoacoustic acquisition. A breast mimicking phantom was constructed and spectra were also collected for hemoglobin and methanol. An imaging schema was developed that made it possible to separate the ICG from the other tissue mimicking components in a multiple component phantom. We present the results of these experiments and define the path forward for the detection of dye labeled Herceptin TM in cell cultures and mice models.

  8. Thyroid imaging studies

    SciTech Connect

    Drew, H.H.; LaFrance, N.D.; Chen, J.J.S.

    1987-06-01

    This is the second in a series of Continuing Education articles related to functional/quantitative imaging techniques. After reading this article, the reader should be able to: 1) discuss the clinical applications of thyroid imaging; 2) understand the relationship of related thyroid tests; and 3) recognize the pitfalls and problems associated with this procedure.

  9. Nanoparticles for Biomedical Imaging

    SciTech Connect

    Nune, Satish K.; Gunda, Padmaja; Thallapally, Praveen K.; Lin, Ying-Ying; Forrest, Laird M.; Berkland, Cory J.

    2009-11-01

    Background: Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 to 100 nm in diameter possess dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has further expanded the potential of nanoparticles as probes for molecular imaging. Objective: To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced non-specific uptake with increased spatial resolution containing stabilizers conjugated with targeting ligands. Methods: This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their applications in biomedical imaging. Conclusion: Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed. Keywords: nanoparticle synthesis, surface modification, targeting, molecular imaging, and biomedical imaging.

  10. The Power of Imaging.

    ERIC Educational Resources Information Center

    Haapaniemi, Peter

    1990-01-01

    Describes imaging technology, which allows huge numbers of words and illustrations to be reduced to tiny fraction of space required by originals and discusses current applications. Highlights include image processing system at National Archives; use by banks for high-speed check processing; engineering document management systems (EDMS); folder…

  11. Broadband simultaneous multiplane imaging

    NASA Astrophysics Data System (ADS)

    Blanchard, P. M.; Greenaway, A. H.

    2000-09-01

    A technique, using a distorted diffraction grating, which enables the simultaneous imaging of multiple object planes side-by-side on a single camera is described. The chromatic properties of the imaging system are discussed and a modification to allow operation with broadband illumination is demonstrated.

  12. Magnetic resonance imaging

    SciTech Connect

    Stark, D.D.; Bradley, W.G. Jr.

    1988-01-01

    The authors present a review of magnetic resonance imaging. Many topics are explored from instrumentation, spectroscopy, blood flow and sodium imaging to detailed clinical applications such as the differential diagnosis of multiple sclerosis or adrenal adenoma. The emphasis throughout is on descriptions of normal multiplanar anatomy and pathology as displayed by MRI.

  13. Live-cell imaging

    PubMed Central

    Cole, Richard

    2014-01-01

    It would be hard to argue that live-cell imaging has not changed our view of biology. The past 10 years have seen an explosion of interest in imaging cellular processes, down to the molecular level. There are now many advanced techniques being applied to live cell imaging. However, cellular health is often under appreciated. For many researchers, if the cell at the end of the experiment has not gone into apoptosis or is blebbed beyond recognition, than all is well. This is simply incorrect. There are many factors that need to be considered when performing live-cell imaging in order to maintain cellular health such as: imaging modality, media, temperature, humidity, PH, osmolality, and photon dose. The wavelength of illuminating light, and the total photon dose that the cells are exposed to, comprise two of the most important and controllable parameters of live-cell imaging. The lowest photon dose that achieves a measureable metric for the experimental question should be used, not the dose that produces cover photo quality images. This is paramount to ensure that the cellular processes being investigated are in their in vitro state and not shifted to an alternate pathway due to environmental stress. The timing of the mitosis is an ideal canary in the gold mine, in that any stress induced from the imaging will result in the increased length of mitosis, thus providing a control model for the current imagining conditions. PMID:25482523

  14. Optical image encryption topology.

    PubMed

    Yong-Liang, Xiao; Xin, Zhou; Qiong-Hua, Wang; Sheng, Yuan; Yao-Yao, Chen

    2009-10-15

    Optical image encryption topology is proposed based on the principle of random-phase encoding. Various encryption topological units, involving peer-to-peer, ring, star, and tree topologies, can be realized by an optical 6f system. These topological units can be interconnected to constitute an optical image encryption network. The encryption and decryption can be performed in both digital and optical methods.

  15. Oncological image analysis.

    PubMed

    Brady, Sir Michael; Highnam, Ralph; Irving, Benjamin; Schnabel, Julia A

    2016-10-01

    Cancer is one of the world's major healthcare challenges and, as such, an important application of medical image analysis. After a brief introduction to cancer, we summarise some of the major developments in oncological image analysis over the past 20 years, but concentrating those in the authors' laboratories, and then outline opportunities and challenges for the next decade.

  16. Imaging as a Heuristic.

    ERIC Educational Resources Information Center

    McQueen, David

    Imaging, or disciplined daydreaming, can be used in the composition class to expose students to their innate creativity, lessen writing anxiety, refresh memories before writing of personal experiences, and make impersonal subjects, such as historical events, vital and personal. Teachers can construct a classroom imaging session (which takes about…

  17. Emerging Imaging Techniques

    PubMed Central

    McVeigh, Elliot R.

    2007-01-01

    This article reviews recent developments in selected imaging technologies focused on the cardiovascular system. The techniques covered are: ultrasound biomicroscopy (UBM), microSPECT, microPET, near infrared imaging, and quantum dots. For each technique, the basic physical principles are explained and recent example applications demonstrated. PMID:16614313

  18. Emergency Chest Imaging.

    PubMed

    Havrda, Jonathan B

    2015-01-01

    This article presents the anatomy of the chest, heart, and upper airway and describes types of traumatic pathology and injuries of the chest. Chest imaging in a variety of settings is described. Radiography, computed tomography, and ultrasonography are discussed, along with the benefits and limitations of each modality. Finally, promising technological developments that could aid chest imaging in emergent situations are reviewed.

  19. Intrusive STM imaging

    NASA Astrophysics Data System (ADS)

    Boulanger-Lewandowski, Nicolas; Rochefort, Alain

    2011-03-01

    An interactive scanning tunneling microscopy (STM) simulator has been designed to efficiently compute the effects of chemical and structural modifications of adsorbed species on resulting STM images. Our general approach is based on first-order perturbation theory that takes into account different tip geometries. In our intrusive STM imaging strategy, we consider small variations such as substitutions, vacancies, functionalizations, and molecular reorganizations from a reference system. First, we show that our perturbation theory approach can provide STM images that are qualitatively similar to those of a more rigorous electron scattering technique based on the Landauer-Büttiker formalism for the case of adsorbed tetracyanoethylene on a Cu(100) single crystal. Second, we demonstrate that the efficiency of Bardeen and Tersoff-Hamann approaches to generate STM images can be substantially improved by exploiting different algorithms to evaluate the tunnel current and to deal with large-scale eigenvalue problems. Following our general intrusive strategy, we have reduced the computing time to generate an STM image of a modified system by about an order of magnitude with respect to the reference image. The shape and position of the contrasts of the STM image evaluated in the context of intrusion are virtually identical to an image computed without intrusive features but within a considerably smaller computing time.

  20. Image processing mini manual

    NASA Technical Reports Server (NTRS)

    Matthews, Christine G.; Posenau, Mary-Anne; Leonard, Desiree M.; Avis, Elizabeth L.; Debure, Kelly R.; Stacy, Kathryn; Vonofenheim, Bill

    1992-01-01

    The intent is to provide an introduction to the image processing capabilities available at the Langley Research Center (LaRC) Central Scientific Computing Complex (CSCC). Various image processing software components are described. Information is given concerning the use of these components in the Data Visualization and Animation Laboratory at LaRC.

  1. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  2. Magritte's Words and Images.

    ERIC Educational Resources Information Center

    Roque, Georges

    1989-01-01

    Argues that Rene Magritte's experiments with words and images are preceded by other experiments with his surrealist friends in Brussels. States that the surrealists' failure to adequately represent women causes Magritte to treat both images and words as mere representations, subject to an equally radical splitting from the "real" thing they are…

  3. Cathodoluminescence Spectrum Imaging Software

    2011-04-07

    The software developed for spectrum imaging is applied to the analysis of the spectrum series generated by our cathodoluminescence instrumentation. This software provides advanced processing capabilities s such: reconstruction of photon intensity (resolved in energy) and photon energy maps, extraction of the spectrum from selected areas, quantitative imaging mode, pixel-to-pixel correlation spectrum line scans, ASCII, output, filling routines, drift correction, etc.

  4. Images of Atoms.

    ERIC Educational Resources Information Center

    Wright, Tony

    2003-01-01

    Recommends using a simple image, such as the fuzzy atom ball to help students develop a useful understanding of the molecular world. Explains that the image helps students easily grasp ideas about atoms and molecules and leads naturally to more advanced ideas of atomic structure, chemical bonding, and quantum physics. (Author/NB)

  5. Imaging in radio astronomy.

    NASA Astrophysics Data System (ADS)

    Feretti, L.; Vigotti, M.

    The following sections are included: * INTRODUCTION * THE FOURIER TRANSFORM (FT) * DECONVOLUTI0N * The Dirty Map * Image Restoration * Clean and Restore * Maximum Entropy Method (MEM) * SELF-CALIBRATION ALGORITHM * IMAGING WITH VLBI DATA * Model Fitting * Hybrid Mapping Tecniques * SPECTRAL LINE OBSERVATIONS * ACKNOWLEDGMENTS * REFERENCES * FIGURE CAPTION

  6. Polarization imaging apparatus

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin Kevin (Inventor); Chen, Qiushui (Inventor); Zhao, Hongzhi (Inventor)

    2010-01-01

    A polarization imaging apparatus measures the Stokes image of a sample. The apparatus consists of an optical lens set 11, a linear polarizer 14 with its optical axis 18, a first variable phase retarder 12 with its optical axis 16 aligned 22.5.degree. to axis 18, a second variable phase retarder 13 with its optical axis 17 aligned 45.degree. to axis 18, a imaging sensor 15 for sensing the intensity images of the sample, a controller 101 and a computer 102. Two variable phase retarders 12 and 13 were controlled independently by a computer 102 through a controller unit 101 which generates a sequential of voltages to control the phase retardations of VPRs 12 and 13. A set of four intensity images, I.sub.0, I.sub.1, I.sub.2 and I.sub.3 of the sample were captured by imaging sensor 15 when the phase retardations of VPRs 12 and 13 were set at (0,0), (.pi.,0), (.pi.,.pi.) and (.pi./2,.pi.), respectively Then four Stokes components of a Stokes image, S.sub.0, S.sub.1, S.sub.2 and S.sub.3 were calculated using the four intensity images.

  7. Multicomponent MR Image Denoising

    PubMed Central

    Manjón, José V.; Thacker, Neil A.; Lull, Juan J.; Garcia-Martí, Gracian; Martí-Bonmatí, Luís; Robles, Montserrat

    2009-01-01

    Magnetic Resonance images are normally corrupted by random noise from the measurement process complicating the automatic feature extraction and analysis of clinical data. It is because of this reason that denoising methods have been traditionally applied to improve MR image quality. Many of these methods use the information of a single image without taking into consideration the intrinsic multicomponent nature of MR images. In this paper we propose a new filter to reduce random noise in multicomponent MR images by spatially averaging similar pixels using information from all available image components to perform the denoising process. The proposed algorithm also uses a local Principal Component Analysis decomposition as a postprocessing step to remove more noise by using information not only in the spatial domain but also in the intercomponent domain dealing in a higher noise reduction without significantly affecting the original image resolution. The proposed method has been compared with similar state-of-art methods over synthetic and real clinical multicomponent MR images showing an improved performance in all cases analyzed. PMID:19888431

  8. Managing Institutional Image.

    ERIC Educational Resources Information Center

    Melchiori, Gerlinda S.

    1990-01-01

    A managerial process for enhancing the image and public reputation of a higher education institution is outlined. It consists of five stages: market research; data analysis and market positioning; communication of results and recommendations to the administration; development of a global image program; and impact evaluation. (MSE)

  9. LWIR Snapshot Imaging Polarimeter

    SciTech Connect

    Dr. Robert E Sampson

    2009-04-01

    This report describes the results of a phase 1 STTR to design a longwave infrared imaging polarimeter. The system design, expected performance and components needed to construct the imaging polarimeter are described. Expected performance is modeled and sytem specifications are presented.

  10. Imaging the cranial nerves.

    PubMed

    Parry, Andrew T; Volk, Holger A

    2011-01-01

    An understanding of the normal course of the cranial nerves (CN) is essential when interpreting images of patients with cranial neuropathies. CN foramina are depicted best using computed X-ray tomography, but the nerves are depicted best using magnetic resonance imaging. The function and anatomy of the CN in the dog are reviewed and selected examples of lesions affecting the CN are illustrated.

  11. PACS image security server

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Huang, H. K.

    2004-04-01

    Medical image security in a PACS environment has become a pressing issue as communications of images increasingly extends over open networks, and hospitals are currently hard-pushed by Health Insurance Portability and Accountability Act (HIPAA) to be HIPPA complaint for ensuring health data security. Other security-related guidelines and technical standards continue bringing to the public attention in healthcare. However, there is not an infrastructure or systematic method to implement and deploy these standards in a PACS. In this paper, we first review DICOM Part15 standard for secure communications of medical images and the HIPAA impacts on PACS security, as well as our previous works on image security. Then we outline a security infrastructure in a HIPAA mandated PACS environment using a dedicated PACS image security server. The server manages its own database of all image security information. It acts as an image Authority for checking and certificating the image origin and integrity upon request by a user, as a secure DICOM gateway to the outside connections and meanwhile also as a PACS operation monitor for HIPAA supporting information.

  12. Images of Axial Objects

    ERIC Educational Resources Information Center

    Rabal, Hector; Cap, Nelly; Trivi, Marcelo

    2011-01-01

    Imaging of three-dimensional objects by lenses and mirrors is sometimes poorly indicated in textbooks and can be incorrectly drawn. We stress a need to clarify the concept of longitudinal magnification, with simulated images illustrating distortions introduced along the optical axis. We consider all possible positions of the object for both a…

  13. Medical imaging systems

    SciTech Connect

    Frangioni, John V.

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  14. Cardiological Ultrasound Imaging.

    PubMed

    Thijssen, Johan M; de Korte, Chris L

    2014-01-01

    This review paper is intended for the interested outsider of the field of echocardiography and it presents a short introduction into the numerous ultrasound (US) methods and techniques for anatomical and functional diagnosis of the heart. The basic techniques are generally used for some times already, as there are one dimensional (1D) M(otion) mode, the real time 2D B(rightness) mode technique and the various Doppler measurement techniques and imaging modes. The M-mode technique shows the movements of the tissue in a 1D B-mode display vs. time. The 2D B-mode images are showing the heart contractions and dilations in real time, thus making this technique the basic tool for detecting anatomical disturbances and myocardial (localized) abnormal functioning. Improved image quality is achieved by Second Harmonic Imaging and myocardial perfusion can be quantified using Contrast Agent Imaging. Doppler techniques were introduced in the fifties of last century and used for blood flow velocity measurement. Continuous wave (CW) Doppler has the advantage of allowing measurement of high velocities, as may occur in vascular or valvular stenosis and insufficiency. The exact location of the major Doppler signal received cannot be estimated making this technique ambiguous in some clinical problems. Single gated Pulse Wave (PW) Doppler velocity measurement delivers exact location of the measurement position by using an interactively positioned time (=depth) gate in which the velocity is being measured. The disadvantage of this technique is the relatively low maximum velocity that can be measured. Multigate PW Doppler techniques can be used for the assessment of a velocity profile over the vessel cross section. A more sophisticated use of this technique is the combination with 2D B-mode imaging in the color Doppler mode, called "color flow mapping", in which the multigate Doppler signal is color coded and shown in 2D format overlayed in the conventional 2D B mode image. In the past

  15. Studies on image compression and image reconstruction

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Nori, Sekhar; Araj, A.

    1994-01-01

    During this six month period our works concentrated on three, somewhat different areas. We looked at and developed a number of error concealment schemes for use in a variety of video coding environments. This work is described in an accompanying (draft) Masters thesis. In the thesis we describe application of this techniques to the MPEG video coding scheme. We felt that the unique frame ordering approach used in the MPEG scheme would be a challenge to any error concealment/error recovery technique. We continued with our work in the vector quantization area. We have also developed a new type of vector quantizer, which we call a scan predictive vector quantization. The scan predictive VQ was tested on data processed at Goddard to approximate Landsat 7 HRMSI resolution and compared favorably with existing VQ techniques. A paper describing this work is included. The third area is concerned more with reconstruction than compression. While there is a variety of efficient lossless image compression schemes, they all have a common property that they use past data to encode future data. This is done either via taking differences, context modeling, or by building dictionaries. When encoding large images, this common property becomes a common flaw. When the user wishes to decode just a portion of the image, the requirement that the past history be available forces the decoding of a significantly larger portion of the image than desired by the user. Even with intelligent partitioning of the image dataset, the number of pixels decoded may be four times the number of pixels requested. We have developed an adaptive scanning strategy which can be used with any lossless compression scheme and which lowers the additional number of pixels to be decoded to about 7 percent of the number of pixels requested! A paper describing these results is included.

  16. Nanoscale Thermal Imaging

    NASA Astrophysics Data System (ADS)

    Baloch, Kamal; Brintlinger, Todd; Qi, Yi; Goldhaber-Gordon, David; Cumings, John

    2007-03-01

    We present real time, in-situ, high resolution thermal imaging of metallic nanowires. The nanowires are grown on the front-side of silicon nitride membranes. Resistive heating along the wires produces thermal gradients which melt/freeze 20-200nm diameter indium islands deposited by thermal evaporation on the back-side of the membrane. These transitions can be imaged using a transmission electron microscope operating in dark-field mode such that contrast corresponds to the phase of an individual island. Global changes in temperature can be used to calibrate the melting point of individual islands and to account for the presence of the ˜100nm thick silicon nitride membrane. Thermal modeling confirms the imaged thermal behavior. This technique could be generally employed for thermal imaging of nanowires and nanotubes, wherein the nanoscale systems are imaged in-situ and under electrical bias. Results of local resistive heating in a carbon nanotube device will also be shown

  17. Bone image segmentation.

    PubMed

    Liu, Z Q; Liew, H L; Clement, J G; Thomas, C D

    1999-05-01

    Characteristics of microscopic structures in bone cross sections carry essential clues in age determination in forensic science and in the study of age-related bone developments and bone diseases. Analysis of bone cross sections represents a major area of research in bone biology. However, traditional approaches in bone biology have relied primarily on manual processes with very limited number of bone samples. As a consequence, it is difficult to reach reliable and consistent conclusions. In this paper we present an image processing system that uses microstructural and relational knowledge present in the bone cross section for bone image segmentation. This system automates the bone image analysis process and is able to produce reliable results based on quantitative measurements from a large number of bone images. As a result, using large databases of bone images to study the correlation between bone structural features and age-related bone developments becomes feasible.

  18. Efficient Graffiti Image Retrieval

    SciTech Connect

    Yang, Chunlei; Wong, Pak C.; Ribarsky, William; Fan, Jianping

    2012-07-05

    Research of graffiti character recognition and retrieval, as a branch of traditional optical character recognition (OCR), has started to gain attention in recent years. We have investigated the special challenge of the graffiti image retrieval problem and propose a series of novel techniques to overcome the challenges. The proposed bounding box framework locates the character components in the graffiti images to construct meaningful character strings and conduct image-wise and semantic-wise retrieval on the strings rather than the entire image. Using real world data provided by the law enforcement community to the Pacific Northwest National Laboratory, we show that the proposed framework outperforms the traditional image retrieval framework with better retrieval results and improved computational efficiency.

  19. Image forming apparatus

    DOEpatents

    Satoh, Hisao; Haneda, Satoshi; Ikeda, Tadayoshi; Morita, Shizuo; Fukuchi, Masakazu

    1996-01-01

    In an image forming apparatus having a detachable process cartridge in which an image carrier on which an electrostatic latent image is formed, and a developing unit which develops the electrostatic latent image so that a toner image can be formed, both integrally formed into one unit. There is provided a developer container including a discharge section which can be inserted into a supply opening of the developing unit, and a container in which a predetermined amount of developer is contained, wherein the developer container is provided to the toner supply opening of the developing unit and the developer is supplied into the developing unit housing when a toner stirring screw of the developing unit is rotated.

  20. Spread spectrum image steganography.

    PubMed

    Marvel, L M; Boncelet, C R; Retter, C T

    1999-01-01

    In this paper, we present a new method of digital steganography, entitled spread spectrum image steganography (SSIS). Steganography, which means "covered writing" in Greek, is the science of communicating in a hidden manner. Following a discussion of steganographic communication theory and review of existing techniques, the new method, SSIS, is introduced. This system hides and recovers a message of substantial length within digital imagery while maintaining the original image size and dynamic range. The hidden message can be recovered using appropriate keys without any knowledge of the original image. Image restoration, error-control coding, and techniques similar to spread spectrum are described, and the performance of the system is illustrated. A message embedded by this method can be in the form of text, imagery, or any other digital signal. Applications for such a data-hiding scheme include in-band captioning, covert communication, image tamperproofing, authentication, embedded control, and revision tracking.

  1. Is image steganography natural?

    PubMed

    Martín, Alvaro; Sapiro, Guillermo; Seroussi, Gadiel

    2005-12-01

    Steganography is the art of secret communication. Its purpose is to hide the presence of information, using, for example, images as covers. We experimentally investigate if stego-images, bearing a secret message, are statistically "natural." For this purpose, we use recent results on the statistics of natural images and investigate the effect of some popular steganography techniques. We found that these fundamental statistics of natural images are, in fact, generally altered by the hidden "nonnatural" information. Frequently, the change is consistently biased in a given direction. However, for the class of natural images considered, the change generally falls within the intrinsic variability of the statistics, and, thus, does not allow for reliable detection, unless knowledge of the data hiding process is taken into account. In the latter case, significant levels of detection are demonstrated.

  2. The imaging of osteomyelitis

    PubMed Central

    Sadigh, Sufi; Mankad, Kshitij; Kapse, Nikhil; Rajeswaran, Gajan

    2016-01-01

    Osteomyelitis is an important cause of morbidity and mortality in children and adults. Imaging plays a crucial role in establishing a timely diagnosis and guiding early management, with the aim of reducing long-term complications. Recognition of the imaging features of osteomyelitis requires a good understanding of its pathogenesis. In this review, the key imaging findings in osteomyelitis are correlated with the underlying pathological processes. There is a particular emphasis on magnetic resonance imaging (MRI), which is the best available imaging modality owing to its high sensitivity for detecting early osteomyelitis, excellent anatomical detail and superior soft tissue resolution. However, other modalities such as nuclear medicine and computed tomography (CT) are also useful in many clinical contexts, and will also be described in this review. PMID:27190771

  3. Time encoded radiation imaging

    DOEpatents

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  4. Imaging voltage in neurons

    PubMed Central

    Peterka, Darcy S.; Takahashi, Hiroto; Yuste, Rafael

    2011-01-01

    In the last decades, imaging membrane potential has become a fruitful approach to study neural circuits, especially in invertebrate preparations with large, resilient neurons. At the same time, particularly in mammalian preparations, voltage imaging methods suffer from poor signal to noise and secondary side effects, and they fall short of providing single-cell resolution when imaging of the activity of neuronal populations. As an introduction to these techniques, we briefly review different voltage imaging methods (including organic fluorophores, SHG chromophores, genetic indicators, hybrid, nanoparticles and intrinsic approaches), and illustrate some of their applications to neuronal biophysics and mammalian circuit analysis. We discuss their mechanisms of voltage sensitivity, from reorientation, electrochromic or electro-optical phenomena, to interaction among chromophores or membrane scattering, and highlight their advantages and shortcomings, commenting on the outlook for development of novel voltage imaging methods. PMID:21220095

  5. Medical ultrasonic imaging.

    PubMed

    Schuy, S

    1982-01-01

    The development of ultrasonic imaging techniques is by no means finished even today. The morphological display of anatomical cross-sections has already reached a high standard and is characterized by the realization of real-time compound scanners. Automated water-bath scanners, either compound or single pass, are intended to help ultrasound to play a more dominant role in mammography, especially as a screening method, although at present it cannot be used very efficiently for this purpose. Considerable progress can be expected with the increasing use of computer facilities, especially digital signal-processing techniques. They should not only further improve image fidelity and intelligibility, but also the comfort of the handling. A major step forward will be the implementation of objective transducer-independent tissue-differentiation facilities into imaging devices. The development of alternative ultrasonic imaging techniques like the transmission camera should increase the scope of ultrasonic application rather than compete with B-scan imaging.

  6. Normal-reflection image

    SciTech Connect

    Huang, L.; Fehler, Michael C.

    2003-01-01

    Common-angle wave-equation migration using the double-square-root is generally less accurate than the common-shot migration because the wavefield continuation equation for thc former involves additional approximations compared to that for the latter. We present a common-angle wave-equation migration that has the same accuracy as common-shot wave-equation migration. An image obtained from common-angle migration is a four- to five-dimensional output volume for 3D cases. We propose a normal-reflection imaging condition for common-angle migration to produce a 3D output volume for 3D migration. The image is closely related to the normal-reflection coefficients at interfaces. This imaging condition will allow amplitude-preserving migration to generate an image with clear physical meaning.

  7. Confocal coded aperture imaging

    DOEpatents

    Tobin, Jr., Kenneth William; Thomas, Jr., Clarence E.

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  8. History of grating images

    NASA Astrophysics Data System (ADS)

    Iwata, Fujio

    2001-06-01

    Toppan Printing Co., Ltd. originated the name of 'grating image'. It means an image that consists of diffraction grating dots that look similar to the halftone dots of conventional printing. We proposed this new display method using simple gratings in order to enhance the visual effects when illumination is made by a fluorescent lamp. We considered the use of simple gratings as elemental dots, and used a number of elemental dots to display a 2D image. This method produces an effect something like the halftone dots of printing. The grating image technology grows from its starting to become able to produce 3D images and a 3D-video system using an electron beam grating-writing system.

  9. Imaging the glycome

    PubMed Central

    Laughlin, Scott T.; Bertozzi, Carolyn R.

    2009-01-01

    Molecular imaging enables visualization of specific molecules in vivo and without substantial perturbation to the target molecule's environment. Glycans are appealing targets for molecular imaging but are inaccessible with conventional approaches. Classic methods for monitoring glycans rely on molecular recognition with probe-bearing lectins or antibodies, but these techniques are not well suited to in vivo imaging. In an emerging strategy, glycans are imaged by metabolic labeling with chemical reporters and subsequent ligation to fluorescent probes. This technique has enabled visualization of glycans in living cells and in live organisms such as zebrafish. Molecular imaging with chemical reporters offers a new avenue for probing changes in the glycome that accompany development and disease. PMID:19104067

  10. Metamaterials and imaging

    NASA Astrophysics Data System (ADS)

    Kim, Minkyung; Rho, Junsuk

    2015-11-01

    Resolution of the conventional lens is limited to half the wavelength of the light source by diffraction. In the conventional optical system, evanescent waves, which carry sub-diffraction spatial information, has exponentially decaying amplitude and therefore cannot reach to the image plane. New optical materials called metamaterials have provided new ways to overcome diffraction limit in imaging by controlling the evanescent waves. Such extraordinary electromagnetic properties can be achieved and controlled through arranging nanoscale building blocks appropriately. Here, we review metamaterial-based lenses which offer the new types of imaging components and functions. Perfect lens, superlenses, hyperlenses, metalenses, flat lenses based on metasurfaces, and non-optical lenses including acoustic hyperlens are described. Not all of them offer sub-diffraction imaging, but they provide new imaging mechanisms by controlling and manipulating the path of light. The underlying physics, design principles, recent advances, major limitations and challenges for the practical applications are discussed in this review.

  11. Interventional Molecular Imaging.

    PubMed

    Solomon, Stephen B; Cornelis, Francois

    2016-04-01

    Although molecular imaging has had a dramatic impact on diagnostic imaging, it has only recently begun to be integrated into interventional procedures. Its significant impact is attributed to its ability to provide noninvasive, physiologic information that supplements conventional morphologic imaging. The four major interventional opportunities for molecular imaging are, first, to provide guidance to localize a target; second, to provide tissue analysis to confirm that the target has been reached; third, to provide in-room, posttherapy assessment; and fourth, to deliver targeted therapeutics. With improved understanding and application of(18)F-FDG, as well as the addition of new molecular probes beyond(18)F-FDG, the future holds significant promise for the expansion of molecular imaging into the realm of interventional procedures. PMID:26912443

  12. Hyperspectral light field imaging

    NASA Astrophysics Data System (ADS)

    Leitner, Raimund; Kenda, Andreas; Tortschanoff, Andreas

    2015-05-01

    A light field camera acquires the intensity and direction of rays from a scene providing a 4D representation L(x,y,u,v) called the light field. The acquired light field allows to virtually change view point and selectively re-focus regions algorithmically, an important feature for many applications in imaging and microscopy. The combination with hyperspectral imaging provides the additional advantage that small objects (beads, cells, nuclei) can be categorised using their spectroscopic signatures. Using an inverse fluorescence microscope, a LCTF tuneable filter and a light field setup as a test-bed, fluorescence-marked beads have been imaged and reconstructed into a 4D hyper-spectral image cube LHSI(x,y,z,λ). The results demonstrate the advantages of the approach for fluorescence microscopy providing extended depth of focus (DoF) and the fidelity of hyper-spectral imaging.

  13. Multimodal optical imaging.

    PubMed

    Lawler, Cindy; Suk, William A; Pitt, Bruce R; Croix, Claudette M St; Watkins, Simon C

    2003-08-01

    The recent resurgence of interest in the use of intravital microscopy in lung research is a manifestation of extraordinary progress in visual imaging and optical microscopy. This review evaluates the tools and instrumentation available for a number of imaging modalities, with particular attention to recent technological advances, and addresses recent progress in use of optical imaging techniques in basic pulmonary research.1 Limitations of existing methods and anticipated future developments are also identified. Although there have also been major advances made in the use of magnetic resonance imaging, positron emission tomography, and X-ray and computed tomography to image intact lungs and while these technologies have been instrumental in advancing the diagnosis and treatment of patients, the purpose of this review is to outline developing optical methods that can be evaluated for use in basic research in pulmonary biology.

  14. Social image quality

    NASA Astrophysics Data System (ADS)

    Qiu, Guoping; Kheiri, Ahmed

    2011-01-01

    Current subjective image quality assessments have been developed in the laboratory environments, under controlledconditions, and are dependent on the participation of limited numbers of observers. In this research, with the help of Web 2.0 and social media technology, a new method for building a subjective image quality metric has been developed where the observers are the Internet users. A website with a simple user interface that enables Internet users from anywhere at any time to vote for a better quality version of a pair of the same image has been constructed. Users' votes are recorded and used to rank the images according to their perceived visual qualities. We have developed three rank aggregation algorithms to process the recorded pair comparison data, the first uses a naive approach, the second employs a Condorcet method, and the third uses the Dykstra's extension of Bradley-Terry method. The website has been collecting data for about three months and has accumulated over 10,000 votes at the time of writing this paper. Results show that the Internet and its allied technologies such as crowdsourcing offer a promising new paradigm for image and video quality assessment where hundreds of thousands of Internet users can contribute to building more robust image quality metrics. We have made Internet user generated social image quality (SIQ) data of a public image database available online (http://www.hdri.cs.nott.ac.uk/siq/) to provide the image quality research community with a new source of ground truth data. The website continues to collect votes and will include more public image databases and will also be extended to include videos to collect social video quality (SVQ) data. All data will be public available on the website in due course.

  15. Statistical analysis of biophoton image

    NASA Astrophysics Data System (ADS)

    Wang, Susheng

    1998-08-01

    A photon count image system has been developed to obtain the ultra-weak bioluminescence image. The photon images of some plant, animal and human hand have been detected. The biophoton image is different from usual image. In this paper three characteristics of biophoton image are analyzed. On the basis of these characteristics the detected probability and detected limit of photon count image system, detected limit of biophoton image have been discussed. These researches provide scientific basis for experiments design and photon image processing.

  16. Groupwise Image Registration Guided by a Dynamic Digraph of Images.

    PubMed

    Tang, Zhenyu; Fan, Yong

    2016-04-01

    For groupwise image registration, graph theoretic methods have been adopted for discovering the manifold of images to be registered so that accurate registration of images to a group center image can be achieved by aligning similar images that are linked by the shortest graph paths. However, the image similarity measures adopted to build a graph of images in the extant methods are essentially pairwise measures, not effective for capturing the groupwise similarity among multiple images. To overcome this problem, we present a groupwise image similarity measure that is built on sparse coding for characterizing image similarity among all input images and build a directed graph (digraph) of images so that similar images are connected by the shortest paths of the digraph. Following the shortest paths determined according to the digraph, images are registered to a group center image in an iterative manner by decomposing a large anatomical deformation field required to register an image to the group center image into a series of small ones between similar images. During the iterative image registration, the digraph of images evolves dynamically at each iteration step to pursue an accurate estimation of the image manifold. Moreover, an adaptive dictionary strategy is adopted in the groupwise image similarity measure to ensure fast convergence of the iterative registration procedure. The proposed method has been validated based on both simulated and real brain images, and experiment results have demonstrated that our method was more effective for learning the manifold of input images and achieved higher registration accuracy than state-of-the-art groupwise image registration methods.

  17. Building an Authentic Leadership Image

    ERIC Educational Resources Information Center

    Criswell, Corey; Campbell, David

    2008-01-01

    Your image can be either an asset or a liability for you as a leader. Image building is neither superficial nor unimportant. It's not about creating a false image, but recognizing genuine aspects of yourself that should be coming across to other people--but aren't. Crafting your image requires you to gain a clear picture of the image people are…

  18. Digital Image Representation and Access.

    ERIC Educational Resources Information Center

    Mostafa, Javed

    1994-01-01

    Reviews the literature relating to the development and application of modern imaging technology between 1987 and 1993. Highlights include image representation, including image data, compression, and image formats; and image access, including indexing and modeling, user interface design, and distributed access. (143 references) (LRW)

  19. Adaptive wiener image restoration kernel

    DOEpatents

    Yuan, Ding

    2007-06-05

    A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.

  20. Medical imaging, PACS, and imaging informatics: retrospective.

    PubMed

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  1. Medical imaging, PACS, and imaging informatics: retrospective.

    PubMed

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  2. Using Google Reverse Image Search to Decipher Biological Images.

    PubMed

    Mamrosh, Jennifer L; Moore, David D

    2015-07-01

    Despite the range of tasks performed by biological image-processing software, current versions cannot find matches for the image in question among the huge range of biological images that exist in the literature and elsewhere on the Internet. Google's Reverse Image Search is designed for this, and it is a simple, yet powerful tool that can be applied to decipher the contents of biological images. For images that contain unfamiliar or unknown elements, for example, Reverse Image Search can identify similar features in published images. Here we describe general guidelines for using this freely available tool to search published images in National Center for Biotechnology Information's (NCBI's) image database. These guidelines can be applied to a variety of types of biological images, including immunohistochemistry and electron microscopy, to facilitate straightforward and rapid searches using Google's Reverse Image Search.

  3. Mirror Image Agnosia

    PubMed Central

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor

    2014-01-01

    Background: Gnosis is a modality-specific ability to access semantic knowledge of an object or stimulus in the presence of normal perception. Failure of this is agnosia or disorder of recognition. It can be highly selective within a mode. self-images are different from others as none has seen one's own image except in reflection. Failure to recognize this image can be labeled as mirror image agnosia or Prosopagnosia for reflected self-image. Whereas mirror agnosia is a well-recognized situation where the person while looking at reflected images of other objects in the mirror he imagines that the objects are in fact inside the mirror and not outside. Material and Methods:: Five patients, four females, and one male presented with failure to recognize reflected self-image, resulting in patients conversing with the image as a friend, fighting because the person in mirror is wearing her nose stud, suspecting the reflected self-image to be an intruder; but did not have prosopagnosia for others faces, non living objects on self and also apraxias except dressing apraxia in one patient. This phenomena is new to our knowledge. Results: Mirror image agnosia is an unique phenomena which is seen in patients with parietal lobe atrophy without specificity to a category of dementing illness and seems to disappear as disease advances. Discussion: Reflected self-images probably have a specific neural substrate that gets affected very early in posterior dementias specially the ones which predominantly affect the right side. At that phase most patients are mistaken as suffering from psychiatric disorder as cognition is moderately preserved. As disease becomes more widespread this symptom becomes masked. A high degree of suspicion and proper assessment might help physicians to recognize the organic cause of the symptom so that early therapeutic interventions can be initiated. Further assessment of the symptom with FMRI and PET scan is likely to solve the mystery of how brain handles

  4. Basic image analysis and manipulation in ImageJ.

    PubMed

    Hartig, Sean M

    2013-01-01

    Image analysis methods have been developed to provide quantitative assessment of microscopy data. In this unit, basic aspects of image analysis are outlined, including software installation, data import, image processing functions, and analytical tools that can be used to extract information from microscopy data using ImageJ. Step-by-step protocols for analyzing objects in a fluorescence image and extracting information from two-color tissue images collected by bright-field microscopy are included.

  5. Multifunctional imaging nanoprobes

    PubMed Central

    Jarzyna, Peter A.; Gianella, Anita; Skajaa, Torjus; Knudsen, Gitte; Deddens, Lisette H.; Cormode, David P.; Fayad, Zahi A.; Mulder, Willem J. M.

    2011-01-01

    Multifunctional imaging nanoprobes have proven to be of great value in the research of pathological processes, as well as the assessment of the delivery, fate, and therapeutic potential of encapsulated drugs. Moreover, such probes may potentially support therapy schemes by the exploitation of their own physical properties, e.g., through thermal ablation. This review will present four classes of nanoparticulate imaging probes used in this area: multifunctional probes (1) that can be tracked with at least three different and complementary imaging techniques, (2) that carry a drug and have bimodal imaging properties, (3) that are employed for nucleic acid delivery and imaging, and (4) imaging probes with capabilities that can be used for thermal ablation. We will highlight several examples where the suitable combination of different (bio)materials like polymers, inorganic nanocrystals, fluorophores, proteins/peptides, and lipids can be tailored to manufacture multifunctional probes to accomplish nanomaterials of each of the aforementioned classes. Moreover, it will be demonstrated how multimodality imaging approaches improve our understanding of in vivo nanoparticle behavior and efficacy at different levels, ranging from the subcellular level to the whole body. PMID:20039335

  6. Imaging of Physeal Injury

    PubMed Central

    Jawetz, Shari T.; Shah, Parina H.; Potter, Hollis G.

    2015-01-01

    Context: As the intensity of youth participation in athletic activities continues to rise, the number of overuse injuries has also increased. A subset of overuse injuries involves the physis, which is extremely susceptible to injury. This paper aims to review the utility of the various imaging modalities in the diagnosis and management of physeal injuries in the skeletally immature population. Evidence Acquisition: A search for the keywords pediatric, physis, growth plate, x-ray, computed tomography, magnetic resonance imaging, and overuse injury was performed using the PubMed database. No limits were set for the years of publication. Articles were reviewed for relevance with an emphasis on the imaging of growth plate injuries. Study Design: Retrospective literature review. Level of Evidence: Level 4. Results: Three major imaging modalities (radiographs, computed tomography, and magnetic resonance imaging) complement each other in the evaluation of pediatric patients with overuse injuries. However, magnetic resonance imaging is the only modality that offers direct visualization of the physis, and it also offers the best soft tissue contrast for evaluating the other periarticular structures for concomitant injury. Conclusion: Imaging has an important role in the diagnosis of physeal injuries, and the information it provides has a tremendous impact on the subsequent management of these patients. PMID:25984260

  7. A Compact Polarization Imager

    NASA Technical Reports Server (NTRS)

    Thompson, Karl E.; Rust, David M.; Chen, Hua

    1995-01-01

    A new type of image detector has been designed to analyze the polarization of light simultaneously at all picture elements (pixels) in a scene. The Integrated Dual Imaging Detector (IDID) consists of a polarizing beamsplitter bonded to a custom-designed charge-coupled device with signal-analysis circuitry, all integrated on a silicon chip. The IDID should simplify the design and operation of imaging polarimeters and spectroscopic imagers used, for example, in atmospheric and solar research. Other applications include environmental monitoring and robot vision. Innovations in the IDID include two interleaved 512 x 1024 pixel imaging arrays (one for each polarization plane), large dynamic range (well depth of 10(exp 6) electrons per pixel), simultaneous readout and display of both images at 10(exp 6) pixels per second, and on-chip analog signal processing to produce polarization maps in real time. When used with a lithium niobate Fabry-Perot etalon or other color filter that can encode spectral information as polarization, the IDID can reveal tiny differences between simultaneous images at two wavelengths.

  8. Image Analysis of Foods.

    PubMed

    Russ, John C

    2015-09-01

    The structure of foods, both natural and processed ones, is controlled by many variables ranging from biology to chemistry and mechanical forces. The structure also controls many of the properties of the food, including consumer acceptance, taste, mouthfeel, appearance, and so on, and nutrition. Imaging provides an important tool for measuring the structure of foods. This includes 2-dimensional (2D) images of surfaces and sections, for example, viewed in a microscope, as well as 3-dimensional (3D) images of internal structure as may be produced by confocal microscopy, or computed tomography and magnetic resonance imaging. The use of images also guides robotics for harvesting and sorting. Processing of images may be needed to calibrate colors, reduce noise, enhance detail, and delineate structure and dimensions. Measurement of structural information such as volume fraction and internal surface areas, as well as the analysis of object size, location, and shape in both 2- and 3-dimensional images is illustrated and described, with primary references and examples from a wide range of applications. PMID:26270611

  9. Polarization transfer NMR imaging

    DOEpatents

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  10. Quantum image matching

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Dang, Yijie; Wang, Jian

    2016-09-01

    Quantum image processing (QIP) means the quantum-based methods to speed up image processing algorithms. Many quantum image processing schemes claim that their efficiency is theoretically higher than their corresponding classical schemes. However, most of them do not consider the problem of measurement. As we all know, measurement will lead to collapse. That is to say, executing the algorithm once, users can only measure the final state one time. Therefore, if users want to regain the results (the processed images), they must execute the algorithms many times and then measure the final state many times to get all the pixels' values. If the measurement process is taken into account, whether or not the algorithms are really efficient needs to be reconsidered. In this paper, we try to solve the problem of measurement and give a quantum image matching algorithm. Unlike most of the QIP algorithms, our scheme interests only one pixel (the target pixel) instead of the whole image. It modifies the probability of pixels based on Grover's algorithm to make the target pixel to be measured with higher probability, and the measurement step is executed only once. An example is given to explain the algorithm more vividly. Complexity analysis indicates that the quantum scheme's complexity is O(2n) in contradistinction to the classical scheme's complexity O(2^{2n+2m}), where m and n are integers related to the size of images.

  11. Vision without the Image

    PubMed Central

    Chen, Bo; Perona, Pietro

    2016-01-01

    Novel image sensors transduce the stream of photons directly into asynchronous electrical pulses, rather than forming an image. Classical approaches to vision start from a good quality image and therefore it is tempting to consider image reconstruction as a first step to image analysis. We propose that, instead, one should focus on the task at hand (e.g., detection, tracking or control) and design algorithms that compute the relevant variables (class, position, velocity) directly from the stream of photons. We discuss three examples of such computer vision algorithms and test them on simulated data from photon-counting sensors. Such algorithms work just-in-time, i.e., they complete classification, search and tracking with high accuracy as soon as the information is sufficient, which is typically before there are enough photons to form a high-quality image. We argue that this is particularly useful when the photons are few or expensive, e.g., in astronomy, biological imaging, surveillance and night vision. PMID:27058543

  12. Vision without the Image.

    PubMed

    Chen, Bo; Perona, Pietro

    2016-01-01

    Novel image sensors transduce the stream of photons directly into asynchronous electrical pulses, rather than forming an image. Classical approaches to vision start from a good quality image and therefore it is tempting to consider image reconstruction as a first step to image analysis. We propose that, instead, one should focus on the task at hand (e.g., detection, tracking or control) and design algorithms that compute the relevant variables (class, position, velocity) directly from the stream of photons. We discuss three examples of such computer vision algorithms and test them on simulated data from photon-counting sensors. Such algorithms work just-in-time, i.e., they complete classification, search and tracking with high accuracy as soon as the information is sufficient, which is typically before there are enough photons to form a high-quality image. We argue that this is particularly useful when the photons are few or expensive, e.g., in astronomy, biological imaging, surveillance and night vision. PMID:27058543

  13. Imaging with Raman spectroscopy.

    PubMed

    Zhang, Yin; Hong, Hao; Cai, Weibo

    2010-09-01

    Raman spectroscopy, based on the inelastic scattering of a photon, has been widely used as an analytical tool in many research fields. Recently, Raman spectroscopy has also been explored for biomedical applications (e.g. cancer diagnosis) because it can provide detailed information on the chemical composition of cells and tissues. For imaging applications, several variations of Raman spectroscopy have been developed to enhance its sensitivity. This review article will provide a brief summary of Raman spectroscopy-based imaging, which includes the use of coherent anti-Stokes Raman spectroscopy (CARS, primarily used for imaging the C-H bond in lipids), surface-enhanced Raman spectroscopy (SERS, for which a variety of nanoparticles can be used as contrast agents), and single-walled carbon nanotubes (SWNTs, with its intrinsic Raman signal). The superb multiplexing capability of SERS-based Raman imaging can be extremely powerful in future research where different agents can be attached to different Raman tags to enable the interrogation of multiple biological events simultaneously in living subjects. The primary limitations of Raman imaging in humans are those also faced by other optical techniques, in particular limited tissue penetration. Over the last several years, Raman spectroscopy imaging has advanced significantly and many critical proof-of-principle experiments have been successfully carried out. It is expected that imaging with Raman Spectroscopy will continue to be a dynamic research field over the next decade.

  14. Scorpion image segmentation system

    NASA Astrophysics Data System (ADS)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  15. Sensor image prediction techniques

    NASA Astrophysics Data System (ADS)

    Stenger, A. J.; Stone, W. R.; Berry, L.; Murray, T. J.

    1981-02-01

    The preparation of prediction imagery is a complex, costly, and time consuming process. Image prediction systems which produce a detailed replica of the image area require the extensive Defense Mapping Agency data base. The purpose of this study was to analyze the use of image predictions in order to determine whether a reduced set of more compact image features contains enough information to produce acceptable navigator performance. A job analysis of the navigator's mission tasks was performed. It showed that the cognitive and perceptual tasks he performs during navigation are identical to those performed for the targeting mission function. In addition, the results of the analysis of his performance when using a particular sensor can be extended to the analysis of this mission tasks using any sensor. An experimental approach was used to determine the relationship between navigator performance and the type of amount of information in the prediction image. A number of subjects were given image predictions containing varying levels of scene detail and different image features, and then asked to identify the predicted targets in corresponding dynamic flight sequences over scenes of cultural, terrain, and mixed (both cultural and terrain) content.

  16. Polarization Imaging Apparatus

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin K.; Chen, Qiushui

    2010-01-01

    A polarization imaging apparatus has shown promise as a prototype of instruments for medical imaging with contrast greater than that achievable by use of non-polarized light. The underlying principles of design and operation are derived from observations that light interacts with tissue ultrastructures that affect reflectance, scattering, absorption, and polarization of light. The apparatus utilizes high-speed electro-optical components for generating light properties and acquiring polarization images through aligned polarizers. These components include phase retarders made of OptoCeramic (registered TradeMark) material - a ceramic that has a high electro-optical coefficient. The apparatus includes a computer running a program that implements a novel algorithm for controlling the phase retarders, capturing image data, and computing the Stokes polarization images. Potential applications include imaging of superficial cancers and other skin lesions, early detection of diseased cells, and microscopic analysis of tissues. The high imaging speed of this apparatus could be beneficial for observing live cells or tissues, and could enable rapid identification of moving targets in astronomy and national defense. The apparatus could also be used as an analysis tool in material research and industrial processing.

  17. Spaceborne electronic imaging systems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for the design of the spaceborne elements of electronic imaging systems are presented. A spaceborne electronic imaging system is defined as a device that collects energy in some portion of the electromagnetic spectrum with detector(s) whose direct output is an electrical signal that can be processed (using direct transmission or delayed transmission after recording) to form a pictorial image. This definition encompasses both image tube systems and scanning point-detector systems. The intent was to collect the design experience and recommended practice of the several systems possessing the common denominator of acquiring images from space electronically and to maintain the system viewpoint rather than pursuing specialization in devices. The devices may be markedly different physically, but each was designed to provide a particular type of image within particular limitations. Performance parameters which determine the type of system selected for a given mission and which influence the design include: Sensitivity, Resolution, Dynamic range, Spectral response, Frame rate/bandwidth, Optics compatibility, Image motion, Radiation resistance, Size, Weight, Power, and Reliability.

  18. Three dimensional ultrasonic imaging

    SciTech Connect

    Thomas, G. H.; Benson, S.; Crawford, S.

    1993-03-01

    Ultrasonic nondestructive evaluation techniques interrogate components with high frequency acoustic energy. A transducer generates the acoustic energy and converts acoustic energy to electrical signals. The acoustic energy is reflected by abrupt changes in modulus and/or density which can be caused by a defect. Thus defects reflect the ultrasonic energy which is converted into electrical signals. Ultrasonic evaluation typically provides a two dimensional image of internal defects. These images are either planar views (C-scans) or cross-sectional views (B-scans). The planar view is generated by raster scanning an ultrasonic transducer over the component and capturing the amplitude of internal reflections. Depth information is generally ignored. The cross-sectional view is generated by scanning the transducer along a single line and capturing the amplitude and time of flight for each internal reflection. The amplitude and time of flight information is converted into an image of the cross section of the component where the scan was performed. By fusing the C-scan information with the B-scan information a three dimension image of the internal structure of the component can be produced. The three dimensional image can be manipulated by rotating and slicing to produce the optimal view of the internal structure. The high frequency ultrasonic energy requires a liquid coupling media and thus applications for imaging in liquid environments are well suited to ultrasonic techniques. Examples of potential ultrasonic imaging applications are: Inside liquid filled tanks, inside the human body, and underwater.

  19. Infrared imaging of comets

    NASA Technical Reports Server (NTRS)

    Telesco, Charles M.

    1988-01-01

    Thermal infrared imaging of comets provides fundamental information about the distribution of dust in their comae and tails. The imaging program at NASA Marshall Space Flight Center (MSFC) uses a unique 20-pixel bolometer array that was developed to image comets at 8 to 30 micrometer. These images provide the basis for: (1) characterizing the composition and size distribution of particles, (2) determining the mass-loss rates from cometary nuclei, and (3) describing the dynamics of the interaction between the dust and the solar radiation. Since the array became operational in 1985, researchers have produced a unique series of IR images of comets Giacobini-Zinner (GZ), Halley, and Wilson. That of GZ was the first groundbased thermal image ever made of a comet and was used to construct, with visible observations, an albedo map. Those data and dynamical analyses showed that GZ contained a population of large (approximately 300 micrometer), fluffy dust grains that formed a distinict inner tail. The accumulating body of images of various comets has also provided a basis for fruitfully intercomparing comet properties. Researchers also took advantage of the unique capabilities of the camera to resolve the inner, possible protoplanetary, disk of the star Beta Pictoris, while not a comet research program, that study is a fruitful additional application of the array to solar system astronomy.

  20. A New Approach for Image Depth from a Single Image

    NASA Astrophysics Data System (ADS)

    Leng, Jiaojiao; Zhao, Tongzhou; Li, Hui; Li, Xiang

    This paper presents a new method called depth from defocus (DFD) to obtain the image depth from a single still image. The traditional approaches always depend on the local features which are insufficient for estimation or need multiple images that cause a large amount of computation. The reverse heat equation is applied to get the defocused image. Then we use confidence interval to segment the defocused image and obtain a hierarchical image with guided image filter. The method need only a single image so it overcomes the massive computation and enhances the computation effect. The result shows that the DFD method is validate and efficient.

  1. Multivariate Chemical Image Fusion of Vibrational Spectroscopic Imaging Modalities.

    PubMed

    Gowen, Aoife A; Dorrepaal, Ronan M

    2016-01-01

    Chemical image fusion refers to the combination of chemical images from different modalities for improved characterisation of a sample. Challenges associated with existing approaches include: difficulties with imaging the same sample area or having identical pixels across microscopic modalities, lack of prior knowledge of sample composition and lack of knowledge regarding correlation between modalities for a given sample. In addition, the multivariate structure of chemical images is often overlooked when fusion is carried out. We address these challenges by proposing a framework for multivariate chemical image fusion of vibrational spectroscopic imaging modalities, demonstrating the approach for image registration, fusion and resolution enhancement of chemical images obtained with IR and Raman microscopy. PMID:27384549

  2. Advanced Imaging Algorithms for Radiation Imaging Systems

    SciTech Connect

    Marleau, Peter

    2015-10-01

    The intent of the proposed work, in collaboration with University of Michigan, is to develop the algorithms that will bring the analysis from qualitative images to quantitative attributes of objects containing SNM. The first step to achieving this is to develop an indepth understanding of the intrinsic errors associated with the deconvolution and MLEM algorithms. A significant new effort will be undertaken to relate the image data to a posited three-dimensional model of geometric primitives that can be adjusted to get the best fit. In this way, parameters of the model such as sizes, shapes, and masses can be extracted for both radioactive and non-radioactive materials. This model-based algorithm will need the integrated response of a hypothesized configuration of material to be calculated many times. As such, both the MLEM and the model-based algorithm require significant increases in calculation speed in order to converge to solutions in practical amounts of time.

  3. Trends in PET imaging

    SciTech Connect

    Moses, William W.

    2000-11-01

    Positron Emission Tomography (PET) imaging is a well established method for obtaining information on the status of certain organs within the human body or in animals. This paper presents an overview of recent trends PET instrumentation. Significant effort is being expended to develop new PET detector modules, especially those capable of measuring depth of interaction. This is aided by recent advances in scintillator and pixellated photodetector technology. The other significant area of effort is development of special purpose PET cameras (such as for imaging breast cancer or small animals) or cameras that have the ability to image in more than one modality (such as PET / SPECT or PET / X-Ray CT).

  4. Imaging the lymphatic system.

    PubMed

    Munn, Lance L; Padera, Timothy P

    2014-11-01

    Visualization of the lymphatic system is clinically necessary during diagnosis or treatment of many conditions and diseases; it is used for identifying and monitoring lymphedema, for detecting metastatic lesions during cancer staging and for locating lymphatic structures so they can be spared during surgical procedures. Imaging lymphatic anatomy and function also plays an important role in experimental studies of lymphatic development and function, where spatial resolution and accessibility are better. Here, we review technologies for visualizing and imaging the lymphatic system for clinical applications. We then describe the use of lymphatic imaging in experimental systems as well as some of the emerging technologies for improving these methodologies.

  5. Scanning computed confocal imager

    DOEpatents

    George, John S.

    2000-03-14

    There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.

  6. Imaging the lymphatic system

    PubMed Central

    Munn, Lance L.; Padera, Timothy P.

    2014-01-01

    Visualization of the lymphatic system is clinically necessary during diagnosis or treatment of many conditions and diseases; it is used for identifying and monitoring lymphedema, for detecting metastatic lesions during cancer staging and for locating lymphatic structures so they can be spared during surgical procedures. Imaging lymphatic anatomy and function also plays an important role in experimental studies of lymphatic development and function, where spatial resolution and accessibility are better. Here, we review technologies for visualizing and imaging the lymphatic system for clinical applications. We then describe the use of lymphatic imaging in experimental systems as well as some of the emerging technologies for improving these methodologies. PMID:24956510

  7. Myocardial imaging. Coxsackie myocarditis

    SciTech Connect

    Wells, R.G.; Ruskin, J.A.; Sty, J.R.

    1986-09-01

    A 3-week-old male neonate with heart failure associated with Coxsackie virus infection was imaged with Tc-99m PYP and TI-201. The abnormal imaging pattern suggested myocardial infarction. Autopsy findings indicated that the cause was myocardial necrosis secondary to an acute inflammatory process. Causes of abnormal myocardial uptake of Tc-99m PYP in pediatrics include infarction, myocarditis, cardiomyopathy, bacterial endocarditis, and trauma. Myocardial imaging cannot provide a specific cause diagnosis. Causes of myocardial infarction in pediatrics are listed in Table 1.

  8. Tendon and ligament imaging

    PubMed Central

    Hodgson, R J; O'Connor, P J; Grainger, A J

    2012-01-01

    MRI and ultrasound are now widely used for the assessment of tendon and ligament abnormalities. Healthy tendons and ligaments contain high levels of collagen with a structured orientation, which gives rise to their characteristic normal imaging appearances as well as causing particular imaging artefacts. Changes to ligaments and tendons as a result of disease and injury can be demonstrated using both ultrasound and MRI. These have been validated against surgical and histological findings. Novel imaging techniques are being developed that may improve the ability of MRI and ultrasound to assess tendon and ligament disease. PMID:22553301

  9. Sparse Image Format

    2007-04-12

    The Sparse Image Format (SIF) is a file format for storing spare raster images. It works by breaking an image down into tiles. Space is savid by only storing non-uniform tiles, i.e. tiles with at least two different pixel values. If a tile is completely uniform, its common pixel value is stored instead of the complete tile raster. The software is a library in the C language used for manipulating files in SIF format. Itmore » supports large files (> 2GB) and is designed to build in Windows and Linux environments.« less

  10. Lanczos Image Resampling Benchmark

    2007-09-30

    This software abstracts a simple computational kernel from SWarp, an astrometric image resampling code. The input is a grayscale PGM image file (8-bit or 16-bit integer) and the output is a higher-resolution grayscale image file (8-bit or 16-bit integer, or 32-bit floating point). The user selects a scaling factor to be applied and a convolution kernel type to be used during resampling (using 1, 16, 36, 64 input pixels to generate each output pixel). Themore » resampling is performed using the OpenGL API and can run on a PC with GPU (graphics processing unit) hardware.« less

  11. Sparse Image Format

    SciTech Connect

    Eads, Damian Ryan

    2007-04-12

    The Sparse Image Format (SIF) is a file format for storing spare raster images. It works by breaking an image down into tiles. Space is savid by only storing non-uniform tiles, i.e. tiles with at least two different pixel values. If a tile is completely uniform, its common pixel value is stored instead of the complete tile raster. The software is a library in the C language used for manipulating files in SIF format. It supports large files (> 2GB) and is designed to build in Windows and Linux environments.

  12. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  13. Lanczos Image Resampling Benchmark

    SciTech Connect

    Cohen, J.

    2007-09-30

    This software abstracts a simple computational kernel from SWarp, an astrometric image resampling code. The input is a grayscale PGM image file (8-bit or 16-bit integer) and the output is a higher-resolution grayscale image file (8-bit or 16-bit integer, or 32-bit floating point). The user selects a scaling factor to be applied and a convolution kernel type to be used during resampling (using 1, 16, 36, 64 input pixels to generate each output pixel). The resampling is performed using the OpenGL API and can run on a PC with GPU (graphics processing unit) hardware.

  14. Imaging in drug development.

    PubMed

    Nairne, James; Iveson, Peter B; Meijer, Andreas

    2015-01-01

    Imaging has played an important part in the diagnosis of disease and development of the understanding of the underlying disease mechanisms and is now poised to make an impact in the development of new pharmaceuticals. This chapter discusses the underlying technologies that make the field ready for this challenge. In particular, the potentials of magnetic resonance imaging and functional magnetic resonance imaging are outlined, including the new methods developed to provide additional information from the scans carried out. The field of nuclear medicine has seen a rapid increase in interest as advances in radiochemistry have enabled a wide range of new radiotracers to be synthesised. PMID:25727706

  15. Imaging By Ultrasound

    PubMed Central

    Kidney, Maria R.

    1986-01-01

    Imaging by ultrasound has dramatically changed the investigation and management of many clinical problems. It is useful in many different parts of the body. In this brief discussion, the following topics are considered: hepatic lesions, bleeding in early pregnancy, gynecological pathology (adnexal lesions), aortic aneurysms, thyroid nodules and scrotal masses. The usefulness of duplex carotid sonography, which combines ultrasonic imaging and Doppler studies, is also discussed. Other topics (gallstones, biliary obstruction, renal calculi, hydronephrosis) are discussed in the appropriate sections. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:21267202

  16. Overview of imaging science.

    PubMed Central

    Beck, R N

    1993-01-01

    The traditional disciplines of science are grounded in the observation and measurement of object properties. Recent advances in digital computer technology have spawned numerous computer-based imaging systems that extend the range of observation and measurement into realms that would otherwise be inaccessible. More importantly, the same set of principles, concepts, strategies, and methods may be used to address the generic issues involved in the production and use of all digitized images. Recognition of this fact is giving rise to the new discipline of imaging science, with its own intellectual agenda. PMID:11607430

  17. Imaging Supersonic Aircraft Shock Waves

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.; Stacy, Kathryn; Vieira, Gerald J.; Haering, Edward A., Jr.; Bowers, Albion H.

    1997-01-01

    A schlieren imaging system that uses the sun as a light source was developed it) obtain direct flow-field images of shock waves of aircraft in flight. This system was used to study how shock waves evolve to form sonic booms. The image quality obtained was limited by several optical and mechanical factors. Converting the photographs to digital images and applying digital image-processing techniques greatly improved the final quality of the images and more clearly showed the shock structures.

  18. Quantum ghost imaging through turbulence

    SciTech Connect

    Dixon, P. Ben; Howland, Gregory A.; Howell, John C.; Chan, Kam Wai Clifford; O'Sullivan-Hale, Colin; Rodenburg, Brandon; Hardy, Nicholas D.; Shapiro, Jeffrey H.; Simon, D. S.; Sergienko, A. V.; Boyd, R. W.

    2011-05-15

    We investigate the effect of turbulence on quantum ghost imaging. We use entangled photons and demonstrate that for a specific experimental configuration the effect of turbulence can be greatly diminished. By decoupling the entangled photon source from the ghost-imaging central image plane, we are able to dramatically increase the ghost-image quality. When imaging a test pattern through turbulence, this method increases the imaged pattern visibility from V=0.15{+-}0.04 to 0.42{+-}0.04.

  19. Imaging and Analytics: The changing face of Medical Imaging

    NASA Astrophysics Data System (ADS)

    Foo, Thomas

    There have been significant technological advances in imaging capability over the past 40 years. Medical imaging capabilities have developed rapidly, along with technology development in computational processing speed and miniaturization. Moving to all-digital, the number of images that are acquired in a routine clinical examination has increased dramatically from under 50 images in the early days of CT and MRI to more than 500-1000 images today. The staggering number of images that are routinely acquired poses significant challenges for clinicians to interpret the data and to correctly identify the clinical problem. Although the time provided to render a clinical finding has not substantially changed, the amount of data available for interpretation has grown exponentially. In addition, the image quality (spatial resolution) and information content (physiologically-dependent image contrast) has also increased significantly with advances in medical imaging technology. On its current trajectory, medical imaging in the traditional sense is unsustainable. To assist in filtering and extracting the most relevant data elements from medical imaging, image analytics will have a much larger role. Automated image segmentation, generation of parametric image maps, and clinical decision support tools will be needed and developed apace to allow the clinician to manage, extract and utilize only the information that will help improve diagnostic accuracy and sensitivity. As medical imaging devices continue to improve in spatial resolution, functional and anatomical information content, image/data analytics will be more ubiquitous and integral to medical imaging capability.

  20. Population imaging in neuroepidemiology.

    PubMed

    Vernooij, M W; de Groot, M; Bos, D

    2016-01-01

    Neuroepidemiologic studies have traditionally focused on studying associations between determinants and neurologic outcomes, while treating the pathway in between both as a "black box." With the rise of noninvasive, advanced neuroimaging techniques, it has become possible to directly study brain changes occurring in this "black box." This importantly aids to unravel disease pathways, find new markers of disease, or identify subjects at risk of disease. Imaging in neuroepidemiologic studies is also called population neuroimaging. This chapter discusses the rationale of population neuroimaging, the different imaging modalities that can be applied, and the various ways to extract visual or quantitative information from these images. Population neuroimaging is a fast-progressing field, partly due to new techniques and partly due to the growing need for collaboration, harmonization, and standardization among studies. Considerations for future applications of imaging in neuroepidemiology are discussed against this background. PMID:27637953

  1. Transvaginal ultrasound (image)

    MedlinePlus

    Transvaginal ultrasound is a method of imaging the genital tract in females. A hand held probe is inserted directly ... vaginal cavity to scan the pelvic structures, while ultrasound pictures are viewed on a monitor. The test ...

  2. Abdominal ultrasound (image)

    MedlinePlus

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X-ray, MRI, ... it has its place as a diagnostic tool. Ultrasound scans use high frequency sound waves to produce ...

  3. Image simulation using LOCUS

    SciTech Connect

    Strachan, J.D.; Roberts, J.A.

    1989-09-01

    The LOCUS data base program has been used to simulate images and to solve simple equations. This has been accomplished by making each record (which normally would represent a data entry)represent sequenced or random number pairs.

  4. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... some MRI exams, intravenous (IV) drugs, such as gadolinium-based contrast agents (GBCAs) are used to change the contrast of the MR image. Gadolinium-based contrast agents are rare earth metals that ...

  5. Mercuric iodine imaging detectors

    SciTech Connect

    Ortale, C.; Padgett, L.; Schnepple, W.F.

    1982-01-01

    Linear and two-dimensional monolithic arrays of different configurations have been fabricated using photolithographic techniques. The fabrication technology, electronic setup, and pinhole imaging experiments are described. Spatial resolutions of 1 to 2 mm have been achieved.

  6. Imaging Fourier transform spectrometer

    SciTech Connect

    Bennett, C.L.

    1993-09-13

    This invention is comprised of an imaging Fourier transform spectrometer having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer.

  7. Candida, fluorescent stain (image)

    MedlinePlus

    This microscopic film shows a fluorescent stain of Candida. Candida is a yeast (fungus) that causes mild disease, but in immunocompromised individuals it may cause life-threatening illness. (Image ...

  8. Dust mite (image)

    MedlinePlus

    ... is a magnified photograph of a dust mite. Mites are carriers (vectors) of many important diseases including typhus (scrub and murine) and rickettsialpox. (Image courtesy of the Centers for Disease Control and ...

  9. Perfect imaging without refraction?

    NASA Astrophysics Data System (ADS)

    Blaikie, R. J.

    2011-12-01

    Recent work suggesting that ‘perfect’ far-field imaging is possible using Maxwell's fish-eye lens (Leonhardt 2009 New J. Phys. 11 093040) has raised a number of questions and controversies about the nature of imaging and field localization in inhomogeneous media. In this brief paper we present analogous results for a purely reflector-based imaging system—an elliptical cavity. With a source at one focus of the ellipse we show that sub-wavelength field localization can be achieved at the other focus when an active ‘drain’ is present there, but not without it. Does this show that far-field ‘perfect’ imaging is possible even without refraction (negative or positive)? Unfortunately not, giving further evidence that these are solely drain-induced effects.

  10. Magnetic Particle Imaging

    SciTech Connect

    Minard, Kevin R.

    2010-02-01

    Rapid advances in the synthesis of superparamagnetic nanoparticles has stimulated widespread interest in their use as contrast agents for visualizing biological processes with Magnetic Resonance Imaging (MRI). With this approach, strong particle magnetism alters the MRI signal from nearby water protons and this, in turn, affects observed image contrast. Magnetic particle detection with MRI is therefore indirect and suffers from several associated problems, including poor quantification and tissuedependent performance. Magnetic Particle Imaging (MPI) overcomes these by directly measuring the amount of superparamagnetic material at each location. Mass sensitivity, spatial resolution, and imaging time is also comparable to or better than that achieved with MRI. Moreover, MPI is relatively inexpensive, meets all current safety guidelines, is quantitative, provides unambiguous contrast with tissue-independent performance, and can detect lower particle concentrations. Here, the basic principles behind MPI are described, factors affecting sensitivity and resolution are discussed, and potential utility for biomedical use is examined.

  11. Overview of Image Reconstruction

    SciTech Connect

    Marr, R. B.

    1980-04-01

    Image reconstruction (or computerized tomography, etc.) is any process whereby a function, f, on Rn is estimated from empirical data pertaining to its integrals, ∫f(x) dx, for some collection of hyperplanes of dimension k < n. The paper begins with background information on how image reconstruction problems have arisen in practice, and describes some of the application areas of past or current interest; these include radioastronomy, optics, radiology and nuclear medicine, electron microscopy, acoustical imaging, geophysical tomography, nondestructive testing, and NMR zeugmatography. Then the various reconstruction algorithms are discussed in five classes: summation, or simple back-projection; convolution, or filtered back-projection; Fourier and other functional transforms; orthogonal function series expansion; and iterative methods. Certain more technical mathematical aspects of image reconstruction are considered from the standpoint of uniqueness, consistency, and stability of solution. The paper concludes by presenting certain open problems. 73 references. (RWR)

  12. Image Content Engine (ICE)

    SciTech Connect

    Brase, J M

    2007-03-26

    The Image Content Engine (ICE) is being developed to provide cueing assistance to human image analysts faced with increasingly large and intractable amounts of image data. The ICE architecture includes user configurable feature extraction pipelines which produce intermediate feature vector and match surface files which can then be accessed by interactive relational queries. Application of the feature extraction algorithms to large collections of images may be extremely time consuming and is launched as a batch job on a Linux cluster. The query interface accesses only the intermediate files and returns candidate hits nearly instantaneously. Queries may be posed for individual objects or collections. The query interface prompts the user for feedback, and applies relevance feedback algorithms to revise the feature vector weighting and focus on relevant search results. Examples of feature extraction and both model-based and search-by-example queries are presented.

  13. Handheld THz security imaging

    NASA Astrophysics Data System (ADS)

    Duling, Irl N.

    2016-05-01

    Terahertz energy, with its ability to penetrate clothing and non-conductive materials, has held much promise in the area of security scanning. Millimeter wave systems (300 GHz and below) have been widely deployed. These systems have used full two-dimensional surface imaging, and have resulted in privacy concerns. Pulsed terahertz imaging, can detect the presence of unwanted objects without the need for two-dimensional photographic imaging. With high-speed waveform acquisition it is possible to create handheld tools that can be used to locate anomalies under clothing or headgear looking exclusively at either single point waveforms or cross-sectional images which do not pose a privacy concern. Identification of the anomaly to classify it as a potential threat or a benign object is also possible.

  14. THERMAL NEUTRON BACKSCATTER IMAGING.

    SciTech Connect

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

  15. Color harmonization for images

    NASA Astrophysics Data System (ADS)

    Tang, Zhen; Miao, Zhenjiang; Wan, Yanli; Wang, Zhifei

    2011-04-01

    Color harmonization is an artistic technique to adjust a set of colors in order to enhance their visual harmony so that they are aesthetically pleasing in terms of human visual perception. We present a new color harmonization method that treats the harmonization as a function optimization. For a given image, we derive a cost function based on the observation that pixels in a small window that have similar unharmonic hues should be harmonized with similar harmonic hues. By minimizing the cost function, we get a harmonized image in which the spatial coherence is preserved. A new matching function is proposed to select the best matching harmonic schemes, and a new component-based preharmonization strategy is proposed to preserve the hue distribution of the harmonized images. Our approach overcomes several shortcomings of the existing color harmonization methods. We test our algorithm with a variety of images to demonstrate the effectiveness of our approach.

  16. Roundworm eggs - ascariasis (image)

    MedlinePlus

    Roundworms are the most common type of worm infection. It is estimated that there are 4,000, ... soil. Ingestion of contaminated soil then leads to roundworm infection. (Image courtesy of the Centers for Disease ...

  17. Fresnel Coherent Diffractive Imaging

    NASA Astrophysics Data System (ADS)

    Williams, G. J.; Quiney, H. M.; Dhal, B. B.; Tran, C. Q.; Nugent, K. A.; Peele, A. G.; Paterson, D.; de Jonge, M. D.

    2006-07-01

    We present an x-ray coherent diffractive imaging experiment utilizing a nonplanar incident wave and demonstrate success by reconstructing a nonperiodic gold sample at 24 nm resolution. Favorable effects of the curved beam illumination are identified.

  18. Image segmentation survey

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.

    1982-01-01

    The methodologies and capabilities of image segmentation techniques are reviewed. Single linkage schemes, hybrid linkage schemes, centroid linkage schemes, histogram mode seeking, spatial clustering, and split and merge schemes are addressed.

  19. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  20. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G.; Williams, Timothy; Horton, Keith A.

    2002-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote-sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly.

  1. Imaging of esophageal cancer

    PubMed Central

    Iyer, R; DuBrow, R

    2004-01-01

    Esophageal cancer is a relatively uncommon gastrointestinal malignancy but carries a poor prognosis unless it is of early stage and can be surgically resected for cure. Resectability is determined by the stage of disease at diagnosis and therefore accurate staging is of importance in patients diagnosed with esophageal cancer. Imaging studies that play a role in the evaluation of esophageal cancer include barium studies, computed tomography, endoscopic ultrasound and positron emission tomography. Imaging provides important information regarding the local extent and any distant spread of disease, which in turn helps in determining optimal management for these patients. This review discusses the imaging findings that may be encountered with various imaging modalities in the diagnosis, staging and follow-up of esophageal cancer. PMID:18250021

  2. Pronator quadratus imaging.

    PubMed

    Créteur, V; Madani, A; Brasseur, J-L

    2012-01-01

    Our objectives are to review the sonographic features of the pronator quadratus muscle, to explain the major advantages of ultrasonography as compared to other imaging modalities and to identify the clinical applications in routine wrist ultrasound examination. PMID:22277707

  3. Single yeast cell imaging.

    PubMed

    Wolinski, Heimo; Kohlwein, Sepp D

    2014-01-01

    Microscopic imaging techniques play a pivotal role in the life sciences. Here we describe labeling and imaging methods for live yeast cell imaging. Yeast is an excellent reference organism for biomedical research to investigate fundamental cellular processes, and has gained great popularity also for large-scale imaging-based screens. Methods are described to label live yeast cells with organelle-specific fluorescent dyes or GFP-tagged proteins, and how cells are maintained viable over extended periods of time during microscopy. We point out common pitfalls and potential microscopy artifacts arising from inhomogeneous labeling and depending on cellular physiology. Application and limitation of bleaching techniques to address dynamic processes in the yeast cell are described.

  4. Image enhancement by holography.

    NASA Technical Reports Server (NTRS)

    Stroke, G. W.

    1973-01-01

    The speed of the holographic image deblurring method has recently been further enhanced by a new speed in the realization of the powerful holographic image-deblurring filter. The filter makes it possible to carry out the deblurring, in the optical computer used, in times of the order of one second. The experimental achievements using the holographic image-enhancement method are illustrated with examples ranging from out-of-focus or motion-blurred photographs, including 'amateur' photos recorded on Polaroid film, to the sharpening of the best available electron micrographs of viruses. Images recorded with X-rays, notably from rocket-borne photos of the sun, and out-of-focus photographs from cameras in NASA satellites have been similarly deblurred.

  5. Mosquito, egg raft (image)

    MedlinePlus

    Mosquitoes of the Culex species lay their eggs in the form of egg rafts that float in ... feed on micro-organisms before developing into flying mosquitoes. (Image courtesy of the Centers for Disease Control ...

  6. Mirror image proteins.

    PubMed

    Zhao, Le; Lu, Wuyuan

    2014-10-01

    Proteins composed entirely of unnatural d-amino acids and the achiral amino acid glycine are mirror image forms of their native l-protein counterparts. Recent advances in chemical protein synthesis afford unique and facile synthetic access to domain-sized mirror image d-proteins, enabling protein research to be conducted through 'the looking glass' and in a way previously unattainable. d-Proteins can facilitate structure determination of their native l-forms that are difficult to crystallize (racemic X-ray crystallography); d-proteins can serve as the bait for library screening to ultimately yield pharmacologically superior d-peptide/d-protein therapeutics (mirror-image phage display); d-proteins can also be used as a powerful mechanistic tool for probing molecular events in biology. This review examines recent progress in the application of mirror image proteins to structural biology, drug discovery, and immunology.

  7. Stimulated Raman photoacoustic imaging

    PubMed Central

    Yakovlev, Vladislav V.; Zhang, Hao F.; Noojin, Gary D.; Denton, Michael L.; Thomas, Robert J.; Scully, Marlan O.

    2010-01-01

    Achieving label-free, molecular-specific imaging with high spatial resolution in deep tissue is often considered the grand challenge of optical imaging. To accomplish this goal, significant optical scattering in tissues has to be overcome while achieving molecular specificity without resorting to extrinsic labeling. We demonstrate the feasibility of developing such an optical imaging modality by combining the molecularly specific stimulated Raman excitation with the photoacoustic detection. By employing two ultrashort excitation laser pulses, separated in frequency by the vibrational frequency of a targeted molecule, only the specific vibrational level of the target molecules in the illuminated tissue volume is excited. This targeted optical absorption generates ultrasonic waves (referred to as stimulated Raman photoacoustic waves) which are detected using a traditional ultrasonic transducer to form an image following the design of the established photoacoustic microscopy. PMID:21059930

  8. Laser Doppler flowmetry imaging

    NASA Astrophysics Data System (ADS)

    Nilsson, Gert E.; Wardell, Karin

    1994-02-01

    A laser Doppler perfusion imager has been developed that makes possible mapping of tissue blood flow over surfaces with extensions up to about 12 cm X 12 cm. The He-Ne laser beam scans the tissue under study throughout 4096 measurement sites. A fraction of the backscattered and Doppler broadened light is detected by a photo diode positioned about 20 cm above the tissue surface. After processing, a signal that scales linearly with perfusion is stored in a computer and a color coded image of the spatial tissue perfusion is shown on a monitor. A full format scan is completed in about 4.5 minutes. Algorithms for calculating perfusion profiles and averages as well as substraction of one image from another, form an integral part of the system data analysis software. The perfusion images can also be exported to other software packages for further processing and analysis.

  9. Selective-imaging camera

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Landa, Joseph; Cha, Jae H.; Krapels, Keith A.

    2015-05-01

    How can we design cameras that image selectively in Full Electro-Magnetic (FEM) spectra? Without selective imaging, we cannot use, for example, ordinary tourist cameras to see through fire, smoke, or other obscurants contributing to creating a Visually Degraded Environment (VDE). This paper addresses a possible new design of selective-imaging cameras at firmware level. The design is consistent with physics of the irreversible thermodynamics of Boltzmann's molecular entropy. It enables imaging in appropriate FEM spectra for sensing through the VDE, and displaying in color spectra for Human Visual System (HVS). We sense within the spectra the largest entropy value of obscurants such as fire, smoke, etc. Then we apply a smart firmware implementation of Blind Sources Separation (BSS) to separate all entropy sources associated with specific Kelvin temperatures. Finally, we recompose the scene using specific RGB colors constrained by the HVS, by up/down shifting Planck spectra at each pixel and time.

  10. Dry imaging cameras

    PubMed Central

    Indrajit, IK; Alam, Aftab; Sahni, Hirdesh; Bhatia, Mukul; Sahu, Samaresh

    2011-01-01

    Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow. PMID:21799589

  11. Information Systems - Cancer Imaging Program

    Cancer.gov

    The Lung Image Database Consortium (LIDC) represents an effort by CIP grantees in a consortium to create a database of spiral CT images of the lung for use in CAD (computer-aided detection) algorithm research. The Imaging Database Resources Initiative (IDRI) is extending the efforts of the LIDC, to create a larger database of spiral CT imaging of the lung for use in CAD algorithm research. Image Archive Resources contains links to Web sites related to the interests of the NCI CIP Image Archive Committee. The Molecular Imaging and Contrast Agent Database (MICAD) is a database of research data on in vivo molecular imaging and contrast agents.

  12. Image exploitation for MISAR

    NASA Astrophysics Data System (ADS)

    Heinze, N.; Edrich, M.; Saur, G.; Krüger, W.

    2007-04-01

    The miniature SAR-system MiSAR has been developed by EADS Germany for lightweight UAVs like the LUNASystem. MiSAR adds to these tactical UAV-systems the all-weather reconnaissance capability, which is missing until now. Unlike other SAR sensors, that produce large strip maps at update rates of several seconds, MiSAR generates sequences of SAR images with approximately 1 Hz frame rate. photo interpreters (PI) of tactical drones, now mainly experienced with visual interpretation, are not used to SARimages, especially not with SAR-image sequence characteristics. So they should be supported to improve their ability to carry out their task with a new, demanding sensor system. We have therefore analyzed and discussed with military PIs in which task MiSAR can be used and how the PIs can be supported by special algorithms. We developed image processing- and exploitation-algorithms for such SAR-image sequences. A main component is the generation of image sequence mosaics to get more oversight. This mosaicing has the advantage that also non straight /linear flight-paths and varying squint angles can be processed. Another component is a screening-component for manmade objects to mark regions of interest in the image sequences. We use a classification based approach, which can be easily adapted to new sensors and scenes. These algorithms are integrated into an image exploitation system to improve the image interpreters ability to get a better oversight, better orientation and helping them to detect relevant objects, especially considering long endurance reconnaissance missions.

  13. [Imaging of the endometrium].

    PubMed

    Robert, Y; Launay, S; Lemercier, E; Bazot, M; Moisan, S; Genevois, A; Vinatier, D; Mestdagh, P; Rocourt, N

    2001-12-01

    During genital activity, physiological and pathological modifications can be observed; Pre- and postmenopausal menometror-rhagia are the principle clinical signs of various endometrial pathologies: benign (polyp, atrophy or endometrial hypertrophy), malignant (cervical or endometrial carcinoma) or neighboring pathologies (myometrium or ovary). The value and methods of various imaging techniques (B-mode and Doppler abdominal and endovaginal ultrasonography, hysterosonography, computed tomography, MR imaging and hysteroscopy) are described together with symptomatological features permitting identification of the endometrial pathology. PMID:11917650

  14. Global Images of Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Global images of Earth from Galileo. In each frame, the continent of Antarctica is visible at the bottom of the globe. South America may be seen in the first frame (top left), the great Pacific Ocean in the second (bottom left), India at the top and Australia to the right in the third (top right), and Africa in the fourth (bottom right). Taken at six-hour intervals on December 11, 1990, at a range of between 2 and 2.7 million kilometers (1.2 to 1.7 million miles). P-37630

    These images were taken during Galileo's first Earth flyby. This gravity assist increased Galileo's speed around the Sun by about 5.2 kilometers per second (or 11,600 miles per hour) and substantially redirected Galileo as required for its flybys of the asteroid Gaspra in October 1991 and Earth in 1992. Galileo's closest approach (960 kilometers, or 597 miles, above the Earth's surface) to the Earth was on December 8, 1990, 3 days before these pictures were taken.

    Each of these images is a color composite, made up using images taken through red, green, and violet filters. The four images are part of the Galileo Earth spin movie, a 256-frame time-lapse motion picture that shows a 25-hour period of Earth's rotation and atmospheric dynamics. The movie gives scientists a unique overall view of global weather patterns, as opposed to the limited view of weather satellite images.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA'is Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  15. Image processing occupancy sensor

    DOEpatents

    Brackney, Larry J.

    2016-09-27

    A system and method of detecting occupants in a building automation system environment using image based occupancy detection and position determinations. In one example, the system includes an image processing occupancy sensor that detects the number and position of occupants within a space that has controllable building elements such as lighting and ventilation diffusers. Based on the position and location of the occupants, the system can finely control the elements to optimize conditions for the occupants, optimize energy usage, among other advantages.

  16. Diagnostic imaging of infertility

    SciTech Connect

    Winfield, A.C.; Wentz, A.C.

    1987-01-01

    This text presents a review of all the imaging modalities available in the diagnosis of infertility. This book integrates the perspectives of experts in ob/gyn, radiology, reproductive endocrinology, and urology. It's a one-of-a-kind ''how to'' guide to hysterosalpinography and infertility evaluation, providing complete clinical information on the techniques, pitfalls, problems encountered and differential diagnosis. Detailed descriptions accompany numerous high-quality illustrations to help correlate findings and give meaning to the radiographic and ultrasound images.

  17. Cardiovascular Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Pelc, Norbert

    2000-03-01

    Cardiovascular diseases are a major source of morbidity and mortality in the United States. Early detection of disease can often be used to improved outcomes, either through direct interventions (e.g. surgical corrections) or by causing the patient to modify his or her behavior (e.g. smoking cessation or dietary changes). Ideally, the detection process should be noninvasive (i.e. it should not be associated with significant risk). Magnetic Resonance Imaging (MRI) refers to the formation of images by localizing NMR signals, typically from protons in the body. As in other applications of NMR, a homogeneous static magnetic field ( ~0.5 to 4 T) is used to create ``longitudinal" magnetization. A magnetic field rotating at the Larmor frequency (proportional to the static field) excites spins, converting longitudinal magnetization to ``transverse" magnetization and generating a signal. Localization is performed using pulsed gradients in the static field. MRI can produce images of 2-D slices, 3-D volumes, time-resolved images of pseudo-periodic phenomena such as heart function, and even real-time imaging. It is also possible to acquire spatially localized NMR spectra. MRI has a number of advantages, but perhaps the most fundamental is the richness of the contrast mechanisms. Tissues can be differentiated by differences in proton density, NMR properties, and even flow or motion. We also have the ability to introduce substances that alter NMR signals. These contrast agents can be used to enhance vascular structures and measure perfusion. Cardiovascular MRI allows the reliable diagnosis of important conditions. It is possible to image the blood vessel tree, quantitate flow and perfusion, and image cardiac contraction. Fundamentally, the power of MRI as a diagnostic tool stems from the richness of the contrast mechanisms and the flexibility in control of imaging parameters.

  18. MRI brain imaging.

    PubMed

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  19. Integrin Targeted MR Imaging.

    PubMed

    Tan, Mingqian; Lu, Zheng-Rong

    2011-01-19

    Magnetic resonance imaging (MRI) is a powerful medical diagnostic imaging modality for integrin targeted imaging, which uses the magnetic resonance of tissue water protons to display tissue anatomic structures with high spatial resolution. Contrast agents are often used in MRI to highlight specific regions of the body and make them easier to visualize. There are four main classes of MRI contrast agents based on their different contrast mechanisms, including T(1), T(2), chemical exchange saturation transfer (CEST) agents, and heteronuclear contrast agents. Integrins are an important family of heterodimeric transmembrane glycoproteins that function as mediators of cell-cell and cell-extracellular matrix interactions. The overexpressed integrins can be used as the molecular targets for designing suitable integrin targeted contrast agents for MR molecular imaging. Integrin targeted contrast agent includes a targeting agent specific to a target integrin, a paramagnetic agent and a linker connecting the targeting agent with the paramagnetic agent. Proper selection of targeting agents is critical for targeted MRI contrast agents to effectively bind to integrins for in vivo imaging. An ideal integrin targeted MR contrast agent should be non-toxic, provide strong contrast enhancement at the target sites and can be completely excreted from the body after MR imaging. An overview of integrin targeted MR contrast agents based on small molecular and macromolecular Gd(III) complexes, lipid nanoparticles and superparamagnetic nanoparticles is provided for MR molecular imaging. By using proper delivery systems for loading sufficient Gd(III) chelates or superparamagnetic nanoparticles, effective molecular imaging of integrins with MRI has been demonstrated in animal models.

  20. Cardiac imaging in adults

    SciTech Connect

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  1. Spaceborne Microwave Imagers

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1991-01-01

    Monograph presents comprehensive overview of science and technology of spaceborne microwave-imaging systems. Microwave images used as versatile orbiting, remote-sensing systems to investigate atmospheres and surfaces of planets. Detect surface objects through canopies of clouds, measure distributions of raindrops in clouds that their views penetrate, find meandering rivers in rain forests and underground water in arid regions, and provide information on ocean currents, wakes, ice/water boundaries, aircraft, ships, buoys, and bridges.

  2. Athena microscopic Imager investigation

    USGS Publications Warehouse

    Herkenhoff, K. E.; Squyres, S. W.; Bell, J.F.; Maki, J.N.; Arneson, H.M.; Bertelsen, P.; Brown, D.I.; Collins, S.A.; Dingizian, A.; Elliott, S.T.; Goetz, W.; Hagerott, E.C.; Hayes, A.G.; Johnson, M.J.; Kirk, R.L.; McLennan, S.; Morris, R.V.; Scherr, L.M.; Schwochert, M.A.; Shiraishi, L.R.; Smith, G.H.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Wadsworth, M.V.

    2003-01-01

    The Athena science payload on the Mars Exploration Rovers (MER) includes the Microscopic Imager (MI). The MI is a fixed-focus camera mounted on the end of an extendable instrument arm, the Instrument Deployment Device (IDD). The MI was designed to acquire images at a spatial resolution of 30 microns/pixel over a broad spectral range (400-700 nm). The MI uses the same electronics design as the other MER cameras but has optics that yield a field of view of 31 ?? 31 mm across a 1024 ?? 1024 pixel CCD image. The MI acquires images using only solar or skylight illumination of the target surface. A contact sensor is used to place the MI slightly closer to the target surface than its best focus distance (about 66 mm), allowing concave surfaces to be imaged in good focus. Coarse focusing (???2 mm precision) is achieved by moving the IDD away from a rock target after the contact sensor has been activated. The MI optics are protected from the Martian environment by a retractable dust cover. The dust cover includes a Kapton window that is tinted orange to restrict the spectral bandpass to 500-700 nm, allowing color information to be obtained by taking images with the dust cover open and closed. MI data will be used to place other MER instrument data in context and to aid in petrologic and geologic interpretations of rocks and soils on Mars. Copyright 2003 by the American Geophysical Union.

  3. Cardiac Imaging System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Although not available to all patients with narrowed arteries, balloon angioplasty has expanded dramatically since its introduction with an estimated further growth to 562,000 procedures in the U.S. alone by 1992. Growth has fueled demand for higher quality imaging systems that allow the cardiologist to be more accurate and increase the chances of a successful procedure. A major advance is the Digital Cardiac Imaging (DCI) System designed by Philips Medical Systems International, Best, The Netherlands and marketed in the U.S. by Philips Medical Systems North America Company. The key benefit is significantly improved real-time imaging and the ability to employ image enhancement techniques to bring out added details. Using a cordless control unit, the cardiologist can manipulate images to make immediate assessment, compare live x-ray and roadmap images by placing them side-by-side on monitor screens, or compare pre-procedure and post procedure conditions. The Philips DCI improves the cardiologist's precision by expanding the information available to him.

  4. Imaging of terminal myelocystoceles.

    PubMed Central

    Byrd, S. E.; Harvey, C.; McLone, D. G.; Darling, C. F.

    1996-01-01

    This article presents a retrospective analysis of the presentation, imaging studies, and associated findings in 20 children with surgically and histologically proven terminal myelocystoceles. All 20 children presented at birth with a black mass; 13 had cloacal extrophy. The patient population was comprised of 15 girls and 5 with ambiguous genitalia: Of the imaging studies, 8 had plain radiographs, 6 myelography-computed tomography, 11 ultrasound, and 14 magnetic resonance. The associated findings included Chiari I (eight patients), Chiari II (one patient), hydromyelia (three patients), hydrocephalus (three patients), and vertebral segmentation anomalies (six patients). Magnetic resonance imaging was the best imaging modality to diagnose and evaluate children with a myelocystocele. Magnetic resonance imaging demonstrated the classic findings: a terminal cyst of the central canal of the spinal cord that is tethered and herniated with arachnoid and cerebrospinal fluid through an area of spinal dysphria onto the back as a mass. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8803433

  5. Abdominal SPECT imaging

    SciTech Connect

    Van Heertum, R.L.; Brunetti, J.C.; Yudd, A.P.

    1987-07-01

    Over the past several years, abdominal single photon emission computed tomography (SPECT) imaging has evolved from a research tool to an important clinical imaging modality that is helpful in the diagnostic assessment of a wide variety of disorders involving the abdominal viscera. Although liver-spleen imaging is the most popular of the abdominal SPECT procedures, blood pool imaging is becoming much more widely utilized for the evaluation of cavernous hemangiomas of the liver as well as other vascular abnormalities in the abdomen. Adjunctive indium leukocyte and gallium SPECT studies are also proving to be of value in the assessment of a variety of infectious and neoplastic diseases. As more experience is acquired in this area, SPECT should become the primary imaging modality for both gallium and indium white blood cells in many institutions. Renal SPECT, on the other hand, has only recently been used as a clinical imaging modality for the assessment of such parameters as renal depth and volume. The exact role of renal SPECT as a clinical tool is, therefore, yet to be determined. 79 references.

  6. Imaging of head trauma.

    PubMed

    Rincon, Sandra; Gupta, Rajiv; Ptak, Thomas

    2016-01-01

    Imaging is an indispensable part of the initial assessment and subsequent management of patients with head trauma. Initially, it is important for diagnosing the extent of injury and the prompt recognition of treatable injuries to reduce mortality. Subsequently, imaging is useful in following the sequelae of trauma. In this chapter, we review indications for neuroimaging and typical computed tomography (CT) and magnetic resonance imaging (MRI) protocols used in the evaluation of a patient with head trauma. We review the role of CT), the imaging modality of choice in the acute setting, and the role of MRI in the evaluation of patients with head trauma. We describe an organized and consistent approach to the interpretation of imaging of these patients. Important topics in head trauma, including fundamental concepts related to skull fractures, intracranial hemorrhage, parenchymal injury, penetrating trauma, cerebrovascular injuries, and secondary effects of trauma, are reviewed. The chapter concludes with advanced neuroimaging techniques for the evaluation of traumatic brain injury, including use of diffusion tensor imaging (DTI), functional MRI (fMRI), and MR spectroscopy (MRS), techniques which are still under development. PMID:27432678

  7. Neuroendocrine disorders: pituitary imaging.

    PubMed

    Faje, Alexander; Tritos, Nicholas A; Swearingen, Brooke; Klibanski, Anne

    2016-01-01

    Significant advances in pituitary imaging have taken place in the past several decades, including the introduction of magnetic resonance imaging (MRI). This imaging modality has vastly improved our ability to detect and characterize sellar masses and more accurately characterize the extent and spread of lesions in and around the sella. Intraoperative MRI may help improve the completeness of resection of sellar masses. Other imaging modalities, including magnetic resonance angiography, computed tomography (CT), and CT angiography, have an important role in specific cases. Interventional methods, including bilateral inferior petrosal sinus sampling, may establish the pituitary origin of corticotropin (ACTH) excess in patients with ACTH-dependent Cushing's syndrome. Pituitary imaging should be obtained in patients with pituitary hormone excess, hypopituitarism, or mass effect in the sella. Despite rapid advances in pituitary imaging, there are several diagnostic challenges remaining. Future research may help improve the radiographic detection of small sellar lesions, such as ACTH-secreting adenomas causing Cushing's disease, accurately characterize the type and extent of sellar pathologies, and provide prognostic information regarding their growth potential. PMID:27430447

  8. Nanoparticles for biomedical imaging

    PubMed Central

    Nune, Satish K; Gunda, Padmaja; Thallapally, Praveen K; Lin, Ying-Ying; Forrest, M Laird; Berkland, Cory J

    2011-01-01

    Background Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 – 100 nm in diameter have dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has expanded further the potential of nanoparticles as probes for molecular imaging. Objective To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced nonspecific uptake with increased spatial resolution containing stabilizers conjugated with targeting ligands. Methods This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their application in biomedical imaging. Conclusion Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed. PMID:19743894

  9. Turbine imaging technology assessment

    SciTech Connect

    Moursund, R. A.; Carlson, T. J.

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  10. Keyhole coherent diffractive imaging

    NASA Astrophysics Data System (ADS)

    Abbey, Brian; Nugent, Keith A.; Williams, Garth J.; Clark, Jesse N.; Peele, Andrew G.; Pfeifer, Mark A.; de Jonge, Martin; McNulty, Ian

    2008-05-01

    The availability of third-generation synchrotrons and ultimately X-ray free-electron lasers is driving the development of many new methods of microscopy. Among these techniques, coherent diffractive imaging (CDI) is one of the most promising, offering nanometre-scale imaging of non-crystallographic samples. Image reconstruction from a single diffraction pattern has hitherto been possible only for small, isolated samples, presenting a fundamental limitation on the CDI method. Here we report on a form of imaging we term `keyhole' CDI, which can reconstruct objects of arbitrary size. We demonstrate the technique using visible light and X-rays, with the latter producing images of part of an extended object with a detector-limited resolution of better than 20nm. Combining the improved resolution of modern X-ray optics with the wavelength-limited resolution of CDI, the method paves the way for detailed imaging of a single quantum dot or of a small virus within a complex host environment.

  11. Acoustic Imaging in Helioseismology

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi; Chang, Hsiang-Kuang; Sun, Ming-Tsung; LaBonte, Barry; Chen, Huei-Ru; Yeh, Sheng-Jen; Team, The TON

    1999-04-01

    The time-variant acoustic signal at a point in the solar interior can be constructed from observations at the surface, based on the knowledge of how acoustic waves travel in the Sun: the time-distance relation of the p-modes. The basic principle and properties of this imaging technique are discussed in detail. The helioseismic data used in this study were taken with the Taiwan Oscillation Network (TON). The time series of observed acoustic signals on the solar surface is treated as a phased array. The time-distance relation provides the phase information among the phased array elements. The signal at any location at any time can be reconstructed by summing the observed signal at array elements in phase and with a proper normalization. The time series of the constructed acoustic signal contains information on frequency, phase, and intensity. We use the constructed intensity to obtain three-dimensional acoustic absorption images. The features in the absorption images correlate with the magnetic field in the active region. The vertical extension of absorption features in the active region is smaller in images constructed with shorter wavelengths. This indicates that the vertical resolution of the three-dimensional images depends on the range of modes used in constructing the signal. The actual depths of the absorption features in the active region may be smaller than those shown in the three-dimensional images.

  12. Imaging through plasmonic nanoparticles.

    PubMed

    Tanzid, Mehbuba; Sobhani, Ali; DeSantis, Christopher J; Cui, Yao; Hogan, Nathaniel J; Samaniego, Adam; Veeraraghavan, Ashok; Halas, Naomi J

    2016-05-17

    The optical properties of metallic nanoparticles with plasmon resonances have been studied extensively, typically by measuring the transmission of light, as a function of wavelength, through a nanoparticle suspension. One question that has not yet been addressed, however, is how an image is transmitted through such a suspension of absorber-scatterers, in other words, how the various spatial frequencies are attenuated as they pass through the nanoparticle host medium. Here, we examine how the optical properties of a suspension of plasmonic nanoparticles affect the transmitted image. We use two distinct ways to assess transmitted image quality: the structural similarity index (SSIM), a perceptual distortion metric based on the human visual system, and the modulation transfer function (MTF), which assesses the resolvable spatial frequencies. We show that perceived image quality, as well as spatial resolution, are both dependent on the scattering and absorption cross-sections of the constituent nanoparticles. Surprisingly, we observe a nonlinear dependence of image quality on optical density by varying optical path length and nanoparticle concentration. This work is a first step toward understanding the requirements for visualizing and resolving objects through media consisting of subwavelength absorber-scatterer structures, an approach that should also prove useful in the assessment of metamaterial or metasurface-based optical imaging systems. PMID:27140618

  13. EDITORIAL: Molecular Imaging Technology

    NASA Astrophysics Data System (ADS)

    Asai, Keisuke; Okamoto, Koji

    2006-06-01

    'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.

  14. Satellite Image Mosaic Engine

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2006-01-01

    A computer program automatically builds large, full-resolution mosaics of multispectral images of Earth landmasses from images acquired by Landsat 7, complete with matching of colors and blending between adjacent scenes. While the code has been used extensively for Landsat, it could also be used for other data sources. A single mosaic of as many as 8,000 scenes, represented by more than 5 terabytes of data and the largest set produced in this work, demonstrated what the code could do to provide global coverage. The program first statistically analyzes input images to determine areas of coverage and data-value distributions. It then transforms the input images from their original universal transverse Mercator coordinates to other geographical coordinates, with scaling. It applies a first-order polynomial brightness correction to each band in each scene. It uses a data-mask image for selecting data and blending of input scenes. Under control by a user, the program can be made to operate on small parts of the output image space, with check-point and restart capabilities. The program runs on SGI IRIX computers. It is capable of parallel processing using shared-memory code, large memories, and tens of central processing units. It can retrieve input data and store output data at locations remote from the processors on which it is executed.

  15. Imaging through plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tanzid, Mehbuba; Sobhani, Ali; DeSantis, Christopher J.; Cui, Yao; Hogan, Nathaniel J.; Samaniego, Adam; Veeraraghavan, Ashok; Halas, Naomi J.

    2016-05-01

    The optical properties of metallic nanoparticles with plasmon resonances have been studied extensively, typically by measuring the transmission of light, as a function of wavelength, through a nanoparticle suspension. One question that has not yet been addressed, however, is how an image is transmitted through such a suspension of absorber-scatterers, in other words, how the various spatial frequencies are attenuated as they pass through the nanoparticle host medium. Here, we examine how the optical properties of a suspension of plasmonic nanoparticles affect the transmitted image. We use two distinct ways to assess transmitted image quality: the structural similarity index (SSIM), a perceptual distortion metric based on the human visual system, and the modulation transfer function (MTF), which assesses the resolvable spatial frequencies. We show that perceived image quality, as well as spatial resolution, are both dependent on the scattering and absorption cross-sections of the constituent nanoparticles. Surprisingly, we observe a nonlinear dependence of image quality on optical density by varying optical path length and nanoparticle concentration. This work is a first step toward understanding the requirements for visualizing and resolving objects through media consisting of subwavelength absorber-scatterer structures, an approach that should also prove useful in the assessment of metamaterial or metasurface-based optical imaging systems.

  16. Hyperspectral image projector applications

    NASA Astrophysics Data System (ADS)

    Rice, Joseph P.; Brown, Steven W.; Allen, David W.; Yoon, Howard W.; Litorja, Maritoni; Hwang, Jeeseong C.

    2012-03-01

    For the past several years NIST has been developing, along with several collaborators, a Hyperspectral Image Projector (HIP). This scene projector produces high-resolution programmable spectra and projects them into dynamic two-dimensional images. The current digital micromirror device (DMD) based HIP prototype has a spatial resolution of 1024 x 768 pixels and a spectral range of 450 nm to 2400 nm, with spectral resolution from 2 nm in the visible to 5 nm in the short-wave infrared. It disperses light from a supercontinuum fiber source across two DMDs to produce the programmable spectra, which then globally-illuminate a third DMD to form the spatial images. The HIP can simulate top-of-the atmosphere spectral radiance over a 10 mm x 14 mm, f/3 image, and this can be collimated to stimulate remote sensing instruments. Also, the spectral radiance of the projected scenes can be measured with a NIST-calibrated spectroradiometer, such that the spectral radiance projected into each pixel can be accurately known. The HIP was originally developed for applications in multi-spectral and hyperspectral imager testing, calibration, and performance validation, and examples of this application will be reviewed. Conceivable applications for the HIP in photovoltaic device characterization and optical medical imaging will also be discussed.

  17. Imaging through plasmonic nanoparticles

    PubMed Central

    Tanzid, Mehbuba; Sobhani, Ali; DeSantis, Christopher J.; Cui, Yao; Hogan, Nathaniel J.; Samaniego, Adam; Veeraraghavan, Ashok; Halas, Naomi J.

    2016-01-01

    The optical properties of metallic nanoparticles with plasmon resonances have been studied extensively, typically by measuring the transmission of light, as a function of wavelength, through a nanoparticle suspension. One question that has not yet been addressed, however, is how an image is transmitted through such a suspension of absorber-scatterers, in other words, how the various spatial frequencies are attenuated as they pass through the nanoparticle host medium. Here, we examine how the optical properties of a suspension of plasmonic nanoparticles affect the transmitted image. We use two distinct ways to assess transmitted image quality: the structural similarity index (SSIM), a perceptual distortion metric based on the human visual system, and the modulation transfer function (MTF), which assesses the resolvable spatial frequencies. We show that perceived image quality, as well as spatial resolution, are both dependent on the scattering and absorption cross-sections of the constituent nanoparticles. Surprisingly, we observe a nonlinear dependence of image quality on optical density by varying optical path length and nanoparticle concentration. This work is a first step toward understanding the requirements for visualizing and resolving objects through media consisting of subwavelength absorber-scatterer structures, an approach that should also prove useful in the assessment of metamaterial or metasurface-based optical imaging systems. PMID:27140618

  18. Imaging Guided Breast Interventions.

    PubMed

    Masroor, Imrana; Afzal, Shaista; Sufian, Saira Naz

    2016-06-01

    Breast imaging is a developing field, with new and upcoming innovations, decreasing the morbidity and mortality related to breast pathologies with main emphasis on breast cancer. Breast imaging has an essential role in the detection and management of breast disease. It includes a multimodality approach, i.e. mammography, ultrasound, magnetic resonance imaging, nuclear medicine techniques and interventional procedures, done for the diagnosis and definitive management of breast abnormalities. The range of methods to perform biopsy of a suspicious breast lesion found on imaging has also increased markedly from the 1990s with hi-technological progress in surgical as well as percutaneous breast biopsy methods. The image guided percutaneous breast biopsy procedures cause minimal breast scarring, save time, and relieve the patient of the anxiety of going to the operation theatre. The aim of this review was to describe and discuss the different image guided breast biopsy techniques presently employed along with the indications, contraindication, merits and demerits of each method. PMID:27353993

  19. Echo particle image velocimetry.

    PubMed

    DeMarchi, Nicholas; White, Christopher

    2012-12-27

    The transport of mass, momentum, and energy in fluid flows is ultimately determined by spatiotemporal distributions of the fluid velocity field.(1) Consequently, a prerequisite for understanding, predicting, and controlling fluid flows is the capability to measure the velocity field with adequate spatial and temporal resolution.(2) For velocity measurements in optically opaque fluids or through optically opaque geometries, echo particle image velocimetry (EPIV) is an attractive diagnostic technique to generate "instantaneous" two-dimensional fields of velocity.(3,4,5,6) In this paper, the operating protocol for an EPIV system built by integrating a commercial medical ultrasound machine(7) with a PC running commercial particle image velocimetry (PIV) software(8) is described, and validation measurements in Hagen-Poiseuille (i.e., laminar pipe) flow are reported. For the EPIV measurements, a phased array probe connected to the medical ultrasound machine is used to generate a two-dimensional ultrasound image by pulsing the piezoelectric probe elements at different times. Each probe element transmits an ultrasound pulse into the fluid, and tracer particles in the fluid (either naturally occurring or seeded) reflect ultrasound echoes back to the probe where they are recorded. The amplitude of the reflected ultrasound waves and their time delay relative to transmission are used to create what is known as B-mode (brightness mode) two-dimensional ultrasound images. Specifically, the time delay is used to determine the position of the scatterer in the fluid and the amplitude is used to assign intensity to the scatterer. The time required to obtain a single B-mode image, t, is determined by the time it take to pulse all the elements of the phased array probe. For acquiring multiple B-mode images, the frame rate of the system in frames per second (fps) = 1/δt. (See 9 for a review of ultrasound imaging.) For a typical EPIV experiment, the frame rate is between 20-60 fps

  20. Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture

    SciTech Connect

    Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

    2013-01-08

    Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

  1. Whole mouse cryo-imaging

    NASA Astrophysics Data System (ADS)

    Wilson, David; Roy, Debashish; Steyer, Grant; Gargesha, Madhusudhana; Stone, Meredith; McKinley, Eliot

    2008-03-01

    The Case cryo-imaging system is a section and image system which allows one to acquire micron-scale, information rich, whole mouse color bright field and molecular fluorescence images of an entire mouse. Cryo-imaging is used in a variety of applications, including mouse and embryo anatomical phenotyping, drug delivery, imaging agents, metastastic cancer, stem cells, and very high resolution vascular imaging, among many. Cryo-imaging fills the gap between whole animal in vivo imaging and histology, allowing one to image a mouse along the continuum from the mouse -> organ -> tissue structure -> cell -> sub-cellular domains. In this overview, we describe the technology and a variety of exciting applications. Enhancements to the system now enable tiled acquisition of high resolution images to cover an entire mouse. High resolution fluorescence imaging, aided by a novel subtraction processing algorithm to remove sub-surface fluorescence, makes it possible to detect fluorescently-labeled single cells. Multi-modality experiments in Magnetic Resonance Imaging and Cryo-imaging of a whole mouse demonstrate superior resolution of cryo-images and efficiency of registration techniques. The 3D results demonstrate the novel true-color volume visualization tools we have developed and the inherent advantage of cryo-imaging in providing unlimited depth of field and spatial resolution. The recent results continue to demonstrate the value cryo-imaging provides in the field of small animal imaging research.

  2. A secret image sharing scheme for light images

    NASA Astrophysics Data System (ADS)

    Wu, Kuang-Shyr

    2013-12-01

    In this study, a new ( r, n)-threshold secret image sharing scheme with low information overhead for images is provided, which has a low distortion rate, and is more applicable for light images. A secret image is encoded into n noise-like shadow images to satisfy the condition that any r of the n shares can be used to reveal the secret image, and no information on the secret can be revealed from any r - 1 or fewer shares. The size of the shadow images is relatively small. The experimental results show the effectiveness of the proposed scheme.

  3. Combining image-processing and image compression schemes

    NASA Technical Reports Server (NTRS)

    Greenspan, H.; Lee, M.-C.

    1995-01-01

    An investigation into the combining of image-processing schemes, specifically an image enhancement scheme, with existing compression schemes is discussed. Results are presented on the pyramid coding scheme, the subband coding scheme, and progressive transmission. Encouraging results are demonstrated for the combination of image enhancement and pyramid image coding schemes, especially at low bit rates. Adding the enhancement scheme to progressive image transmission allows enhanced visual perception at low resolutions. In addition, further progressing of the transmitted images, such as edge detection schemes, can gain from the added image resolution via the enhancement.

  4. Structured image reconstruction for three-dimensional ghost imaging lidar.

    PubMed

    Yu, Hong; Li, Enrong; Gong, Wenlin; Han, Shensheng

    2015-06-01

    A structured image reconstruction method has been proposed to obtain high quality images in three-dimensional ghost imaging lidar. By considering the spatial structure relationship between recovered images of scene slices at different longitudinal distances, orthogonality constraint has been incorporated to reconstruct the three-dimensional scenes in remote sensing. Numerical simulations have been performed to demonstrate that scene slices with various sparse ratios can be recovered more accurately by applying orthogonality constraint, and the enhancement is significant especially for ghost imaging with less measurements. A simulated three-dimensional city scene has been successfully reconstructed by using structured image reconstruction in three-dimensional ghost imaging lidar. PMID:26072814

  5. Optical Imaging in Microstructures

    SciTech Connect

    Aker, P. M.

    2001-04-11

    This research was focused on developing morphology-dependent stimulated raman scattering (MDSRS) spectroscopy as an analytic optical imaging technique. MDSRS uses the cavity modes (called morphology dependent resonances, MDRs) associated with axisymmetric dielectric microstructures to generate nonlinear optical signals. Since different cavity modes span different regions inside the microstructure, it becomes possible to generate location-specific spectra. The information gotten from MDSRS imaging experiments is analogous with that generated from magnetic resonance imaging (MRI) studies in that spatial variations in chemical composition and molecular configuration within a structure can be mapped out. The authors demonstrated that MDSRS imaging is feasible and is free from nonlinear artifact. They did this by measuring the molecular structure variations that are present in the interfaces of 180 {micro}m dia. charged water droplets. The 4 publications that resulted from these studies are attached. From a chemical perspective a water droplet is, however, a simple thing. Will it be possible to use MDSRS imaging to study more complex systems such as combusting fuel droplets, layered polymer or glass fibers, or biological cells? The long-term goal of the research was to answer this question. The answer they have come up with is yes and no. The results on nitrate aerosols show that it is possible to do imaging studies on optically non-absorbing, ion containing systems, but that the ultimate sensitivity is dictated by ion concentration. hence systems containing large quantities of mobile ions will be difficult to look at, so this essentially eliminates being able to look at biological samples in situ. But on the positive side, organic systems, such as layered polymer and glass fibers, and combusting organic fuel droplets can be looked at with MDSRS imaging.

  6. Ultrasonic colour Doppler imaging

    PubMed Central

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been found to be of great value in assessing blood flow in many clinical conditions. Although the method for obtaining the velocity information is in many ways similar to the method for obtaining the anatomical information, it is technically more demanding for a number of reasons. It also has a number of weaknesses, perhaps the greatest being that in conventional systems, the velocities measured and thus displayed are the components of the flow velocity directly towards or away from the transducer, while ideally the method would give information about the magnitude and direction of the three-dimensional flow vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new techniques that seek to overcome the vector problem mentioned above are described. Finally, some examples of vector velocity images are presented. PMID:22866227

  7. Recasting image of contraceptives.

    PubMed

    Rimon Jg; Kiragu, K

    1993-03-01

    Even though contraceptives are linked to sex which, along with sensuality and peer acceptance, is used to market consumer goods, contraceptives are promoted in a hygienic, clinical way. Glamorous images which divert from adverse health effects are used to sell unhealthy goods, e.g., alcohol and cigarettes, but technical and intimidating promotion techniques centering on risks are used to promote family planning (FP) products and services which actually save the lives of mothers and children and improve their health. Until recently, only the medical system provided FP products and services so consumers identified them with illness and a help-seeking behavior. The image of contraceptives must be remolded to gain people's attention. To avoid instilling mistrust of a method in consumers, even those who believe in birth spacing, it is important for images to be positive and to reflect accurate information. In Indonesia, the Dualima condom has been linked to responsible fatherhood thereby creating a positive image and removing the negative image of a condom being linked to illicit sex. In the US, condom adds show the user in control, especially in reference to AIDS. Prior to promotion of any contraceptive, complete, clear communication and marketing plans are needed to identify and to focus on consumers' perceived needs. A survey in Egypt shows that the most important attributes of a contraceptive are ease of use, healthiness, and effectiveness and that Egyptians considered IUDs to best fit these attributes. Images of contraceptive users often determine whether potential users do choose to use contraceptives. For example, in Cameroon and the Philippines, female users are considered to be smart, rich, educated, confident and in control of their lives. In the Philippines, male users are perceived to be loving, caring, and considerate husbands. The mass medias can improve providers' public image as was the case in Turkey and Egypt.

  8. Computer image processing and recognition

    NASA Technical Reports Server (NTRS)

    Hall, E. L.

    1979-01-01

    A systematic introduction to the concepts and techniques of computer image processing and recognition is presented. Consideration is given to such topics as image formation and perception; computer representation of images; image enhancement and restoration; reconstruction from projections; digital television, encoding, and data compression; scene understanding; scene matching and recognition; and processing techniques for linear systems.

  9. Magnetic resonance imaging: Review of imaging techniques and overview of liver imaging

    PubMed Central

    Maniam, Santhi; Szklaruk, Janio

    2010-01-01

    Magnetic resonance imaging (MRI) of the liver is slowly transitioning from a problem solving imaging modality to a first line imaging modality for many diseases of the liver. The well established advantages of MRI over other cross sectional imaging modalities may be the basis for this transition. Technological advancements in MRI that focus on producing high quality images and fast imaging, increasing diagnostic accuracy and developing newer function-specific contrast agents are essential in ensuring that MRI succeeds as a first line imaging modality. Newer imaging techniques, such as parallel imaging, are widely utilized to shorten scanning time. Diffusion weighted echo planar imaging, an adaptation from neuroimaging, is fast becoming a routine part of the MRI liver protocol to improve lesion detection and characterization of focal liver lesions. Contrast enhanced dynamic T1 weighted imaging is crucial in complete evaluation of diseases and the merit of this dynamic imaging relies heavily on the appropriate timing of the contrast injection. Newer techniques that include fluoro-triggered contrast enhanced MRI, an adaptation from 3D MRA imaging, are utilized to achieve good bolus timing that will allow for optimum scanning. For accurate interpretation of liver diseases, good understanding of the newer imaging techniques and familiarity with typical imaging features of liver diseases are essential. In this review, MR sequences for a time efficient liver MRI protocol utilizing newer imaging techniques are discussed and an overview of imaging features of selected common focal and diffuse liver diseases are presented. PMID:21160685

  10. ImageGREP: fast visual pattern matching in image databases

    NASA Astrophysics Data System (ADS)

    White, David A.; Jain, Ramesh C.

    1997-01-01

    Most current image retrieval systems use holistic comparison that require a global match between images or presegmented object in images. However, often the user of an image database system is interested in a local match between images. For example, `Find images from the database with something like this anywhere in the image,' or `Fine images with something like this in some region of any image in the database,' or `Find images with this spatial configuration of regions like this.' In this paper, we provide an overview of a new framework that should help to allow these types of queries to be answered efficiently. In order to illustrate the usefulness of our framework, we have developed a complete image retrieval system based on local color information. Our system features fully automatic insertion and very efficient query execution, rivaling the efficiency of systems that can only handle global image comparisons. The query execution engine, called the ImageGREP Engine, can process queries at a speed of approximately 3000 images per second (or better) on a standard workstation when the index can be stored in main memory. In the future, we believe our framework should be used in other domains and applications, to handle queries based on texture or other material properties and perhaps domain specific image properties.

  11. Bayesian image reconstruction - The pixon and optimal image modeling

    NASA Technical Reports Server (NTRS)

    Pina, R. K.; Puetter, R. C.

    1993-01-01

    In this paper we describe the optimal image model, maximum residual likelihood method (OptMRL) for image reconstruction. OptMRL is a Bayesian image reconstruction technique for removing point-spread function blurring. OptMRL uses both a goodness-of-fit criterion (GOF) and an 'image prior', i.e., a function which quantifies the a priori probability of the image. Unlike standard maximum entropy methods, which typically reconstruct the image on the data pixel grid, OptMRL varies the image model in order to find the optimal functional basis with which to represent the image. We show how an optimal basis for image representation can be selected and in doing so, develop the concept of the 'pixon' which is a generalized image cell from which this basis is constructed. By allowing both the image and the image representation to be variable, the OptMRL method greatly increases the volume of solution space over which the image is optimized. Hence the likelihood of the final reconstructed image is greatly increased. For the goodness-of-fit criterion, OptMRL uses the maximum residual likelihood probability distribution introduced previously by Pina and Puetter (1992). This GOF probability distribution, which is based on the spatial autocorrelation of the residuals, has the advantage that it ensures spatially uncorrelated image reconstruction residuals.

  12. Descreening of scanned images

    NASA Astrophysics Data System (ADS)

    Kurilin, Ilya V.; Safonov, Ilia V.; Lee, HoKeun; Kim, Sang Ho

    2010-01-01

    Screen or halftone pattern appears on the majority of images printed on electrophotographic and ink-jet printers as well as offset machines. When such halftoned image is scanned, a noisy effect called a Moiré pattern often appears on the image. There are plenty of methods proposed for descreening of images. Common way is adaptive smoothing of scanned images. However the descreening techniques face the following dilemma: deep screen reduction and restoration of contone images leads to blurring of sharp edges of text and other graphics primitives, on the other hand insufficient smoothing keeps screen in halftoned areas. We propose novel descreening algorithm that is primarily intended for preservation of sharpness and contrast of text edges and for restoration contone images from halftone ones accurately. Proposed technique for descreening of scanned images comprises five steps. The first step is decrease of edge transition slope length via local tone mapping with ordering; it is carried out before adaptive smoothing, and it allows better preservation of edges. Adaptive low-pass filter applies simplified idea of Non-Local Means filter for area classification; similarity is calculated between central block of window and different adjacent block that is selected randomly. If similarity is high then current pixel relates to flat region, otherwise pixel relates to edge region. For prevention of edges blurring, flat regions are smoothed stronger than edge regions. By random selection of blocks we avoid the computational overhead related to excessive directional edge detection. Final three stages include additional decrease of edge transition slope length using local tone mapping, increase of local contrast via modified unsharp mask filter, that uses bilateral filter with special edge-stop function for modest smoothing of edges, and global contrast stretching. These stages are intended to compensate decreasing of sharpness and contrast due to low-pass filtering, it allows

  13. Cellular bioluminescence imaging.

    PubMed

    Welsh, David K; Noguchi, Takako

    2012-08-01

    Bioluminescence imaging of live cells has recently been recognized as an important alternative to fluorescence imaging. Fluorescent probes are much brighter than bioluminescent probes (luciferase enzymes) and, therefore, provide much better spatial and temporal resolution and much better contrast for delineating cell structure. However, with bioluminescence imaging there is virtually no background or toxicity. As a result, bioluminescence can be superior to fluorescence for detecting and quantifying molecules and their interactions in living cells, particularly in long-term studies. Structurally diverse luciferases from beetle and marine species have been used for a wide variety of applications, including tracking cells in vivo, detecting protein-protein interactions, measuring levels of calcium and other signaling molecules, detecting protease activity, and reporting circadian clock gene expression. Such applications can be optimized by the use of brighter and variously colored luciferases, brighter microscope optics, and ultrasensitive, low-noise cameras. This article presents a review of how bioluminescence differs from fluorescence, its applications to cellular imaging, and available probes, optics, and detectors. It also gives practical suggestions for optimal bioluminescence imaging of single cells.

  14. Image Transformations-Montserrat

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A slightly oblique digital photograph of Montserrat taken from the International Space Station was posted to Earth Observatory in December 2001. An Earth Observatory reader used widely available software to correct the oblique perspective and adjust the color. The story of how he modified the image includes step-by-step instructions that can be applied to other photographs. Photographs of Earth taken by astronauts have shaped our view of the Earth and are part of our popular culture because NASA makes them easily accessible to the public. Read the Transformations Story for more information. The original image was digital photograph number ISS002-E-9309, taken on July 9, 2001, from the International Space Station and was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth. Bill Innanen provided the transformed image and the story of how he did it.

  15. Nanophotonic coherent imager.

    PubMed

    Aflatouni, Firooz; Abiri, Behrooz; Rekhi, Angad; Hajimiri, Ali

    2015-02-23

    An integrated silicon nanophotonic coherent imager (NCI), with a 4 × 4 array of coherent pixels is reported. In the proposed NCI, on-chip optical processing determines the intensity and depth of each point on the imaged object based on the instantaneous phase and amplitude of the optical wave incident on each pixel. The NCI operates based on a modified time-domain frequency modulated continuous wave (FMCW) ranging scheme, where concurrent time-domain measurements of both period and the zero-crossing time of each electrical output of the nanophotonic chip allows the NCI to overcome the traditional resolution limits of frequency domain detection. The detection of both intensity and relative delay enables applications such as high-resolution 3D reflective and transmissive imaging as well as index contrast imaging. We demonstrate 3D imaging with 15μm depth resolution and 50μm lateral resolution (limited by the pixel spacing) at up to 0.5-meter range. The reported NCI is also capable of detecting a 1% equivalent refractive index contrast at 1mm thickness. PMID:25836545

  16. Direct imaging of exoplanets.

    PubMed

    Lagrange, Anne-Marie

    2014-04-28

    Most of the exoplanets known today have been discovered by indirect techniques, based on the study of the host star radial velocity or photometric temporal variations. These detections allowed the study of the planet populations in the first 5-8 AU from the central stars and have provided precious information on the way planets form and evolve at such separations. Direct imaging on 8-10 m class telescopes allows the detection of giant planets at larger separations (currently typically more than 5-10 AU) complementing the indirect techniques. So far, only a few planets have been imaged around young stars, but each of them provides an opportunity for unique dedicated studies of their orbital, physical and atmospheric properties and sometimes also on the interaction with the 'second-generation', debris discs. These few detections already challenge formation theories. In this paper, I present the results of direct imaging surveys obtained so far, and what they already tell us about giant planet (GP) formation and evolution. Individual and emblematic cases are detailed; they illustrate what future instruments will routinely deliver for a much larger number of stars. I also point out the limitations of this approach, as well as the needs for further work in terms of planet formation modelling. I finally present the progress expected in direct imaging in the near future, thanks in particular to forthcoming planet imagers on 8-10 m class telescopes.

  17. Ring Image Analyzer

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.

    2012-01-01

    Ring Image Analyzer software analyzes images to recognize elliptical patterns. It determines the ellipse parameters (axes ratio, centroid coordinate, tilt angle). The program attempts to recognize elliptical fringes (e.g., Newton Rings) on a photograph and determine their centroid position, the short-to-long-axis ratio, and the angle of rotation of the long axis relative to the horizontal direction on the photograph. These capabilities are important in interferometric imaging and control of surfaces. In particular, this program has been developed and applied for determining the rim shape of precision-machined optical whispering gallery mode resonators. The program relies on a unique image recognition algorithm aimed at recognizing elliptical shapes, but can be easily adapted to other geometric shapes. It is robust against non-elliptical details of the image and against noise. Interferometric analysis of precision-machined surfaces remains an important technological instrument in hardware development and quality analysis. This software automates and increases the accuracy of this technique. The software has been developed for the needs of an R&TD-funded project and has become an important asset for the future research proposal to NASA as well as other agencies.

  18. Transparent volume imaging

    NASA Astrophysics Data System (ADS)

    Wixson, Steve E.

    1990-07-01

    Transparent Volume Imaging began with the stereo xray in 1895 and ended for most investigators when radiation safety concerns eliminated the second view. Today, similiar images can be generated by the computer without safety hazards providing improved perception and new means of image quantification. A volumetric workstation is under development based on an operational prototype. The workstation consists of multiple symbolic and numeric processors, binocular stereo color display generator with large image memory and liquid crystal shutter, voice input and output, a 3D pointer that uses projection lenses so that structures in 3 space can be touched directly, 3D hard copy using vectograph and lenticular printing, and presentation facilities using stereo 35mm slide and stereo video tape projection. Volumetric software includes a volume window manager, Mayo Clinic's Analyze program and our Digital Stereo Microscope (DSM) algorithms. The DSM uses stereo xray-like projections, rapidly oscillating motion and focal depth cues such that detail can be studied in the spatial context of the entire set of data. Focal depth cues are generated with a lens and apeture algorithm that generates a plane of sharp focus, and multiple stereo pairs each with a different plane of sharp focus are generated and stored in the large memory for interactive selection using a physical or symbolic depth selector. More recent work is studying non-linear focussing. Psychophysical studies are underway to understand how people perce ive images on a volumetric display and how accurately 3 dimensional structures can be quantitated from these displays.

  19. Photographic image enhancement

    NASA Technical Reports Server (NTRS)

    Hite, Gerald E.

    1990-01-01

    Deblurring capabilities would significantly improve the scientific return from Space Shuttle crew-acquired images of the Earth and the safety of Space Shuttle missions. Deblurring techniques were developed and demonstrated on two digitized images that were blurred in different ways. The first was blurred by a Gaussian blurring function analogous to that caused by atmospheric turbulence, while the second was blurred by improper focussing. It was demonstrated, in both cases, that the nature of the blurring (Gaussian and Airy) and the appropriate parameters could be obtained from the Fourier transformation of their images. The difficulties posed by the presence of noise necessitated special consideration. It was demonstrated that a modified Wiener frequency filter judiciously constructed to avoid over emphasis of frequency regions dominated by noise resulted in substantially improved images. Several important areas of future research were identified. Two areas of particular promise are the extraction of blurring information directly from the spatial images and improved noise abatement form investigations of select spatial regions and the elimination of spike noise.

  20. Direct imaging of exoplanets.

    PubMed

    Lagrange, Anne-Marie

    2014-04-28

    Most of the exoplanets known today have been discovered by indirect techniques, based on the study of the host star radial velocity or photometric temporal variations. These detections allowed the study of the planet populations in the first 5-8 AU from the central stars and have provided precious information on the way planets form and evolve at such separations. Direct imaging on 8-10 m class telescopes allows the detection of giant planets at larger separations (currently typically more than 5-10 AU) complementing the indirect techniques. So far, only a few planets have been imaged around young stars, but each of them provides an opportunity for unique dedicated studies of their orbital, physical and atmospheric properties and sometimes also on the interaction with the 'second-generation', debris discs. These few detections already challenge formation theories. In this paper, I present the results of direct imaging surveys obtained so far, and what they already tell us about giant planet (GP) formation and evolution. Individual and emblematic cases are detailed; they illustrate what future instruments will routinely deliver for a much larger number of stars. I also point out the limitations of this approach, as well as the needs for further work in terms of planet formation modelling. I finally present the progress expected in direct imaging in the near future, thanks in particular to forthcoming planet imagers on 8-10 m class telescopes. PMID:24664924

  1. Multisensor image cueing (MUSIC)

    NASA Astrophysics Data System (ADS)

    Rodvold, David; Patterson, Tim J.

    2002-07-01

    There have been many years of research and development in the Automatic Target Recognition (ATR) community. This development has resulted in numerous algorithms to perform target detection automatically. The morphing of the ATR acronym to Aided Target Recognition provides a succinct commentary regarding the success of the automatic target recognition research. Now that the goal is aided recognition, many of the algorithms which were not able to provide autonomous recognition may now provide valuable assistance in cueing a human analyst where to look in the images under consideration. This paper describes the MUSIC system being developed for the US Air Force to provide multisensor image cueing. The tool works across multiple image phenomenologies and fuses the evidence across the set of available imagery. MUSIC is designed to work with a wide variety of sensors and platforms, and provide cueing to an image analyst in an information-rich environment. The paper concentrates on the current integration of algorithms into an extensible infrastructure to allow cueing in multiple image types.

  2. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  3. Planetary image conversion task

    NASA Technical Reports Server (NTRS)

    Martin, M. D.; Stanley, C. L.; Laughlin, G.

    1985-01-01

    The Planetary Image Conversion Task group processed 12,500 magnetic tapes containing raw imaging data from JPL planetary missions and produced an image data base in consistent format on 1200 fully packed 6250-bpi tapes. The output tapes will remain at JPL. A copy of the entire tape set was delivered to US Geological Survey, Flagstaff, Ariz. A secondary task converted computer datalogs, which had been stored in project specific MARK IV File Management System data types and structures, to flat-file, text format that is processable on any modern computer system. The conversion processing took place at JPL's Image Processing Laboratory on an IBM 370-158 with existing software modified slightly to meet the needs of the conversion task. More than 99% of the original digital image data was successfully recovered by the conversion task. However, processing data tapes recorded before 1975 was destructive. This discovery is of critical importance to facilities responsible for maintaining digital archives since normal periodic random sampling techniques would be unlikely to detect this phenomenon, and entire data sets could be wiped out in the act of generating seemingly positive sampling results. Reccomended follow-on activities are also included.

  4. Dynamic optically multiplexed imaging

    NASA Astrophysics Data System (ADS)

    Rachlin, Yaron; Shah, Vinay; Shepard, R. Hamilton; Shih, Tina

    2015-09-01

    Optically multiplexed imagers overcome the tradeoff between field of view and resolution by superimposing images from multiple fields of view onto a single focal plane. In this paper, we consider the implications of independently shifting each field of view at a rate exceeding the frame rate of the focal plane array and with a precision that can exceed the pixel pitch. A sequence of shifts enables the reconstruction of the underlying scene, with the number of frames required growing inversely with the number of multiplexed images. As a result, measurements from a sufficiently fast sampling sensor can be processed to yield a low distortion image with more pixels than the original focal plane array, a wider field of view than the original optical design, and an aspect ratio different than the original lens. This technique can also enable the collection of low-distortion, wide field of view videos. A sequence of sub-pixel spatial shifts extends this capability to allow the recovery of a wide field of view scene at sub-pixel resolution. To realize this sensor concept, a novel and compact divided aperture multiplexed sensor, capable of rapidly and precisely shifting its fields of view, was prototyped. Using this sensor, we recover twenty-four megapixel images from a four-megapixel focal plane and show the feasibility of simultaneous de-multiplexing and super-resolution.

  5. Pyramid image codes

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1990-01-01

    All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.

  6. Confined Space Imager (CSI) Software

    SciTech Connect

    Karelilz, David

    2013-07-03

    The software provides real-time image capture, enhancement, and display, and sensor control for the Confined Space Imager (CSI) sensor system The software captures images over a Cameralink connection and provides the following image enhancements: camera pixel to pixel non-uniformity correction, optical distortion correction, image registration and averaging, and illumination non-uniformity correction. The software communicates with the custom CSI hardware over USB to control sensor parameters and is capable of saving enhanced sensor images to an external USB drive. The software provides sensor control, image capture, enhancement, and display for the CSI sensor system. It is designed to work with the custom hardware.

  7. Cardiac 4D Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    D'hooge, Jan

    Volumetric cardiac ultrasound imaging has steadily evolved over the last 20 years from an electrocardiography (ECC) gated imaging technique to a true real-time imaging modality. Although the clinical use of echocardiography is still to a large extent based on conventional 2D ultrasound imaging it can be anticipated that the further developments in image quality, data visualization and interaction and image quantification of three-dimensional cardiac ultrasound will gradually make volumetric ultrasound the modality of choice. In this chapter, an overview is given of the technological developments that allow for volumetric imaging of the beating heart by ultrasound.

  8. Computer Program Helps Enhance Images

    NASA Technical Reports Server (NTRS)

    Stanfill, Daniel F., IV

    1994-01-01

    Pixel Pusher is Macintosh application program for viewing and performing minor enhancements on imagery. Works with color images digitized to 8 bits. Reads image files in JPL's two primary image formats VICAR and PDS as well as in Macintosh PICT format. VICAR (NPO-18076) handles array of image-processing capabilities used for variety of applications, including processing of biomedical images, cartography, imaging of Earth resources, and geological exploration. Pixel Pusher also imports color lookup tables in VICAR format for viewing images in pseudocolor (256 colors). Written in Symantec's Think C.

  9. Enhanced image capture through fusion

    NASA Technical Reports Server (NTRS)

    Burt, Peter J.; Hanna, Keith; Kolczynski, Raymond J.

    1993-01-01

    Image fusion may be used to combine images from different sensors, such as IR and visible cameras, to obtain a single composite with extended information content. Fusion may also be used to combine multiple images from a given sensor to form a composite image in which information of interest is enhanced. We present a general method for performing image fusion and show that this method is effective for diverse fusion applications. We suggest that fusion may provide a powerful tool for enhanced image capture with broad utility in image processing and computer vision.

  10. Validation of histology image registration

    NASA Astrophysics Data System (ADS)

    Shojaii, Rushin; Karavardanyan, Tigran; Yaffe, Martin; Martel, Anne L.

    2011-03-01

    The aim of this paper is to validate an image registration pipeline used for histology image alignment. In this work a set of histology images are registered to their correspondent optical blockface images to make a histology volume. Then multi-modality fiducial markers are used to validate the alignment of histology images. The fiducial markers are catheters perfused with a mixture of cuttlefish ink and flour. Based on our previous investigations this fiducial marker is visible in medical images, optical blockface images and it can also be localized in histology images. The properties of this fiducial marker make it suitable for validation of the registration techniques used for histology image alignment. This paper reports on the accuracy of a histology image registration approach by calculation of target registration error using these fiducial markers.

  11. Space-time quantum imaging

    NASA Astrophysics Data System (ADS)

    Meyers, Ronald E.; Deacon, Keith S.; Tunick, Arnold

    2013-09-01

    We report on an experimental demonstration of quantum imaging where the images are stored in both space and time. Quantum images of remote objects are produced with rotating ground glass induced chaotic laser light and two sensors measuring at different space-time points. Quantum images are observed to move depending on the time delay between the sensor measurements. The experiments provide a new testbed for exploring the time and space scale fundamental physics of quantum imaging and suggest new pathways for quantum information storage and processing. The moved quantum images are in fact new images that are stored in a space-time virtual memory process. The images are stored within the same quantum imaging data sets and thus quantum imaging can produce more information per photon measured than was previously realized.

  12. Imaging standards for smart cards

    NASA Astrophysics Data System (ADS)

    Ellson, Richard N.; Ray, Lawrence A.

    1996-01-01

    'Smart cards' are plastic cards the size of credit cards which contain integrated circuits for the storage of digital information. The applications of these cards for image storage has been growing as card data capacities have moved from tens of bytes to thousands of bytes. This has prompted the recommendation of standards by the X3B10 committee of ANSI for inclusion in ISO standards for card image storage of a variety of image data types including digitized signatures and color portrait images. This paper reviews imaging requirements of the smart card industry, challenges of image storage for small memory devices, card image communications, and the present status of standards. The paper concludes with recommendations for the evolution of smart card image standards towards image formats customized to the image content and more optimized for smart card memory constraints.

  13. ASPIC: STARLINK image processing package

    NASA Astrophysics Data System (ADS)

    Davenhall, A. C.; Hartley, Ken F.; Penny, Alan J.; Kelly, B. D.; King, Dave J.; Lupton, W. F.; Tudhope, D.; Pike, C. D.; Cooke, J. A.; Pence, W. D.; Wallace, Patrick T.; Brownrigg, D. R. K.; Baines, Dave W. T.; Warren-Smith, Rodney F.; McNally, B. V.; Bell, L. L.; Jones, T. A.; Terrett, Dave L.; Pearce, D. J.; Carey, J. V.; Currie, Malcolm J.; Benn, Chris; Beard, S. M.; Giddings, Jack R.; Balona, Luis A.; Harrison, B.; Wood, Roger; Sparkes, Bill; Allan, Peter M.; Berry, David S.; Shirt, J. V.

    2015-10-01

    ASPIC handled basic astronomical image processing. Early releases concentrated on image arithmetic, standard filters, expansion/contraction/selection/combination of images, and displaying and manipulating images on the ARGS and other devices. Later releases added new astronomy-specific applications to this sound framework. The ASPIC collection of about 400 image-processing programs was written using the Starlink "interim" environment in the 1980; the software is now obsolete.

  14. Correlated imaging through atmospheric turbulence

    SciTech Connect

    Zhang Pengli; Gong Wenlin; Shen Xia; Han Shensheng

    2010-09-15

    Correlated imaging through atmospheric turbulence is studied, and the analytical expressions describing turbulence effects on image resolution are derived. Compared with direct imaging, correlated imaging can reduce the influence of turbulence to a certain extent and reconstruct high-resolution images. The result is backed up by numerical simulations, in which turbulence-induced phase perturbations are simulated by random-phase screens inserted into propagation paths.

  15. Position Estimation Using Image Derivative

    NASA Technical Reports Server (NTRS)

    Mortari, Daniele; deDilectis, Francesco; Zanetti, Renato

    2015-01-01

    This paper describes an image processing algorithm to process Moon and/or Earth images. The theory presented is based on the fact that Moon hard edge points are characterized by the highest values of the image derivative. Outliers are eliminated by two sequential filters. Moon center and radius are then estimated by nonlinear least-squares using circular sigmoid functions. The proposed image processing has been applied and validated using real and synthetic Moon images.

  16. Spatial Phase Imaging

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Frequently, scientists grow crystals by dissolving a protein in a specific liquid solution, and then allowing that solution to evaporate. The methods used next have been, variously, invasive (adding a dye that is absorbed by the protein), destructive (crushing protein/salt-crystal mixtures and observing differences between the crushing of salt and protein), or costly and time-consuming (X-ray crystallography). In contrast to these methods, a new technology for monitoring protein growth, developed in part through NASA Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center, is noninvasive, nondestructive, rapid, and more cost effective than X-ray analysis. The partner for this SBIR, Photon-X, Inc., of Huntsville, Alabama, developed spatial phase imaging technology that can monitor crystal growth in real time and in an automated mode. Spatial phase imaging scans for flaws quickly and produces a 3-D structured image of a crystal, showing volumetric growth analysis for future automated growth.

  17. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  18. Microbial Cell Imaging

    SciTech Connect

    Doktycz, Mitchel John; Sullivan, Claretta; Mortensen, Ninell P; Allison, David P

    2011-01-01

    Atomic force microscopy (AFM) is finding increasing application in a variety of fields including microbiology. Until the emergence of AFM, techniques for ivnestigating processes in single microbes were limited. From a biologist's perspective, the fact that AFM can be used to generate high-resolution images in buffers or media is its most appealing feature as live-cell imaging can be pursued. Imaging living cells by AFM allows dynamic biological events to be studied, at the nanoscale, in real time. Few areas of biological research have as much to gain as microbiology from the application of AFM. Whereas the scale of microbes places them near the limit of resolution for light microscopy. AFM is well suited for the study of structures on the order of a micron or less. Although electron microscopy techniques have been the standard for high-resolution imaging of microbes, AFM is quickly gaining favor for several reasons. First, fixatives that impair biological activity are not required. Second, AFM is capable of detecting forces in the pN range, and precise control of the force applied to the cantilever can be maintained. This combination facilitates the evaluation of physical characteristics of microbes. Third, rather than yielding the composite, statistical average of cell populations, as is the case with many biochemical assays, the behavior of single cells can be monitored. Despite the potential of AFM in microbiology, there are several limitations that must be considered. For example, the time required to record an image allows for the study of gross events such as cell division or membrane degradation from an antibiotic but precludes the evaluation of biological reactions and events that happen in just fractions of a second. Additionally, the AFM is a topographical tool and is restricted to imaging surfaces. Therefore, it cannot be used to look inside cells as with opticla and transmission electron microscopes. other practical considerations are the limitation on

  19. Adolescent images of adolescence.

    PubMed

    Falchikov, N

    1989-06-01

    This study examines the extent to which a group of Scottish adolescents are influenced by negative images of adolescence present in our culture, and investigates their self-image by means of a Q sort. Forty 15- and 16-year-old school students took part in the study, half of whom were female. Half of the sample were staying on at school to take higher examinations, the other half being school leavers. Eleven factors emerged from the analysis, the first six of which met the criterion that distinguishes common factors. Participants defining common factors were re-interviewed, and their responses to factor interpretations noted. Little evidence was found to suggest that adolescents are influenced by newspaper images. Some descriptions hint at conflict, while others do not. If the results of the present study were to be replicated, a more pluralistic view of adolescence may be required.

  20. Stereo Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor); Glasgow, Thomas K. (Inventor)

    1999-01-01

    A system and a method for measuring three-dimensional velocities at a plurality of points in a fluid employing at least two cameras positioned approximately perpendicular to one another. The cameras are calibrated to accurately represent image coordinates in world coordinate system. The two-dimensional views of the cameras are recorded for image processing and centroid coordinate determination. Any overlapping particle clusters are decomposed into constituent centroids. The tracer particles are tracked on a two-dimensional basis and then stereo matched to obtain three-dimensional locations of the particles as a function of time so that velocities can be measured therefrom The stereo imaging velocimetry technique of the present invention provides a full-field. quantitative, three-dimensional map of any optically transparent fluid which is seeded with tracer particles.

  1. Medical Images Remote Consultation

    NASA Astrophysics Data System (ADS)

    Ferraris, Maurizio; Frixione, Paolo; Squarcia, Sandro

    Teleconsultation of digital images among different medical centers is now a reality. The problem to be solved is how to interconnect all the clinical diagnostic devices in a hospital in order to allow physicians and health physicists, working in different places, to discuss on interesting clinical cases visualizing the same diagnostic images at the same time. Applying World Wide Web technologies, the proposed system can be easily used by people with no specific computer knowledge providing a verbose help to guide the user through the right steps of execution. Diagnostic images are retrieved from a relational database or from a standard DICOM-PACS through the DICOM-WWW gateway allowing connection of the usual Web browsers to DICOM applications via the HTTP protocol. The system, which is proposed for radiotherapy implementation, where radiographies play a fundamental role, can be easily converted to different field of medical applications where a remote access to secure data are compulsory.

  2. Meninges in cancer imaging.

    PubMed

    Mahendru, G; Chong, V

    2009-10-02

    Primary malignant tumours arising from the meninges are distinctly uncommon, and when they occur, they are usually sarcomas. In contrast, metastatic meningeal involvement is increasingly seen as advances in cancer therapy have changed the natural history of malignant disease and prolonged the life span of cancer patients. The meninges can either be infiltrated by contiguous extension of primary tumours of the central nervous system, paranasal sinuses and skull base origin or can be diffusely infiltrated from haematogenous dissemination from distant primary malignancies. Imaging in these patients provides crucial information in planning management. This article reviews the pertinent anatomy that underlies imaging findings, discusses the mechanism of meningeal metastasis and highlights different imaging patterns of meningeal carcinomatosis and the pitfalls.

  3. Imaging Biomarkers in Immunotherapy

    PubMed Central

    Juergens, Rosalyn A.; Zukotynski, Katherine A.; Singnurkar, Amit; Snider, Denis P.; Valliant, John F.; Gulenchyn, Karen Y.

    2016-01-01

    Immune-based therapies have been in use for decades but recent work with immune checkpoint inhibitors has now changed the landscape of cancer treatment as a whole. While these advances are encouraging, clinicians still do not have a consistent biomarker they can rely on that can accurately select patients or monitor response. Molecular imaging technology provides a noninvasive mechanism to evaluate tumors and may be an ideal candidate for these purposes. This review provides an overview of the mechanism of action of varied immunotherapies and the current strategies for monitoring patients with imaging. We then describe some of the key researches in the preclinical and clinical literature on the current uses of molecular imaging of the immune system and cancer. PMID:26949344

  4. Programmable Image Processing Element

    NASA Astrophysics Data System (ADS)

    Eversole, W. L.; Salzman, J. F.; Taylor, F. V.; Harland, W. L.

    1982-07-01

    The algorithmic solution to many image-processing problems frequently uses sums of products where each multiplicand is an input sample (pixel) and each multiplier is a stored coefficient. This paper presents a large-scale integrated circuit (LSIC) implementation that provides accumulation of nine products and discusses its evolution from design through application 'A read-only memory (ROM) accumulate algorithm is used to perform the multiplications and is the key to one-chip implementation. The ROM function is actually implemented with erasable programmable ROM (EPROM) to allow reprogramming of the circuit to a variety of different functions. A real-time brassboard is being constructed to demonstrate four different image-processing operations on TV images.

  5. Geothermal Ultrasonic Fracture Imager

    SciTech Connect

    Patterson, Doug; Leggett, Jim

    2013-07-29

    The Geothermal Ultrasonic Fracture Imager project has a goal to develop a wireline ultrasonic imager that is capable of operating in temperatures up to 300°C (572°F) and depths up to 10 km (32,808 ft). This will address one of the critical needs in any EGS development of understanding the hydraulic flow paths in the reservoir. The ultrasonic imaging is well known in the oil and gas industry as one of the best methods for fracture evaluation; providing both high resolution and complete azimuthal coverage of the borehole. This enables fracture detection and characterization, both natural and induced, providing information as to their location, dip direction and dip magnitude. All of these factors are critical to fully understand the fracture system to enable the optimization of the thermal drainage through injectors and producers in a geothermal resource.

  6. Correlation-Peak Imaging

    NASA Astrophysics Data System (ADS)

    Ziegler, A.; Metzler, A.; Köckenberger, W.; Izquierdo, M.; Komor, E.; Haase, A.; Décorps, M.; von Kienlin, M.

    1996-08-01

    Identification and quantitation in conventional1H spectroscopic imagingin vivois often hampered by the small chemical-shift range. To improve the spectral resolution of spectroscopic imaging, homonuclear two-dimensional correlation spectroscopy has been combined with phase encoding of the spatial dimensions. From the theoretical description of the coherence-transfer signal in the Fourier-transform domain, a comprehensive acquisition and processing strategy is presented that includes optimization of the width and the position of the acquisition windows, matched filtering of the signal envelope, and graphical presentation of the cross peak of interest. The procedure has been applied to image the spatial distribution of the correlation peaks from specific spin systems in the hypocotyl of castor bean (Ricinus communis) seedlings. Despite the overlap of many resonances, correlation-peak imaging made it possible to observe a number of proton resonances, such as those of sucrose, β-glucose, glutamine/glutamate, lysine, and arginine.

  7. Progressive compressive imager

    NASA Astrophysics Data System (ADS)

    Evladov, Sergei; Levi, Ofer; Stern, Adrian

    2012-06-01

    We have designed and built a working automatic progressive sampling imaging system based on the vector sensor concept, which utilizes a unique sampling scheme of Radon projections. This sampling scheme makes it possible to progressively add information resulting in tradeoff between compression and the quality of reconstruction. The uniqueness of our sampling is that in any moment of the acquisition process the reconstruction can produce a reasonable version of the image. The advantage of the gradual addition of the samples is seen when the sparsity rate of the object is unknown, and thus the number of needed measurements. We have developed the iterative algorithm OSO (Ordered Sets Optimization) which employs our sampling scheme for creation of nearly uniform distributed sets of samples, which allows the reconstruction of Mega-Pixel images. We present the good quality reconstruction from compressed data ratios of 1:20.

  8. Imaging Pediatric Vascular Lesions

    PubMed Central

    Nguyen, Tuyet A.; Krakowski, Andrew C.; Naheedy, John H.; Kruk, Peter G.

    2015-01-01

    Vascular anomalies are commonly encountered in pediatric and dermatology practices. Most of these lesions are benign and easy to diagnose based on history and clinical exam alone. However, in some cases the diagnosis may not be clear. This may be of particular concern given that vascular anomalies may occasionally be associated with an underlying syndrome, congenital disease, or serious, life-threatening condition. Defining the type of vascular lesion early and correctly is particularly important to determine the optimal approach to management and treatment of each patient. The care of pediatric patients often requires collaboration from a multitude of specialties including pediatrics, dermatology, plastic surgery, radiology, ophthalmology, and neurology. Although early characterization of vascular lesions is important, consensus guidelines regarding the evaluation and imaging of vascular anomalies does not exist to date. Here, the authors provide an overview of pediatric vascular lesions, current classification systems for characterizing these lesions, the various imaging modalities available, and recommendations for appropriate imaging evaluation. PMID:26705446

  9. Multispectral imaging probe

    DOEpatents

    Sandison, David R.; Platzbecker, Mark R.; Descour, Michael R.; Armour, David L.; Craig, Marcus J.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.

  10. A multicolor imaging pyrometer

    NASA Technical Reports Server (NTRS)

    Frish, Michael B.; Frank, Jonathan H.

    1989-01-01

    A multicolor imaging pyrometer was designed for accurately and precisely measuring the temperature distribution histories of small moving samples. The device projects six different color images of the sample onto a single charge coupled device array that provides an RS-170 video signal to a computerized frame grabber. The computer automatically selects which one of the six images provides useful data, and converts that information to a temperature map. By measuring the temperature of molten aluminum heated in a kiln, a breadboard version of the device was shown to provide high accuracy in difficult measurement situations. It is expected that this pyrometer will ultimately find application in measuring the temperature of materials undergoing radiant heating in a microgravity acoustic levitation furnace.

  11. Variable waveband infrared imager

    SciTech Connect

    Hunter, Scott R.

    2013-06-11

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  12. Multiple myeloma imaging.

    PubMed

    Touzeau, C; Moreau, P

    2013-02-01

    Imaging myeloma is often performed when complications occur which may reveal the disease. Since the malignant plasma cell proliferation characteristic of this disease can affect the whole of the bony skeleton to various degrees, examination of the bones should be as complete as possible. The radiographic images must be studied for lytic lesions or signs of diffuse osteopenia, as well for fracture complications such as vertebral compression. Slice imaging has the advantage of being more sensitive and showing extra-osseous extension well. With a CT scan and MRI, spinal compression can be detected or a surgical procedure planned, while MRI or a PET scan can be used to assess extension of the disease and the response to treatment.

  13. Deep Imaging Survey

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is the first Deep Imaging Survey image taken by NASA's Galaxy Evolution Explorer. On June 22 and 23, 2003, the spacecraft obtained this near ultraviolet image of the Groth region by adding multiple orbits for a total exposure time of 14,000 seconds. Tens of thousands of objects can be identified in this picture.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  14. Quantum Image Location

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Dang, Yijie; Zhao, Na

    2016-10-01

    Quantum image processing has been a hot topic as a consequence of the development of quantum computation. Many quantum image processing algorithms have been proposed, whose efficiency are theoretically higher than their corresponding classical algorithms. However, most of the quantum schemes do not consider the problem of measurement. If users want to get the results, they must measure the final state many times to get all the pixels' values. Moreover, executing the algorithm one time, users can only measure the final state one time. In order to measure it many times, users must execute the algorithms many times. If the measurement process is taken into account, whether or not the algorithms are really efficient needs to be reconsidered. In this paper, we try to solve the problem of measurement and give a quantum image location algorithm. This scheme modifies the probability of pixels to make the target pixel to be measured with higher probability. Furthermore, it only has linear complexity.

  15. Imaging macrophages with nanoparticles

    NASA Astrophysics Data System (ADS)

    Weissleder, Ralph; Nahrendorf, Matthias; Pittet, Mikael J.

    2014-02-01

    Nanomaterials have much to offer, not only in deciphering innate immune cell biology and tracking cells, but also in advancing personalized clinical care by providing diagnostic and prognostic information, quantifying treatment efficacy and designing better therapeutics. This Review presents different types of nanomaterial, their biological properties and their applications for imaging macrophages in human diseases, including cancer, atherosclerosis, myocardial infarction, aortic aneurysm, diabetes and other conditions. We anticipate that future needs will include the development of nanomaterials that are specific for immune cell subsets and can be used as imaging surrogates for nanotherapeutics. New in vivo imaging clinical tools for noninvasive macrophage quantification are thus ultimately expected to become relevant to predicting patients' clinical outcome, defining treatment options and monitoring responses to therapy.

  16. Hadamard transform imaging

    SciTech Connect

    Morris, M.D.

    1992-01-01

    We have constructed a Hadamard transform Raman microscopic imaging system, and have developed it to a high definition (64K pixel) technique. We have demonstrated multispectral Raman imaging and developed the first three-dimensional (digital confocal) Raman imaging. We have explored the systematic errors in Hadamard multiplexing techniques and developed corrections. We have used our Raman microscope techniques to explore defect distributions on graphite electrodes and damage effects on SERS-activated silver electrodes. We have used the microprobe capabilities of our instrument to investigate the kinetics of polyacrylamide formation in electrolysis capabilities. We have worked closely with a manufacture of holographic displays to develop and incorporate holographic filters and holographic beam splitters into Raman spectrographs and microscopes. Finally, we have developed Hadamard multiplexing techniques for densitometric measurements of protein or nucleic acid blots.

  17. Flame Imaging System

    NASA Technical Reports Server (NTRS)

    Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)

    1998-01-01

    A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.

  18. Imaging in carpal instability.

    PubMed

    Ramamurthy, N K; Chojnowski, A J; Toms, A P

    2016-01-01

    Carpal instability is a complex and heterogeneous clinical condition. Management requires accurate identification of structural injury with an understanding of the resultant movement (kinematic) and load transfer (kinetic) failure. Static imaging techniques, such as plain film radiography, stress views, ultrasound, magnetic resonance, MR arthrography and computerized tomography arthrography, may accurately depict major wrist ligamentous injury. Dynamic ultrasound and videofluoroscopy may demonstrate dynamic instability and kinematic dysfunction. There is a growing evidence base for the diagnostic accuracy of these techniques in detecting intrinsic ligament tears, but there are limitations. Evidence of their efficacy and relevance in detection of non-dissociative carpal instability and extrinsic ligament tears is weak. Further research into the accuracy of existing imaging modalities is still required. Novel techniques, including four-dimensional computerized tomography and magnetic resonance, can evaluate both cross-sectional and functional carpal anatomy. This is a narrative review of level-III studies evaluating the role of imaging in carpal instability. PMID:26586689

  19. Soot Volume Fraction Imaging

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Ku, Jerry C.

    1994-01-01

    A new technique is described for the full-field determination of soot volume fractions via laser extinction measurements. This technique differs from previously reported point-wise methods in that a two-dimensional array (i.e., image) of data is acquired simultaneously. In this fashion, the net data rate is increased, allowing the study of time-dependent phenomena and the investigation of spatial and temporal correlations. A telecentric imaging configuration is employed to provide depth-invariant magnification and to permit the specification of the collection angle for scattered light. To improve the threshold measurement sensitivity, a method is employed to suppress undesirable coherent imaging effects. A discussion of the tomographic inversion process is provided, including the results obtained from numerical simulation. Results obtained with this method from an ethylene diffusion flame are shown to be in close agreement with those previously obtained by sequential point-wise interrogation.

  20. Multispectral imaging probe

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  1. Classification images with uncertainty

    PubMed Central

    Tjan, Bosco S.; Nandy, Anirvan S.

    2009-01-01

    Classification image and other similar noise-driven linear methods have found increasingly wider applications in revealing psychophysical receptive field structures or perceptual templates. These techniques are relatively easy to deploy, and the results are simple to interpret. However, being a linear technique, the utility of the classification-image method is believed to be limited. Uncertainty about the target stimuli on the part of an observer will result in a classification image that is the superposition of all possible templates for all the possible signals. In the context of a well-established uncertainty model, which pools the outputs of a large set of linear frontends with a max operator, we show analytically, in simulations, and with human experiments that the effect of intrinsic uncertainty can be limited or even eliminated by presenting a signal at a relatively high contrast in a classification-image experiment. We further argue that the subimages from different stimulus-response categories should not be combined, as is conventionally done. We show that when the signal contrast is high, the subimages from the error trials contain a clear high-contrast image that is negatively correlated with the perceptual template associated with the presented signal, relatively unaffected by uncertainty. The subimages also contain a “haze” that is of a much lower contrast and is positively correlated with the superposition of all the templates associated with the erroneous response. In the case of spatial uncertainty, we show that the spatial extent of the uncertainty can be estimated from the classification subimages. We link intrinsic uncertainty to invariance and suggest that this signal-clamped classification-image method will find general applications in uncovering the underlying representations of high-level neural and psychophysical mechanisms. PMID:16889477

  2. Automated ship image acquisition

    NASA Astrophysics Data System (ADS)

    Hammond, T. R.

    2008-04-01

    The experimental Automated Ship Image Acquisition System (ASIA) collects high-resolution ship photographs at a shore-based laboratory, with minimal human intervention. The system uses Automatic Identification System (AIS) data to direct a high-resolution SLR digital camera to ship targets and to identify the ships in the resulting photographs. The photo database is then searchable using the rich data fields from AIS, which include the name, type, call sign and various vessel identification numbers. The high-resolution images from ASIA are intended to provide information that can corroborate AIS reports (e.g., extract identification from the name on the hull) or provide information that has been omitted from the AIS reports (e.g., missing or incorrect hull dimensions, cargo, etc). Once assembled into a searchable image database, the images can be used for a wide variety of marine safety and security applications. This paper documents the author's experience with the practicality of composing photographs based on AIS reports alone, describing a number of ways in which this can go wrong, from errors in the AIS reports, to fixed and mobile obstructions and multiple ships in the shot. The frequency with which various errors occurred in automatically-composed photographs collected in Halifax harbour in winter time were determined by manual examination of the images. 45% of the images examined were considered of a quality sufficient to read identification markings, numbers and text off the entire ship. One of the main technical challenges for ASIA lies in automatically differentiating good and bad photographs, so that few bad ones would be shown to human users. Initial attempts at automatic photo rating showed 75% agreement with manual assessments.

  3. LOFAR sparse image reconstruction

    NASA Astrophysics Data System (ADS)

    Garsden, H.; Girard, J. N.; Starck, J. L.; Corbel, S.; Tasse, C.; Woiselle, A.; McKean, J. P.; van Amesfoort, A. S.; Anderson, J.; Avruch, I. M.; Beck, R.; Bentum, M. J.; Best, P.; Breitling, F.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; de Gasperin, F.; de Geus, E.; de Vos, M.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Hörandel, J.; van der Horst, A.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Mulcahy, D. D.; Munk, H.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pietka, G.; Pizzo, R.; Polatidis, A. G.; Renting, A.; Röttgering, H.; Rowlinson, A.; Schwarz, D.; Sluman, J.; Smirnov, O.; Stappers, B. W.; Steinmetz, M.; Stewart, A.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; Thoudam, S.; Toribio, C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, A.

    2015-03-01

    Context. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various deconvolution and minimization methods. Aims: Recent papers have established a clear link between the discrete nature of radio interferometry measurement and the "compressed sensing" (CS) theory, which supports sparse reconstruction methods to form an image from the measured visibilities. Empowered by proximal theory, CS offers a sound framework for efficient global minimization and sparse data representation using fast algorithms. Combined with instrumental direction-dependent effects (DDE) in the scope of a real instrument, we developed and validated a new method based on this framework. Methods: We implemented a sparse reconstruction method in the standard LOFAR imaging tool and compared the photometric and resolution performance of this new imager with that of CLEAN-based methods (CLEAN and MS-CLEAN) with simulated and real LOFAR data. Results: We show that i) sparse reconstruction performs as well as CLEAN in recovering the flux of point sources; ii) performs much better on extended objects (the root mean square error is reduced by a factor of up to 10); and iii) provides a solution with an effective angular resolution 2-3 times better than the CLEAN images. Conclusions: Sparse recovery gives a correct photometry on high dynamic and wide-field images and improved realistic structures of extended sources (of simulated and real LOFAR datasets). This sparse reconstruction method is compatible with modern interferometric imagers that handle DDE corrections (A- and W-projections) required for current and future instruments such as LOFAR and SKA.

  4. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote-sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly.anomaly. Both the visible and infrared subsystems scan in "pushbroom" mode: that is, an aircraft carrying the system moves along a ground track, the system is aimed downward, and image data are acquired in acrosstrack linear arrays of pixels. Both subsystems operate at a frame rate of 30 Hz. The infrared and visible-light optics are adjusted so that both subsystems are aimed at the same moving swath, which has across-track angular width of 15. Data from the infrared and visible imaging subsystems are stored in the same file along with aircraft-position data acquired by a Global Positioning System receiver. The combination of the three sets of data is used to construct infrared and hyperspectral maps of scanned areas shown.

  5. Classification images with uncertainty.

    PubMed

    Tjan, Bosco S; Nandy, Anirvan S

    2006-04-04

    Classification image and other similar noise-driven linear methods have found increasingly wider applications in revealing psychophysical receptive field structures or perceptual templates. These techniques are relatively easy to deploy, and the results are simple to interpret. However, being a linear technique, the utility of the classification-image method is believed to be limited. Uncertainty about the target stimuli on the part of an observer will result in a classification image that is the superposition of all possible templates for all the possible signals. In the context of a well-established uncertainty model, which pools the outputs of a large set of linear frontends with a max operator, we show analytically, in simulations, and with human experiments that the effect of intrinsic uncertainty can be limited or even eliminated by presenting a signal at a relatively high contrast in a classification-image experiment. We further argue that the subimages from different stimulus-response categories should not be combined, as is conventionally done. We show that when the signal contrast is high, the subimages from the error trials contain a clear high-contrast image that is negatively correlated with the perceptual template associated with the presented signal, relatively unaffected by uncertainty. The subimages also contain a "haze" that is of a much lower contrast and is positively correlated with the superposition of all the templates associated with the erroneous response. In the case of spatial uncertainty, we show that the spatial extent of the uncertainty can be estimated from the classification subimages. We link intrinsic uncertainty to invariance and suggest that this signal-clamped classification-image method will find general applications in uncovering the underlying representations of high-level neural and psychophysical mechanisms.

  6. Imaging of pituitary pathology.

    PubMed

    Buchfelder, Michael; Schlaffer, Sven

    2014-01-01

    Modern imaging techniques play a vital role in the diagnosis, surveillance, and treatment monitoring of patients with pituitary disease. For its high soft tissue contrast, magnetic resonance (MR) imaging provides detailed information about the localization and extent of a lesion. It is thus, to date, the most important imaging technique for documenting or ruling out structural lesions. It is usually the first and only imaging procedure to be employed in pituitary pathology. While large pituitary adenomas are reliably depicted in standard T1-weighted sequences, small microadenomas, such as in Cushing's disease, may only become visible if repeat studies, sophisticated techniques and high-field scanners are employed. For monitoring treatment effects after surgical procedures, drug applications, or irradiation, follow-up studies with identical parameters should be employed, preferably at the same investigation site. Some space is devoted to intraoperative imaging, which not only allows assessment of how radical tumor resection needs to be during pituitary tumor surgery, but also provides extremely accurate structural data for neuronavigation. Less frequent lesions, such as craniopharyngiomas, meningiomas, germ cell tumors, gliomas, skull base tumors, hypothalamic hamartomas, vascular malformations, inflammatory and developmental lesions and other, even less frequent pathologies should be considered in the differential diagnosis. The particular strength of computed tomography (CT) is the direct depiction of calcification, a weakness of MRI, and the high resolution of bone structures at the skull base. This chapter presents the characteristics of both frequent and less commonly encountered tumoral lesions, with an emphasis on computed tomography and magnetic resonance imaging. PMID:25248586

  7. Direct imaging of explosives.

    PubMed

    Knapp, E A; Moler, R B; Saunders, A W; Trower, W P

    2000-01-01

    Any technique that can detect nitrogen concentrations can screen for concealed explosives. However, such a technique would have to be insensitive to metal, both encasing and incidental. If images of the nitrogen concentrations could be captured, then, since form follows function, a robust screening technology could be developed. However these images would have to be sensitive to the surface densities at or below that of the nitrogen contained in buried anti-personnel mines or of the SEMTEX that brought down Pan Am 103, approximately 200 g. Although the ability to image in three-dimensions would somewhat reduce false positives, capturing collateral images of carbon and oxygen would virtually assure that nitrogenous non-explosive material like fertilizer, Melmac dinnerware, and salami could be eliminated. We are developing such an instrument, the Nitrogen Camera, which has met experimentally these criteria with the exception of providing oxygen images, which awaits the availability of a sufficiently energetic light source. Our Nitrogen Camera technique uses an electron accelerator to produce photonuclear reactions whose unique decays it registers. Clearly if our Nitrogen Camera is made mobile, it could be effective in detecting buried mines, either in an active battlefield situation or in the clearing of abandoned military munitions. Combat operations require that a swathe the width of an armored vehicle, 5 miles deep, be screened in an hour, which is within our camera's scanning speed. Detecting abandoned munitions is technically easier as it is free from the onerous speed requirement. We describe here our Nitrogen Camera and show its 180 pixel intensity images of elemental nitrogen in a 200 g mine simulant and in a 125 g stick of SEMTEX. We also report on our progress in creating a lorry transportable 70 MeV electron racetrack microtron, the principal enabling technology that will allow our Nitrogen Camera to be deployed in the field.

  8. Tactical Imaging System

    NASA Astrophysics Data System (ADS)

    Mocenter, Michael M.

    1990-02-01

    The ability to send photographic information to command centers is a vital element in performing effective near real-time reconnaissance and surveillance operations. This imagery, in conjunction with other battlefield data, provides the battlefield commander with up-to-date intelligence for making decisions. Until recently, the ability to provide this real-time information was severely restricted by the logistics of physically moving, developing, and then disseminating the film. This time delay resulted in out-of-date, stale intelligence. This problem situation has eased recently due to technological developments that have been instrumental in facilitating the dissemination of near real-time information to forward operating areas and behind enemy lines. The Naval Air Development Center (NAVAIRDEVCEN) has capitalized on these developments and established the Tactical Imaging System (TIS). This miniaturized, man-pack, SATCOM/HF transmitting system provides near real-time tactical imagery. It consists of an image sensor, image intensifier, zoom lens, and image transmission processor. This paper provides an overview of the TIS components, specifications, operations, and future developments and applications. The TIS will have potential application in areas such as identification (friend or foe), reconnaissance, surveillance, and battlefield assessment. Under the TIS program, NAVAIRDEVCEN has developed hands-on experience in still video images and related technologies, including fleet satellite communications, HF transmission, image compression algorithms, VSLI integrated circuitry design, and day/night imagery techniques. NAVAIRDEVCEN has developed a complete, miniaturized system to conduct operational demonstrations, and to demonstrate operational tactics and utilization concepts. This paper provides an overview of the TIS components, specifications, operations, and future developments and applications.

  9. Software thermal imager simulator

    NASA Astrophysics Data System (ADS)

    Le Noc, Loic; Pancrati, Ovidiu; Doucet, Michel; Dufour, Denis; Debaque, Benoit; Turbide, Simon; Berthiaume, Francois; Saint-Laurent, Louis; Marchese, Linda; Bolduc, Martin; Bergeron, Alain

    2014-10-01

    A software application, SIST, has been developed for the simulation of the video at the output of a thermal imager. The approach offers a more suitable representation than current identification (ID) range predictors do: the end user can evaluate the adequacy of a virtual camera as if he was using it in real operating conditions. In particular, the ambiguity in the interpretation of ID range is cancelled. The application also allows for a cost-efficient determination of the optimal design of an imager and of its subsystems without over- or under-specification: the performances are known early in the development cycle, for targets, scene and environmental conditions of interest. The simulated image is also a powerful method for testing processing algorithms. Finally, the display, which can be a severe system limitation, is also fully considered in the system by the use of real hardware components. The application consists in Matlabtm routines that simulate the effect of the subsystems atmosphere, optical lens, detector, and image processing algorithms. Calls to MODTRAN® for the atmosphere modeling and to Zemax for the optical modeling have been implemented. The realism of the simulation depends on the adequacy of the input scene for the application and on the accuracy of the subsystem parameters. For high accuracy results, measured imager characteristics such as noise can be used with SIST instead of less accurate models. The ID ranges of potential imagers were assessed for various targets, backgrounds and atmospheric conditions. The optimal specifications for an optical design were determined by varying the Seidel aberration coefficients to find the worst MTF that still respects the desired ID range.

  10. Image Viewer using Digital Imaging and Communications in Medicine (DICOM)

    NASA Astrophysics Data System (ADS)

    Baraskar, Trupti N.

    2010-11-01

    Digital Imaging and Communications in Medicine is a standard for handling, storing, printing, and transmitting information in medical imaging. The National Electrical Manufacturers Association holds the copyright to this standard. It was developed by the DICOM Standards committee. The other image viewers cannot collectively store the image details as well as the patient's information. So the image may get separated from the details, but DICOM file format stores the patient's information and the image details. Main objective is to develop a DICOM image viewer. The image viewer will open .dcm i.e. DICOM image file and also will have additional features such as zoom in, zoom out, black and white inverter, magnifier, blur, B/W inverter, horizontal and vertical flipping, sharpening, contrast, brightness and .gif converter are incorporated.

  11. Combined terahertz imaging system for enhanced imaging quality

    NASA Astrophysics Data System (ADS)

    Dolganova, Irina N.; Zaytsev, Kirill I.; Metelkina, Anna A.; Yakovlev, Egor V.; Karasik, Valeriy E.; Yurchenko, Stanislav O.

    2016-06-01

    An improved terahertz (THz) imaging system is proposed for enhancing image quality. Imaging scheme includes THz source and detection system operated in active mode as well as in passive one. In order to homogeneously illuminate the object plane the THz reshaper is proposed. The form and internal structure of the reshaper were studied by the numerical simulation. Using different test-objects we compare imaging quality in active and passive THz imaging modes. Imaging contrast and modulation transfer functions in active and passive imaging modes show drawbacks of them in high and low spatial frequencies, respectively. The experimental results confirm the benefit of combining both imaging modes into hybrid one. The proposed algorithm of making hybrid THz image is an effective approach of retrieving maximum information about the remote object.

  12. Robust image modeling techniques with an image restoration application

    NASA Astrophysics Data System (ADS)

    Kashyap, Rangasami L.; Eom, Kie-Bum

    1988-08-01

    A robust parameter-estimation algorithm for a nonsymmetric half-plane (NSHP) autoregressive model, where the driving noise is a mixture of a Gaussian and an outlier process, is presented. The convergence of the estimation algorithm is proved. An algorithm to estimate parameters and original image intensity simultaneously from the impulse-noise-corrupted image, where the model governing the image is not available, is also presented. The robustness of the parameter estimates is demonstrated by simulation. Finally, an algorithm to restore realistic images is presented. The entire image generally does not obey a simple image model, but a small portion (e.g., 8 x 8) of the image is assumed to obey an NSHP model. The original image is divided into windows and the robust estimation algorithm is applied for each window. The restoration algorithm is tested by comparing it to traditional methods on several different images.

  13. Multi-spectral compressive snapshot imaging using RGB image sensors.

    PubMed

    Rueda, Hoover; Lau, Daniel; Arce, Gonzalo R

    2015-05-01

    Compressive sensing is a powerful sensing and reconstruction framework for recovering high dimensional signals with only a handful of observations and for spectral imaging, compressive sensing offers a novel method of multispectral imaging. Specifically, the coded aperture snapshot spectral imager (CASSI) system has been demonstrated to produce multi-spectral data cubes color images from a single snapshot taken by a monochrome image sensor. In this paper, we expand the theoretical framework of CASSI to include the spectral sensitivity of the image sensor pixels to account for color and then investigate the impact on image quality using either a traditional color image sensor that spatially multiplexes red, green, and blue light filters or a novel Foveon image sensor which stacks red, green, and blue pixels on top of one another. PMID:25969307

  14. Precision Imaging: more descriptive, predictive and integrative imaging.

    PubMed

    Frangi, Alejandro F; Taylor, Zeike A; Gooya, Ali

    2016-10-01

    Medical image analysis has grown into a matured field challenged by progress made across all medical imaging technologies and more recent breakthroughs in biological imaging. The cross-fertilisation between medical image analysis, biomedical imaging physics and technology, and domain knowledge from medicine and biology has spurred a truly interdisciplinary effort that stretched outside the original boundaries of the disciplines that gave birth to this field and created stimulating and enriching synergies. Consideration on how the field has evolved and the experience of the work carried out over the last 15 years in our centre, has led us to envision a future emphasis of medical imaging in Precision Imaging. Precision Imaging is not a new discipline but rather a distinct emphasis in medical imaging borne at the cross-roads between, and unifying the efforts behind mechanistic and phenomenological model-based imaging. It captures three main directions in the effort to deal with the information deluge in imaging sciences, and thus achieve wisdom from data, information, and knowledge. Precision Imaging is finally characterised by being descriptive, predictive and integrative about the imaged object. This paper provides a brief and personal perspective on how the field has evolved, summarises and formalises our vision of Precision Imaging for Precision Medicine, and highlights some connections with past research and current trends in the field. PMID:27373145

  15. Precision Imaging: more descriptive, predictive and integrative imaging.

    PubMed

    Frangi, Alejandro F; Taylor, Zeike A; Gooya, Ali

    2016-10-01

    Medical image analysis has grown into a matured field challenged by progress made across all medical imaging technologies and more recent breakthroughs in biological imaging. The cross-fertilisation between medical image analysis, biomedical imaging physics and technology, and domain knowledge from medicine and biology has spurred a truly interdisciplinary effort that stretched outside the original boundaries of the disciplines that gave birth to this field and created stimulating and enriching synergies. Consideration on how the field has evolved and the experience of the work carried out over the last 15 years in our centre, has led us to envision a future emphasis of medical imaging in Precision Imaging. Precision Imaging is not a new discipline but rather a distinct emphasis in medical imaging borne at the cross-roads between, and unifying the efforts behind mechanistic and phenomenological model-based imaging. It captures three main directions in the effort to deal with the information deluge in imaging sciences, and thus achieve wisdom from data, information, and knowledge. Precision Imaging is finally characterised by being descriptive, predictive and integrative about the imaged object. This paper provides a brief and personal perspective on how the field has evolved, summarises and formalises our vision of Precision Imaging for Precision Medicine, and highlights some connections with past research and current trends in the field.

  16. Stereoscopic Integrated Imaging Goggles for Multimodal Intraoperative Image Guidance

    PubMed Central

    Mela, Christopher A.; Patterson, Carrie; Thompson, William K.; Papay, Francis; Liu, Yang

    2015-01-01

    We have developed novel stereoscopic wearable multimodal intraoperative imaging and display systems entitled Integrated Imaging Goggles for guiding surgeries. The prototype systems offer real time stereoscopic fluorescence imaging and color reflectance imaging capacity, along with in vivo handheld microscopy and ultrasound imaging. With the Integrated Imaging Goggle, both wide-field fluorescence imaging and in vivo microscopy are provided. The real time ultrasound images can also be presented in the goggle display. Furthermore, real time goggle-to-goggle stereoscopic video sharing is demonstrated, which can greatly facilitate telemedicine. In this paper, the prototype systems are described, characterized and tested in surgeries in biological tissues ex vivo. We have found that the system can detect fluorescent targets with as low as 60 nM indocyanine green and can resolve structures down to 0.25 mm with large FOV stereoscopic imaging. The system has successfully guided simulated cancer surgeries in chicken. The Integrated Imaging Goggle is novel in 4 aspects: it is (a) the first wearable stereoscopic wide-field intraoperative fluorescence imaging and display system, (b) the first wearable system offering both large FOV and microscopic imaging simultaneously, (c) the first wearable system that offers both ultrasound imaging and fluorescence imaging capacities, and (d) the first demonstration of goggle-to-goggle communication to share stereoscopic views for medical guidance. PMID:26529249

  17. Faithful Completion of Images of Scenic Landmarks Using Internet Images.

    PubMed

    Zhu, Zhe; Huang, Hao-Zhi; Tan, Zhi-Peng; Xu, Kun; Hu, Shi-Min

    2016-08-01

    Previous works on image completion typically aim to produce visually plausible results rather than factually correct ones. In this paper, we propose an approach to faithfully complete the missing regions of an image. We assume that the input image is taken at a well-known landmark, so similar images taken at the same location can be easily found on the Internet. We first download thousands of images from the Internet using a text label provided by the user. Next, we apply two-step filtering to reduce them to a small set of candidate images for use as source images for completion. For each candidate image, a co-matching algorithm is used to find correspondences of both points and lines between the candidate image and the input image. These are used to find an optimal warp relating the two images. A completion result is obtained by blending the warped candidate image into the missing region of the input image. The completion results are ranked according to combination score, which considers both warping and blending energy, and the highest ranked ones are shown to the user. Experiments and results demonstrate that our method can faithfully complete images.

  18. Enhanced integral imaging system using image floating technique

    NASA Astrophysics Data System (ADS)

    Min, Sung-Wook; Kim, Joohwan; Lee, Byoungho

    2005-09-01

    Enhanced integral imaging system based on the image floating method is proposed. The integral imaging is one of the most promising methods among the autostereoscopic displays and the integrated image has the volumetric characteristics unlike the other stereoscopic images. The image floating is a common 3D display technique, which uses a big convex lens or a concave mirror to exhibit the image of a real object to the observer. The image floating method can be used to emphasize the viewing characteristics of the volumetric image and the noise image which is located on the fixed plane can be eliminated by the floating lens through the control of the focal length. In this paper, the solution of the seam noise and the image flipping of the integral imaging system is proposed using the image floating method. Moreover, the advanced techniques of the integral imaging system can be directly applied to the proposed system. The proposed system can be successfully applied to many 3D applications such as 3D television.

  19. Matching rendered and real world images by digital image processing

    NASA Astrophysics Data System (ADS)

    Mitjà, Carles; Bover, Toni; Bigas, Miquel; Escofet, Jaume

    2010-05-01

    Recent advances in computer-generated images (CGI) have been used in commercial and industrial photography providing a broad scope in product advertising. Mixing real world images with those rendered from virtual space software shows a more or less visible mismatching between corresponding image quality performance. Rendered images are produced by software which quality performance is only limited by the resolution output. Real world images are taken with cameras with some amount of image degradation factors as lens residual aberrations, diffraction, sensor low pass anti aliasing filters, color pattern demosaicing, etc. The effect of all those image quality degradation factors can be characterized by the system Point Spread Function (PSF). Because the image is the convolution of the object by the system PSF, its characterization shows the amount of image degradation added to any taken picture. This work explores the use of image processing to degrade the rendered images following the parameters indicated by the real system PSF, attempting to match both virtual and real world image qualities. The system MTF is determined by the slanted edge method both in laboratory conditions and in the real picture environment in order to compare the influence of the working conditions on the device performance; an approximation to the system PSF is derived from the two measurements. The rendered images are filtered through a Gaussian filter obtained from the taking system PSF. Results with and without filtering are shown and compared measuring the contrast achieved in different final image regions.

  20. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a photograph of giant twisters and star wisps in the Lagoon Nebula. This superb Hubble Space Telescope (HST) image reveals a pair of one-half light-year long interstellar twisters, eerie furnels and twisted rope structures (upper left), in the heart of the Lagoon Nebula (Messier 8) that lies 5,000 light-years away in the direction of the constellation Sagittarius. This image was taken by the Hubble Space Telescope Wide Field/Planetary Camera 2 (WF/PC2).

  1. Imaging Radar Polarimeter

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A.; Held, Daniel N.; Brown, Walter E.

    1987-01-01

    Radar measures full polarization tensor of each element in scene in one sweep. New system comprises dual-polarized antenna, single transmitter, and four-channel receiver and digital recorder installed in aircraft, plus digital processor on ground. Produces radar-backscatter images corresponding to 10- by 10-km regions on ground. Signals recorded from orthogonal linearly polarized antennas combined in computer after flight to synthesize any desired combination of transmitted and received polarizations. Data recorded on single flight processed to provide multiple images.

  2. Magnetic imager and method

    DOEpatents

    Powell, J.; Reich, M.; Danby, G.

    1997-07-22

    A magnetic imager includes a generator for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager also includes a sensor for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object. 25 figs.

  3. Magnetic imager and method

    DOEpatents

    Powell, James; Reich, Morris; Danby, Gordon

    1997-07-22

    A magnetic imager 10 includes a generator 18 for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager 10 also includes a sensor 20 for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object.

  4. Neutron imaging camera

    NASA Astrophysics Data System (ADS)

    Hunter, S. D.; de Nolfo, G. A.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-04-01

    The Neutron Imaging Camera (NIC) is based on the Three-dimensional Track Imager (3_DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, ~0.4 mm resolution, 3-D tracking of charged particles. The incident direction of fast neutrons, En > 0.5 MeV, are reconstructed from the momenta and energies of the proton and triton fragments resulting from 3He(n,p)3H interactions in the 3-DTI volume. The performance of the NIC from laboratory is presented.

  5. Neutron Imaging Camera

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley; deNolfo, G. A.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    The Neutron Imaging Camera (NIC) is based on the Three-dimensional Track Imager (3DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution, 3-D tracking of charged particles. The incident direction of fast neutrons, En > 0.5 MeV, are reconstructed from the momenta and energies of the proton and triton fragments resulting from (sup 3)He(n,p) (sup 3)H interactions in the 3-DTI volume. The performance of the NIC from laboratory and accelerator tests is presented.

  6. GCPII Imaging and Cancer

    PubMed Central

    Foss, C.A.; Mease, R.C.; Cho, S.Y.; Kim, H.J.; Pomper, M.G.

    2014-01-01

    Glutamate carboxypeptidase II (GCPII) in the central nervous system is referred to as the prostate-specific membrane antigen (PSMA) in the periphery. PSMA serves as a target for imaging and treatment of prostate cancer and because of its expression in solid tumor neovasculature has the potential to be used in this regard for other malignancies as well. An overview of GCPII/PSMA in cancer, as well as a discussion of imaging and therapy of prostate cancer using a wide variety of PSMA-targeting agents is provided. PMID:22304713

  7. Onboard image correction

    NASA Technical Reports Server (NTRS)

    Martin, D. R.; Smaulon, A. S.; Hamori, A. S.

    1980-01-01

    A processor architecture for performing onboard geometric and radiometric correction of LANDSAT imagery is described. The design uses a general purpose processor to calculate the distortion values at selected points in the image and a special purpose processor to resample (calculate distortion at each image point and interpolate the intensity) the sensor output data. A distinct special purpose processor is used for each spectral band. Because of the sensor's high output data rate, 80 M bit per second, the special purpose processors use a pipeline architecture. Sizing has been done on both the general and special purpose hardware.

  8. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  9. Comparison of imaging spectrometers

    SciTech Connect

    Bennett, C

    2000-01-09

    Realistic signal to noise performance estimates for the various types of instruments being considered for NGST are compared, based on the point source detection values quoted in the available ISIM final reports. The corresponding sensitivity of the various types of spectrometers operating in a full field imaging mode, for both emission line objects and broad spectral distribution objects, is computed and displayed. For the purpose of seeing the earliest galaxies, or the faintest possible emission line sources, the imaging Fourier transform spectrometer emerges superior to all others, by orders of magnitude in speed.

  10. Imaging of snapping phenomena

    PubMed Central

    Guillin, R; Marchand, A J; Roux, A; Niederberger, E; Duvauferrier, R

    2012-01-01

    Snapping phenomena result from the sudden impingement between anatomical and/or heterotopical structures with subsequent abrupt movement and noise. Snaps are variously perceived by patients, from mild discomfort to significant pain requiring surgical management. Identifying the precise cause of snaps may be challenging when no abnormality is encountered on routinely performed static examinations. In this regard, dynamic imaging techniques have been developed over time, with various degrees of success. This review encompasses the main features of each imaging technique and proposes an overview of the main snapping phenomena in the musculoskeletal system. PMID:22744321

  11. Imaging the early universe

    SciTech Connect

    Krupa, Tyler J.

    2000-07-01

    An international team of cosmologists has released the first detailed images of the universe in its infancy. The images reveal the structure that existed when the universe was a tiny fraction of its current age and 1,000 times smaller and hotter than it is today. Research carried out as part of this project is shedding light on some of cosmology's long-standing mysteries, such as the nature of the matter and energy that dominate intergalactic space and whether space is ''curved'' or ''flat.''(c) 2000 Optical Society of America.

  12. The ear: Diagnostic imaging

    SciTech Connect

    Vignaud, J.; Jardin, C.; Rosen, L.

    1986-01-01

    This is an English translation of volume 17-1 of Traite de radiodiagnostic and represents a reasonably complete documentation of the diseases of the temporal bone that have imaging manifestations. The book begins with chapters on embryology, anatomy and radiography anatomy; it continues with blood supply and an overview of temporal bone pathology. Subsequent chapters cover malformations, trauma, infections, tumors, postoperative changes, glomus tumors, vertebasilar insufficiency, and facial nerve canal lesions. A final chapter demonstrates and discusses magnetic resonance images of the ear and cerebellopontine angle.

  13. Particle image cinematograph velocimetry

    NASA Astrophysics Data System (ADS)

    Ma, Guangyun; Shen, Gongxin

    1993-01-01

    Particle image cinematograph velocimetry (PICV), a new method based on 2D velocity field with time history measurements for unsteady flows, is presented here. Using mechanical chopping light pulses of the Aron ion laser, which are matched synchronously with moving action of a cinematograph, a series of double or multiple exposure images of particles which are seeded in fluid could be recorded in the films sequentially. The recording films are scanned by an auto-interrogation system, a series of instantaneous 2D-velocity distribution maps with time history are obtained. Some application results for a starting vortex flow around a backward step are presented.

  14. Spaceborne Imaging Radar Symposium

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1983-01-01

    An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging radars was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging Radar, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT.

  15. Turbine Imaging Technology Assessment

    SciTech Connect

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  16. Mediastinal Imaging Pitfalls.

    PubMed

    Lieberman, Sivan; Truong, Mylene T; Marom, Edith M

    2016-06-01

    Potential pitfalls in the interpretation of diseases involving the mediastinum are seen when imaging with computed tomography and [18F]-fluoro-2-deoxy-d-glucose positron emission tomography. These pitfalls can involve any mediastinal structure, including the mediastinal vessels, heart, lymph nodes, thymus, trachea, esophagus, and fat. Misinterpretation of normal variants or benign conditions as pathology can affect staging and alter treatment. After reading this review, the reader should be able to identify common mediastinal imaging pitfalls and apply ancillary measures to confirm the correct diagnosis and thus reach an accurate diagnosis to facilitate correct patient treatment. PMID:27261349

  17. Hierarchical image enhancement

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Han, Jing; Zhang, Yi; Bai, Lian-fa

    2016-05-01

    Image enhancement is an important technique in computer vision. In this paper, we propose a hierarchical image enhancement approach based on the structure layer and texture layer. In the structure layer, we propose a structure-based method based on GMM, which better exploits structure details with fewer noise. In the texture layer, we present a structure-filtering method to filter unwanted texture with keeping completeness of detected salient structure. Next, we introduce a structure constraint prior to integrate them, leading to an improved enhancement result. Extensive experiments demonstrate that the proposed approach achieves higher quality results than previous approaches.

  18. Imaging central pain syndromes.

    PubMed

    Veldhuijzen, Dieuwke S; Greenspan, Joel D; Kim, Jong H; Coghill, Robert C; Treede, Rolf-Detlef; Ohara, Shinji; Lenz, Frederick A

    2007-06-01

    Anatomic, functional, and neurochemical imaging studies have provided new investigative tools in the study of central pain. High-resolution imaging studies allow for precise determination of lesion location, whereas functional neuroimaging studies measure pathophysiologic consequences of injury to the central nervous system. Additionally, magnetic resonance spectroscopy evaluates lesion-induced neurochemical changes in specific brain regions that may be related to central pain. The small number of studies to date precludes definitive conclusions, but the recent findings provide information that either supports or refutes current hypotheses and can serve to generate new ideas.

  19. MAXIM: The Blackhole Imager

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith; Cash, Webster; Gorenstein, Paul; Windt, David; Kaaret, Phil; Reynolds, Chris

    2004-01-01

    The Beyond Einstein Program in NASA's Office of Space Science Structure and Evolution of the Universe theme spells out the top level scientific requirements for a Black Hole Imager in its strategic plan. The MAXIM mission will provide better than one tenth of a microarcsecond imaging in the X-ray band in order to satisfy these requirements. We will overview the driving requirements to achieve these goals and ultimately resolve the event horizon of a supermassive black hole. We will present the current status of this effort that includes a study of a baseline design as well as two alternative approaches.

  20. Digital Image Correlation Engine

    SciTech Connect

    Turner, Dan; Crozier, Paul; Reu, Phil

    2015-10-06

    DICe is an open source digital image correlation (DIC) tool intended for use as a module in an external application or as a standalone analysis code. It's primary capability is computing full –field displacements and strains from sequences of digital These images are typically of a material sample undergoing a materials characterization experiment, but DICe is also useful for other applications (for example, trajectory tracking). DICe is machine portable (Windows, Linux and Mac) and can be effectively deployed on a high performance computing platform. Capabilities from DICe can be invoked through a library interface, via source code integration of DICe classes or through a graphical user interface.

  1. Multispectral thermal imaging

    SciTech Connect

    Weber, P.G.; Bender, S.C.; Borel, C.C.; Clodius, W.B.; Smith, B.W.; Garrett, A.; Pendergast, M.M.; Kay, R.R.

    1998-12-01

    Many remote sensing applications rely on imaging spectrometry. Here the authors use imaging spectrometry for thermal and multispectral signatures measured from a satellite platform enhanced with a combination of accurate calibrations and on-board data for correcting atmospheric distortions. The approach is supported by physics-based end-to-end modeling and analysis, which permits a cost-effective balance between various hardware and software aspects. The goal is to develop and demonstrate advanced technologies and analysis tools toward meeting the needs of the customer; at the same time, the attributes of this system can address other applications in such areas as environmental change, agriculture, and volcanology.

  2. Silent images in dialogue

    NASA Astrophysics Data System (ADS)

    Azevedo, Isabel; Sandford-Richardson, Elizabeth; Richardson, Martin; Bernardo, Luis Miguel; Crespo, Helder

    2016-03-01

    In this series of digital art holograms and lenticulars, we used the HoloCam Portable Light System with the 35 mm cameras, Canon IS3 and the Canon 700D, to capture the image information, it was then edited on the computer using Motion 5 and Final Cut Pro X programs. We are presenting several actions in the digital holographic space. The figures are in dialogue within the holographic space and the viewer, in front of the holographic plate. In holography the time of the image is the time of the viewer present. And that particular feature is what distinguishes digital holography from other media.

  3. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This color image from the Hubble Space Telescope (HST) shows a region in NGC 1365, a barred spiral galaxy located in a cluster of galaxies called Fornax. A barred spiral galaxy is characterized by a bar of stars, dust, and gas across its center. The black and white photograph from a ground-based telescope shows the entire galaxy, which is visible from the Southern Hemisphere. The galaxy is estimated to be 60-million light-years from Earth. This image was taken by the HST Wide Field/Planetary Camera 2 (WF/PC-2).

  4. Moving Multimedia: The Information Value in Images.

    ERIC Educational Resources Information Center

    Berinstein, Paula

    1997-01-01

    Discusses the value and use of images as information. Topics include the information in images versus text; a taxonomy of image types; resources related to images; and the use of images in architecture, engineering, advertising, and competitive intelligence. (LRW)

  5. Body image inflexibility mediates the relationship between body image evaluation and maladaptive body image coping strategies.

    PubMed

    Mancuso, Serafino G

    2016-03-01

    Body image inflexibility, the unwillingness to experience negative appearance-related thoughts and emotions, is associated with negative body image and eating disorder symptoms. The present study investigated whether body image inflexibility mediated the relationship between body image evaluation and maladaptive body image coping strategies (appearance-fixing and experiential avoidance) in a college and community sample comprising 156 females aged 18-51 years (M=22.76, SD=6.96). Controlling for recruitment source (college vs. community), body image inflexibility fully mediated the relationship between body image evaluation and maladaptive body image coping strategies. Results indicated that an unwillingness to experience negative appearance-related thoughts and emotions is likely responsible for negative body image evaluation's relationship to appearance-fixing behaviours and experiential avoidance. Findings support extant evidence that interventions that explicitly target body image inflexibility, such as Acceptance and Commitment Therapy, may have utility in treating body dissatisfaction in nonclinical populations. PMID:26595857

  6. Body image inflexibility mediates the relationship between body image evaluation and maladaptive body image coping strategies.

    PubMed

    Mancuso, Serafino G

    2016-03-01

    Body image inflexibility, the unwillingness to experience negative appearance-related thoughts and emotions, is associated with negative body image and eating disorder symptoms. The present study investigated whether body image inflexibility mediated the relationship between body image evaluation and maladaptive body image coping strategies (appearance-fixing and experiential avoidance) in a college and community sample comprising 156 females aged 18-51 years (M=22.76, SD=6.96). Controlling for recruitment source (college vs. community), body image inflexibility fully mediated the relationship between body image evaluation and maladaptive body image coping strategies. Results indicated that an unwillingness to experience negative appearance-related thoughts and emotions is likely responsible for negative body image evaluation's relationship to appearance-fixing behaviours and experiential avoidance. Findings support extant evidence that interventions that explicitly target body image inflexibility, such as Acceptance and Commitment Therapy, may have utility in treating body dissatisfaction in nonclinical populations.

  7. Multimodality Brain Tumor Imaging: MR Imaging, PET, and PET/MR Imaging.

    PubMed

    Fink, James R; Muzi, Mark; Peck, Melinda; Krohn, Kenneth A

    2015-10-01

    Standard MR imaging and CT are routinely used for anatomic diagnosis in brain tumors. Pretherapy planning and posttreatment response assessments rely heavily on gadolinium-enhanced MR imaging. Advanced MR imaging techniques and PET imaging offer physiologic, metabolic, or functional information about tumor biology that goes beyond the diagnostic yield of standard anatomic imaging. With the advent of combined PET/MR imaging scanners, we are entering an era wherein the relationships among different elements of tumor metabolism can be simultaneously explored through multimodality MR imaging and PET imaging. The purpose of this review is to provide a practical and clinically relevant overview of current anatomic and physiologic imaging of brain tumors as a foundation for further investigations, with a primary focus on MR imaging and PET techniques that have demonstrated utility in the current care of brain tumor patients.

  8. Diversity imaging techniques in lidar

    NASA Technical Reports Server (NTRS)

    Schultz, K. I.

    1992-01-01

    Diversity imaging techniques have been successfully employed in conventional microwave range-Doppler imaging radars to obtain high resolution images of both natural and man-made targets. These techniques allow microwave radars to achieve image resolution which would otherwise require excessively large antennas. Recent advances in coherent laser radar techniques and signal processing have led to the development of range-Doppler imaging laser radars. While much of the theory and signal processing techniques used in microwave radars can be brought to bear on laser radars, the significant difference in wavelength results in issues peculiar to laser radar systems. Both the fundamental concepts and specific applications of diversity imaging techniques applied to laser radar imaging systems will be discussed. Angle, frequency, and bistatic angle degrees of freedom can be employed in a coherent laser radar imaging system to achieve image resolution which exceeds the traditional Rayleigh criterion associated with the receive aperture. In diversity imaging, angle and frequency degrees of freedom can be used to synthesize an effective aperture providing range and Doppler target information. The ability to vary the bistatic angle provides an additional means of synthesizing an effective aperture. Both simulated and experimentally obtained laser radar images of spinning and/or tumbling objects utilizing both angular and frequency diversity will be presented. In coherent laser radar systems, image quality can be dominated by laser speckle effects. In particular, the signal-to-noise ratio (SNR) of a coherent laser radar image is at most unity in the presence of fully developed speckle. Diversity techniques can be utilized to improve the image SNR; simple incoherent averaging of images utilizing temporal and polarization degrees of freedom can significantly improve image SNR. Both the SNR and image resolution (as defined by the synthetic aperture) contribute to image quality. The

  9. Normalization method for video images

    SciTech Connect

    Donohoe, G.W.; Hush, D.R.

    1992-12-31

    The present invention relates to a method and apparatus for automatically and adaptively normalizing analog signals representative of video images in object detection systems. Such normalization maximizes the average information content of the video images and, thereby, provides optimal digitized images for object detection and identification. The present invention manipulates two system control signals -- gain control signal and offset control signal -- to convert an analog image signal into a transformed analog image signal, such that the corresponding digitized image contains the maximum amount of information achievable with a conventional object detection system. In some embodiments of the present invention, information content is measured using parameters selected from image entropy, image mean, and image variance.

  10. Modern Imaging Technology: Recent Advances

    SciTech Connect

    Welch, Michael J.; Eckelman, William C.

    2004-06-18

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

  11. Imaging of Sarcoidosis.

    PubMed

    Silva, Mario; Nunes, Hilario; Valeyre, Dominique; Sverzellati, Nicola

    2015-08-01

    The diagnostic imaging contributes significantly to the diagnosis and management of sarcoidosis. Imaging techniques are widely employed in the assessment of thoracic and extra-thoracic involvement from sarcoidosis. For the diagnosis of sarcoidosis, chest radiograph has been the cornerstone of sarcoidosis since 1961, when Scadding proposed a standardized staging system. Currently, computed tomography (CT) represents the reference standard for the assessment of both mediastinal lymph nodes and pulmonary findings. In particular, high-resolution computed tomography (HRCT) is more accurate compared to chest radiography for the detection of subtle parenchymal involvement, and provides comprehensive overview of anatomical detail and abnormalities of lung structures. Notably, HRCT allows for accurate differentiation between reversible and irreversible lung disease, which is cornerstone of prognostication. Radionuclide imaging (gallium-67 and (18)F-fluorodeoxyglucose) provides information about activity of the disease and is also useful for diagnostic workup of patients with unexplained persistent disabling symptoms. Magnetic resonance is sensitive for the detection of sarcoidosis granulomata within myocardium, thus providing detailed roadmap for biopsy. For the management of sarcoidosis, CT is of paramount importance in the detection and differential of most common complications, such as vascular disease and suspicious nodular lesions. Conversely, the role of CT in the follow-up of asymptomatic subjects is still under debate. This review focuses on the role of diagnostic imaging in the diagnosis and follow-up of sarcoidosis.

  12. Electrical Resistivity Imaging

    EPA Science Inventory

    Electrical resistivity imaging (ERI) is a geophysical method originally developed within the mining industry where it has been used for decades to explore for and characterize subsurface mineral deposits. It is one of the oldest geophysical methods with the first documented usag...

  13. Nuclear Imaging of Amyloidosis

    PubMed Central

    Cytawa, Wojciech; Teodorczyk, Jacek; Lass, Piotr

    2014-01-01

    Summary Amyloidosis is a clinical condition caused by deposition of various protein fibrills in extracellular space. The presented symptoms depend on the type of deposits and the organ or organs involved. The correct diagnosis is often difficult, due to lack of nonivasive imaging techniques and insufficiency of morphological imaging procedures delievered by radiology. We presented a list of potential radiopharmaceuticals that can be used in detecting various types of amyloidoses. 123I-SAP proved to have high sensitivity in imaging of AA and AL amyloidosis in visceral organs. 99mTc-Aprotinin was found to be useful in detecting cardiac amyloidosis. A couple of classical radiotracers, such as 201Tl, 123I-mIBG, together with 111In-antimyosin were also tested for accuracy in cardiac imaging, however the main problem was low specificity. Potential applicability was also found in case of some bone-seeking agents and other radiotracers, e.g. 67Ga-citrate and 99mTc-penta-DMSA. High sensitivity and specificity was achieved with β2-microglobulin labeled with 131I or 111In. Among PET tracers, 11C-PIB deserves more attention, because it may have an important role in diagnosing of AD in the near future. Further clinical studies are expected to take place, because noninvasive diagnosing and monitoring of amyloidosis is still a challenge. PMID:25071873

  14. The Chicana Image.

    ERIC Educational Resources Information Center

    Salinas, Judy

    Literature has perpetuated through the centuries the cultural and traditional roles and stereotypes of woman, particularly the Hispanic woman. Two main categories or images of woman, with variations and generalizations, have been: (1) the "good woman", symbolized by a woman who can think or do no evil, is pure, understanding, kind, weak, passive,…

  15. Making Images That Move

    ERIC Educational Resources Information Center

    Rennie, Richard

    2015-01-01

    The history of the moving image (the cinema) is well documented in books and on the Internet. This article offers a number of activities that can easily be carried out in a science class. They make use of the phenomenon of "Persistence of Vision." The activities presented herein demonstrate the functionality of the phenakistoscope, the…

  16. [Progress in imaging techniques].

    PubMed

    Mishima, Kazuaki; Otsuka, Tsukasa

    2013-05-01

    Today it is common to perform real-time diagnosis and treatment via live broadcast as a method of education and to spread new technology for diagnosis and therapy in medical fields. Live medical broadcasts have developed along with broadcast technology. In the early days, live video feeds were sent from operating rooms to classrooms and lecture halls in universities and hospitals. However, the development of imaging techniques and communication networks enabled live broadcasts that bi-directionally link operating rooms and meeting halls during scientific meetings and live demonstration courses. Live broadcasts therefore became an important method for education and the dissemination of new medical technologies. The development of imaging techniques has contributed to more realistic live broadcasts through such innovative techniques as three-dimensional viewing and higher-definition 4K technology. In the future, live broadcasts will be transmitted on personal computers using regular Internet connections. In addition to the enhancement of image delivery technology, it will also be necessary to examine the entire image delivery environment carefully, including issues of security and privacy of personal information.

  17. Imaging the Working Brain.

    ERIC Educational Resources Information Center

    Swithenby, S. J.

    1996-01-01

    Very sensitive SQUID (superconducting quantum interference device) detectors are used in the technique known as magnetoencephalography to provide dynamic images of the brain. This can help our fundamental understanding of the way the brain works and may be of particular use in treating disorders such as epilepsy. (Author/MKR)

  18. ICMICs - Cancer Imaging Program

    Cancer.gov

    ICMIC grants facilitate interaction among scientists from a variety of fields to conduct multidisciplinary research on cellular and molecular imaging related to cancer. Pre-ICMIC planning grants have provided time and funds for investigators and institutions to prepare themselves, organizationally and scientifically, to establish ICMICs.

  19. Image-Processing Program

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Hull, D. R.

    1994-01-01

    IMAGEP manipulates digital image data to effect various processing, analysis, and enhancement functions. It is keyboard-driven program organized into nine subroutines. Within subroutines are sub-subroutines also selected via keyboard. Algorithm has possible scientific, industrial, and biomedical applications in study of flows in materials, analysis of steels and ores, and pathology, respectively.

  20. Lean Tissue Imaging

    PubMed Central

    Heymsfield, Steven B.

    2014-01-01

    Body composition refers to the amount of fat and lean tissues in our body; it is a science that looks beyond a unit of body weight, accounting for the proportion of different tissues and its relationship to health. Although body weight and body mass index are well-known indexes of health status, most researchers agree that they are rather inaccurate measures, especially for elderly individuals and those patients with specific clinical conditions. The emerging use of imaging techniques such as dual energy x-ray absorptiometry, computerized tomography, magnetic resonance imaging, and ultrasound imaging in the clinical setting have highlighted the importance of lean soft tissue (LST) as an independent predictor of morbidity and mortality. It is clear from emerging studies that body composition health will be vital in treatment decisions, prognostic outcomes, and quality of life in several nonclinical and clinical states. This review explores the methodologies and the emerging value of imaging techniques in the assessment of body composition, focusing on the value of LST to predict nutrition status. PMID:25239112