Sample records for imaging principles limitations

  1. Multi-imager compatible actuation principles in surgical robotics.

    PubMed

    Stoianovici, D

    2005-01-01

    Today's most successful surgical robots are perhaps surgeon-driven systems, such as the daVinci (Intuitive Surgical Inc., USA, www.intuitivesurgical.com). These have already enabled surgery that was unattainable with classic instrumentation; however, at their present level of development, they have limited utility. The drawback of these systems is that they are independent self-contained units, and as such, they do not directly take advantage of patient data. The potential of these new surgical tools lies much further ahead. Integration with medical imaging and information are needed for these devices to achieve their true potential. Surgical robots and especially their subclass of image-guided systems require special design, construction and control compared to industrial types, due to the special requirements of the medical and imaging environments. Imager compatibility raises significant engineering challenges for the development of robotic manipulators with respect to imager access, safety, ergonomics, and above all the non-interference with the functionality of the imager. These apply to all known medical imaging types, but are especially challenging for achieving compatibility with the class of MRI systems. Even though a large majority of robotic components may be redesigned to be constructed of MRI compatible materials, for other components such as the motors used in actuation, prescribing MRI compatible materials alone is not sufficient. The electromagnetic motors most commonly used in robotic actuation, for example, are incompatible by principle. As such, alternate actuation principles using "intervention friendly" energy should be adopted and/or devised for these special surgical and radiological interventions. This paper defines the new concept of Multi-Imager Compatibility of surgical manipulators and describes its requirements. Subsequently, the paper gives several recommendations and proposes new actuation principles for this concept. Several

  2. Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores.

    PubMed

    Chen, Zhixing; Wei, Lu; Zhu, Xinxin; Min, Wei

    2012-08-13

    It is highly desirable to be able to optically probe biological activities deep inside live organisms. By employing a spatially confined excitation via a nonlinear transition, multiphoton fluorescence microscopy has become indispensable for imaging scattering samples. However, as the incident laser power drops exponentially with imaging depth due to scattering loss, the out-of-focus fluorescence eventually overwhelms the in-focal signal. The resulting loss of imaging contrast defines a fundamental imaging-depth limit, which cannot be overcome by increasing excitation intensity. Herein we propose to significantly extend this depth limit by multiphoton activation and imaging (MPAI) of photo-activatable fluorophores. The imaging contrast is drastically improved due to the created disparity of bright-dark quantum states in space. We demonstrate this new principle by both analytical theory and experiments on tissue phantoms labeled with synthetic caged fluorescein dye or genetically encodable photoactivatable GFP.

  3. Spectral imaging: principles and applications.

    PubMed

    Garini, Yuval; Young, Ian T; McNamara, George

    2006-08-01

    Spectral imaging extends the capabilities of biological and clinical studies to simultaneously study multiple features such as organelles and proteins qualitatively and quantitatively. Spectral imaging combines two well-known scientific methodologies, namely spectroscopy and imaging, to provide a new advantageous tool. The need to measure the spectrum at each point of the image requires combining dispersive optics with the more common imaging equipment, and introduces constrains as well. The principles of spectral imaging and a few representative applications are described. Spectral imaging analysis is necessary because the complex data structure cannot be analyzed visually. A few of the algorithms are discussed with emphasis on the usage for different experimental modes (fluorescence and bright field). Finally, spectral imaging, like any method, should be evaluated in light of its advantages to specific applications, a selection of which is described. Spectral imaging is a relatively new technique and its full potential is yet to be exploited. Nevertheless, several applications have already shown its potential. (c) 2006 International Society for Analytical Cytology.

  4. Fundamental uncertainty limit of optical flow velocimetry according to Heisenberg's uncertainty principle.

    PubMed

    Fischer, Andreas

    2016-11-01

    Optical flow velocity measurements are important for understanding the complex behavior of flows. Although a huge variety of methods exist, they are either based on a Doppler or a time-of-flight measurement principle. Doppler velocimetry evaluates the velocity-dependent frequency shift of light scattered at a moving particle, whereas time-of-flight velocimetry evaluates the traveled distance of a scattering particle per time interval. Regarding the aim of achieving a minimal measurement uncertainty, it is unclear if one principle allows to achieve lower uncertainties or if both principles can achieve equal uncertainties. For this reason, the natural, fundamental uncertainty limit according to Heisenberg's uncertainty principle is derived for Doppler and time-of-flight measurement principles, respectively. The obtained limits of the velocity uncertainty are qualitatively identical showing, e.g., a direct proportionality for the absolute value of the velocity to the power of 32 and an indirect proportionality to the square root of the scattered light power. Hence, both measurement principles have identical potentials regarding the fundamental uncertainty limit due to the quantum mechanical behavior of photons. This fundamental limit can be attained (at least asymptotically) in reality either with Doppler or time-of-flight methods, because the respective Cramér-Rao bounds for dominating photon shot noise, which is modeled as white Poissonian noise, are identical with the conclusions from Heisenberg's uncertainty principle.

  5. Theoretical Limitations on Functional Imaging Resolution in Auditory Cortex

    PubMed Central

    Chen, Thomas L.; Watkins, Paul V.; Barbour, Dennis L.

    2010-01-01

    Functional imaging can reveal detailed organizational structure in cerebral cortical areas, but neuronal response features and local neural interconnectivity can influence the resulting images, possibly limiting the inferences that can be drawn about neural function. Discerning the fundamental principles of organizational structure in the auditory cortex of multiple species has been somewhat challenging historically both with functional imaging and with electrophysiology. A possible limitation affecting any methodology using pooled neuronal measures may be the relative distribution of response selectivity throughout the population of auditory cortex neurons. One neuronal response type inherited from the cochlea, for example, exhibits a receptive field that increases in size (i.e., decreases in selectivity) at higher stimulus intensities. Even though these neurons appear to represent a minority of auditory cortex neurons, they are likely to contribute disproportionately to the activity detected in functional images, especially if intense sounds are used for stimulation. To evaluate the potential influence of neuronal subpopulations upon functional images of primary auditory cortex, a model array representing cortical neurons was probed with virtual imaging experiments under various assumptions about the local circuit organization. As expected, different neuronal subpopulations were activated preferentially under different stimulus conditions. In fact, stimulus protocols that can preferentially excite selective neurons, resulting in a relatively sparse activation map, have the potential to improve the effective resolution of functional auditory cortical images. These experimental results also make predictions about auditory cortex organization that can be tested with refined functional imaging experiments. PMID:20079343

  6. Statistical Limits to Super Resolution

    NASA Astrophysics Data System (ADS)

    Lucy, L. B.

    1992-08-01

    The limits imposed by photon statistics on the degree to which Rayleigh's resolution limit for diffraction-limited images can be surpassed by applying image restoration techniques are investigated. An approximate statistical theory is given for the number of detected photons required in the image of an unresolved pair of equal point sources in order that its information content allows in principle resolution by restoration. This theory is confirmed by numerical restoration experiments on synthetic images, and quantitative limits are presented for restoration of diffraction-limited images formed by slit and circular apertures.

  7. Ultimate Limit to the Spatial Resolution in Magnetic Imaging

    NASA Astrophysics Data System (ADS)

    Matthews, John; Wellstood, Frederick C.; Chatraphorn, Sojiphong

    2003-03-01

    Motivated by the continual improvement in the spatial resolution of source currents detected by magnetic field imaging, in particular scanning SQUID microscopy, we have determined a theoretical limit to the spatial resolution for a given set of parameters. The guiding principle here is that by adding known information (e.g. CAD diagram) about the source currents into the inversion algorithm, we reduce the number of unknown parameters and hence lower the uncertainty in the remaining parameters. We consider the ultimate limit to be the case where all the information about the system is known, except for a single parameter, e.g. the separation w of two long, straight wires each carrying a current I/2. For this particular example we find that for a current I=100;μA, with magnetic field noise Δ B=10 pT, at a standoff z=100;μm, the minimum resolvable separation is 2;μm, about an order of magnitude less than the present limit.

  8. Muon imaging: Principles, technologies and applications

    NASA Astrophysics Data System (ADS)

    Procureur, S.

    2018-01-01

    During the last 15 years muon-based imaging, or muography, has experienced an impressive development and has found applications in many different fields requiring penetrating probes. Structures of very different sizes and densities can be imaged thanks to the various implementations it offers: either in absorption/transmission or in deviation modes, not to mention the muon metrology for monitoring. The goal of this paper is to give an overview of the main principles of the muography, as well as the technologies employed nowadays and its current and potential applications. Considering the amount of studies dedicated to muography and the number of projects conducted in the last decade, this review focuses on the fields which are the most representative of the muography capabilities.

  9. Blind deconvolution of astronomical images with band limitation determined by optical system parameters

    NASA Astrophysics Data System (ADS)

    Luo, L.; Fan, M.; Shen, M. Z.

    2007-07-01

    Atmospheric turbulence greatly limits the spatial resolution of astronomical images acquired by the large ground-based telescope. The record image obtained from telescope was thought as a convolution result of the object function and the point spread function. The statistic relationship of the images measured data, the estimated object and point spread function was in accord with the Bayes conditional probability distribution, and the maximum-likelihood formulation was found. A blind deconvolution approach based on the maximum-likelihood estimation technique with real optical band limitation constraint is presented for removing the effect of atmospheric turbulence on this class images through the minimization of the convolution error function by use of the conjugation gradient optimization algorithm. As a result, the object function and the point spread function could be estimated from a few record images at the same time by the blind deconvolution algorithm. According to the principle of Fourier optics, the relationship between the telescope optical system parameters and the image band constraint in the frequency domain was formulated during the image processing transformation between the spatial domain and the frequency domain. The convergence of the algorithm was increased by use of having the estimated function variable (also is the object function and the point spread function) nonnegative and the point-spread function band limited. Avoiding Fourier transform frequency components beyond the cut off frequency lost during the image processing transformation when the size of the sampled image data, image spatial domain and frequency domain were the same respectively, the detector element (e.g. a pixels in the CCD) should be less than the quarter of the diffraction speckle diameter of the telescope for acquiring the images on the focal plane. The proposed method can easily be applied to the case of wide field-view turbulent-degraded images restoration because of

  10. Diffraction-Limited Plenoptic Imaging with Correlated Light

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Di Lena, Francesco; Mazzilli, Aldo; Edrei, Eitan; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena

    2017-12-01

    Traditional optical imaging faces an unavoidable trade-off between resolution and depth of field (DOF). To increase resolution, high numerical apertures (NAs) are needed, but the associated large angular uncertainty results in a limited range of depths that can be put in sharp focus. Plenoptic imaging was introduced a few years ago to remedy this trade-off. To this aim, plenoptic imaging reconstructs the path of light rays from the lens to the sensor. However, the improvement offered by standard plenoptic imaging is practical and not fundamental: The increased DOF leads to a proportional reduction of the resolution well above the diffraction limit imposed by the lens NA. In this Letter, we demonstrate that correlation measurements enable pushing plenoptic imaging to its fundamental limits of both resolution and DOF. Namely, we demonstrate maintaining the imaging resolution at the diffraction limit while increasing the depth of field by a factor of 7. Our results represent the theoretical and experimental basis for the effective development of promising applications of plenoptic imaging.

  11. Diffraction-Limited Plenoptic Imaging with Correlated Light.

    PubMed

    Pepe, Francesco V; Di Lena, Francesco; Mazzilli, Aldo; Edrei, Eitan; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena

    2017-12-15

    Traditional optical imaging faces an unavoidable trade-off between resolution and depth of field (DOF). To increase resolution, high numerical apertures (NAs) are needed, but the associated large angular uncertainty results in a limited range of depths that can be put in sharp focus. Plenoptic imaging was introduced a few years ago to remedy this trade-off. To this aim, plenoptic imaging reconstructs the path of light rays from the lens to the sensor. However, the improvement offered by standard plenoptic imaging is practical and not fundamental: The increased DOF leads to a proportional reduction of the resolution well above the diffraction limit imposed by the lens NA. In this Letter, we demonstrate that correlation measurements enable pushing plenoptic imaging to its fundamental limits of both resolution and DOF. Namely, we demonstrate maintaining the imaging resolution at the diffraction limit while increasing the depth of field by a factor of 7. Our results represent the theoretical and experimental basis for the effective development of promising applications of plenoptic imaging.

  12. Investigation on principle of polarization-difference imaging in turbid conditions

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Guan, Jinge

    2018-04-01

    We investigate the principle of polarization-difference imaging (PDI) of objects in optically scattering environments. The work is performed by both Marius's law and Mueller-Stokes formalism, and is further demonstrated by simulation. The results show that the object image is obtained based on the difference in polarization direction between the scatter noise and the target signal, and imaging performance is closely related to the choice of polarization analyzer axis. In addition, this study illustrates the potential of Stoke vector for promoting application of PDI system in the real world scene.

  13. How to COAAD Images. II. A Coaddition Image that is Optimal for Any Purpose in the Background-dominated Noise Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zackay, Barak; Ofek, Eran O.

    Image coaddition is one of the most basic operations that astronomers perform. In Paper I, we presented the optimal ways to coadd images in order to detect faint sources and to perform flux measurements under the assumption that the noise is approximately Gaussian. Here, we build on these results and derive from first principles a coaddition technique that is optimal for any hypothesis testing and measurement (e.g., source detection, flux or shape measurements, and star/galaxy separation), in the background-noise-dominated case. This method has several important properties. The pixels of the resulting coadded image are uncorrelated. This image preserves all themore » information (from the original individual images) on all spatial frequencies. Any hypothesis testing or measurement that can be done on all the individual images simultaneously, can be done on the coadded image without any loss of information. The PSF of this image is typically as narrow, or narrower than the PSF of the best image in the ensemble. Moreover, this image is practically indistinguishable from a regular single image, meaning that any code that measures any property on a regular astronomical image can be applied to it unchanged. In particular, the optimal source detection statistic derived in Paper I is reproduced by matched filtering this image with its own PSF. This coaddition process, which we call proper coaddition, can be understood as the maximum signal-to-noise ratio measurement of the Fourier transform of the image, weighted in such a way that the noise in the entire Fourier domain is of equal variance. This method has important implications for multi-epoch seeing-limited deep surveys, weak lensing galaxy shape measurements, and diffraction-limited imaging via speckle observations. The last topic will be covered in depth in future papers. We provide an implementation of this algorithm in MATLAB.« less

  14. Limits to magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Glover, Paul; Mansfield, Peter, Sir

    2002-10-01

    The last quarter of the twentieth century saw the development of magnetic resonance imaging (MRI) grow from a laboratory demonstration to a multi-billion dollar worldwide industry. There is a clinical body scanner in almost every hospital of the developed nations. The field of magnetic resonance microscopy (MRM), after mostly being abandoned by researchers in the first decade of MRI, has become an established branch of the science. This paper reviews the development of MRM over the last decade with an emphasis on the current state of the art. The fundamental principles of imaging and signal detection are examined to determine the physical principles which limit the available resolution. The limits are discussed with reference to liquid, solid and gas phase microscopy. In each area, the novel approaches employed by researchers to push back the limits of resolution are discussed. Although the limits to resolution are well known, the developments and applications of MRM have not reached their limit.

  15. Force Limited Vibration Test of HESSI Imager

    NASA Technical Reports Server (NTRS)

    Amato, Deborah; Pankow, David; Thomsen, Knud

    2000-01-01

    The High Energy Solar Spectroscopic Imager (HESSI) is a solar x-ray and gamma-ray observatory scheduled for launch in November 2000. Vibration testing of the HESSI imager flight unit was performed in August 1999. The HESSI imager consists of a composite metering tube, two aluminum trays mounted to the tube on titanium flexure mounts, and nine modulation grids mounted on each tray. The vibration tests were acceleration controlled and force limited, in order to prevent overtesting. The force limited strategy reduced the shaker force and notched the acceleration at resonances. The test set-up, test levels, and results are presented. The development of the force limits is also discussed. The imager successfully survived the vibration testing.

  16. Magnetic particle imaging: from proof of principle to preclinical applications

    NASA Astrophysics Data System (ADS)

    Knopp, T.; Gdaniec, N.; Möddel, M.

    2017-07-01

    Tomographic imaging has become a mandatory tool for the diagnosis of a majority of diseases in clinical routine. Since each method has its pros and cons, a variety of them is regularly used in clinics to satisfy all application needs. Magnetic particle imaging (MPI) is a relatively new tomographic imaging technique that images magnetic nanoparticles with a high spatiotemporal resolution in a quantitative way, and in turn is highly suited for vascular and targeted imaging. MPI was introduced in 2005 and now enters the preclinical research phase, where medical researchers get access to this new technology and exploit its potential under physiological conditions. Within this paper, we review the development of MPI since its introduction in 2005. Besides an in-depth description of the basic principles, we provide detailed discussions on imaging sequences, reconstruction algorithms, scanner instrumentation and potential medical applications.

  17. Systematic, spatial imaging of large multimolecular assemblies and the emerging principles of supramolecular order in biological systems

    PubMed Central

    Schubert, Walter

    2013-01-01

    Understanding biological systems at the level of their relational (emergent) molecular properties in functional protein networks relies on imaging methods, able to spatially resolve a tissue or a cell as a giant, non-random, topologically defined collection of interacting supermolecules executing myriads of subcellular mechanisms. Here, the development and findings of parameter-unlimited functional super-resolution microscopy are described—a technology based on the fluorescence imaging cycler (IC) principle capable of co-mapping thousands of distinct biomolecular assemblies at high spatial resolution and differentiation (<40 nm distances). It is shown that the subcellular and transcellular features of such supermolecules can be described at the compositional and constitutional levels; that the spatial connection, relational stoichiometry, and topology of supermolecules generate hitherto unrecognized functional self-segmentation of biological tissues; that hierarchical features, common to thousands of simultaneously imaged supermolecules, can be identified; and how the resulting supramolecular order relates to spatial coding of cellular functionalities in biological systems. A large body of observations with IC molecular systems microscopy collected over 20 years have disclosed principles governed by a law of supramolecular segregation of cellular functionalities. This pervades phenomena, such as exceptional orderliness, functional selectivity, combinatorial and spatial periodicity, and hierarchical organization of large molecular systems, across all species investigated so far. This insight is based on the high degree of specificity, selectivity, and sensitivity of molecular recognition processes for fluorescence imaging beyond the spectral resolution limit, using probe libraries controlled by ICs. © 2013 The Authors. Journal of Molecular Recognition published by John Wiley & Sons, Ltd. PMID:24375580

  18. Coherent imaging at the diffraction limit.

    PubMed

    Thibault, Pierre; Guizar-Sicairos, Manuel; Menzel, Andreas

    2014-09-01

    X-ray ptychography, a scanning coherent diffractive imaging technique, holds promise for imaging with dose-limited resolution and sensitivity. If the foreseen increase of coherent flux by orders of magnitude can be matched by additional technological and analytical advances, ptychography may approach imaging speeds familiar from full-field methods while retaining its inherently quantitative nature and metrological versatility. Beyond promises of high throughput, spectroscopic applications in three dimensions become feasible, as do measurements of sample dynamics through time-resolved imaging or careful characterization of decoherence effects.

  19. Coherent imaging at the diffraction limit

    PubMed Central

    Thibault, Pierre; Guizar-Sicairos, Manuel; Menzel, Andreas

    2014-01-01

    X-ray ptychography, a scanning coherent diffractive imaging technique, holds promise for imaging with dose-limited resolution and sensitivity. If the foreseen increase of coherent flux by orders of magnitude can be matched by additional technological and analytical advances, ptychography may approach imaging speeds familiar from full-field methods while retaining its inherently quantitative nature and metrological versatility. Beyond promises of high throughput, spectroscopic applications in three dimensions become feasible, as do measurements of sample dynamics through time-resolved imaging or careful characterization of decoherence effects. PMID:25177990

  20. Design And Demonstration Of Band-limited Hybrid Coronagraph Masks For Space Imaging And Spectroscopy Of Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Trauger, John T.; Moody, D. C.

    2010-05-01

    Among the leading architectures for the imaging and spectroscopy of nearby exoplanetary systems is the space coronagraph, which provides in principle very high (10 billion to one) suppression of diffracted and scattered starlight at very small separations (a few tenths of arcseconds) from the star. The concept of a band-limited Lyot coronagraph, introduced by Kuchner and Traub (2002), provides the theoretical basis for mathematically perfect starlight suppression. In practice, the optical characteristics of available materials and practical aspects of the fabrication processes impose limitations on contrast and spectral bandwidths that are achievable in the real world. Nevertheless, the band-limited Lyot coronagraph approach has produced the best laboratory validated performance among known types of internal coronagraph for contrast and spectral bandwidth, and alone it has demonstrated high-contrast imaging performance at levels required for exoplanet exploration. We report the design and fabrication of hybrid focal-plane masks for Lyot coronagraphy, composed of thickness-profiled metallic and dielectric thin films, vacuum deposited on a glass substrate. These masks are in principle band-limited in both the real and imaginary parts of the complex amplitude characteristics. Together with a deformable mirror for control of wavefront phase, these masks have the potential for contrast performance better than 10-9 at inner working angles of 3 lambda/D or better over spectral bandwidths of 20% or more, and with throughput efficiencies up to 60%. We report recent laboratory demonstrations of high contrast with nickel-dielectric masks, including the demonstration of 2x10-9 contrast with a 3 lambda/D inner working angle over 20% spectral bandwidths.

  1. High resolution transmission electron microscope Imaging and first-principles simulations of atomic-scale features in graphene membrane

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Bhandari, Sagar; Yi, Wei; Bell, David; Westervelt, Robert; Kaxiras, Efthimios

    2012-02-01

    Ultra-thin membranes such as graphene[1] are of great importance for basic science and technology applications. Graphene sets the ultimate limit of thinness, demonstrating that a free-standing single atomic layer not only exists but can be extremely stable and strong [2--4]. However, both theory [5, 6] and experiments [3, 7] suggest that the existence of graphene relies on intrinsic ripples that suppress the long-wavelength thermal fluctuations which otherwise spontaneously destroy long range order in a two dimensional system. Here we show direct imaging of the atomic features in graphene including the ripples resolved using monochromatic aberration-corrected transmission electron microscopy (TEM). We compare the images observed in TEM with simulated images based on an accurate first-principles total potential. We show that these atomic scale features can be mapped through accurate first-principles simulations into high resolution TEM contrast. [1] Geim, A. K. & Novoselov, K. S. Nat. Mater. 6, 183-191, (2007). [2] Novoselov, K. S.et al. Science 306, 666-669, (2004). [3] Meyer, J. C. et al. Nature 446, 60-63, (2007). [4] Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Science 321, 385-388, (2008). [5] Nelson, D. R. & Peliti, L. J Phys-Paris 48, 1085-1092, (1987). [6] Fasolino, A., Los, J. H. & Katsnelson, M. I. Nat. Mater. 6, 858-861, (2007). [7] Meyer, J. C. et al. Solid State Commun. 143, 101-109, (2007).

  2. Photon Limited Images and Their Restoration

    DTIC Science & Technology

    1976-03-01

    arises from noise inherent in the detected image data. In the first part of this report a model is developed which can be used to mathematically and...statistically describe an image detected at low light levels. This rodel serves to clarify some basic properties of photon noise , and provides a basis...for the analysi.s of image restoration. In the second part the problem of linear least-square restoration of imagery limited by photon noise is

  3. High frame rate imaging system for limited diffraction array beam imaging with square-wave aperture weightings.

    PubMed

    Lu, Jian-Yu; Cheng, Jiqi; Wang, Jing

    2006-10-01

    A general-purpose high frame rate (HFR) medical imaging system has been developed. This system has 128 independent linear transmitters, each of which is capable of producing an arbitrary broadband (about 0.05-10 MHz) waveform of up to +/- 144 V peak voltage on a 75-ohm resistive load using a 12-bit/40-MHz digital-to-analog converter. The system also has 128 independent, broadband (about 0.25-10 MHz), and time-variable-gain receiver channels, each of which has a 12-bit/40-MHz analog-to-digital converter and up to 512 MB of memory. The system is controlled by a personal computer (PC), and radio frequency echo data of each channel are transferred to the same PC via a standard USB 2.0 port for image reconstructions. Using the HFR imaging system, we have developed a new limited-diffraction array beam imaging method with square-wave aperture voltage weightings. With this method, in principle, only one or two transmitters are required to excite a fully populated two-dimensional (2-D) array transducer to achieve an equivalent dynamic focusing in both transmission and reception to reconstruct a high-quality three-dimensional image without the need of the time delays of traditional beam focusing and steering, potentially simplifying the transmitter subsystem of an imager. To validate the method, for simplicity, 2-D imaging experiments were performed using the system. In the in vitro experiment, a custom-made, 128-element, 0.32-mm pitch, 3.5-MHz center frequency linear array transducer with about 50% fractional bandwidth was used to reconstruct images of an ATS 539 tissue-mimicking phantom at an axial distance of 130 mm with a field of view of more than 90 degrees. In the in vivo experiment of a human heart, images with a field of view of more than 90 degrees at 120-mm axial distance were obtained with a 128-element, 2.5-MHz center frequency, 0.15-mm pitch Acuson V2 phased array. To ensure that the system was operated under the limits set by the U.S. Food and Drug

  4. Productivity limits and potentials of the principles of conservation agriculture.

    PubMed

    Pittelkow, Cameron M; Liang, Xinqiang; Linquist, Bruce A; van Groenigen, Kees Jan; Lee, Juhwan; Lundy, Mark E; van Gestel, Natasja; Six, Johan; Venterea, Rodney T; van Kessel, Chris

    2015-01-15

    One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the

  5. UCXp camera imaging principle and key technologies of data post-processing

    NASA Astrophysics Data System (ADS)

    Yuan, Fangyan; Li, Guoqing; Zuo, Zhengli; Liu, Jianmin; Wu, Liang; Yu, Xiaoping; Zhao, Haitao

    2014-03-01

    The large format digital aerial camera product UCXp was introduced into the Chinese market in 2008, the image consists of 17310 columns and 11310 rows with a pixel size of 6 mm. The UCXp camera has many advantages compared with the same generation camera, with multiple lenses exposed almost at the same time and no oblique lens. The camera has a complex imaging process whose principle will be detailed in this paper. On the other hand, the UCXp image post-processing method, including data pre-processing and orthophoto production, will be emphasized in this article. Based on the data of new Beichuan County, this paper will describe the data processing and effects.

  6. Muon tomography imaging improvement using optimized limited angle data

    NASA Astrophysics Data System (ADS)

    Bai, Chuanyong; Simon, Sean; Kindem, Joel; Luo, Weidong; Sossong, Michael J.; Steiger, Matthew

    2014-05-01

    Image resolution of muon tomography is limited by the range of zenith angles of cosmic ray muons and the flux rate at sea level. Low flux rate limits the use of advanced data rebinning and processing techniques to improve image quality. By optimizing the limited angle data, however, image resolution can be improved. To demonstrate the idea, physical data of tungsten blocks were acquired on a muon tomography system. The angular distribution and energy spectrum of muons measured on the system was also used to generate simulation data of tungsten blocks of different arrangement (geometry). The data were grouped into subsets using the zenith angle and volume images were reconstructed from the data subsets using two algorithms. One was a distributed PoCA (point of closest approach) algorithm and the other was an accelerated iterative maximal likelihood/expectation maximization (MLEM) algorithm. Image resolution was compared for different subsets. Results showed that image resolution was better in the vertical direction for subsets with greater zenith angles and better in the horizontal plane for subsets with smaller zenith angles. The overall image resolution appeared to be the compromise of that of different subsets. This work suggests that the acquired data can be grouped into different limited angle data subsets for optimized image resolution in desired directions. Use of multiple images with resolution optimized in different directions can improve overall imaging fidelity and the intended applications.

  7. Multiscale hidden Markov models for photon-limited imaging

    NASA Astrophysics Data System (ADS)

    Nowak, Robert D.

    1999-06-01

    Photon-limited image analysis is often hindered by low signal-to-noise ratios. A novel Bayesian multiscale modeling and analysis method is developed in this paper to assist in these challenging situations. In addition to providing a very natural and useful framework for modeling an d processing images, Bayesian multiscale analysis is often much less computationally demanding compared to classical Markov random field models. This paper focuses on a probabilistic graph model called the multiscale hidden Markov model (MHMM), which captures the key inter-scale dependencies present in natural image intensities. The MHMM framework presented here is specifically designed for photon-limited imagin applications involving Poisson statistics, and applications to image intensity analysis are examined.

  8. Computed tomography imaging and angiography - principles.

    PubMed

    Kamalian, Shervin; Lev, Michael H; Gupta, Rajiv

    2016-01-01

    The evaluation of patients with diverse neurologic disorders was forever changed in the summer of 1973, when the first commercial computed tomography (CT) scanners were introduced. Until then, the detection and characterization of intracranial or spinal lesions could only be inferred by limited spatial resolution radioisotope scans, or by the patterns of tissue and vascular displacement on invasive pneumoencaphalography and direct carotid puncture catheter arteriography. Even the earliest-generation CT scanners - which required tens of minutes for the acquisition and reconstruction of low-resolution images (128×128 matrix) - could, based on density, noninvasively distinguish infarct, hemorrhage, and other mass lesions with unprecedented accuracy. Iodinated, intravenous contrast added further sensitivity and specificity in regions of blood-brain barrier breakdown. The advent of rapid multidetector row CT scanning in the early 1990s created renewed enthusiasm for CT, with CT angiography largely replacing direct catheter angiography. More recently, iterative reconstruction postprocessing techniques have made possible high spatial resolution, reduced noise, very low radiation dose CT scanning. The speed, spatial resolution, contrast resolution, and low radiation dose capability of present-day scanners have also facilitated dual-energy imaging which, like magnetic resonance imaging, for the first time, has allowed tissue-specific CT imaging characterization of intracranial pathology. © 2016 Elsevier B.V. All rights reserved.

  9. Multi-limit unsymmetrical MLIBD image restoration algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Cheng, Yiping; Chen, Zai-wang; Bo, Chen

    2012-11-01

    A novel multi-limit unsymmetrical iterative blind deconvolution(MLIBD) algorithm was presented to enhance the performance of adaptive optics image restoration.The algorithm enhances the reliability of iterative blind deconvolution by introducing the bandwidth limit into the frequency domain of point spread(PSF),and adopts the PSF dynamic support region estimation to improve the convergence speed.The unsymmetrical factor is automatically computed to advance its adaptivity.Image deconvolution comparing experiments between Richardson-Lucy IBD and MLIBD were done,and the result indicates that the iteration number is reduced by 22.4% and the peak signal-to-noise ratio is improved by 10.18dB with MLIBD method. The performance of MLIBD algorithm is outstanding in the images restoration the FK5-857 adaptive optics and the double-star adaptive optics.

  10. Limited Angle Dual Modality Breast Imaging

    NASA Astrophysics Data System (ADS)

    More, Mitali J.; Li, Heng; Goodale, Patricia J.; Zheng, Yibin; Majewski, Stan; Popov, Vladimir; Welch, Benjamin; Williams, Mark B.

    2007-06-01

    We are developing a dual modality breast scanner that can obtain x-ray transmission and gamma ray emission images in succession at multiple viewing angles with the breast held under mild compression. These views are reconstructed and fused to obtain three-dimensional images that combine structural and functional information. Here, we describe the dual modality system and present results of phantom experiments designed to test the system's ability to obtain fused volumetric dual modality data sets from a limited number of projections, acquired over a limited (less than 180 degrees) angular range. We also present initial results from phantom experiments conducted to optimize the acquisition geometry for gamma imaging. The optimization parameters include the total number of views and the angular range over which these views should be spread, while keeping the total number of detected counts fixed. We have found that in general, for a fixed number of views centered around the direction perpendicular to the direction of compression, in-plane contrast and SNR are improved as the angular range of the views is decreased. The improvement in contrast and SNR with decreasing angular range is much greater for deeper lesions and for a smaller number of views. However, the z-resolution of the lesion is significantly reduced with decreasing angular range. Finally, we present results from limited angle tomography scans using a system with dual, opposing heads.

  11. Digital micromirror devices: principles and applications in imaging.

    PubMed

    Bansal, Vivek; Saggau, Peter

    2013-05-01

    A digital micromirror device (DMD) is an array of individually switchable mirrors that can be used in many advanced optical systems as a rapid spatial light modulator. With a DMD, several implementations of confocal microscopy, hyperspectral imaging, and fluorescence lifetime imaging can be realized. The DMD can also be used as a real-time optical processor for applications such as the programmable array microscope and compressive sensing. Advantages and disadvantages of the DMD for these applications as well as methods to overcome some of the limitations will be discussed in this article. Practical considerations when designing with the DMD and sample optical layouts of a completely DMD-based imaging system and one in which acousto-optic deflectors (AODs) are used in the illumination pathway are also provided.

  12. Doppler color imaging. Principles and instrumentation.

    PubMed

    Kremkau, F W

    1992-01-01

    DCI acquires Doppler-shifted echoes from a cross-section of tissue scanned by an ultrasound beam. These echoes are then presented in color and superimposed on the gray-scale anatomic image of non-Doppler-shifted echoes received during the scan. The flow echoes are assigned colors according to the color map chosen. Usually red, yellow, or white indicates positive Doppler shifts (approaching flow) and blue, cyan, or white indicates negative shifts (receding flow). Green is added to indicate variance (disturbed or turbulent flow). Several pulses (the number is called the ensemble length) are needed to generate a color scan line. Linear, convex, phased, and annular arrays are used to acquire the gray-scale and color-flow information. Doppler color-flow instruments are pulsed-Doppler instruments and are subject to the same limitations, such as Doppler angle dependence and aliasing, as other Doppler instruments. Color controls include gain, TGC, map selection, variance on/off, persistence, ensemble length, color/gray priority. Nyquist limit (PRF), baseline shift, wall filter, and color window angle, location, and size. Doppler color-flow instruments generally have output intensities intermediate between those of gray-scale imaging and pulsed-Doppler duplex instruments. Although there is no known risk with the use of color-flow instruments, prudent practice dictates that they be used for medical indications and with the minimum exposure time and instrument output required to obtain the needed diagnostic information.

  13. Mutual interferences and design principles for mechatronic devices in magnetic resonance imaging.

    PubMed

    Yu, Ningbo; Gassert, Roger; Riener, Robert

    2011-07-01

    Robotic and mechatronic devices that work compatibly with magnetic resonance imaging (MRI) are applied in diagnostic MRI, image-guided surgery, neurorehabilitation and neuroscience. MRI-compatible mechatronic systems must address the challenges imposed by the scanner's electromagnetic fields. We have developed objective quantitative evaluation criteria for device characteristics needed to formulate design guidelines that ensure MRI-compatibility based on safety, device functionality and image quality. The mutual interferences between an MRI system and mechatronic devices working in its vicinity are modeled and tested. For each interference, the involved components are listed, and a numerical measure for "MRI-compatibility" is proposed. These interferences are categorized into an MRI-compatibility matrix, with each element representing possible interactions between one part of the mechatronic system and one component of the electromagnetic fields. Based on this formulation, design principles for MRI-compatible mechatronic systems are proposed. Furthermore, test methods are developed to examine whether a mechatronic device indeed works without interferences within an MRI system. Finally, the proposed MRI-compatibility criteria and design guidelines have been applied to an actual design process that has been validated by the test procedures. Objective and quantitative MRI-compatibility measures for mechatronic and robotic devices have been established. Applying the proposed design principles, potential problems in safety, device functionality and image quality can be considered in the design phase to ensure that the mechatronic system will fulfill the MRI-compatibility criteria. New guidelines and test procedures for MRI instrument compatibility provide a rational basis for design and evaluation of mechatronic devices in various MRI applications. Designers can apply these criteria and use the tests, so that MRI-compatibility results can accrue to build an experiential

  14. Medical Imaging.

    ERIC Educational Resources Information Center

    Jaffe, C. Carl

    1982-01-01

    Describes principle imaging techniques, their applications, and their limitations in terms of diagnostic capability and possible adverse biological effects. Techniques include film radiography, computed tomography, nuclear medicine, positron emission tomography (PET), ultrasonography, nuclear magnetic resonance, and digital radiography. PET has…

  15. Progress in 3D imaging and display by integral imaging

    NASA Astrophysics Data System (ADS)

    Martinez-Cuenca, R.; Saavedra, G.; Martinez-Corral, M.; Pons, A.; Javidi, B.

    2009-05-01

    Three-dimensionality is currently considered an important added value in imaging devices, and therefore the search for an optimum 3D imaging and display technique is a hot topic that is attracting important research efforts. As main value, 3D monitors should provide the observers with different perspectives of a 3D scene by simply varying the head position. Three-dimensional imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging (InI), which can capture true 3D color images, has been seen as the right technology to 3D viewing to audiences of more than one person. Due to the advanced degree of development, InI technology could be ready for commercialization in the coming years. This development is the result of a strong research effort performed along the past few years by many groups. Since Integral Imaging is still an emerging technology, the first aim of the "3D Imaging and Display Laboratory" at the University of Valencia, has been the realization of a thorough study of the principles that govern its operation. Is remarkable that some of these principles have been recognized and characterized by our group. Other contributions of our research have been addressed to overcome some of the classical limitations of InI systems, like the limited depth of field (in pickup and in display), the poor axial and lateral resolution, the pseudoscopic-to-orthoscopic conversion, the production of 3D images with continuous relief, or the limited range of viewing angles of InI monitors.

  16. Galactic Shapiro delay to the Crab pulsar and limit on weak equivalence principle violation

    NASA Astrophysics Data System (ADS)

    Desai, Shantanu; Kahya, Emre

    2018-02-01

    We calculate the total galactic Shapiro delay to the Crab pulsar by including the contributions from the dark matter as well as baryonic matter along the line of sight. The total delay due to dark matter potential is about 3.4 days. For baryonic matter, we included the contributions from both the bulge and the disk, which are approximately 0.12 and 0.32 days respectively. The total delay from all the matter distribution is therefore 3.84 days. We also calculate the limit on violations of Weak equivalence principle by using observations of "nano-shot" giant pulses from the Crab pulsar with time-delay <0.4 ns, as well as using time differences between radio and optical photons observed from this pulsar. Using the former, we obtain a limit on violation of Weak equivalence principle in terms of the PPN parameter Δ γ < 2.41× 10^{-15}. From the time-difference between simultaneous optical and radio observations, we get Δ γ < 1.54× 10^{-9}. We also point out differences in our calculation of Shapiro delay and that from two recent papers (Yang and Zhang, Phys Rev D 94(10):101501, 2016; Zhang and Gong, Astrophys J 837:134, 2017), which used the same observations to obtain a corresponding limit on Δ γ.

  17. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production.

    PubMed

    Seibert, J Anthony

    2004-09-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information.

  18. Miniaturized power limiter metasurface based on Fano-type resonance and Babinet principle.

    PubMed

    Loo, Y L; Wang, H G; Zhang, H; Ong, C K

    2016-09-05

    In this work, we present a miniaturize power limiter, a device with size smaller than that required by the working frequency, made of coupled self-complementary electric inductive-capacitive (CELC) resonator and original electric inductive-capacitive (ELC) structure. We also make use of Babinet principle to ensure both CELC and ELC are resonating at the same frequency. The CELC structure is loaded with a Schottky diode to achieve the effect of a nonlinear power limiter. The constructive interference of CELC and ELC structure produces a new Fano-type resonance peak at a lower frequency. The Fano peak is sharp and able to concentrate electric field at a region between the inner and outer metallic patch of the metastructure, hence enhancing the nonlinear properties of the loaded diode. The Fano peak enhances the maximum isolation of the power limiter due to the local field enhancement at where the diode is loaded. Numerical simulation and experiment are conducted in the S-band frequency to verify the power limiting effect of the device designed and to discuss the formation of Fano peak. The power limiter designed has a maximum isolation of 8.4 dB and a 3-dB isolation bandwidth of 6%.

  19. A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis.

    PubMed

    Türker-Kaya, Sevgi; Huck, Christian W

    2017-01-20

    Plant cells, tissues and organs are composed of various biomolecules arranged as structurally diverse units, which represent heterogeneity at microscopic levels. Molecular knowledge about those constituents with their localization in such complexity is very crucial for both basic and applied plant sciences. In this context, infrared imaging techniques have advantages over conventional methods to investigate heterogeneous plant structures in providing quantitative and qualitative analyses with spatial distribution of the components. Thus, particularly, with the use of proper analytical approaches and sampling methods, these technologies offer significant information for the studies on plant classification, physiology, ecology, genetics, pathology and other related disciplines. This review aims to present a general perspective about near-infrared and mid-infrared imaging/microspectroscopy in plant research. It is addressed to compare potentialities of these methodologies with their advantages and limitations. With regard to the organization of the document, the first section will introduce the respective underlying principles followed by instrumentation, sampling techniques, sample preparations, measurement, and an overview of spectral pre-processing and multivariate analysis. The last section will review selected applications in the literature.

  20. The Adaptive Optics Lucky Imager: Diffraction limited imaging at visible wavelengths with large ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; Mackay, Craig; King, David; Rebolo-López, Rafael; Labadie, Lucas; Puga, Marta; Oscoz, Alejandro; González Escalera, Victor; Pérez Garrido, Antonio; López, Roberto; Pérez-Prieto, Jorge; Rodríguez-Ramos, Luis; Velasco, Sergio; Villó, Isidro

    2015-01-01

    One of the continuing challenges facing astronomers today is the need to obtain ever higher resolution images of the sky. Whether studying nearby crowded fields or distant objects, with increased resolution comes the ability to probe systems in more detail and advance our understanding of the Universe. Obtaining these high-resolution images at visible wavelengths however has previously been limited to the Hubble Space Telescope (HST) due to atmospheric effects limiting the spatial resolution of ground-based telescopes to a fraction of their potential. With HST now having a finite lifespan, it is prudent to investigate other techniques capable of providing these kind of observations from the ground. Maintaining this capability is one of the goals of the Adaptive Optics Lucky Imager (AOLI).Achieving the highest resolutions requires the largest telescope apertures, however, this comes at the cost of increased atmospheric distortion. To overcome these atmospheric effects, there are two main techniques employed today: adaptive optics (AO) and lucky imaging. These techniques individually are unable to provide diffraction limited imaging in the visible on large ground-based telescopes; AO currently only works at infrared wavelengths while lucky imaging reduces in effectiveness on telescopes greater than 2.5 metres in diameter. The limitations of both techniques can be overcome by combing them together to provide diffraction limited imaging at visible wavelengths on the ground.The Adaptive Optics Lucky Imager is being developed as a European collaboration and combines AO and lucky imaging in a dedicated instrument for the first time. Initially for use on the 4.2 metre William Herschel Telescope, AOLI uses a low-order adaptive optics system to reduce the effects of atmospheric turbulence before imaging with a lucky imaging based science detector. The AO system employs a novel type of wavefront sensor, the non-linear Curvature Wavefront Sensor (nlCWFS) which provides

  1. Covariance of lucky images for increasing objects contrast: diffraction-limited images in ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Cagigal, Manuel P.; Valle, Pedro J.; Colodro-Conde, Carlos; Villó-Pérez, Isidro; Pérez-Garrido, Antonio

    2016-01-01

    Images of stars adopt shapes far from the ideal Airy pattern due to atmospheric density fluctuations. Hence, diffraction-limited images can only be achieved by telescopes without atmospheric influence, e.g. spatial telescopes, or by using techniques like adaptive optics or lucky imaging. In this paper, we propose a new computational technique based on the evaluation of the COvariancE of Lucky Images (COELI). This technique allows us to discover companions to main stars by taking advantage of the atmospheric fluctuations. We describe the algorithm and we carry out a theoretical analysis of the improvement in contrast. We have used images taken with 2.2-m Calar Alto telescope as a test bed for the technique resulting that, under certain conditions, telescope diffraction limit is clearly reached.

  2. [Responsibility: Towards a fifth principle in blood transfusion's ethics. Applicability and limits of Hans Jonas's responsibility principle].

    PubMed

    Nélaton, C

    2016-09-01

    Nowadays, in France, anonymity, gratuity, volunteering, non-profit are recognized as ethical principles in blood transfusion. Can we add responsibility to this list? Can a logo named "Responsiblood" efficiently encourage blood donation? This article explores Hans Jonas's reform of the responsibility concept in order to measure its applicabilities and limits in the field of blood transfusion. Indeed, this concept - rethought by Jonas - seems to be a good encouragement which avoids the pitfalls of the concept of duty and of the idea of payment for blood donation. But can't we also see in this reform a threat to blood transfusion because of technophobia and the heuristics of fear that it involves? Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Simulation of target interpretation based on infrared image features and psychology principle

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Chen, Yu-hua; Gao, Hong-sheng; Wang, Zhan-feng; Wang, Ji-jun; Su, Rong-hua; Huang, Yan-ping

    2009-07-01

    It's an important and complicated process in target interpretation that target features extraction and identification, which effect psychosensorial quantity of interpretation person to target infrared image directly, and decide target viability finally. Using statistical decision theory and psychology principle, designing four psychophysical experiment, the interpretation model of the infrared target is established. The model can get target detection probability by calculating four features similarity degree between target region and background region, which were plotted out on the infrared image. With the verification of a great deal target interpretation in practice, the model can simulate target interpretation and detection process effectively, get the result of target interpretation impersonality, which can provide technique support for target extraction, identification and decision-making.

  4. Digital Radiographic Image Processing and Analysis.

    PubMed

    Yoon, Douglas C; Mol, André; Benn, Douglas K; Benavides, Erika

    2018-07-01

    This article describes digital radiographic imaging and analysis from the basics of image capture to examples of some of the most advanced digital technologies currently available. The principles underlying the imaging technologies are described to provide a better understanding of their strengths and limitations. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Learning to rank image tags with limited training examples.

    PubMed

    Songhe Feng; Zheyun Feng; Rong Jin

    2015-04-01

    With an increasing number of images that are available in social media, image annotation has emerged as an important research topic due to its application in image matching and retrieval. Most studies cast image annotation into a multilabel classification problem. The main shortcoming of this approach is that it requires a large number of training images with clean and complete annotations in order to learn a reliable model for tag prediction. We address this limitation by developing a novel approach that combines the strength of tag ranking with the power of matrix recovery. Instead of having to make a binary decision for each tag, our approach ranks tags in the descending order of their relevance to the given image, significantly simplifying the problem. In addition, the proposed method aggregates the prediction models for different tags into a matrix, and casts tag ranking into a matrix recovery problem. It introduces the matrix trace norm to explicitly control the model complexity, so that a reliable prediction model can be learned for tag ranking even when the tag space is large and the number of training images is limited. Experiments on multiple well-known image data sets demonstrate the effectiveness of the proposed framework for tag ranking compared with the state-of-the-art approaches for image annotation and tag ranking.

  6. Design Principles of Nanoparticles as Contrast Agents for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Shan, Liang; Gu, Xinbin; Wang, Paul

    2013-09-01

    Molecular imaging is an emerging field that introduces molecular agents into traditional imaging techniques, enabling visualization, characterization and measurement of biological processes at the molecular and cellular levels in humans and other living systems. The promise of molecular imaging lies in its potential for selective potency by targeting biomarkers or molecular targets and the imaging agents serve as reporters for the selectivity of targeting. Development of an efficient molecular imaging agent depends on well-controlled high-quality experiment design involving target selection, agent synthesis, in vitro characterization, and in vivo animal characterization before it is applied in humans. According to the analysis from the Molecular Imaging and Contrast Agent Database (MICAD, ), more than 6000 molecular imaging agents with sufficient preclinical evaluation have been reported to date in the literature and this number increases by 250-300 novel agents each year. The majority of these agents are radionuclides, which are developed for positron emission tomography (PET) and single photon emission computed tomography (SPECT). Contrast agents for magnetic resonance imaging (MRI) account for only a small part. This is largely due to the fact that MRI is currently not a fully quantitative imaging technique and is less sensitive than PET and SPECT. However, because of the superior ability to simultaneously extract molecular and anatomic information, molecular MRI is attracting significant interest and various targeted nanoparticle contrast agents have been synthesized for MRI. The first and one of the most critical steps in developing a targeted nanoparticle contrast agent is target selection, which plays the central role and forms the basis for success of molecular imaging. This chapter discusses the design principles of targeted contrast agents in the emerging frontiers of molecular MRI.

  7. Microlens performance limits in sub-2mum pixel CMOS image sensors.

    PubMed

    Huo, Yijie; Fesenmaier, Christian C; Catrysse, Peter B

    2010-03-15

    CMOS image sensors with smaller pixels are expected to enable digital imaging systems with better resolution. When pixel size scales below 2 mum, however, diffraction affects the optical performance of the pixel and its microlens, in particular. We present a first-principles electromagnetic analysis of microlens behavior during the lateral scaling of CMOS image sensor pixels. We establish for a three-metal-layer pixel that diffraction prevents the microlens from acting as a focusing element when pixels become smaller than 1.4 microm. This severely degrades performance for on and off-axis pixels in red, green and blue color channels. We predict that one-metal-layer or backside-illuminated pixels are required to extend the functionality of microlenses beyond the 1.4 microm pixel node.

  8. Dynamic dual-isotope molecular imaging elucidates principles for optimizing intrathecal drug delivery

    PubMed Central

    Wolf, Daniel A.; Hesterman, Jacob Y.; Sullivan, Jenna M.; Orcutt, Kelly D.; Silva, Matthew D.; Lobo, Merryl; Wellman, Tyler; Hoppin, Jack

    2016-01-01

    The intrathecal (IT) dosing route offers a seemingly obvious solution for delivering drugs directly to the central nervous system. However, gaps in understanding drug molecule behavior within the anatomically and kinetically unique environment of the mammalian IT space have impeded the establishment of pharmacokinetic principles for optimizing regional drug exposure along the neuraxis. Here, we have utilized high-resolution single-photon emission tomography with X-ray computed tomography to study the behavior of multiple molecular imaging tracers following an IT bolus injection, with supporting histology, autoradiography, block-face tomography, and MRI. Using simultaneous dual-isotope imaging, we demonstrate that the regional CNS tissue exposure of molecules with varying chemical properties is affected by IT space anatomy, cerebrospinal fluid (CSF) dynamics, CSF clearance routes, and the location and volume of the injected bolus. These imaging approaches can be used across species to optimize the safety and efficacy of IT drug therapy for neurological disorders. PMID:27699254

  9. Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in Musculoskeletal Imaging (Part 1).

    PubMed

    Omoumi, Patrick; Becce, Fabio; Racine, Damien; Ott, Julien G; Andreisek, Gustav; Verdun, Francis R

    2015-12-01

    In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been used successfully in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits; to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in Musculoskeletal Imaging (Part 2).

    PubMed

    Omoumi, Patrick; Verdun, Francis R; Guggenberger, Roman; Andreisek, Gustav; Becce, Fabio

    2015-12-01

    In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been successfully used in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits, to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Resolution enhancement by extrapolation of coherent diffraction images: a quantitative study on the limits and a numerical study of nonbinary and phase objects.

    PubMed

    Latychevskaia, T; Chushkin, Y; Fink, H-W

    2016-10-01

    In coherent diffractive imaging, the resolution of the reconstructed object is limited by the numerical aperture of the experimental setup. We present here a theoretical and numerical study for achieving super-resolution by postextrapolation of coherent diffraction images, such as diffraction patterns or holograms. We demonstrate that a diffraction pattern can unambiguously be extrapolated from only a fraction of the entire pattern and that the ratio of the extrapolated signal to the originally available signal is linearly proportional to the oversampling ratio. Although there could be in principle other methods to achieve extrapolation, we devote our discussion to employing iterative phase retrieval methods and demonstrate their limits. We present two numerical studies; namely, the extrapolation of diffraction patterns of nonbinary and that of phase objects together with a discussion of the optimal extrapolation procedure. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  12. Principles for high-quality, high-value testing.

    PubMed

    Power, Michael; Fell, Greg; Wright, Michael

    2013-02-01

    A survey of doctors working in two large NHS hospitals identified over 120 laboratory tests, imaging investigations and investigational procedures that they considered not to be overused. A common suggestion in this survey was that more training was required. And, this prompted the development of a list of core principles for high-quality, high-value testing. The list can be used as a framework for training and as a reference source. The core principles are: (1) Base testing practices on the best available evidence. (2) Apply the evidence on test performance with careful judgement. (3) Test efficiently. (4) Consider the value (and affordability) of a test before requesting it. (5) Be aware of the downsides and drivers of overdiagnosis. (6) Confront uncertainties. (7) Be patient-centred in your approach. (8) Consider ethical issues. (9) Be aware of normal cognitive limitations and biases when testing. (10) Follow the 'knowledge journey' when teaching and learning these core principles.

  13. WE-H-206-01: Photoacoustic Tomography: Multiscale Imaging From Organelles to Patients by Ultrasonically Beating the Optical Diffusion Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffersmore » from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed

  14. STRIPE: Remote Driving Using Limited Image Data

    NASA Technical Reports Server (NTRS)

    Kay, Jennifer S.

    1997-01-01

    Driving a vehicle, either directly or remotely, is an inherently visual task. When heavy fog limits visibility, we reduce our car's speed to a slow crawl, even along very familiar roads. In teleoperation systems, an operator's view is limited to images provided by one or more cameras mounted on the remote vehicle. Traditional methods of vehicle teleoperation require that a real time stream of images is transmitted from the vehicle camera to the operator control station, and the operator steers the vehicle accordingly. For this type of teleoperation, the transmission link between the vehicle and operator workstation must be very high bandwidth (because of the high volume of images required) and very low latency (because delayed images can cause operators to steer incorrectly). In many situations, such a high-bandwidth, low-latency communication link is unavailable or even technically impossible to provide. Supervised TeleRobotics using Incremental Polyhedral Earth geometry, or STRIPE, is a teleoperation system for a robot vehicle that allows a human operator to accurately control the remote vehicle across very low bandwidth communication links, and communication links with large delays. In STRIPE, a single image from a camera mounted on the vehicle is transmitted to the operator workstation. The operator uses a mouse to pick a series of 'waypoints' in the image that define a path that the vehicle should follow. These 2D waypoints are then transmitted back to the vehicle, where they are used to compute the appropriate steering commands while the next image is being transmitted. STRIPE requires no advance knowledge of the terrain to be traversed, and can be used by novice operators with only minimal training. STRIPE is a unique combination of computer and human control. The computer must determine the 3D world path designated by the 2D waypoints and then accurately control the vehicle over rugged terrain. The human issues involve accurate path selection, and the

  15. Conebeam CT of the head and neck, part 1: physical principles.

    PubMed

    Miracle, A C; Mukherji, S K

    2009-06-01

    Conebeam x-ray CT (CBCT) is a developing imaging technique designed to provide relatively low-dose high-spatial-resolution visualization of high-contrast structures in the head and neck and other anatomic areas. This first installment in a 2-part review will address the physical principles underlying CBCT imaging as it is used in dedicated head and neck scanners. Concepts related to CBCT acquisition geometry, flat panel detection, and image quality will be explored in detail. Particular emphasis will be placed on technical limitations to low-contrast detectability and radiation dose. Proposed methods of x-ray scatter reduction will also be discussed.

  16. The positive impact of simultaneous implementation of the BD FocalPoint GS Imaging System and lean principles on the operation of gynecologic cytology.

    PubMed

    Wong, Rebecca; Levi, Angelique W; Harigopal, Malini; Schofield, Kevin; Chhieng, David C

    2012-02-01

    Our cytology laboratory, like many others, is under pressure to improve quality and provide test results faster while decreasing costs. We sought to address these issues by introducing new technology and lean principles. To determine the combined impact of the FocalPoint Guided Screener (GS) Imaging System (BD Diagnostics-TriPath, Burlington, North Carolina) and lean manufacturing principles on the turnaround time (TAT) and productivity of the gynecologic cytology operation. We established a baseline measure of the TAT for Papanicolaou tests. We then compared that to the performance after implementing the FocalPoint GS Imaging System and lean principles. The latter included value-stream mapping, workflow modification, and a first in-first out policy. The mean (SD) TAT for Papanicolaou tests before and after the implementation of FocalPoint GS Imaging System and lean principles was 4.38 (1.28) days and 3.20 (1.32) days, respectively. This represented a 27% improvement in the average TAT, which was statistically significant (P < .001). In addition, the productivity of staff improved 17%, as evidenced by the increase in slides screened from 8.85/h to 10.38/h. The false-negative fraction decreased from 1.4% to 0.9%, representing a 36% improvement. In our laboratory, the implementation of FocalPoint GS Imaging System in conjunction with lean principles resulted in a significant decrease in the average TAT for Papanicolaou tests and a substantial increase in the productivity of cytotechnologists while maintaining the diagnostic quality of gynecologic cytology.

  17. Students' Images and Their Understanding of Definitions of the Limit of a Sequence

    ERIC Educational Resources Information Center

    Roh, Kyeong Hah

    2008-01-01

    There are many studies on the role of images in understanding the concept of limit. However, relatively few studies have been conducted on how students' understanding of the rigorous definition of limit is influenced by the images of limit that the students have constructed through their previous learning. This study explored how calculus…

  18. EXTRACTING PRINCIPLE COMPONENTS FOR DISCRIMINANT ANALYSIS OF FMRI IMAGES.

    PubMed

    Liu, Jingyu; Xu, Lai; Caprihan, Arvind; Calhoun, Vince D

    2008-05-12

    This paper presents an approach for selecting optimal components for discriminant analysis. Such an approach is useful when further detailed analyses for discrimination or characterization requires dimensionality reduction. Our approach can accommodate a categorical variable such as diagnosis (e.g. schizophrenic patient or healthy control), or a continuous variable like severity of the disorder. This information is utilized as a reference for measuring a component's discriminant power after principle component decomposition. After sorting each component according to its discriminant power, we extract the best components for discriminant analysis. An application of our reference selection approach is shown using a functional magnetic resonance imaging data set in which the sample size is much less than the dimensionality. The results show that the reference selection approach provides an improved discriminant component set as compared to other approaches. Our approach is general and provides a solid foundation for further discrimination and classification studies.

  19. Limited-angle tomography for analyzer-based phase-contrast X-ray imaging

    PubMed Central

    Majidi, Keivan; Wernick, Miles N; Li, Jun; Muehleman, Carol; Brankov, Jovan G

    2014-01-01

    Multiple-Image Radiography (MIR) is an analyzer-based phase-contrast X-ray imaging method (ABI), which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to

  20. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    NASA Astrophysics Data System (ADS)

    Majidi, Keivan; Wernick, Miles N.; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-07-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT

  1. Adaptive non-local means on local principle neighborhood for noise/artifacts reduction in low-dose CT images.

    PubMed

    Zhang, Yuanke; Lu, Hongbing; Rong, Junyan; Meng, Jing; Shang, Junliang; Ren, Pinghong; Zhang, Junying

    2017-09-01

    Low-dose CT (LDCT) technique can reduce the x-ray radiation exposure to patients at the cost of degraded images with severe noise and artifacts. Non-local means (NLM) filtering has shown its potential in improving LDCT image quality. However, currently most NLM-based approaches employ a weighted average operation directly on all neighbor pixels with a fixed filtering parameter throughout the NLM filtering process, ignoring the non-stationary noise nature of LDCT images. In this paper, an adaptive NLM filtering scheme on local principle neighborhoods (PC-NLM) is proposed for structure-preserving noise/artifacts reduction in LDCT images. Instead of using neighboring patches directly, in the PC-NLM scheme, the principle component analysis (PCA) is first applied on local neighboring patches of the target patch to decompose the local patches into uncorrelated principle components (PCs), then a NLM filtering is used to regularize each PC of the target patch and finally the regularized components is transformed to get the target patch in image domain. Especially, in the NLM scheme, the filtering parameter is estimated adaptively from local noise level of the neighborhood as well as the signal-to-noise ratio (SNR) of the corresponding PC, which guarantees a "weaker" NLM filtering on PCs with higher SNR and a "stronger" filtering on PCs with lower SNR. The PC-NLM procedure is iteratively performed several times for better removal of the noise and artifacts, and an adaptive iteration strategy is developed to reduce the computational load by determining whether a patch should be processed or not in next round of the PC-NLM filtering. The effectiveness of the presented PC-NLM algorithm is validated by experimental phantom studies and clinical studies. The results show that it can achieve promising gain over some state-of-the-art methods in terms of artifact suppression and structure preservation. With the use of PCA on local neighborhoods to extract principal structural

  2. Polymer separations by liquid interaction chromatography: principles - prospects - limitations.

    PubMed

    Radke, Wolfgang

    2014-03-28

    Most heterogeneities of polymers with respect to different structural features cannot be resolved by only size exclusion chromatography (SEC), the most frequently applied mode of polymer chromatography. Instead, methods of interaction chromatography became increasingly important. However, despite the increasing applications the principles and potential of polymer interaction chromatography are still often unknown to a large number of polymer scientists. The present review will explain the principles of the different modes of polymer chromatography. Based on selected examples it will be shown which separation techniques can be successfully applied for separations with respect to the different structural features of polymers. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Computational imaging through a fiber-optic bundle

    NASA Astrophysics Data System (ADS)

    Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.

    2017-05-01

    Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.

  4. EXTRACTING PRINCIPLE COMPONENTS FOR DISCRIMINANT ANALYSIS OF FMRI IMAGES

    PubMed Central

    Liu, Jingyu; Xu, Lai; Caprihan, Arvind; Calhoun, Vince D.

    2009-01-01

    This paper presents an approach for selecting optimal components for discriminant analysis. Such an approach is useful when further detailed analyses for discrimination or characterization requires dimensionality reduction. Our approach can accommodate a categorical variable such as diagnosis (e.g. schizophrenic patient or healthy control), or a continuous variable like severity of the disorder. This information is utilized as a reference for measuring a component’s discriminant power after principle component decomposition. After sorting each component according to its discriminant power, we extract the best components for discriminant analysis. An application of our reference selection approach is shown using a functional magnetic resonance imaging data set in which the sample size is much less than the dimensionality. The results show that the reference selection approach provides an improved discriminant component set as compared to other approaches. Our approach is general and provides a solid foundation for further discrimination and classification studies. PMID:20582334

  5. Computed tomography, magnetic resonance, and ultrasound imaging: basic principles, glossary of terms, and patient safety.

    PubMed

    Cogbill, Thomas H; Ziegelbein, Kurt J

    2011-02-01

    The basic principles underlying computed tomography, magnetic resonance, and ultrasound are reviewed to promote better understanding of the properties and appropriate applications of these 3 common imaging modalities. A glossary of frequently used terms for each technique is appended for convenience. Risks to patient safety including contrast-induced nephropathy, radiation-induced malignancy, and nephrogenic systemic fibrosis are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Resurrecting Limited War Theory

    DTIC Science & Technology

    2008-05-01

    indirectly with an appreciation of the principles and guidelines for limited war. 15. SUBJECT TERMS Limited War, Political Objectives, Total War...conflict between other nations may require the United States to act indirectly with an appreciation of the principles and guidelines for limited war...in war, echoing Clausewitz’s principle of political primacy. Like Clausewitz, he was also a student of

  7. Analysis of STM images with pure and CO-functionalized tips: A first-principles and experimental study

    NASA Astrophysics Data System (ADS)

    Gustafsson, Alexander; Okabayashi, Norio; Peronio, Angelo; Giessibl, Franz J.; Paulsson, Magnus

    2017-08-01

    We describe a first-principles method to calculate scanning tunneling microscopy (STM) images, and compare the results to well-characterized experiments combining STM with atomic force microscopy (AFM). The theory is based on density functional theory with a localized basis set, where the wave functions in the vacuum gap are computed by propagating the localized-basis wave functions into the gap using a real-space grid. Constant-height STM images are computed using Bardeen's approximation method, including averaging over the reciprocal space. We consider copper adatoms and single CO molecules adsorbed on Cu(111), scanned with a single-atom copper tip with and without CO functionalization. The calculated images agree with state-of-the-art experiments, where the atomic structure of the tip apex is determined by AFM. The comparison further allows for detailed interpretation of the STM images.

  8. Integral imaging with multiple image planes using a uniaxial crystal plate.

    PubMed

    Park, Jae-Hyeung; Jung, Sungyong; Choi, Heejin; Lee, Byoungho

    2003-08-11

    Integral imaging has been attracting much attention recently for its several advantages such as full parallax, continuous view-points, and real-time full-color operation. However, the thickness of the displayed three-dimensional image is limited to relatively small value due to the degradation of the image resolution. In this paper, we propose a method to provide observers with enhanced perception of the depth without severe resolution degradation by the use of the birefringence of a uniaxial crystal plate. The proposed integral imaging system can display images integrated around three central depth planes by dynamically altering the polarization and controlling both elemental images and dynamic slit array mask accordingly. We explain the principle of the proposed method and verify it experimentally.

  9. Gamma-Ray Telescope and Uncertainty Principle

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  10. Dynamic sealing principles

    NASA Technical Reports Server (NTRS)

    Zuk, J.

    1976-01-01

    The fundamental principles governing dynamic sealing operation are discussed. Different seals are described in terms of these principles. Despite the large variety of detailed construction, there appear to be some basic principles, or combinations of basic principles, by which all seals function, these are presented and discussed. Theoretical and practical considerations in the application of these principles are discussed. Advantages, disadvantages, limitations, and application examples of various conventional and special seals are presented. Fundamental equations governing liquid and gas flows in thin film seals, which enable leakage calculations to be made, are also presented. Concept of flow functions, application of Reynolds lubrication equation, and nonlubrication equation flow, friction and wear; and seal lubrication regimes are explained.

  11. Quantifying Deep-Imaging Limits of the VLA

    NASA Astrophysics Data System (ADS)

    Mayeshiba, Julia; Mayeshiba, J.; Rau, U.; Owen, F. N.

    2014-01-01

    The confusion limit is important to understand when conducting surveys of faint radio sources. The source count distributions derived from these surveys are indicative of the large-scale structure and evolution of the universe. The VLA’s confusion limit is not well-defined and astronomers have frequently observed below its current estimated confusion limit. Our study seeks to refine and understand these estimated values and their differences. In our study, we used sources from the center one square degree of the S3-SEX simulated sky made by Wilman et al. As a first step, we verified that our simulation matched observed trends of the confusion limit. During this process we studied the dependence of the achieved confusion limit on cleaning depth and PSF shape. We also reproduced the different limits seen by Frazer Owen in 2008 and NVSS. With this check completed, we then roughly estimated the confusion limits for the VLA’s four configurations. Our preliminary results showed that at an observing frequency of 1.4GHz , there is a confusion limit of 10µJy for the D Configuration and 5µJy for the C Configuration. These estimates are a factor of two lower than the lowest confusion limits reached by observers. While it is encouraging that our estimated confusion limits follow observed trends, more analysis of our process is needed. We could not accurately estimate confusion limits for the A and B configurations due to an artifact dominated image in the A Configuration and an estimated confusion limit that was too close to the noise level in the B Configuration. For the second part of our study we tested CASA’s source-finding algorithm. We found that as currently implemented, it has significant difficulty finding fainter sources.

  12. Diffraction-limited lucky imaging with a 12" commercial telescope

    NASA Astrophysics Data System (ADS)

    Baptista, Brian J.

    2014-08-01

    Here we demonstrate a novel lucky imaging camera which is designed to produce diffraction-limited imaging using small telescopes similar to ones used by many academic institutions for outreach and/or student training. We present a design that uses a Meade 12" SCT paired with an Andor iXon fast readout EMCCD. The PSF of the telescope is matched to the pixel size of the EMCCD by adding a simple, custom-fabricated, intervening optical system. We demonstrate performance of the system by observing both astronomical and terrestrial targets. The astronomical application requires simpler data reconstruction techniques as compared to the terrestrial case. We compare different lucky imaging registration and reconstruction algorithms for use with this imager for both astronomical and terrestrial targets. We also demonstrate how this type of instrument would be useful for both undergraduate and graduate student training. As an instructional aide, the instrument can provide a hands-on approach for teaching instrument design, standard data reduction techniques, lucky imaging data processing, and high resolution imaging concepts.

  13. [Principles of establishing occupational exposure limits for carcinogens in Poland and in other EU countries].

    PubMed

    Skowroń, Jolanta; Czerczak, Slawomir

    2013-01-01

    The principles of determining exposure limits for carcinogens adopted in Poland, the European Union and in other selected countries of the EC are discussed in this article. Carcinogens and/or mutagens pose a direct health risk to people exposed to them. If carcinogens cannot be eliminated from the work and living environments, their exposure should be kept at the lowest possible level. To assess health risk for carcinogens it is necessary to determine the probability of developing a disease or of death from cancer as a result of occupational exposure to carcinogenic substances.

  14. Reconstruction of initial pressure from limited view photoacoustic images using deep learning

    NASA Astrophysics Data System (ADS)

    Waibel, Dominik; Gröhl, Janek; Isensee, Fabian; Kirchner, Thomas; Maier-Hein, Klaus; Maier-Hein, Lena

    2018-02-01

    Quantification of tissue properties with photoacoustic (PA) imaging typically requires a highly accurate representation of the initial pressure distribution in tissue. Almost all PA scanners reconstruct the PA image only from a partial scan of the emitted sound waves. Especially handheld devices, which have become increasingly popular due to their versatility and ease of use, only provide limited view data because of their geometry. Owing to such limitations in hardware as well as to the acoustic attenuation in tissue, state-of-the-art reconstruction methods deliver only approximations of the initial pressure distribution. To overcome the limited view problem, we present a machine learning-based approach to the reconstruction of initial pressure from limited view PA data. Our method involves a fully convolutional deep neural network based on a U-Net-like architecture with pixel-wise regression loss on the acquired PA images. It is trained and validated on in silico data generated with Monte Carlo simulations. In an initial study we found an increase in accuracy over the state-of-the-art when reconstructing simulated linear-array scans of blood vessels.

  15. Limited angle tomographic breast imaging: A comparison of parallel beam and pinhole collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wessell, D.E.; Kadrmas, D.J.; Frey, E.C.

    1996-12-31

    Results from clinical trials have suggested no improvement in lesion detection with parallel hole SPECT scintimammography (SM) with Tc-99m over parallel hole planar SM. In this initial investigation, we have elucidated some of the unique requirements of SPECT SM. With these requirements in mind, we have begun to develop practical data acquisition and reconstruction strategies that can reduce image artifacts and improve image quality. In this paper we investigate limited angle orbits for both parallel hole and pinhole SPECT SM. Singular Value Decomposition (SVD) is used to analyze the artifacts associated with the limited angle orbits. Maximum likelihood expectation maximizationmore » (MLEM) reconstructions are then used to examine the effects of attenuation compensation on the quality of the reconstructed image. All simulations are performed using the 3D-MCAT breast phantom. The results of these simulation studies demonstrate that limited angle SPECT SM is feasible, that attenuation correction is needed for accurate reconstructions, and that pinhole SPECT SM may have an advantage over parallel hole SPECT SM in terms of improved image quality and reduced image artifacts.« less

  16. Limits on estimating the width of thin tubular structures in 3D images.

    PubMed

    Wörz, Stefan; Rohr, Karl

    2006-01-01

    This work studies limits on estimating the width of thin tubular structures in 3D images. Based on nonlinear estimation theory we analyze the minimal stochastic error of estimating the width. Given a 3D analytic model of the image intensities of tubular structures, we derive a closed-form expression for the Cramér-Rao bound of the width estimate under image noise. We use the derived lower bound as a benchmark and compare it with three previously proposed accuracy limits for vessel width estimation. Moreover, by experimental investigations we demonstrate that the derived lower bound can be achieved by fitting a 3D parametric intensity model directly to the image data.

  17. Relevance and limits of the principle of "equivalence of care" in prison medicine.

    PubMed

    Niveau, Gérard

    2007-10-01

    The principle of "equivalence of care" in prison medicine is a principle by which prison health services are obliged to provide prisoners with care of a quality equivalent to that provided for the general public in the same country. It is cited in numerous national and international directives and recommendations. The principle of equivalence is extremely relevant from the point of view of normative ethics but requires adaptation from the point of view of applied ethics. From a clinical point of view, the principle of equivalence is often insufficient to take account of the adaptations necessary for the organization of care in a correctional setting. The principle of equivalence is cost-effective in general, but has to be overstepped to ensure the humane management of certain special cases.

  18. [Bioethics of principles].

    PubMed

    Pérez-Soba Díez del Corral, Juan José

    2008-01-01

    Bioethics emerges about the tecnological problems of acting in human life. Emerges also the problem of the moral limits determination, because they seem exterior of this practice. The Bioethics of Principles, take his rationality of the teleological thinking, and the autonomism. These divergence manifest the epistemological fragility and the great difficulty of hmoralñ thinking. This is evident in the determination of autonomy's principle, it has not the ethical content of Kant's propose. We need a new ethic rationality with a new refelxion of new Principles whose emerges of the basic ethic experiences.

  19. Human Cognitive Limitations. Broad, Consistent, Clinical Application of Physiological Principles Will Require Decision Support.

    PubMed

    Morris, Alan H

    2018-02-01

    Our education system seems to fail to enable clinicians to broadly understand core physiological principles. The emphasis on reductionist science, including "omics" branches of research, has likely contributed to this decrease in understanding. Consequently, clinicians cannot be expected to consistently make clinical decisions linked to best physiological evidence. This is a large-scale problem with multiple determinants, within an even larger clinical decision problem: the failure of clinicians to consistently link their decisions to best evidence. Clinicians, like all human decision-makers, suffer from significant cognitive limitations. Detailed context-sensitive computer protocols can generate personalized medicine instructions that are well matched to individual patient needs over time and can partially resolve this problem.

  20. Principle Paradigms Revisiting the Dublin Core 1:1 Principle

    ERIC Educational Resources Information Center

    Urban, Richard J.

    2012-01-01

    The Dublin Core "1:1 Principle" asserts that "related but conceptually different entities, for example a painting and a digital image of the painting, are described by separate metadata records" (Woodley et al., 2005). While this seems to be a simple requirement, studies of metadata quality have found that cultural heritage…

  1. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging.

    PubMed

    Wáng, Yì-Xiáng J; Zhang, Qinwei; Li, Xiaojuan; Chen, Weitian; Ahuja, Anil; Yuan, Jing

    2015-12-01

    T1ρ relaxation time provides a new contrast mechanism that differs from T1- and T2-weighted contrast, and is useful to study low-frequency motional processes and chemical exchange in biological tissues. T1ρ imaging can be performed in the forms of T1ρ-weighted image, T1ρ mapping and T1ρ dispersion. T1ρ imaging, particularly at low spin-lock frequency, is sensitive to B0 and B1 inhomogeneity. Various composite spin-lock pulses have been proposed to alleviate the influence of field inhomogeneity so as to reduce the banding-like spin-lock artifacts. T1ρ imaging could be specific absorption rate (SAR) intensive and time consuming. Efforts to address these issues and speed-up data acquisition are being explored to facilitate wider clinical applications. This paper reviews the T1ρ imaging's basic physic principles, as well as its application for cartilage imaging and intervertebral disc imaging. Compared to more established T2 relaxation time, it has been shown that T1ρ provides more sensitive detection of proteoglycan (PG) loss at early stages of cartilage degeneration. T1ρ has also been shown to provide more sensitive evaluation of annulus fibrosis (AF) degeneration of the discs.

  2. Target-oriented retrieval of subsurface wave fields - Pushing the resolution limits in seismic imaging

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Ivan; Ozmen, Neslihan; van der Neut, Joost; Cui, Tianci

    2017-04-01

    Travelling wide-bandwidth seismic waves have long been used as a primary tool in exploration seismology because they can probe the subsurface over large distances, while retaining relatively high spatial resolution. The well-known Born resolution limit often seems to be the lower bound on spatial imaging resolution in real life examples. In practice, data acquisition cost, time constraints and other factors can worsen the resolution achieved by wavefield imaging. Could we obtain images whose resolution beats the Born limits? Would it be practical to achieve it, and what are we missing today to achieve this? In this talk, we will cover aspects of linear and nonlinear seismic imaging to understand elements that play a role in obtaining "super-resolved" seismic images. New redatuming techniques, such as the Marchenko method, enable the retrieval of subsurface fields that include multiple scattering interactions, while requiring relatively little knowledge of model parameters. Together with new concepts in imaging, such as Target-Enclosing Extended Images, these new redatuming methods enable new targeted imaging frameworks. We will make a case as to why target-oriented approaches to reconstructing subsurface-domain wavefields from surface data may help in increasing the resolving power of seismic imaging, and in pushing the limits on parameter estimation. We will illustrate this using a field data example. Finally, we will draw connections between seismic and other imaging modalities, and discuss how this framework could be put to use in other applications

  3. Meeting Report: Tissue-based Image Analysis.

    PubMed

    Saravanan, Chandra; Schumacher, Vanessa; Brown, Danielle; Dunstan, Robert; Galarneau, Jean-Rene; Odin, Marielle; Mishra, Sasmita

    2017-10-01

    Quantitative image analysis (IA) is a rapidly evolving area of digital pathology. Although not a new concept, the quantification of histological features on photomicrographs used to be cumbersome, resource-intensive, and limited to specialists and specialized laboratories. Recent technological advances like highly efficient automated whole slide digitizer (scanner) systems, innovative IA platforms, and the emergence of pathologist-friendly image annotation and analysis systems mean that quantification of features on histological digital images will become increasingly prominent in pathologists' daily professional lives. The added value of quantitative IA in pathology includes confirmation of equivocal findings noted by a pathologist, increasing the sensitivity of feature detection, quantification of signal intensity, and improving efficiency. There is no denying that quantitative IA is part of the future of pathology; however, there are also several potential pitfalls when trying to estimate volumetric features from limited 2-dimensional sections. This continuing education session on quantitative IA offered a broad overview of the field; a hands-on toxicologic pathologist experience with IA principles, tools, and workflows; a discussion on how to apply basic stereology principles in order to minimize bias in IA; and finally, a reflection on the future of IA in the toxicologic pathology field.

  4. An effective approach of lesion segmentation within the breast ultrasound image based on the cellular automata principle.

    PubMed

    Liu, Yan; Cheng, H D; Huang, Jianhua; Zhang, Yingtao; Tang, Xianglong

    2012-10-01

    In this paper, a novel lesion segmentation within breast ultrasound (BUS) image based on the cellular automata principle is proposed. Its energy transition function is formulated based on global image information difference and local image information difference using different energy transfer strategies. First, an energy decrease strategy is used for modeling the spatial relation information of pixels. For modeling global image information difference, a seed information comparison function is developed using an energy preserve strategy. Then, a texture information comparison function is proposed for considering local image difference in different regions, which is helpful for handling blurry boundaries. Moreover, two neighborhood systems (von Neumann and Moore neighborhood systems) are integrated as the evolution environment, and a similarity-based criterion is used for suppressing noise and reducing computation complexity. The proposed method was applied to 205 clinical BUS images for studying its characteristic and functionality, and several overlapping area error metrics and statistical evaluation methods are utilized for evaluating its performance. The experimental results demonstrate that the proposed method can handle BUS images with blurry boundaries and low contrast well and can segment breast lesions accurately and effectively.

  5. Cloud Engineering Principles and Technology Enablers for Medical Image Processing-as-a-Service.

    PubMed

    Bao, Shunxing; Plassard, Andrew J; Landman, Bennett A; Gokhale, Aniruddha

    2017-04-01

    Traditional in-house, laboratory-based medical imaging studies use hierarchical data structures (e.g., NFS file stores) or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting performance from these approaches is, however, impeded by standard network switches since they can saturate network bandwidth during transfer from storage to processing nodes for even moderate-sized studies. To that end, a cloud-based "medical image processing-as-a-service" offers promise in utilizing the ecosystem of Apache Hadoop, which is a flexible framework providing distributed, scalable, fault tolerant storage and parallel computational modules, and HBase, which is a NoSQL database built atop Hadoop's distributed file system. Despite this promise, HBase's load distribution strategy of region split and merge is detrimental to the hierarchical organization of imaging data (e.g., project, subject, session, scan, slice). This paper makes two contributions to address these concerns by describing key cloud engineering principles and technology enhancements we made to the Apache Hadoop ecosystem for medical imaging applications. First, we propose a row-key design for HBase, which is a necessary step that is driven by the hierarchical organization of imaging data. Second, we propose a novel data allocation policy within HBase to strongly enforce collocation of hierarchically related imaging data. The proposed enhancements accelerate data processing by minimizing network usage and localizing processing to machines where the data already exist. Moreover, our approach is amenable to the traditional scan, subject, and project-level analysis procedures, and is compatible with standard command line/scriptable image processing software. Experimental results for an illustrative sample of imaging data reveals that our new HBase policy results in a three-fold time improvement in conversion of classic DICOM to NiFTI file formats when compared with the default HBase region split policy

  6. Cloud Engineering Principles and Technology Enablers for Medical Image Processing-as-a-Service

    PubMed Central

    Bao, Shunxing; Plassard, Andrew J.; Landman, Bennett A.; Gokhale, Aniruddha

    2017-01-01

    Traditional in-house, laboratory-based medical imaging studies use hierarchical data structures (e.g., NFS file stores) or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting performance from these approaches is, however, impeded by standard network switches since they can saturate network bandwidth during transfer from storage to processing nodes for even moderate-sized studies. To that end, a cloud-based “medical image processing-as-a-service” offers promise in utilizing the ecosystem of Apache Hadoop, which is a flexible framework providing distributed, scalable, fault tolerant storage and parallel computational modules, and HBase, which is a NoSQL database built atop Hadoop’s distributed file system. Despite this promise, HBase’s load distribution strategy of region split and merge is detrimental to the hierarchical organization of imaging data (e.g., project, subject, session, scan, slice). This paper makes two contributions to address these concerns by describing key cloud engineering principles and technology enhancements we made to the Apache Hadoop ecosystem for medical imaging applications. First, we propose a row-key design for HBase, which is a necessary step that is driven by the hierarchical organization of imaging data. Second, we propose a novel data allocation policy within HBase to strongly enforce collocation of hierarchically related imaging data. The proposed enhancements accelerate data processing by minimizing network usage and localizing processing to machines where the data already exist. Moreover, our approach is amenable to the traditional scan, subject, and project-level analysis procedures, and is compatible with standard command line/scriptable image processing software. Experimental results for an illustrative sample of imaging data reveals that our new HBase policy results in a three-fold time improvement in conversion of classic DICOM to NiFTI file formats when compared with the default HBase region split

  7. New Limits on Bosonic Dark Matter, Solar Axions, Pauli Exclusion Principle Violation, and Electron Decay from the Majorana Demonstrator

    DOE PAGES

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; ...

    2017-04-21

    Here, we present new limits on exotic keV-scale physics based on 478 kg d of Majorana Demonstrator commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal limits above our background. We set our most stringent DM constraints for 11.8 keV mass particles, limiting g A e < 4.5 × 10 -13 for pseudoscalars and ( α ' / α ) < 9.7 × 10 -28 for vectors. We also report a 14.4 keV solar axion coupling limit of gmore » $$eff\\atop{AN}$$ × g A e < 3.8 × 10 -17 , a 1/2 β 2 < 8.5 × 10 - 48 limit on the strength of PEPV electron transitions, and a lower limit on the electron lifetime of τ e > 1.2 × 1 0 24 yr for e - → invisible.« less

  8. New Limits on Bosonic Dark Matter, Solar Axions, Pauli Exclusion Principle Violation, and Electron Decay from the Majorana Demonstrator

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R. S.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Rielage, K.; Robertson, R. G. H.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.; MAJORANA Collaboration

    2017-04-01

    We present new limits on exotic keV-scale physics based on 478 kg d of Majorana Demonstrator commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal limits above our background. Our most stringent DM constraints are set for 11.8 keV mass particles, limiting gA e<4.5 ×10-13 for pseudoscalars and (α'/α )<9.7 ×10-28 for vectors. We also report a 14.4 keV solar axion coupling limit of gAN eff×gA e<3.8 ×10-17, a 1/2 β2<8.5 ×10-48 limit on the strength of PEPV electron transitions, and a lower limit on the electron lifetime of τe>1.2 ×1 024 yr for e-→ invisible.

  9. Long-baseline optical intensity interferometry. Laboratory demonstration of diffraction-limited imaging

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-08-01

    Context. A long-held vision has been to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, and reveal interacting gas flows in binary systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and also used for intensity interferometry. Second-order spatial coherence of light is obtained by cross correlating intensity fluctuations measured in different pairs of telescopes. With no optical links between them, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are approximately one meter, making the method practically immune to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Aims: Previous theoretical modeling has shown that full images should be possible to retrieve from observations with such telescope arrays. This project aims at verifying diffraction-limited imaging experimentally with groups of detached and independent optical telescopes. Methods: In a large optics laboratory, artificial stars (single and double, round and elliptic) were observed by an array of small telescopes. Using high-speed photon-counting solid-state detectors and real-time electronics, intensity fluctuations were cross-correlated over up to 180 baselines between pairs of telescopes, producing coherence maps across the interferometric Fourier-transform plane. Results: These interferometric measurements were used to extract parameters about the simulated stars, and to reconstruct their two-dimensional images. As far as we are aware, these are the first diffraction-limited images obtained from an optical array only linked by electronic software, with no optical connections between the

  10. Clinical application of 'Justification' and 'Optimization' principle of ALARA in pediatric CT imaging: "How many children can be protected from unnecessary radiation?".

    PubMed

    Sodhi, Kushaljit S; Krishna, Satheesh; Saxena, Akshay K; Sinha, Anindita; Khandelwal, Niranjan; Lee, Edward Y

    2015-09-01

    Practice of ALARA (as low as reasonably achievable) principle in the developed world is currently well established. However, there is striking lack of published data regarding such experience in the developing countries. Therefore, the goal of this study is to prospectively evaluate CT request forms to assess how many children could be protected from harmful radiation exposure if 'Justification' and 'Optimization' principles of ALARA are applied before obtaining CT imaging in a developing country. This can save children from potential radiation risks including development of brain cancer and leukemia. Consecutive CT request forms over a six month study period (May 16, 2013 to November 15, 2013) in a tertiary pediatric children's hospital in India were prospectively reviewed by two pediatric radiologists before obtaining CT imaging. First, 'Justification' of CT was evaluated and then 'Optimization' was applied for evaluation of appropriateness of the requested CT studies. The number (and percentage) of CT studies avoided by applying 'Justification' and 'Optimization' principle of ALARA were calculated. The difference in number of declined and optimized CT requests between CT requests from inpatient and outpatient departments was compared using Chi-Square test. A total of 1302 consecutive CT request forms were received during the study period. Some of the request forms (n=86; 6.61%) had requests for more than one (multiple) anatomical regions, hence, a total of 1392 different anatomical CT requests were received. Based on evaluation of the CT request forms for 'Justification' and 'Optimization' principle of ALARA by pediatric radiology reviewers, 111 individual anatomic part CT requests from 105 pediatric patients were avoided. Therefore, 8.06% (105 out of 1302 pediatric patients) were protected from unnecessary or additional radiation exposure.The rates of declined or optimized CT requests from inpatient department was significantly higher than that from outpatient

  11. 24 CFR 3282.402 - General principles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false General principles. 3282.402... and Remedial Actions § 3282.402 General principles. (a) Nothing in this subpart or in these... manufactured home manufacturers to provide remedial actions under this subpart is limited by the principle that...

  12. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging

    PubMed Central

    Zhang, Qinwei; Li, Xiaojuan; Chen, Weitian; Ahuja, Anil; Yuan, Jing

    2015-01-01

    T1ρ relaxation time provides a new contrast mechanism that differs from T1- and T2-weighted contrast, and is useful to study low-frequency motional processes and chemical exchange in biological tissues. T1ρ imaging can be performed in the forms of T1ρ-weighted image, T1ρ mapping and T1ρ dispersion. T1ρ imaging, particularly at low spin-lock frequency, is sensitive to B0 and B1 inhomogeneity. Various composite spin-lock pulses have been proposed to alleviate the influence of field inhomogeneity so as to reduce the banding-like spin-lock artifacts. T1ρ imaging could be specific absorption rate (SAR) intensive and time consuming. Efforts to address these issues and speed-up data acquisition are being explored to facilitate wider clinical applications. This paper reviews the T1ρ imaging’s basic physic principles, as well as its application for cartilage imaging and intervertebral disc imaging. Compared to more established T2 relaxation time, it has been shown that T1ρ provides more sensitive detection of proteoglycan (PG) loss at early stages of cartilage degeneration. T1ρ has also been shown to provide more sensitive evaluation of annulus fibrosis (AF) degeneration of the discs. PMID:26807369

  13. Principles of PET/MR Imaging.

    PubMed

    Disselhorst, Jonathan A; Bezrukov, Ilja; Kolb, Armin; Parl, Christoph; Pichler, Bernd J

    2014-06-01

    Hybrid PET/MR systems have rapidly progressed from the prototype stage to systems that are increasingly being used in the clinics. This review provides an overview of developments in hybrid PET/MR systems and summarizes the current state of the art in PET/MR instrumentation, correction techniques, and data analysis. The strong magnetic field requires considerable changes in the manner by which PET images are acquired and has led, among others, to the development of new PET detectors, such as silicon photomultipliers. During more than a decade of active PET/MR development, several system designs have been described. The technical background of combined PET/MR systems is explained and related challenges are discussed. The necessity for PET attenuation correction required new methods based on MR data. Therefore, an overview of recent developments in this field is provided. Furthermore, MR-based motion correction techniques for PET are discussed, as integrated PET/MR systems provide a platform for measuring motion with high temporal resolution without additional instrumentation. The MR component in PET/MR systems can provide functional information about disease processes or brain function alongside anatomic images. Against this background, we point out new opportunities for data analysis in this new field of multimodal molecular imaging. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  14. Single-energy computed tomography-based pulmonary perfusion imaging: Proof-of-principle in a canine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Tokihiro, E-mail: toyamamoto@ucdavis.edu

    Purpose: Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomography (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other modalities and has great potential for widespread clinical implementation, particularly in RT. The purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging. Methods: Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents, (2) deformable image registration (DIR) for spatial mapping of those twomore » CT image data sets, and (3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol approved by the institutional animal care and use committee, the authors acquired CT scans in the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory image were corrected for variation in the lung inflation level between the precontrast and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung subjects using a two-sample two

  15. 16 CFR 260.6 - General principles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENVIRONMENTAL MARKETING CLAIMS § 260.6 General principles. The following general principles apply to all environmental marketing claims, including, but not limited to, those described in § 260.7. In addition, § 260.7... 16 Commercial Practices 1 2010-01-01 2010-01-01 false General principles. 260.6 Section 260.6...

  16. Imaging of the Field of 4C41.17 Below the Lyman Limit

    NASA Technical Reports Server (NTRS)

    Lacy, Mark; Rawlings, Steve

    1997-01-01

    Imaging of zeta greater than or equal to 3.4 radio galaxy fields below the Lyman continuum wavelength allows companion galaxies to be identified on the basis of red colors across the wavelength of redshifted Ly(alpha) and very red colors across the redshifted Lyman continuum. These arise due to a combination of absorption by intervening Ly(alpha) forest and Lyman-limit systems, and intrinsic Lyman-limit breaks in the galaxy spectral energy distribution caused by an Hi screen or breaks in stellar spectra. As a pilot study, we have imaged the field of the zeta = 3.8 radio galaxy 4C41.17 in U, V and R with the Auxiliary Port of the WHT. We find a number of potential companion galaxies, which require confirmation via spectroscopy or narrow-band imaging. The Lyman-limit in the spectrum of the radio galaxy itself and its implications for the origin of the UV flux is also discussed.

  17. Registration of Aerial Optical Images with LiDAR Data Using the Closest Point Principle and Collinearity Equations.

    PubMed

    Huang, Rongyong; Zheng, Shunyi; Hu, Kun

    2018-06-01

    Registration of large-scale optical images with airborne LiDAR data is the basis of the integration of photogrammetry and LiDAR. However, geometric misalignments still exist between some aerial optical images and airborne LiDAR point clouds. To eliminate such misalignments, we extended a method for registering close-range optical images with terrestrial LiDAR data to a variety of large-scale aerial optical images and airborne LiDAR data. The fundamental principle is to minimize the distances from the photogrammetric matching points to the terrestrial LiDAR data surface. Except for the satisfactory efficiency of about 79 s per 6732 × 8984 image, the experimental results also show that the unit weighted root mean square (RMS) of the image points is able to reach a sub-pixel level (0.45 to 0.62 pixel), and the actual horizontal and vertical accuracy can be greatly improved to a high level of 1/4⁻1/2 (0.17⁻0.27 m) and 1/8⁻1/4 (0.10⁻0.15 m) of the average LiDAR point distance respectively. Finally, the method is proved to be more accurate, feasible, efficient, and practical in variety of large-scale aerial optical image and LiDAR data.

  18. Relevance and limits of the principle of “equivalence of care” in prison medicine

    PubMed Central

    Niveau, Gérard

    2007-01-01

    The principle of “equivalence of care” in prison medicine is a principle by which prison health services are obliged to provide prisoners with care of a quality equivalent to that provided for the general public in the same country. It is cited in numerous national and international directives and recommendations. The principle of equivalence is extremely relevant from the point of view of normative ethics but requires adaptation from the point of view of applied ethics. From a clinical point of view, the principle of equivalence is often insufficient to take account of the adaptations necessary for the organization of care in a correctional setting. The principle of equivalence is cost‐effective in general, but has to be overstepped to ensure the humane management of certain special cases. PMID:17906061

  19. Limitations in imaging common conjunctival and corneal pathologies with fourier-domain optical coherence tomography.

    PubMed

    Demirci, Hakan; Steen, Daniel W

    2014-01-01

    To describe the limitations of Fourier-domain optical coherence tomography (OCT) in imaging common conjunctival and corneal pathology. Retrospective, single-center case series of 40 patients with conjunctival and cornea pathology. Fourier-domain OCT imaged laser in situ keratomileusis (LASIK) flaps in detail, including its relation to other corneal structures and abnormalities. Similarly, in infectious or degenerative corneal disorders, Fourier-domain OCT successfully showed the extent of infiltration or material deposition, which appeared as hyper-reflective areas. In cases with pterygium, the underlying cornea could not be imaged. All cases of common conjunctival pathologies, such as nevus or pinguecula, were successfully imaged in detail. Nevi, scleritis, pterygium, pinguecula, and subconjunctival hemorrhage were hyper-reflective lesions, while cysts and lymphangiectasia were hyporeflective. The details of the underlying sclera were not uniformly imaged in conjunctival pathologies. Fourier-domain OCT imaged the trabeculectomy bleb in detail, whereas the details of structures of the anterior chamber angle were not routinely visualized in all cases. Light scatter through vascularized, densely inflamed, or thick lesions limits the imaging capabilities of Fourier-domain anterior segment OCT.

  20. Basic design principles of colorimetric vision systems

    NASA Astrophysics Data System (ADS)

    Mumzhiu, Alex M.

    1998-10-01

    Color measurement is an important part of overall production quality control in textile, coating, plastics, food, paper and other industries. The color measurement instruments such as colorimeters and spectrophotometers, used for production quality control have many limitations. In many applications they cannot be used for a variety of reasons and have to be replaced with human operators. Machine vision has great potential for color measurement. The components for color machine vision systems, such as broadcast quality 3-CCD cameras, fast and inexpensive PCI frame grabbers, and sophisticated image processing software packages are available. However the machine vision industry has only started to approach the color domain. The few color machine vision systems on the market, produced by the largest machine vision manufacturers have very limited capabilities. A lack of understanding that a vision based color measurement system could fail if it ignores the basic principles of colorimetry is the main reason for the slow progress of color vision systems. the purpose of this paper is to clarify how color measurement principles have to be applied to vision systems and how the electro-optical design features of colorimeters have to be modified in order to implement them for vision systems. The subject of this presentation far exceeds the limitations of a journal paper so only the most important aspects will be discussed. An overview of the major areas of applications for colorimetric vision system will be discussed. Finally, the reasons why some customers are happy with their vision systems and some are not will be analyzed.

  1. Urban Space Innovation - “10+” Principles through Designing the New Image of the Existing Shopping Mall in Csepel, Hungary

    NASA Astrophysics Data System (ADS)

    Gyergyak, Janos

    2017-10-01

    The first part of the paper is about to introduce the principles of “placemaking” as an innovation and important tool of the cities in the 21st century. The process helps designers to transform the spaces of “nobody” to a community-based space for supporting the connection among humans. The second part of the paper shows the process of the used principles by the author for designing the new image of the existing shopping mall in Csepel, Hungary. This work was selected as one of the best design ideas for renewing the existing underutilized space.

  2. Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects.

    PubMed

    Azubuike, Christopher Chibueze; Chikere, Chioma Blaise; Okpokwasili, Gideon Chijioke

    2016-11-01

    Environmental pollution has been on the rise in the past few decades owing to increased human activities on energy reservoirs, unsafe agricultural practices and rapid industrialization. Amongst the pollutants that are of environmental and public health concerns due to their toxicities are: heavy metals, nuclear wastes, pesticides, green house gases, and hydrocarbons. Remediation of polluted sites using microbial process (bioremediation) has proven effective and reliable due to its eco-friendly features. Bioremediation can either be carried out ex situ or in situ, depending on several factors, which include but not limited to cost, site characteristics, type and concentration of pollutants. Generally, ex situ techniques apparently are more expensive compared to in situ techniques as a result of additional cost attributable to excavation. However, cost of on-site installation of equipment, and inability to effectively visualize and control the subsurface of polluted sites are of major concerns when carrying out in situ bioremediation. Therefore, choosing appropriate bioremediation technique, which will effectively reduce pollutant concentrations to an innocuous state, is crucial for a successful bioremediation project. Furthermore, the two major approaches to enhance bioremediation are biostimulation and bioaugmentation provided that environmental factors, which determine the success of bioremediation, are maintained at optimal range. This review provides more insight into the two major bioremediation techniques, their principles, advantages, limitations and prospects.

  3. TU-CD-BRA-08: Single-Energy Computed Tomography-Based Pulmonary Perfusion Imaging: Proof-Of-Principle in a Canine Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, T; Boone, J; Kent, M

    Purpose: Pulmonary perfusion imaging has provided significant insights into pulmonary diseases, and can be useful in radiotherapy. The purpose of this study was to prospectively establish proof-of-principle in a canine model for single-energy CT-based perfusion imaging, which has the potential for widespread clinical implementation. Methods: Single-energy CT perfusion imaging is based on: (1) acquisition of inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast medium, (2) deformable image registration (DIR) of the two CT image data sets, and (3) subtraction of the pre-contrast image from post-contrast image, yielding a map of Hounsfield unit (HU) enhancement. These subtractionmore » image data sets hypothetically represent perfused blood volume, a surrogate for perfusion. In an IACUC-approved clinical trial, we acquired pre- and post-contrast CT scans in the prone posture for six anesthetized, mechanically-ventilated dogs. The elastix algorithm was used for DIR. The registration accuracy was quantified using the target registration errors (TREs) for 50 pulmonary landmarks in each dog. The gradient of HU enhancement between gravity-dependent (ventral) and non-dependent (dorsal) regions was evaluated to quantify the known effect of gravity, i.e., greater perfusion in ventral regions. Results: The lung volume difference between the two scans was 4.3±3.5% on average (range 0.3%–10.1%). DIR demonstrated an average TRE of 0.7±1.0 mm. HU enhancement in lung parenchyma was 34±10 HU on average and varied considerably between individual dogs, indicating the need for improvement of the contrast injection protocol. HU enhancement in ventral (gravity-dependent) regions was found to be greater than in dorsal regions. A population average ventral-to-dorsal gradient of HU enhancement was strong (R{sup 2}=0.94) and statistically significant (p<0.01). Conclusion: This canine study demonstrated relatively accurate DIR and a strong

  4. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    PubMed Central

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L.; Raines, Kevin S.; Pryor Jr, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J.; Miao, Jianwei

    2015-01-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres. PMID:26306199

  5. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    DOE PAGES

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien -Chun; ...

    2015-09-01

    Here, a structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 Kev X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and themore » three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. Finally, it is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.« less

  6. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells.

    PubMed

    Rodriguez, Jose A; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L; Raines, Kevin S; Pryor, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J; Miao, Jianwei

    2015-09-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.

  7. High Speed Computational Ghost Imaging via Spatial Sweeping

    NASA Astrophysics Data System (ADS)

    Wang, Yuwang; Liu, Yang; Suo, Jinli; Situ, Guohai; Qiao, Chang; Dai, Qionghai

    2017-03-01

    Computational ghost imaging (CGI) achieves single-pixel imaging by using a Spatial Light Modulator (SLM) to generate structured illuminations for spatially resolved information encoding. The imaging speed of CGI is limited by the modulation frequency of available SLMs, and sets back its practical applications. This paper proposes to bypass this limitation by trading off SLM’s redundant spatial resolution for multiplication of the modulation frequency. Specifically, a pair of galvanic mirrors sweeping across the high resolution SLM multiply the modulation frequency within the spatial resolution gap between SLM and the final reconstruction. A proof-of-principle setup with two middle end galvanic mirrors achieves ghost imaging as fast as 42 Hz at 80 × 80-pixel resolution, 5 times faster than state-of-the-arts, and holds potential for one magnitude further multiplication by hardware upgrading. Our approach brings a significant improvement in the imaging speed of ghost imaging and pushes ghost imaging towards practical applications.

  8. Principles of Simultaneous PET/MR Imaging.

    PubMed

    Catana, Ciprian

    2017-05-01

    Combined PET/MR imaging scanners capable of acquiring simultaneously the complementary information provided by the 2 imaging modalities are now available for human use. After addressing the hardware challenges for integrating the 2 imaging modalities, most of the efforts in the field have focused on developing MR-based attenuation correction methods for neurologic and whole-body applications, implementing approaches for improving one modality by using the data provided by the other and exploring research and clinical applications that could benefit from the synergistic use of the multimodal data. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. High throughput dual-wavelength temperature distribution imaging via compressive imaging

    NASA Astrophysics Data System (ADS)

    Yao, Xu-Ri; Lan, Ruo-Ming; Liu, Xue-Feng; Zhu, Ge; Zheng, Fu; Yu, Wen-Kai; Zhai, Guang-Jie

    2018-03-01

    Thermal imaging is an essential tool in a wide variety of research areas. In this work we demonstrate high-throughput double-wavelength temperature distribution imaging using a modified single-pixel camera without the requirement of a beam splitter (BS). A digital micro-mirror device (DMD) is utilized to display binary masks and split the incident radiation, which eliminates the necessity of a BS. Because the spatial resolution is dictated by the DMD, this thermal imaging system has the advantage of perfect spatial registration between the two images, which limits the need for the pixel registration and fine adjustments. Two bucket detectors, which measures the total light intensity reflected from the DMD, are employed in this system and yield an improvement in the detection efficiency of the narrow-band radiation. A compressive imaging algorithm is utilized to achieve under-sampling recovery. A proof-of-principle experiment was presented to demonstrate the feasibility of this structure.

  10. Conservative classical and quantum resolution limits for incoherent imaging

    NASA Astrophysics Data System (ADS)

    Tsang, Mankei

    2018-06-01

    I propose classical and quantum limits to the statistical resolution of two incoherent optical point sources from the perspective of minimax parameter estimation. Unlike earlier results based on the Cramér-Rao bound (CRB), the limits proposed here, based on the worst-case error criterion and a Bayesian version of the CRB, are valid for any biased or unbiased estimator and obey photon-number scalings that are consistent with the behaviours of actual estimators. These results prove that, from the minimax perspective, the spatial-mode demultiplexing measurement scheme recently proposed by Tsang, Nair, and Lu [Phys. Rev. X 2016, 6 031033.] remains superior to direct imaging for sufficiently high photon numbers.

  11. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the WIYN Telescope

    NASA Technical Reports Server (NTRS)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve diffraction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, effectively 'freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the diffraction limit of the telescope. These new instruments are based on the successful performance and design of the Differential Speckle Survey Instrument (DSSI).The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA, K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide-field mode and standard SDSS filters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations will remain around 13-14th at WIYN and 16-17th at Gemini, while wide-field, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  12. Diffraction enhance x-ray imaging for quantitative phase contrast studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, A. K.; Singh, B., E-mail: balwants@rrcat.gov.in; Kashyap, Y. S.

    2016-05-23

    Conventional X-ray imaging based on absorption contrast permits limited visibility of feature having small density and thickness variations. For imaging of weakly absorbing material or materials possessing similar densities, a novel phase contrast imaging techniques called diffraction enhanced imaging has been designed and developed at imaging beamline Indus-2 RRCAT Indore. The technique provides improved visibility of the interfaces and show high contrast in the image forsmall density or thickness gradients in the bulk. This paper presents basic principle, instrumentation and analysis methods for this technique. Initial results of quantitative phase retrieval carried out on various samples have also been presented.

  13. Through the looking glass: Basics and principles of reflectance confocal microscopy.

    PubMed

    Que, Syril Keena T; Fraga-Braghiroli, Naiara; Grant-Kels, Jane M; Rabinovitz, Harold S; Oliviero, Margaret; Scope, Alon

    2015-08-01

    Reflectance confocal microscopy (RCM) offers high-resolution, noninvasive skin imaging and can help avoid obtaining unnecessary biopsy specimens. It can also increase efficiency in the surgical setting by helping to delineate tumor margins. Diagnostic criteria and several RCM algorithms have been published for the differentiation of benign and malignant neoplasms. We provide an overview of the basic principles of RCM, characteristic RCM features of normal skin and cutaneous neoplasms, and the limitations and future directions of RCM. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  14. Near-field limitations of Fresnel-regime coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Pound, Benjamin A.; Barber, John L.; Nguyen, Kimberly; Tyson, Matthew C.; Sandberg, Richard L.

    2017-08-01

    Coherent diffraction imaging (CDI) is a rapidly developing form of imaging that offers the potential of wavelength-limited resolution without image-forming lenses. In CDI, the intensity of the diffraction pattern is measured directly by the detector, and various iterative phase retrieval algorithms are used to "invert" the diffraction pattern and reconstruct a high-resolution image of the sample. However, there are certain requirements in CDI that must be met to reconstruct the object. Although most experiments are conducted in the "far-field"—or Fraunhofer—regime where the requirements are not as stringent, some experiments must be conducted in the "near field" where Fresnel diffraction must be considered. According to the derivation of Fresnel diffraction, successful reconstructions can only be obtained when the small-angle number, a derived quantity, is much less than one. We show, however, that it is not actually necessary to fulfill the small-angle condition. The Fresnel kernel well approximates the exact kernel in regions where the phase oscillates slowly, and in regions of fast oscillations, indicated by large A n , the error between kernels should be negligible due to stationary-phase arguments. We experimentally verify this conclusion with a helium neon laser setup and show that it should hold at x-ray wavelengths as well.

  15. Guidelines for imaging retinoblastoma: imaging principles and MRI standardization.

    PubMed

    de Graaf, Pim; Göricke, Sophia; Rodjan, Firazia; Galluzzi, Paolo; Maeder, Philippe; Castelijns, Jonas A; Brisse, Hervé J

    2012-01-01

    Retinoblastoma is the most common intraocular tumor in children. The diagnosis is usually established by the ophthalmologist on the basis of fundoscopy and US. Together with US, high-resolution MRI has emerged as an important imaging modality for pretreatment assessment, i.e. for diagnostic confirmation, detection of local tumor extent, detection of associated developmental malformation of the brain and detection of associated intracranial primitive neuroectodermal tumor (trilateral retinoblastoma). Minimum requirements for pretreatment diagnostic evaluation of retinoblastoma or mimicking lesions are presented, based on consensus among members of the European Retinoblastoma Imaging Collaboration (ERIC). The most appropriate techniques for imaging in a child with leukocoria are reviewed. CT is no longer recommended. Implementation of a standardized MRI protocol for retinoblastoma in clinical practice may benefit children worldwide, especially those with hereditary retinoblastoma, since a decreased use of CT reduces the exposure to ionizing radiation.

  16. Beam Combination for Stellar Imager and its Application to Full-Aperture Imaging

    NASA Technical Reports Server (NTRS)

    Mozurkewich, D.; Carpenter, K. G.; Lyon, R. G.

    2007-01-01

    Stellar Imager (SI) will be a Space-Based telescope consisting of 20 to 30 separated apertures. It is designed for UV/Optical imaging of stellar surfaces and asteroseismology. This report describes details of an alternative optical design for the beam combiner, dubbed the Spatial Frequency Remapper (SFR). It sacrifices the large field of view of the Fizeau combiner. In return, spectral resolution is obtained with a diffraction grating rather than an array of energy-resolving detectors. The SFR design works in principle and has been implemented with MIRC at CHARA for a small number of apertures. Here, we show the number of optical surfaces can be reduced and the concept scales gracefully to the large number of apertures needed for Stellar Imager. We also describe a potential application of this spatial frequency remapping to improved imaging with filled aperture systems. For filled-aperture imaging, the SFR becomes the core of an improved aperture masking system. To date, aperture-masking has produced the best images with ground-based telescopes but at the expense of low sensitivity due to short exposures and discarding most of the light collected by the telescope. This design eliminates the light-loss problem previously claimed to be inherent in all aperture-masking designs. We also argue that at least in principle, the short-integration time limit can also be overcome. With these improvements, it becomes an ideal camera for TPF-C; since it can form speckle-free images in the presence of wavefront errors, it should significantly relax the stability requirements of the current designs.

  17. SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography

    PubMed Central

    Holloway, Jason; Wu, Yicheng; Sharma, Manoj K.; Cossairt, Oliver; Veeraraghavan, Ashok

    2017-01-01

    Synthetic aperture radar is a well-known technique for improving resolution in radio imaging. Extending these synthetic aperture techniques to the visible light domain is not straightforward because optical receivers cannot measure phase information. We propose to use macroscopic Fourier ptychography (FP) as a practical means of creating a synthetic aperture for visible imaging to achieve subdiffraction-limited resolution. We demonstrate the first working prototype for macroscopic FP in a reflection imaging geometry that is capable of imaging optically rough objects. In addition, a novel image space denoising regularization is introduced during phase retrieval to reduce the effects of speckle and improve perceptual quality of the recovered high-resolution image. Our approach is validated experimentally where the resolution of various diffuse objects is improved sixfold. PMID:28439550

  18. Feature Visibility Limits in the Non-Linear Enhancement of Turbid Images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.

    2003-01-01

    The advancement of non-linear processing methods for generic automatic clarification of turbid imagery has led us from extensions of entirely passive multiscale Retinex processing to a new framework of active measurement and control of the enhancement process called the Visual Servo. In the process of testing this new non-linear computational scheme, we have identified that feature visibility limits in the post-enhancement image now simplify to a single signal-to-noise figure of merit: a feature is visible if the feature-background signal difference is greater than the RMS noise level. In other words, a signal-to-noise limit of approximately unity constitutes a lower limit on feature visibility.

  19. Patient-specific lean body mass can be estimated from limited-coverage computed tomography images.

    PubMed

    Devriese, Joke; Beels, Laurence; Maes, Alex; van de Wiele, Christophe; Pottel, Hans

    2018-06-01

    In PET/CT, quantitative evaluation of tumour metabolic activity is possible through standardized uptake values, usually normalized for body weight (BW) or lean body mass (LBM). Patient-specific LBM can be estimated from whole-body (WB) CT images. As most clinical indications only warrant PET/CT examinations covering head to midthigh, the aim of this study was to develop a simple and reliable method to estimate LBM from limited-coverage (LC) CT images and test its validity. Head-to-toe PET/CT examinations were retrospectively retrieved and semiautomatically segmented into tissue types based on thresholding of CT Hounsfield units. LC was obtained by omitting image slices. Image segmentation was validated on the WB CT examinations by comparing CT-estimated BW with actual BW, and LBM estimated from LC images were compared with LBM estimated from WB images. A direct method and an indirect method were developed and validated on an independent data set. Comparing LBM estimated from LC examinations with estimates from WB examinations (LBMWB) showed a significant but limited bias of 1.2 kg (direct method) and nonsignificant bias of 0.05 kg (indirect method). This study demonstrates that LBM can be estimated from LC CT images with no significant difference from LBMWB.

  20. Bayesian inference on multiscale models for poisson intensity estimation: applications to photon-limited image denoising.

    PubMed

    Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George

    2009-08-01

    We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.

  1. Optimizing technology development and adoption in medical imaging using the principles of innovation diffusion, part II: practical applications.

    PubMed

    Reiner, Bruce I

    2012-02-01

    Successful adoption of new technology development can be accentuated by learning and applying the scientific principles of innovation diffusion. This is of particular importance to areas within the medical imaging practice which have lagged in innovation; perhaps, the most notable of which is reporting which has remained relatively stagnant for over a century. While the theoretical advantages of structured reporting have been well documented throughout the medical imaging community, adoption to date has been tepid and largely relegated to the academic and breast imaging communities. Widespread adoption will likely require an alternative approach to innovation, which addresses the heterogeneity and diversity of the practicing radiologist community along with the ever-changing expectations in service delivery. The challenges and strategies for reporting innovation and adoption are discussed, with the goal of adapting and customizing new technology to the preferences and needs of individual end-users.

  2. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited

    PubMed Central

    Pircher, Michael; Zawadzki, Robert J

    2017-01-01

    In vivo imaging of the human retina with a resolution that allows visualization of cellular structures has proven to be essential to broaden our knowledge about the physiology of this precious and very complex neural tissue that enables the first steps in vision. Many pathologic changes originate from functional and structural alterations on a cellular scale, long before any degradation in vision can be noted. Therefore, it is important to investigate these tissues with a sufficient level of detail in order to better understand associated disease development or the effects of therapeutic intervention. Optical retinal imaging modalities rely on the optical elements of the eye itself (mainly the cornea and lens) to produce retinal images and are therefore affected by the specific arrangement of these elements and possible imperfections in curvature. Thus, aberrations are introduced to the imaging light and image quality is degraded. To compensate for these aberrations, adaptive optics (AO), a technology initially developed in astronomy, has been utilized. However, the axial sectioning provided by retinal AO-based fundus cameras and scanning laser ophthalmoscope instruments is limited to tens of micrometers because of the rather small available numerical aperture of the eye. To overcome this limitation and thus achieve much higher axial sectioning in the order of 2-5µm, AO has been combined with optical coherence tomography (OCT) into AO-OCT. This enabled for the first time in vivo volumetric retinal imaging with high isotropic resolution. This article summarizes the technical aspects of AO-OCT and provides an overview on its various implementations and some of its clinical applications. In addition, latest developments in the field, such as computational AO-OCT and wavefront sensor less AO-OCT, are covered. PMID:28663890

  3. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited].

    PubMed

    Pircher, Michael; Zawadzki, Robert J

    2017-05-01

    In vivo imaging of the human retina with a resolution that allows visualization of cellular structures has proven to be essential to broaden our knowledge about the physiology of this precious and very complex neural tissue that enables the first steps in vision. Many pathologic changes originate from functional and structural alterations on a cellular scale, long before any degradation in vision can be noted. Therefore, it is important to investigate these tissues with a sufficient level of detail in order to better understand associated disease development or the effects of therapeutic intervention. Optical retinal imaging modalities rely on the optical elements of the eye itself (mainly the cornea and lens) to produce retinal images and are therefore affected by the specific arrangement of these elements and possible imperfections in curvature. Thus, aberrations are introduced to the imaging light and image quality is degraded. To compensate for these aberrations, adaptive optics (AO), a technology initially developed in astronomy, has been utilized. However, the axial sectioning provided by retinal AO-based fundus cameras and scanning laser ophthalmoscope instruments is limited to tens of micrometers because of the rather small available numerical aperture of the eye. To overcome this limitation and thus achieve much higher axial sectioning in the order of 2-5µm, AO has been combined with optical coherence tomography (OCT) into AO-OCT. This enabled for the first time in vivo volumetric retinal imaging with high isotropic resolution. This article summarizes the technical aspects of AO-OCT and provides an overview on its various implementations and some of its clinical applications. In addition, latest developments in the field, such as computational AO-OCT and wavefront sensor less AO-OCT, are covered.

  4. On some limitations on temporal resolution in imaging subpicosecond photoelectronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shchelev, M Ya; Andreev, S V; Degtyareva, V P

    2015-05-31

    Numerical modelling is used to analyse some effects restricting the enhancement of temporal resolution into the area better than 100 fs in streak image tubes and photoelectron guns. A particular attention is paid to broadening of an electron bunch as a result of Coulomb interaction. Possible ways to overcome the limitations under consideration are discussed. (extreme light fields and their applications)

  5. Principles and Applications of Imaging Radar, Manual of Remote Sensing, 3rd Edition, Volume 2

    NASA Astrophysics Data System (ADS)

    Moran, M. Susan

    Aerial photographs and digital images from orbiting optical scanners are a daily source of information for the general public through newspapers, television, magazines, and posters. Such images are just as prevalent in scientific journal literature. In the last 6 months, more than half of the weekly issues of Eos published an image acquired by a remote digital sensor. As a result, most geoscientists are familiar with the characteristics and even the acronyms of the current satellites and their optical sensors, common detector filters, and image presentation. In many cases, this familiarity has bred contempt. This is so because the limitations of optical sensors (imaging in the visible and infrared portions of the electromagnetic spectrum) can be quite formidable. Images of the surface cannot be acquired through clouds, and image quality is impaired with low-light conditions (such as at polar regions), atmospheric scattering and absorption, and variations in sun/sensor/surface geometry.

  6. Near-field limitations of Fresnel-regime coherent diffraction imaging

    DOE PAGES

    Pound, Benjamin A.; Barber, John L.; Nguyen, Kimberly; ...

    2017-08-04

    Coherent diffraction imaging (CDI) is a rapidly developing form of imaging that offers the potential of wavelength-limited resolution without image-forming lenses. In CDI, the intensity of the diffraction pattern is measured directly by the detector, and various iterative phase retrieval algorithms are used to “invert” the diffraction pattern and reconstruct a high-resolution image of the sample. But, there are certain requirements in CDI that must be met to reconstruct the object. Although most experiments are conducted in the “far-field”—or Fraunhofer—regime where the requirements are not as stringent, some experiments must be conducted in the “near field” where Fresnel diffraction mustmore » be considered. According to the derivation of Fresnel diffraction, successful reconstructions can only be obtained when the small-angle number, a derived quantity, is much less than one. We show, however, that it is not actually necessary to fulfill the small-angle condition. The Fresnel kernel well approximates the exact kernel in regions where the phase oscillates slowly, and in regions of fast oscillations, indicated by large A n , the error between kernels should be negligible due to stationary-phase arguments. Finally we verify, by experiment, this conclusion with a helium neon laser setup and show that it should hold at x-ray wavelengths as well.« less

  7. FRIDA: diffraction-limited imaging and integral-field spectroscopy for the GTC

    NASA Astrophysics Data System (ADS)

    Watson, Alan M.; Acosta-Pulido, José A.; Álvarez-Núñez, Luis C.; Bringas-Rico, Vicente; Cardiel, Nicolás.; Cardona, Salvador; Chapa, Oscar; Díaz García, José Javier; Eikenberry, Stephen S.; Espejo, Carlos; Flores-Meza, Rubén. A.; Fuentes-Fernández, Jorge; Gallego, Jesús; Garcés Medina, José Leonardo; Garzón López, Francisco; Hammersley, Peter; Keiman, Carolina; Lara, Gerardo; López, José Alberto; López, Pablo L.; Lucero, Diana; Moreno Arce, Heidy; Pascual Ramirez, Sergio; Patrón Recio, Jesús; Prieto, Almudena; Rodríguez, Alberto José; Marco de la Rosa, José; Sánchez, Beatriz; Uribe, Jorge A.; Váldez Berriozabal, Francisco

    2016-08-01

    FRIDA is a diffraction-limited imager and integral-field spectrometer that is being built for the adaptive-optics focus of the Gran Telescopio Canarias. In imaging mode FRIDA will provide scales of 0.010, 0.020 and 0.040 arcsec/pixel and in IFS mode spectral resolutions of 1500, 4000 and 30,000. FRIDA is starting systems integration and is scheduled to complete fully integrated system tests at the laboratory by the end of 2017 and to be delivered to GTC shortly thereafter. In this contribution we present a summary of its design, fabrication, current status and potential scientific applications.

  8. [Principles of PET].

    PubMed

    Beuthien-Baumann, B

    2018-05-01

    Positron emission tomography (PET) is a procedure in nuclear medicine, which is applied predominantly in oncological diagnostics. In the form of modern hybrid machines, such as PET computed tomography (PET/CT) and PET magnetic resonance imaging (PET/MRI) it has found wide acceptance and availability. The PET procedure is more than just another imaging technique, but a functional method with the capability for quantification in addition to the distribution pattern of the radiopharmaceutical, the results of which are used for therapeutic decisions. A profound knowledge of the principles of PET including the correct indications, patient preparation, and possible artifacts is mandatory for the correct interpretation of PET results.

  9. Operating principles and detection characteristics of the Visible and Near-Infrared Imaging Spectrometer in the Chang'e-3

    NASA Astrophysics Data System (ADS)

    He, Zhi-Ping; Wang, Bin-Yong; Lü, Gang; Li, Chun-Lai; Yuan, Li-Yin; Xu, Rui; Liu, Bin; Chen, Kai; Wang, Jian-Yu

    2014-12-01

    The Visible and Near-Infrared Imaging Spectrometer (VNIS), using two acousto-optic tunable filters as dispersive components, consists of a VIS/NIR imaging spectrometer (0.45-0.95 μm), a shortwave IR spectrometer (0.9-2.4 μm) and a calibration unit with dust-proofing functionality. The VNIS was utilized to detect the spectrum of the lunar surface and achieve in-orbit calibration, which satisfied the requirements for scientific detection. Mounted at the front of the Yutu rover, lunar objects that are detected with the VNIS with a 45° visual angle to obtain spectra and geometrical data in order to analyze the mineral composition of the lunar surface. After landing successfully on the Moon, the VNIS performed several explorations and calibrations, and obtained several spectral images and spectral reflectance curves of the lunar soil in the region of Mare Imbrium. This paper describes the working principle and detection characteristics of the VNIS and provides a reference for data processing and scientific applications.

  10. Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Zhang, Ce; Zhang, Hantian; Fowler, Lucas; Santhanam, Gokula Krishnan

    2017-05-01

    Observations of astrophysical objects such as galaxies are limited by various sources of random and systematic noise from the sky background, the optical system of the telescope and the detector used to record the data. Conventional deconvolution techniques are limited in their ability to recover features in imaging data by the Shannon-Nyquist sampling theorem. Here, we train a generative adversarial network (GAN) on a sample of 4550 images of nearby galaxies at 0.01 < z < 0.02 from the Sloan Digital Sky Survey and conduct 10× cross-validation to evaluate the results. We present a method using a GAN trained on galaxy images that can recover features from artificially degraded images with worse seeing and higher noise than the original with a performance that far exceeds simple deconvolution. The ability to better recover detailed features such as galaxy morphology from low signal to noise and low angular resolution imaging data significantly increases our ability to study existing data sets of astrophysical objects as well as future observations with observatories such as the Large Synoptic Sky Telescope (LSST) and the Hubble and James Webb space telescopes.

  11. Computational-optical microscopy for 3D biological imaging beyond the diffraction limit

    NASA Astrophysics Data System (ADS)

    Grover, Ginni

    In recent years, super-resolution imaging has become an important fluorescent microscopy tool. It has enabled imaging of structures smaller than the optical diffraction limit with resolution less than 50 nm. Extension to high-resolution volume imaging has been achieved by integration with various optical techniques. In this thesis, development of a fluorescent microscope to enable high resolution, extended depth, three dimensional (3D) imaging is discussed; which is achieved by integration of computational methods with optical systems. In the first part of the thesis, point spread function (PSF) engineering for volume imaging is discussed. A class of PSFs, referred to as double-helix (DH) PSFs, is generated. The PSFs exhibit two focused spots in the image plane which rotate about the optical axis, encoding depth in rotation of the image. These PSFs extend the depth-of-field up to a factor of ˜5. Precision performance of the DH-PSFs, based on an information theoretical analysis, is compared with other 3D methods with conclusion that the DH-PSFs provide the best precision and the longest depth-of-field. Out of various possible DH-PSFs, a suitable PSF is obtained for super-resolution microscopy. The DH-PSFs are implemented in imaging systems, such as a microscope, with a special phase modulation at the pupil plane. Surface-relief elements which are polarization-insensitive and ˜90% light efficient are developed for phase modulation. The photon-efficient DH-PSF microscopes thus developed are used, along with optimal position estimation algorithms, for tracking and super-resolution imaging in 3D. Imaging at depths-of-field of up to 2.5 microm is achieved without focus scanning. Microtubules were imaged with 3D resolution of (6, 9, 39) nm, which is in close agreement with the theoretical limit. A quantitative study of co-localization of two proteins in volume was conducted in live bacteria. In the last part of the thesis practical aspects of the DH-PSF microscope are

  12. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems.

    PubMed

    Choi, Hojong; Yang, Hao-Chung; Shung, K Kirk

    2014-03-01

    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (-7.7 dB), THD (-74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. CT Perfusion of the Liver: Principles and Applications in Oncology

    PubMed Central

    Kim, Se Hyung; Kamaya, Aya

    2014-01-01

    With the introduction of molecularly targeted chemotherapeutics, there is an increasing need for defining new response criteria for therapeutic success because use of morphologic imaging alone may not fully assess tumor response. Computed tomographic (CT) perfusion imaging of the liver provides functional information about the microcirculation of normal parenchyma and focal liver lesions and is a promising technique for assessing the efficacy of various anticancer treatments. CT perfusion also shows promising results for diagnosing primary or metastatic tumors, for predicting early response to anticancer treatments, and for monitoring tumor recurrence after therapy. Many of the limitations of early CT perfusion studies performed in the liver, such as limited coverage, motion artifacts, and high radiation dose of CT, are being addressed by recent technical advances. These include a wide area detector with or without volumetric spiral or shuttle modes, motion correction algorithms, and new CT reconstruction technologies such as iterative algorithms. Although several issues related to perfusion imaging—such as paucity of large multicenter trials, limited accessibility of perfusion software, and lack of standardization in methods—remain unsolved, CT perfusion has now reached technical maturity, allowing for its use in assessing tumor vascularity in larger-scale prospective clinical trials. In this review, basic principles, current acquisition protocols, and pharmacokinetic models used for CT perfusion imaging of the liver are described. Various oncologic applications of CT perfusion of the liver are discussed and current challenges, as well as possible solutions, for CT perfusion are presented. © RSNA, 2014 Online supplemental material is available for this article. PMID:25058132

  14. Super-resolution Microscopy in Plant Cell Imaging.

    PubMed

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The precautionary principle: is it safe.

    PubMed

    Gignon, Maxime; Ganry, Olivier; Jardé, Olivier; Manaouil, Cécile

    2013-06-01

    The precautionary principle is generally acknowledged to be a powerful tool for protecting health but it was originally invoked by policy makers for dealing with environmental issues. In the 1990s, the principle was incorporated into many legislative and regulatory texts in international law. One can consider that the precautionary principle has turned into "precautionism" necessary to prove to the people, taking account of risk in decisions. There is now a risk that these abuses will deprive the principle of its meaning and value. When pushed to its limits, the precautionary principle can even be dangerous when applied to the healthcare field. This is why a critical analysis of the principle is necessary. Through the literature, it sometimes seems to deviate somehow from the essence of the precautionary principle as it is commonly used in relation to health. We believe that educational work is necessary to familiarize professionals, policy makers and public opinion of the precautionary principle and avoid confusion. We propose a critical analysis of the use and misuse of the precautionary principle.

  16. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the Gemini-N Telescope

    NASA Technical Reports Server (NTRS)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve di raction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, e ectively `freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the di raction limit of the telescope. These new instruments are based on the successful performance and design of the Di erential Speckle Survey Instrument (DSSI) [2, 1]. The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes [3]. Examples of DSSI data are shown in the gures below. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide- eld mode and standard SDSS lters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations, will remain around 13-14th at WIYN and 16-17th at Gemini, while wide- eld, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  17. Nuclear cardiac imaging: Principles and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iskandrian, A.S.

    1987-01-01

    This book is divided into 11 chapters. The first three provide a short description of the instrumentation, radiopharmaceuticals, and imaging techniques used in nuclear cardiology. Chapter 4 discusses exercise testing. Chapter 5 gives the theory, technical aspects, and interpretations of thallium-201 myocardial imaging and radionuclide ventriculography. The remaining chapters discuss the use of these techniques in patients with coronary artery disease, acute myocardial infarction, valvular heart disease, and other forms of cardiac disease. The author intended to emphasize the implications of nuclear cardiology procedures on patient care management and to provide a comprehensive bibliography.

  18. Coherent total internal reflection dark-field microscopy: label-free imaging beyond the diffraction limit.

    PubMed

    von Olshausen, Philipp; Rohrbach, Alexander

    2013-10-15

    Coherent imaging is barely applicable in life-science microscopy due to multiple interference artifacts. Here, we show how these interferences can be used to improve image resolution and contrast. We present a dark-field microscopy technique with evanescent illumination via total internal reflection that delivers high-contrast images of coherently scattering samples. By incoherent averaging of multiple coherent images illuminated from different directions we can resolve image structures that remain unresolved by conventional (incoherent) fluorescence microscopy. We provide images of 190 nm beads revealing resolution beyond the diffraction limit and slightly increased object distances. An analytical model is introduced that accounts for the observed effects and which is confirmed by numerical simulations. Our approach may be a route to fast, label-free, super-resolution imaging in live-cell microscopy.

  19. Connection of Scattering Principles: A Visual and Mathematical Tour

    ERIC Educational Resources Information Center

    Broggini, Filippo; Snieder, Roel

    2012-01-01

    Inverse scattering, Green's function reconstruction, focusing, imaging and the optical theorem are subjects usually studied as separate problems in different research areas. We show a physical connection between the principles because the equations that rule these "scattering principles" have a similar functional form. We first lead the reader…

  20. Cost-appropriateness of whole body vs limited bone imaging for suspected focal sports injuries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagle, C.E.

    Bone imaging has been recognized as a useful diagnostic tool in detecting the presence of focal musculoskeletal injury when radiographs are normal. A retrospective review of bone images in a small number of amateur athletes indicates that secondary injuries were commonly detected at sites different from the site of musculoskeletal pain being evaluated for injury. While a larger study will be necessary to confirm the data, this review suggests that it is medically justified and cost-appropriate to perform imaging of the entire skeleton as opposed to imaging limited to the anatomic site of pain and suspected injury.

  1. Assessment of Image Quality of Repeated Limited Transthoracic Echocardiography After Cardiac Surgery.

    PubMed

    Canty, David J; Heiberg, Johan; Tan, Jen A; Yang, Yang; Royse, Alistair G; Royse, Colin F; Mobeirek, Abdulelah; Shaer, Fayez El; Albacker, Turki; Nazer, Rakan I; Fouda, Muhammed; Bakir, Bakir M; Alsaddique, Ahmed A

    2017-06-01

    The use of limited transthoracic echocardiography (TTE) has been restricted in patients after cardiac surgery due to reported poor image quality. The authors hypothesized that the hemodynamic state could be evaluated in a high proportion of patients at repeated intervals after cardiac surgery. Prospective observational study. Tertiary university hospital. The study comprised 51 patients aged 18 years or older presenting for cardiac surgery. Patients underwent TTE before surgery and at 3 time points after cardiac surgery. Images were assessed offline using an image quality scoring system by 2 expert observers. Hemodynamic state was assessed using the iHeartScan protocol, and the primary endpoint was the proportion of limited TTE studies in which the hemodynamic state was interpretable at each of the 3 postoperative time points. Hemodynamic state interpretability varied over time and was highest before surgery (90%) and lowest on the first postoperative day (49%) (p<0.01). This variation in interpretability over time was reflected in all 3 transthoracic windows, ranging from 43% to 80% before surgery and from 2% to 35% on the first postoperative day (p<0.01). Image quality scores were highest with the apical window, ranging from 53% to 77% across time points, and lowest with the subcostal window, ranging from 4% to 70% across time points (p< 0.01). Hemodynamic state can be determined with TTE in a high proportion of cardiac surgery patients after extubation and removal of surgical drains. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    NASA Astrophysics Data System (ADS)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  3. Image-based Modeling of PSF Deformation with Application to Limited Angle PET Data

    PubMed Central

    Matej, Samuel; Li, Yusheng; Panetta, Joseph; Karp, Joel S.; Surti, Suleman

    2016-01-01

    The point-spread-functions (PSFs) of reconstructed images can be deformed due to detector effects such as resolution blurring and parallax error, data acquisition geometry such as insufficient sampling or limited angular coverage in dual-panel PET systems, or reconstruction imperfections/simplifications. PSF deformation decreases quantitative accuracy and its spatial variation lowers consistency of lesion uptake measurement across the imaging field-of-view (FOV). This can be a significant problem with dual panel PET systems even when using TOF data and image reconstruction models of the detector and data acquisition process. To correct for the spatially variant reconstructed PSF distortions we propose to use an image-based resolution model (IRM) that includes such image PSF deformation effects. Originally the IRM was mostly used for approximating data resolution effects of standard PET systems with full angular coverage in a computationally efficient way, but recently it was also used to mitigate effects of simplified geometric projectors. Our work goes beyond this by including into the IRM reconstruction imperfections caused by combination of the limited angle, parallax errors, and any other (residual) deformation effects and testing it for challenging dual panel data with strongly asymmetric and variable PSF deformations. We applied and tested these concepts using simulated data based on our design for a dedicated breast imaging geometry (B-PET) consisting of dual-panel, time-of-flight (TOF) detectors. We compared two image-based resolution models; i) a simple spatially invariant approximation to PSF deformation, which captures only the general PSF shape through an elongated 3D Gaussian function, and ii) a spatially variant model using a Gaussian mixture model (GMM) to more accurately capture the asymmetric PSF shape in images reconstructed from data acquired with the B-PET scanner geometry. Results demonstrate that while both IRMs decrease the overall uptake

  4. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  5. Advanced Pediatric Brain Imaging Research and Training Program

    DTIC Science & Technology

    2014-10-01

    death and disability in children. Recent advances in pediatric magnetic resonance imaging ( MRI ) techniques are revolutionizing our understanding of... MRI , brain injury. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a...principles of pediatric brain injury and recovery following injury, as well as the clinical application of sophisticated MRI techniques that are

  6. Using Principles of Programmed Instruction

    ERIC Educational Resources Information Center

    Huffman, Harry

    1971-01-01

    Although programmed instruction in accounting is available, it is limited in scope and in acceptance. Teachers, however, may apply principles of programming to the individualizing of instruction. (Author)

  7. Thermal infrared imaging in psychophysiology: Potentialities and limits

    PubMed Central

    Ioannou, Stephanos; Gallese, Vittorio; Merla, Arcangelo

    2014-01-01

    Functional infrared thermal imaging (fITI) is considered an upcoming, promising methodology in the emotional arena. Driven by sympathetic nerves, observations of affective nature derive from muscular activity subcutaneous blood flow as well as perspiration patterns in specific body parts. A review of 23 experimental procedures that employed fITI for investigations of affective nature is provided, along with the adopted experimental protocol and the thermal changes that took place on selected regions of interest in human and nonhuman subjects. Discussion is provided regarding the selection of an appropriate baseline, the autonomic nature of the thermal print, the experimental setup, methodological issues, limitations, and considerations, as well as future directions. PMID:24961292

  8. Nuclear medicine imaging and therapy of neuroendocrine tumours

    PubMed Central

    Gotthardt, Martin; Dijkgraaf, Ingrid; Boerman, Otto C; Oyen, Wim J G

    2006-01-01

    Radiolabelled peptides are used for specific targeting of receptors (over-)expressed by tumour cells. Dependent on the kind of labelling and the radionuclide used, these compounds may be utilised for imaging or for therapy. A concise overview is provided on basic principles of designing and developing radiopeptides for these applications. Furthermore, clinical application of these compounds for imaging and therapy is described. Advantages of the method compared to other techniques (such as the use of radiolabelled antibodies or antibody fragments) are discussed as well as pitfalls and limitations. PMID:17114073

  9. Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control

    NASA Astrophysics Data System (ADS)

    Deffner, Sebastian; Campbell, Steve

    2017-11-01

    One of the most widely known building blocks of modern physics is Heisenberg’s indeterminacy principle. Among the different statements of this fundamental property of the full quantum mechanical nature of physical reality, the uncertainty relation for energy and time has a special place. Its interpretation and its consequences have inspired continued research efforts for almost a century. In its modern formulation, the uncertainty relation is understood as setting a fundamental bound on how fast any quantum system can evolve. In this topical review we describe important milestones, such as the Mandelstam-Tamm and the Margolus-Levitin bounds on the quantum speed limit, and summarise recent applications in a variety of current research fields—including quantum information theory, quantum computing, and quantum thermodynamics amongst several others. To bring order and to provide an access point into the many different notions and concepts, we have grouped the various approaches into the minimal time approach and the geometric approach, where the former relies on quantum control theory, and the latter arises from measuring the distinguishability of quantum states. Due to the volume of the literature, this topical review can only present a snapshot of the current state-of-the-art and can never be fully comprehensive. Therefore, we highlight but a few works hoping that our selection can serve as a representative starting point for the interested reader.

  10. 3D-Holoscopic Imaging: A New Dimension to Enhance Imaging in Minimally Invasive Therapy in Urologic Oncology

    PubMed Central

    Aggoun, Amar; Swash, Mohammad; Grange, Philippe C.R.; Challacombe, Benjamin; Dasgupta, Prokar

    2013-01-01

    Abstract Background and Purpose Existing imaging modalities of urologic pathology are limited by three-dimensional (3D) representation on a two-dimensional screen. We present 3D-holoscopic imaging as a novel method of representing Digital Imaging and Communications in Medicine data images taken from CT and MRI to produce 3D-holographic representations of anatomy without special eyewear in natural light. 3D-holoscopic technology produces images that are true optical models. This technology is based on physical principles with duplication of light fields. The 3D content is captured in real time with the content viewed by multiple viewers independently of their position, without 3D eyewear. Methods We display 3D-holoscopic anatomy relevant to minimally invasive urologic surgery without the need for 3D eyewear. Results The results have demonstrated that medical 3D-holoscopic content can be displayed on commercially available multiview auto-stereoscopic display. Conclusion The next step is validation studies comparing 3D-Holoscopic imaging with conventional imaging. PMID:23216303

  11. Quantum correlations are tightly bound by the exclusivity principle.

    PubMed

    Yan, Bin

    2013-06-28

    It is a fundamental problem in physics of what principle limits the correlations as predicted by our current description of nature, based on quantum mechanics. One possible explanation is the "global exclusivity" principle recently discussed in Phys. Rev. Lett. 110, 060402 (2013). In this work we show that this principle actually has a much stronger restriction on the probability distribution. We provide a tight constraint inequality imposed by this principle and prove that this principle singles out quantum correlations in scenarios represented by any graph. Our result implies that the exclusivity principle might be one of the fundamental principles of nature.

  12. Probabilistic image modeling with an extended chain graph for human activity recognition and image segmentation.

    PubMed

    Zhang, Lei; Zeng, Zhi; Ji, Qiang

    2011-09-01

    Chain graph (CG) is a hybrid probabilistic graphical model (PGM) capable of modeling heterogeneous relationships among random variables. So far, however, its application in image and video analysis is very limited due to lack of principled learning and inference methods for a CG of general topology. To overcome this limitation, we introduce methods to extend the conventional chain-like CG model to CG model with more general topology and the associated methods for learning and inference in such a general CG model. Specifically, we propose techniques to systematically construct a generally structured CG, to parameterize this model, to derive its joint probability distribution, to perform joint parameter learning, and to perform probabilistic inference in this model. To demonstrate the utility of such an extended CG, we apply it to two challenging image and video analysis problems: human activity recognition and image segmentation. The experimental results show improved performance of the extended CG model over the conventional directed or undirected PGMs. This study demonstrates the promise of the extended CG for effective modeling and inference of complex real-world problems.

  13. The Syntax of Moving Images: Principles and Applications.

    ERIC Educational Resources Information Center

    Metallinos, Nikos

    This paper examines the various theories of motion relating to visual communication media, discusses the syntactic rules of moving images derived from those of still pictures, and underlines the motions employed in the construction of moving images, primarily television pictures. The following theories of motion and moving images are presented:…

  14. Diffusion-weighted imaging in pediatric body MR imaging: principles, technique, and emerging applications.

    PubMed

    Chavhan, Govind B; Alsabban, Zehour; Babyn, Paul S

    2014-01-01

    Diffusion-weighted (DW) imaging is an emerging technique in body imaging that provides indirect information about the microenvironment of tissues and lesions and helps detect, characterize, and follow up abnormalities. Two main challenges in the application of DW imaging to body imaging are the decreased signal-to-noise ratio of body tissues compared with neuronal tissues due to their shorter T2 relaxation time, and image degradation related to physiologic motion (eg, respiratory motion). Use of smaller b values and newer motion compensation techniques allow the evaluation of anatomic structures with DW imaging. DW imaging can be performed as a breath-hold sequence or a free-breathing sequence with or without respiratory triggering. Depending on the mobility of water molecules in their microenvironment, different normal tissues have different signals at DW imaging. Some normal tissues (eg, lymph nodes, spleen, ovarian and testicular parenchyma) are diffusion restricted, whereas others (eg, gallbladder, corpora cavernosa, endometrium, cartilage) show T2 shine-through. Epiphyses that contain fatty marrow and bone cortex appear dark on both DW images and apparent diffusion coefficient maps. Current and emerging applications of DW imaging in pediatric body imaging include tumor detection and characterization, assessment of therapy response and monitoring of tumors, noninvasive detection and grading of liver fibrosis and cirrhosis, detection of abscesses, and evaluation of inflammatory bowel disease. RSNA, 2014

  15. The estimation of bone cyst volume using the Cavalieri principle on computed tomography images.

    PubMed

    Say, Ferhat; Gölpınar, Murat; Kılınç, Cem Yalın; Şahin, Bünyamin

    2018-01-01

    To evaluate the volume of bone cyst using the planimetry method of the Cavalieri principle. A retrospective analysis was carried out on data from 25 computed tomography (CT) images of patients with bone cyst. The volume of the cysts was calculated by two independent observers using the planimetry method. The procedures were repeated 1 month later by each observer. The overall mean volume of the bone cyst was 29.25 ± 25.86 cm 3 . The mean bone cyst volumes calculated by the first observer for the first and second sessions were 29.18 ± 26.14 and 29.27 ± 26.19 cm 3 , respectively. The mean bone cyst volumes calculated by the second observer for the first and second sessions were 29.32 ± 26.36 and 29.23 ± 26.36 cm 3 , respectively. Statistical analysis showed no difference and high agreement between the first and second measurements of both observers. The Bland-Altman plots showed strong intraobserver and interobserver concordance in the measurement of the bone cyst volume. The mean total time necessary to obtain the cyst volume by the two observers was 5.27 ± 2.30 min. The bone cyst of the patients can be objectively evaluated using the planimetry method of the Cavalieri principle on CT. This method showed high interobserver and intraobserver agreement. This volume measurement can be used to evaluate cyst remodeling, including complete healing and cyst recurrence.

  16. Application of tolerance limits to the characterization of image registration performance.

    PubMed

    Fedorov, Andriy; Wells, William M; Kikinis, Ron; Tempany, Clare M; Vangel, Mark G

    2014-07-01

    Deformable image registration is used increasingly in image-guided interventions and other applications. However, validation and characterization of registration performance remain areas that require further study. We propose an analysis methodology for deriving tolerance limits on the initial conditions for deformable registration that reliably lead to a successful registration. This approach results in a concise summary of the probability of registration failure, while accounting for the variability in the test data. The (β, γ) tolerance limit can be interpreted as a value of the input parameter that leads to successful registration outcome in at least 100β% of cases with the 100γ% confidence. The utility of the methodology is illustrated by summarizing the performance of a deformable registration algorithm evaluated in three different experimental setups of increasing complexity. Our examples are based on clinical data collected during MRI-guided prostate biopsy registered using publicly available deformable registration tool. The results indicate that the proposed methodology can be used to generate concise graphical summaries of the experiments, as well as a probabilistic estimate of the registration outcome for a future sample. Its use may facilitate improved objective assessment, comparison and retrospective stress-testing of deformable.

  17. Optical resonance imaging: An optical analog to MRI with sub-diffraction-limited capabilities.

    PubMed

    Allodi, Marco A; Dahlberg, Peter D; Mazuski, Richard J; Davis, Hunter C; Otto, John P; Engel, Gregory S

    2016-12-21

    We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using f /2 optics and find a two-point resolution 275 nm using 800 nm light that satisfies the Rayleigh criterion. We also derive a general equation for resolution in optical resonance imaging that indicates that there is a possibility of superresolution imaging using this technique. The photon echo sequence also enables spectroscopic determination of the input and output energy. The technique thus correlates the input energy with the final position and energy of the exciton.

  18. An active coronagraph using a liquid crystal array for exoplanet imaging: principle and testing

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Ren, De-Qing; Zhu, Yong-Tian; Dou, Jiang-Pei

    2012-05-01

    High-contrast imaging coronagraphs, used for the detection of exoplanets, have always adopted passive coronagraph optical components. It is therefore impossible to actively optimize the coronagraphs to achieve their best performance. To solve this problem, we propose a novel high-contrast imaging coronagraph which combines a liquid crystal array (LCA) for active pupil apodization and a deformable mirror (DM) for phase correction. The LCA we use is an amplitude-only spatial light modulator. The LCA is well calibrated and compensates for its amplitude non-uniformity and nonlinear intensity responsivity. We measured the imaging contrasts of the coronagraph system with the LCA only and without the DM deployed. Imaging contrasts of 10-4 and 10-5 can be reached at an inner working angular distance of 2.5 and 5λ/D, respectively. A simulation shows that the phase errors on the coronagraph pupil limit the contrast performance. The contrast could be further improved if a DM is deployed to correct the phase errors induced by the LCA and coronagraph optics.

  19. Image contrast of diffraction-limited telescopes for circular incoherent sources of uniform radiance

    NASA Technical Reports Server (NTRS)

    Shackleford, W. L.

    1980-01-01

    A simple approximate formula is derived for the background intensity beyond the edge of the image of uniform incoherent circular light source relative to the irradiance near the center of the image. The analysis applies to diffraction-limited telescopes with or without central beam obscuration due to a secondary mirror. Scattering off optical surfaces is neglected. The analysis is expected to be most applicable to spaceborne IR telescopes, for which diffraction can be the major source of off-axis response.

  20. Planoconcave optical microresonator sensors for photoacoustic imaging: pushing the limits of sensitivity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guggenheim, James A.; Zhang, Edward Z.; Beard, Paul C.

    2016-03-01

    Most photoacoustic scanners use piezoelectric detectors but these have two key limitations. Firstly, they are optically opaque, inhibiting backward mode operation. Secondly, it is difficult to achieve adequate detection sensitivity with the small element sizes needed to provide near-omnidirectional response as required for tomographic imaging. Planar Fabry-Perot (FP) ultrasound sensing etalons can overcome both of these limitations and have proved extremely effective for superficial (<1cm) imaging applications. To achieve small element sizes (<100μm), the etalon is illuminated with a focused laser beam. However, this has the disadvantage that beam walk-off due to the divergence of the beam fundamentally limits the etalon finesse and thus sensitivity - in essence, the problem is one of insufficient optical confinement. To overcome this, novel planoconcave micro-resonator sensors have been fabricated using precision ink-jet printed polymer domes with curvatures matching that of the laser wavefront. By providing near-perfect beam confinement, we show that it is possible to approach the maximum theoretical limit for finesse (f) imposed by the etalon mirror reflectivities (e.g. f=400 for R=99.2% in contrast to a typical planar sensor value of f<50). This yields an order of magnitude increase in sensitivity over a planar FP sensor with the same acoustic bandwidth. Furthermore by eliminating beam walk-off, viable sensors can be made with significantly greater thickness than planar FP sensors. This provides an additional sensitivity gain for deep tissue imaging applications such as breast imaging where detection bandwidths in the low MHz can be tolerated. For example, for a 250 μm thick planoconcave sensor with a -3dB bandwidth of 5MHz, the measured NEP was 4 Pa. This NEP is comparable to that provided by mm scale piezoelectric detectors used for breast imaging applications but with more uniform frequency response characteristics and an order-of-magnitude smaller element

  1. Technology study of quantum remote sensing imaging

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang

    2016-02-01

    According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.

  2. A study on high NA and evanescent imaging with polarized illumination

    NASA Astrophysics Data System (ADS)

    Yang, Seung-Hune

    Simulation techniques are developed for high NA polarized microscopy with Babinet's principle, partial coherence and vector diffraction for non-periodic geometries. A mathematical model for the Babinet approach is developed and interpreted. Simulation results of the Babinet's principle approach are compared with those of Rigorous Coupled Wave Theory (RCWT) for periodic structures to investigate the accuracy of this approach and its limitations. A microscope system using a special solid immersion lens (SIL) is introduced to image Blu-Ray (BD) optical disc samples without removing the protective cover layer. Aberration caused by the cover layer is minimized with a truncated SIL. Sub-surface imaging simulation is achieved by RCWT, partial coherence, vector diffraction and Babinet's Principle. Simulated results are compared with experimental images and atomic force microscopy (AFM) measurement. A technique for obtaining native and induced using a significant amount of evanescent energy is described for a solid immersion lens (SIL) microscope. Characteristics of native and induced polarization images for different object structures and materials are studied in detail. Experiments are conducted with a NA = 1.48 at lambda = 550nm microscope. Near-field images are simulated and analyzed with an RCWT approach. Contrast curve versus object spatial frequency calculations are compared with experimental measurements. Dependencies of contrast versus source polarization angles and air gap for native and induced polarization image profiles are evaluated. By using the relationship between induced polarization and topographical structure, an induced polarization image of an alternating phase shift mask (PSM) is converted into a topographical image, which shows very good agreement with AFM measurement. Images of other material structures include a dielectric grating, chrome-on-glass grating, silicon CPU structure, BD-R and BD-ROM.

  3. Equivalence principle and bound kinetic energy.

    PubMed

    Hohensee, Michael A; Müller, Holger; Wiringa, R B

    2013-10-11

    We consider the role of the internal kinetic energy of bound systems of matter in tests of the Einstein equivalence principle. Using the gravitational sector of the standard model extension, we show that stringent limits on equivalence principle violations in antimatter can be indirectly obtained from tests using bound systems of normal matter. We estimate the bound kinetic energy of nucleons in a range of light atomic species using Green's function Monte Carlo calculations, and for heavier species using a Woods-Saxon model. We survey the sensitivities of existing and planned experimental tests of the equivalence principle, and report new constraints at the level of between a few parts in 10(6) and parts in 10(8) on violations of the equivalence principle for matter and antimatter.

  4. Visible near-diffraction-limited lucky imaging with full-sky laser-assisted adaptive optics

    NASA Astrophysics Data System (ADS)

    Basden, A. G.

    2014-08-01

    Both lucky imaging techniques and adaptive optics require natural guide stars, limiting sky-coverage, even when laser guide stars are used. Lucky imaging techniques become less successful on larger telescopes unless adaptive optics is used, as the fraction of images obtained with well-behaved turbulence across the whole telescope pupil becomes vanishingly small. Here, we introduce a technique combining lucky imaging techniques with tomographic laser guide star adaptive optics systems on large telescopes. This technique does not require any natural guide star for the adaptive optics, and hence offers full sky-coverage adaptive optics correction. In addition, we introduce a new method for lucky image selection based on residual wavefront phase measurements from the adaptive optics wavefront sensors. We perform Monte Carlo modelling of this technique, and demonstrate I-band Strehl ratios of up to 35 per cent in 0.7 arcsec mean seeing conditions with 0.5 m deformable mirror pitch and full adaptive optics sky-coverage. We show that this technique is suitable for use with lucky imaging reference stars as faint as magnitude 18, and fainter if more advanced image selection and centring techniques are used.

  5. Imaging modes of atomic force microscopy for application in molecular and cell biology.

    PubMed

    Dufrêne, Yves F; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, Andreas; Gerber, Christoph; Müller, Daniel J

    2017-04-06

    Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.

  6. Fundamental uncertainty limit for speckle displacement measurements.

    PubMed

    Fischer, Andreas

    2017-09-01

    The basic metrological task in speckle photography is to quantify displacements of speckle patterns, allowing for instance the investigation of the mechanical load and modification of objects with rough surfaces. However, the fundamental limit of the measurement uncertainty due to photon shot noise is unknown. For this reason, the Cramér-Rao bound (CRB) is derived for speckle displacement measurements, representing the squared minimal achievable measurement uncertainty. As result, the CRB for speckle patterns is only two times the CRB for an ideal point light source. Hence, speckle photography is an optimal measurement approach for contactless displacement measurements on rough surfaces. In agreement with a derivation from Heisenberg's uncertainty principle, the CRB depends on the number of detected photons and the diffraction limit of the imaging system described by the speckle size. The theoretical results are verified and validated, demonstrating the capability for displacement measurements with nanometer resolution.

  7. Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal.

    PubMed

    Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Takida, Yuma; Matsukawa, Takeshi; Minamide, Hiroaki

    2015-03-23

    Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and the arts. This report describes real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in an organic 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate (DAST) crystal, with high resolution reaching the diffraction limit. THz-wave images were converted to the near infrared region and then captured using an InGaAs camera in a tandem imaging system. The resolution of the imaging system was analyzed. Diffraction and interference of THz wave were observed in the experiments. Videos are supplied to show the interference pattern variation that occurs with sample moving and tilting.

  8. Statistical distributions of ultra-low dose CT sinograms and their fundamental limits

    NASA Astrophysics Data System (ADS)

    Lee, Tzu-Cheng; Zhang, Ruoqiao; Alessio, Adam M.; Fu, Lin; De Man, Bruno; Kinahan, Paul E.

    2017-03-01

    Low dose CT imaging is typically constrained to be diagnostic. However, there are applications for even lowerdose CT imaging, including image registration across multi-frame CT images and attenuation correction for PET/CT imaging. We define this as the ultra-low-dose (ULD) CT regime where the exposure level is a factor of 10 lower than current low-dose CT technique levels. In the ULD regime it is possible to use statistically-principled image reconstruction methods that make full use of the raw data information. Since most statistical based iterative reconstruction methods are based on the assumption of that post-log noise distribution is close to Poisson or Gaussian, our goal is to understand the statistical distribution of ULD CT data with different non-positivity correction methods, and to understand when iterative reconstruction methods may be effective in producing images that are useful for image registration or attenuation correction in PET/CT imaging. We first used phantom measurement and calibrated simulation to reveal how the noise distribution deviate from normal assumption under the ULD CT flux environment. In summary, our results indicate that there are three general regimes: (1) Diagnostic CT, where post-log data are well modeled by normal distribution. (2) Lowdose CT, where normal distribution remains a reasonable approximation and statistically-principled (post-log) methods that assume a normal distribution have an advantage. (3) An ULD regime that is photon-starved and the quadratic approximation is no longer effective. For instance, a total integral density of 4.8 (ideal pi for 24 cm of water) for 120kVp, 0.5mAs of radiation source is the maximum pi value where a definitive maximum likelihood value could be found. This leads to fundamental limits in the estimation of ULD CT data when using a standard data processing stream

  9. Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization

    PubMed Central

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei

    2013-01-01

    Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy. PMID:23482880

  10. Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization.

    PubMed

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K

    2013-02-01

    Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy.

  11. Multiscale Imaging of the Mouse Cortex Using Two-Photon Microscopy and Wide-Field Illumination

    NASA Astrophysics Data System (ADS)

    Bumstead, Jonathan R.

    The mouse brain can be studied over vast spatial scales ranging from microscopic imaging of single neurons to macroscopic measurements of hemodynamics acquired over the majority of the mouse cortex. However, most neuroimaging modalities are limited by a fundamental trade-off between the spatial resolution and the field-of-view (FOV) over which the brain can be imaged, making it difficult to fully understand the functional and structural architecture of the healthy mouse brain and its disruption in disease. My dissertation has focused on developing multiscale optical systems capable of imaging the mouse brain at both microscopic and mesoscopic spatial scales, specifically addressing the difference in spatial scales imaged with two-photon microscopy (TPM) and optical intrinsic signal imaging (OISI). Central to this work has been the formulation of a principled design strategy for extending the FOV of the two-photon microscope. Using this design approach, we constructed a TPM system with subcellular resolution and a FOV area 100 times greater than a conventional two-photon microscope. To image the ellipsoidal shape of the mouse cortex, we also developed the microscope to image arbitrary surfaces within a single frame using an electrically tunable lens. Finally, to address the speed limitations of the TPM systems developed during my dissertation, I also conducted research in large-scale neural phenomena occurring in the mouse brain imaged with high-speed OISI. The work conducted during my dissertation addresses some of the fundamental principles in designing and applying optical systems for multiscale imaging of the mouse brain.

  12. Geomorphic classification of Icelandic and Martian volcanoes: Limitations of comparative planetology research from LANDSAT and Viking orbiter images

    NASA Technical Reports Server (NTRS)

    Williams, R. S., Jr.

    1985-01-01

    Some limitations in using orbital images of planetary surfaces for comparative landform analyses are discussed. The principal orbital images used were LANDSAT MSS images of Earth and nominal Viking Orbiter images of Mars. Both are roughly comparable in having a pixel size which corresponds to about 100 m on the planetary surface. A volcanic landform on either planet must have a horizontal dimension of at least 200 m to be discernible on orbital images. A twofold bias is directly introduced into any comparative analysis of volcanic landforms on Mars versus those in Iceland because of this scale limitation. First, the 200-m cutoff of landforms may delete more types of volcanic landforms on Earth than on Mars or vice versa. Second, volcanic landforms in Iceland, too small to be resolved or orbital images, may be represented by larger counterparts on Mars or vice versa.

  13. The 4th Thermodynamic Principle?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montero Garcia, Jose de la Luz; Novoa Blanco, Jesus Francisco

    2007-04-28

    It should be emphasized that the 4th Principle above formulated is a thermodynamic principle and, at the same time, is mechanical-quantum and relativist, as it should inevitably be and its absence has been one of main the theoretical limitations of the physical theory until today.We show that the theoretical discovery of Dimensional Primitive Octet of Matter, the 4th Thermodynamic Principle, the Quantum Hexet of Matter, the Global Hexagonal Subsystem of Fundamental Constants of Energy and the Measurement or Connected Global Scale or Universal Existential Interval of the Matter is that it is possible to be arrived at a global formulationmore » of the four 'forces' or fundamental interactions of nature. The Einstein's golden dream is possible.« less

  14. Positron Emission Tomography: Principles, Technology, and Recent Developments

    NASA Astrophysics Data System (ADS)

    Ziegler, Sibylle I.

    2005-04-01

    Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.

  15. Limits on fundamental limits to computation.

    PubMed

    Markov, Igor L

    2014-08-14

    An indispensable part of our personal and working lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the past fifty years. Such Moore scaling now requires ever-increasing efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and increase our understanding of integrated-circuit scaling, here I review fundamental limits to computation in the areas of manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, I recapitulate how some limits were circumvented, and compare loose and tight limits. Engineering difficulties encountered by emerging technologies may indicate yet unknown limits.

  16. Ethical principles and concepts in medicine.

    PubMed

    Taylor, Robert M

    2013-01-01

    Clinical ethics is the application of ethical theories, principles, rules, and guidelines to clinical situations in medicine. Therefore, clinical ethics is analogous to clinical medicine in that general principles and concepts must be applied intelligently and thoughtfully to unique clinical circumstances. The three major ethical theories are consequentialism, whereby the consequences of an action determine whether it is ethical; deontology, whereby to be ethical is to do one's duty, and virtue ethics, whereby ethics is a matter of cultivating appropriate virtues. In the real world of medicine, most people find that all three perspectives offer useful insights and are complementary rather than contradictory. The most common approach to clinical ethical analysis is principlism. According to principlism, the medical practitioner must attempt to uphold four important principles: respect for patient autonomy, beneficence, nonmaleficence, and justice. When these principles conflict, resolving them depends on the details of the case. Alternative approaches to medical ethics, including the primacy of beneficence, care-based ethics, feminist ethics, and narrative ethics, help to define the limitations of principlism and provide a broader perspective on medical ethics. © 2013 Elsevier B.V. All rights reserved.

  17. Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications

    PubMed Central

    Sodickson, Daniel K.

    2010-01-01

    Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions. PMID:17562047

  18. Multiflash X ray with Image Detanglement for Single Image Isolation

    DTIC Science & Technology

    2017-08-31

    known and separated into individual images. A proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes...Popular Science article.2 For decades, that basic concept dominated the color television market . Those were the days when a large color television...proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes that allowed development of the required image

  19. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering

    PubMed Central

    Qin, Shengping; Caskey, Charles F; Ferrara, Katherine W

    2010-01-01

    Microbubble contrast agents and the associated imaging systems have developed over the past twenty-five years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved—given that their diameter is on the order of microns—nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium. PMID:19229096

  20. Focused Ultrasound Surgery in Oncology: Overview and Principles

    PubMed Central

    McDannold, Nathan J.; Hynynen, Kullervo; Jolesz, Ferenc A.

    2011-01-01

    Focused ultrasound surgery (FUS) is a noninvasive image-guided therapy and an alternative to surgical interventions. It presents an opportunity to revolutionize cancer therapy and to affect or change drug delivery of therapeutic agents in new focally targeted ways. In this article the background, principles, technical devices, and clinical cancer applications of image-guided FUS are reviewed. © RSNA, 2011 PMID:21436096

  1. Photoacoustic tomography: principles and advances

    PubMed Central

    Xia, Jun; Yao, Junjie; Wang, Lihong V.

    2014-01-01

    Photoacoustic tomography (PAT) is an emerging imaging modality that shows great potential for preclinical research and clinical practice. As a hybrid technique, PAT is based on the acoustic detection of optical absorption from either endogenous chromophores, such as oxy-hemoglobin and deoxy-hemoglobin, or exogenous contrast agents, such as organic dyes and nanoparticles. Because ultrasound scatters much less than light in tissue, PAT generates high-resolution images in both the optical ballistic and diffusive regimes. Over the past decade, the photoacoustic technique has been evolving rapidly, leading to a variety of exciting discoveries and applications. This review covers the basic principles of PAT and its different implementations. Strengths of PAT are highlighted, along with the most recent imaging results. PMID:25642127

  2. Single-shot thermal ghost imaging using wavelength-division multiplexing

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Suo, Jinli; Wang, Yuwang; Zhang, Zhili; Dai, Qionghai

    2018-01-01

    Ghost imaging (GI) is an emerging technique that reconstructs the target scene from its correlated measurements with a sequence of patterns. Restricted by the multi-shot principle, GI usually requires long acquisition time and is limited in observation of dynamic scenes. To handle this problem, this paper proposes a single-shot thermal ghost imaging scheme via a wavelength-division multiplexing technique. Specifically, we generate thousands of correlated patterns simultaneously by modulating a broadband light source with a wavelength dependent diffuser. These patterns carry the scene's spatial information and then the correlated photons are coupled into a spectrometer for the final reconstruction. This technique increases the speed of ghost imaging and promotes the applications in dynamic ghost imaging with high scalability and compatibility.

  3. Dual-Energy CT: New Horizon in Medical Imaging

    PubMed Central

    Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector. PMID:28670151

  4. [Advance in imaging spectropolarimeter].

    PubMed

    Wang, Xin-quan; Xiangli, Bin; Huang, Min; Hu, Liang; Zhou, Jin-song; Jing, Juan-juan

    2011-07-01

    Imaging spectropolarimeter (ISP) is a type of novel photoelectric sensor which integrated the functions of imaging, spectrometry and polarimetry. In the present paper, the concept of the ISP is introduced, and the advances in ISP at home and abroad in recent years is reviewed. The principles of ISPs based on novel devices, such as acousto-optic tunable filter (AOTF) and liquid crystal tunable filter (LCTF), are illustrated. In addition, the principles of ISPs developed by adding polarized components to the dispersing-type imaging spectrometer, spatially modulated Fourier transform imaging spectrometer, and computer tomography imaging spectrometer are introduced. Moreover, the trends of ISP are discussed too.

  5. Conceptual design and proof-of-principle testing of the real-time multispectral imaging system MANTIS

    NASA Astrophysics Data System (ADS)

    Vijvers, W. A. J.; Mumgaard, R. T.; Andrebe, Y.; Classen, I. G. J.; Duval, B. P.; Lipschultz, B.

    2017-12-01

    The Multispectral Advanced Narrowband Tokamak Imaging System (MANTIS) is proposed to resolve the steep temperature and density gradients in the scrape-off layer of tokamaks in real-time. The initial design is to deliver two-dimensional distributions of key plasma parameters of the TCV tokamak to a real-time control system in order to enable novel control strategies, while providing new insights into power exhaust physics in the full offline analysis. This paper presents the conceptual system design, the mechanical and optical design of a prototype that was built to assess the optical performance, and the results of the first proof-of-principle tests of the prototype. These demonstrate a central resolving power of 50-46 line pairs per millimeter (CTF50) in the first four channels. For the additional channels, the sharpness is a factor two worse for the odd channels (likely affected by sub-optimal alignment), while the even channels continue the trend observed for the first four channels of 3% degradation per channel. This is explained by the self-cancellation of off-axis aberrations, which is an attractive property of the chosen optical design. The results show that at least a 10-channel real-time multispectral imaging system is feasible.

  6. Three basic principles of success.

    PubMed

    Levin, Roger

    2003-06-01

    Basic business principles all but ensure success when they are followed consistently. Putting strategies, objectives and tactics in place is the first step toward being able to document systems, initiate scripting and improve staff training. Without the basic steps, systems, scripting and training the practice for performance would be hit or miss, at best. More importantly, applying business principles ensures that limited practice resources are dedicated to the achievement of the strategy. By following this simple, three-step process, a dental practice can significantly enhance both financial success and dentist and staff satisfaction.

  7. Monte Carlo simulations of medical imaging modalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estes, G.P.

    Because continuous-energy Monte Carlo radiation transport calculations can be nearly exact simulations of physical reality (within data limitations, geometric approximations, transport algorithms, etc.), it follows that one should be able to closely approximate the results of many experiments from first-principles computations. This line of reasoning has led to various MCNP studies that involve simulations of medical imaging modalities and other visualization methods such as radiography, Anger camera, computerized tomography (CT) scans, and SABRINA particle track visualization. It is the intent of this paper to summarize some of these imaging simulations in the hope of stimulating further work, especially as computermore » power increases. Improved interpretation and prediction of medical images should ultimately lead to enhanced medical treatments. It is also reasonable to assume that such computations could be used to design new or more effective imaging instruments.« less

  8. Computational principles of working memory in sentence comprehension.

    PubMed

    Lewis, Richard L; Vasishth, Shravan; Van Dyke, Julie A

    2006-10-01

    Understanding a sentence requires a working memory of the partial products of comprehension, so that linguistic relations between temporally distal parts of the sentence can be rapidly computed. We describe an emerging theoretical framework for this working memory system that incorporates several independently motivated principles of memory: a sharply limited attentional focus, rapid retrieval of item (but not order) information subject to interference from similar items, and activation decay (forgetting over time). A computational model embodying these principles provides an explanation of the functional capacities and severe limitations of human processing, as well as accounts of reading times. The broad implication is that the detailed nature of cross-linguistic sentence processing emerges from the interaction of general principles of human memory with the specialized task of language comprehension.

  9. OPTICAL PROCESSING OF INFORMATION: Multistage optoelectronic two-dimensional image switches

    NASA Astrophysics Data System (ADS)

    Fedorov, V. B.

    1994-06-01

    The implementation principles and the feasibility of construction of high-throughput multistage optoelectronic switches, capable of transmitting data in the form of two-dimensional images along interconnected pairs of optical channels, are considered. Different ways of realising compact switches are proposed. They are based on the use of polarisation-sensitive elements, arrays of modulators of the plane of polarisation of light, arrays of objectives, and free-space optics. Optical systems of such switches can theoretically ensure that the resolution and optical losses in two-dimensional image transmission are limited only by diffraction. Estimates are obtained of the main maximum-performance parameters of the proposed optoelectronic image switches.

  10. Principle component analysis and linear discriminant analysis of multi-spectral autofluorescence imaging data for differentiating basal cell carcinoma and healthy skin

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Zaytsev, Kirill I.; Lesnichaya, Anastasiya D.; Kudrin, Konstantin G.; Cherkasova, Olga P.; Kurlov, Vladimir N.; Shikunova, Irina A.; Perchik, Alexei V.; Yurchenko, Stanislav O.; Reshetov, Igor V.

    2016-09-01

    In present paper, an ability to differentiate basal cell carcinoma (BCC) and healthy skin by combining multi-spectral autofluorescence imaging, principle component analysis (PCA), and linear discriminant analysis (LDA) has been demonstrated. For this purpose, the experimental setup, which includes excitation and detection branches, has been assembled. The excitation branch utilizes a mercury arc lamp equipped with a 365-nm narrow-linewidth excitation filter, a beam homogenizer, and a mechanical chopper. The detection branch employs a set of bandpass filters with the central wavelength of spectral transparency of λ = 400, 450, 500, and 550 nm, and a digital camera. The setup has been used to study three samples of freshly excised BCC. PCA and LDA have been implemented to analyze the data of multi-spectral fluorescence imaging. Observed results of this pilot study highlight the advantages of proposed imaging technique for skin cancer diagnosis.

  11. Cardiovascular Imaging Using Two-Photon Microscopy

    PubMed Central

    Scherschel, John A.; Rubart, Michael

    2008-01-01

    Two-photon excitation microscopy has become the standard technique for high resolution deep tissue and intravital imaging. It provides intrinsic three-dimensional resolution in combination with increased penetration depth compared to single-photon confocal microscopy. This article will describe the basic physical principles of two-photon excitation and will review its multiple applications to cardiovascular imaging, including second harmonic generation and fluorescence laser scanning microscopy. In particular, the capability and limitations of multiphoton microscopy to assess functional heterogeneity on a cellular scale deep within intact, Langendorff-perfused hearts are demonstrated. It will also discuss the use of two-photon excitation-induced release of caged compounds for the study of intracellular calcium signaling and intercellular dye transfer. PMID:18986603

  12. Problems and Limitations of Satellite Image Orientation for Determination of Height Models

    NASA Astrophysics Data System (ADS)

    Jacobsen, K.

    2017-05-01

    The usual satellite image orientation is based on bias corrected rational polynomial coefficients (RPC). The RPC are describing the direct sensor orientation of the satellite images. The locations of the projection centres today are without problems, but an accuracy limit is caused by the attitudes. Very high resolution satellites today are very agile, able to change the pointed area over 200km within 10 to 11 seconds. The corresponding fast attitude acceleration of the satellite may cause a jitter which cannot be expressed by the third order RPC, even if it is recorded by the gyros. Only a correction of the image geometry may help, but usually this will not be done. The first indication of jitter problems is shown by systematic errors of the y-parallaxes (py) for the intersection of corresponding points during the computation of ground coordinates. These y-parallaxes have a limited influence to the ground coordinates, but similar problems can be expected for the x-parallaxes, determining directly the object height. Systematic y-parallaxes are shown for Ziyuan-3 (ZY3), WorldView-2 (WV2), Pleiades, Cartosat-1, IKONOS and GeoEye. Some of them have clear jitter effects. In addition linear trends of py can be seen. Linear trends in py and tilts in of computed height models may be caused by limited accuracy of the attitude registration, but also by bias correction with affinity transformation. The bias correction is based on ground control points (GCPs). The accuracy of the GCPs usually does not cause some limitations but the identification of the GCPs in the images may be difficult. With 2-dimensional bias corrected RPC-orientation by affinity transformation tilts of the generated height models may be caused, but due to large affine image deformations some satellites, as Cartosat-1, have to be handled with bias correction by affinity transformation. Instead of a 2-dimensional RPC-orientation also a 3-dimensional orientation is possible, respecting the object height

  13. Understanding reliability and some limitations of the images and spectra reconstructed from a multi-monochromatic x-ray imager

    DOE PAGES

    Nagayama, T.; Mancini, R. C.; Mayes, D.; ...

    2015-11-18

    Temperature and density asymmetry diagnosis is critical to advance inertial confinement fusion (ICF) science. A multi-monochromatic x-ray imager (MMI) is an attractive diagnostic for this purpose. The MMI records the spectral signature from an ICF implosion core with time resolution, 2-D space resolution, and spectral resolution. While narrow-band images and 2-D space-resolved spectra from the MMI data constrain temperature and density spatial structure of the core, the accuracy of the images and spectra depends not only on the quality of the MMI data but also on the reliability of the post-processing tools. In this paper, we synthetically quantify the accuracymore » of images and spectra reconstructed from MMI data. Errors in the reconstructed images are less than a few percent when the space-resolution effect is applied to the modeled images. The errors in the reconstructed 2-D space-resolved spectra are also less than a few percent except those for the peripheral regions. Spectra reconstructed for the peripheral regions have slightly but systematically lower intensities by ~6% due to the instrumental spatial-resolution effects. However, this does not alter the relative line ratios and widths and thus does not affect the temperature and density diagnostics. We also investigate the impact of the pinhole size variation on the extracted images and spectra. A 10% pinhole size variation could introduce spatial bias to the images and spectra of ~10%. A correction algorithm is developed, and it successfully reduces the errors to a few percent. Finally, it is desirable to perform similar synthetic investigations to fully understand the reliability and limitations of each MMI application.« less

  14. Understanding reliability and some limitations of the images and spectra reconstructed from a multi-monochromatic x-ray imager.

    PubMed

    Nagayama, T; Mancini, R C; Mayes, D; Tommasini, R; Florido, R

    2015-11-01

    Temperature and density asymmetry diagnosis is critical to advance inertial confinement fusion (ICF) science. A multi-monochromatic x-ray imager (MMI) is an attractive diagnostic for this purpose. The MMI records the spectral signature from an ICF implosion core with time resolution, 2-D space resolution, and spectral resolution. While narrow-band images and 2-D space-resolved spectra from the MMI data constrain temperature and density spatial structure of the core, the accuracy of the images and spectra depends not only on the quality of the MMI data but also on the reliability of the post-processing tools. Here, we synthetically quantify the accuracy of images and spectra reconstructed from MMI data. Errors in the reconstructed images are less than a few percent when the space-resolution effect is applied to the modeled images. The errors in the reconstructed 2-D space-resolved spectra are also less than a few percent except those for the peripheral regions. Spectra reconstructed for the peripheral regions have slightly but systematically lower intensities by ∼6% due to the instrumental spatial-resolution effects. However, this does not alter the relative line ratios and widths and thus does not affect the temperature and density diagnostics. We also investigate the impact of the pinhole size variation on the extracted images and spectra. A 10% pinhole size variation could introduce spatial bias to the images and spectra of ∼10%. A correction algorithm is developed, and it successfully reduces the errors to a few percent. It is desirable to perform similar synthetic investigations to fully understand the reliability and limitations of each MMI application.

  15. Design principles for noninvasive, longitudinal and quantitative cell tracking with nanoparticle-based CT imaging.

    PubMed

    Meir, Rinat; Betzer, Oshra; Motiei, Menachem; Kronfeld, Noam; Brodie, Chaya; Popovtzer, Rachela

    2017-02-01

    Contradictory results in clinical trials are preventing the advancement and implementation of cell-based therapy. To explain such results, there is a need to uncover the mystery regarding the fate of the transplanted cells. To answer this need, we developed a technique for noninvasive in vivo cell tracking, which uses gold nanoparticles as contrast agents for CT imaging. Herein, we investigate the design principles of this technique for intramuscular transplantation of therapeutic cells. Longitudinal studies were performed, displaying the ability to track cells over long periods of time. As few as 500 cells could be detected and a way to quantify the number of cells visualized by CT was demonstrated. Moreover, monitoring of cell functionality was demonstrated on a mouse model of Duchenne muscular dystrophy. This cell-tracking technology has the potential to become an essential tool in pre-clinical as well as clinical trials and to advance the future of cell therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The Basic Principles of FDG-PET/CT Imaging.

    PubMed

    Basu, Sandip; Hess, Søren; Nielsen Braad, Poul-Erik; Olsen, Birgitte Brinkmann; Inglev, Signe; Høilund-Carlsen, Poul Flemming

    2014-10-01

    Positron emission tomography (PET) imaging with 2-[(18)F]fluoro-2-deoxy-D-glucose (FDG) forms the basis of molecular imaging. FDG-PET imaging is a multidisciplinary undertaking that requires close interdisciplinary collaboration in a broad team comprising physicians, technologists, secretaries, radio-chemists, hospital physicists, molecular biologists, engineers, and cyclotron technicians. The aim of this review is to provide a brief overview of important basic issues and considerations pivotal to successful patient examinations, including basic physics, instrumentation, radiochemistry, molecular and cell biology, patient preparation, normal distribution of tracer, and potential interpretive pitfalls. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Introduction to Color Imaging Science

    NASA Astrophysics Data System (ADS)

    Lee, Hsien-Che

    2005-04-01

    Color imaging technology has become almost ubiquitous in modern life in the form of monitors, liquid crystal screens, color printers, scanners, and digital cameras. This book is a comprehensive guide to the scientific and engineering principles of color imaging. It covers the physics of light and color, how the eye and physical devices capture color images, how color is measured and calibrated, and how images are processed. It stresses physical principles and includes a wealth of real-world examples. The book will be of value to scientists and engineers in the color imaging industry and, with homework problems, can also be used as a text for graduate courses on color imaging.

  18. Can one do good medical ethics without principles?

    PubMed

    Macklin, Ruth

    2015-01-01

    The criteria for determining what it is to do good medical ethics are the quality of ethical analysis and ethical justifications for decisions and actions. Justifications for decisions and actions rely on ethical principles, be they the 'famous four' or subsidiary ethical principles relevant to specific contexts. Examples from clinical ethics, research ethics and public health ethics reveal that even when not stated explicitly, principles are involved in ethical justifications. Principles may come into conflict, however, and the resolution of an ethical dilemma requires providing good reasons for preferring one principle over another. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Limits to Inclusion

    ERIC Educational Resources Information Center

    Hansen, Janne Hedegaard

    2012-01-01

    In this article, I will argue that a theoretical identification of the limit to inclusion is needed in the conceptual identification of inclusion. On the one hand, inclusion is formulated as a vision that is, in principle, limitless. On the other hand, there seems to be an agreement that inclusion has a limit in the pedagogical practice. However,…

  20. RF Tomography for Tunnel Detection: Principles and Inversion Schemes

    NASA Astrophysics Data System (ADS)

    Lo Monte, L.; Erricolo, D.; Inan, U. S.; Wicks, M. C.

    2008-12-01

    field formulation : Dyadic representation d. Fourier approach: principles and techniques aimed at improving the reconstructed image. e. Theoretical Limits f. Super-Resolution : Singular Values Decomposition and MUSIC 4. Propagation Model and theoretical limitations. 5. Transmitting and Receiving design, with signal processing and modulation. 6. Numerical Simulations using FDTD tools.

  1. Noise performance limits of advanced x-ray imagers employing poly-Si-based active pixel architectures

    NASA Astrophysics Data System (ADS)

    Koniczek, Martin; El-Mohri, Youcef; Antonuk, Larry E.; Liang, Albert; Zhao, Qihua; Jiang, Hao

    2011-03-01

    A decade after the clinical introduction of active matrix, flat-panel imagers (AMFPIs), the performance of this technology continues to be limited by the relatively large additive electronic noise of these systems - resulting in significant loss of detective quantum efficiency (DQE) under conditions of low exposure or high spatial frequencies. An increasingly promising approach for overcoming such limitations involves the incorporation of in-pixel amplification circuits, referred to as active pixel architectures (AP) - based on low-temperature polycrystalline silicon (poly-Si) thin-film transistors (TFTs). In this study, a methodology for theoretically examining the limiting noise and DQE performance of circuits employing 1-stage in-pixel amplification is presented. This methodology involves sophisticated SPICE circuit simulations along with cascaded systems modeling. In these simulations, a device model based on the RPI poly-Si TFT model is used with additional controlled current sources corresponding to thermal and flicker (1/f) noise. From measurements of transfer and output characteristics (as well as current noise densities) performed upon individual, representative, poly-Si TFTs test devices, model parameters suitable for these simulations are extracted. The input stimuli and operating-point-dependent scaling of the current sources are derived from the measured current noise densities (for flicker noise), or from fundamental equations (for thermal noise). Noise parameters obtained from the simulations, along with other parametric information, is input to a cascaded systems model of an AP imager design to provide estimates of DQE performance. In this paper, this method of combining circuit simulations and cascaded systems analysis to predict the lower limits on additive noise (and upper limits on DQE) for large area AP imagers with signal levels representative of those generated at fluoroscopic exposures is described, and initial results are reported.

  2. A Bayesian approach to distinguishing interdigitated tongue muscles from limited diffusion magnetic resonance imaging.

    PubMed

    Ye, Chuyang; Murano, Emi; Stone, Maureen; Prince, Jerry L

    2015-10-01

    The tongue is a critical organ for a variety of functions, including swallowing, respiration, and speech. It contains intrinsic and extrinsic muscles that play an important role in changing its shape and position. Diffusion tensor imaging (DTI) has been used to reconstruct tongue muscle fiber tracts. However, previous studies have been unable to reconstruct the crossing fibers that occur where the tongue muscles interdigitate, which is a large percentage of the tongue volume. To resolve crossing fibers, multi-tensor models on DTI and more advanced imaging modalities, such as high angular resolution diffusion imaging (HARDI) and diffusion spectrum imaging (DSI), have been proposed. However, because of the involuntary nature of swallowing, there is insufficient time to acquire a sufficient number of diffusion gradient directions to resolve crossing fibers while the in vivo tongue is in a fixed position. In this work, we address the challenge of distinguishing interdigitated tongue muscles from limited diffusion magnetic resonance imaging by using a multi-tensor model with a fixed tensor basis and incorporating prior directional knowledge. The prior directional knowledge provides information on likely fiber directions at each voxel, and is computed with anatomical knowledge of tongue muscles. The fiber directions are estimated within a maximum a posteriori (MAP) framework, and the resulting objective function is solved using a noise-aware weighted ℓ1-norm minimization algorithm. Experiments were performed on a digital crossing phantom and in vivo tongue diffusion data including three control subjects and four patients with glossectomies. On the digital phantom, effects of parameters, noise, and prior direction accuracy were studied, and parameter settings for real data were determined. The results on the in vivo data demonstrate that the proposed method is able to resolve interdigitated tongue muscles with limited gradient directions. The distributions of the

  3. Understanding reliability and some limitations of the images and spectra reconstructed from a multi-monochromatic x-ray imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagayama, T.; Mancini, R. C.; Mayes, D.

    2015-11-15

    Temperature and density asymmetry diagnosis is critical to advance inertial confinement fusion (ICF) science. A multi-monochromatic x-ray imager (MMI) is an attractive diagnostic for this purpose. The MMI records the spectral signature from an ICF implosion core with time resolution, 2-D space resolution, and spectral resolution. While narrow-band images and 2-D space-resolved spectra from the MMI data constrain temperature and density spatial structure of the core, the accuracy of the images and spectra depends not only on the quality of the MMI data but also on the reliability of the post-processing tools. Here, we synthetically quantify the accuracy of imagesmore » and spectra reconstructed from MMI data. Errors in the reconstructed images are less than a few percent when the space-resolution effect is applied to the modeled images. The errors in the reconstructed 2-D space-resolved spectra are also less than a few percent except those for the peripheral regions. Spectra reconstructed for the peripheral regions have slightly but systematically lower intensities by ∼6% due to the instrumental spatial-resolution effects. However, this does not alter the relative line ratios and widths and thus does not affect the temperature and density diagnostics. We also investigate the impact of the pinhole size variation on the extracted images and spectra. A 10% pinhole size variation could introduce spatial bias to the images and spectra of ∼10%. A correction algorithm is developed, and it successfully reduces the errors to a few percent. It is desirable to perform similar synthetic investigations to fully understand the reliability and limitations of each MMI application.« less

  4. Evaluation of noise limits to improve image processing in soft X-ray projection microscopy.

    PubMed

    Jamsranjav, Erdenetogtokh; Kuge, Kenichi; Ito, Atsushi; Kinjo, Yasuhito; Shiina, Tatsuo

    2017-03-03

    Soft X-ray microscopy has been developed for high resolution imaging of hydrated biological specimens due to the availability of water window region. In particular, a projection type microscopy has advantages in wide viewing area, easy zooming function and easy extensibility to computed tomography (CT). The blur of projection image due to the Fresnel diffraction of X-rays, which eventually reduces spatial resolution, could be corrected by an iteration procedure, i.e., repetition of Fresnel and inverse Fresnel transformations. However, it was found that the correction is not enough to be effective for all images, especially for images with low contrast. In order to improve the effectiveness of image correction by computer processing, we in this study evaluated the influence of background noise in the iteration procedure through a simulation study. In the study, images of model specimen with known morphology were used as a substitute for the chromosome images, one of the targets of our microscope. Under the condition that artificial noise was distributed on the images randomly, we introduced two different parameters to evaluate noise effects according to each situation where the iteration procedure was not successful, and proposed an upper limit of the noise within which the effective iteration procedure for the chromosome images was possible. The study indicated that applying the new simulation and noise evaluation method was useful for image processing where background noises cannot be ignored compared with specimen images.

  5. Magnetic resonance imaging of granular materials

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf

    2017-05-01

    Magnetic Resonance Imaging (MRI) has become one of the most important tools to screen humans in medicine; virtually every modern hospital is equipped with a Nuclear Magnetic Resonance (NMR) tomograph. The potential of NMR in 3D imaging tasks is by far greater, but there is only "a handful" of MRI studies of particulate matter. The method is expensive, time-consuming, and requires a deep understanding of pulse sequences, signal acquisition, and processing. We give a short introduction into the physical principles of this imaging technique, describe its advantages and limitations for the screening of granular matter, and present a number of examples of different application purposes, from the exploration of granular packing, via the detection of flow and particle diffusion, to real dynamic measurements. Probably, X-ray computed tomography is preferable in most applications, but fast imaging of single slices with modern MRI techniques is unmatched, and the additional opportunity to retrieve spatially resolved flow and diffusion profiles without particle tracking is a unique feature.

  6. Resolution limits of ultrafast ultrasound localization microscopy

    NASA Astrophysics Data System (ADS)

    Desailly, Yann; Pierre, Juliette; Couture, Olivier; Tanter, Mickael

    2015-11-01

    As in other imaging methods based on waves, the resolution of ultrasound imaging is limited by the wavelength. However, the diffraction-limit can be overcome by super-localizing single events from isolated sources. In recent years, we developed plane-wave ultrasound allowing frame rates up to 20 000 fps. Ultrafast processes such as rapid movement or disruption of ultrasound contrast agents (UCA) can thus be monitored, providing us with distinct punctual sources that could be localized beyond the diffraction limit. We previously showed experimentally that resolutions beyond λ/10 can be reached in ultrafast ultrasound localization microscopy (uULM) using a 128 transducer matrix in reception. Higher resolutions are theoretically achievable and the aim of this study is to predict the maximum resolution in uULM with respect to acquisition parameters (frequency, transducer geometry, sampling electronics). The accuracy of uULM is the error on the localization of a bubble, considered a point-source in a homogeneous medium. The proposed model consists in two steps: determining the timing accuracy of the microbubble echo in radiofrequency data, then transferring this time accuracy into spatial accuracy. The simplified model predicts a maximum resolution of 40 μm for a 1.75 MHz transducer matrix composed of two rows of 64 elements. Experimental confirmation of the model was performed by flowing microbubbles within a 60 μm microfluidic channel and localizing their blinking under ultrafast imaging (500 Hz frame rate). The experimental resolution, determined as the standard deviation in the positioning of the microbubbles, was predicted within 6 μm (13%) of the theoretical values and followed the analytical relationship with respect to the number of elements and depth. Understanding the underlying physical principles determining the resolution of superlocalization will allow the optimization of the imaging setup for each organ. Ultimately, accuracies better than the size

  7. Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling & paired-agent principles from nuclear medicine and optical imaging

    PubMed Central

    Tichauer, Kenneth M.; Wang, Yu; Pogue, Brian W.; Liu, Jonathan T. C.

    2015-01-01

    The development of methods to accurately quantify cell-surface receptors in living tissues would have a seminal impact in oncology. For example, accurate measures of receptor density in vivo could enhance early detection or surgical resection of tumors via protein-based contrast, allowing removal of cancer with high phenotype specificity. Alternatively, accurate receptor expression estimation could be used as a biomarker to guide patient-specific clinical oncology targeting of the same molecular pathway. Unfortunately, conventional molecular contrast-based imaging approaches are not well adapted to accurately estimating the nanomolar-level cell-surface receptor concentrations in tumors, as most images are dominated by nonspecific sources of contrast such as high vascular permeability and lymphatic inhibition. This article reviews approaches for overcoming these limitations based upon tracer kinetic modeling and the use of emerging protocols to estimate binding potential and the related receptor concentration. Methods such as using single time point imaging or a reference-tissue approach tend to have low accuracy in tumors, whereas paired-agent methods or advanced kinetic analyses are more promising to eliminate the dominance of interstitial space in the signals. Nuclear medicine and optical molecular imaging are the primary modalities used, as they have the nanomolar level sensitivity needed to quantify cell-surface receptor concentrations present in tissue, although each likely has a different clinical niche. PMID:26134619

  8. Ultrasound elastography: principles, techniques, and clinical applications.

    PubMed

    Dewall, Ryan J

    2013-01-01

    Ultrasound elastography is an emerging set of imaging modalities used to image tissue elasticity and are often referred to as virtual palpation. These techniques have proven effective in detecting and assessing many different pathologies, because tissue mechanical changes often correlate with tissue pathological changes. This article reviews the principles of ultrasound elastography, many of the ultrasound-based techniques, and popular clinical applications. Originally, elastography was a technique that imaged tissue strain by comparing pre- and postcompression ultrasound images. However, new techniques have been developed that use different excitation methods such as external vibration or acoustic radiation force. Some techniques track transient phenomena such as shear waves to quantitatively measure tissue elasticity. Clinical use of elastography is increasing, with applications including lesion detection and classification, fibrosis staging, treatment monitoring, vascular imaging, and musculoskeletal applications.

  9. Autonomy, consent and responsability. Part 1: limitations of the principle of autonomy as a foundation of informed consent.

    PubMed

    Mellado, J M

    2016-01-01

    Legal recognition of patient's rights aspired to change clinical relationship and medical lex artis. However, its implementation has been hampered by the scarcity of resources and the abundance of regulations. For several years, autonomy, consent, and responsibility have formed one of the backbones of the medical profession. However, they have sparked controversy and professional discomfort. In the first part of this article, we examine the conceptual and regulatory limitations of the principle of autonomy as the basis of informed consent. We approach the subject from philosophical, historical, legal, bioethical, deontological, and professional standpoints. In the second part, we cover the viability of informed consent in health care and its relationship with legal responsibility. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Discovering Psychological Principles by Mining Naturally Occurring Data Sets.

    PubMed

    Goldstone, Robert L; Lupyan, Gary

    2016-07-01

    The very expertise with which psychologists wield their tools for achieving laboratory control may have had the unwelcome effect of blinding psychologists to the possibilities of discovering principles of behavior without conducting experiments. When creatively interrogated, a diverse range of large, real-world data sets provides powerful diagnostic tools for revealing principles of human judgment, perception, categorization, decision-making, language use, inference, problem solving, and representation. Examples of these data sets include patterns of website links, dictionaries, logs of group interactions, collections of images and image tags, text corpora, history of financial transactions, trends in twitter tag usage and propagation, patents, consumer product sales, performance in high-stakes sporting events, dialect maps, and scientific citations. The goal of this issue is to present some exemplary case studies of mining naturally existing data sets to reveal important principles and phenomena in cognitive science, and to discuss some of the underlying issues involved with conducting traditional experiments, analyses of naturally occurring data, computational modeling, and the synthesis of all three methods. Copyright © 2016 Cognitive Science Society, Inc.

  11. Qualitative biomechanical principles for application in coaching.

    PubMed

    Knudson, Duane

    2007-01-01

    Many aspects of human movements in sport can be readily understood by Newtonian rigid-body mechanics. Many of these laws and biomechanical principles, however, are counterintuitive to a lot of people. There are also several problems in the application of biomechanics to sports, so the application of biomechanics in the qualitative analysis of sport skills by many coaches has been limited. Biomechanics scholars have long been interested in developing principles that facilitate the qualitative application of biomechanics to improve movement performance and reduce the risk of injury. This paper summarizes the major North American efforts to establish a set of general biomechanical principles of movement, and illustrates how principles can be used to improve the application of biomechanics in the qualitative analysis of sport technique. A coach helping a player with a tennis serve is presented as an example. The standardization of terminology for biomechanical principles is proposed as an important first step in improving the application ofbiomechanics in sport. There is also a need for international cooperation and research on the effectiveness of applying biomechanical principles in the coaching of sport techniques.

  12. Twenty-five years of maximum-entropy principle

    NASA Astrophysics Data System (ADS)

    Kapur, J. N.

    1983-04-01

    The strengths and weaknesses of the maximum entropy principle (MEP) are examined and some challenging problems that remain outstanding at the end of the first quarter century of the principle are discussed. The original formalism of the MEP is presented and its relationship to statistical mechanics is set forth. The use of MEP for characterizing statistical distributions, in statistical inference, nonlinear spectral analysis, transportation models, population density models, models for brand-switching in marketing and vote-switching in elections is discussed. Its application to finance, insurance, image reconstruction, pattern recognition, operations research and engineering, biology and medicine, and nonparametric density estimation is considered.

  13. Ship dynamics for maritime ISAR imaging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin Walter

    2008-02-01

    Demand is increasing for imaging ships at sea. Conventional SAR fails because the ships are usually in motion, both with a forward velocity, and other linear and angular motions that accompany sea travel. Because the target itself is moving, this becomes an Inverse- SAR, or ISAR problem. Developing useful ISAR techniques and algorithms is considerably aided by first understanding the nature and characteristics of ship motion. Consequently, a brief study of some principles of naval architecture sheds useful light on this problem. We attempt to do so here. Ship motions are analyzed for their impact on range-Doppler imaging using Inversemore » Synthetic Aperture Radar (ISAR). A framework for analysis is developed, and limitations of simple ISAR systems are discussed.« less

  14. Optical Design of COATLI: A Diffraction-Limited Visible Imager with Fast Guiding and Active Optics Correction

    NASA Astrophysics Data System (ADS)

    Fuentes-Fernández, J.; Cuevas, S.; Watson, A. M.

    2018-04-01

    We present the optical design of COATLI, a two channel visible imager for a comercial 50 cm robotic telescope. COATLI will deliver diffraction-limited images (approximately 0.3 arcsec FWHM) in the riz bands, inside a 4.2 arcmin field, and seeing limited images (approximately 0.6 arcsec FWHM) in the B and g bands, inside a 5 arcmin field, by means of a tip-tilt mirror for fast guiding, and a deformable mirror for active optics, both located on two optically transferred pupil planes. The optical design is based on two collimator-camera systems plus a pupil transfer relay, using achromatic doublets of CaF2 and S-FTM16 and one triplet of N-BK7 and CaF2. We discuss the effciency, tolerancing, thermal behavior and ghosts. COATLI will be installed at the Observatorio Astronómico Nacional in Sierra San Pedro Mártir, Baja California, Mexico, in 2018.

  15. Music algorithm for imaging of a sound-hard arc in limited-view inverse scattering problem

    NASA Astrophysics Data System (ADS)

    Park, Won-Kwang

    2017-07-01

    MUltiple SIgnal Classification (MUSIC) algorithm for a non-iterative imaging of sound-hard arc in limited-view inverse scattering problem is considered. In order to discover mathematical structure of MUSIC, we derive a relationship between MUSIC and an infinite series of Bessel functions of integer order. This structure enables us to examine some properties of MUSIC in limited-view problem. Numerical simulations are performed to support the identified structure of MUSIC.

  16. Diffusion-weighted imaging of the breast: principles and clinical applications.

    PubMed

    Woodhams, Reiko; Ramadan, Saadallah; Stanwell, Peter; Sakamoto, Satoko; Hata, Hirofumi; Ozaki, Masanori; Kan, Shinichi; Inoue, Yusuke

    2011-01-01

    Diffusion-weighted imaging provides a novel contrast mechanism in magnetic resonance (MR) imaging and has a high sensitivity in the detection of changes in the local biologic environment. A significant advantage of diffusion-weighted MR imaging over conventional contrast material-enhanced MR imaging is its high sensitivity to change in the microscopic cellular environment without the need for intravenous contrast material injection. Approaches to the assessment of diffusion-weighted breast imaging findings include assessment of these data alone and interpretation of the data in conjunction with T2-weighted imaging findings. In addition, the analysis of apparent diffusion coefficient (ADC) value can be undertaken either in isolation or in combination with diffusion-weighted and T2-weighted imaging. Most previous studies have evaluated ADC value alone; however, overlap in the ADC values of malignant and benign disease has been observed. This overlap may be partly due to selection of b value, which can influence the concomitant effect of perfusion and emphasize the contribution of multicomponent model influences. The simultaneous assessment of diffusion-weighted and T2-weighted imaging data and ADC value has the potential to improve specificity. In addition, the use of diffusion-weighted imaging in a standard breast MR imaging protocol may heighten sensitivity and thereby improve diagnostic accuracy. Standardization of diffusion-weighted imaging parameters is needed to allow comparison of multicenter studies and assessment of the clinical utility of diffusion-weighted imaging and ADC values in breast evaluation.

  17. Advanced imaging in acute stroke management-Part I: Computed tomographic.

    PubMed

    Saini, Monica; Butcher, Ken

    2009-01-01

    Neuroimaging is fundamental to stroke diagnosis and management. Non-contrast computed tomography (NCCT) has been the primary imaging modality utilized for this purpose for almost four decades. Although NCCT does permit identification of intracranial hemorrhage and parenchymal ischemic changes, insights into blood vessel patency and cerebral perfusion are limited. Advances in reperfusion strategies have made identification of potentially salvageable brain tissue a more practical concern. Advances in CT technology now permit identification of acute and chronic arterial lesions, as well as cerebral blood flow deficits. This review outlines principles of advanced CT image acquisition and its utility in acute stroke management.

  18. Imaging Genetics

    ERIC Educational Resources Information Center

    Munoz, Karen E.; Hyde, Luke W.; Hariri, Ahmad R.

    2009-01-01

    Imaging genetics is an experimental strategy that integrates molecular genetics and neuroimaging technology to examine biological mechanisms that mediate differences in behavior and the risks for psychiatric disorder. The basic principles in imaging genetics and the development of the field are discussed.

  19. EDITORIAL: Imaging Systems and Techniques Imaging Systems and Techniques

    NASA Astrophysics Data System (ADS)

    Giakos, George; Yang, Wuqiang; Petrou, M.; Nikita, K. S.; Pastorino, M.; Amanatiadis, A.; Zentai, G.

    2011-10-01

    This special feature on Imaging Systems and Techniques comprises 27 technical papers, covering essential facets in imaging systems and techniques both in theory and applications, from research groups spanning three different continents. It mainly contains peer-reviewed articles from the IEEE International Conference on Imaging Systems and Techniques (IST 2011), held in Thessaloniki, Greece, as well a number of articles relevant to the scope of this issue. The multifaceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment, and the technological revolution; there is an urgent need to address and propose dynamic and innovative solutions to problems that tend to be either complex and static or rapidly evolving with a lot of unknowns. For instance, exploration of the engineering and physical principles of new imaging systems and techniques for medical applications, remote sensing, monitoring of space resources and enhanced awareness, exploration and management of natural resources, and environmental monitoring, are some of the areas that need to be addressed with urgency. Similarly, the development of efficient medical imaging techniques capable of providing physiological information at the molecular level is another important area of research. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, using high resolution and high selectivity nanoimaging techniques, can play an important role in the diagnosis and treatment of cancer, as well as provide efficient drug-delivery imaging solutions for disease treatment with increased sensitivity and specificity. On the other hand, technical advances in the development of efficient digital imaging systems and techniques and tomographic devices operating on electric impedance tomography, computed tomography, single-photon emission and positron emission tomography detection principles are anticipated to have a significant impact on a

  20. EDITORIAL: Imaging systems and techniques Imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios

    2009-10-01

    The papers in this special issue focus on providing the state-of-the-art approaches and solutions to some of the most challenging imaging areas, such as the design, development, evaluation and applications of imaging systems, measuring techniques, image processing algorithms and instrumentation, with an ultimate aim of enhancing the measurement accuracy and image quality. This special issue explores the principles, engineering developments and applications of new imaging systems and techniques, and encourages broad discussion of imaging methodologies, shaping the future and identifying emerging trends. The multi-faceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment and technological evolution. There is an urgent need to address new problems, which tend to be either static but complex, or dynamic, e.g. rapidly evolving with time, with many unknowns, and to propose innovative solutions. For instance, the battles against cancer and terror, monitoring of space resources and enhanced awareness, management of natural resources and environmental monitoring are some of the areas that need to be addressed. The complexity of the involved imaging scenarios and demanding design parameters, e.g. speed, signal-to-noise ratio (SNR), specificity, contrast, spatial resolution, scatter rejection, complex background and harsh environments, necessitate the development of a multi-functional, scalable and efficient imaging suite of sensors, solutions driven by innovation, and operation on diverse detection and imaging principles. Efficient medical imaging techniques capable of providing physiological information at the molecular level present another important research area. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, and using high-resolution, high-selectivity nano-imaging methods, quantum dots, nanoparticles, biomarkers, nanostructures, nanosensors, micro-array imaging chips

  1. HDR imaging and color constancy: two sides of the same coin?

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    2011-01-01

    At first, we think that High Dynamic Range (HDR) imaging is a technique for improved recordings of scene radiances. Many of us think that human color constancy is a variation of a camera's automatic white balance algorithm. However, on closer inspection, glare limits the range of light we can detect in cameras and on retinas. All scene regions below middle gray are influenced, more or less, by the glare from the bright scene segments. Instead of accurate radiance reproduction, HDR imaging works well because it preserves the details in the scene's spatial contrast. Similarly, on closer inspection, human color constancy depends on spatial comparisons that synthesize appearances from all the scene segments. Can spatial image processing play similar principle roles in both HDR imaging and color constancy?

  2. Limitations of Airway Dimension Measurement on Images Obtained Using Multi-Detector Row Computed Tomography

    PubMed Central

    Oguma, Tsuyoshi; Hirai, Toyohiro; Niimi, Akio; Matsumoto, Hisako; Muro, Shigeo; Shigematsu, Michio; Nishimura, Takashi; Kubo, Yoshiro; Mishima, Michiaki

    2013-01-01

    Objectives (a) To assess the effects of computed tomography (CT) scanners, scanning conditions, airway size, and phantom composition on airway dimension measurement and (b) to investigate the limitations of accurate quantitative assessment of small airways using CT images. Methods An airway phantom, which was constructed using various types of material and with various tube sizes, was scanned using four CT scanner types under different conditions to calculate airway dimensions, luminal area (Ai), and the wall area percentage (WA%). To investigate the limitations of accurate airway dimension measurement, we then developed a second airway phantom with a thinner tube wall, and compared the clinical CT images of healthy subjects with the phantom images scanned using the same CT scanner. The study using clinical CT images was approved by the local ethics committee, and written informed consent was obtained from all subjects. Data were statistically analyzed using one-way ANOVA. Results Errors noted in airway dimension measurement were greater in the tube of small inner radius made of material with a high CT density and on images reconstructed by body algorithm (p<0.001), and there was some variation in error among CT scanners under different fields of view. Airway wall thickness had the maximum effect on the accuracy of measurements with all CT scanners under all scanning conditions, and the magnitude of errors for WA% and Ai varied depending on wall thickness when airways of <1.0-mm wall thickness were measured. Conclusions The parameters of airway dimensions measured were affected by airway size, reconstruction algorithm, composition of the airway phantom, and CT scanner types. In dimension measurement of small airways with wall thickness of <1.0 mm, the accuracy of measurement according to quantitative CT parameters can decrease as the walls become thinner. PMID:24116105

  3. Principled Missing Data Treatments.

    PubMed

    Lang, Kyle M; Little, Todd D

    2018-04-01

    We review a number of issues regarding missing data treatments for intervention and prevention researchers. Many of the common missing data practices in prevention research are still, unfortunately, ill-advised (e.g., use of listwise and pairwise deletion, insufficient use of auxiliary variables). Our goal is to promote better practice in the handling of missing data. We review the current state of missing data methodology and recent missing data reporting in prevention research. We describe antiquated, ad hoc missing data treatments and discuss their limitations. We discuss two modern, principled missing data treatments: multiple imputation and full information maximum likelihood, and we offer practical tips on how to best employ these methods in prevention research. The principled missing data treatments that we discuss are couched in terms of how they improve causal and statistical inference in the prevention sciences. Our recommendations are firmly grounded in missing data theory and well-validated statistical principles for handling the missing data issues that are ubiquitous in biosocial and prevention research. We augment our broad survey of missing data analysis with references to more exhaustive resources.

  4. HVS: an image-based approach for constructing virtual environments

    NASA Astrophysics Data System (ADS)

    Zhang, Maojun; Zhong, Li; Sun, Lifeng; Li, Yunhao

    1998-09-01

    Virtual Reality Systems can construct virtual environment which provide an interactive walkthrough experience. Traditionally, walkthrough is performed by modeling and rendering 3D computer graphics in real-time. Despite the rapid advance of computer graphics technique, the rendering engine usually places a limit on scene complexity and rendering quality. This paper presents a approach which uses the real-world image or synthesized image to comprise a virtual environment. The real-world image or synthesized image can be recorded by camera, or synthesized by off-line multispectral image processing for Landsat TM (Thematic Mapper) Imagery and SPOT HRV imagery. They are digitally warped on-the-fly to simulate walking forward/backward, to left/right and 360-degree watching around. We have developed a system HVS (Hyper Video System) based on these principles. HVS improves upon QuickTime VR and Surround Video in the walking forward/backward.

  5. Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains.

    PubMed

    Busse, B L; Bezrukov, L; Blank, P S; Zimmerberg, J

    2016-08-08

    Protein complexes associated with cellular processes comprise a significant fraction of all biology, but our understanding of their heterogeneous organization remains inadequate, particularly for physiological densities of multiple protein species. Towards resolving this limitation, we here present a new technique based on resin-embedded multicycle imaging (REMI) of proteins in-situ. By stabilizing protein structure and antigenicity in acrylic resins, affinity labels were repeatedly applied, imaged, removed, and replaced. In principle, an arbitrarily large number of proteins of interest may be imaged on the same specimen with subsequent digital overlay. A series of novel preparative methods were developed to address the problem of imaging multiple protein species in areas of the plasma membrane or volumes of cytoplasm of individual cells. For multiplexed examination of antibody staining we used straightforward computational techniques to align sequential images, and super-resolution microscopy was used to further define membrane protein colocalization. We give one example of a fibroblast membrane with eight multiplexed proteins. A simple statistical analysis of this limited membrane proteomic dataset is sufficient to demonstrate the analytical power contributed by additional imaged proteins when studying membrane protein domains.

  6. Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains

    PubMed Central

    Busse, B. L.; Bezrukov, L.; Blank, P. S.; Zimmerberg, J.

    2016-01-01

    Protein complexes associated with cellular processes comprise a significant fraction of all biology, but our understanding of their heterogeneous organization remains inadequate, particularly for physiological densities of multiple protein species. Towards resolving this limitation, we here present a new technique based on resin-embedded multicycle imaging (REMI) of proteins in-situ. By stabilizing protein structure and antigenicity in acrylic resins, affinity labels were repeatedly applied, imaged, removed, and replaced. In principle, an arbitrarily large number of proteins of interest may be imaged on the same specimen with subsequent digital overlay. A series of novel preparative methods were developed to address the problem of imaging multiple protein species in areas of the plasma membrane or volumes of cytoplasm of individual cells. For multiplexed examination of antibody staining we used straightforward computational techniques to align sequential images, and super-resolution microscopy was used to further define membrane protein colocalization. We give one example of a fibroblast membrane with eight multiplexed proteins. A simple statistical analysis of this limited membrane proteomic dataset is sufficient to demonstrate the analytical power contributed by additional imaged proteins when studying membrane protein domains. PMID:27499335

  7. Micro-optical system based 3D imaging for full HD depth image capturing

    NASA Astrophysics Data System (ADS)

    Park, Yong-Hwa; Cho, Yong-Chul; You, Jang-Woo; Park, Chang-Young; Yoon, Heesun; Lee, Sang-Hun; Kwon, Jong-Oh; Lee, Seung-Wan

    2012-03-01

    20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical shutter'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation. The optical shutter device is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image. Suggested novel optical shutter device enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously. The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical shutter design, fabrication, characterization, 3D camera system prototype and image test results.

  8. In Vivo Small Animal Imaging using Micro-CT and Digital Subtraction Angiography

    PubMed Central

    Badea, C.T.; Drangova, M.; Holdsworth, D.W.; Johnson, G.A.

    2009-01-01

    Small animal imaging has a critical role in phenotyping, drug discovery, and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review in vivo X-ray based small animal imaging, with a focus on in vivo micro-computed tomography (micro-CT) and digital subtraction angiography (DSA). We present the principles, technologies, image quality parameters and types of applications. We show that both methods can be used not only to provide morphological, but also functional information, such as cardiac function estimation or perfusion. Compared to other modalities, x-ray based imaging is usually regarded as being able to provide higher throughput at lower cost and adequate resolution. The limitations are usually associated with the relatively poor contrast mechanisms and potential radiation damage due to ionizing radiation, although the use of contrast agents and careful design of studies can address these limitations. We hope that the information will effectively address how x-ray based imaging can be exploited for successful in vivo preclinical imaging. PMID:18758005

  9. Pitfalls and Limitations of Radionuclide Planar and Hybrid Bone Imaging.

    PubMed

    Agrawal, Kanhaiyalal; Marafi, Fahad; Gnanasegaran, Gopinath; Van der Wall, Hans; Fogelman, Ignac

    2015-09-01

    The radionuclide (99m)Tc-MDP bone scan is one of the most commonly performed nuclear medicine studies and helps in the diagnosis of different pathologies relating to the musculoskeletal system. With its increasing utility in clinical practice, it becomes more important to be aware of various limitations of this imaging modality to avoid false interpretation. It is necessary to be able to recognize various technical, radiopharmaceutical, and patient-related artifacts that can occur while carrying out a bone scan. Furthermore, several normal variations of tracer uptake may mimic pathology and should be interpreted cautiously. There is an important limitation of a bone scan in metastatic disease evaluation as the inherent mechanism of tracer uptake is not specific for tumor but primarily relies on an osteoblastic response. Thus, it is crucial to keep in mind uptake in benign lesions, which can resemble malignant pathologies. The utility of a planar bone scan in benign orthopedic diseases, especially at sites with complex anatomy, is limited owing to lack of precise anatomical information. SPECT/CT has been significantly helpful in these cases. With wider use of PET/CT and reintroduction of the (18)F-fluoride bone scan, increasing knowledge of potential pitfalls on an (18)F-fluoride bone scan and (18)F-FDG-PET/CT will help in improving the accuracy of clinical reports. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Single-Atom Demonstration of the Quantum Landauer Principle

    NASA Astrophysics Data System (ADS)

    Yan, L. L.; Xiong, T. P.; Rehan, K.; Zhou, F.; Liang, D. F.; Chen, L.; Zhang, J. Q.; Yang, W. L.; Ma, Z. H.; Feng, M.

    2018-05-01

    One of the outstanding challenges to information processing is the eloquent suppression of energy consumption in the execution of logic operations. The Landauer principle sets an energy constraint in deletion of a classical bit of information. Although some attempts have been made to experimentally approach the fundamental limit restricted by this principle, exploring the Landauer principle in a purely quantum mechanical fashion is still an open question. Employing a trapped ultracold ion, we experimentally demonstrate a quantum version of the Landauer principle, i.e., an equality associated with the energy cost of information erasure in conjunction with the entropy change of the associated quantized environment. Our experimental investigation substantiates an intimate link between information thermodynamics and quantum candidate systems for information processing.

  11. Pushing the physical limits of spectroscopic imaging for new biology and better medicine (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cheng, Ji-Xin

    2017-02-01

    In vivo molecular spectroscopic imaging is not a simple addition of a spectrometer to a microscope. Innovations are needed to break the physical limits in sensitivity, depth, speed and resolution perspectives. I will present our most recent advances in modality development, biological application, and clinical translation. My talk will focus on the development of mid-infrared photothermal microscope for depth-resolved vibrational imaging of living cells (Science Advances, in press), the discovery of a metabolic signature in cancer stem cells by hyperspectral stimulated Raman scattering imaging (Cell Stem Cell, in press), and the development of an intravascular vibrational photoacoustic catheter for label-free sensing of lipid laden plaques (Scientific Report 2016, 6:25236).

  12. Fluorescent imaging of cancerous tissues for targeted surgery

    PubMed Central

    Bu, Lihong; Shen, Baozhong; Cheng, Zhen

    2014-01-01

    To maximize tumor excision and minimize collateral damage is the primary goal of cancer surgery. Emerging molecular imaging techniques have to “image-guided surgery” developing into “molecular imaging-guided surgery”, which is termed “targeted surgery” in this review. Consequently, the precision of surgery can be advanced from tissue-scale to molecule-scale, enabling “targeted surgery” to be a component of “targeted therapy”. Evidence from numerous experimental and clinical studies has demonstrated significant benefits of fluorescent imaging in targeted surgery with preoperative molecular diagnostic screening. Fluorescent imaging can help to improve intraoperative staging and enable more radical cytoreduction, detect obscure tumor lesions in special organs, highlight tumor margins, better map lymph node metastases, and identify important normal structures intraoperatively. Though limited tissue penetration of fluorescent imaging and tumor heterogeneity are two major hurdles for current targeted surgery, multimodality imaging and multiplex imaging may provide potential solutions to overcome these issues, respectively. Moreover, though many fluorescent imaging techniques and probes have been investigated, targeted surgery remains at a proof-of-principle stage. The impact of fluorescent imaging on cancer surgery will likely be realized through persistent interdisciplinary amalgamation of research in diverse fields. PMID:25064553

  13. Pitfalls and Limitations in the Interpretation of Geophysical Images for Hydrologic Properties and Processes

    NASA Astrophysics Data System (ADS)

    Day-Lewis, F. D.

    2014-12-01

    Geophysical imaging (e.g., electrical, radar, seismic) can provide valuable information for the characterization of hydrologic properties and monitoring of hydrologic processes, as evidenced in the rapid growth of literature on the subject. Geophysical imaging has been used for monitoring tracer migration and infiltration, mapping zones of focused groundwater/surface-water exchange, and verifying emplacement of amendments for bioremediation. Despite the enormous potential for extraction of hydrologic information from geophysical images, there also is potential for misinterpretation and over-interpretation. These concerns are particularly relevant when geophysical results are used within quantitative frameworks, e.g., conversion to hydrologic properties through petrophysical relations, geostatistical estimation and simulation conditioned to geophysical inversions, and joint inversion. We review pitfalls to interpretation associated with limited image resolution, spatially variable image resolution, incorrect data weighting, errors in the timing of measurements, temporal smearing resulting from changes during data acquisition, support-volume/scale effects, and incorrect assumptions or approximations involved in modeling geophysical or other jointly inverted data. A series of numerical and field-based examples illustrate these potential problems. Our goal in this talk is to raise awareness of common pitfalls and present strategies for recognizing and avoiding them.

  14. Application of basic principles of physics to head and neck MR angiography: troubleshooting for artifacts.

    PubMed

    Pandey, Shilpa; Hakky, Michael; Kwak, Ellie; Jara, Hernan; Geyer, Carl A; Erbay, Sami H

    2013-05-01

    Neurovascular imaging studies are routinely used for the assessment of headaches and changes in mental status, stroke workup, and evaluation of the arteriovenous structures of the head and neck. These imaging studies are being performed with greater frequency as the aging population continues to increase. Magnetic resonance (MR) angiographic imaging techniques are helpful in this setting. However, mastering these techniques requires an in-depth understanding of the basic principles of physics, complex flow patterns, and the correlation of MR angiographic findings with conventional MR imaging findings. More than one imaging technique may be used to solve difficult cases, with each technique contributing unique information. Unfortunately, incorporating findings obtained with multiple imaging modalities may add to the diagnostic challenge. To ensure diagnostic accuracy, it is essential that the radiologist carefully evaluate the details provided by these modalities in light of basic physics principles, the fundamentals of various imaging techniques, and common neurovascular imaging pitfalls. ©RSNA, 2013.

  15. Pitfalls and Limitations of Diffusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Urinary Bladder Cancer

    PubMed Central

    Lin, Wei-Ching; Chen, Jeon-Hor

    2015-01-01

    Adequately selecting a therapeutic approach for bladder cancer depends on accurate grading and staging. Substantial inaccuracy of clinical staging with bimanual examination, cystoscopy, and transurethral resection of bladder tumor has facilitated the increasing utility of magnetic resonance imaging to evaluate bladder cancer. Diffusion-weighted imaging (DWI) is a noninvasive functional magnetic resonance imaging technique. The high tissue contrast between cancers and surrounding tissues on DWI is derived from the difference of water molecules motion. DWI is potentially a useful tool for the detection, characterization, and staging of bladder cancers; it can also monitor posttreatment response and provide information on predicting tumor biophysical behaviors. Despite advancements in DWI techniques and the use of quantitative analysis to evaluate the apparent diffusion coefficient values, there are some inherent limitations in DWI interpretation related to relatively poor spatial resolution, lack of cancer specificity, and lack of standardized image acquisition protocols and data analysis procedures that restrict the application of DWI and reproducibility of apparent diffusion coefficient values. In addition, inadequate bladder distension, artifacts, thinness of bladder wall, cancerous mimickers of normal bladder wall and benign lesions, and variations in the manifestation of bladder cancer may interfere with diagnosis and monitoring of treatment. Recognition of these pitfalls and limitations can minimize their impact on image interpretation, and carefully applying the analyzed results and combining with pathologic grading and staging to clinical practice can contribute to the selection of an adequate treatment method to improve patient care. PMID:26055180

  16. Patch-based models and algorithms for image processing: a review of the basic principles and methods, and their application in computed tomography.

    PubMed

    Karimi, Davood; Ward, Rabab K

    2016-10-01

    Image models are central to all image processing tasks. The great advancements in digital image processing would not have been made possible without powerful models which, themselves, have evolved over time. In the past decade, "patch-based" models have emerged as one of the most effective models for natural images. Patch-based methods have outperformed other competing methods in many image processing tasks. These developments have come at a time when greater availability of powerful computational resources and growing concerns over the health risks of the ionizing radiation encourage research on image processing algorithms for computed tomography (CT). The goal of this paper is to explain the principles of patch-based methods and to review some of their recent applications in CT. We first review the central concepts in patch-based image processing and explain some of the state-of-the-art algorithms, with a focus on aspects that are more relevant to CT. Then, we review some of the recent application of patch-based methods in CT. Patch-based methods have already transformed the field of image processing, leading to state-of-the-art results in many applications. More recently, several studies have proposed patch-based algorithms for various image processing tasks in CT, from denoising and restoration to iterative reconstruction. Although these studies have reported good results, the true potential of patch-based methods for CT has not been yet appreciated. Patch-based methods can play a central role in image reconstruction and processing for CT. They have the potential to lead to substantial improvements in the current state of the art.

  17. Optimization and limit of a tilt manipulation stage based on the electrowetting-on-dielectric principle

    NASA Astrophysics Data System (ADS)

    Tan, Xiao; Tao, Zhi; Suzuki, Kenji; Li, Haiwang

    2017-12-01

    This work designed a new tilt manipulation stage based on the electrowetting-on-dielectric (EWOD) principle as the actuating mechanism and investigated the performance of that stage. The stage was fabricated using a universal MEMS (Micro-Electro-Mechanical System) fabrication method. In the previously demonstrated form of this device, the tilt stage consisted of a top plate that functions as a mirror, a bottom plate that was designed for changing the shape of water droplets, and supporters that were fixed between the top and bottom plate. That device was actuated by a voltage applied to the bottom plate, resulting in a static electric force actuating the shape change in the droplets by moving the top plate in the vertical direction. Previous experimental results indicated that that device can tilt at up to ±1.8°, with a resolution of 7 μm in displacement and 0.05° in angle. By selecting the best combination of the dielectric layer, the tilt angle was maximized. The new device, fabricated using a common and straightforward fabrication method, avoids deflection of the top plate and grounding in the bottom plate. Because of the limit of Teflon and other MEMS materials, this device has a tilt angle in the range of 3.2-3.5° according to the experimental data for friction and the EWOD device limit, which is close to 1.8°. This paper also describe the investigation of the effects of various parameters, e.g., various dielectric materials, thicknesses, and droplet type and volume, on the performance of the stage. The results indicate that the apparent frictions coefficient of the solid-liquid interface may remain constant, i.e., the friction force is proportional to the normal support force and the apparent frictions coefficient.

  18. A high resolution IR/visible imaging system for the W7-X limiter

    NASA Astrophysics Data System (ADS)

    Wurden, G. A.; Stephey, L. A.; Biedermann, C.; Jakubowski, M. W.; Dunn, J. P.; Gamradt, M.

    2016-11-01

    A high-resolution imaging system, consisting of megapixel mid-IR and visible cameras along the same line of sight, has been prepared for the new W7-X stellarator and was operated during Operational Period 1.1 to view one of the five inboard graphite limiters. The radial line of sight, through a large diameter (184 mm clear aperture) uncoated sapphire window, couples a direct viewing 1344 × 784 pixel FLIR SC8303HD camera. A germanium beam-splitter sends visible light to a 1024 × 1024 pixel Allied Vision Technologies Prosilica GX1050 color camera. Both achieve sub-millimeter resolution on the 161 mm wide, inertially cooled, segmented graphite tiles. The IR and visible cameras are controlled via optical fibers over full Camera Link and dual GigE Ethernet (2 Gbit/s data rates) interfaces, respectively. While they are mounted outside the cryostat at a distance of 3.2 m from the limiter, they are close to a large magnetic trim coil and require soft iron shielding. We have taken IR data at 125 Hz to 1.25 kHz frame rates and seen that surface temperature increases in excess of 350 °C, especially on leading edges or defect hot spots. The IR camera sees heat-load stripe patterns on the limiter and has been used to infer limiter power fluxes (˜1-4.5 MW/m2), during the ECRH heating phase. IR images have also been used calorimetrically between shots to measure equilibrated bulk tile temperature, and hence tile energy inputs (in the range of 30 kJ/tile with 0.6 MW, 6 s heating pulses). Small UFO's can be seen and tracked by the FLIR camera in some discharges. The calibrated visible color camera (100 Hz frame rate) has also been equipped with narrow band C-III and H-alpha filters, to compare with other diagnostics, and is used for absolute particle flux determination from the limiter surface. Sometimes, but not always, hot-spots in the IR are also seen to be bright in C-III light.

  19. l0 regularization based on a prior image incorporated non-local means for limited-angle X-ray CT reconstruction.

    PubMed

    Zhang, Lingli; Zeng, Li; Guo, Yumeng

    2018-01-01

    Restricted by the scanning environment in some CT imaging modalities, the acquired projection data are usually incomplete, which may lead to a limited-angle reconstruction problem. Thus, image quality usually suffers from the slope artifacts. The objective of this study is to first investigate the distorted domains of the reconstructed images which encounter the slope artifacts and then present a new iterative reconstruction method to address the limited-angle X-ray CT reconstruction problem. The presented framework of new method exploits the structural similarity between the prior image and the reconstructed image aiming to compensate the distorted edges. Specifically, the new method utilizes l0 regularization and wavelet tight framelets to suppress the slope artifacts and pursue the sparsity. New method includes following 4 steps to (1) address the data fidelity using SART; (2) compensate for the slope artifacts due to the missed projection data using the prior image and modified nonlocal means (PNLM); (3) utilize l0 regularization to suppress the slope artifacts and pursue the sparsity of wavelet coefficients of the transformed image by using iterative hard thresholding (l0W); and (4) apply an inverse wavelet transform to reconstruct image. In summary, this method is referred to as "l0W-PNLM". Numerical implementations showed that the presented l0W-PNLM was superior to suppress the slope artifacts while preserving the edges of some features as compared to the commercial and other popular investigative algorithms. When the image to be reconstructed is inconsistent with the prior image, the new method can avoid or minimize the distorted edges in the reconstructed images. Quantitative assessments also showed that applying the new method obtained the highest image quality comparing to the existing algorithms. This study demonstrated that the presented l0W-PNLM yielded higher image quality due to a number of unique characteristics, which include that (1) it utilizes

  20. Perspective: Maximum caliber is a general variational principle for dynamical systems

    NASA Astrophysics Data System (ADS)

    Dixit, Purushottam D.; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A.

    2018-01-01

    We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics—such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production—are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.

  1. Perspective: Maximum caliber is a general variational principle for dynamical systems.

    PubMed

    Dixit, Purushottam D; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A

    2018-01-07

    We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics-such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production-are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.

  2. TOPICAL REVIEW: Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering

    NASA Astrophysics Data System (ADS)

    Qin, Shengping; Caskey, Charles F.; Ferrara, Katherine W.

    2009-03-01

    Microbubble contrast agents and the associated imaging systems have developed over the past 25 years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved—given that their diameter is on the order of microns—nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium.

  3. Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations.

    PubMed

    Mandonnet, Emmanuel; Winkler, Peter A; Duffau, Hugues

    2010-02-01

    While the fundamental and clinical contribution of direct electrical stimulation (DES) of the brain is now well acknowledged, its advantages and limitations have not been re-evaluated for a long time. Here, we critically review exactly what DES can tell us about cerebral function. First, we show that DES is highly sensitive for detecting the cortical and axonal eloquent structures. Moreover, DES also provides a unique opportunity to study brain connectivity, since each area responsive to stimulation is in fact an input gate into a large-scale network rather than an isolated discrete functional site. DES, however, also has a limitation: its specificity is suboptimal. Indeed, DES may lead to interpretations that a structure is crucial because of the induction of a transient functional response when stimulated, whereas (1) this effect is caused by the backward spreading of the electro-stimulation along the network to an essential area and/or (2) the stimulated region can be functionally compensated owing to long-term brain plasticity mechanisms. In brief, although DES is still the gold standard for brain mapping, its combination with new methods such as perioperative neurofunctional imaging and biomathematical modeling is now mandatory, in order to clearly differentiate those networks that are actually indispensable to function from those that can be compensated.

  4. A new scheme for stigmatic x-ray imaging with large magnification.

    PubMed

    Bitter, M; Hill, K W; Delgado-Aparicio, L F; Pablant, N A; Scott, S; Jones, F; Beiersdorfer, P; Wang, E; del Rio, M Sanchez; Caughey, T A; Brunner, J

    2012-10-01

    This paper describes a new x-ray scheme for stigmatic imaging. The scheme consists of one convex spherically bent crystal and one concave spherically bent crystal. The radii of curvature and Bragg reflecting lattice planes of the two crystals are properly matched to eliminate the astigmatism, so that the conditions for stigmatic imaging are met for a particular wavelength. The magnification is adjustable and solely a function of the two Bragg angles or angles of incidence. Although the choice of Bragg angles is constrained by the availability of crystals, this is not a severe limitation for the imaging of plasmas, since a particular wavelength can be selected from the bremsstrahlung continuum. The working principle of this imaging scheme has been verified with visible light. Further tests with x rays are planned for the near future.

  5. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications

    PubMed Central

    Kim, Byeong Hak; Kim, Min Young; Chae, You Seong

    2017-01-01

    Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC. PMID:29280970

  6. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications.

    PubMed

    Kim, Byeong Hak; Kim, Min Young; Chae, You Seong

    2017-12-27

    Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC.

  7. Self-completeness and the generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Isi, Maximiliano; Mureika, Jonas; Nicolini, Piero

    2014-03-01

    The generalized uncertainty principle discloses a self-complete characteristic of gravity, namely the possibility of masking any curvature singularity behind an event horizon as a result of matter compression at the Planck scale. In this paper we extend the above reasoning in order to overcome some current limitations to the framework, including the absence of a consistent metric describing such Planck-scale black holes. We implement a minimum-size black hole in terms of the extremal configuration of a neutral non-rotating metric, which we derived by mimicking the effects of the generalized uncertainty principle via a short scale modified version of Einstein gravity. In such a way, we find a self- consistent scenario that reconciles the self-complete character of gravity and the generalized uncertainty principle.

  8. Self-completeness and the generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Isi, Maximiliano; Mureika, Jonas; Nicolini, Piero

    2013-11-01

    The generalized uncertainty principle discloses a self-complete characteristic of gravity, namely the possibility of masking any curvature singularity behind an event horizon as a result of matter compression at the Planck scale. In this paper we extend the above reasoning in order to overcome some current limitations to the framework, including the absence of a consistent metric describing such Planck-scale black holes. We implement a minimum-size black hole in terms of the extremal configuration of a neutral non-rotating metric, which we derived by mimicking the effects of the generalized uncertainty principle via a short scale modified version of Einstein gravity. In such a way, we find a self-consistent scenario that reconciles the self-complete character of gravity and the generalized uncertainty principle.

  9. New Technologies for Human Cancer Imaging

    PubMed Central

    Frangioni, John V.

    2008-01-01

    Despite technical advances in many areas of diagnostic radiology, the detection and imaging of human cancer remains poor. A meaningful impact on cancer screening, staging, and treatment is unlikely to occur until the tumor-to-background ratio improves by three to four orders of magnitude (ie, 103- to 104-fold), which in turn will require proportional improvements in sensitivity and contrast agent targeting. This review analyzes the physics and chemistry of cancer imaging and highlights the fundamental principles underlying the detection of malignant cells within a background of normal cells. The use of various contrast agents and radiotracers for cancer imaging is reviewed, as are the current limitations of ultrasound, x-ray imaging, magnetic resonance imaging (MRI), single-photon emission computed tomography, positron emission tomography (PET), and optical imaging. Innovative technologies are emerging that hold great promise for patients, such as positron emission mammography of the breast and spectroscopy-enhanced colonoscopy for cancer screening, hyperpolarization MRI and time-of-flight PET for staging, and ion beam-induced PET scanning and near-infrared fluorescence-guided surgery for cancer treatment. This review explores these emerging technologies and considers their potential impact on clinical care. Finally, those cancers that are currently difficult to image and quantify, such as ovarian cancer and acute leukemia, are discussed. PMID:18711192

  10. Preparing images for publication: part 1.

    PubMed

    Devigus, Alessandro; Paul, Stefan

    2006-04-01

    Images play a vital role in the publication and presentation of clinical and scientific work. Within clinical photography, color reproduction has always been a contentious issue. With the development of new technologies, the variables affecting color reproduction have changed, and photographers have moved away from film-based to digital photographic imaging systems. To develop an understanding of color, knowledge about the basic principles of light and vision is important. An object's color is determined by which wavelengths of light it reflects. Colors of light and colors of pigment behave differently. Due to technical limitations, monitors and printers are unable to reproduce all the colors we can see with our eyes, also called the LAB color space. In order to optimize the output of digital clinical images, color management solutions need to be integrated in the photographic workflow; however, their use is still limited in the medical field. As described in part 2 of this article, calibrating your computer monitor and using an 18% gray background card are easy ways to enable more consistent color reproduction for publication. In addition, some basic information about the various camera settings is given to facilitate the use of this new digital equipment in daily practice.

  11. Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography

    PubMed Central

    Singh, Manmohan; Raghunathan, Raksha; Piazza, Victor; Davis-Loiacono, Anjul M.; Cable, Alex; Vedakkan, Tegy J.; Janecek, Trevor; Frazier, Michael V.; Nair, Achuth; Wu, Chen; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.

    2016-01-01

    We present an analysis of imaging murine embryos at various embryonic developmental stages (embryonic day 9.5, 11.5, and 13.5) by optical coherence tomography (OCT) and optical projection tomography (OPT). We demonstrate that while OCT was capable of rapid high-resolution live 3D imaging, its limited penetration depth prevented visualization of deeper structures, particularly in later stage embryos. In contrast, OPT was able to image the whole embryos, but could not be used in vivo because the embryos must be fixed and cleared. Moreover, the fixation process significantly altered the embryo morphology, which was quantified by the volume of the eye-globes before and after fixation. All of these factors should be weighed when determining which imaging modality one should use to achieve particular goals of a study. PMID:27375945

  12. Tomographic image via background subtraction using an x-ray projection image and a priori computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jin; Yi Byongyong; Lasio, Giovanni

    Kilovoltage x-ray projection images (kV images for brevity) are increasingly available in image guided radiotherapy (IGRT) for patient positioning. These images are two-dimensional (2D) projections of a three-dimensional (3D) object along the x-ray beam direction. Projecting a 3D object onto a plane may lead to ambiguities in the identification of anatomical structures and to poor contrast in kV images. Therefore, the use of kV images in IGRT is mainly limited to bony landmark alignments. This work proposes a novel subtraction technique that isolates a slice of interest (SOI) from a kV image with the assistance of a priori information frommore » a previous CT scan. The method separates structural information within a preselected SOI by suppressing contributions to the unprocessed projection from out-of-SOI-plane structures. Up to a five-fold increase in the contrast-to-noise ratios (CNRs) was observed in selected regions of the isolated SOI, when compared to the original unprocessed kV image. The tomographic image via background subtraction (TIBS) technique aims to provide a quick snapshot of the slice of interest with greatly enhanced image contrast over conventional kV x-ray projections for fast and accurate image guidance of radiation therapy. With further refinements, TIBS could, in principle, provide real-time tumor localization using gantry-mounted x-ray imaging systems without the need for implanted markers.« less

  13. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    NASA Astrophysics Data System (ADS)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  14. Preserving digital images for legal proceedings.

    PubMed

    Benedetto, Anthony R

    2007-12-01

    The legal principles governing the use of radiologic images in court and other legal proceedings were developed before the introduction of computers in radiology and nuclear medicine imaging equipment. Modern digital images present a wide variety of new concerns that are not adequately addressed by the principles used by most lawyers and courts. This article discusses the most important of these new concerns, such as being able to prove that an image has not been altered and being able to prove that the hardware and software used to create it were scientifically reliable. A nonexhaustive set of recommendations are given to guide radiologists in beginning to review the image preservation procedures of their practices.

  15. Limited data tomographic image reconstruction via dual formulation of total variation minimization

    NASA Astrophysics Data System (ADS)

    Jang, Kwang Eun; Sung, Younghun; Lee, Kangeui; Lee, Jongha; Cho, Seungryong

    2011-03-01

    The X-ray mammography is the primary imaging modality for breast cancer screening. For the dense breast, however, the mammogram is usually difficult to read due to tissue overlap problem caused by the superposition of normal tissues. The digital breast tomosynthesis (DBT) that measures several low dose projections over a limited angle range may be an alternative modality for breast imaging, since it allows the visualization of the cross-sectional information of breast. The DBT, however, may suffer from the aliasing artifact and the severe noise corruption. To overcome these problems, a total variation (TV) regularized statistical reconstruction algorithm is presented. Inspired by the dual formulation of TV minimization in denoising and deblurring problems, we derived a gradient-type algorithm based on statistical model of X-ray tomography. The objective function is comprised of a data fidelity term derived from the statistical model and a TV regularization term. The gradient of the objective function can be easily calculated using simple operations in terms of auxiliary variables. After a descending step, the data fidelity term is renewed in each iteration. Since the proposed algorithm can be implemented without sophisticated operations such as matrix inverse, it provides an efficient way to include the TV regularization in the statistical reconstruction method, which results in a fast and robust estimation for low dose projections over the limited angle range. Initial tests with an experimental DBT system confirmed our finding.

  16. Optical coherence tomography - principles and applications

    NASA Astrophysics Data System (ADS)

    Fercher, A. F.; Drexler, W.; Hitzenberger, C. K.; Lasser, T.

    2003-02-01

    There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a

  17. Laser optoacoustic tomography for medical diagnostics: principles

    NASA Astrophysics Data System (ADS)

    Oraevsky, Alexander A.; Esenaliev, Rinat O.; Jacques, Steven L.; Tittel, Frank K.

    1996-04-01

    This paper is to describe principles of laser optoacoustic tomography for medical diagnostics. Two types of imaging modes are presented. The first is the tomography in transmission mode, which utilizes detection of stress transients transmitted from the laser-excited volume toward the depth through thick layers of tissue. The second is the tomography in reflection mode which utilizes detection of stress transients generated in superficial tissue layer and reflected back toward tissue surface. To distinguish the two modes, we have abbreviated them as (1) laser optoacoustic tomography in transmission mode, LOATT, and (2) time-resolved stress detection tomography of light absorption, TRSDTLA, in reflection mode where emphasis is made on high spatial resolution of images. The basis for laser optoacoustic tomography is the time-resolved detection of laser-induced transient stress waves, selectively generated in absorbing tissues of diagnostic interest. Such a technique allows one to visualize absorbed light distribution in turbid biological tissues irradiated by short laser pulses. Laser optoacoustic tomography can be used for detection of tissue pathological changes that result in either increased concentration of various tissue chromophores such as hemoglobin or in development of enhanced microcirculation in diseased tissue. Potential areas of applications are diagnosis of cancer, brain hemorrhages, arterial atherosclerotic plaques, and other diseased tissues. In addition, it can provide feedback information during medical treatments. Both LOATT and TRSDTLA utilize laser excitation of biological tissues and sensitive detection of laser-induced stress waves. Optical selectivity is based upon differences in optical properties of pathologically different tissues. Sensitivity comes from stress generation under irradiation conditions of temporal stress confinement. The use of sensitive wide-band lithium niobate acoustic transducers expands limits of laser optoacoustic

  18. IMAGES: An interactive image processing system

    NASA Technical Reports Server (NTRS)

    Jensen, J. R.

    1981-01-01

    The IMAGES interactive image processing system was created specifically for undergraduate remote sensing education in geography. The system is interactive, relatively inexpensive to operate, almost hardware independent, and responsive to numerous users at one time in a time-sharing mode. Most important, it provides a medium whereby theoretical remote sensing principles discussed in lecture may be reinforced in laboratory as students perform computer-assisted image processing. In addition to its use in academic and short course environments, the system has also been used extensively to conduct basic image processing research. The flow of information through the system is discussed including an overview of the programs.

  19. Quantitative characterization of the imaging limits of diffuse low-grade oligodendrogliomas.

    PubMed

    Gerin, Chloé; Pallud, Johan; Deroulers, Christophe; Varlet, Pascale; Oppenheim, Catherine; Roux, Francois-Xavier; Chrétien, Fabrice; Thomas, Stephen R; Grammaticos, Basile; Badoual, Mathilde

    2013-10-01

    Supratentorial diffuse low-grade gliomas in adults extend beyond maximal visible MRI-defined abnormalities, and a gap exists between the imaging signal changes and the actual tumor margins. Direct quantitative comparisons between imaging and histological analyses are lacking to date. However, they are of the utmost importance if one wishes to develop realistic models for diffuse glioma growth. In this study, we quantitatively compared the cell concentration and the edema fraction from human histological biopsy samples (BSs) performed inside and outside imaging abnormalities during serial imaging-based stereotactic biopsy of diffuse low-grade gliomas. The cell concentration was significantly higher in BSs located inside (1189 ± 378 cell/mm(2)) than outside (740 ± 124 cell/mm(2)) MRI-defined abnormalities (P = .0003). The edema fraction was significantly higher in BSs located inside (mean, 45% ± 23%) than outside (mean, 5 %± 9%) MRI-defined abnormalities (P < .0001). At borders of the MRI-defined abnormalities, 20% of the tissue surface area was occupied by edema and only 3% by tumor cells. The cycling cell concentration was significantly higher in BSs located inside (10 ± 12 cell/mm(2)), compared with outside (0.5 ± 0.9 cell/mm(2)), MRI-defined abnormalities (P = .0001). We showed that the margins of T2-weighted signal changes are mainly correlated with the edema fraction. In 62.5% of patients, the cycling tumor cell fraction (defined as the ratio of the cycling tumor cell concentration to the total number of tumor cells) was higher at the limits of the MRI-defined abnormalities than closer to the center of the tumor. In the remaining patients, the cycling tumor cell fraction increased towards the center of the tumor.

  20. Multi-material decomposition of spectral CT images

    NASA Astrophysics Data System (ADS)

    Mendonça, Paulo R. S.; Bhotika, Rahul; Maddah, Mahnaz; Thomsen, Brian; Dutta, Sandeep; Licato, Paul E.; Joshi, Mukta C.

    2010-04-01

    Spectral Computed Tomography (Spectral CT), and in particular fast kVp switching dual-energy computed tomography, is an imaging modality that extends the capabilities of conventional computed tomography (CT). Spectral CT enables the estimation of the full linear attenuation curve of the imaged subject at each voxel in the CT volume, instead of a scalar image in Hounsfield units. Because the space of linear attenuation curves in the energy ranges of medical applications can be accurately described through a two-dimensional manifold, this decomposition procedure would be, in principle, limited to two materials. This paper describes an algorithm that overcomes this limitation, allowing for the estimation of N-tuples of material-decomposed images. The algorithm works by assuming that the mixing of substances and tissue types in the human body has the physicochemical properties of an ideal solution, which yields a model for the density of the imaged material mix. Under this model the mass attenuation curve of each voxel in the image can be estimated, immediately resulting in a material-decomposed image triplet. Decomposition into an arbitrary number of pre-selected materials can be achieved by automatically selecting adequate triplets from an application-specific material library. The decomposition is expressed in terms of the volume fractions of each constituent material in the mix; this provides for a straightforward, physically meaningful interpretation of the data. One important application of this technique is in the digital removal of contrast agent from a dual-energy exam, producing a virtual nonenhanced image, as well as in the quantification of the concentration of contrast observed in a targeted region, thus providing an accurate measure of tissue perfusion.

  1. BioCapacitor: A novel principle for biosensors.

    PubMed

    Sode, Koji; Yamazaki, Tomohiko; Lee, Inyoung; Hanashi, Takuya; Tsugawa, Wakako

    2016-02-15

    Studies regarding biofuel cells utilizing biocatalysts such as enzymes and microorganisms as electrocatalysts have been vigorously conducted over the last two decades. Because of their environmental safety and sustainability, biofuel cells are expected to be used as clean power generators. Among several principles of biofuel cells, enzyme fuel cells have attracted significant attention for their use as alternative energy sources for future implantable devices, such as implantable insulin pumps and glucose sensors in artificial pancreas and pacemakers. However, the inherent issue of the biofuel cell principle is the low power of a single biofuel cell. The theoretical voltage of biofuel cells is limited by the redox potential of cofactors and/or mediators employed in the anode and cathode, which are inadequate for operating any devices used for biomedical application. These limitations inspired us to develop a novel biodevice based on an enzyme fuel cell that generates sufficient stable power to operate electric devices, designated "BioCapacitor." To increase voltage, the enzyme fuel cell is connected to a charge pump. To obtain a sufficient power and voltage to operate an electric device, a capacitor is used to store the potential generated by the charge pump. Using the combination of a charge pump and capacitor with an enzyme fuel cell, high voltages with sufficient temporary currents to operate an electric device were generated without changing the design and construction of the enzyme fuel cell. In this review, the BioCapacitor principle is described. The three different representative categories of biodevices employing the BioCapacitor principle are introduced. Further, the recent challenges in the developments of self-powered stand-alone biodevices employing enzyme fuel cells combined with charge pumps and capacitors are introduced. Finally, the future prospects of biodevices employing the BioCapacitor principle are addressed. Copyright © 2015 The Authors

  2. The August Krogh principle applies to plants

    NASA Technical Reports Server (NTRS)

    Wayne, R.; Staves, M. P.

    1996-01-01

    The Krogh principle refers to the use of a large number of animals to study the large number of physiological problems, rather than limiting study to a particular organism for all problems. There may be organisms that are more suited to study of a particular problem than others. This same principle applies to plants. The authors are concerned with the recent trend in plant biology of using Arabidopsis thaliana as the "organism of choice." Arabidopsis is an excellent organism for molecular genetic research, but other plants are superior models for other research areas of plant biology. The authors present examples of the successful use of the Krogh principle in plant cell biology research, emphasizing the particular characteristics of the selected research organisms that make them the appropriate choice.

  3. Medical ethics: four principles plus attention to scope.

    PubMed Central

    Gillon, R.

    1994-01-01

    The "four principles plus scope" approach provides a simple, accessible, and culturally neutral approach to thinking about ethical issues in health care. The approach, developed in the United States, is based on four common, basic prima facie moral commitments--respect for autonomy, beneficence, nonmaleficence, and justice--plus concern for their scope of application. It offers a common, basic moral analytical framework and a common, basic moral language. Although they do not provide ordered rules, these principles can help doctors and other health care workers to make decisions when reflecting on moral issues that arise at work. Images p184-a p187-a PMID:8044100

  4. A high resolution IR/visible imaging system for the W7-X limiter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurden, G. A., E-mail: wurden@lanl.gov; Dunn, J. P.; Stephey, L. A.

    A high-resolution imaging system, consisting of megapixel mid-IR and visible cameras along the same line of sight, has been prepared for the new W7-X stellarator and was operated during Operational Period 1.1 to view one of the five inboard graphite limiters. The radial line of sight, through a large diameter (184 mm clear aperture) uncoated sapphire window, couples a direct viewing 1344 × 784 pixel FLIR SC8303HD camera. A germanium beam-splitter sends visible light to a 1024 × 1024 pixel Allied Vision Technologies Prosilica GX1050 color camera. Both achieve sub-millimeter resolution on the 161 mm wide, inertially cooled, segmented graphitemore » tiles. The IR and visible cameras are controlled via optical fibers over full Camera Link and dual GigE Ethernet (2 Gbit/s data rates) interfaces, respectively. While they are mounted outside the cryostat at a distance of 3.2 m from the limiter, they are close to a large magnetic trim coil and require soft iron shielding. We have taken IR data at 125 Hz to 1.25 kHz frame rates and seen that surface temperature increases in excess of 350 °C, especially on leading edges or defect hot spots. The IR camera sees heat-load stripe patterns on the limiter and has been used to infer limiter power fluxes (∼1–4.5 MW/m{sup 2}), during the ECRH heating phase. IR images have also been used calorimetrically between shots to measure equilibrated bulk tile temperature, and hence tile energy inputs (in the range of 30 kJ/tile with 0.6 MW, 6 s heating pulses). Small UFO’s can be seen and tracked by the FLIR camera in some discharges. The calibrated visible color camera (100 Hz frame rate) has also been equipped with narrow band C-III and H-alpha filters, to compare with other diagnostics, and is used for absolute particle flux determination from the limiter surface. Sometimes, but not always, hot-spots in the IR are also seen to be bright in C-III light.« less

  5. Executive Financial Reporting: Seven Principles to Use in Developing Effective Reports.

    ERIC Educational Resources Information Center

    Jenkins, William A.; Fischer, Mary

    1991-01-01

    Higher education institution business officers need to follow principles of presentation, judgment, and measurement in developing effective executive financial reports. Principles include (1) keep the statement simple; (2) be consistent in reporting from year to year; (3) determine user needs and interests; (4) limit data; (5) provide trend lines;…

  6. Quantitative nanoscopy: Tackling sampling limitations in (S)TEM imaging of polymers and composites.

    PubMed

    Gnanasekaran, Karthikeyan; Snel, Roderick; de With, Gijsbertus; Friedrich, Heiner

    2016-01-01

    Sampling limitations in electron microscopy questions whether the analysis of a bulk material is representative, especially while analyzing hierarchical morphologies that extend over multiple length scales. We tackled this problem by automatically acquiring a large series of partially overlapping (S)TEM images with sufficient resolution, subsequently stitched together to generate a large-area map using an in-house developed acquisition toolbox (TU/e Acquisition ToolBox) and stitching module (TU/e Stitcher). In addition, we show that quantitative image analysis of the large scale maps provides representative information that can be related to the synthesis and process conditions of hierarchical materials, which moves electron microscopy analysis towards becoming a bulk characterization tool. We demonstrate the power of such an analysis by examining two different multi-phase materials that are structured over multiple length scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Digital holographic 3D imaging spectrometry (a review)

    NASA Astrophysics Data System (ADS)

    Yoshimori, Kyu

    2017-09-01

    This paper reviews recent progress in the digital holographic 3D imaging spectrometry. The principle of this method is a marriage of incoherent holography and Fourier transform spectroscopy. Review includes principle, procedure of signal processing and experimental results to obtain a multispectral set of 3D images for spatially incoherent, polychromatic objects.

  8. Image acquisition optimization of a limited-angle intrafraction verification (LIVE) system for lung radiotherapy.

    PubMed

    Zhang, Yawei; Deng, Xinchen; Yin, Fang-Fang; Ren, Lei

    2018-01-01

    Limited-angle intrafraction verification (LIVE) has been previously developed for four-dimensional (4D) intrafraction target verification either during arc delivery or between three-dimensional (3D)/IMRT beams. Preliminary studies showed that LIVE can accurately estimate the target volume using kV/MV projections acquired over orthogonal view 30° scan angles. Currently, the LIVE imaging acquisition requires slow gantry rotation and is not clinically optimized. The goal of this study is to optimize the image acquisition parameters of LIVE for different patient respiratory periods and gantry rotation speeds for the effective clinical implementation of the system. Limited-angle intrafraction verification imaging acquisition was optimized using a digital anthropomorphic phantom (XCAT) with simulated respiratory periods varying from 3 s to 6 s and gantry rotation speeds varying from 1°/s to 6°/s. LIVE scanning time was optimized by minimizing the number of respiratory cycles needed for the four-dimensional scan, and imaging dose was optimized by minimizing the number of kV and MV projections needed for four-dimensional estimation. The estimation accuracy was evaluated by calculating both the center-of-mass-shift (COMS) and three-dimensional volume-percentage-difference (VPD) between the tumor in estimated images and the ground truth images. The robustness of LIVE was evaluated with varied respiratory patterns, tumor sizes, and tumor locations in XCAT simulation. A dynamic thoracic phantom (CIRS) was used to further validate the optimized imaging schemes from XCAT study with changes of respiratory patterns, tumor sizes, and imaging scanning directions. Respiratory periods, gantry rotation speeds, number of respiratory cycles scanned and number of kV/MV projections acquired were all positively correlated with the estimation accuracy of LIVE. Faster gantry rotation speed or longer respiratory period allowed less respiratory cycles to be scanned and less kV/MV projections

  9. Metaphysics of the principle of least action

    NASA Astrophysics Data System (ADS)

    Terekhovich, Vladislav

    2018-05-01

    Despite the importance of the variational principles of physics, there have been relatively few attempts to consider them for a realistic framework. In addition to the old teleological question, this paper continues the recent discussion regarding the modal involvement of the principle of least action and its relations with the Humean view of the laws of nature. The reality of possible paths in the principle of least action is examined from the perspectives of the contemporary metaphysics of modality and Leibniz's concept of essences or possibles striving for existence. I elaborate a modal interpretation of the principle of least action that replaces a classical representation of a system's motion along a single history in the actual modality by simultaneous motions along an infinite set of all possible histories in the possible modality. This model is based on an intuition that deep ontological connections exist between the possible paths in the principle of least action and possible quantum histories in the Feynman path integral. I interpret the action as a physical measure of the essence of every possible history. Therefore only one actual history has the highest degree of the essence and minimal action. To address the issue of necessity, I assume that the principle of least action has a general physical necessity and lies between the laws of motion with a limited physical necessity and certain laws with a metaphysical necessity.

  10. Spherical gradient-index lenses as perfect imaging and maximum power transfer devices.

    PubMed

    Gordon, J M

    2000-08-01

    Gradient-index lenses can be viewed from the perspectives of both imaging and nonimaging optics, that is, in terms of both image fidelity and achievable flux concentration. The simple class of gradient-index lenses with spherical symmetry, often referred to as modified Luneburg lenses, is revisited. An alternative derivation for established solutions is offered; the method of Fermat's strings and the principle of skewness conservation are invoked. Then these nominally perfect imaging devices are examined from the additional vantage point of power transfer, and the degree to which they realize the thermodynamic limit to flux concentration is determined. Finally, the spherical gradient-index lens of the fish eye is considered as a modified Luneburg lens optimized subject to material constraints.

  11. Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies.

    PubMed

    Zürch, M; Jung, R; Späth, C; Tümmler, J; Guggenmos, A; Attwood, D; Kleineberg, U; Stiel, H; Spielmann, C

    2017-07-13

    Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ 12 | ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.

  12. Assessment of cardiovascular impairment in obese patients: Limitations and troubleshooting of available imaging tools.

    PubMed

    Gaudieri, V; Nappi, C; Acampa, W; Assante, R; Zampella, E; Magliulo, M; Petretta, M; Cuocolo, A

    The prevalence and severity of obesity have increased over recent decades, reaching worldwide epidemics. Obesity is associated to coronary artery disease and other risk factors, including hypertension, heart failure and atrial fibrillation, which are all increased in the setting of obesity. Several noninvasive cardiac imaging modalities, such as echocardiography, cardiac computed tomography, magnetic resonance and cardiac gated single-photon emission computed tomography, are available in assessing coronary artery disease and myocardial dysfunction. Yet, in patients with excess adiposity the diagnostic accuracy of these techniques may be limited due to some issues. In this review, we analyze challenges and possibilities to find the optimal cardiac imaging approach to obese population. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  13. Optical Imaging of Nonuniform Ferroelectricity and Strain at the Diffraction Limit

    PubMed Central

    Vlasin, Ondrej; Casals, Blai; Dix, Nico; Gutiérrez, Diego; Sánchez, Florencio; Herranz, Gervasi

    2015-01-01

    We have imaged optically the spatial distributions of ferroelectricity and piezoelectricity at the diffraction limit. Contributions to the birefringence from electro-optics –linked to ferroelectricity– as well as strain –arising from converse piezoelectric effects– have been recorded simultaneously in a BaTiO3 thin film. The concurrent recording of electro-optic and piezo-optic mappings revealed that, far from the ideal uniformity, the ferroelectric and piezoelectric responses were strikingly inhomogeneous, exhibiting significant fluctuations over the scale of the micrometer. The optical methods here described are appropriate to study the variations of these properties simultaneously, which are of great relevance when ferroelectrics are downscaled to small sizes for applications in data storage and processing. PMID:26522345

  14. Bernoulli's Principle

    ERIC Educational Resources Information Center

    Hewitt, Paul G.

    2004-01-01

    Some teachers have difficulty understanding Bernoulli's principle particularly when the principle is applied to the aerodynamic lift. Some teachers favor using Newton's laws instead of Bernoulli's principle to explain the physics behind lift. Some also consider Bernoulli's principle too difficult to explain to students and avoid teaching it…

  15. Redefining the lower statistical limit in x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Marschner, M.; Birnbacher, L.; Willner, M.; Chabior, M.; Fehringer, A.; Herzen, J.; Noël, P. B.; Pfeiffer, F.

    2015-03-01

    Phase-contrast x-ray computed tomography (PCCT) is currently investigated and developed as a potentially very interesting extension of conventional CT, because it promises to provide high soft-tissue contrast for weakly absorbing samples. For data acquisition several images at different grating positions are combined to obtain a phase-contrast projection. For short exposure times, which are necessary for lower radiation dose, the photon counts in a single stepping position are very low. In this case, the currently used phase-retrieval does not provide reliable results for some pixels. This uncertainty results in statistical phase wrapping, which leads to a higher standard deviation in the phase-contrast projections than theoretically expected. For even lower statistics, the phase retrieval breaks down completely and the phase information is lost. New measurement procedures rely on a linear approximation of the sinusoidal phase stepping curve around the zero crossings. In this case only two images are acquired to obtain the phase-contrast projection. The approximation is only valid for small phase values. However, typically nearly all pixels are within this regime due to the differential nature of the signal. We examine the statistical properties of a linear approximation method and illustrate by simulation and experiment that the lower statistical limit can be redefined using this method. That means that the phase signal can be retrieved even with very low photon counts and statistical phase wrapping can be avoided. This is an important step towards enhanced image quality in PCCT with very low photon counts.

  16. The Paradox of Equipoise: The Principle That Drives and Limits Therapeutic Discoveries in Clinical Research

    PubMed Central

    Djulbegovic, Benjamin

    2009-01-01

    randomization. This in turn would halt the RCT system as we know it. Conclusions The “principle or law of clinical discovery” described herein predicts the efficiency of the current system of RCTs at generating discoveries of new treatments. The principle is derived from the requirement for uncertainty or equipoise as a precondition for RCTs, the precept that paradoxically drives discoveries of new treatments while limiting the proportion and rate of new therapeutic discoveries. PMID:19910921

  17. Principles and application of shock-tubes and shock tunnels

    NASA Technical Reports Server (NTRS)

    Ried, R. C.; Clauss, H. G., Jr.

    1963-01-01

    The principles, theoretical flow equations, calculation techniques, limitations and practical performance characteristics of basic and high performance shock tubes and shock tunnels are presented. Selected operating curves are included.

  18. Research on the principle and experimentation of optical compressive spectral imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yuheng; Chen, Xinhua; Zhou, Jiankang; Ji, Yiqun; Shen, Weimin

    2013-12-01

    The optical compressive spectral imaging method is a novel spectral imaging technique that draws in the inspiration of compressed sensing, which takes on the advantages such as reducing acquisition data amount, realizing snapshot imaging, increasing signal to noise ratio and so on. Considering the influence of the sampling quality on the ultimate imaging quality, researchers match the sampling interval with the modulation interval in former reported imaging system, while the depressed sampling rate leads to the loss on the original spectral resolution. To overcome that technical defect, the demand for the matching between the sampling interval and the modulation interval is disposed of and the spectral channel number of the designed experimental device increases more than threefold comparing to that of the previous method. Imaging experiment is carried out by use of the experiment installation and the spectral data cube of the shooting target is reconstructed with the acquired compressed image by use of the two-step iterative shrinkage/thresholding algorithms. The experimental result indicates that the spectral channel number increases effectively and the reconstructed data stays high-fidelity. The images and spectral curves are able to accurately reflect the spatial and spectral character of the target.

  19. Longitudinal in vivo two-photon fluorescence imaging

    PubMed Central

    Crowe, Sarah E.; Ellis-Davies, Graham C.R.

    2014-01-01

    Fluorescence microscopy is an essential technique for the basic sciences, especially biomedical research. Since the invention of laser scanning confocal microscopy in 1980s, that enabled imaging both fixed and living biological tissue with three-dimensional precision, high-resolution fluorescence imaging has revolutionized biological research. Confocal microscopy, by its very nature, has one fundamental limitation. Due to the confocal pinhole, deep tissue fluorescence imaging is not practical. In contrast (no pun intended), two-photon fluorescence microscopy allows, in principle, the collection of all emitted photons from fluorophores in the imaged voxel, dramatically extending our ability to see deep into living tissue. Since the development of transgenic mice with genetically encoded fluorescent protein in neocortical cells in 2000, two-photon imaging has enabled the dynamics of individual synapses to be followed for up to two years. Since the initial landmark contributions to this field in 2002, the technique has been used to understand how neuronal structure are changed by experience, learning and memory and various diseases. Here we provide a basic summary of the crucial elements that are required for such studies, and discuss many applications of longitudinal two-photon fluorescence microscopy that have appeared since 2002. PMID:24214350

  20. Brain single-photon emission CT physics principles.

    PubMed

    Accorsi, R

    2008-08-01

    The basic principles of scintigraphy are reviewed and extended to 3D imaging. Single-photon emission computed tomography (SPECT) is a sensitive and specific 3D technique to monitor in vivo functional processes in both clinical and preclinical studies. SPECT/CT systems are becoming increasingly common and can provide accurately registered anatomic information as well. In general, SPECT is affected by low photon-collection efficiency, but in brain imaging, not all of the large FOV of clinical gamma cameras is needed: The use of fan- and cone-beam collimation trades off the unused FOV for increased sensitivity and resolution. The design of dedicated cameras aims at increased angular coverage and resolution by minimizing the distance from the patient. The corrections needed for quantitative imaging are challenging but can take advantage of the relative spatial uniformity of attenuation and scatter. Preclinical systems can provide submillimeter resolution in small animal brain imaging with workable sensitivity.

  1. Novel limiter pump topologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, J.H.

    1981-01-01

    The use of limiter pumps as the principle plasma exhaust system of a magnetic confinement fusion device promises significant simplification, when compared to previously investigating divertor based systems. Further simplifications, such as the integration of the exhaust system with a radio frequency heating system and with the main reactor shield and structure are investigated below. The integrity of limiters in a reactor environment is threatened by many mechanisms, the most severe of which may be erosion by sputtering. Two novel topolgies are suggested which allow high erosion without limiter failure.

  2. [Color processing of ultrasonographic images in extracorporeal lithotripsy].

    PubMed

    Lardennois, B; Ziade, A; Walter, K

    1991-02-01

    A number of technical difficulties are encountered in the ultrasonographic detection of renal stones which unfortunately limit its performance. The margin of error of firing in extracorporeal shock-wave lithotripsy (ESWL) must be reduced to a minimum. The role of the ultrasonographic monitoring during lithotripsy is also essential: continuous control of the focussing of the short-wave beamand assessment if the quality of fragmentation. The authors propose to improve ultrasonographic imaging in ESWL by means of intraoperative colour processing of the stone. Each shot must be directed to its target with an economy of vision avoiding excessive fatigue. The principle of the technique consists of digitalization of the ultrasound video images using a Macintosh Mac 2 computer. The Graphis Paint II program is interfaced directly with the Quick Capture card and recovers the images on its work surface in real time. The program is then able to attribute to each of these 256 shades of grey any one of the 16.6 million colours of the Macintosh universe with specific intensity and saturation. During fragmentation, using the principle of a palette, the stone changes colour from green to red indicating complete fragmentation. A Color Space card converts the digital image obtained into a video analogue source which is visualized on the monitor. It can be superimposed and/or juxtaposed with the source image by means of a multi-standard mixing table. Colour processing of ultrasonographic images in extracoporeal shockwave lithotripsy allows better visualization of the stones and better follow-up of fragmentation and allows the shockwave treatment to be stopped earlier. It increases the stone-free performance at 6 months. This configuration will eventually be able to integrate into the ultrasound apparatus itself.

  3. Necrotizing fasciitis: contribution and limitations of diagnostic imaging.

    PubMed

    Malghem, Jacques; Lecouvet, Frédéric E; Omoumi, Patrick; Maldague, Baudouin E; Vande Berg, Bruno C

    2013-03-01

    Necrotizing fasciitis is a rare, rapidly spreading, deep-seated infection causing thrombosis of the blood vessels located in the fascia. Necrotizing fasciitis is a surgical emergency. The diagnosis typically relies on clinical findings of severe sepsis and intense pain, although subacute forms may be difficult to recognize. Imaging studies can help to differentiate necrotizing fasciitis from infections located more superficially (dermohypodermitis). The presence of gas within the necrotized fasciae is characteristic but may be lacking. The main finding is thickening of the deep fasciae due to fluid accumulation and reactive hyperemia, which can be visualized using computed tomography and, above all, magnetic resonance imaging (high signal on contrast-enhanced T1 images and T2 images, best seen with fat saturation). These findings lack specificity, as they can be seen in non-necrotizing fasciitis and even in non-inflammatory conditions. Signs that support a diagnosis of necrotizing fasciitis include extensive involvement of the deep intermuscular fascias (high sensitivity but low specificity), thickening to more than 3mm, and partial or complete absence on post-gadolinium images of signal enhancement of the thickened fasciae (fairly high sensitivity and specificity). Ultrasonography is not recommended in adults, as the infiltration of the hypodermis blocks ultrasound transmission. Thus, imaging studies in patients with necrotizing fasciitis may be challenging to interpret. Although imaging may help to confirm deep tissue involvement and to evaluate lesion spread, it should never delay emergency surgical treatment in patients with established necrotizing fasciitis. Copyright © 2012. Published by Elsevier SAS.

  4. Potential and limitations of webcam images for snow cover monitoring in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan

    2017-04-01

    In Switzerland, several thousands of outdoor webcams are currently connected to the Internet. They deliver freely available images that can be used to analyze snow cover variability on a high spatio-temporal resolution. To make use of this big data source, we have implemented a webcam-based snow cover mapping procedure, which allows to almost automatically derive snow cover maps from such webcam images. As there is mostly no information about the webcams and its parameters available, our registration approach automatically resolves these parameters (camera orientation, principal point, field of view) by using an estimate of the webcams position, the mountain silhouette, and a high-resolution digital elevation model (DEM). Combined with an automatic snow classification and an image alignment using SIFT features, our procedure can be applied to arbitrary images to generate snow cover maps with a minimum of effort. Resulting snow cover maps have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or hidden from webcams' positions. Up to now, we processed images of about 290 webcams from our archive, and evaluated images of 20 webcams using manually selected ground control points (GCPs) to evaluate the mapping accuracy of our procedure. We present methodological limitations and ongoing improvements, show some applications of our snow cover maps, and demonstrate that webcams not only offer a great opportunity to complement satellite-derived snow retrieval under cloudy conditions, but also serve as a reference for improved validation of satellite-based approaches.

  5. Cardiac magnetic resonance imaging has limited additional yield in cryptogenic stroke evaluation after transesophageal echocardiography.

    PubMed

    Liberman, Ava L; Kalani, Rizwan E; Aw-Zoretic, Jessie; Sondag, Matthew; Daruwalla, Vistasp J; Mitter, Sumeet S; Bernstein, Richard; Collins, Jeremy D; Prabhakaran, Shyam

    2017-12-01

    Background The use of cardiac magnetic resonance imaging is increasing, but its role in the diagnostic work-up following ischemic stroke has received limited study. We aimed to explore the added yield of cardiac magnetic resonance imaging to identify cardio-aortic sources not detected by transesophageal echocardiography among patients with cryptogenic stroke. Methods A retrospective single-center cohort study was performed from 01 January 2009 to 01 March 2013. Consecutive patients who had both a stroke protocol cardiac magnetic resonance imaging and a transesophageal echocardiography preformed during a single hospitalization were included. All cardiac magnetic resonance imaging studies underwent independent, blinded review by two investigators. We applied the causative classification system for ischemic stroke to all patients, first blinded to cardiac magnetic resonance imaging results; we then reapplied the causative classification system using cardiac magnetic resonance imaging. Standard statistical tests to evaluate stroke subtype reclassification rates were used. Results Ninety-three patients were included in the final analysis; 68.8% were classified as cryptogenic stroke after initial diagnostic evaluation. Among patients with cryptogenic stroke, five (7.8%) were reclassified due to cardiac magnetic resonance imaging findings: one was reclassified as "cardio-aortic embolism evident" due to the presence of a patent foramen ovale and focal cardiac infarct and four were reclassified as "cardio-aortic embolism possible" due to mitral valve thickening (n = 1) or hypertensive cardiomyopathy (n = 3). Overall, findings on cardiac magnetic resonance imaging reduced the percentage of patients with cryptogenic stroke by slightly more than 1%. Conclusion Our stroke subtype reclassification rate after the addition of cardiac magnetic resonance imaging results to a diagnostic work-up which includes transesophageal echocardiography was very low. Prospective studies

  6. [Structuralist reading of radiologic images].

    PubMed

    Wackenheim, A

    1984-02-01

    The author suggests analysing the radiological image according to classical principles of structuralism, gestaltism, semiology, semantics. He describes applications in routine radiology: perception of complete theoretical displacement of parts of the image, phenomenology of three images (A-B-C) in theory and exams, mistake in perception by analogy.

  7. Basic physics of ultrasound imaging.

    PubMed

    Aldrich, John E

    2007-05-01

    The appearance of ultrasound images depends critically on the physical interactions of sound with the tissues in the body. The basic principles of ultrasound imaging and the physical reasons for many common artifacts are described.

  8. 38 CFR 70.30 - Payment principles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... General Services has, within a reasonable period of time, conducted an investigation of travel costs that... are not limited to the following: (i) The distance the veteran must travel. (ii) The time of day when... BENEFICIARY TRAVEL UNDER 38 U.S.C. 111 § 70.30 Payment principles. (a) Subject to the other provisions of this...

  9. 38 CFR 70.30 - Payment principles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... General Services has, within a reasonable period of time, conducted an investigation of travel costs that... are not limited to the following: (i) The distance the veteran must travel. (ii) The time of day when... BENEFICIARY TRAVEL UNDER 38 U.S.C. 111 § 70.30 Payment principles. (a) Subject to the other provisions of this...

  10. 38 CFR 70.30 - Payment principles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... General Services has, within a reasonable period of time, conducted an investigation of travel costs that... are not limited to the following: (i) The distance the veteran must travel. (ii) The time of day when... BENEFICIARY TRAVEL UNDER 38 U.S.C. 111 § 70.30 Payment principles. (a) Subject to the other provisions of this...

  11. 38 CFR 70.30 - Payment principles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... General Services has, within a reasonable period of time, conducted an investigation of travel costs that... are not limited to the following: (i) The distance the veteran must travel. (ii) The time of day when... BENEFICIARY TRAVEL UNDER 38 U.S.C. 111 § 70.30 Payment principles. (a) Subject to the other provisions of this...

  12. 38 CFR 70.30 - Payment principles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... General Services has, within a reasonable period of time, conducted an investigation of travel costs that... are not limited to the following: (i) The distance the veteran must travel. (ii) The time of day when... BENEFICIARY TRAVEL UNDER 38 U.S.C. 111 § 70.30 Payment principles. (a) Subject to the other provisions of this...

  13. Introductory review on `Flying Triangulation': a motion-robust optical 3D measurement principle

    NASA Astrophysics Data System (ADS)

    Ettl, Svenja

    2015-04-01

    'Flying Triangulation' (FlyTri) is a recently developed principle which allows for a motion-robust optical 3D measurement of rough surfaces. It combines a simple sensor with sophisticated algorithms: a single-shot sensor acquires 2D camera images. From each camera image, a 3D profile is generated. The series of 3D profiles generated are aligned to one another by algorithms, without relying on any external tracking device. It delivers real-time feedback of the measurement process which enables an all-around measurement of objects. The principle has great potential for small-space acquisition environments, such as the measurement of the interior of a car, and motion-sensitive measurement tasks, such as the intraoral measurement of teeth. This article gives an overview of the basic ideas and applications of FlyTri. The main challenges and their solutions are discussed. Measurement examples are also given to demonstrate the potential of the measurement principle.

  14. Determining approximate age of digital images using sensor defects

    NASA Astrophysics Data System (ADS)

    Fridrich, Jessica; Goljan, Miroslav

    2011-02-01

    The goal of temporal forensics is to establish temporal relationship among two or more pieces of evidence. In this paper, we focus on digital images and describe a method using which an analyst can estimate the acquisition time of an image given a set of other images from the same camera whose time ordering is known. This is achieved by first estimating the parameters of pixel defects, including their onsets, and then detecting their presence in the image under investigation. Both estimators are constructed using the maximum-likelihood principle. The accuracy and limitations of this approach are illustrated on experiments with three cameras. Forensic and law-enforcement analysts are expected to benefit from this technique in situations when the temporal data stored in the EXIF header is lost due to processing or editing images off-line or when the header cannot be trusted. Reliable methods for establishing temporal order between individual pieces of evidence can help reveal deception attempts of an adversary or a criminal. The causal relationship may also provide information about the whereabouts of the photographer.

  15. Efficient and Effective Change Principles in Active Videogames

    PubMed Central

    Fenner, Ashley A.; Howie, Erin K.; Feltz, Deborah L.; Gray, Cindy M.; Lu, Amy Shirong; Mueller, Florian “Floyd”; Simons, Monique; Barnett, Lisa M.

    2015-01-01

    Abstract Active videogames have the potential to enhance population levels of physical activity but have not been successful in achieving this aim to date. This article considers a range of principles that may be important to the design of effective and efficient active videogames from diverse discipline areas, including behavioral sciences (health behavior change, motor learning, and serious games), business production (marketing and sales), and technology engineering and design (human–computer interaction/ergonomics and flow). Both direct and indirect pathways to impact on population levels of habitual physical activity are proposed, along with the concept of a game use lifecycle. Examples of current active and sedentary electronic games are used to understand how such principles may be applied. Furthermore, limitations of the current usage of theoretical principles are discussed. A suggested list of principles for best practice in active videogame design is proposed along with suggested research ideas to inform practice to enhance physical activity. PMID:26181680

  16. Efficient and Effective Change Principles in Active Videogames.

    PubMed

    Straker, Leon M; Fenner, Ashley A; Howie, Erin K; Feltz, Deborah L; Gray, Cindy M; Lu, Amy Shirong; Mueller, Florian Floyd; Simons, Monique; Barnett, Lisa M

    2015-02-01

    Active videogames have the potential to enhance population levels of physical activity but have not been successful in achieving this aim to date. This article considers a range of principles that may be important to the design of effective and efficient active videogames from diverse discipline areas, including behavioral sciences (health behavior change, motor learning, and serious games), business production (marketing and sales), and technology engineering and design (human-computer interaction/ergonomics and flow). Both direct and indirect pathways to impact on population levels of habitual physical activity are proposed, along with the concept of a game use lifecycle. Examples of current active and sedentary electronic games are used to understand how such principles may be applied. Furthermore, limitations of the current usage of theoretical principles are discussed. A suggested list of principles for best practice in active videogame design is proposed along with suggested research ideas to inform practice to enhance physical activity.

  17. Fluorescent-protein-based probes: general principles and practices.

    PubMed

    Ai, Hui-Wang

    2015-01-01

    An important application of fluorescent proteins is to derive genetically encoded fluorescent probes that can actively respond to cellular dynamics such as pH change, redox signaling, calcium oscillation, enzyme activities, and membrane potential. Despite the large diverse group of fluorescent-protein-based probes, a few basic principles have been established and are shared by most of these probes. In this article, the focus is on these general principles and strategies that guide the development of fluorescent-protein-based probes. A few examples are provided in each category to illustrate the corresponding principles. Since these principles are quite straightforward, others may adapt them to create fluorescent probes for their own interest. Hopefully, the development of the ever-growing family of fluorescent-protein-based probes will no longer be limited to a small number of laboratories specialized in senor development, leading to the situation that biological studies will be bettered assisted by genetically encoded sensors.

  18. Stability limits and defect dynamics in Ag nanoparticles probed by Bragg coherent diffractive imaging

    DOE PAGES

    Liu, Y.; Lopes, P. P.; Cha, W.; ...

    2017-02-10

    Dissolution is critical to nanomaterial stability, especially for partially dealloyed nanoparticle catalysts. Unfortunately, highly active catalysts are often not stable in their reactive environments, preventing widespread application. Thus, focusing on the structure–stability relationship at the nanoscale is crucial and will likely play an important role in meeting grand challenges. Recent advances in imaging capability have come from electron, X-ray, and other techniques but tend to be limited to specific sample environments and/or two-dimensional images. Here, we report investigations into the defect-stability relationship of silver nanoparticles to voltage-induced electrochemical dissolution imaged in situ in three dimensional detail by Bragg coherent diffractivemore » imaging. We first determine the average dissolution kinetics by stationary probe rotating disk electrode in combination with inductively coupled plasma mass spectrometry, which allows in situ measurement of Ag+ ion formation. We then observe the dissolution and redeposition processes in single nanocrystals, providing unique insight about the role of surface strain, defects, and their coupling to the dissolution chemistry. Finally, the methods developed and the knowledge gained go well beyond a “simple” silver electrochemistry and are applicable to all electrocatalytic reactions where functional links between activity and stability are controlled by structure and defect dynamics.« less

  19. Beyond the limits of present active matrix flat-panel imagers (AMFPIs) for diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Antonuk, Larry E.; El-Mohri, Youcef; Jee, Kyung-Wook; Maolinbay, Manat; Nassif, Samer C.; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Zhao, Qihua; Street, Robert A.

    1999-05-01

    A theoretical cascaded systems analysis of the performance limits of x-ray imagers based on thin-film, active matrix flat-panel technology is presented. This analysis specifically focuses upon an examination of the functional dependence of the detective quantum efficiency on exposure. While the DQE of AMFPI systems is relatively high at the large exposure levels associated with radiographic x-ray imaging, there is a significant decline in DQE with decreasing exposure over the medium and lower end of the exposure range associated with fluoroscopic imaging. This fall-off in DQE originates from the relatively large size of the additive noise of AMFPI systems compared to their overall system gain. Therefore, strategies to diminish additive noise and increase system gain should significantly improve performance. Potential strategies for noise reduction include the use of charge compensation lines while strategies for gain enhancement include continuous photodiodes, pixel amplification structures, or higher gain converters. The effect of the implementation of such strategies is examined for a variety for hypothetical imager configurations. Through the modeling of these configurations, such enhancements are shown to hold the potential of making low frequency DQE response large and essentially independent of exposure while greatly reducing the fall-off in DQE at higher spatial frequencies.

  20. Stability limits and defect dynamics in Ag nanoparticles probed by Bragg coherent diffractive imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Lopes, P. P.; Cha, W.

    Dissolution is critical to nanomaterial stability, especially for partially dealloyed nanoparticle catalysts. Unfortunately, highly active catalysts are often not stable in their reactive environments, preventing widespread application. Thus, focusing on the structure–stability relationship at the nanoscale is crucial and will likely play an important role in meeting grand challenges. Recent advances in imaging capability have come from electron, X-ray, and other techniques but tend to be limited to specific sample environments and/or two-dimensional images. Here, we report investigations into the defect-stability relationship of silver nanoparticles to voltage-induced electrochemical dissolution imaged in situ in three dimensional detail by Bragg coherent diffractivemore » imaging. We first determine the average dissolution kinetics by stationary probe rotating disk electrode in combination with inductively coupled plasma mass spectrometry, which allows in situ measurement of Ag+ ion formation. We then observe the dissolution and redeposition processes in single nanocrystals, providing unique insight about the role of surface strain, defects, and their coupling to the dissolution chemistry. Finally, the methods developed and the knowledge gained go well beyond a “simple” silver electrochemistry and are applicable to all electrocatalytic reactions where functional links between activity and stability are controlled by structure and defect dynamics.« less

  1. Proper Image Subtraction—Optimal Transient Detection, Photometry, and Hypothesis Testing

    NASA Astrophysics Data System (ADS)

    Zackay, Barak; Ofek, Eran O.; Gal-Yam, Avishay

    2016-10-01

    Transient detection and flux measurement via image subtraction stand at the base of time domain astronomy. Due to the varying seeing conditions, the image subtraction process is non-trivial, and existing solutions suffer from a variety of problems. Starting from basic statistical principles, we develop the optimal statistic for transient detection, flux measurement, and any image-difference hypothesis testing. We derive a closed-form statistic that: (1) is mathematically proven to be the optimal transient detection statistic in the limit of background-dominated noise, (2) is numerically stable, (3) for accurately registered, adequately sampled images, does not leave subtraction or deconvolution artifacts, (4) allows automatic transient detection to the theoretical sensitivity limit by providing credible detection significance, (5) has uncorrelated white noise, (6) is a sufficient statistic for any further statistical test on the difference image, and, in particular, allows us to distinguish particle hits and other image artifacts from real transients, (7) is symmetric to the exchange of the new and reference images, (8) is at least an order of magnitude faster to compute than some popular methods, and (9) is straightforward to implement. Furthermore, we present extensions of this method that make it resilient to registration errors, color-refraction errors, and any noise source that can be modeled. In addition, we show that the optimal way to prepare a reference image is the proper image coaddition presented in Zackay & Ofek. We demonstrate this method on simulated data and real observations from the PTF data release 2. We provide an implementation of this algorithm in MATLAB and Python.

  2. Improved estimation of parametric images of cerebral glucose metabolic rate from dynamic FDG-PET using volume-wise principle component analysis

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoqian; Tian, Jie; Chen, Zhe

    2010-03-01

    Parametric images can represent both spatial distribution and quantification of the biological and physiological parameters of tracer kinetics. The linear least square (LLS) method is a well-estimated linear regression method for generating parametric images by fitting compartment models with good computational efficiency. However, bias exists in LLS-based parameter estimates, owing to the noise present in tissue time activity curves (TTACs) that propagates as correlated error in the LLS linearized equations. To address this problem, a volume-wise principal component analysis (PCA) based method is proposed. In this method, firstly dynamic PET data are properly pre-transformed to standardize noise variance as PCA is a data driven technique and can not itself separate signals from noise. Secondly, the volume-wise PCA is applied on PET data. The signals can be mostly represented by the first few principle components (PC) and the noise is left in the subsequent PCs. Then the noise-reduced data are obtained using the first few PCs by applying 'inverse PCA'. It should also be transformed back according to the pre-transformation method used in the first step to maintain the scale of the original data set. Finally, the obtained new data set is used to generate parametric images using the linear least squares (LLS) estimation method. Compared with other noise-removal method, the proposed method can achieve high statistical reliability in the generated parametric images. The effectiveness of the method is demonstrated both with computer simulation and with clinical dynamic FDG PET study.

  3. [Imaging Mass Spectrometry in Histopathologic Analysis].

    PubMed

    Yamazaki, Fumiyoshi; Seto, Mitsutoshi

    2015-04-01

    Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules. IMS generates data on the distribution of lipids and small molecules in tissues, which is difficult to visualize with either conventional counter-staining or immunohistochemistry. In this review, we firstly introduce the principle of imaging mass spectrometry and recent advances in the sample preparation method. Secondly, we present findings regarding biological samples, especially pathological ones. Finally, we discuss the limitations and problems of the IMS technique and clinical application, such as in drug development.

  4. Twin imaging phenomenon of integral imaging.

    PubMed

    Hu, Juanmei; Lou, Yimin; Wu, Fengmin; Chen, Aixi

    2018-05-14

    The imaging principles and phenomena of integral imaging technique have been studied in detail using geometrical optics, wave optics, or light filed theory. However, most of the conclusions are only suit for the integral imaging systems using diffused illumination. In this work, a kind of twin imaging phenomenon and mechanism has been observed in a non-diffused illumination reflective integral imaging system. Interactive twin images including a real and a virtual 3D image of one object can be activated in the system. The imaging phenomenon is similar to the conjugate imaging effect of hologram, but it base on the refraction and reflection instead of diffraction. The imaging characteristics and mechanisms different from traditional integral imaging are deduced analytically. Thin film integral imaging systems with 80μm thickness have also been made to verify the imaging phenomenon. Vivid lighting interactive twin 3D images have been realized using a light-emitting diode (LED) light source. When the LED is moving, the twin 3D images are moving synchronously. This interesting phenomenon shows a good application prospect in interactive 3D display, argument reality, and security authentication.

  5. Superiorized algorithm for reconstruction of CT images from sparse-view and limited-angle polyenergetic data

    NASA Astrophysics Data System (ADS)

    Humphries, T.; Winn, J.; Faridani, A.

    2017-08-01

    Recent work in CT image reconstruction has seen increasing interest in the use of total variation (TV) and related penalties to regularize problems involving reconstruction from undersampled or incomplete data. Superiorization is a recently proposed heuristic which provides an automatic procedure to ‘superiorize’ an iterative image reconstruction algorithm with respect to a chosen objective function, such as TV. Under certain conditions, the superiorized algorithm is guaranteed to find a solution that is as satisfactory as any found by the original algorithm with respect to satisfying the constraints of the problem; this solution is also expected to be superior with respect to the chosen objective. Most work on superiorization has used reconstruction algorithms which assume a linear measurement model, which in the case of CT corresponds to data generated from a monoenergetic x-ray beam. Many CT systems generate x-rays from a polyenergetic spectrum, however, in which the measured data represent an integral of object attenuation over all energies in the spectrum. This inconsistency with the linear model produces the well-known beam hardening artifacts, which impair analysis of CT images. In this work we superiorize an iterative algorithm for reconstruction from polyenergetic data, using both TV and an anisotropic TV (ATV) penalty. We apply the superiorized algorithm in numerical phantom experiments modeling both sparse-view and limited-angle scenarios. In our experiments, the superiorized algorithm successfully finds solutions which are as constraints-compatible as those found by the original algorithm, with significantly reduced TV and ATV values. The superiorized algorithm thus produces images with greatly reduced sparse-view and limited angle artifacts, which are also largely free of the beam hardening artifacts that would be present if a superiorized version of a monoenergetic algorithm were used.

  6. Breaking the acoustic diffraction limit via nonlinear effect and thermal confinement for potential deep-tissue high-resolution imaging

    PubMed Central

    Yuan, Baohong; Pei, Yanbo; Kandukuri, Jayanth

    2013-01-01

    Our recently developed ultrasound-switchable fluorescence (USF) imaging technique showed that it was feasible to conduct high-resolution fluorescence imaging in a centimeter-deep turbid medium. Because the spatial resolution of this technique highly depends on the ultrasound-induced temperature focal size (UTFS), minimization of UTFS becomes important for further improving the spatial resolution USF technique. In this study, we found that UTFS can be significantly reduced below the diffraction-limited acoustic intensity focal size via nonlinear acoustic effects and thermal confinement by appropriately controlling ultrasound power and exposure time, which can be potentially used for deep-tissue high-resolution imaging. PMID:23479498

  7. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging.

    PubMed

    Valm, Alex M; Mark Welch, Jessica L; Rieken, Christopher W; Hasegawa, Yuko; Sogin, Mitchell L; Oldenbourg, Rudolf; Dewhirst, Floyd E; Borisy, Gary G

    2011-03-08

    Microbes in nature frequently function as members of complex multitaxon communities, but the structural organization of these communities at the micrometer level is poorly understood because of limitations in labeling and imaging technology. We report here a combinatorial labeling strategy coupled with spectral image acquisition and analysis that greatly expands the number of fluorescent signatures distinguishable in a single image. As an imaging proof of principle, we first demonstrated visualization of Escherichia coli labeled by fluorescence in situ hybridization (FISH) with 28 different binary combinations of eight fluorophores. As a biological proof of principle, we then applied this Combinatorial Labeling and Spectral Imaging FISH (CLASI-FISH) strategy using genus- and family-specific probes to visualize simultaneously and differentiate 15 different phylotypes in an artificial mixture of laboratory-grown microbes. We then illustrated the utility of our method for the structural analysis of a natural microbial community, namely, human dental plaque, a microbial biofilm. We demonstrate that 15 taxa in the plaque community can be imaged simultaneously and analyzed and that this community was dominated by early colonizers, including species of Streptococcus, Prevotella, Actinomyces, and Veillonella. Proximity analysis was used to determine the frequency of inter- and intrataxon cell-to-cell associations which revealed statistically significant intertaxon pairings. Cells of the genera Prevotella and Actinomyces showed the most interspecies associations, suggesting a central role for these genera in establishing and maintaining biofilm complexity. The results provide an initial systems-level structural analysis of biofilm organization.

  8. Hallmarks in prostate cancer imaging with Ga68-PSMA-11-PET/CT with reference to detection limits and quantitative properties.

    PubMed

    Sanchez-Crespo, Alejandro; Jussing, Emma; Björklund, Ann-Charlotte; Pokrovskaja Tamm, Katja

    2018-04-04

    Gallium-68-labeled prostate-specific antigen positron emission tomography/computed tomography imaging (Ga68-PSMA-11-PET/CT) has emerged as a potential gold standard for prostate cancer (PCa) diagnosis. However, the imaging limitations of this technique at the early state of PCa recurrence/metastatic spread are still not well characterized. The aim of this study was to determine the quantitative properties and the fundamental imaging limits of Ga68-PSMA-11-PET/CT in localizing small PCa cell deposits. The human PCa LNCaP cells (PSMA expressing) were grown and collected as single cell suspension or as 3D-spheroids at different cell numbers and incubated with Ga68-PSMA-11. Thereafter, human HCT116 cells (PSMA negative) were added to a total cell number of 2 × 10 5 cells per tube. The tubes were then pelleted and the supernatant aspirated. A whole-body PET/CT scanner with a clinical routine protocol was used for imaging the pellets inside of a cylindrical water phantom with increasing amounts of background activity. The actual activity bound to the cells was also measured in an automatic gamma counter. Imaging detection limits and activity recovery coefficients as a function of LNCaP cell number were obtained. The effect of Ga68-PSMA-11 mass concentration on cell binding was also investigated in samples of LnCaP cells incubated with increasing concentrations of radioligand. A total of 1 × 10 4 LNCaP cells mixed in a pellet of 2 × 10 5 cells were required to reach a 50% detection probability with Ga68-PSMA-11-PET/CT without background. With a background level of 1 kBq/ml, between 4 × 10 5 and 1 × 10 6 cells are required. The radioligand equilibrium dissociation constant was 27.05 nM, indicating high binding affinity. Hence, the specific activity of the radioligand has a profound effect on image quantification. Ga68-PSMA-11-PET detects a small number of LNCaP cells even when they are mixed in a population of non-PSMA expressing cells and in the

  9. Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.

    1992-01-01

    Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.

  10. Biological imaging with coherent Raman scattering microscopy: a tutorial

    PubMed Central

    Alfonso-García, Alba; Mittal, Richa; Lee, Eun Seong; Potma, Eric O.

    2014-01-01

    Abstract. Coherent Raman scattering (CRS) microscopy is gaining acceptance as a valuable addition to the imaging toolset of biological researchers. Optimal use of this label-free imaging technique benefits from a basic understanding of the physical principles and technical merits of the CRS microscope. This tutorial offers qualitative explanations of the principles behind CRS microscopy and provides information about the applicability of this nonlinear optical imaging approach for biological research. PMID:24615671

  11. First-principles calculations reveal controlling principles for carrier mobilities in semiconductors

    DOE PAGES

    Wu, Yu -Ning; Zhang, Xiaoguang; Pantelides, Sokrates T.; ...

    2016-10-11

    It has long been believed that carrier mobilities in semiconductors can be calculated by Fermi s golden rule (Born approximation). Phenomenological models for scattering amplitudes are typically used for engineering- level device modeling. Here we introduce a parameter-free, first-principles approach based on complex- wavevector energy bands that does not invoke the Born approximation. We show that phonon-limited mobility is controlled by low-resistivity percolation paths and that in ionized-impurity scattering one must account for the effect of the screening charge, which cancels most of the Coulomb tail.Finally, calculated electron mobilities in silicon are in agreement with experimental data.

  12. [Imaging of pelvic organ prolapse].

    PubMed

    Lapray, Jean-François

    2013-01-01

    Colpocystodefecography (CCD) and dynamic MRI with defecography (MRId) allow an alternation between filling and emptying the hollow organs and the maximum abdominal strain offered by the defecation. When applied in imaging these two principles reveal the masked or underestimated prolapses at the time of the physical examination. A rigorous application of the technique guarantees almost equivalent results from the two examinations. The CCD provides voiding views and improved analysis of the anorectal pathology (intussusception, anismus) but involves radiation and a more invasive examination. MRId has the advantage of providing continuous visibility of the peritoneal compartment, and a multiplanar representation, enabling an examination of the morphology of the pelvic organs and of the supporting structures, with the disadvantage of still necessitating a supine examination, resulting sometimes in an incomplete or impossible evacuation. The normal and abnormal results (cystoptosis, vaginal vault prolapse, enterocele, anorectal intussuception, rectocele, descending perineum, urinary and fecal incontinence) and the respective advantages and limits of the various imaging methods are detailed. Dynamic perineal and introital ultrasound remains more limited in the appreciation of posterior colpoceles and especially in anorectal disorders, than CCD or MRId. Endoanal ultrasound is the first line morphological evaluation of the anal sphincter. Transvaginal and introital ultrasound can detect some complications of suburethral tapes and meshes. Morphological and dynamic imaging are essential complementary tools to the physical examination, especially when a precise anatomic assessment is required to understand the functional complaint or when a reintervention is needed.

  13. The different ways to obtain digital images of urine microscopy findings: Their advantages and limitations.

    PubMed

    Fogazzi, G B; Garigali, G

    2017-03-01

    We describe three ways to take digital images of urine sediment findings. Way 1 encompasses a digital camera permanently mounted on the microscope and connected with a computer equipped with a proprietary software to acquire, process and store the images. Way 2 is based on the use of inexpensive compact digital cameras, held by hands - or mounted on a tripod - close to one eyepiece of the microscope. Way 3 is based on the use of smartphones, held by hands close to one eyepiece of the microscope or connected to the microscope by an adapter. The procedures, advantages and limitations of each way are reported. Copyright © 2017. Published by Elsevier B.V.

  14. [The anthropic principle in biology and radiobiology].

    PubMed

    Akif'ev, A P; Degtiarev, S V

    1999-01-01

    In accordance with the anthropic principle of the Universe the physical constants of fundamental particles of matter and the laws of their counteraction are those that an appearance of man and mind becomes possible and necessary. It is suggested to add some biological constants to the set of fundamental constants. With reparation of DNA as an example it was shown how a cell ran some parameters of Watson-Crick double helix. It was pointed that the concept of the anthropic principle of the Universe in its full body including biological constants is a key to developing of a unified theory of evolution of the Universe within the limits of scientific creationism.

  15. Synthetic Biology: Engineering Living Systems from Biophysical Principles.

    PubMed

    Bartley, Bryan A; Kim, Kyung; Medley, J Kyle; Sauro, Herbert M

    2017-03-28

    Synthetic biology was founded as a biophysical discipline that sought explanations for the origins of life from chemical and physical first principles. Modern synthetic biology has been reinvented as an engineering discipline to design new organisms as well as to better understand fundamental biological mechanisms. However, success is still largely limited to the laboratory and transformative applications of synthetic biology are still in their infancy. Here, we review six principles of living systems and how they compare and contrast with engineered systems. We cite specific examples from the synthetic biology literature that illustrate these principles and speculate on their implications for further study. To fully realize the promise of synthetic biology, we must be aware of life's unique properties. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. A new product for photon-limited imaging

    NASA Astrophysics Data System (ADS)

    Gonsiorowski, Thomas

    1986-01-01

    A new commercial low-light imaging detector, the Photon Digitizing Camera (PDC), is based on the PAPA detector developed at Harvard University. The PDC generates (x, y, t)-coordinate data of each detected photoevent. Because the positional address computation is performed optically, very high counting rates are achieved even at full spatial resolution. Careful optomechanical and electronic design results in a compact, rugged detector with superb performance. The PDC will be used for speckle imaging of astronomical sources and other astronomical and low-light applications.

  17. Intraoperative assessment of reduction and implant placement in acetabular fractures-limitations of 3D-imaging compared to computed tomography.

    PubMed

    Keil, Holger; Beisemann, Nils; Schnetzke, Marc; Vetter, Sven Yves; Swartman, Benedict; Grützner, Paul Alfred; Franke, Jochen

    2018-04-10

    In acetabular fractures, the assessment of reduction and implant placement has limitations in conventional 2D intraoperative imaging. 3D imaging offers the opportunity to acquire CT-like images and thus to improve the results. However, clinical experience shows that even 3D imaging has limitations, especially regarding artifacts when implants are placed. The purpose of this study was to assess the difference between intraoperative 3D imaging and postoperative CT regarding reduction and implant placement. Twenty consecutive cases of acetabular fractures were selected with a complete set of intraoperative 3D imaging and postoperative CT data. The largest detectable step and the largest detectable gap were measured in all three standard planes. These values were compared between the 3D data sets and CT data sets. Additionally, possible correlations between the possible confounders age and BMI and the difference between 3D and CT values were tested. The mean difference of largest visible step between the 3D imaging and CT scan was 2.0 ± 1.8 mm (0.0-5.8, p = 0.02) in the axial, 1.3 ± 1.4 mm (0.0-3.7, p = 0.15) in the sagittal and 1.9 ± 2.4 mm (0.0-7.4, p = 0.22) in the coronal views. The mean difference of largest visible gap between the 3D imaging and CT scan was 3.1 ± 3.6 mm (0.0-14.1, p = 0.03) in the axial, 4.6 ± 2.7 mm (1.2-8.7, p = 0.001) in the sagittal and 3.5 ± 4.0 mm (0.0-15.4, p = 0.06) in the coronal views. A positive correlation between the age and the difference in gap measurements in the sagittal view was shown (rho = 0.556, p = 0.011). Intraoperative 3D imaging is a valuable adjunct in assessing reduction and implant placement in acetabular fractures but has limitations due to artifacts caused by implant material. This can lead to missed malreduction and impairment of clinical outcome, so postoperative CT should be considered in these cases.

  18. [Application criteria of the precautionary principle].

    PubMed

    Moccaldi, R

    2011-01-01

    The precautionary principle, according to the European Commission (February 2, 2000) must be applied when there is a possibility of a danger to humans, animals and/or environment health, i.e. when the potential harmful effects have been identified by a scientific and objective evaluation, but this evaluation does not allow the risk to be determined with sufficient certainty. However this principle has been invoked, without the identification, even partial, of harmful effects, to justify preventive and protective measures deemed necessary by policy maker mainly due to a high (but unjustified) risk perception by the population. We analyze the examples of the limits imposed by Italian legislation for the protection from EMF, and measures of "prudent avoidance" in the use of mobile phones.

  19. Limiting Magnitude, τ, t eff, and Image Quality in DES Year 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H. Neilsen, Jr.; Bernstein, Gary; Gruendl, Robert

    The Dark Energy Survey (DES) is an astronomical imaging survey being completed with the DECam imager on the Blanco telescope at CTIO. After each night of observing, the DES data management (DM) group performs an initial processing of that night's data, and uses the results to determine which exposures are of acceptable quality, and which need to be repeated. The primary measure by which we declare an image of acceptable quality ismore » $$\\tau$$, a scaling of the exposure time. This is the scale factor that needs to be applied to the open shutter time to reach the same photometric signal to noise ratio for faint point sources under a set of canonical good conditions. These conditions are defined to be seeing resulting in a PSF full width at half maximum (FWHM) of 0.9" and a pre-defined sky brightness which approximates the zenith sky brightness under fully dark conditions. Point source limiting magnitude and signal to noise should therefore vary with t in the same way they vary with exposure time. Measurements of point sources and $$\\tau$$ in the first year of DES data confirm that they do. In the context of DES, the symbol $$t_{eff}$$ and the expression "effective exposure time" usually refer to the scaling factor, $$\\tau$$, rather than the actual effective exposure time; the "effective exposure time" in this case refers to the effective duration of one second, rather than the effective duration of an exposure.« less

  20. Enhanced labeling density and whole-cell 3D dSTORM imaging by repetitive labeling of target proteins.

    PubMed

    Venkataramani, Varun; Kardorff, Markus; Herrmannsdörfer, Frank; Wieneke, Ralph; Klein, Alina; Tampé, Robert; Heilemann, Mike; Kuner, Thomas

    2018-04-03

    With continuing advances in the resolving power of super-resolution microscopy, the inefficient labeling of proteins with suitable fluorophores becomes a limiting factor. For example, the low labeling density achieved with antibodies or small molecule tags limits attempts to reveal local protein nano-architecture of cellular compartments. On the other hand, high laser intensities cause photobleaching within and nearby an imaged region, thereby further reducing labeling density and impairing multi-plane whole-cell 3D super-resolution imaging. Here, we show that both labeling density and photobleaching can be addressed by repetitive application of trisNTA-fluorophore conjugates reversibly binding to a histidine-tagged protein by a novel approach called single-epitope repetitive imaging (SERI). For single-plane super-resolution microscopy, we demonstrate that, after multiple rounds of labeling and imaging, the signal density is increased. Using the same approach of repetitive imaging, washing and re-labeling, we demonstrate whole-cell 3D super-resolution imaging compensated for photobleaching above or below the imaging plane. This proof-of-principle study demonstrates that repetitive labeling of histidine-tagged proteins provides a versatile solution to break the 'labeling barrier' and to bypass photobleaching in multi-plane, whole-cell 3D experiments.

  1. Limitations and Functions: Four Examples of Integrating Thermodynamics

    ERIC Educational Resources Information Center

    Chang, Wheijen

    2011-01-01

    Physics students are usually unaware of the limitations and functions of related principles, and they tend to adopt "hot formulas" inappropriately. This paper introduces four real-life examples for bridging five principles, from fluids to thermodynamics, including (1) buoyant force, (2) thermal expansion, (3) the ideal-gas law, (4) the 1st law,…

  2. Microfluidic 68Ga-labeling: a proof of principle study.

    PubMed

    Pfaff, Sarah; Philippe, Cecile; Pichler, Verena; Hacker, Marcus; Mitterhauser, Markus; Wadsak, Wolfgang

    2018-05-01

    Positron emission tomography (PET) as a tool for molecular imaging of cancer has gained huge interest in the last few years. Gallium-68 is a popular PET nuclide due to its favorable characteristics, like advantageous half-life (68 min) and independency of a cyclotron on-site for its production. Accordingly, several 68Ga-complexes for cancer imaging via PET have been made available during the last few years. In this work, 68Ga-labeled compounds were synthesized applying a commercially available microfluidic device for the first time. Therefore, a proof of principle study using three important radiotracers, [68Ga]Ga-PSMA-11, [68Ga]Ga-NODAGA-RGDyk and [68Ga]Ga-DOTA-NOC, was designed. For all three radioligands, various synthesis parameters were evaluated and the feasibility of using a continuous flow reactor was assessed. All of the precursors were successfully radiolabeled with a radiochemical yield higher than 80%, proving the principle that a microfluidic set-up is a suitable approach for the production of 68Ga-labeled tracers.

  3. The Principle of Energetic Consistency

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.

    2009-01-01

    A basic result in estimation theory is that the minimum variance estimate of the dynamical state, given the observations, is the conditional mean estimate. This result holds independently of the specifics of any dynamical or observation nonlinearity or stochasticity, requiring only that the probability density function of the state, conditioned on the observations, has two moments. For nonlinear dynamics that conserve a total energy, this general result implies the principle of energetic consistency: if the dynamical variables are taken to be the natural energy variables, then the sum of the total energy of the conditional mean and the trace of the conditional covariance matrix (the total variance) is constant between observations. Ensemble Kalman filtering methods are designed to approximate the evolution of the conditional mean and covariance matrix. For them the principle of energetic consistency holds independently of ensemble size, even with covariance localization. However, full Kalman filter experiments with advection dynamics have shown that a small amount of numerical dissipation can cause a large, state-dependent loss of total variance, to the detriment of filter performance. The principle of energetic consistency offers a simple way to test whether this spurious loss of variance limits ensemble filter performance in full-blown applications. The classical second-moment closure (third-moment discard) equations also satisfy the principle of energetic consistency, independently of the rank of the conditional covariance matrix. Low-rank approximation of these equations offers an energetically consistent, computationally viable alternative to ensemble filtering. Current formulations of long-window, weak-constraint, four-dimensional variational methods are designed to approximate the conditional mode rather than the conditional mean. Thus they neglect the nonlinear bias term in the second-moment closure equation for the conditional mean. The principle of

  4. A history of scanning electron microscopy developments: towards "wet-STEM" imaging.

    PubMed

    Bogner, A; Jouneau, P-H; Thollet, G; Basset, D; Gauthier, C

    2007-01-01

    A recently developed imaging mode called "wet-STEM" and new developments in environmental scanning electron microscopy (ESEM) allows the observation of nano-objects suspended in a liquid phase, with a few manometers resolution and a good signal to noise ratio. The idea behind this technique is simply to perform STEM-in-SEM, that is SEM in transmission mode, in an environmental SEM. The purpose of the present contribution is to highlight the main advances that contributed to development of the wet-STEM technique. Although simple in principle, the wet-STEM imaging mode would have been limited before high brightness electron sources became available, and needed some progresses and improvements in ESEM. This new technique extends the scope of SEM as a high-resolution microscope, relatively cheap and widely available imaging tool, for a wider variety of samples.

  5. [Guidelines for wise utilization of knee imaging].

    PubMed

    Finestone, Aharon S; Eshed, Iris; Freedman, Yehuda; Beer, Yiftah; Bar-Sever, Zvi; Kots, Yavvgeni; Adar, Eliyahu; Mann, Gideon

    2012-02-01

    The knee is a complex structure afflicted with diverse pathologies. Correct management of knee complaints demands wise utilization of imaging modalities, considering their accuracy in the specific clinical situation, the patient's safety and availability and financial issues. Some of these considerations are universal, while others are local, depending on medical and insurance systems. There is controversy and unclearness regarding the best imaging modality in different clinical situations. To develop clinical guidelines for utilizing knee imaging. Leading physicians in specialties associated with knee disease and imaging were invited to participate in a panel on the guidelines. Controversies were settled in the main panel or in sub-panels. The panel agreed on the principles in choosing from the various modalities, primarily medical accuracy, followed by patient safety, availability and cost. There was agreement that the physician is responsible to choose the most appropriate diagnostic tool, consulting, when necessary, on the advantages, limitations and risks of the various imaging modalities. A comprehensive table was compiled with the importance of the different imaging modalities in various clinical situations. For the first time, Israeli guidelines on wise utilization of knee imaging are presented. They take into consideration the clinical situations and also availability and financial issues specific to Israel. These guidelines will serve physicians of several disciplines and medical insurers to improve patient management efficiently.

  6. Photon-limited Sensing and Surveillance

    DTIC Science & Technology

    2015-01-29

    considerable time delay). More specifically, there were four main outcomes from this work: • Improved understanding of the fundmental limitations of...that we design novel cameras for photon-limited settings based on the principles of CS. Most prior theoretical results in compressed sensing and related...inverse problems apply to idealized settings where the noise is i.i.d., and do not account for signal-dependent noise and physical sensing

  7. Principles to promote physician satisfaction and work-life balance.

    PubMed

    Shanafelt, Tait D; West, Colin P; Poland, Gregory A; LaRusso, Nicolas F; Menaker, Ronald; Bahn, Rebecca S

    2008-12-01

    Substantial evidence suggests that difficulty balancing their personal and professional life is a major contributor to physician distress. Limited evidence suggests that the mission and policies of health care organizations may relate to physician satisfaction. In this article, we describe principles to promote professional satisfaction and work-life integration developed by the Mayo Clinic department of medicine. These principles can be used to measure and align policies. It is hoped they will serve as a model that can be used by other health care organizations.

  8. Achieving real-time capsule endoscopy (CE) video visualization through panoramic imaging

    NASA Astrophysics Data System (ADS)

    Yi, Steven; Xie, Jean; Mui, Peter; Leighton, Jonathan A.

    2013-02-01

    In this paper, we mainly present a novel and real-time capsule endoscopy (CE) video visualization concept based on panoramic imaging. Typical CE videos run about 8 hours and are manually reviewed by physicians to locate diseases such as bleedings and polyps. To date, there is no commercially available tool capable of providing stabilized and processed CE video that is easy to analyze in real time. The burden on physicians' disease finding efforts is thus big. In fact, since the CE camera sensor has a limited forward looking view and low image frame rate (typical 2 frames per second), and captures very close range imaging on the GI tract surface, it is no surprise that traditional visualization method based on tracking and registration often fails to work. This paper presents a novel concept for real-time CE video stabilization and display. Instead of directly working on traditional forward looking FOV (field of view) images, we work on panoramic images to bypass many problems facing traditional imaging modalities. Methods on panoramic image generation based on optical lens principle leading to real-time data visualization will be presented. In addition, non-rigid panoramic image registration methods will be discussed.

  9. New trends in intraocular lens imaging

    NASA Astrophysics Data System (ADS)

    Millán, María S.; Alba-Bueno, Francisco; Vega, Fidel

    2011-08-01

    As a result of modern technological advances, cataract surgery can be seen as not only a rehabilitative operation, but a customized procedure to compensate for important sources of image degradation in the visual system of a patient, such as defocus and some aberrations. With the development of new materials, instruments and surgical techniques in ophthalmology, great progress has been achieved in the imaging capability of a pseudophakic eye implanted with an intraocular lens (IOL). From the very beginning, optical design has played an essential role in this progress. New IOL designs need, on the one hand, theoretical eye models able to predict optical imaging performance and on the other hand, testing methods, verification through in vitro and in vivo measurements, and clinical validation. The implant of an IOL requires a precise biometry of the eye, a prior calculation from physiological data, and an accurate position inside the eye. Otherwise, the effects of IOL calculation errors or misplacements degrade the image very quickly. The incorporation of wavefront aberrometry into clinical ophthalmology practice has motivated new designs of IOLs to compensate for high order aberrations in some extent. Thus, for instance, IOLs with an aspheric design have the potential to improve optical performance and contrast sensitivity by reducing the positive spherical aberration of human cornea. Monofocal IOLs cause a complete loss of accommodation that requires further correction for either distance or near vision. Multifocal IOLs address this limitation using the principle of simultaneous vision. Some multifocal IOLs include a diffractive zone that covers the aperture in part or totally. Reduced image contrast and undesired visual phenomena, such as halos and glare, have been associated to the performance of multifocal IOLs. Based on a different principle, accommodating IOLs rely on the effort of the ciliary body to increase the effective power of the optical system of the

  10. Accelerated gradient methods for the x-ray imaging of solar flares

    NASA Astrophysics Data System (ADS)

    Bonettini, S.; Prato, M.

    2014-05-01

    In this paper we present new optimization strategies for the reconstruction of x-ray images of solar flares by means of the data collected by the Reuven Ramaty high energy solar spectroscopic imager. The imaging concept of the satellite is based on rotating modulation collimator instruments, which allow the use of both Fourier imaging approaches and reconstruction techniques based on the straightforward inversion of the modulated count profiles. Although in the last decade, greater attention has been devoted to the former strategies due to their very limited computational cost, here we consider the latter model and investigate the effectiveness of different accelerated gradient methods for the solution of the corresponding constrained minimization problem. Moreover, regularization is introduced through either an early stopping of the iterative procedure, or a Tikhonov term added to the discrepancy function by means of a discrepancy principle accounting for the Poisson nature of the noise affecting the data.

  11. Error mitigation for CCSD compressed imager data

    NASA Astrophysics Data System (ADS)

    Gladkova, Irina; Grossberg, Michael; Gottipati, Srikanth; Shahriar, Fazlul; Bonev, George

    2009-08-01

    To efficiently use the limited bandwidth available on the downlink from satellite to ground station, imager data is usually compressed before transmission. Transmission introduces unavoidable errors, which are only partially removed by forward error correction and packetization. In the case of the commonly used CCSD Rice-based compression, it results in a contiguous sequence of dummy values along scan lines in a band of the imager data. We have developed a method capable of using the image statistics to provide a principled estimate of the missing data. Our method outperforms interpolation yet can be performed fast enough to provide uninterrupted data flow. The estimation of the lost data provides significant value to end users who may use only part of the data, may not have statistical tools, or lack the expertise to mitigate the impact of the lost data. Since the locations of the lost data will be clearly marked as meta-data in the HDF or NetCDF header, experts who prefer to handle error mitigation themselves will be free to use or ignore our estimates as they see fit.

  12. Estimation of identification limit for a small-type OSL dosimeter on the medical images by measurement of X-ray spectra.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-07-01

    Our aim in this study is to derive an identification limit on a dosimeter for not disturbing a medical image when patients wear a small-type optically stimulated luminescence (OSL) dosimeter on their bodies during X-ray diagnostic imaging. For evaluation of the detection limit based on an analysis of X-ray spectra, we propose a new quantitative identification method. We performed experiments for which we used diagnostic X-ray equipment, a soft-tissue-equivalent phantom (1-20 cm), and a CdTe X-ray spectrometer assuming one pixel of the X-ray imaging detector. Then, with the following two experimental settings, corresponding X-ray spectra were measured with 40-120 kVp and 0.5-1000 mAs at a source-to-detector distance of 100 cm: (1) X-rays penetrating a soft-tissue-equivalent phantom with the OSL dosimeter attached directly on the phantom, and (2) X-rays penetrating only the soft-tissue-equivalent phantom. Next, the energy fluence and errors in the fluence were calculated from the spectra. When the energy fluence with errors concerning these two experimental conditions was estimated to be indistinctive, we defined the condition as the OSL dosimeter not being identified on the X-ray image. Based on our analysis, we determined the identification limit of the dosimeter. We then compared our results with those for the general irradiation conditions used in clinics. We found that the OSL dosimeter could not be identified under the irradiation conditions of abdominal and chest radiography, namely, one can apply the OSL dosimeter to measurement of the exposure dose in the irradiation field of X-rays without disturbing medical images.

  13. Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences.

    PubMed

    Ciarrocchi, Esther; Belcari, Nicola

    2017-12-01

    Cerenkov luminescence imaging (CLI) is a novel imaging modality to study charged particles with optical methods by detecting the Cerenkov luminescence produced in tissue. This paper first describes the physical processes that govern the production and transport in tissue of Cerenkov luminescence. The detectors used for CLI and their most relevant specifications to optimize the acquisition of the Cerenkov signal are then presented, and CLI is compared with the other optical imaging modalities sharing the same data acquisition and processing methods. Finally, the scientific work related to CLI and the applications for which CLI has been proposed are reviewed. The paper ends with some considerations about further perspectives for this novel imaging modality.

  14. A phase space approach to imaging from limited data

    NASA Astrophysics Data System (ADS)

    Testorf, Markus E.

    2015-09-01

    The optical instrument function is used as the basis to develop optical system theory for imaging applications. The detection of optical signals is conveniently described as the overlap integral of the Wigner distribution functions of instrument and optical signal. Based on this framework various optical imaging systems, including plenoptic cameras, phase-retrieval algorithms, and Shack-Hartman sensors are shown to acquire information about a domain in phase-space, with finite extension and finite resolution. It is demonstrated how phase space optics can be used both to analyze imaging systems, as well as for designing methods for image reconstruction.

  15. Dynamics of non-stationary processes that follow the maximum of the Rényi entropy principle.

    PubMed

    Shalymov, Dmitry S; Fradkov, Alexander L

    2016-01-01

    We propose dynamics equations which describe the behaviour of non-stationary processes that follow the maximum Rényi entropy principle. The equations are derived on the basis of the speed-gradient principle originated in the control theory. The maximum of the Rényi entropy principle is analysed for discrete and continuous cases, and both a discrete random variable and probability density function (PDF) are used. We consider mass conservation and energy conservation constraints and demonstrate the uniqueness of the limit distribution and asymptotic convergence of the PDF for both cases. The coincidence of the limit distribution of the proposed equations with the Rényi distribution is examined.

  16. Dynamics of non-stationary processes that follow the maximum of the Rényi entropy principle

    PubMed Central

    2016-01-01

    We propose dynamics equations which describe the behaviour of non-stationary processes that follow the maximum Rényi entropy principle. The equations are derived on the basis of the speed-gradient principle originated in the control theory. The maximum of the Rényi entropy principle is analysed for discrete and continuous cases, and both a discrete random variable and probability density function (PDF) are used. We consider mass conservation and energy conservation constraints and demonstrate the uniqueness of the limit distribution and asymptotic convergence of the PDF for both cases. The coincidence of the limit distribution of the proposed equations with the Rényi distribution is examined. PMID:26997886

  17. 12 CFR 403.3 - Classification principles and authority.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to any document is limited as follows and is nondelegable: Classification Classifier CONFIDENTIAL... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Classification principles and authority. 403.3 Section 403.3 Banks and Banking EXPORT-IMPORT BANK OF THE UNITED STATES CLASSIFICATION, DECLASSIFICATION...

  18. 12 CFR 403.3 - Classification principles and authority.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to any document is limited as follows and is nondelegable: Classification Classifier CONFIDENTIAL... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Classification principles and authority. 403.3 Section 403.3 Banks and Banking EXPORT-IMPORT BANK OF THE UNITED STATES CLASSIFICATION, DECLASSIFICATION...

  19. 12 CFR 403.3 - Classification principles and authority.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to any document is limited as follows and is nondelegable: Classification Classifier CONFIDENTIAL... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Classification principles and authority. 403.3 Section 403.3 Banks and Banking EXPORT-IMPORT BANK OF THE UNITED STATES CLASSIFICATION, DECLASSIFICATION...

  20. Linear Space-Variant Image Restoration of Photon-Limited Images

    DTIC Science & Technology

    1978-03-01

    levels of performance of the wavefront seisor. The parameter ^ represents the residual rms wavefront error ^measurement noise plus ♦ttting error...known to be optimum only when the signal and noise are uncorrelated stationary random processes «nd when the noise statistics are gaussian. In the...regime of photon-Iimited imaging, the noise is non-gaussian and signaI-dependent, and it is therefore reasonable to assume that tome form of linear

  1. Maximizing Social Model Principles in Residential Recovery Settings

    PubMed Central

    Polcin, Douglas; Mericle, Amy; Howell, Jason; Sheridan, Dave; Christensen, Jeff

    2014-01-01

    Abstract Peer support is integral to a variety of approaches to alcohol and drug problems. However, there is limited information about the best ways to facilitate it. The “social model” approach developed in California offers useful suggestions for facilitating peer support in residential recovery settings. Key principles include using 12-step or other mutual-help group strategies to create and facilitate a recovery environment, involving program participants in decision making and facility governance, using personal recovery experience as a way to help others, and emphasizing recovery as an interaction between the individual and their environment. Although limited in number, studies have shown favorable outcomes for social model programs. Knowledge about social model recovery and how to use it to facilitate peer support in residential recovery homes varies among providers. This article presents specific, practical suggestions for enhancing social model principles in ways that facilitate peer support in a range of recovery residences. PMID:25364996

  2. Limits: The Keystone of Emotional Growth.

    ERIC Educational Resources Information Center

    Poarch, John E.

    The concept of limits on child and teenage behavior is discussed in this book. Section I includes the core hypothesis of the theory of limits and discusses these essential concepts: (1) the pleasure/pain principle (the need to increase tolerance for stimulation in the pain center of the brain in order to be able to tolerate more stimulation in the…

  3. Contributed Review: Camera-limits for wide-field magnetic resonance imaging with a nitrogen-vacancy spin sensor

    NASA Astrophysics Data System (ADS)

    Wojciechowski, Adam M.; Karadas, Mürsel; Huck, Alexander; Osterkamp, Christian; Jankuhn, Steffen; Meijer, Jan; Jelezko, Fedor; Andersen, Ulrik L.

    2018-03-01

    Sensitive, real-time optical magnetometry with nitrogen-vacancy centers in diamond relies on accurate imaging of small (≪10-2), fractional fluorescence changes across the diamond sample. We discuss the limitations on magnetic field sensitivity resulting from the limited number of photoelectrons that a camera can record in a given time. Several types of camera sensors are analyzed, and the smallest measurable magnetic field change is estimated for each type. We show that most common sensors are of a limited use in such applications, while certain highly specific cameras allow achieving nanotesla-level sensitivity in 1 s of a combined exposure. Finally, we demonstrate the results obtained with a lock-in camera that paves the way for real-time, wide-field magnetometry at the nanotesla level and with a micrometer resolution.

  4. Equivocating on the polluter-pays principle: The consequences for Pakistan.

    PubMed

    Luken, Ralph A

    2009-08-01

    The polluter-pays principle has been widely implemented in OECD countries and credited for bring about a significant reduction in pollutant discharge. However, it has had only limited implementation in developing countries. The consequences of not implementing it in developing countries, to the extent they are documented, are limited to estimating the economic damages of environmental degradation. Yet there are several other but seldom documented negative consequences of the failure to implement the polluter-pays principle. These consequences are documented in the case of Pakistan. They include limited construction of effluent treatment plants, heavy dependence on the government and international donors for funding the only two operational common effluent treatment plants, significant operational issues at the two common effluent treatment plants, missed opportunities to build cost-effective common effluent treatment plants and minimal environmental improvements from isolated investments in individual effluent treatment plants in addition to the already documented significant level of environmental degradation due to uncontrolled pollutant discharge.

  5. Principles of Quantitative MR Imaging with Illustrated Review of Applicable Modular Pulse Diagrams.

    PubMed

    Mills, Andrew F; Sakai, Osamu; Anderson, Stephan W; Jara, Hernan

    2017-01-01

    Continued improvements in diagnostic accuracy using magnetic resonance (MR) imaging will require development of methods for tissue analysis that complement traditional qualitative MR imaging studies. Quantitative MR imaging is based on measurement and interpretation of tissue-specific parameters independent of experimental design, compared with qualitative MR imaging, which relies on interpretation of tissue contrast that results from experimental pulse sequence parameters. Quantitative MR imaging represents a natural next step in the evolution of MR imaging practice, since quantitative MR imaging data can be acquired using currently available qualitative imaging pulse sequences without modifications to imaging equipment. The article presents a review of the basic physical concepts used in MR imaging and how quantitative MR imaging is distinct from qualitative MR imaging. Subsequently, the article reviews the hierarchical organization of major applicable pulse sequences used in this article, with the sequences organized into conventional, hybrid, and multispectral sequences capable of calculating the main tissue parameters of T1, T2, and proton density. While this new concept offers the potential for improved diagnostic accuracy and workflow, awareness of this extension to qualitative imaging is generally low. This article reviews the basic physical concepts in MR imaging, describes commonly measured tissue parameters in quantitative MR imaging, and presents the major available pulse sequences used for quantitative MR imaging, with a focus on the hierarchical organization of these sequences. © RSNA, 2017.

  6. Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology.

    PubMed

    Johnson, Sam A

    2015-01-01

    Imaging methods have presented scientists with powerful means of investigation for centuries. The ability to resolve structures using light microscopes is though limited to around 200 nm. Fluorescence-based super-resolution light microscopy techniques of several principles and methods have emerged in recent years and offer great potential to extend the capabilities of microscopy. This resolution improvement is especially promising for nanoscience where the imaging of nanoscale structures is inherently restricted by the resolution limit of standard forms of light microscopy. Resolution can be improved by several distinct approaches including structured illumination microscopy, stimulated emission depletion, and single-molecule positioning methods such as photoactivated localization microscopy and stochastic optical reconstruction microscopy and several derivative variations of each of these. These methods involve substantial differences in the resolutions achievable in the different axes, speed of acquisition, compatibility with different labels, ease of use, hardware complexity, and compatibility with live biological samples. The field of super-resolution imaging and its application to nanotechnology is relatively new and still rapidly developing. An overview of how these methods may be used with nanomaterials is presented with some examples of pioneering uses of these approaches. © 2014 Wiley Periodicals, Inc.

  7. Entropy bound of local quantum field theory with generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Wan; Lee, Hyung Won; Myung, Yun Soo

    2009-03-01

    We study the entropy bound for local quantum field theory (LQFT) with generalized uncertainty principle. The generalized uncertainty principle provides naturally a UV cutoff to the LQFT as gravity effects. Imposing the non-gravitational collapse condition as the UV-IR relation, we find that the maximal entropy of a bosonic field is limited by the entropy bound A 3 / 4 rather than A with A the boundary area.

  8. The Scientific Image in Behavior Analysis.

    PubMed

    Keenan, Mickey

    2016-05-01

    Throughout the history of science, the scientific image has played a significant role in communication. With recent developments in computing technology, there has been an increase in the kinds of opportunities now available for scientists to communicate in more sophisticated ways. Within behavior analysis, though, we are only just beginning to appreciate the importance of going beyond the printing press to elucidate basic principles of behavior. The aim of this manuscript is to stimulate appreciation of both the role of the scientific image and the opportunities provided by a quick response code (QR code) for enhancing the functionality of the printed page. I discuss the limitations of imagery in behavior analysis ("Introduction"), and I show examples of what can be done with animations and multimedia for teaching philosophical issues that arise when teaching about private events ("Private Events 1 and 2"). Animations are also useful for bypassing ethical issues when showing examples of challenging behavior ("Challenging Behavior"). Each of these topics can be accessed only by scanning the QR code provided. This contingency has been arranged to help the reader embrace this new technology. In so doing, I hope to show its potential for going beyond the limitations of the printing press.

  9. WE-H-206-00: Advances in Preclinical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffersmore » from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed

  10. MO-DE-BRA-06: 3D Image Acquisition and Reconstruction Explained with Online Animations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesner, A

    Purpose: Understanding the principles of 3D imaging and image reconstruction is fundamental to the field of medical imaging. Clinicians, technologists, physicists, patients, students, and inquisitive minds all stand to benefit from greater comprehension of the supporting technologies. To help explain the basic principles of 3D imaging, we developed multi-frame animations that convey the concepts of tomographic imaging. The series of free (gif) animations are accessible online, and provide a multimedia introduction to the main concepts of image reconstruction. Methods: Text and animations were created to convey the principles of analytic tomography in CT, PET, and SPECT. Specific topics covered included:more » principles of sinograms/image data storage, forward projection, principles of PET acquisitions, and filtered backprojection. A total of 8 animations were created and presented for CT, PET, and digital phantom formats. In addition, a free executable is also provided to allow users to create their own tomographic animations – providing an opportunity for interaction and personalization to help foster user interest. Results: Tutorial text and animations have been posted online, freely available to view or download. The animations are in first position in a google search of “image reconstruction animations”. The website currently receives approximately 200 hits/month, from all over the world, and the usage is growing. Positive feedback has been collected from users. Conclusion: We identified a need for improved teaching tools to help visualize the (temporally variant) concepts of image reconstruction, and have shown that animations can be a useful tool for this aspect of education. Furthermore, posting animations freely on the web has shown to be a good way to maximize their impact in the community. In future endeavors, we hope to expand this animated content, to cover principles of iterative reconstruction, as well as other phenomena relating to imaging.« less

  11. Neuroimaging Techniques: a Conceptual Overview of Physical Principles, Contribution and History

    NASA Astrophysics Data System (ADS)

    Minati, Ludovico

    2006-06-01

    This paper is meant to provide a brief overview of the techniques currently used to image the brain and to study non-invasively its anatomy and function. After a historical summary in the first section, general aspects are outlined in the second section. The subsequent six sections survey, in order, computed tomography (CT), morphological magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion-tensor magnetic resonance imaging (DWI/DTI), positron emission tomography (PET), and electro- and magneto-encephalography (EEG/MEG) based imaging. Underlying physical principles, modelling and data processing approaches, as well as clinical and research relevance are briefly outlined for each technique. Given the breadth of the scope, there has been no attempt to be comprehensive. The ninth and final section outlines some aspects of active research in neuroimaging.

  12. No scanning depth imaging system based on TOF

    NASA Astrophysics Data System (ADS)

    Sun, Rongchun; Piao, Yan; Wang, Yu; Liu, Shuo

    2016-03-01

    To quickly obtain a 3D model of real world objects, multi-point ranging is very important. However, the traditional measuring method usually adopts the principle of point by point or line by line measurement, which is too slow and of poor efficiency. In the paper, a no scanning depth imaging system based on TOF (time of flight) was proposed. The system is composed of light source circuit, special infrared image sensor module, processor and controller of image data, data cache circuit, communication circuit, and so on. According to the working principle of the TOF measurement, image sequence was collected by the high-speed CMOS sensor, and the distance information was obtained by identifying phase difference, and the amplitude image was also calculated. Experiments were conducted and the experimental results show that the depth imaging system can achieve no scanning depth imaging function with good performance.

  13. Various diffusion magnetic resonance imaging techniques for pancreatic cancer

    PubMed Central

    Tang, Meng-Yue; Zhang, Xiao-Ming; Chen, Tian-Wu; Huang, Xiao-Hua

    2015-01-01

    Pancreatic cancer is one of the most common malignant tumors and remains a treatment-refractory cancer with a poor prognosis. Currently, the diagnosis of pancreatic neoplasm depends mainly on imaging and which methods are conducive to detecting small lesions. Compared to the other techniques, magnetic resonance imaging (MRI) has irreplaceable advantages and can provide valuable information unattainable with other noninvasive or minimally invasive imaging techniques. Advances in MR hardware and pulse sequence design have particularly improved the quality and robustness of MRI of the pancreas. Diffusion MR imaging serves as one of the common functional MRI techniques and is the only technique that can be used to reflect the diffusion movement of water molecules in vivo. It is generally known that diffusion properties depend on the characterization of intrinsic features of tissue microdynamics and microstructure. With the improvement of the diffusion models, diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique to the more complex. In this review, the various diffusion MRI techniques for pancreatic cancer are discussed, including conventional diffusion weighted imaging (DWI), multi-b DWI based on intra-voxel incoherent motion theory, diffusion tensor imaging and diffusion kurtosis imaging. The principles, main parameters, advantages and limitations of these techniques, as well as future directions for pancreatic diffusion imaging are also discussed. PMID:26753059

  14. [The beginning of the first principles: the anthropic principle].

    PubMed

    González de Posada, Francisco

    2004-01-01

    The nowadays classical Anthropic Principle is put both in the historical perspective of the traditional problem of "the place of man in the Universe', and in the confluence of several scientific "border" issues, some of which, due to their problematical nature, are also subject of philosophical analysis. On the one hand, the scientific uses of the Principle, related to the initial and constitutional conditions of "our Universe", are enumerated, as they are supposedly necessary for the appearance and consequent development of Life--up to Man--. On the other, an organized collection of the principles of today's Physics is synthetically exhibited. The object of this work is to determine the intrinsic scientific nature of the Anthropic Principle, and the role it plays in the global frame of the principles of Physics (Astrophysics, Astrobiology and Cosmology).

  15. Smart cloud system with image processing server in diagnosing brain diseases dedicated for hospitals with limited resources.

    PubMed

    Fahmi, Fahmi; Nasution, Tigor H; Anggreiny, Anggreiny

    2017-01-01

    The use of medical imaging in diagnosing brain disease is growing. The challenges are related to the big size of data and complexity of the image processing. High standard of hardware and software are demanded, which can only be provided in big hospitals. Our purpose was to provide a smart cloud system to help diagnosing brain diseases for hospital with limited infrastructure. The expertise of neurologists was first implanted in cloud server to conduct an automatic diagnosis in real time using image processing technique developed based on ITK library and web service. Users upload images through website and the result, in this case the size of tumor was sent back immediately. A specific image compression technique was developed for this purpose. The smart cloud system was able to measure the area and location of tumors, with average size of 19.91 ± 2.38 cm2 and an average response time 7.0 ± 0.3 s. The capability of the server decreased when multiple clients accessed the system simultaneously: 14 ± 0 s (5 parallel clients) and 27 ± 0.2 s (10 parallel clients). The cloud system was successfully developed to process and analyze medical images for diagnosing brain diseases in this case for tumor.

  16. Elastography in Chronic Liver Disease: Modalities, Techniques, Limitations, and Future Directions

    PubMed Central

    Srinivasa Babu, Aparna; Wells, Michael L.; Teytelboym, Oleg M.; Mackey, Justin E.; Miller, Frank H.; Yeh, Benjamin M.; Ehman, Richard L.

    2016-01-01

    Chronic liver disease has multiple causes, many of which are increasing in prevalence. The final common pathway of chronic liver disease is tissue destruction and attempted regeneration, a pathway that triggers fibrosis and eventual cirrhosis. Assessment of fibrosis is important not only for diagnosis but also for management, prognostic evaluation, and follow-up of patients with chronic liver disease. Although liver biopsy has traditionally been considered the reference standard for assessment of liver fibrosis, noninvasive techniques are the emerging focus in this field. Ultrasound-based elastography and magnetic resonance (MR) elastography are gaining popularity as the modalities of choice for quantifying hepatic fibrosis. These techniques have been proven superior to conventional cross-sectional imaging for evaluation of fibrosis, especially in the precirrhotic stages. Moreover, elastography has added utility in the follow-up of previously diagnosed fibrosis, the assessment of treatment response, evaluation for the presence of portal hypertension (spleen elastography), and evaluation of patients with unexplained portal hypertension. In this article, a brief overview is provided of chronic liver disease and the tools used for its diagnosis. Ultrasound-based elastography and MR elastography are explored in depth, including a brief glimpse into the evolution of elastography. Elastography is based on the principle of measuring tissue response to a known mechanical stimulus. Specific elastographic techniques used to exploit this principle include MR elastography and ultrasonography-based static or quasistatic strain imaging, one-dimensional transient elastography, point shear-wave elastography, and supersonic shear-wave elastography. The advantages, limitations, and pitfalls of each modality are emphasized. ©RSNA, 2016 PMID:27689833

  17. Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization.

    PubMed

    Hurd, Ralph E; Yen, Yi-Fen; Chen, Albert; Ardenkjaer-Larsen, Jan Henrik

    2012-12-01

    This article describes the basic physics of dissolution dynamic nuclear polarization (dissolution-DNP), and the impact of the resulting highly nonequilibrium spin states, on the physics of magnetic resonance imaging (MRI) detection. The hardware requirements for clinical translation of this technology are also presented. For studies that allow the use of externally administered agents, hyperpolarization offers a way to overcome normal magnetic resonance sensitivity limitations, at least for a brief T(1)-dependent observation window. A 10,000-100,000-fold signal-to-noise advantage provides an avenue for real-time measurement of perfusion, metabolite transport, exchange, and metabolism. The principles behind these measurements, as well as the choice of agent, and progress toward the application of hyperpolarized (13)C metabolic imaging in oncology, cardiology, and neurology are reviewed. Copyright © 2012 Wiley Periodicals, Inc.

  18. Atomistic three-dimensional coherent x-ray imaging of nonbiological systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Phay J.; Knight, Chris; Tegze, Miklos

    We computationally study the resolution limits for three-dimensional coherent x-ray diffractive imaging of heavy, nonbiological systems using Ar clusters as a prototype. We treat electronic and nuclear dynamics on an equal footing and remove the frozen-lattice approximation often used in electronic damage studies. We explore the achievable resolution as a function of pulse parameters (fluence level, pulse duration, and photon energy) and particle size. The contribution of combined lattice and electron dynamics is not negligible even for 2 fs pulses, and the Compton scattering is less deleterious than in biological systems for atomic-scale imaging. Although free-electron scattering represents a significantmore » background, we find that recovery of the original structure is in principle possible with 3 angstrom resolution for particles of 11 nm diameter.« less

  19. Atomistic three-dimensional coherent x-ray imaging of nonbiological systems

    DOE PAGES

    Ho, Phay J.; Knight, Chris; Tegze, Miklos; ...

    2016-12-12

    We computationally study the resolution limits for three-dimensional coherent x-ray diffractive imaging of heavy, nonbiological systems using Ar clusters as a prototype. We treat electronic and nuclear dynamics on an equal footing and remove the frozen-lattice approximation often used in electronic damage studies. We explore the achievable resolution as a function of pulse parameters (fluence level, pulse duration, and photon energy) and particle size. The contribution of combined lattice and electron dynamics is not negligible even for 2 fs pulses, and the Compton scattering is less deleterious than in biological systems for atomic-scale imaging. Although free-electron scattering represents a significantmore » background, we find that recovery of the original structure is in principle possible with 3 angstrom resolution for particles of 11 nm diameter.« less

  20. Image-based surface reconstruction in geomorphometry - merits, limits and developments

    NASA Astrophysics Data System (ADS)

    Eltner, Anette; Kaiser, Andreas; Castillo, Carlos; Rock, Gilles; Neugirg, Fabian; Abellán, Antonio

    2016-05-01

    Photogrammetry and geosciences have been closely linked since the late 19th century due to the acquisition of high-quality 3-D data sets of the environment, but it has so far been restricted to a limited range of remote sensing specialists because of the considerable cost of metric systems for the acquisition and treatment of airborne imagery. Today, a wide range of commercial and open-source software tools enable the generation of 3-D and 4-D models of complex geomorphological features by geoscientists and other non-experts users. In addition, very recent rapid developments in unmanned aerial vehicle (UAV) technology allow for the flexible generation of high-quality aerial surveying and ortho-photography at a relatively low cost.The increasing computing capabilities during the last decade, together with the development of high-performance digital sensors and the important software innovations developed by computer-based vision and visual perception research fields, have extended the rigorous processing of stereoscopic image data to a 3-D point cloud generation from a series of non-calibrated images. Structure-from-motion (SfM) workflows are based upon algorithms for efficient and automatic orientation of large image sets without further data acquisition information, examples including robust feature detectors like the scale-invariant feature transform for 2-D imagery. Nevertheless, the importance of carrying out well-established fieldwork strategies, using proper camera settings, ground control points and ground truth for understanding the different sources of errors, still needs to be adapted in the common scientific practice.This review intends not only to summarise the current state of the art on using SfM workflows in geomorphometry but also to give an overview of terms and fields of application. Furthermore, this article aims to quantify already achieved accuracies and used scales, using different strategies in order to evaluate possible stagnations of

  1. Searching for Images: The Analysis of Users' Queries for Image Retrieval in American History.

    ERIC Educational Resources Information Center

    Choi, Youngok; Rasmussen, Edie M.

    2003-01-01

    Studied users' queries for visual information in American history to identify the image attributes important for retrieval and the characteristics of users' queries for digital images, based on queries from 38 faculty and graduate students. Results of pre- and post-test questionnaires and interviews suggest principle categories of search terms.…

  2. Hawking radiation, Unruh radiation, and the equivalence principle.

    PubMed

    Singleton, Douglas; Wilburn, Steve

    2011-08-19

    We compare the response function of an Unruh-DeWitt detector for different space-times and different vacua and show that there is a detailed violation of the equivalence principle. In particular comparing the response of an accelerating detector to a detector at rest in a Schwarzschild space-time we find that both detectors register thermal radiation, but for a given, equivalent acceleration the fixed detector in the Schwarzschild space-time measures a higher temperature. This allows one to locally distinguish the two cases. As one approaches the horizon the two temperatures have the same limit so that the equivalence principle is restored at the horizon. © 2011 American Physical Society

  3. X-ray imaging physics for nuclear medicine technologists. Part 2: X-ray interactions and image formation.

    PubMed

    Seibert, J Anthony; Boone, John M

    2005-03-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. In part 1, the production and characteristics of x-rays were reviewed. In this article, the principles of x-ray interactions and image formation are discussed, in preparation for a general review of CT (part 3) and a more detailed investigation of PET/CT scanners in part 4.

  4. Erythrocyte-Derived Nanoparticles as a Theranostic Agent for Near-Infrared Fluorescence Imaging and Thrombolysis of Blood Clots.

    PubMed

    Vankayala, Raviraj; Corber, Samantha R; Mac, Jenny T; Rao, Masaru P; Shafie, Mohammad; Anvari, Bahman

    2018-04-01

    Ischemic stroke occurs when a blood clot obstructs or narrows the arteries that supply blood to the brain. Currently, tissue plasminogen activator (tPA), a thrombolytic agent, is the only United States Food and Drug Administration (FDA)-approved pharmacologic treatment for ischemic stroke. Despite its effective usage, the major limitation of tPA that stems from its short half-life in plasma (≈5 min) is the potential for increased risk of hemorrhagic complications. To circumvent these limitations, herein, the first proof-of-principle demonstration of a theranostic nanoconstruct system derived from erythrocytes doped with the FDA-approved near-infrared (NIR) imaging agent, indocyanine green, and surface-functionalized with tPA is reported. Using a clot model, the dual functionality of these nanoconstructs in NIR fluorescence imaging and clot lysis is demonstrated. These biomimetic theranostic nanoconstructs may ultimately be effective in imaging and treatment of blood clots involved in ischemic stroke. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Benefits and limitations of multimodality imaging in the diagnosis of a primary cardiac lymphoma.

    PubMed

    Nijjar, Prabhjot Singh; Masri, Sofia Carolina; Tamene, Ashenafi; Kassahun, Helina; Liao, Kenneth; Valeti, Uma

    2014-12-01

    Primary cardiac tumors are far rarer than tumors metastatic to the heart. Angiosarcoma is the primary cardiac neoplasm most frequently detected; lymphomas constitute only 1% of primary cardiac tumors. We present the case of a 55-year-old woman with a recently diagnosed intracardiac mass who was referred to our institution for consideration of urgent orthotopic heart transplantation. Initial images suggested an angiosarcoma; however, a biopsy specimen of the mass was diagnostic for diffuse large B-cell lymphoma. The patient underwent chemotherapy rather than surgery, and she was asymptomatic 34 months later. We use our patient's case to discuss the benefits and limitations of multiple imaging methods in the evaluation of cardiac masses. Certain features revealed by computed tomography, cardiac magnetic resonance, and positron emission tomography can suggest a diagnosis of angiosarcoma rather than lymphoma. Cardiac magnetic resonance and positron emission tomography enable reliable distinction between benign and malignant tumors; however, the characteristics of different malignant tumors can overlap. Despite the great usefulness of multiple imaging methods for timely diagnosis, defining the extent of spread and the hemodynamic impact, and monitoring responses to treatment, we think that biopsy analysis is still warranted in order to obtain a correct histologic diagnosis in cases of suspected malignant cardiac tumors.

  6. Recent Advances in Compressed Sensing: Discrete Uncertainty Principles and Fast Hyperspectral Imaging

    DTIC Science & Technology

    2015-03-26

    Fourier Analysis and Applications, vol. 14, pp. 838–858, 2008. 11. D. J. Cooke, “A discrete X - ray transform for chromotomographic hyperspectral imaging ... medical imaging , e.g., magnetic resonance imaging (MRI). Since the early 1980s, MRI has granted doctors the ability to distinguish between healthy tissue...i.e., at most K entries of x are nonzero. In many settings, this is a valid signal model; for example, JPEG2000 exploits the fact that natural images

  7. 29 CFR 553.202 - Limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FAIR LABOR STANDARDS ACT TO EMPLOYEES OF STATE AND LOCAL GOVERNMENTS Fire Protection and Law Enforcement Employees of Public Agencies General Principles § 553.202 Limitations. The application of sections... organization engaged in furnishing fire protection or law enforcement services. This is so even if the services...

  8. The Global Landscape of Occupational Exposure Limits--Implementation of Harmonization Principles to Guide Limit Selection.

    PubMed

    Deveau, M; Chen, C-P; Johanson, G; Krewski, D; Maier, A; Niven, K J; Ripple, S; Schulte, P A; Silk, J; Urbanus, J H; Zalk, D M; Niemeier, R W

    2015-01-01

    Occupational exposure limits (OELs) serve as health-based benchmarks against which measured or estimated workplace exposures can be compared. In the years since the introduction of OELs to public health practice, both developed and developing countries have established processes for deriving, setting, and using OELs to protect workers exposed to hazardous chemicals. These processes vary widely, however, and have thus resulted in a confusing international landscape for identifying and applying such limits in workplaces. The occupational hygienist will encounter significant overlap in coverage among organizations for many chemicals, while other important chemicals have OELs developed by few, if any, organizations. Where multiple organizations have published an OEL, the derived value often varies considerably-reflecting differences in both risk policy and risk assessment methodology as well as access to available pertinent data. This article explores the underlying reasons for variability in OELs, and recommends the harmonization of risk-based methods used by OEL-deriving organizations. A framework is also proposed for the identification and systematic evaluation of OEL resources, which occupational hygienists can use to support risk characterization and risk management decisions in situations where multiple potentially relevant OELs exist.

  9. Maximizing Total QoS-Provisioning of Image Streams with Limited Energy Budget

    NASA Astrophysics Data System (ADS)

    Lee, Wan Yeon; Kim, Kyong Hoon; Ko, Young Woong

    To fully utilize the limited battery energy of mobile electronic devices, we propose an adaptive adjustment method of processing quality for multiple image stream tasks running with widely varying execution times. This adjustment method completes the worst-case executions of the tasks with a given budget of energy, and maximizes the total reward value of processing quality obtained during their executions by exploiting the probability distribution of task execution times. The proposed method derives the maximum reward value for the tasks being executable with arbitrary processing quality, and near maximum value for the tasks being executable with a finite number of processing qualities. Our evaluation on a prototype system shows that the proposed method achieves larger reward values, by up to 57%, than the previous method.

  10. Fundamental Limitations for Imaging GEO Satellites

    DTIC Science & Technology

    2015-10-18

    details of a geostationary satellite can be phase stabilized. We conclude that it is possible to phase such an interferometer with shorter baselines using...Jorgensen, A., Restaino, S., Armstrong, J., Baines, E., Hindsley, R. “Simulated Synthesis Imaging of Geostationary Satellites” Proceedings of the AMOS...A. M. “Simulated optical interferometric observations of geostationary satellites” Proceedings of the SPIE 8165, 2011 [3] C Leinert, S. Bowyer, L

  11. Multimode C-arm fluoroscopy, tomosynthesis, and cone-beam CT for image-guided interventions: from proof of principle to patient protocols

    NASA Astrophysics Data System (ADS)

    Siewerdsen, J. H.; Daly, M. J.; Bachar, G.; Moseley, D. J.; Bootsma, G.; Brock, K. K.; Ansell, S.; Wilson, G. A.; Chhabra, S.; Jaffray, D. A.; Irish, J. C.

    2007-03-01

    High-performance intraoperative imaging is essential to an ever-expanding scope of therapeutic procedures ranging from tumor surgery to interventional radiology. The need for precise visualization of bony and soft-tissue structures with minimal obstruction to the therapy setup presents challenges and opportunities in the development of novel imaging technologies specifically for image-guided procedures. Over the past ~5 years, a mobile C-arm has been modified in collaboration with Siemens Medical Solutions for 3D imaging. Based upon a Siemens PowerMobil, the device includes: a flat-panel detector (Varian PaxScan 4030CB); a motorized orbit; a system for geometric calibration; integration with real-time tracking and navigation (NDI Polaris); and a computer control system for multi-mode fluoroscopy, tomosynthesis, and cone-beam CT. Investigation of 3D imaging performance (noise-equivalent quanta), image quality (human observer studies), and image artifacts (scatter, truncation, and cone-beam artifacts) has driven the development of imaging techniques appropriate to a host of image-guided interventions. Multi-mode functionality presents a valuable spectrum of acquisition techniques: i.) fluoroscopy for real-time 2D guidance; ii.) limited-angle tomosynthesis for fast 3D imaging (e.g., ~10 sec acquisition of coronal slices containing the surgical target); and iii.) fully 3D cone-beam CT (e.g., ~30-60 sec acquisition providing bony and soft-tissue visualization across the field of view). Phantom and cadaver studies clearly indicate the potential for improved surgical performance - up to a factor of 2 increase in challenging surgical target excisions. The C-arm system is currently being deployed in patient protocols ranging from brachytherapy to chest, breast, spine, and head and neck surgery.

  12. Quantum dots versus organic fluorophores in fluorescent deep-tissue imaging--merits and demerits.

    PubMed

    Bakalova, Rumiana; Zhelev, Zhivko; Gadjeva, Veselina

    2008-12-01

    The use of fluorescence in deep-tissue imaging is rapidly expanding in last several years. The progress in fluorescent molecular probes and fluorescent imaging techniques gives an opportunity to detect single cells and even molecular targets in live organisms. The highly sensitive and high-speed fluorescent molecular sensors and detection devices allow the application of fluorescence in functional imaging. With the development of novel bright fluorophores based on nanotechnologies and 3D fluorescence scanners with high spatial and temporal resolution, the fluorescent imaging has a potential to become an alternative of the other non-invasive imaging techniques as magnetic resonance imaging, positron-emission tomography, X-ray, computing tomography. The fluorescent imaging has also a potential to give a real map of human anatomy and physiology. The current review outlines the advantages of fluorescent nanoparticles over conventional organic dyes in deep-tissue imaging in vivo and defines the major requirements to the "perfect fluorophore". The analysis proceeds from the basic principles of fluorescence and major characteristics of fluorophores, light-tissue interactions, and major limitations of fluorescent deep-tissue imaging. The article is addressed to a broad readership - from specialists in this field to university students.

  13. Principles for valid histopathologic scoring in research

    PubMed Central

    Gibson-Corley, Katherine N.; Olivier, Alicia K.; Meyerholz, David K.

    2013-01-01

    Histopathologic scoring is a tool by which semi-quantitative data can be obtained from tissues. Initially, a thorough understanding of the experimental design, study objectives and methods are required to allow the pathologist to appropriately examine tissues and develop lesion scoring approaches. Many principles go into the development of a scoring system such as tissue examination, lesion identification, scoring definitions and consistency in interpretation. Masking (a.k.a. “blinding”) of the pathologist to experimental groups is often necessary to constrain bias and multiple mechanisms are available. Development of a tissue scoring system requires appreciation of the attributes and limitations of the data (e.g. nominal, ordinal, interval and ratio data) to be evaluated. Incidence, ordinal and rank methods of tissue scoring are demonstrated along with key principles for statistical analyses and reporting. Validation of a scoring system occurs through two principal measures: 1) validation of repeatability and 2) validation of tissue pathobiology. Understanding key principles of tissue scoring can help in the development and/or optimization of scoring systems so as to consistently yield meaningful and valid scoring data. PMID:23558974

  14. The Four-Quadrant Phase-Mask Coronagraph. I. Principle

    NASA Astrophysics Data System (ADS)

    Rouan, D.; Riaud, P.; Boccaletti, A.; Clénet, Y.; Labeyrie, A.

    2000-11-01

    We describe a new type of coronagraph, based on the principle of a phase mask as proposed by Roddier and Roddier a few years ago but using an original mask design found by one of us (D. R.), a four-quadrant binary phase mask (0, π) covering the full field of view at the focal plane. The mutually destructive interferences of the coherent light from the main source produce a very efficient nulling. The computed rejection rate of this coronagraph appears to be very high since, when perfectly aligned and phase-error free, it could in principle reduce the total amount of light from the bright source by a factor of 108, corresponding to a gain of 20 mag in brightness at the location of the first Airy ring, relative to the Airy peak. In the real world the gain is of course reduced by a strong factor, but nulling is still performing quite well, provided that the perturbation of the phase, for instance, due to the Earth's atmosphere, is efficiently corrected by adaptive optics. We show from simulations that a detection at a contrast of 10 mag between a star and a faint companion is achievable in excellent conditions, while 8 mag appears routinely feasible. This coronagraph appears less sensitive to atmospheric turbulence and has a larger dynamic range than other recently proposed nulling techniques: the phase-mask coronagraph (by Roddier and Roddier) or the Achromatic Interfero-Coronagraph (by Gay and Rabbia). We present the principle of the four-quadrant coronagraph and results of a first series of simulations. We compare those results with theoretical performances of other devices. We briefly analyze the different limitations in space or ground-based observations, as well as the issue of manufacturing the device. We also discuss several ways to improve the detection of a faint companion around a bright object. We conclude that, with respect to previous techniques, an instrument equipped with this coronagraph should have better performance and even enable the imaging of

  15. New scheme for image edge detection using the switching mechanism of nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Pahari, Nirmalya; Mukhopadhyay, Sourangshu

    2006-03-01

    The limitations of electronics in conducting parallel arithmetic, algebraic, and logic processing are well known. Very high-speed (terahertz) performance cannot be expected in conventional electronic mechanisms. To achieve such performance we can introduce optics instead of electronics for information processing, computing, and data handling. Nonlinear optical material (NOM) is a successful candidate in this regard to play a major role in the domain of optically controlled switching systems. The character of some NOMs is such as to reflect the probe beam in the presence of two read beams (or pump beams) exciting the material from opposite directions, using the principle of four-wave mixing. In image processing, edge extraction from an image is an important and essential task. Several optical methods of digital image processing are used for properly evaluating the image edges. We propose here a new method of image edge detection, extraction, and enhancement by use of AND-based switching operations with NOM. In this process we have used the optically inverted image of a supplied image. This can be obtained by the EXOR switching operation of the NOM.

  16. Susceptibility-Weighted Imaging and Quantitative Susceptibility Mapping in the Brain

    PubMed Central

    Liu, Chunlei; Li, Wei; Tong, Karen A.; Yeom, Kristen W.; Kuzminski, Samuel

    2015-01-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. PMID:25270052

  17. On Anaphora and the Binding Principles in Categorial Grammar

    NASA Astrophysics Data System (ADS)

    Morrill, Glyn; Valentín, Oriol

    In type logical categorial grammar the analysis of an expression is a resource-conscious proof. Anaphora represents a particular challenge to this approach in that the antecedent resource is multiplied in the semantics. This duplication, which corresponds logically to the structural rule of contraction, may be treated lexically or syntactically. Furthermore, anaphora is subject to constraints, which Chomsky (1981) formulated as Binding Principles A, B, and C. In this paper we consider English anaphora in categorial grammar including reference to the binding principles. We invoke displacement calculus, modal categorial calculus, categorial calculus with limited contraction, and entertain addition of negation as failure.

  18. The quantum limit for gravitational-wave detectors and methods of circumventing it

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Caves, C. M.; Sandberg, V. D.; Zimmermann, M.; Drever, R. W. P.

    1979-01-01

    The Heisenberg uncertainty principle prevents the monitoring of the complex amplitude of a mechanical oscillator more accurately than a certain limit value. This 'quantum limit' is a serious obstacle to the achievement of a 10 to the -21st gravitational-wave detection sensitivity. This paper examines the principles of the back-action evasion technique and finds that this technique may be able to overcome the problem of the quantum limit. Back-action evasion does not solve, however, other problems of detection, such as weak coupling, large amplifier noise, and large Nyquist noise.

  19. [Digital thoracic radiology: devices, image processing, limits].

    PubMed

    Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E

    2001-09-01

    In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing.

  20. GOATS Image Projection Component

    NASA Technical Reports Server (NTRS)

    Haber, Benjamin M.; Green, Joseph J.

    2011-01-01

    When doing mission analysis and design of an imaging system in orbit around the Earth, answering the fundamental question of imaging performance requires an understanding of the image products that will be produced by the imaging system. GOATS software represents a series of MATLAB functions to provide for geometric image projections. Unique features of the software include function modularity, a standard MATLAB interface, easy-to-understand first-principles-based analysis, and the ability to perform geometric image projections of framing type imaging systems. The software modules are created for maximum analysis utility, and can all be used independently for many varied analysis tasks, or used in conjunction with other orbit analysis tools.

  1. Combination of confocal principle and aperture stop separation improves suppression of crystalline lens fluorescence in an eye model.

    PubMed

    Klemm, Matthias; Blum, Johannes; Link, Dietmar; Hammer, Martin; Haueisen, Jens; Schweitzer, Dietrich

    2016-09-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique to detect changes in the human retina. The autofluorescence decay over time, generated by endogenous fluorophores, is measured in vivo. The strong autofluorescence of the crystalline lens, however, superimposes the intensity decay of the retina fluorescence, as the confocal principle is not able to suppress it sufficiently. Thus, the crystalline lens autofluorescence causes artifacts in the retinal fluorescence lifetimes determined from the intensity decays. Here, we present a new technique to suppress the autofluorescence of the crystalline lens by introducing an annular stop into the detection light path, which we call Schweitzer's principle. The efficacy of annular stops with an outer diameter of 7 mm and inner diameters of 1 to 5 mm are analyzed in an experimental setup using a model eye based on fluorescent dyes. Compared to the confocal principle, Schweitzer's principle with an inner diameter of 3 mm is able to reduce the simulated crystalline lens fluorescence to 4%, while 42% of the simulated retina fluorescence is preserved. Thus, we recommend the implementation of Schweitzer's principle in scanning laser ophthalmoscopes used for fundus autofluorescence measurements, especially the FLIO device, for improved image quality.

  2. Super-resolution imaging of multiple cells by optimized flat-field epi-illumination

    NASA Astrophysics Data System (ADS)

    Douglass, Kyle M.; Sieben, Christian; Archetti, Anna; Lambert, Ambroise; Manley, Suliana

    2016-11-01

    Biological processes are inherently multi-scale, and supramolecular complexes at the nanoscale determine changes at the cellular scale and beyond. Single-molecule localization microscopy (SMLM) techniques have been established as important tools for studying cellular features with resolutions of the order of around 10 nm. However, in their current form these modalities are limited by a highly constrained field of view (FOV) and field-dependent image resolution. Here, we develop a low-cost microlens array (MLA)-based epi-illumination system—flat illumination for field-independent imaging (FIFI)—that can efficiently and homogeneously perform simultaneous imaging of multiple cells with nanoscale resolution. The optical principle of FIFI, which is an extension of the Köhler integrator, is further elucidated and modelled with a new, free simulation package. We demonstrate FIFI's capabilities by imaging multiple COS-7 and bacteria cells in 100 × 100 μm2 SMLM images—more than quadrupling the size of a typical FOV and producing near-gigapixel-sized images of uniformly high quality.

  3. Nursing essential principles: continuous renal replacement therapy.

    PubMed

    Richardson, Annette; Whatmore, Jayne

    2015-01-01

    This article aims to guide critical care nurses with the care and management of patients on continuous renal replacement therapy (CRRT). CRRT, a highly specialized therapy involving complex nursing care, is used widely in the intensive care unit to treat patients with acute kidney injury. A literature search was conducted using CINAHL, Medline from PubMed and BNI using the search terms CRRT or continuous veno-venous haemofiltration and nursing or nurses from 2000 onwards and limited to the English language. The appraised evidence and expert opinion is used in this article. Four essential nursing principles for CRRT are reviewed (1) the importance of continuous assessment of the indications to influence the appropriate mode; (2) ensuring good vascular access; (3) the avoidance of unnecessary interruptions and (4) the prevention of complications. The identified four essential nursing principles provide guidance on this complex aspects of nursing practice. Specific nursing research to guide the care and management of this therapy is limited so should be explored in the future. Critical care nurses caring for and managing patients on CRRT require an understanding of how to deliver safe CRRT. © 2014 British Association of Critical Care Nurses.

  4. Scheimpflug with computational imaging to extend the depth of field of iris recognition systems

    NASA Astrophysics Data System (ADS)

    Sinharoy, Indranil

    Despite the enormous success of iris recognition in close-range and well-regulated spaces for biometric authentication, it has hitherto failed to gain wide-scale adoption in less controlled, public environments. The problem arises from a limitation in imaging called the depth of field (DOF): the limited range of distances beyond which subjects appear blurry in the image. The loss of spatial details in the iris image outside the small DOF limits the iris image capture to a small volume-the capture volume. Existing techniques to extend the capture volume are usually expensive, computationally intensive, or afflicted by noise. Is there a way to combine the classical Scheimpflug principle with the modern computational imaging techniques to extend the capture volume? The solution we found is, surprisingly, simple; yet, it provides several key advantages over existing approaches. Our method, called Angular Focus Stacking (AFS), consists of capturing a set of images while rotating the lens, followed by registration, and blending of the in-focus regions from the images in the stack. The theoretical underpinnings of AFS arose from a pair of new and general imaging models we developed for Scheimpflug imaging that directly incorporates the pupil parameters. The model revealed that we could register the images in the stack analytically if we pivot the lens at the center of its entrance pupil, rendering the registration process exact. Additionally, we found that a specific lens design further reduces the complexity of image registration making AFS suitable for real-time performance. We have demonstrated up to an order of magnitude improvement in the axial capture volume over conventional image capture without sacrificing optical resolution and signal-to-noise ratio. The total time required for capturing the set of images for AFS is less than the time needed for a single-exposure, conventional image for the same DOF and brightness level. The net reduction in capture time can

  5. Dental cone-beam CT reconstruction from limited-angle view data based on compressed-sensing (CS) theory for fast, low-dose X-ray imaging

    NASA Astrophysics Data System (ADS)

    Je, Uikyu; Cho, Hyosung; Lee, Minsik; Oh, Jieun; Park, Yeonok; Hong, Daeki; Park, Cheulkyu; Cho, Heemoon; Choi, Sungil; Koo, Yangseo

    2014-06-01

    Recently, reducing radiation doses has become an issue of critical importance in the broader radiological community. As a possible technical approach, especially, in dental cone-beam computed tomography (CBCT), reconstruction from limited-angle view data (< 360°) would enable fast scanning with reduced doses to the patient. In this study, we investigated and implemented an efficient reconstruction algorithm based on compressed-sensing (CS) theory for the scan geometry and performed systematic simulation works to investigate the image characteristics. We also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in incomplete data problems. We successfully reconstructed CBCT images with incomplete projections acquired at selected scan angles of 120, 150, 180, and 200° with a fixed angle step of 1.2° and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from limited-angle view data show that the algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.

  6. Multi-frequency subspace migration for imaging of perfectly conducting, arc-like cracks in full- and limited-view inverse scattering problems

    NASA Astrophysics Data System (ADS)

    Park, Won-Kwang

    2015-02-01

    Multi-frequency subspace migration imaging techniques are usually adopted for the non-iterative imaging of unknown electromagnetic targets, such as cracks in concrete walls or bridges and anti-personnel mines in the ground, in the inverse scattering problems. It is confirmed that this technique is very fast, effective, robust, and can not only be applied to full- but also to limited-view inverse problems if a suitable number of incidents and corresponding scattered fields are applied and collected. However, in many works, the application of such techniques is heuristic. With the motivation of such heuristic application, this study analyzes the structure of the imaging functional employed in the subspace migration imaging technique in two-dimensional full- and limited-view inverse scattering problems when the unknown targets are arbitrary-shaped, arc-like perfectly conducting cracks located in the two-dimensional homogeneous space. In contrast to the statistical approach based on statistical hypothesis testing, our approach is based on the fact that the subspace migration imaging functional can be expressed by a linear combination of the Bessel functions of integer order of the first kind. This is based on the structure of the Multi-Static Response (MSR) matrix collected in the far-field at nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition). The investigation of the expression of imaging functionals gives us certain properties of subspace migration and explains why multi-frequency enhances imaging resolution. In particular, we carefully analyze the subspace migration and confirm some properties of imaging when a small number of incident fields are applied. Consequently, we introduce a weighted multi-frequency imaging functional and confirm that it is an improved version of subspace migration in TM mode. Various results of numerical simulations performed on the far

  7. Fundamental limits of image registration performance: Effects of image noise and resolution in CT-guided interventions.

    PubMed

    Ketcha, M D; de Silva, T; Han, R; Uneri, A; Goerres, J; Jacobson, M; Vogt, S; Kleinszig, G; Siewerdsen, J H

    2017-02-11

    In image-guided procedures, image acquisition is often performed primarily for the task of geometrically registering information from another image dataset, rather than detection / visualization of a particular feature. While the ability to detect a particular feature in an image has been studied extensively with respect to image quality characteristics (noise, resolution) and is an ongoing, active area of research, comparatively little has been accomplished to relate such image quality characteristics to registration performance. To establish such a framework, we derived Cramer-Rao lower bounds (CRLB) for registration accuracy, revealing the underlying dependencies on image variance and gradient strength. The CRLB was analyzed as a function of image quality factors (in particular, dose) for various similarity metrics and compared to registration accuracy using CT images of an anthropomorphic head phantom at various simulated dose levels. Performance was evaluated in terms of root mean square error (RMSE) of the registration parameters. Analysis of the CRLB shows two primary dependencies: 1) noise variance (related to dose); and 2) sum of squared image gradients (related to spatial resolution and image content). Comparison of the measured RMSE to the CRLB showed that the best registration method, RMSE achieved the CRLB to within an efficiency factor of 0.21, and optimal estimators followed the predicted inverse proportionality between registration performance and radiation dose. Analysis of the CRLB for image registration is an important step toward understanding and evaluating an intraoperative imaging system with respect to a registration task. While the CRLB is optimistic in absolute performance, it reveals a basis for relating the performance of registration estimators as a function of noise content and may be used to guide acquisition parameter selection (e.g., dose) for purposes of intraoperative registration.

  8. Dynamics of competitive systems with a single common limiting factor.

    PubMed

    Kon, Ryusuke

    2015-02-01

    The concept of limiting factors (or regulating factors) succeeded in formulating the well-known principle of competitive exclusion. This paper shows that the concept of limiting factors is helpful not only to formulate the competitive exclusion principle, but also to obtain other ecological insights. To this end, by focusing on a specific community structure, we study the dynamics of Kolmogorov equations and show that it is possible to derive an ecologically insightful result only from the information about interactions between species and limiting factors. Furthermore, we find that the derived result is a generalization of the preceding work by Shigesada, Kawasaki, and Teramoto (1984), who examined a certain Lotka-Volterra equation in a different context.

  9. A laboratory demonstration of the capability to image an Earth-like extrasolar planet.

    PubMed

    Trauger, John T; Traub, Wesley A

    2007-04-12

    The detection and characterization of an Earth-like planet orbiting a nearby star requires a telescope with an extraordinarily large contrast at small angular separations. At visible wavelengths, an Earth-like planet would be 1 x 10(-10) times fainter than the star at angular separations of typically 0.1 arcsecond or less. There are several proposed space telescope systems that could, in principle, achieve this. Here we report a laboratory experiment that reaches these limits. We have suppressed the diffracted and scattered light near a star-like source to a level of 6 x 10(-10) times the peak intensity in individual coronagraph images. In a series of such images, together with simple image processing, we have effectively reduced this to a residual noise level of about 0.1 x 10(-10). This demonstrates that a coronagraphic telescope in space could detect and spectroscopically characterize nearby exoplanetary systems, with the sensitivity to image an 'Earth-twin' orbiting a nearby star.

  10. Evidence-based prosthodontics: fundamental considerations, limitations, and guidelines.

    PubMed

    Bidra, Avinash S

    2014-01-01

    Evidence-based dentistry is rapidly emerging to become an integral part of patient care, dental education, and research. Prosthodontics is a unique dental specialty that encompasses art, philosophy, and science and includes reversible and irreversible treatments. It not only affords good applicability of many principles of evidence-based dentistry but also poses numerous limitations. This article describes the epidemiologic background, fundamental considerations, scrutiny of levels of evidence, limitations, guidelines, and future perspectives of evidence-based prosthodontics. Understanding these principles can aid clinicians in appropriate appraisal of the prosthodontics literature and use the best available evidence for making confident clinical decisions and optimizing patient care. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Airborne imaging spectrometers developed in China

    NASA Astrophysics Data System (ADS)

    Wang, Jianyu; Xue, Yongqi

    1998-08-01

    Airborne imaging spectral technology, principle means in airborne remote sensing, has been developed rapidly both in the world and in China recently. This paper describes Modular Airborne Imaging Spectrometer (MAIS), Operational Modular Airborne Imaging Spectrometer (OMAIS) and Pushbroom Hyperspectral Imagery (PHI) that have been developed or are being developed in Airborne Remote Sensing Lab of Shanghai Institute of Technical Physics, CAS.

  12. Intuitions, principles and consequences

    PubMed Central

    Shaw, A

    2001-01-01

    Some approaches to the assessment of moral intuitions are discussed. The controlled ethical trial isolates a moral issue from confounding factors and thereby clarifies what a person's intuition actually is. Casuistic reasoning from situations, where intuitions are clear, suggests or modifies principles, which can then help to make decisions in situations where intuitions are unclear. When intuitions are defended by a supporting principle, that principle can be tested by finding extreme cases, in which it is counterintuitive to follow the principle. An approach to the resolution of conflict between valid moral principles, specifically the utilitarian and justice principles, is considered. It is argued that even those who justify intuitions by a priori principles are often obliged to modify or support their principles by resort to the consideration of consequences. Key Words: Intuitions • principles • consequences • utilitarianism PMID:11233371

  13. Features and limitations of mobile tablet devices for viewing radiological images.

    PubMed

    Grunert, J H

    2015-03-01

    Mobile radiological image display systems are becoming increasingly common, necessitating a comparison of the features of these systems, specifically the operating system employed, connection to stationary PACS, data security and rang of image display and image analysis functions. In the fall of 2013, a total of 17 PACS suppliers were surveyed regarding the technical features of 18 mobile radiological image display systems using a standardized questionnaire. The study also examined to what extent the technical specifications of the mobile image display systems satisfy the provisions of the Germany Medical Devices Act as well as the provisions of the German X-ray ordinance (RöV). There are clear differences in terms of how the mobile systems connected to the stationary PACS. Web-based solutions allow the mobile image display systems to function independently of their operating systems. The examined systems differed very little in terms of image display and image analysis functions. Mobile image display systems complement stationary PACS and can be used to view images. The impacts of the new quality assurance guidelines (QS-RL) as well as the upcoming new standard DIN 6868 - 157 on the acceptance testing of mobile image display units for the purpose of image evaluation are discussed. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Variational principles for relativistic smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Monaghan, J. J.; Price, D. J.

    2001-12-01

    In this paper we show how the equations of motion for the smoothed particle hydrodynamics (SPH) method may be derived from a variational principle for both non-relativistic and relativistic motion when there is no dissipation. Because the SPH density is a function of the coordinates the derivation of the equations of motion through variational principles is simpler than in the continuum case where the density is defined through the continuity equation. In particular, the derivation of the general relativistic equations is more direct and simpler than that of Fock. The symmetry properties of the Lagrangian lead immediately to the familiar additive conservation laws of linear and angular momentum and energy. In addition, we show that there is an approximately conserved quantity which, in the continuum limit, is the circulation.

  15. Instructional Audio Guidelines: Four Design Principles to Consider for Every Instructional Audio Design Effort

    ERIC Educational Resources Information Center

    Carter, Curtis W.

    2012-01-01

    This article contends that instructional designers and developers should attend to four particular design principles when creating instructional audio. Support for this view is presented by referencing the limited research that has been done in this area, and by indicating how and why each of the four principles is important to the design process.…

  16. Time-resolved ion imaging at free-electron lasers using TimepixCam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher-Levine, Merlin; Boll, Rebecca; Ziaee, Farzaneh

    In this paper, the application of a novel fast optical-imaging camera, TimepixCam, to molecular photoionization experiments using the velocity-map imaging technique at a free-electron laser is described. TimepixCam is a 256 × 256 pixel CMOS camera that is able to detect and time-stamp ion hits with 20 ns timing resolution, thus making it possible to record ion momentum images for all fragment ions simultaneously and avoiding the need to gate the detector on a single fragment. This allows the recording of significantly more data within a given amount of beam time and is particularly useful for pump–probe experiments, where drifts,more » for example, in the timing and pulse energy of the free-electron laser, severely limit the comparability of pump–probe scans for different fragments taken consecutively. Finally, in principle, this also allows ion–ion covariance or coincidence techniques to be applied to determine angular correlations between fragments.« less

  17. Time-resolved ion imaging at free-electron lasers using TimepixCam

    DOE PAGES

    Fisher-Levine, Merlin; Boll, Rebecca; Ziaee, Farzaneh; ...

    2018-02-20

    In this paper, the application of a novel fast optical-imaging camera, TimepixCam, to molecular photoionization experiments using the velocity-map imaging technique at a free-electron laser is described. TimepixCam is a 256 × 256 pixel CMOS camera that is able to detect and time-stamp ion hits with 20 ns timing resolution, thus making it possible to record ion momentum images for all fragment ions simultaneously and avoiding the need to gate the detector on a single fragment. This allows the recording of significantly more data within a given amount of beam time and is particularly useful for pump–probe experiments, where drifts,more » for example, in the timing and pulse energy of the free-electron laser, severely limit the comparability of pump–probe scans for different fragments taken consecutively. Finally, in principle, this also allows ion–ion covariance or coincidence techniques to be applied to determine angular correlations between fragments.« less

  18. Time-resolved ion imaging at free-electron lasers using TimepixCam.

    PubMed

    Fisher-Levine, Merlin; Boll, Rebecca; Ziaee, Farzaneh; Bomme, Cédric; Erk, Benjamin; Rompotis, Dimitrios; Marchenko, Tatiana; Nomerotski, Andrei; Rolles, Daniel

    2018-03-01

    The application of a novel fast optical-imaging camera, TimepixCam, to molecular photoionization experiments using the velocity-map imaging technique at a free-electron laser is described. TimepixCam is a 256 × 256 pixel CMOS camera that is able to detect and time-stamp ion hits with 20 ns timing resolution, thus making it possible to record ion momentum images for all fragment ions simultaneously and avoiding the need to gate the detector on a single fragment. This allows the recording of significantly more data within a given amount of beam time and is particularly useful for pump-probe experiments, where drifts, for example, in the timing and pulse energy of the free-electron laser, severely limit the comparability of pump-probe scans for different fragments taken consecutively. In principle, this also allows ion-ion covariance or coincidence techniques to be applied to determine angular correlations between fragments.

  19. Students' and Teachers' Misapplication of Le Chatelier's Principle: Implications for the Teaching of Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Quilez-Pardo, Juan; Solaz-Portoles, Joan Josep

    1995-01-01

    Study of strategies and procedures of 170 students and 40 teachers when solving chemical equilibrium problems found misconceptions emerging through: misapplication of Le Chatelier's Principle, use of rote-learning recall, incorrect control of variables, limited use of chemical equilibrium law, lack of mastery of chemical equilibrium principles,…

  20. Principlism and communitarianism

    PubMed Central

    Callahan, D

    2003-01-01

    The decline in the interest in ethical theory is first outlined, as a background to the author's discussion of principlism. The author's own stance, that of a communitarian philosopher, is then described, before the subject of principlism itself is addressed. Two problems stand in the way of the author's embracing principlism: its individualistic bias and its capacity to block substantive ethical inquiry. The more serious problem the author finds to be its blocking function. Discussing the four scenarios the author finds that the utility of principlism is shown in the two scenarios about Jehovah's Witnesses but that when it comes to selling kidneys for transplantation and germline enhancement, principlism is of little help. PMID:14519838

  1. Principlism and communitarianism.

    PubMed

    Callahan, D

    2003-10-01

    The decline in the interest in ethical theory is first outlined, as a background to the author's discussion of principlism. The author's own stance, that of a communitarian philosopher, is then described, before the subject of principlism itself is addressed. Two problems stand in the way of the author's embracing principlism: its individualistic bias and its capacity to block substantive ethical inquiry. The more serious problem the author finds to be its blocking function. Discussing the four scenarios the author finds that the utility of principlism is shown in the two scenarios about Jehovah's Witnesses but that when it comes to selling kidneys for transplantation and germline enhancement, principlism is of little help.

  2. Workshop on the Use of Future Multispectral Imaging Capabilities for Lithologic Mapping: Workshop summary

    NASA Technical Reports Server (NTRS)

    Settle, M.; Adams, J.

    1982-01-01

    Improved orbital imaging capabilities from the standpoint of different scientific disciplines, such as geology, botany, hydrology, and geography were evaluated. A discussion on how geologists might exploit the anticipated measurement capabilities of future orbital imaging systems to discriminate and characterize different types of geologic materials exposed at the Earth's surface is presented. Principle objectives are to summarize past accomplishments in the use of multispectral imaging techniques for lithologic mapping; to identify critical gaps in earlier research efforts that currently limit the ability to extract useful information about the physical and chemical characteristics of geological materials from orbital multispectral surveys; and to define major thresholds, resolution and sensitivity within the visible and infrared portions of the electromagnetic spectrum which, if achieved would result in significant improvement in our ability to discriminate and characterize different geological materials exposed at the Earth's surface.

  3. New image-stabilizing system

    NASA Astrophysics Data System (ADS)

    Zhao, Yuejin

    1996-06-01

    In this paper, a new method for image stabilization with a three-axis image- stabilizing reflecting prism assembly is presented, and the principle of image stabilization in this prism assembly, formulae for image stabilization and working formulae with an approximation up to the third power are given in detail. In this image-stabilizing system, a single chip microcomputer is used to calculate value of compensating angles and thus to control the prism assembly. Two gyroscopes act as sensors from which information of angular perturbation is obtained, three stepping motors drive the prism assembly to compensate for the movement of image produced by angular perturbation. The image-stabilizing device so established is a multifold system which involves optics, mechanics, electronics and computer.

  4. “Stringy” coherent states inspired by generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Ghosh, Subir; Roy, Pinaki

    2012-05-01

    Coherent States with Fractional Revival property, that explicitly satisfy the Generalized Uncertainty Principle (GUP), have been constructed in the context of Generalized Harmonic Oscillator. The existence of such states is essential in motivating the GUP based phenomenological results present in the literature which otherwise would be of purely academic interest. The effective phase space is Non-Canonical (or Non-Commutative in popular terminology). Our results have a smooth commutative limit, equivalent to Heisenberg Uncertainty Principle. The Fractional Revival time analysis yields an independent bound on the GUP parameter. Using this and similar bounds obtained here, we derive the largest possible value of the (GUP induced) minimum length scale. Mandel parameter analysis shows that the statistics is Sub-Poissonian. Correspondence Principle is deformed in an interesting way. Our computational scheme is very simple as it requires only first order corrected energy values and undeformed basis states.

  5. [Dry view laser imager--a new economical photothermal imaging method].

    PubMed

    Weberling, R

    1996-11-01

    The production of hard copies is currently achieved by means of laser imagers and wet film processing in systems attached either directly in or to the laser imager or in a darkroom. Variations in image quality resulting from a not always optimal wet film development are frequent. A newly developed thermographic film developer for laser films without liquid powdered chemicals, on the other hand, is environmentally preferable and reducing operating costs. The completely dry developing process provides permanent image documentation meeting the quality and safety requirements of RöV and BAK. One of the currently available systems of this type, the DryView Laser Imager is inexpensive and easy to install. The selective connection principle of the DryView Laser Imager can be expanded as required and accepts digital and/or analog interfaces with all imaging systems (CT, MR, DR, US, NM) from the various manufactures.

  6. Equivalence principles and electromagnetism

    NASA Technical Reports Server (NTRS)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  7. Apparent violation of the principle of equivalence and killing horizons. [for relativity

    NASA Technical Reports Server (NTRS)

    Zimmerman, R. L.; Farhoosh, H.

    1980-01-01

    By means of the principle of equivalence the qualitative behavior of the Schwarzschild horizon about a uniformly accelerating particle was deduced. This result is confirmed for an exact solution of a uniformly accelerating object in the limit of small accelerations. For large accelerations the Schwarzschild horizon appears to violate the qualitative behavior established via the principle of equivalence. When similar arguments are extended to an observable such as the red shift between two observers, there is no departure from the results expected from the principle of equivalence. The resolution of the paradox is brought about by a compensating effect due to the Rindler horizon.

  8. Relativistic iron lines in accretion disks: the contribution of higher order images in the strong deflection limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldi, Giulio Francesco; Bozza, Valerio, E-mail: giuliofrancesco.aldi@sa.infn.it, E-mail: valboz@sa.infn.it

    The shapes of relativistic iron lines observed in spectra of candidate black holes carry the signatures of the strong gravitational fields in which the accretion disks lie. These lines result from the sum of the contributions of all images of the disk created by gravitational lensing, with the direct and first-order images largely dominating the overall shapes. Higher order images created by photons tightly winding around the black holes are often neglected in the modeling of these lines, since they require a substantially higher computational effort. With the help of the strong deflection limit, we present the most accurate semi-analyticalmore » calculation of these higher order contributions to the iron lines for Schwarzschild black holes. We show that two regimes exist depending on the inclination of the disk with respect to the line of sight. Many useful analytical formulae can be also derived in this framework.« less

  9. A first principles calculation and statistical mechanics modeling of defects in Al-H system

    NASA Astrophysics Data System (ADS)

    Ji, Min; Wang, Cai-Zhuang; Ho, Kai-Ming

    2007-03-01

    The behavior of defects and hydrogen in Al was investigated by first principles calculations and statistical mechanics modeling. The formation energy of different defects in Al+H system such as Al vacancy, H in institution and multiple H in Al vacancy were calculated by first principles method. Defect concentration in thermodynamical equilibrium was studied by total free energy calculation including configuration entropy and defect-defect interaction from low concentration limit to hydride limit. In our grand canonical ensemble model, hydrogen chemical potential under different environment plays an important role in determing the defect concentration and properties in Al-H system.

  10. SQCRAMscope imaging of transport in an iron-pnictide superconductor

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Kollar, Alicia; Taylor, Stephen; Palmstrom, Johanna; Chu, Jiun-Haw; Fisher, Ian; Lev, Benjamin

    2017-04-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We have recently introduced a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. We will report on the first use of the SQCRAMscope for imaging a strongly correlated material. Specifically, we will present measurements of electron transport in iron-pnictide superconductors across the electron nematic phase transition at T = 135 K.

  11. Design and fabrication of vertically-integrated CMOS image sensors.

    PubMed

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors.

  12. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    NASA Astrophysics Data System (ADS)

    Wirtz, T.; Philipp, P.; Audinot, J.-N.; Dowsett, D.; Eswara, S.

    2015-10-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM).

  13. Analysis of MUSIC-type imaging functional for single, thin electromagnetic inhomogeneity in limited-view inverse scattering problem

    NASA Astrophysics Data System (ADS)

    Ahn, Chi Young; Jeon, Kiwan; Park, Won-Kwang

    2015-06-01

    This study analyzes the well-known MUltiple SIgnal Classification (MUSIC) algorithm to identify unknown support of thin penetrable electromagnetic inhomogeneity from scattered field data collected within the so-called multi-static response matrix in limited-view inverse scattering problems. The mathematical theories of MUSIC are partially discovered, e.g., in the full-view problem, for an unknown target of dielectric contrast or a perfectly conducting crack with the Dirichlet boundary condition (Transverse Magnetic-TM polarization) and so on. Hence, we perform further research to analyze the MUSIC-type imaging functional and to certify some well-known but theoretically unexplained phenomena. For this purpose, we establish a relationship between the MUSIC imaging functional and an infinite series of Bessel functions of integer order of the first kind. This relationship is based on the rigorous asymptotic expansion formula in the existence of a thin inhomogeneity with a smooth supporting curve. Various results of numerical simulation are presented in order to support the identified structure of MUSIC. Although a priori information of the target is needed, we suggest a least condition of range of incident and observation directions to apply MUSIC in the limited-view problem.

  14. A New Principle in Physiscs: the Principle "Finiteness", and Some Consequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham Sternlieb

    2010-06-25

    In this paper I propose a new principle in physics: the principle of "finiteness". It stems from the definition of physics as a science that deals (among other things) with measurable dimensional physical quantities. Since measurement results, including their errors, are always finite, the principle of finiteness postulates that the mathematical formulation of "legitimate" laws of physics should prevent exactly zero or infinite solutions. Some consequences of the principle of finiteness are discussed, in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The consequences are derived independently of any other theory ormore » principle in physics. I propose "finiteness" as a postulate (like the constancy of the speed of light in vacuum, "c"), as opposed to a notion whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories, or principles.« less

  15. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology.

    PubMed

    Barrett, Harrison H; Myers, Kyle J; Caucci, Luca

    2014-08-17

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon.

  16. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Caucci, Luca

    2016-01-01

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon. PMID:27478293

  17. Speckle Filtering of GF-3 Polarimetric SAR Data with Joint Restriction Principle.

    PubMed

    Xie, Jinwei; Li, Zhenfang; Zhou, Chaowei; Fang, Yuyuan; Zhang, Qingjun

    2018-05-12

    Polarimetric SAR (PolSAR) scattering characteristics of imagery are always obtained from the second order moments estimation of multi-polarization data, that is, the estimation of covariance or coherency matrices. Due to the extra-paths that signal reflected from separate scatterers within the resolution cell has to travel, speckle noise always exists in SAR images and has a severe impact on the scattering performance, especially on single look complex images. In order to achieve high accuracy in estimating covariance or coherency matrices, three aspects are taken into consideration: (1) the edges and texture of the scene are distinct after speckle filtering; (2) the statistical characteristic should be similar to the object pixel; and (3) the polarimetric scattering signature should be preserved, in addition to speckle reduction. In this paper, a joint restriction principle is proposed to meet the requirement. Three different restriction principles are introduced to the processing of speckle filtering. First, a new template, which is more suitable for the point or line targets, is designed to ensure the morphological consistency. Then, the extent sigma filter is used to restrict the pixels in the template aforementioned to have an identical statistic characteristic. At last, a polarimetric similarity factor is applied to the same pixels above, to guarantee the similar polarimetric features amongst the optional pixels. This processing procedure is named as speckle filtering with joint restriction principle and the approach is applied to GF-3 polarimetric SAR data acquired in San Francisco, CA, USA. Its effectiveness of keeping the image sharpness and preserving the scattering mechanism as well as speckle reduction is validated by the comparison with boxcar filters and refined Lee filter.

  18. Subpixelic measurement of large 1D displacements: principle, processing algorithms, performances and software.

    PubMed

    Guelpa, Valérian; Laurent, Guillaume J; Sandoz, Patrick; Zea, July Galeano; Clévy, Cédric

    2014-03-12

    This paper presents a visual measurement method able to sense 1D rigid body displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic resolution is obtained thanks to a structured pattern placed on the target. The pattern is made of twin periodic grids with slightly different periods. The periodic frames are suited for Fourier-like phase calculations-leading to high resolution-while the period difference allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper presents the measurement principle as well as the processing algorithms (source files are provided as supplementary materials). The theoretical and experimental performances are also discussed. The processing time is around 3 µs for a line of 780 pixels, which means that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ repeatability of 5 nm is experimentally demonstrated which has to be compared with the 168 µm measurement range.

  19. Subpixelic Measurement of Large 1D Displacements: Principle, Processing Algorithms, Performances and Software

    PubMed Central

    Guelpa, Valérian; Laurent, Guillaume J.; Sandoz, Patrick; Zea, July Galeano; Clévy, Cédric

    2014-01-01

    This paper presents a visual measurement method able to sense 1D rigid body displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic resolution is obtained thanks to a structured pattern placed on the target. The pattern is made of twin periodic grids with slightly different periods. The periodic frames are suited for Fourier-like phase calculations—leading to high resolution—while the period difference allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper presents the measurement principle as well as the processing algorithms (source files are provided as supplementary materials). The theoretical and experimental performances are also discussed. The processing time is around 3 μs for a line of 780 pixels, which means that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ repeatability of 5 nm is experimentally demonstrated which has to be compared with the 168 μm measurement range. PMID:24625736

  20. Lubrication with sputtered MoS2 films: Principles, operation, limitations

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1991-01-01

    The present practices, limitations, and understanding of thin sputtered MoS2 films are reviewed. Sputtered MoS2 films can exhibit remarkable tribological properties such as ultralow friction coefficients (0.01) and enhanced wear lives (millions of cycles) when used in vacuum or dry air. To achieve these favorable tribological characteristics, the sputtering conditions during deposition must be optimized for adequate film adherence and appropriate structure (morphology) and composition.

  1. Instrumentation in Diffuse Optical Imaging

    PubMed Central

    Zhang, Xiaofeng

    2014-01-01

    Diffuse optical imaging is highly versatile and has a very broad range of applications in biology and medicine. It covers diffuse optical tomography, fluorescence diffuse optical tomography, bioluminescence, and a number of other new imaging methods. These methods of diffuse optical imaging have diversified instrument configurations but share the same core physical principle – light propagation in highly diffusive media, i.e., the biological tissue. In this review, the author summarizes the latest development in instrumentation and methodology available to diffuse optical imaging in terms of system architecture, light source, photo-detection, spectral separation, signal modulation, and lastly imaging contrast. PMID:24860804

  2. Combination of confocal principle and aperture stop separation improves suppression of crystalline lens fluorescence in an eye model

    PubMed Central

    Klemm, Matthias; Blum, Johannes; Link, Dietmar; Hammer, Martin; Haueisen, Jens; Schweitzer, Dietrich

    2016-01-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique to detect changes in the human retina. The autofluorescence decay over time, generated by endogenous fluorophores, is measured in vivo. The strong autofluorescence of the crystalline lens, however, superimposes the intensity decay of the retina fluorescence, as the confocal principle is not able to suppress it sufficiently. Thus, the crystalline lens autofluorescence causes artifacts in the retinal fluorescence lifetimes determined from the intensity decays. Here, we present a new technique to suppress the autofluorescence of the crystalline lens by introducing an annular stop into the detection light path, which we call Schweitzer’s principle. The efficacy of annular stops with an outer diameter of 7 mm and inner diameters of 1 to 5 mm are analyzed in an experimental setup using a model eye based on fluorescent dyes. Compared to the confocal principle, Schweitzer’s principle with an inner diameter of 3 mm is able to reduce the simulated crystalline lens fluorescence to 4%, while 42% of the simulated retina fluorescence is preserved. Thus, we recommend the implementation of Schweitzer’s principle in scanning laser ophthalmoscopes used for fundus autofluorescence measurements, especially the FLIO device, for improved image quality. PMID:27699092

  3. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations

    DOE PAGES

    Zhou, Fei; Nielson, Weston; Xia, Yi; ...

    2014-10-27

    First-principles prediction of lattice thermal conductivity K L of strongly anharmonic crystals is a long-standing challenge in solid state physics. Using recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics (CSLD). Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Non-intuitively, high accuracy is achieved when the model is trained on first-principles forces in quasi-random atomic configurations. The method is demonstrated for Si, NaCl, and Cu 12Sb 4S 13, an earth-abundant thermoelectric with strong phononphonon interactions thatmore » limit the room-temperature K L to values near the amorphous limit.« less

  4. The Gestalt Principle of Similarity Benefits Visual Working Memory

    PubMed Central

    Peterson, Dwight J.; Berryhill, Marian E.

    2013-01-01

    Visual working memory (VWM) is essential for many cognitive processes yet it is notably limited in capacity. Visual perception processing is facilitated by Gestalt principles of grouping, such as connectedness, similarity, and proximity. This introduces the question: do these perceptual benefits extend to VWM? If so, can this be an approach to enhance VWM function by optimizing the processing of information? Previous findings demonstrate that several Gestalt principles (connectedness, common region, and spatial proximity) do facilitate VWM performance in change detection tasks (Woodman, Vecera, & Luck, 2003; Xu, 2002a, 2006; Xu & Chun, 2007; Jiang, Olson & Chun, 2000). One prevalent Gestalt principle, similarity, has not been examined with regard to facilitating VWM. Here, we investigated whether grouping by similarity benefits VWM. Experiment 1 established the basic finding that VWM performance could benefit from grouping. Experiment 2 replicated and extended this finding by showing that similarity was only effective when the similar stimuli were proximal. In short, the VWM performance benefit derived from similarity was constrained by spatial proximity such that similar items need to be near each other. Thus, the Gestalt principle of similarity benefits visual perception, but it can provide benefits to VWM as well. PMID:23702981

  5. The Gestalt principle of similarity benefits visual working memory.

    PubMed

    Peterson, Dwight J; Berryhill, Marian E

    2013-12-01

    Visual working memory (VWM) is essential for many cognitive processes, yet it is notably limited in capacity. Visual perception processing is facilitated by Gestalt principles of grouping, such as connectedness, similarity, and proximity. This introduces the question, do these perceptual benefits extend to VWM? If so, can this be an approach to enhance VWM function by optimizing the processing of information? Previous findings have demonstrated that several Gestalt principles (connectedness, common region, and spatial proximity) do facilitate VWM performance in change detection tasks (Jiang, Olson, & Chun, 2000; Woodman, Vecera, & Luck, 2003; Xu, 2002, 2006; Xu & Chun, 2007). However, one prevalent Gestalt principle, similarity, has not been examined with regard to facilitating VWM. Here, we investigated whether grouping by similarity benefits VWM. Experiment 1 established the basic finding that VWM performance could benefit from grouping. Experiment 2 replicated and extended this finding by showing that similarity was only effective when the similar stimuli were proximal. In short, the VWM performance benefit derived from similarity was constrained by spatial proximity, such that similar items need to be near each other. Thus, the Gestalt principle of similarity benefits visual perception, but it can provide benefits to VWM as well.

  6. Chemical Principles Exemplified

    ERIC Educational Resources Information Center

    Plumb, Robert C.

    1970-01-01

    This is the first of a new series of brief ancedotes about materials and phenomena which exemplify chemical principles. Examples include (1) the sea-lab experiment illustrating principles of the kinetic theory of gases, (2) snow-making machines illustrating principles of thermodynamics in gas expansions and phase changes, and (3) sunglasses that…

  7. Radiometric and spectral calibrations of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) using principle component analysis

    NASA Astrophysics Data System (ADS)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-10-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw GIFTS interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. The radiometric calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. The absolute radiometric performance of the instrument is affected by several factors including the FPA off-axis effect, detector/readout electronics induced nonlinearity distortions, and fore-optics offsets. The GIFTS-EDU, being the very first imaging spectrometer to use ultra-high speed electronics to readout its large area format focal plane array detectors, operating at wavelengths as large as 15 microns, possessed non-linearity's not easily removable in the initial calibration process. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts remaining after the initial radiometric calibration process, thus, further enhance the absolute calibration accuracy. This method is

  8. Effects of image noise, respiratory motion, and motion compensation on 3D activity quantification in count-limited PET images

    NASA Astrophysics Data System (ADS)

    Siman, W.; Mawlawi, O. R.; Mikell, J. K.; Mourtada, F.; Kappadath, S. C.

    2017-01-01

    The aims of this study were to evaluate the effects of noise, motion blur, and motion compensation using quiescent-period gating (QPG) on the activity concentration (AC) distribution—quantified using the cumulative AC volume histogram (ACVH)—in count-limited studies such as 90Y-PET/CT. An International Electrotechnical Commission phantom filled with low 18F activity was used to simulate clinical 90Y-PET images. PET data were acquired using a GE-D690 when the phantom was static and subject to 1-4 cm periodic 1D motion. The static data were down-sampled into shorter durations to determine the effect of noise on ACVH. Motion-degraded PET data were sorted into multiple gates to assess the effect of motion and QPG on ACVH. Errors in ACVH at AC90 (minimum AC that covers 90% of the volume of interest (VOI)), AC80, and ACmean (average AC in the VOI) were characterized as a function of noise and amplitude before and after QPG. Scan-time reduction increased the apparent non-uniformity of sphere doses and the dispersion of ACVH. These effects were more pronounced in smaller spheres. Noise-related errors in ACVH at AC20 to AC70 were smaller (<15%) compared to the errors between AC80 to AC90 (>15%). The accuracy of ACmean was largely independent of the total count. Motion decreased the observed AC and skewed the ACVH toward lower values; the severity of this effect depended on motion amplitude and tumor diameter. The errors in AC20 to AC80 for the 17 mm sphere were  -25% and  -55% for motion amplitudes of 2 cm and 4 cm, respectively. With QPG, the errors in AC20 to AC80 of the 17 mm sphere were reduced to  -15% for motion amplitudes  <4 cm. For spheres with motion amplitude to diameter ratio  >0.5, QPG was effective at reducing errors in ACVH despite increases in image non-uniformity due to increased noise. ACVH is believed to be more relevant than mean or maximum AC to calculate tumor control and normal tissue complication probability

  9. Images in the air

    NASA Astrophysics Data System (ADS)

    Riveros, H. G.; Rosenberger, Franz

    2012-05-01

    This article discusses two 'magic tricks' in terms of underlying optical principles. The first trick is new and produces a 'ghost' in the air, and the second is the classical real image produced with two parabolic mirrors.

  10. Evaluation of Optical Sonography for Real-Time Breast Imaging and Biopsy Guidance

    DTIC Science & Technology

    2002-08-01

    supported through images of target standards and subjective validation using images of human anatomy . Keywords: Diffractive Energy Imaging...real-time imaging technology that uses the principles of acoustical holography to produce unique images of the human anatomy . The ADI technology is

  11. 3D ultrasound imaging in image-guided intervention.

    PubMed

    Fenster, Aaron; Bax, Jeff; Neshat, Hamid; Cool, Derek; Kakani, Nirmal; Romagnoli, Cesare

    2014-01-01

    Ultrasound imaging is used extensively in diagnosis and image-guidance for interventions of human diseases. However, conventional 2D ultrasound suffers from limitations since it can only provide 2D images of 3-dimensional structures in the body. Thus, measurement of organ size is variable, and guidance of interventions is limited, as the physician is required to mentally reconstruct the 3-dimensional anatomy using 2D views. Over the past 20 years, a number of 3-dimensional ultrasound imaging approaches have been developed. We have developed an approach that is based on a mechanical mechanism to move any conventional ultrasound transducer while 2D images are collected rapidly and reconstructed into a 3D image. In this presentation, 3D ultrasound imaging approaches will be described for use in image-guided interventions.

  12. Principles of Technology. Units 1-10 Pilot Test Findings.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This document provides the findings of pilot tests of 10 units for an applied science course for high school vocational students. Each of the reports on the pilot tests of the Principles of Technology units contains information on procedures, methodology limitations, sample, the pretest/posttest instrument and results, student attitude results,…

  13. Novel imaging technologies for characterization of microbial extracellular polysaccharides.

    PubMed

    Lilledahl, Magnus B; Stokke, Bjørn T

    2015-01-01

    Understanding of biology is underpinned by the ability to observe structures at various length scales. This is so in a historical context and is also valid today. Evolution of novel insight often emerges from technological advancement. Recent developments in imaging technologies that is relevant for characterization of extraceullar microbiological polysaccharides are summarized. Emphasis is on scanning probe and optical based techniques since these tools offers imaging capabilities under aqueous conditions more closely resembling the physiological state than other ultramicroscopy imaging techniques. Following the demonstration of the scanning probe microscopy principle, novel operation modes to increase data capture speed toward video rate, exploitation of several cantilever frequencies, and advancement of utilization of specimen mechanical properties as contrast, also including their mode of operation in liquid, have been developed on this platform. Combined with steps in advancing light microscopy with resolution beyond the far field diffraction limit, non-linear methods, and combinations of the various imaging modalities, the potential ultramicroscopy toolbox available for characterization of exopolysaccharides (EPS) are richer than ever. Examples of application of such ultramicroscopy strategies range from imaging of isolated microbial polysaccharides, structures being observed when they are involved in polyelectrolyte complexes, aspects of their enzymatic degradation, and cell surface localization of secreted polysaccharides. These, and other examples, illustrate that the advancement in imaging technologies relevant for EPS characterization supports characterization of structural aspects.

  14. Noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice.

    PubMed

    Lyons, Scott K; Lim, Ed; Clermont, Anne O; Dusich, Joan; Zhu, Lingyun; Campbell, Kenneth D; Coffee, Richard J; Grass, David S; Hunter, John; Purchio, Tony; Jenkins, Darlene

    2006-05-01

    Several transgenic mouse models of prostate cancer have been developed recently that are able to recapitulate many key biological features of the human condition. It would, therefore, be desirable to employ these models to test the efficacy of new therapeutics before clinical trial; however, the variable onset and non-visible nature of prostate tumor development limit their use for such applications. We now report the generation of a transgenic reporter mouse that should obviate these limitations by enabling noninvasive in vivo bioluminescence imaging of normal and spontaneously transformed prostate tissue in the mouse. We used an 11-kb fragment of the human prostate-specific antigen (PSA) promoter to achieve specific and robust expression of firefly luciferase in the prostate glands of transgenic mice. Ex vivo bioluminescence imaging and in situ hybridization analysis confirmed that luciferase expression was restricted to the epithelium in all four lobes of the prostate. We also show that PSA-Luc mice exhibit decreased but readily detectable levels of in vivo bioluminescence over extended time periods following androgen ablation. These results suggest that this reporter should enable in vivo imaging of both androgen-dependent and androgen-independent prostate tumor models. As proof-of-principle, we show that we could noninvasively image SV40 T antigen-induced prostate tumorigenesis in mice with PSA-Luc. Furthermore, we show that our noninvasive imaging strategy can be successfully used to image tumor response to androgen ablation in transgenic mice and, as a result, that we can rapidly identify individual animals capable of sustaining tumor growth in the absence of androgen.

  15. Scintillation Reduction using Conjugate-Plane Imaging

    NASA Astrophysics Data System (ADS)

    Vander Haagen, Gary A.

    2017-06-01

    All observatories are plagued by atmospheric turbulence exhibited as star scintillation or "twinkle" whether a high altitude adaptive optics research or a 30 cm amateur telescope. It is well known that these disturbances are caused by wind and temperature driven refractive gradients in the atmosphere and limit the ultimate photometric resolution of land-based facilities. One approach identified by Fuchs (1998) for scintillation noise reduction was to create a conjugate image space at the telescope and focus on the dominant conjugate turbulent layer within that space. When focused on the turbulent layer little or no scintillation exists. This technique is described whereby noise reductions of 6 to 11/1 have been experienced with mathematical and optical bench simulations. Discussed is a proof-of-principle conjugate optical train design for an 80 mm, f-7 telescope.

  16. Trials of Intervention Principles: Evaluation Methods for Evolving Behavioral Intervention Technologies

    PubMed Central

    Schueller, Stephen M; Riley, William T; Brown, C Hendricks; Cuijpers, Pim; Duan, Naihua; Kwasny, Mary J; Stiles-Shields, Colleen; Cheung, Ken

    2015-01-01

    In recent years, there has been increasing discussion of the limitations of traditional randomized controlled trial (RCT) methodologies for the evaluation of eHealth and mHealth interventions, and in particular, the requirement that these interventions be locked down during evaluation. Locking down these interventions locks in defects and eliminates the opportunities for quality improvement and adaptation to the changing technological environment, often leading to validation of tools that are outdated by the time that trial results are published. Furthermore, because behavioral intervention technologies change frequently during real-world deployment, even if a tested intervention were deployed in the real world, its shelf life would be limited. We argue that RCTs will have greater scientific and public health value if they focus on the evaluation of intervention principles (rather than a specific locked-down version of the intervention), allowing for ongoing quality improvement modifications to the behavioral intervention technology based on the core intervention principles, while continuously improving the functionality and maintaining technological currency. This paper is an initial proposal of a framework and methodology for the conduct of trials of intervention principles (TIPs) aimed at minimizing the risks of in-trial changes to intervention technologies and maximizing the potential for knowledge acquisition. The focus on evaluation of intervention principles using clinical and usage outcomes has the potential to provide more generalizable and durable information than trials focused on a single intervention technology. PMID:26155878

  17. Trials of Intervention Principles: Evaluation Methods for Evolving Behavioral Intervention Technologies.

    PubMed

    Mohr, David C; Schueller, Stephen M; Riley, William T; Brown, C Hendricks; Cuijpers, Pim; Duan, Naihua; Kwasny, Mary J; Stiles-Shields, Colleen; Cheung, Ken

    2015-07-08

    In recent years, there has been increasing discussion of the limitations of traditional randomized controlled trial (RCT) methodologies for the evaluation of eHealth and mHealth interventions, and in particular, the requirement that these interventions be locked down during evaluation. Locking down these interventions locks in defects and eliminates the opportunities for quality improvement and adaptation to the changing technological environment, often leading to validation of tools that are outdated by the time that trial results are published. Furthermore, because behavioral intervention technologies change frequently during real-world deployment, even if a tested intervention were deployed in the real world, its shelf life would be limited. We argue that RCTs will have greater scientific and public health value if they focus on the evaluation of intervention principles (rather than a specific locked-down version of the intervention), allowing for ongoing quality improvement modifications to the behavioral intervention technology based on the core intervention principles, while continuously improving the functionality and maintaining technological currency. This paper is an initial proposal of a framework and methodology for the conduct of trials of intervention principles (TIPs) aimed at minimizing the risks of in-trial changes to intervention technologies and maximizing the potential for knowledge acquisition. The focus on evaluation of intervention principles using clinical and usage outcomes has the potential to provide more generalizable and durable information than trials focused on a single intervention technology.

  18. Prospective treatment plan-specific action limits for real-time intrafractional monitoring in surface image guided radiosurgery.

    PubMed

    Yock, Adam D; Pawlicki, Todd; Kim, Gwe-Ya

    2016-07-01

    In surface image guided radiosurgery, action limits are created to determine at what point intrafractional motion exhibited by the patient is large enough to warrant intervention. Action limit values remain constant across patients despite the fact that patient motion affects the target coverage of brain metastases differently depending on the planning technique and other treatment plan-specific factors. The purpose of this work was twofold. The first purpose was to characterize the sensitivity of single-met per iso and multimet per iso treatment plans to uncorrected patient motion. The second purpose was to describe a method to prospectively determine treatment plan-specific action limits considering this sensitivity. In their surface image guided radiosurgery technique, patient positioning is achieved with a thermoplastic mask that does not cover the patient's face. The patient's exposed face is imaged by a stereoscopic photogrammetry system. It is then compared to a reference surface and monitored throughout treatment. Seventy-two brain metastases (representing 29 patients) were used for this study. Twenty-five mets were treated individually ("single-met per iso plans"), and 47 were treated in a plan simultaneously with at least one other met ("multimet per iso plans"). For each met, the proportion of the gross tumor volume that remained within the 100% prescription isodose line was estimated under the influence of combinations of translations and rotations (0.0-3.0 mm and 0.0°-3.0°, respectively). The target volume and the prescription dose-volume were considered concentric spheres that each encompassed a volume determined from the treatment plan. Plan-specific contour plots and DVHs were created to illustrate the sensitivity of a specific lesion to uncorrected patient motion. Both single-met per iso and multimet per iso plans exhibited compromised target coverage under translations and rotations, though multimet per iso plans were considerably more sensitive

  19. Multimodal Diffuse Optical Imaging

    NASA Astrophysics Data System (ADS)

    Intes, Xavier; Venugopal, Vivek; Chen, Jin; Azar, Fred S.

    Diffuse optical imaging, particularly diffuse optical tomography (DOT), is an emerging clinical modality capable of providing unique functional information, at a relatively low cost, and with nonionizing radiation. Multimodal diffuse optical imaging has enabled a synergistic combination of functional and anatomical information: the quality of DOT reconstructions has been significantly improved by incorporating the structural information derived by the combined anatomical modality. In this chapter, we will review the basic principles of diffuse optical imaging, including instrumentation and reconstruction algorithm design. We will also discuss the approaches for multimodal imaging strategies that integrate DOI with clinically established modalities. The merit of the multimodal imaging approaches is demonstrated in the context of optical mammography, but the techniques described herein can be translated to other clinical scenarios such as brain functional imaging or muscle functional imaging.

  20. Optimal Limited Contingency Planning

    NASA Technical Reports Server (NTRS)

    Meuleau, Nicolas; Smith, David E.

    2003-01-01

    For a given problem, the optimal Markov policy over a finite horizon is a conditional plan containing a potentially large number of branches. However, there are applications where it is desirable to strictly limit the number of decision points and branches in a plan. This raises the question of how one goes about finding optimal plans containing only a limited number of branches. In this paper, we present an any-time algorithm for optimal k-contingency planning. It is the first optimal algorithm for limited contingency planning that is not an explicit enumeration of possible contingent plans. By modelling the problem as a partially observable Markov decision process, it implements the Bellman optimality principle and prunes the solution space. We present experimental results of applying this algorithm to some simple test cases.

  1. Possibilities and limits of imaging endodontic structures with CBCT.

    PubMed

    Weber, Marie-Theres; Stratz, Nadja; Fleiner, Jonathan; Schulze, Dirk; Hannig, Christian

    2015-01-01

    An adequate portrayal of the root canal anatomy by diagnostic imaging is a prerequisite for a successful diagnosis and therapy in endodontics. The introduction of dental cone beam computed tomography (CBCT) has considerably expanded the scope of imaging diagnostics. The aim of the following study was to evaluate the imaging of endodontic structures with CBCT. One hundred and twenty teeth were examined with a CBCT device (ProMax 3D). Subsequently, the findings of the three-dimensional images were evaluated and compared to those of dental radiographs and tangential section preparations of the examined teeth. Results with high prevalence, such as existing roots and root canals, as well as results with low prevalence, e.g., extremely fine anatomical structures of the endodontic tissue, could be visualized precisely by dental CBCT; side canals, ramifications, communications, pulp stones, and obliterations could also be detected. Additionally, the length of curved root canals could be determined accurately. Likewise, root fractures were visualized reliably with CBCT. However, carious lesions could not be diagnosed adequately, and the evaluation of fillings and prosthetic restorations was complicated due to scattered X-ray artifacts. CBCT datasets qualify to visualize and diagnose small anatomical structures of the endodontic tissue.

  2. Color transfer algorithm in medical images

    NASA Astrophysics Data System (ADS)

    Wang, Weihong; Xu, Yangfa

    2007-12-01

    In digital virtual human project, image data acquires from the freezing slice of human body specimen. The color and brightness between a group of images of a certain organ could be quite different. The quality of these images could bring great difficulty in edge extraction, segmentation, as well as 3D reconstruction process. Thus it is necessary to unify the color of the images. The color transfer algorithm is a good algorithm to deal with this kind of problem. This paper introduces the principle of this algorithm and uses it in the medical image processing.

  3. Children acquire the later-greater principle after the cardinal principle

    PubMed Central

    Le Corre, Mathieu

    2014-01-01

    Many have proposed that the acquisition of the cardinal principle is a result of the discovery of the numerical significance of the order of the number words in the count list. However, this need not be the case. Indeed, the cardinal principle does not state anything about the numerical significance of the order of the number words. It only states that the last word of a correct count denotes the numerosity of the counted set. Here we test whether the acquisition of the cardinal principle involves the discovery of the later-greater principle – i.e., that the order of the number words corresponds to the relative size of the numerosities they denote. Specifically, we tested knowledge of verbal numerical comparisons (e.g., Is “ten” more than “six”?) in children who had recently learned the cardinal principle. We find that these children can compare number words between “six” and “ten” only if they have mapped them onto non-verbal representations of numerosity. We suggest that this means that the acquisition of the cardinal principle does not involve the discovery of the correspondence between the order of the number words and the relative size of the numerosities they denote. PMID:24372336

  4. Application of a real-time, calculable limiting form of the Renyi entropy for molecular imaging of tumors.

    PubMed

    Marsh, Jon N; Wallace, Kirk D; McCarthy, John E; Wickerhauser, Mladen V; Maurizi, Brian N; Lanza, Gregory M; Wickline, Samuel A; Hughes, Michael S

    2010-08-01

    Previously, we reported new methods for ultrasound signal characterization using entropy, H(f); a generalized entropy, the Renyi entropy, I(f)(r); and a limiting form of Renyi entropy suitable for real-time calculation, I(f),(infinity). All of these quantities demonstrated significantly more sensitivity to subtle changes in scattering architecture than energy-based methods in certain settings. In this study, the real-time calculable limit of the Renyi entropy, I(f),(infinity), is applied for the imaging of angiogenic murine neovasculature in a breast cancer xenograft using a targeted contrast agent. It is shown that this approach may be used to reliably detect the accumulation of targeted nanoparticles at five minutes post-injection in this in vivo model.

  5. Application of a Real-Time, Calculable Limiting Form of the Renyi Entropy for Molecular Imaging of Tumors

    PubMed Central

    Marsh, J. N.; Wallace, K. D.; McCarthy, J. E.; Wickerhauser, M. V.; Maurizi, B. N.; Lanza, G. M.; Wickline, S. A.; Hughes, M. S.

    2011-01-01

    Previously, we reported new methods for ultrasound signal characterization using entropy, Hf; a generalized entropy, the Renyi entropy, If(r); and a limiting form of Renyi entropy suitable for real-time calculation, If,∞. All of these quantities demonstrated significantly more sensitivity to subtle changes in scattering architecture than energy-based methods in certain settings. In this study, the real-time calculable limit of the Renyi entropy, If,∞, is applied for the imaging of angiogenic murine neovasculature in a breast cancer xenograft using a targeted contrast agent. It is shown that this approach may be used to detect reliably the accumulation of targeted nanoparticles at five minutes post-injection in this in vivo model. PMID:20679020

  6. Neuronavigation. Principles. Surgical technique.

    PubMed Central

    Ivanov, Marcel; Vlad Ciurea, Alexandru

    2009-01-01

    Neuronavigation and stereotaxy are techniques designed to help neurosurgeons precisely localize different intracerebral pathological processes by using a set of preoperative images (CT, MRI, fMRI, PET, SPECT etc.). The development of computer assisted surgery was possible only after a significant technological progress, especially in the area of informatics and imagistics. The main indications of neuronavigation are represented by the targeting of small and deep intracerebral lesions and choosing the best way to treat them, in order to preserve the neurological function. Stereotaxis also allows lesioning or stimulation of basal ganglia for the treatment of movement disorders. These techniques can bring an important amount of confort both to the patient and to the neurosurgeon. Neuronavigation was introduced in Romania around 2003, in four neurosurgical centers. We present our five-years experience in neuronavigation and describe the main principles and surgical techniques. PMID:20108488

  7. 48 CFR 49.207 - Limitation on settlements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Limitation on settlements. 49.207 Section 49.207 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TERMINATION OF CONTRACTS Additional Principles for Fixed-Price Contracts Terminated for...

  8. Imaging Planet Formation Inside the Diffraction Limit

    NASA Astrophysics Data System (ADS)

    Sallum, Stephanie Elise

    For decades, astronomers have used observations of mature planetary systems to constrain planet formation theories, beginning with our own solar system and now the thousands of known exoplanets. Recent advances in instrumentation have given us a direct view of some steps in the planet formation process, such as large-scale protostar and protoplanetary disk features and evolution. However, understanding the details of how planets accrete and interact with their environment requires direct observations of protoplanets themselves. Transition disks, protoplanetary disks with inner clearings that may be caused by forming planets, are the best targets for these studies. Their large distances, compared to the stars normally targeted for direct imaging of exoplanets, make protoplanet detection difficult and necessitate novel imaging techniques. In this dissertation, I describe the results of using non-redundant masking (NRM) to search for forming planets in transition disk clearings. I first present a data reduction pipeline that I wrote to this end, using example datasets and simulations to demonstrate reduction and imaging optimizations. I discuss two transition disk NRM case studies: T Cha and LkCa 15. In the case of T Cha, while we detect significant asymmetries, the data cannot be explained by orbiting companions. The fluxes and orbital motion of the LkCa 15 companion signals, however, can be naturally explained by protoplanets in the disk clearing. I use these datasets and simulated observations to illustrate the effects of scattered light from transition disk material on NRM protoplanet searches. I then demonstrate the utility of the dual-aperture Large Binocular Telescope Interferometer's NRM mode on the bright B[e] star MWC 349A. I discuss the implications of this work for planet formation studies as well as future prospects for NRM and related techniques on next generation instruments.

  9. Microscale optical cryptography using a subdiffraction-limit optical key

    NASA Astrophysics Data System (ADS)

    Ogura, Yusuke; Aino, Masahiko; Tanida, Jun

    2018-04-01

    We present microscale optical cryptography using a subdiffraction-limit optical pattern, which is finer than the diffraction-limit size of the decrypting optical system, as a key and a substrate with a reflectance distribution as an encrypted image. Because of the subdiffraction-limit spatial coding, this method enables us to construct a secret image with the diffraction-limit resolution. Simulation and experimental results demonstrate, both qualitatively and quantitatively, that the secret image becomes recognizable when and only when the substrate is illuminated with the designed key pattern.

  10. Concave omnidirectional imaging device for cylindrical object based on catadioptric panoramic imaging

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojun; Wu, Yumei; Wen, Peizhi

    2018-03-01

    To obtain information on the outer surface of a cylinder object, we propose a catadioptric panoramic imaging system based on the principle of uniform spatial resolution for vertical scenes. First, the influence of the projection-equation coefficients on the spatial resolution and astigmatism of the panoramic system are discussed, respectively. Through parameter optimization, we obtain the appropriate coefficients for the projection equation, and so the imaging quality of the entire imaging system can reach an optimum value. Finally, the system projection equation is calibrated, and an undistorted rectangular panoramic image is obtained using the cylindrical-surface projection expansion method. The proposed 360-deg panoramic-imaging device overcomes the shortcomings of existing surface panoramic-imaging methods, and it has the advantages of low cost, simple structure, high imaging quality, and small distortion, etc. The experimental results show the effectiveness of the proposed method.

  11. Social Role Valorization: A Proposed New Term for the Principle of Normalization

    ERIC Educational Resources Information Center

    Wolfensberger, Wolf

    2011-01-01

    The highest goal of the principle of normalization has recently been clarified to be the establishment, enhancement, or defense of the social role(s) of a person or group, via the enhancement of people's social images and personal competencies. In consequence, it is proposed that normalization be henceforth called "social role valorization."

  12. Principles of precision medicine in stroke.

    PubMed

    Hinman, Jason D; Rost, Natalia S; Leung, Thomas W; Montaner, Joan; Muir, Keith W; Brown, Scott; Arenillas, Juan F; Feldmann, Edward; Liebeskind, David S

    2017-01-01

    The era of precision medicine has arrived and conveys tremendous potential, particularly for stroke neurology. The diagnosis of stroke, its underlying aetiology, theranostic strategies, recurrence risk and path to recovery are populated by a series of highly individualised questions. Moreover, the phenotypic complexity of a clinical diagnosis of stroke makes a simple genetic risk assessment only partially informative on an individual basis. The guiding principles of precision medicine in stroke underscore the need to identify, value, organise and analyse the multitude of variables obtained from each individual to generate a precise approach to optimise cerebrovascular health. Existing data may be leveraged with novel technologies, informatics and practical clinical paradigms to apply these principles in stroke and realise the promise of precision medicine. Importantly, precision medicine in stroke will only be realised once efforts to collect, value and synthesise the wealth of data collected in clinical trials and routine care starts. Stroke theranostics, the ultimate vision of synchronising tailored therapeutic strategies based on specific diagnostic data, demand cerebrovascular expertise on big data approaches to clinically relevant paradigms. This review considers such challenges and delineates the principles on a roadmap for rational application of precision medicine to stroke and cerebrovascular health. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. A new proof-of-principle contraband detection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sredniawski, J.J.; Debiak, T.; Kamykowski, E.

    1995-12-01

    A new concept for a CDS has been developed under a Phase I ARPA funded program; it uses gamma resonance absorption (GRA) to detect certain illegal drugs that may be transported in man-portable containers. A high detection probability for heroin and cocaine is possible with a device that is also searching for explosives. Elemental detection of both N and Cl is utilized, and with tomography, a 3D density image of the elements is generated. Total density image is also developed. These two together may be used with considerable confidence in determining if heroin or cocaine is present in the interrogatedmore » containers in a small quantity (1 kg). The CDS employs a high current ({ge}10 mA) DC accelerator that produces a beam of 1.75 or 1.89 MeV protons. These protons impact a target with coatings of {sup 13}C and {sup 34}S. Depending on the coating, the resultant resonant gamma rays are preferentially absorbed in either {sup 14}N or {sup 35}Cl. The resonant gammas come off the target in a conical fan at 80.7{degree} for N and 82{degree} for Cl; a common array of segmented BGO detectors is used over an arc of 53{degree} to provide input to an imaging subsystem. The tomography makes use of rotation and vertical translation of a baggage carousel holding typically 18 average sized bags for batch processing of the contents. The single proton accelerator and target can supply multiple detection stations with the appropriate gammas, a feature that may lead to very high throughput potential approaching 2000 bags/hr. Each detection station can operate somewhat independently from the others. This paper presents the overall requirements, design, operating principles, and characteristics of the CDS proof-of-principle device developed in the Phase I program.« less

  14. Design principles and developmental mechanisms underlying retinal mosaics.

    PubMed

    Reese, Benjamin E; Keeley, Patrick W

    2015-08-01

    Most structures within the central nervous system (CNS) are composed of different types of neuron that vary in both number and morphology, but relatively little is known about the interplay between these two features, i.e. about the population dynamics of a given cell type. How such arrays of neurons are distributed within a structure, and how they differentiate their dendrites relative to each other, are issues that have recently drawn attention in the invertebrate nervous system, where the genetic and molecular underpinnings of these organizing principles are being revealed in exquisite detail. The retina is one of the few locations where these principles have been extensively studied in the vertebrate CNS, indeed, where the design principles of 'mosaic regularity' and 'uniformity of coverage' were first explicitly defined, quantified, and related to each other. Recent studies have revealed a number of genes that influence the formation of these histotypical features in the retina, including homologues of those invertebrate genes, although close inspection reveals that they do not always mediate comparable developmental processes nor elucidate fundamental design principles. The present review considers just how pervasive these features of 'mosaic regularity' and 'uniform dendritic coverage' are within the mammalian retina, discussing the means by which such features can be assessed in the mature and developing nervous system and examining the limitations associated with those assessments. We then address the extent to which these two design principles co-exist within different populations of neurons, and how they are achieved during development. Finally, we consider the neural phenotypes obtained in mutant nervous systems, to address whether a prospective gene of interest underlies those very design principles. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  15. Quantitative assessment of dynamic PET imaging data in cancer imaging.

    PubMed

    Muzi, Mark; O'Sullivan, Finbarr; Mankoff, David A; Doot, Robert K; Pierce, Larry A; Kurland, Brenda F; Linden, Hannah M; Kinahan, Paul E

    2012-11-01

    Clinical imaging in positron emission tomography (PET) is often performed using single-time-point estimates of tracer uptake or static imaging that provides a spatial map of regional tracer concentration. However, dynamic tracer imaging can provide considerably more information about in vivo biology by delineating both the temporal and spatial pattern of tracer uptake. In addition, several potential sources of error that occur in static imaging can be mitigated. This review focuses on the application of dynamic PET imaging to measuring regional cancer biologic features and especially in using dynamic PET imaging for quantitative therapeutic response monitoring for cancer clinical trials. Dynamic PET imaging output parameters, particularly transport (flow) and overall metabolic rate, have provided imaging end points for clinical trials at single-center institutions for years. However, dynamic imaging poses many challenges for multicenter clinical trial implementations from cross-center calibration to the inadequacy of a common informatics infrastructure. Underlying principles and methodology of PET dynamic imaging are first reviewed, followed by an examination of current approaches to dynamic PET image analysis with a specific case example of dynamic fluorothymidine imaging to illustrate the approach. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Automated image segmentation-assisted flattening of atomic force microscopy images.

    PubMed

    Wang, Yuliang; Lu, Tongda; Li, Xiaolai; Wang, Huimin

    2018-01-01

    Atomic force microscopy (AFM) images normally exhibit various artifacts. As a result, image flattening is required prior to image analysis. To obtain optimized flattening results, foreground features are generally manually excluded using rectangular masks in image flattening, which is time consuming and inaccurate. In this study, a two-step scheme was proposed to achieve optimized image flattening in an automated manner. In the first step, the convex and concave features in the foreground were automatically segmented with accurate boundary detection. The extracted foreground features were taken as exclusion masks. In the second step, data points in the background were fitted as polynomial curves/surfaces, which were then subtracted from raw images to get the flattened images. Moreover, sliding-window-based polynomial fitting was proposed to process images with complex background trends. The working principle of the two-step image flattening scheme were presented, followed by the investigation of the influence of a sliding-window size and polynomial fitting direction on the flattened images. Additionally, the role of image flattening on the morphological characterization and segmentation of AFM images were verified with the proposed method.

  17. Image improvement and three-dimensional reconstruction using holographic image processing

    NASA Technical Reports Server (NTRS)

    Stroke, G. W.; Halioua, M.; Thon, F.; Willasch, D. H.

    1977-01-01

    Holographic computing principles make possible image improvement and synthesis in many cases of current scientific and engineering interest. Examples are given for the improvement of resolution in electron microscopy and 3-D reconstruction in electron microscopy and X-ray crystallography, following an analysis of optical versus digital computing in such applications.

  18. Emergent features and perceptual objects: re-examining fundamental principles in analogical display design.

    PubMed

    Holt, Jerred; Bennett, Kevin B; Flach, John M

    2015-01-01

    Two sets of design principles for analogical visual displays, based on the concepts of emergent features and perceptual objects, are described. An interpretation of previous empirical findings for three displays (bar graph, polar graphic, alphanumeric) is provided from both perspectives. A fourth display (configural coordinate) was designed using principles of ecological interface design (i.e. direct perception). An experiment was conducted to evaluate performance (accuracy and latency of state identification) with these four displays. Numerous significant effects were obtained and a clear rank ordering of performance emerged (from best to worst): configural coordinate, bar graph, alphanumeric and polar graphic. These findings are consistent with principles of design based on emergent features; they are inconsistent with principles based on perceptual objects. Some limitations of the configural coordinate display are discussed and a redesign is provided. Practitioner Summary: Principles of ecological interface design, which emphasise the quality of very specific mappings between domain, display and observer constraints, are described; these principles are applicable to the design of all analogical graphical displays.

  19. Driving Toward Guiding Principles

    PubMed Central

    Buckovich, Suzy A.; Rippen, Helga E.; Rozen, Michael J.

    1999-01-01

    As health care moves from paper to electronic data collection, providing easier access and dissemination of health information, the development of guiding privacy, confidentiality, and security principles is necessary to help balance the protection of patients' privacy interests against appropriate information access. A comparative review and analysis was done, based on a compilation of privacy, confidentiality, and security principles from many sources. Principles derived from ten identified sources were compared with each of the compiled principles to assess support level, uniformity, and inconsistencies. Of 28 compiled principles, 23 were supported by at least 50 percent of the sources. Technology could address at least 12 of the principles. Notable consistencies among the principles could provide a basis for consensus for further legislative and organizational work. It is imperative that all participants in our health care system work actively toward a viable resolution of this information privacy debate. PMID:10094065

  20. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.

    PubMed

    Hamed, Abbi; Masamune, Ken; Tse, Zion Tsz Ho; Lamperth, Michael; Dohi, Takeyoshi

    2012-07-01

    Minimally invasive surgery is a widely used medical technique, one of the drawbacks of which is the loss of direct sense of touch during the operation. Palpation is the use of fingertips to explore and make fast assessments of tissue morphology. Although technologies are developed to equip minimally invasive surgery tools with haptic feedback capabilities, the majority focus on tissue stiffness profiling and tool-tissue interaction force measurement. For greatly increased diagnostic capability, a magnetic resonance imaging-compatible tactile sensor design is proposed, which allows minimally invasive surgery to be performed under image guidance, combining the strong capability of magnetic resonance imaging soft tissue and intuitive palpation. The sensing unit is based on a piezoelectric sensor methodology, which conforms to the stringent mechanical and electrical design requirements imposed by the magnetic resonance environment The sensor mechanical design and the device integration to a 0.2 Tesla open magnetic resonance imaging scanner are described, together with the device's magnetic resonance compatibility testing. Its design limitations and potential future improvements are also discussed. A tactile sensing unit based on a piezoelectric sensor principle is proposed, which is designed for magnetic resonance imaging guided interventions.

  1. [The precautionary principle: advantages and risks].

    PubMed

    Tubiana, M

    2001-04-01

    The extension of the precautionary principle to the field of healthcare is the social response to two demands of the population: improved health safety and the inclusion of an informed public in the decision-making process. The necessary balance between cost (treatment-induced risk) and benefit (therapeutic effect) underlies all healthcare decisions. An underestimation or an overestimation of cost, i.e. risk, is equally harmful in public healthcare. A vaccination should be prescribed when its beneficial effect outweighs its inevitable risk. Mandatory vaccination, such as in the case of the Hepatitis B virus, is a health policy requiring some courage because those who benefit will never be aware of its positive effect while those who are victims of the risk could resort to litigation. Defense against such accusations requires an accurate assessment of risk and benefit, which underlines the importance of expertise. Even within the framework of the precautionary principle, it is impossible to act without knowledge, or at least a plausible estimation, of expected effects. Recent affairs (blood contamination, transmissible spongiform encephalitis by growth hormone, and new variant of Creutzfeldt-Jacob disease) illustrate that in such cases the precautionary principle would have had limited impact and it is only when enough knowledge was available that effective action could be taken. Likewise, in current debates concerning the possible risks of electromagnetic fields, cellular phones and radon, research efforts must be given priority. The general public understands intuitively the concept of cost and benefit. For example, the possible health risks of oral contraceptives and hormone replacement therapy were not ignored, but the public has judged that their advantages justify the risk. Estimating risk and benefit and finding a balance between risk and preventive measures could help avoid the main drawbacks of the precautionary principle, i.e. inaction and refusal of

  2. Segmentation of Image Ensembles via Latent Atlases

    PubMed Central

    Van Leemput, Koen; Menze, Bjoern H.; Wells, William M.; Golland, Polina

    2010-01-01

    Spatial priors, such as probabilistic atlases, play an important role in MRI segmentation. However, the availability of comprehensive, reliable and suitable manual segmentations for atlas construction is limited. We therefore propose a method for joint segmentation of corresponding regions of interest in a collection of aligned images that does not require labeled training data. Instead, a latent atlas, initialized by at most a single manual segmentation, is inferred from the evolving segmentations of the ensemble. The algorithm is based on probabilistic principles but is solved using partial differential equations (PDEs) and energy minimization criteria. We evaluate the method on two datasets, segmenting subcortical and cortical structures in a multi-subject study and extracting brain tumors in a single-subject multi-modal longitudinal experiment. We compare the segmentation results to manual segmentations, when those exist, and to the results of a state-of-the-art atlas-based segmentation method. The quality of the results supports the latent atlas as a promising alternative when existing atlases are not compatible with the images to be segmented. PMID:20580305

  3. WE-DE-BRA-01: SCIENCE COUNCIL JUNIOR INVESTIGATOR COMPETITION WINNER: Acceleration of a Limited-Angle Intrafraction Verification (LIVE) System Using Adaptive Prior Knowledge Based Image Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y; Yin, F; Ren, L

    Purpose: To develop an adaptive prior knowledge based image estimation method to reduce the scan angle needed in the LIVE system to reconstruct 4D-CBCT for intrafraction verification. Methods: The LIVE system has been previously proposed to reconstructs 4D volumetric images on-the-fly during arc treatment for intrafraction target verification and dose calculation. This system uses limited-angle beam’s eye view (BEV) MV cine images acquired from the treatment beam together with the orthogonally acquired limited-angle kV projections to reconstruct 4D-CBCT images for target verification during treatment. In this study, we developed an adaptive constrained free-form deformation reconstruction technique in LIVE to furthermore » reduce the scanning angle needed to reconstruct the CBCT images. This technique uses free form deformation with energy minimization to deform prior images to estimate 4D-CBCT based on projections acquired in limited angle (orthogonal 6°) during the treatment. Note that the prior images are adaptively updated using the latest CBCT images reconstructed by LIVE during treatment to utilize the continuity of patient motion.The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the efficacy of this technique with LIVE system. A lung patient was simulated with different scenario, including baseline drifts, amplitude change and phase shift. Limited-angle orthogonal kV and beam’s eye view (BEV) MV projections were generated for each scenario. The CBCT reconstructed by these projections were compared with the ground-truth generated in XCAT.Volume-percentage-difference (VPD) and center-of-mass-shift (COMS) were calculated between the reconstructed and the ground-truth tumors to evaluate the reconstruction accuracy. Results: Using orthogonal-view of 6° kV and BEV- MV projections, the VPD/COMS values were 12.7±4.0%/0.7±0.5 mm, 13.0±5.1%/0.8±0.5 mm, and 11.4±5.4%/0.5±0.3 mm for the three scenarios, respectively. Conclusion: The

  4. Principled Narrative

    ERIC Educational Resources Information Center

    MacBeath, John; Swaffield, Sue; Frost, David

    2009-01-01

    This article provides an overview of the "Carpe Vitam: Leadership for Learning" project, accounting for its provenance and purposes, before focusing on the principles for practice that constitute an important part of the project's legacy. These principles framed the dialogic process that was a dominant feature of the project and are presented,…

  5. Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms.

    PubMed

    Pisano, E D; Zong, S; Hemminger, B M; DeLuca, M; Johnston, R E; Muller, K; Braeuning, M P; Pizer, S M

    1998-11-01

    The purpose of this project was to determine whether Contrast Limited Adaptive Histogram Equalization (CLAHE) improves detection of simulated spiculations in dense mammograms. Lines simulating the appearance of spiculations, a common marker of malignancy when visualized with masses, were embedded in dense mammograms digitized at 50 micron pixels, 12 bits deep. Film images with no CLAHE applied were compared to film images with nine different combinations of clip levels and region sizes applied. A simulated spiculation was embedded in a background of dense breast tissue, with the orientation of the spiculation varied. The key variables involved in each trial included the orientation of the spiculation, contrast level of the spiculation and the CLAHE settings applied to the image. Combining the 10 CLAHE conditions, 4 contrast levels and 4 orientations gave 160 combinations. The trials were constructed by pairing 160 combinations of key variables with 40 backgrounds. Twenty student observers were asked to detect the orientation of the spiculation in the image. There was a statistically significant improvement in detection performance for spiculations with CLAHE over unenhanced images when the region size was set at 32 with a clip level of 2, and when the region size was set at 32 with a clip level of 4. The selected CLAHE settings should be tested in the clinic with digital mammograms to determine whether detection of spiculations associated with masses detected at mammography can be improved.

  6. Reliable clarity automatic-evaluation method for optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Qin, Bangyong; Shang, Ren; Li, Shengyang; Hei, Baoqin; Liu, Zhiwen

    2015-10-01

    Image clarity, which reflects the sharpness degree at the edge of objects in images, is an important quality evaluate index for optical remote sensing images. Scholars at home and abroad have done a lot of work on estimation of image clarity. At present, common clarity-estimation methods for digital images mainly include frequency-domain function methods, statistical parametric methods, gradient function methods and edge acutance methods. Frequency-domain function method is an accurate clarity-measure approach. However, its calculation process is complicate and cannot be carried out automatically. Statistical parametric methods and gradient function methods are both sensitive to clarity of images, while their results are easy to be affected by the complex degree of images. Edge acutance method is an effective approach for clarity estimate, while it needs picking out the edges manually. Due to the limits in accuracy, consistent or automation, these existing methods are not applicable to quality evaluation of optical remote sensing images. In this article, a new clarity-evaluation method, which is based on the principle of edge acutance algorithm, is proposed. In the new method, edge detection algorithm and gradient search algorithm are adopted to automatically search the object edges in images. Moreover, The calculation algorithm for edge sharpness has been improved. The new method has been tested with several groups of optical remote sensing images. Compared with the existing automatic evaluation methods, the new method perform better both in accuracy and consistency. Thus, the new method is an effective clarity evaluation method for optical remote sensing images.

  7. Super-multiplex vibrational imaging

    PubMed Central

    Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei

    2017-01-01

    The ability to directly visualize a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have been used successfully to explore structural-functional relationships in nervous systems, profile RNA in situ, reveal tumor microenvironment heterogeneity or study dynamic macromolecular assembly1–4, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a “color barrier” due to the intrinsically broad (~1500 cm−1) and featureless nature of fluorescence spectra5 that limits the number of resolvable colors to 2 to 5 (or 7-9 if using complicated instrumentation and analysis)6–8. Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width ~10 cm−1) and thus doesn’t suffer this problem, but its feeble signals make many demanding bio-imaging applications impossible. And while surface-enhanced Raman scattering offers remarkable sensitivity and multiplicity, it cannot be readily used to quantitatively image specific molecular targets inside live cells9. Here we show that carrying out stimulated Raman scattering under electronic pre-resonance conditions (epr-SRS) enables imaging with exquisite vibrational selectivity and sensitivity (down to 250 nM with 1-ms) in living cells. We also create a palette of triple-bond-conjugated near-infrared dyes that each display a single epr-SRS peak in the cell-silent spectral window, and that with available fluorescent probes give 24 resolvable colors with potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the potential of this super-multiplex optical imaging approach for untangling intricate

  8. Super-multiplex vibrational imaging

    NASA Astrophysics Data System (ADS)

    Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei

    2017-04-01

    The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the

  9. Evaluation of state-of-the-art imaging systems for in vivo monitoring of retinal structure in mice: current capabilities and limitations

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.

    2014-02-01

    Animal models of human diseases play an important role in studying and advancing our understanding of these conditions, allowing molecular level studies of pathogenesis as well as testing of new therapies. Recently several non-invasive imaging modalities including Fundus Camera, Scanning Laser Ophthalmoscopy (SLO) and Optical Coherence Tomography (OCT) have been successfully applied to monitor changes in the retinas of the living animals in experiments in which a single animal is followed over a portion of its lifespan. Here we evaluate the capabilities and limitations of these three imaging modalities for visualization of specific structures in the mouse eye. Example images acquired from different types of mice are presented. Future directions of development for these instruments and potential advantages of multi-modal imaging systems are discussed as well.

  10. Brain-Compatible Learning: Principles and Applications in Athletic Training

    PubMed Central

    2003-01-01

    Objective: To discuss the principles of brain-compatible learning research and provide insights into how this research may be applied in athletic training education to benefit the profession. Background: In the past decade, new brain-imaging techniques have allowed us to observe the brain while it is learning. The field of neuroscience has produced a body of empirical data that provides a new understanding of how we learn. This body of data has implications in education, although the direct study of these implications is in its infancy. Description: An overview of how the brain learns at a cellular level is provided, followed by a discussion of the principles of brain-compatible learning. Applications of these principles and implications for the field of athletic training education are also offered. Application: Many educational-reform fads have garnered attention in the past. Brain-compatible learning will not likely be one of those, as its origin is in neuroscience, not education. Brain-compatible learning is not an educational-reform movement. It does not prescribe how to run your classroom or offer specific techniques to use. Rather, it provides empirical data about how the brain learns and suggests guidelines to be considered while preparing lessons for your students. These guidelines may be incorporated into every educational setting, with every type of curriculum and every age group. The field of athletic training lends itself well to many of the basic principles of brain-compatible learning. PMID:16558681

  11. Generalizing Landauer's principle

    NASA Astrophysics Data System (ADS)

    Maroney, O. J. E.

    2009-03-01

    In a recent paper [Stud. Hist. Philos. Mod. Phys. 36, 355 (2005)] it is argued that to properly understand the thermodynamics of Landauer’s principle it is necessary to extend the concept of logical operations to include indeterministic operations. Here we examine the thermodynamics of such operations in more detail, extending the work of Landauer to include indeterministic operations and to include logical states with variable entropies, temperatures, and mean energies. We derive the most general statement of Landauer’s principle and prove its universality, extending considerably the validity of previous proofs. This confirms conjectures made that all logical operations may, in principle, be performed in a thermodynamically reversible fashion, although logically irreversible operations would require special, practically rather difficult, conditions to do so. We demonstrate a physical process that can perform any computation without work requirements or heat exchange with the environment. Many widespread statements of Landauer’s principle are shown to be special cases of our generalized principle.

  12. An implementation of the maximum-caliber principle by replica-averaged time-resolved restrained simulations

    NASA Astrophysics Data System (ADS)

    Capelli, Riccardo; Tiana, Guido; Camilloni, Carlo

    2018-05-01

    Inferential methods can be used to integrate experimental informations and molecular simulations. The maximum entropy principle provides a framework for using equilibrium experimental data, and it has been shown that replica-averaged simulations, restrained using a static potential, are a practical and powerful implementation of such a principle. Here we show that replica-averaged simulations restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well as a computational validation making use of simple models and synthetic data. Some limitations and possible solutions are also discussed.

  13. An implementation of the maximum-caliber principle by replica-averaged time-resolved restrained simulations.

    PubMed

    Capelli, Riccardo; Tiana, Guido; Camilloni, Carlo

    2018-05-14

    Inferential methods can be used to integrate experimental informations and molecular simulations. The maximum entropy principle provides a framework for using equilibrium experimental data, and it has been shown that replica-averaged simulations, restrained using a static potential, are a practical and powerful implementation of such a principle. Here we show that replica-averaged simulations restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well as a computational validation making use of simple models and synthetic data. Some limitations and possible solutions are also discussed.

  14. Evaluation of deformable image registration and a motion model in CT images with limited features.

    PubMed

    Liu, F; Hu, Y; Zhang, Q; Kincaid, R; Goodman, K A; Mageras, G S

    2012-05-07

    Deformable image registration (DIR) is increasingly used in radiotherapy applications and provides the basis for a previously described model of patient-specific respiratory motion. We examine the accuracy of a DIR algorithm and a motion model with respiration-correlated CT (RCCT) images of software phantom with known displacement fields, physical deformable abdominal phantom with implanted fiducials in the liver and small liver structures in patient images. The motion model is derived from a principal component analysis that relates volumetric deformations with the motion of the diaphragm or fiducials in the RCCT. Patient data analysis compares DIR with rigid registration as ground truth: the mean ± standard deviation 3D discrepancy of liver structure centroid positions is 2.0 ± 2.2 mm. DIR discrepancy in the software phantom is 3.8 ± 2.0 mm in lung and 3.7 ± 1.8 mm in abdomen; discrepancies near the chest wall are larger than indicated by image feature matching. Marker's 3D discrepancy in the physical phantom is 3.6 ± 2.8 mm. The results indicate that visible features in the images are important for guiding the DIR algorithm. Motion model accuracy is comparable to DIR, indicating that two principal components are sufficient to describe DIR-derived deformation in these datasets.

  15. Medical photography: principles for orthopedics.

    PubMed

    Uzun, Metin; Bülbül, Murat; Toker, Serdar; Beksaç, Burak; Kara, Adnan

    2014-04-05

    Medical photography is used clinically for patient evaluation, treatment decisions, and scientific documentation. Although standards for medical photography exist in many branches of medicine, we have not encountered such criteria in publications in the area of orthopedics. This study aims to (1) assess the quality of medical images used in an orthopedic publication and (2) to propose standards for medical photography in this area. Clinical photographs were reviewed from all issues of a journal published between the years 2008 and 2012. A quality of clinical images was developed based on the criteria published for the specialties of dermatology and cosmetic surgery. All images were reviewed on the appropriateness of background, patient preparation, and technique. In this study, only 44.9% of clinical images in an orthopedic publication adhered to the proposed conventions. Standards have not been established for medical photography in orthopedics as in other specialty areas. Our results suggest that photographic clinical information in orthopedic publications may be limited by inadequate presentation. We propose that formal conventions for clinical images should be established.

  16. A Free Energy Principle for Biological Systems

    PubMed Central

    Karl, Friston

    2012-01-01

    This paper describes a free energy principle that tries to explain the ability of biological systems to resist a natural tendency to disorder. It appeals to circular causality of the sort found in synergetic formulations of self-organization (e.g., the slaving principle) and models of coupled dynamical systems, using nonlinear Fokker Planck equations. Here, circular causality is induced by separating the states of a random dynamical system into external and internal states, where external states are subject to random fluctuations and internal states are not. This reduces the problem to finding some (deterministic) dynamics of the internal states that ensure the system visits a limited number of external states; in other words, the measure of its (random) attracting set, or the Shannon entropy of the external states is small. We motivate a solution using a principle of least action based on variational free energy (from statistical physics) and establish the conditions under which it is formally equivalent to the information bottleneck method. This approach has proved useful in understanding the functional architecture of the brain. The generality of variational free energy minimisation and corresponding information theoretic formulations may speak to interesting applications beyond the neurosciences; e.g., in molecular or evolutionary biology. PMID:23204829

  17. Kinetic energy and the equivalence principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlip, S.

    1998-05-01

    According to the general theory of relativity, kinetic energy contributes to gravitational mass. Surprisingly, the observational evidence for this prediction does not seem to be discussed in the literature. I reanalyze existing experimental data to test the equivalence principle for the kinetic energy of atomic electrons, and show that fairly strong limits on possible violations can be obtained. I discuss the relationship of this result to the occasional claim that {open_quotes}light falls with twice the acceleration of ordinary matter.{close_quotes} {copyright} {ital 1998 American Association of Physics Teachers.}

  18. Magneto-optical imaging technique for hostile environments: The ghost imaging approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meda, A.; Caprile, A.; Avella, A.

    2015-06-29

    In this paper, we develop an approach to magneto optical imaging (MOI), applying a ghost imaging (GI) protocol to perform Faraday microscopy. MOI is of the utmost importance for the investigation of magnetic properties of material samples, through Weiss domains shape, dimension and dynamics analysis. Nevertheless, in some extreme conditions such as cryogenic temperatures or high magnetic field applications, there exists a lack of domain images due to the difficulty in creating an efficient imaging system in such environments. Here, we present an innovative MOI technique that separates the imaging optical path from the one illuminating the object. The techniquemore » is based on thermal light GI and exploits correlations between light beams to retrieve the image of magnetic domains. As a proof of principle, the proposed technique is applied to the Faraday magneto-optical observation of the remanence domain structure of an yttrium iron garnet sample.« less

  19. BIOME: An Ecosystem Remote Sensor Based on Imaging Interferometry

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Hammer, Philip; Smith, William H.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Until recent times, optical remote sensing of ecosystem properties from space has been limited to broad band multispectral scanners such as Landsat and AVHRR. While these sensor data can be used to derive important information about ecosystem parameters, they are very limited for measuring key biogeochemical cycling parameters such as the chemical content of plant canopies. Such parameters, for example the lignin and nitrogen contents, are potentially amenable to measurements by very high spectral resolution instruments using a spectroscopic approach. Airborne sensors based on grating imaging spectrometers gave the first promise of such potential but the recent decision not to deploy the space version has left the community without many alternatives. In the past few years, advancements in high performance deep well digital sensor arrays coupled with a patented design for a two-beam interferometer has produced an entirely new design for acquiring imaging spectroscopic data at the signal to noise levels necessary for quantitatively estimating chemical composition (1000:1 at 2 microns). This design has been assembled as a laboratory instrument and the principles demonstrated for acquiring remote scenes. An airborne instrument is in production and spaceborne sensors being proposed. The instrument is extremely promising because of its low cost, lower power requirements, very low weight, simplicity (no moving parts), and high performance. For these reasons, we have called it the first instrument optimized for ecosystem studies as part of a Biological Imaging and Observation Mission to Earth (BIOME).

  20. Radiation tolerant compact image sensor using CdTe photodiode and field emitter array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Masuzawa, Tomoaki; Neo, Yoichiro; Mimura, Hidenori; Okamoto, Tamotsu; Nagao, Masayoshi; Akiyoshi, Masafumi; Sato, Nobuhiro; Takagi, Ikuji; Tsuji, Hiroshi; Gotoh, Yasuhito

    2016-10-01

    A growing demand on incident detection is recognized since the Great East Japan Earthquake and successive accidents in Fukushima nuclear power plant in 2011. Radiation tolerant image sensors are powerful tools to collect crucial information at initial stages of such incidents. However, semiconductor based image sensors such as CMOS and CCD have limited tolerance to radiation exposure. Image sensors used in nuclear facilities are conventional vacuum tubes using thermal cathodes, which have large size and high power consumption. In this study, we propose a compact image sensor composed of a CdTe-based photodiode and a matrix-driven Spindt-type electron beam source called field emitter array (FEA). A basic principle of FEA-based image sensors is similar to conventional Vidicon type camera tubes, but its electron source is replaced from a thermal cathode to FEA. The use of a field emitter as an electron source should enable significant size reduction while maintaining high radiation tolerance. Current researches on radiation tolerant FEAs and development of CdTe based photoconductive films will be presented.

  1. Images in the Air

    ERIC Educational Resources Information Center

    Riveros, H. G.; Rosenberger, Franz

    2012-01-01

    This article discusses two "magic tricks" in terms of underlying optical principles. The first trick is new and produces a "ghost" in the air, and the second is the classical real image produced with two parabolic mirrors. (Contains 2 figure and 6 photos.)

  2. Clinical Pharmacokinetics in Kidney Disease: Fundamental Principles.

    PubMed

    Lea-Henry, Tom N; Carland, Jane E; Stocker, Sophie L; Sevastos, Jacob; Roberts, Darren M

    2018-06-22

    Kidney disease is an increasingly common comorbidity that alters the pharmacokinetics of many drugs. Prescribing to patients with kidney disease requires knowledge about the drug, the extent of the patient's altered physiology, and pharmacokinetic principles that influence the design of dosing regimens. There are multiple physiologic effects of impaired kidney function, and the extent to which they occur in an individual at any given time can be difficult to define. Although some guidelines are available for dosing in kidney disease, they may be on the basis of limited data or not widely applicable, and therefore, an understanding of pharmacokinetic principles and how to apply them is important to the practicing clinician. Whether kidney disease is acute or chronic, drug clearance decreases, and the volume of distribution may remain the same or increase. Although in CKD, these changes progress relatively slowly, they are dynamic in AKI, and recovery is possible depending on the etiology and treatments. This, and the use of kidney replacement therapies further complicate attempts to quantify drug clearance at the time of prescribing and dosing in AKI. The required change in the dosing regimen can be estimated or even quantitated in certain instances through the application of pharmacokinetic principles to guide rational drug dosing. This offers an opportunity to provide personalized medical care and minimizes adverse drug events from either under- or overdosing. We discuss the principles of pharmacokinetics that are fundamental for the design of an appropriate dosing regimen in this review. Copyright © 2018 by the American Society of Nephrology.

  3. Single-Step 3-D Image Reconstruction in Magnetic Induction Tomography: Theoretical Limits of Spatial Resolution and Contrast to Noise Ratio

    PubMed Central

    Hollaus, Karl; Rosell-Ferrer, Javier; Merwa, Robert

    2006-01-01

    Magnetic induction tomography (MIT) is a low-resolution imaging modality for reconstructing the changes of the complex conductivity in an object. MIT is based on determining the perturbation of an alternating magnetic field, which is coupled from several excitation coils to the object. The conductivity distribution is reconstructed from the corresponding voltage changes induced in several receiver coils. Potential medical applications comprise the continuous, non-invasive monitoring of tissue alterations which are reflected in the change of the conductivity, e.g. edema, ventilation disorders, wound healing and ischemic processes. MIT requires the solution of an ill-posed inverse eddy current problem. A linearized version of this problem was solved for 16 excitation coils and 32 receiver coils with a model of two spherical perturbations within a cylindrical phantom. The method was tested with simulated measurement data. Images were reconstructed with a regularized single-step Gauss–Newton approach. Theoretical limits for spatial resolution and contrast/noise ratio were calculated and compared with the empirical results from a Monte-Carlo study. The conductivity perturbations inside a homogeneous cylinder were localized for a SNR between 44 and 64 dB. The results prove the feasibility of difference imaging with MIT and give some quantitative data on the limitations of the method. PMID:17031597

  4. Lossless Astronomical Image Compression and the Effects of Random Noise

    NASA Technical Reports Server (NTRS)

    Pence, William

    2009-01-01

    In this paper we compare a variety of modern image compression methods on a large sample of astronomical images. We begin by demonstrating from first principles how the amount of noise in the image pixel values sets a theoretical upper limit on the lossless compression ratio of the image. We derive simple procedures for measuring the amount of noise in an image and for quantitatively predicting how much compression will be possible. We then compare the traditional technique of using the GZIP utility to externally compress the image, with a newer technique of dividing the image into tiles, and then compressing and storing each tile in a FITS binary table structure. This tiled-image compression technique offers a choice of other compression algorithms besides GZIP, some of which are much better suited to compressing astronomical images. Our tests on a large sample of images show that the Rice algorithm provides the best combination of speed and compression efficiency. In particular, Rice typically produces 1.5 times greater compression and provides much faster compression speed than GZIP. Floating point images generally contain too much noise to be effectively compressed with any lossless algorithm. We have developed a compression technique which discards some of the useless noise bits by quantizing the pixel values as scaled integers. The integer images can then be compressed by a factor of 4 or more. Our image compression and uncompression utilities (called fpack and funpack) that were used in this study are publicly available from the HEASARC web site.Users may run these stand-alone programs to compress and uncompress their own images.

  5. A novel simultaneous streak and framing camera without principle errors

    NASA Astrophysics Data System (ADS)

    Jingzhen, L.; Fengshan, S.; Ningwen, L.; Xiangdong, G.; Bin, H.; Qingyang, W.; Hongyi, C.; Yi, C.; Xiaowei, L.

    2018-02-01

    A novel simultaneous streak and framing camera with continuous access, the perfect information of which is far more important for the exact interpretation and precise evaluation of many detonation events and shockwave phenomena, has been developed. The camera with the maximum imaging frequency of 2 × 106 fps and the maximum scanning velocity of 16.3 mm/μs has fine imaging properties which are the eigen resolution of over 40 lp/mm in the temporal direction and over 60 lp/mm in the spatial direction and the framing frequency principle error of zero for framing record, and the maximum time resolving power of 8 ns and the scanning velocity nonuniformity of 0.136%~-0.277% for streak record. The test data have verified the performance of the camera quantitatively. This camera, simultaneously gained frames and streak with parallax-free and identical time base, is characterized by the plane optical system at oblique incidence different from space system, the innovative camera obscura without principle errors, and the high velocity motor driven beryllium-like rotating mirror, made of high strength aluminum alloy with cellular lateral structure. Experiments demonstrate that the camera is very useful and reliable to take high quality pictures of the detonation events.

  6. An Improved Filtering Method for Quantum Color Image in Frequency Domain

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Xiao, Hong

    2018-01-01

    In this paper we investigate the use of quantum Fourier transform (QFT) in the field of image processing. We consider QFT-based color image filtering operations and their applications in image smoothing, sharpening, and selective filtering using quantum frequency domain filters. The underlying principle used for constructing the proposed quantum filters is to use the principle of the quantum Oracle to implement the filter function. Compared with the existing methods, our method is not only suitable for color images, but also can flexibly design the notch filters. We provide the quantum circuit that implements the filtering task and present the results of several simulation experiments on color images. The major advantages of the quantum frequency filtering lies in the exploitation of the efficient implementation of the quantum Fourier transform.

  7. Light, Imaging, Vision: An interdisciplinary undergraduate course

    NASA Astrophysics Data System (ADS)

    Nelson, Philip

    Students in physical and life science, and in engineering, need to know about the physics and biology of light. In the 21st century, it has become increasingly clear that the quantum nature of light is essential both for the latest imaging modalities and even to advance our knowledge of fundamental processes, such as photosynthesis and human vision. But many optics courses remain rooted in classical physics, with photons as an afterthought. I'll describe a new undergraduate course, for students in several science and engineering majors, that takes students from the rudiments of probability theory to modern methods like fluorescence imaging and Förster resonance energy transfer. After a digression into color vision, students then see how the Feynman principle explains the apparently wavelike phenomena associated to light, including applications like diffraction limit, subdiffraction imaging, total internal reflection and TIRF microscopy. Then we see how scientists documented the single-quantum sensitivity of the eye seven decades earlier than `ought' to have been possible, and finally close with the remarkable signaling cascade that delivers such outstanding performance. A new textbook embodying this course will be published by Princeton University Press in Spring 2017. Partially supported by the United States National Science Foundation under Grant PHY-1601894.

  8. Superresolution upgrade for confocal spinning disk systems using image scanning microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Isbaner, Sebastian; Hähnel, Dirk; Gregor, Ingo; Enderlein, Jörg

    2017-02-01

    Confocal Spinning Disk Systems are widely used for 3D cell imaging because they offer the advantage of optical sectioning at high framerates and are easy to use. However, as in confocal microscopy, the imaging resolution is diffraction limited, which can be theoretically improved by a factor of 2 using the principle of Image Scanning Microscopy (ISM) [1]. ISM with a Confocal Spinning Disk setup (CSDISM) has been shown to improve contrast as well as lateral resolution (FWHM) from 201 +/- 20 nm to 130 +/- 10 nm at 488 nm excitation. A minimum total acquisition time of one second per ISM image makes this method highly suitable for 3D live cell imaging [2]. Here, we present a multicolor implementation of CSDISM for the popular Micro-Manager Open Source Microscopy platform. Since changes in the optical path are not necessary, this will allow any researcher to easily upgrade their standard Confocal Spinning Disk system at remarkable low cost ( 5000 USD) with an ISM superresolution option. [1]. Müller, C.B. and Enderlein, J. Image Scanning Microscopy. Physical Review Letters 104, (2010). [2]. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 110, 21000-5 (2013).

  9. Open-dish incubator for live cell imaging with an inverted microscope.

    PubMed

    Heidemann, Steven R; Lamoureux, Phillip; Ngo, Kha; Reynolds, Matthew; Buxbaum, Robert E

    2003-10-01

    Here we describe the design and fabrication of an inexpensive cell culture incubator for the stage of an inverted light microscope for use in live cell imaging. This device maintains the temperature of the cell culture at 37 degrees C with great stability and, after reaching equilibrium, provides focal stability of an image for 20-25 min with oil-immersion lenses. We describe two versions of the incubator: one for use with standard 60-mm plastic culture dishes, and the other version for imaging of cells on glass coverslips. Either can be made for less than $400. Most components are widely available commercially, and it requires only simple wiring and 3 h to assemble. Although the device is generally useful for live cell imaging on an inverted microscope, it is particularly suitable for work in which instruments are introduced into the culture, such as electrophysiology or micromanipulation. The design is based on the principle that control performance is limited by the lag time between detection and response. The key element of the design is a heated, temperature-controlled aluminum ring serving as a mini-incubator surrounding the culture vessel. For this reason, we call our design a "ringcubator."

  10. Fundamental limits of reconstruction-based superresolution algorithms under local translation.

    PubMed

    Lin, Zhouchen; Shum, Heung-Yeung

    2004-01-01

    Superresolution is a technique that can produce images of a higher resolution than that of the originally captured ones. Nevertheless, improvement in resolution using such a technique is very limited in practice. This makes it significant to study the problem: "Do fundamental limits exist for superresolution?" In this paper, we focus on a major class of superresolution algorithms, called the reconstruction-based algorithms, which compute high-resolution images by simulating the image formation process. Assuming local translation among low-resolution images, this paper is the first attempt to determine the explicit limits of reconstruction-based algorithms, under both real and synthetic conditions. Based on the perturbation theory of linear systems, we obtain the superresolution limits from the conditioning analysis of the coefficient matrix. Moreover, we determine the number of low-resolution images that are sufficient to achieve the limit. Both real and synthetic experiments are carried out to verify our analysis.

  11. Recent advances in high-performance fluorescent and bioluminescent RNA imaging probes.

    PubMed

    Xia, Yuqiong; Zhang, Ruili; Wang, Zhongliang; Tian, Jie; Chen, Xiaoyuan

    2017-05-22

    RNA plays an important role in life processes. Imaging of messenger RNAs (mRNAs) and micro-RNAs (miRNAs) not only allows us to learn the formation and transcription of mRNAs and the biogenesis of miRNAs involved in various life processes, but also helps in detecting cancer. High-performance RNA imaging probes greatly expand our view of life processes and enhance the cancer detection accuracy. In this review, we summarize the state-of-the-art high-performance RNA imaging probes, including exogenous probes that can image RNA sequences with special modification and endogeneous probes that can directly image endogenous RNAs without special treatment. For each probe, we review its structure and imaging principle in detail. Finally, we summarize the application of mRNA and miRNA imaging probes in studying life processes as well as in detecting cancer. By correlating the structures and principles of various probes with their practical uses, we compare different RNA imaging probes and offer guidance for better utilization of the current imaging probes and the future design of higher-performance RNA imaging probes.

  12. Design and Fabrication of Vertically-Integrated CMOS Image Sensors

    PubMed Central

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860

  13. The genetic difference principle.

    PubMed

    Farrelly, Colin

    2004-01-01

    In the newly emerging debates about genetics and justice three distinct principles have begun to emerge concerning what the distributive aim of genetic interventions should be. These principles are: genetic equality, a genetic decent minimum, and the genetic difference principle. In this paper, I examine the rationale of each of these principles and argue that genetic equality and a genetic decent minimum are ill-equipped to tackle what I call the currency problem and the problem of weight. The genetic difference principle is the most promising of the three principles and I develop this principle so that it takes seriously the concerns of just health care and distributive justice in general. Given the strains on public funds for other important social programmes, the costs of pursuing genetic interventions and the nature of genetic interventions, I conclude that a more lax interpretation of the genetic difference principle is appropriate. This interpretation stipulates that genetic inequalities should be arranged so that they are to the greatest reasonable benefit of the least advantaged. Such a proposal is consistent with prioritarianism and provides some practical guidance for non-ideal societies--that is, societies that do not have the endless amount of resources needed to satisfy every requirement of justice.

  14. Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers.

    PubMed

    Kim, Yunhee; Choi, Heejin; Kim, Joohwan; Cho, Seong-Woo; Kim, Youngmin; Park, Gilbae; Lee, Byoungho

    2007-06-20

    A depth-enhanced three-dimensional integral imaging system with electrically variable image planes is proposed. For implementing the variable image planes, polymer-dispersed liquid-crystal (PDLC) films and a projector are adopted as a new display system in the integral imaging. Since the transparencies of PDLC films are electrically controllable, we can make each film diffuse the projected light successively with a different depth from the lens array. As a result, the proposed method enables control of the location of image planes electrically and enhances the depth. The principle of the proposed method is described, and experimental results are also presented.

  15. Limited Azithromycin Localization to Rabbit Meibomian Glands Revealed by LC-MS-Based Bioanalysis and DESI Imaging.

    PubMed

    Asano, Nagayoshi; Wiseman, Justin Michael; Tsuji, Fumio; Kawazu, Kouichi

    2017-01-01

    Meibomian gland dysfunction (MGD) is the leading cause of dry eye, and although it affects approximately 4% of the population, treatment options remain limited. Topical azithromycin is one of the most promising pharmacological agents because of its multiple mechanisms of action and long sustainability. Azithromycin is frequently used as an off-label medication in the U.S. However, although azithromycin is presumed to act directly on meibomian gland cells, the mechanisms of action that contribute to its clinical efficacy remain unclear because no studies using a pharmacokinetic approach have been performed. Therefore, we aimed to clarify whether topical azithromycin reaches the meibomian glands sufficiently to generate a biological effect. We measured azithromycin concentrations in rabbit meibomian glands collected using a recently developed method. Moreover, we also visualized the azithromycin micro-distribution using desorption electrospray ionization (DESI) imaging. Azithromycin concentration in the meibomian glands reached only 0.8 µg/g tissue following a single application of a 1% azithromycin ophthalmic solution and was 1000-fold lower than the concentration in conjunctival epithelium. Similarly, no signal was observed in the meibomian glands on DESI images. Our results clearly demonstrated that topical azithromycin had limited access to the meibomian glands and was predominantly distributed in ocular surface tissues such as the palpebral conjunctiva and lid margins. These findings provide new insight into the clinical responses to topical azithromycin therapy and will aid in the further development of effective drugs with more suitable pharmacokinetic properties.

  16. Unbiased estimation of the calcaneus volume using the Cavalieri principle on computed tomography images.

    PubMed

    Acer, N; Bayar, B; Basaloglu, H; Oner, E; Bayar, K; Sankur, S

    2008-11-20

    The size and shape of tarsal bones are especially relevant when considering some orthopedic diseases such as clubfoot. For this reason, the measurements of the tarsal bones have been the subject of many studies, none of which has used stereological methods to estimate the volume. In the present stereological study, we estimated the volume of calcaneal bone of normal feet and dry bones. We used a combination of the Cavalieri principle and computer tomographic scans taken from eight males and nine dry calcanei to estimate the volumes of calcaneal bones. The mean volume of dry calcaneal bones was estimated, producing mean results using the point-counting method and Archimedes principle being 49.11+/-10.7 or 48.22+/-11.92 cm(3), respectively. A positive correlation was found between anthropometric measurements and the volume of calcaneal bones. The findings of the present study using the stereological methods could provide data for the evaluation of normal and pathological volumes of calcaneal bones.

  17. Plasmonic trace sensing below the photon shot noise limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooser, Raphael C.; Lawrie, Benjamin J.

    Plasmonic sensors are important detectors of biochemical trace compounds, but those that utilize optical readout are approaching their absolute limits of detection as defined by the Heisenberg uncertainty principle in both differential intensity and phase readout. However, the use of more general minimum uncertainty states in the form of squeezed light can push the noise floor in these sensors below the shot noise limit (SNL) in one analysis variable at the expense of another. Here, we demonstrate a quantum plasmonic sensor whose noise floor is reduced below the SNL in order to perform index of refraction measurements with sensitivities unobtainablemore » with classical plasmonic sensors. The increased signal-to-noise ratio can result in faster detection of analyte concentrations that were previously lost in the noise. As a result, these benefits are the hallmarks of a sensor exploiting quantum readout fields in order to manipulate the limits of the Heisenberg uncertainty principle.« less

  18. Plasmonic trace sensing below the photon shot noise limit

    DOE PAGES

    Pooser, Raphael C.; Lawrie, Benjamin J.

    2015-12-09

    Plasmonic sensors are important detectors of biochemical trace compounds, but those that utilize optical readout are approaching their absolute limits of detection as defined by the Heisenberg uncertainty principle in both differential intensity and phase readout. However, the use of more general minimum uncertainty states in the form of squeezed light can push the noise floor in these sensors below the shot noise limit (SNL) in one analysis variable at the expense of another. Here, we demonstrate a quantum plasmonic sensor whose noise floor is reduced below the SNL in order to perform index of refraction measurements with sensitivities unobtainablemore » with classical plasmonic sensors. The increased signal-to-noise ratio can result in faster detection of analyte concentrations that were previously lost in the noise. As a result, these benefits are the hallmarks of a sensor exploiting quantum readout fields in order to manipulate the limits of the Heisenberg uncertainty principle.« less

  19. Improved Bounds on Violation of the Strong Equivalence Principle

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.

    2002-01-01

    I describe a unique, 20-year-long timing program for the binary pulsar B0655+64, the stalwart control experiment for measurements of gravitational radiation damping in relativistic neutron-star binaries. Observed limits on evolution of the B0655+64 orbit provide new bounds on the existence of dipolar gravitational radiation, and hence on violation of the Strong Equivalence Principle.

  20. Does Student Quality Matter in the Teaching of Economic Principles?

    ERIC Educational Resources Information Center

    Andreopoulos, Giuliana Campanelli; Panayides, Alexandros

    2010-01-01

    Economics is usually perceived as a difficult subject among undergraduate students and the literature suggests that the student's problems with principles of economics are mainly related to the chalk and talk type of teaching, the simplicity of economic models, limited discussions on current economic issues, and on race, gender, and other types of…