Sample records for imaging principles limitations

  1. Statistical Limits to Super Resolution

    NASA Astrophysics Data System (ADS)

    Lucy, L. B.

    1992-08-01

    The limits imposed by photon statistics on the degree to which Rayleigh's resolution limit for diffraction-limited images can be surpassed by applying image restoration techniques are investigated. An approximate statistical theory is given for the number of detected photons required in the image of an unresolved pair of equal point sources in order that its information content allows in principle resolution by restoration. This theory is confirmed by numerical restoration experiments on synthetic images, and quantitative limits are presented for restoration of diffraction-limited images formed by slit and circular apertures.

  2. Limits to magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Glover, Paul; Mansfield, Peter, Sir

    2002-10-01

    The last quarter of the twentieth century saw the development of magnetic resonance imaging (MRI) grow from a laboratory demonstration to a multi-billion dollar worldwide industry. There is a clinical body scanner in almost every hospital of the developed nations. The field of magnetic resonance microscopy (MRM), after mostly being abandoned by researchers in the first decade of MRI, has become an established branch of the science. This paper reviews the development of MRM over the last decade with an emphasis on the current state of the art. The fundamental principles of imaging and signal detection are examined to determine the physical principles which limit the available resolution. The limits are discussed with reference to liquid, solid and gas phase microscopy. In each area, the novel approaches employed by researchers to push back the limits of resolution are discussed. Although the limits to resolution are well known, the developments and applications of MRM have not reached their limit.

  3. Digital Radiographic Image Processing and Analysis.

    PubMed

    Yoon, Douglas C; Mol, André; Benn, Douglas K; Benavides, Erika

    2018-07-01

    This article describes digital radiographic imaging and analysis from the basics of image capture to examples of some of the most advanced digital technologies currently available. The principles underlying the imaging technologies are described to provide a better understanding of their strengths and limitations. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Medical Imaging.

    ERIC Educational Resources Information Center

    Jaffe, C. Carl

    1982-01-01

    Describes principle imaging techniques, their applications, and their limitations in terms of diagnostic capability and possible adverse biological effects. Techniques include film radiography, computed tomography, nuclear medicine, positron emission tomography (PET), ultrasonography, nuclear magnetic resonance, and digital radiography. PET has…

  5. Optical-domain subsampling for data efficient depth ranging in Fourier-domain optical coherence tomography

    PubMed Central

    Siddiqui, Meena; Vakoc, Benjamin J.

    2012-01-01

    Recent advances in optical coherence tomography (OCT) have led to higher-speed sources that support imaging over longer depth ranges. Limitations in the bandwidth of state-of-the-art acquisition electronics, however, prevent adoption of these advances into the clinical applications. Here, we introduce optical-domain subsampling as a method for imaging at high-speeds and over extended depth ranges but with a lower acquisition bandwidth than that required using conventional approaches. Optically subsampled laser sources utilize a discrete set of wavelengths to alias fringe signals along an extended depth range into a bandwidth limited frequency window. By detecting the complex fringe signals and under the assumption of a depth-constrained signal, optical-domain subsampling enables recovery of the depth-resolved scattering signal without overlapping artifacts from this bandwidth-limited window. We highlight key principles behind optical-domain subsampled imaging, and demonstrate this principle experimentally using a polygon-filter based swept-source laser that includes an intra-cavity Fabry-Perot (FP) etalon. PMID:23038343

  6. Computational imaging through a fiber-optic bundle

    NASA Astrophysics Data System (ADS)

    Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.

    2017-05-01

    Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.

  7. Bayesian superresolution

    NASA Astrophysics Data System (ADS)

    Isakson, Steve Wesley

    2001-12-01

    Well-known principles of physics explain why resolution restrictions occur in images produced by optical diffraction-limited systems. The limitations involved are present in all diffraction-limited imaging systems, including acoustical and microwave. In most circumstances, however, prior knowledge about the object and the imaging system can lead to resolution improvements. In this dissertation I outline a method to incorporate prior information into the process of reconstructing images to superresolve the object beyond the above limitations. This dissertation research develops the details of this methodology. The approach can provide the most-probable global solution employing a finite number of steps in both far-field and near-field images. In addition, in order to overcome the effects of noise present in any imaging system, this technique provides a weighted image that quantifies the likelihood of various imaging solutions. By utilizing Bayesian probability, the procedure is capable of incorporating prior information about both the object and the noise to overcome the resolution limitation present in many imaging systems. Finally I will present an imaging system capable of detecting the evanescent waves missing from far-field systems, thus improving the resolution further.

  8. Conebeam CT of the head and neck, part 1: physical principles.

    PubMed

    Miracle, A C; Mukherji, S K

    2009-06-01

    Conebeam x-ray CT (CBCT) is a developing imaging technique designed to provide relatively low-dose high-spatial-resolution visualization of high-contrast structures in the head and neck and other anatomic areas. This first installment in a 2-part review will address the physical principles underlying CBCT imaging as it is used in dedicated head and neck scanners. Concepts related to CBCT acquisition geometry, flat panel detection, and image quality will be explored in detail. Particular emphasis will be placed on technical limitations to low-contrast detectability and radiation dose. Proposed methods of x-ray scatter reduction will also be discussed.

  9. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    PubMed Central

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L.; Raines, Kevin S.; Pryor Jr, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J.; Miao, Jianwei

    2015-01-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres. PMID:26306199

  10. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    DOE PAGES

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien -Chun; ...

    2015-09-01

    Here, a structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 Kev X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and themore » three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. Finally, it is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.« less

  11. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells.

    PubMed

    Rodriguez, Jose A; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L; Raines, Kevin S; Pryor, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J; Miao, Jianwei

    2015-09-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.

  12. Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores.

    PubMed

    Chen, Zhixing; Wei, Lu; Zhu, Xinxin; Min, Wei

    2012-08-13

    It is highly desirable to be able to optically probe biological activities deep inside live organisms. By employing a spatially confined excitation via a nonlinear transition, multiphoton fluorescence microscopy has become indispensable for imaging scattering samples. However, as the incident laser power drops exponentially with imaging depth due to scattering loss, the out-of-focus fluorescence eventually overwhelms the in-focal signal. The resulting loss of imaging contrast defines a fundamental imaging-depth limit, which cannot be overcome by increasing excitation intensity. Herein we propose to significantly extend this depth limit by multiphoton activation and imaging (MPAI) of photo-activatable fluorophores. The imaging contrast is drastically improved due to the created disparity of bright-dark quantum states in space. We demonstrate this new principle by both analytical theory and experiments on tissue phantoms labeled with synthetic caged fluorescein dye or genetically encodable photoactivatable GFP.

  13. Progress in 3D imaging and display by integral imaging

    NASA Astrophysics Data System (ADS)

    Martinez-Cuenca, R.; Saavedra, G.; Martinez-Corral, M.; Pons, A.; Javidi, B.

    2009-05-01

    Three-dimensionality is currently considered an important added value in imaging devices, and therefore the search for an optimum 3D imaging and display technique is a hot topic that is attracting important research efforts. As main value, 3D monitors should provide the observers with different perspectives of a 3D scene by simply varying the head position. Three-dimensional imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging (InI), which can capture true 3D color images, has been seen as the right technology to 3D viewing to audiences of more than one person. Due to the advanced degree of development, InI technology could be ready for commercialization in the coming years. This development is the result of a strong research effort performed along the past few years by many groups. Since Integral Imaging is still an emerging technology, the first aim of the "3D Imaging and Display Laboratory" at the University of Valencia, has been the realization of a thorough study of the principles that govern its operation. Is remarkable that some of these principles have been recognized and characterized by our group. Other contributions of our research have been addressed to overcome some of the classical limitations of InI systems, like the limited depth of field (in pickup and in display), the poor axial and lateral resolution, the pseudoscopic-to-orthoscopic conversion, the production of 3D images with continuous relief, or the limited range of viewing angles of InI monitors.

  14. Monitoring Earth Surface Dynamics With Optical Imagery

    NASA Astrophysics Data System (ADS)

    Leprince, Sébastien; Berthier, Etienne; Ayoub, François; Delacourt, Christophe; Avouac, Jean-Philippe

    2008-01-01

    The increasing availability of high-quality optical satellite images should allow, in principle, continuous monitoring of Earth's surface changes due to geologic processes, climate change, or anthropic activity. For instance, sequential optical images have been used to measure displacements at Earth's surface due to coseismic ground deformation [e.g., Van Puymbroeck et al., 2000], ice flow [Scambos et al., 1992; Berthier et al., 2005], sand dune migration [Crippen, 1992], and landslides [Kääb, 2002; Delacourt et al., 2004]. Surface changes related to agriculture, deforestation, urbanization, and erosion-which do not involve ground displacement-might also be monitored, provided that the images can be registered with sufficient accuracy. Although the approach is simple in principle, its use is still limited, mainly because of geometric distortion of the images induced by the imaging system, biased correlation techniques, and implementation difficulties.

  15. Advanced Pediatric Brain Imaging Research and Training Program

    DTIC Science & Technology

    2014-10-01

    death and disability in children. Recent advances in pediatric magnetic resonance imaging ( MRI ) techniques are revolutionizing our understanding of... MRI , brain injury. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a...principles of pediatric brain injury and recovery following injury, as well as the clinical application of sophisticated MRI techniques that are

  16. Meeting Report: Tissue-based Image Analysis.

    PubMed

    Saravanan, Chandra; Schumacher, Vanessa; Brown, Danielle; Dunstan, Robert; Galarneau, Jean-Rene; Odin, Marielle; Mishra, Sasmita

    2017-10-01

    Quantitative image analysis (IA) is a rapidly evolving area of digital pathology. Although not a new concept, the quantification of histological features on photomicrographs used to be cumbersome, resource-intensive, and limited to specialists and specialized laboratories. Recent technological advances like highly efficient automated whole slide digitizer (scanner) systems, innovative IA platforms, and the emergence of pathologist-friendly image annotation and analysis systems mean that quantification of features on histological digital images will become increasingly prominent in pathologists' daily professional lives. The added value of quantitative IA in pathology includes confirmation of equivocal findings noted by a pathologist, increasing the sensitivity of feature detection, quantification of signal intensity, and improving efficiency. There is no denying that quantitative IA is part of the future of pathology; however, there are also several potential pitfalls when trying to estimate volumetric features from limited 2-dimensional sections. This continuing education session on quantitative IA offered a broad overview of the field; a hands-on toxicologic pathologist experience with IA principles, tools, and workflows; a discussion on how to apply basic stereology principles in order to minimize bias in IA; and finally, a reflection on the future of IA in the toxicologic pathology field.

  17. High Speed Computational Ghost Imaging via Spatial Sweeping

    NASA Astrophysics Data System (ADS)

    Wang, Yuwang; Liu, Yang; Suo, Jinli; Situ, Guohai; Qiao, Chang; Dai, Qionghai

    2017-03-01

    Computational ghost imaging (CGI) achieves single-pixel imaging by using a Spatial Light Modulator (SLM) to generate structured illuminations for spatially resolved information encoding. The imaging speed of CGI is limited by the modulation frequency of available SLMs, and sets back its practical applications. This paper proposes to bypass this limitation by trading off SLM’s redundant spatial resolution for multiplication of the modulation frequency. Specifically, a pair of galvanic mirrors sweeping across the high resolution SLM multiply the modulation frequency within the spatial resolution gap between SLM and the final reconstruction. A proof-of-principle setup with two middle end galvanic mirrors achieves ghost imaging as fast as 42 Hz at 80 × 80-pixel resolution, 5 times faster than state-of-the-arts, and holds potential for one magnitude further multiplication by hardware upgrading. Our approach brings a significant improvement in the imaging speed of ghost imaging and pushes ghost imaging towards practical applications.

  18. Multiscale Imaging of the Mouse Cortex Using Two-Photon Microscopy and Wide-Field Illumination

    NASA Astrophysics Data System (ADS)

    Bumstead, Jonathan R.

    The mouse brain can be studied over vast spatial scales ranging from microscopic imaging of single neurons to macroscopic measurements of hemodynamics acquired over the majority of the mouse cortex. However, most neuroimaging modalities are limited by a fundamental trade-off between the spatial resolution and the field-of-view (FOV) over which the brain can be imaged, making it difficult to fully understand the functional and structural architecture of the healthy mouse brain and its disruption in disease. My dissertation has focused on developing multiscale optical systems capable of imaging the mouse brain at both microscopic and mesoscopic spatial scales, specifically addressing the difference in spatial scales imaged with two-photon microscopy (TPM) and optical intrinsic signal imaging (OISI). Central to this work has been the formulation of a principled design strategy for extending the FOV of the two-photon microscope. Using this design approach, we constructed a TPM system with subcellular resolution and a FOV area 100 times greater than a conventional two-photon microscope. To image the ellipsoidal shape of the mouse cortex, we also developed the microscope to image arbitrary surfaces within a single frame using an electrically tunable lens. Finally, to address the speed limitations of the TPM systems developed during my dissertation, I also conducted research in large-scale neural phenomena occurring in the mouse brain imaged with high-speed OISI. The work conducted during my dissertation addresses some of the fundamental principles in designing and applying optical systems for multiscale imaging of the mouse brain.

  19. Diffraction enhance x-ray imaging for quantitative phase contrast studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, A. K.; Singh, B., E-mail: balwants@rrcat.gov.in; Kashyap, Y. S.

    2016-05-23

    Conventional X-ray imaging based on absorption contrast permits limited visibility of feature having small density and thickness variations. For imaging of weakly absorbing material or materials possessing similar densities, a novel phase contrast imaging techniques called diffraction enhanced imaging has been designed and developed at imaging beamline Indus-2 RRCAT Indore. The technique provides improved visibility of the interfaces and show high contrast in the image forsmall density or thickness gradients in the bulk. This paper presents basic principle, instrumentation and analysis methods for this technique. Initial results of quantitative phase retrieval carried out on various samples have also been presented.

  20. Photogrammetry in 3d Modelling of Human Bone Structures from Radiographs

    NASA Astrophysics Data System (ADS)

    Hosseinian, S.; Arefi, H.

    2017-05-01

    Photogrammetry can have great impact on the success of medical processes for diagnosis, treatment and surgeries. Precise 3D models which can be achieved by photogrammetry improve considerably the results of orthopedic surgeries and processes. Usual 3D imaging techniques, computed tomography (CT) and magnetic resonance imaging (MRI), have some limitations such as being used only in non-weight-bearing positions, costs and high radiation dose(for CT) and limitations of MRI for patients with ferromagnetic implants or objects in their bodies. 3D reconstruction of bony structures from biplanar X-ray images is a reliable and accepted alternative for achieving accurate 3D information with low dose radiation in weight-bearing positions. The information can be obtained from multi-view radiographs by using photogrammetry. The primary step for 3D reconstruction of human bone structure from medical X-ray images is calibration which is done by applying principles of photogrammetry. After the calibration step, 3D reconstruction can be done using efficient methods with different levels of automation. Because of the different nature of X-ray images from optical images, there are distinct challenges in medical applications for calibration step of stereoradiography. In this paper, after demonstrating the general steps and principles of 3D reconstruction from X-ray images, a comparison will be done on calibration methods for 3D reconstruction from radiographs and they are assessed from photogrammetry point of view by considering various metrics such as their camera models, calibration objects, accuracy, availability, patient-friendly and cost.

  1. Imaging modes of atomic force microscopy for application in molecular and cell biology.

    PubMed

    Dufrêne, Yves F; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, Andreas; Gerber, Christoph; Müller, Daniel J

    2017-04-06

    Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.

  2. Breaking the acoustic diffraction barrier with localization optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Razansky, Daniel

    2018-02-01

    Diffraction causes blurring of high-resolution features in images and has been traditionally associated to the resolution limit in light microscopy and other imaging modalities. The resolution of an imaging system can be generally assessed via its point spread function, corresponding to the image acquired from a point source. However, the precision in determining the position of an isolated source can greatly exceed the diffraction limit. By combining the estimated positions of multiple sources, localization-based imaging has resulted in groundbreaking methods such as super-resolution fluorescence optical microscopy and has also enabled ultrasound imaging of microvascular structures with unprecedented spatial resolution in deep tissues. Herein, we introduce localization optoacoustic tomography (LOT) and discuss on the prospects of using localization imaging principles in optoacoustic imaging. LOT was experimentally implemented by real-time imaging of flowing particles in 3D with a recently-developed volumetric optoacoustic tomography system. Provided the particles were separated by a distance larger than the diffraction-limited resolution, their individual locations could be accurately determined in each frame of the acquired image sequence and the localization image was formed by superimposing a set of points corresponding to the localized positions of the absorbers. The presented results demonstrate that LOT can significantly enhance the well-established advantages of optoacoustic imaging by breaking the acoustic diffraction barrier in deep tissues and mitigating artifacts due to limited-view tomographic acquisitions.

  3. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    NASA Astrophysics Data System (ADS)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  4. Memory and neural networks on the basis of color centers in solids.

    PubMed

    Winnacker, Albrecht; Osvet, Andres

    2009-11-01

    Optical data recording is one of the most widely used and efficient systems of memory in the non-living world. The application of color centers in this context offers not only systems of high speed in writing and read-out due to a high degree of parallelism in data handling but also a possibility to set up models of neural networks. In this way, systems with a high potential for image processing, pattern recognition and logical operations can be constructed. A limitation to storage density is given by the diffraction limit of optical data recording. It is shown that this limitation can at least in principle be overcome by the principle of spectral hole burning, which results in systems of storage capacities close to the human brain system.

  5. Multi-imager compatible actuation principles in surgical robotics.

    PubMed

    Stoianovici, D

    2005-01-01

    Today's most successful surgical robots are perhaps surgeon-driven systems, such as the daVinci (Intuitive Surgical Inc., USA, www.intuitivesurgical.com). These have already enabled surgery that was unattainable with classic instrumentation; however, at their present level of development, they have limited utility. The drawback of these systems is that they are independent self-contained units, and as such, they do not directly take advantage of patient data. The potential of these new surgical tools lies much further ahead. Integration with medical imaging and information are needed for these devices to achieve their true potential. Surgical robots and especially their subclass of image-guided systems require special design, construction and control compared to industrial types, due to the special requirements of the medical and imaging environments. Imager compatibility raises significant engineering challenges for the development of robotic manipulators with respect to imager access, safety, ergonomics, and above all the non-interference with the functionality of the imager. These apply to all known medical imaging types, but are especially challenging for achieving compatibility with the class of MRI systems. Even though a large majority of robotic components may be redesigned to be constructed of MRI compatible materials, for other components such as the motors used in actuation, prescribing MRI compatible materials alone is not sufficient. The electromagnetic motors most commonly used in robotic actuation, for example, are incompatible by principle. As such, alternate actuation principles using "intervention friendly" energy should be adopted and/or devised for these special surgical and radiological interventions. This paper defines the new concept of Multi-Imager Compatibility of surgical manipulators and describes its requirements. Subsequently, the paper gives several recommendations and proposes new actuation principles for this concept. Several implementations have been constructed and tested, and the results are presented here. This is the first paper addressing these issues. Copyright 2005 Robotic Publications Ltd.

  6. Developing an ultrasound correlation velocimetry system

    NASA Astrophysics Data System (ADS)

    Surup, Gerrit; White, Christopher; UNH Team

    2011-11-01

    The process of building an ultrasound correlation velocimetry (UCV) system by integrating a commercial medical ultrasound with a PC running commercial PIV software is described and preliminary validation measurements in pipe flow using UCV and optical particle image velocimetry (PIV) are reported. In principles of operation, UCV is similar to the technique of PIV, differing only in the image acquisition process. The benefits of UCV are that it does not require optical access to the flow field and can be used for measuring flows of opaque fluids. While the limitations of UVC are the inherently low frame rates (limited by the imaging capabilities of the commercial ultrasound system) and low spatial resolution, which limits the range of velocities and transient flow behavior that can be measured. The support of the NSF (CBET0846359, grant monitor Horst Henning Winter) is gratefully acknowledged.

  7. Backscattered helium spectroscopy in the helium ion microscope: Principles, resolution and applications

    NASA Astrophysics Data System (ADS)

    van Gastel, R.; Hlawacek, G.; Dutta, S.; Poelsema, B.

    2015-02-01

    We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of samples. The contrast that is seen in helium ion microscopy (HIM) images differs from that in scanning electron microscopy (SEM) and is generally a result of the higher surface sensitivity of the method. It allows, for instance, a much better visualization of low-Z materials as a result of the small secondary electron escape depth. However, the same differences in beam interaction that give HIM an edge over other imaging techniques, also impose limitations for spectroscopic applications using backscattered particles. Here we quantify those limitations and discuss opportunities to further improve the technique.

  8. X-ray ptychography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Franz

    2018-01-01

    X-ray ptychographic microscopy combines the advantages of raster scanning X-ray microscopy with the more recently developed techniques of coherent diffraction imaging. It is limited neither by the fabricational challenges associated with X-ray optics nor by the requirements of isolated specimen preparation, and offers in principle wavelength-limited resolution, as well as stable access and solution to the phase problem. In this Review, we discuss the basic principles of X-ray ptychography and summarize the main milestones in the evolution of X-ray ptychographic microscopy and tomography over the past ten years, since its first demonstration with X-rays. We also highlight the potential for applications in the life and materials sciences, and discuss the latest advanced concepts and probable future developments.

  9. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  10. Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications

    PubMed Central

    Sodickson, Daniel K.

    2010-01-01

    Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions. PMID:17562047

  11. Holographic Associative Memory Employing Phase Conjugation

    NASA Astrophysics Data System (ADS)

    Soffer, B. H.; Marom, E.; Owechko, Y.; Dunning, G.

    1986-12-01

    The principle of information retrieval by association has been suggested as a basis for parallel computing and as the process by which human memory functions.1 Various associative processors have been proposed that use electronic or optical means. Optical schemes,2-7 in particular, those based on holographic principles,8'8' are well suited to associative processing because of their high parallelism and information throughput. Previous workers8 demonstrated that holographically stored images can be recalled by using relatively complicated reference images but did not utilize nonlinear feedback to reduce the large cross talk that results when multiple objects are stored and a partial or distorted input is used for retrieval. These earlier approaches were limited in their ability to reconstruct the output object faithfully from a partial input.

  12. Non-resonant zeugmatography with muons (μ SI) and radioactive isotopes

    NASA Astrophysics Data System (ADS)

    Kaplan, N.; Kreitzman, S. R.; Schneider, J. W.; Brewer, J. H.; Hitti, B.

    1994-12-01

    The procedure of zeugmatographic imaging — hitherto implemented only with nuclear magnetic resonance to form the well known MRI technique — is examined with the aim of utilizing it also in combination with non resonant phenomena. It is shown that in principle, one may indeed use zeugmatographic schemes with Perturbed Angular Correlations (PAC) or with muon spin rotations ( μSR) to obtain image information from material bodies. The preliminary experimentation with zeugmatographic μ Spin Imaging scheme, ( μSI), will be described. Some μSI imaging results will be presented and the inherent limitations of the method will be discussed.

  13. Super-resolution Microscopy in Plant Cell Imaging.

    PubMed

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A study on high NA and evanescent imaging with polarized illumination

    NASA Astrophysics Data System (ADS)

    Yang, Seung-Hune

    Simulation techniques are developed for high NA polarized microscopy with Babinet's principle, partial coherence and vector diffraction for non-periodic geometries. A mathematical model for the Babinet approach is developed and interpreted. Simulation results of the Babinet's principle approach are compared with those of Rigorous Coupled Wave Theory (RCWT) for periodic structures to investigate the accuracy of this approach and its limitations. A microscope system using a special solid immersion lens (SIL) is introduced to image Blu-Ray (BD) optical disc samples without removing the protective cover layer. Aberration caused by the cover layer is minimized with a truncated SIL. Sub-surface imaging simulation is achieved by RCWT, partial coherence, vector diffraction and Babinet's Principle. Simulated results are compared with experimental images and atomic force microscopy (AFM) measurement. A technique for obtaining native and induced using a significant amount of evanescent energy is described for a solid immersion lens (SIL) microscope. Characteristics of native and induced polarization images for different object structures and materials are studied in detail. Experiments are conducted with a NA = 1.48 at lambda = 550nm microscope. Near-field images are simulated and analyzed with an RCWT approach. Contrast curve versus object spatial frequency calculations are compared with experimental measurements. Dependencies of contrast versus source polarization angles and air gap for native and induced polarization image profiles are evaluated. By using the relationship between induced polarization and topographical structure, an induced polarization image of an alternating phase shift mask (PSM) is converted into a topographical image, which shows very good agreement with AFM measurement. Images of other material structures include a dielectric grating, chrome-on-glass grating, silicon CPU structure, BD-R and BD-ROM.

  15. Nuclear medicine imaging and therapy of neuroendocrine tumours

    PubMed Central

    Gotthardt, Martin; Dijkgraaf, Ingrid; Boerman, Otto C; Oyen, Wim J G

    2006-01-01

    Radiolabelled peptides are used for specific targeting of receptors (over-)expressed by tumour cells. Dependent on the kind of labelling and the radionuclide used, these compounds may be utilised for imaging or for therapy. A concise overview is provided on basic principles of designing and developing radiopeptides for these applications. Furthermore, clinical application of these compounds for imaging and therapy is described. Advantages of the method compared to other techniques (such as the use of radiolabelled antibodies or antibody fragments) are discussed as well as pitfalls and limitations. PMID:17114073

  16. Integral imaging with multiple image planes using a uniaxial crystal plate.

    PubMed

    Park, Jae-Hyeung; Jung, Sungyong; Choi, Heejin; Lee, Byoungho

    2003-08-11

    Integral imaging has been attracting much attention recently for its several advantages such as full parallax, continuous view-points, and real-time full-color operation. However, the thickness of the displayed three-dimensional image is limited to relatively small value due to the degradation of the image resolution. In this paper, we propose a method to provide observers with enhanced perception of the depth without severe resolution degradation by the use of the birefringence of a uniaxial crystal plate. The proposed integral imaging system can display images integrated around three central depth planes by dynamically altering the polarization and controlling both elemental images and dynamic slit array mask accordingly. We explain the principle of the proposed method and verify it experimentally.

  17. Super-resolution fluorescence microscopy by stepwise optical saturation

    PubMed Central

    Zhang, Yide; Nallathamby, Prakash D.; Vigil, Genevieve D.; Khan, Aamir A.; Mason, Devon E.; Boerckel, Joel D.; Roeder, Ryan K.; Howard, Scott S.

    2018-01-01

    Super-resolution fluorescence microscopy is an important tool in biomedical research for its ability to discern features smaller than the diffraction limit. However, due to its difficult implementation and high cost, the super-resolution microscopy is not feasible in many applications. In this paper, we propose and demonstrate a saturation-based super-resolution fluorescence microscopy technique that can be easily implemented and requires neither additional hardware nor complex post-processing. The method is based on the principle of stepwise optical saturation (SOS), where M steps of raw fluorescence images are linearly combined to generate an image with a M-fold increase in resolution compared with conventional diffraction-limited images. For example, linearly combining (scaling and subtracting) two images obtained at regular powers extends the resolution by a factor of 1.4 beyond the diffraction limit. The resolution improvement in SOS microscopy is theoretically infinite but practically is limited by the signal-to-noise ratio. We perform simulations and experimentally demonstrate super-resolution microscopy with both one-photon (confocal) and multiphoton excitation fluorescence. We show that with the multiphoton modality, the SOS microscopy can provide super-resolution imaging deep in scattering samples. PMID:29675306

  18. Through the looking glass: Basics and principles of reflectance confocal microscopy.

    PubMed

    Que, Syril Keena T; Fraga-Braghiroli, Naiara; Grant-Kels, Jane M; Rabinovitz, Harold S; Oliviero, Margaret; Scope, Alon

    2015-08-01

    Reflectance confocal microscopy (RCM) offers high-resolution, noninvasive skin imaging and can help avoid obtaining unnecessary biopsy specimens. It can also increase efficiency in the surgical setting by helping to delineate tumor margins. Diagnostic criteria and several RCM algorithms have been published for the differentiation of benign and malignant neoplasms. We provide an overview of the basic principles of RCM, characteristic RCM features of normal skin and cutaneous neoplasms, and the limitations and future directions of RCM. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  19. Design And Demonstration Of Band-limited Hybrid Coronagraph Masks For Space Imaging And Spectroscopy Of Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Trauger, John T.; Moody, D. C.

    2010-05-01

    Among the leading architectures for the imaging and spectroscopy of nearby exoplanetary systems is the space coronagraph, which provides in principle very high (10 billion to one) suppression of diffracted and scattered starlight at very small separations (a few tenths of arcseconds) from the star. The concept of a band-limited Lyot coronagraph, introduced by Kuchner and Traub (2002), provides the theoretical basis for mathematically perfect starlight suppression. In practice, the optical characteristics of available materials and practical aspects of the fabrication processes impose limitations on contrast and spectral bandwidths that are achievable in the real world. Nevertheless, the band-limited Lyot coronagraph approach has produced the best laboratory validated performance among known types of internal coronagraph for contrast and spectral bandwidth, and alone it has demonstrated high-contrast imaging performance at levels required for exoplanet exploration. We report the design and fabrication of hybrid focal-plane masks for Lyot coronagraphy, composed of thickness-profiled metallic and dielectric thin films, vacuum deposited on a glass substrate. These masks are in principle band-limited in both the real and imaginary parts of the complex amplitude characteristics. Together with a deformable mirror for control of wavefront phase, these masks have the potential for contrast performance better than 10-9 at inner working angles of 3 lambda/D or better over spectral bandwidths of 20% or more, and with throughput efficiencies up to 60%. We report recent laboratory demonstrations of high contrast with nickel-dielectric masks, including the demonstration of 2x10-9 contrast with a 3 lambda/D inner working angle over 20% spectral bandwidths.

  20. Associative Memory In A Phase Conjugate Resonator Cavity Utilizing A Hologram

    NASA Astrophysics Data System (ADS)

    Owechko, Y.; Marom, E.; Soffer, B. H.; Dunning, G.

    1987-01-01

    The principle of information retrieval by association has been suggested as a basis for parallel computing and as the process by which human memory functions.1 Various associative processors have been proposed that use electronic or optical means. Optical schemes,2-7 in particular, those based on holographic principles,3,6,7 are well suited to associative processing because of their high parallelism and information throughput. Previous workers8 demonstrated that holographically stored images can be recalled by using relatively complicated reference images but did not utilize nonlinear feedback to reduce the large cross talk that results when multiple objects are stored and a partial or distorted input is used for retrieval. These earlier approaches were limited in their ability to reconstruct the output object faithfully from a partial input.

  1. OPTICAL PROCESSING OF INFORMATION: Multistage optoelectronic two-dimensional image switches

    NASA Astrophysics Data System (ADS)

    Fedorov, V. B.

    1994-06-01

    The implementation principles and the feasibility of construction of high-throughput multistage optoelectronic switches, capable of transmitting data in the form of two-dimensional images along interconnected pairs of optical channels, are considered. Different ways of realising compact switches are proposed. They are based on the use of polarisation-sensitive elements, arrays of modulators of the plane of polarisation of light, arrays of objectives, and free-space optics. Optical systems of such switches can theoretically ensure that the resolution and optical losses in two-dimensional image transmission are limited only by diffraction. Estimates are obtained of the main maximum-performance parameters of the proposed optoelectronic image switches.

  2. In Vivo Small Animal Imaging using Micro-CT and Digital Subtraction Angiography

    PubMed Central

    Badea, C.T.; Drangova, M.; Holdsworth, D.W.; Johnson, G.A.

    2009-01-01

    Small animal imaging has a critical role in phenotyping, drug discovery, and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review in vivo X-ray based small animal imaging, with a focus on in vivo micro-computed tomography (micro-CT) and digital subtraction angiography (DSA). We present the principles, technologies, image quality parameters and types of applications. We show that both methods can be used not only to provide morphological, but also functional information, such as cardiac function estimation or perfusion. Compared to other modalities, x-ray based imaging is usually regarded as being able to provide higher throughput at lower cost and adequate resolution. The limitations are usually associated with the relatively poor contrast mechanisms and potential radiation damage due to ionizing radiation, although the use of contrast agents and careful design of studies can address these limitations. We hope that the information will effectively address how x-ray based imaging can be exploited for successful in vivo preclinical imaging. PMID:18758005

  3. Educational contracts in family medicine residency training.

    PubMed Central

    Mahood, S.; Rojas, R.; Andres, D.; Zagozeski, C.; White, G.; Bradel, T.

    1994-01-01

    An educational contract for family medicine residency training and evaluation addresses many of the difficulties and challenges of current postgraduate medical education. This article identifies important principles for developing a contractual approach; describes the contract used in one program and its implementation; and discusses its theory, advantages, and limitations. Images p550-a PMID:8199512

  4. Shack-Hartmann-based objective straylight assessment of the human eye in an increased scattering angle range

    NASA Astrophysics Data System (ADS)

    Schramm, Stefan; Schikowski, Patrick; Lerm, Elena; Kaeding, André; Haueisen, Jens; Baumgarten, Daniel

    2016-07-01

    Objective measurement of straylight in the human eye with a Shack-Hartmann (SH) wavefront aberrometer is limited in imaging angle. We propose a measurement principle and a point spread function (PSF) reconstruction algorithm to overcome this limitation. In our optical setup, a variable stop replaces the stop conventionally used to suppress reflections and scatter in SH aberrometers. We record images with 21 diameters of the stop. From each SH image, the average intensity of the pupil is computed and normalized. The intensities represent integral values of the PSF. We reconstruct the PSF, which is the derivative of the intensities with respect to the visual angle. A modified Stiles Holladay approximation is fitted to the reconstructed PSF, resulting in a straylight parameter. A proof-of-principle study was carried out on eight healthy young volunteers. Scatter filters were positioned in front of the volunteers' eyes to simulate straylight. The straylight parameter was compared to the C-Quant measurements and the filter values. The PSF parameter shows strong correlation with the density of the filters and a linear relation to the C-Quant straylight parameter. Our measurement and reconstruction techniques allow for objective straylight analysis of visual angles up to 4 deg.

  5. Advanced imaging in acute stroke management-Part I: Computed tomographic.

    PubMed

    Saini, Monica; Butcher, Ken

    2009-01-01

    Neuroimaging is fundamental to stroke diagnosis and management. Non-contrast computed tomography (NCCT) has been the primary imaging modality utilized for this purpose for almost four decades. Although NCCT does permit identification of intracranial hemorrhage and parenchymal ischemic changes, insights into blood vessel patency and cerebral perfusion are limited. Advances in reperfusion strategies have made identification of potentially salvageable brain tissue a more practical concern. Advances in CT technology now permit identification of acute and chronic arterial lesions, as well as cerebral blood flow deficits. This review outlines principles of advanced CT image acquisition and its utility in acute stroke management.

  6. Sequential and simultaneous SLAR block adjustment. [spline function analysis for mapping

    NASA Technical Reports Server (NTRS)

    Leberl, F.

    1975-01-01

    Two sequential methods of planimetric SLAR (Side Looking Airborne Radar) block adjustment, with and without splines, and three simultaneous methods based on the principles of least squares are evaluated. A limited experiment with simulated SLAR images indicates that sequential block formation with splines followed by external interpolative adjustment is superior to the simultaneous methods such as planimetric block adjustment with similarity transformations. The use of the sequential block formation is recommended, since it represents an inexpensive tool for satisfactory point determination from SLAR images.

  7. Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains.

    PubMed

    Busse, B L; Bezrukov, L; Blank, P S; Zimmerberg, J

    2016-08-08

    Protein complexes associated with cellular processes comprise a significant fraction of all biology, but our understanding of their heterogeneous organization remains inadequate, particularly for physiological densities of multiple protein species. Towards resolving this limitation, we here present a new technique based on resin-embedded multicycle imaging (REMI) of proteins in-situ. By stabilizing protein structure and antigenicity in acrylic resins, affinity labels were repeatedly applied, imaged, removed, and replaced. In principle, an arbitrarily large number of proteins of interest may be imaged on the same specimen with subsequent digital overlay. A series of novel preparative methods were developed to address the problem of imaging multiple protein species in areas of the plasma membrane or volumes of cytoplasm of individual cells. For multiplexed examination of antibody staining we used straightforward computational techniques to align sequential images, and super-resolution microscopy was used to further define membrane protein colocalization. We give one example of a fibroblast membrane with eight multiplexed proteins. A simple statistical analysis of this limited membrane proteomic dataset is sufficient to demonstrate the analytical power contributed by additional imaged proteins when studying membrane protein domains.

  8. Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains

    PubMed Central

    Busse, B. L.; Bezrukov, L.; Blank, P. S.; Zimmerberg, J.

    2016-01-01

    Protein complexes associated with cellular processes comprise a significant fraction of all biology, but our understanding of their heterogeneous organization remains inadequate, particularly for physiological densities of multiple protein species. Towards resolving this limitation, we here present a new technique based on resin-embedded multicycle imaging (REMI) of proteins in-situ. By stabilizing protein structure and antigenicity in acrylic resins, affinity labels were repeatedly applied, imaged, removed, and replaced. In principle, an arbitrarily large number of proteins of interest may be imaged on the same specimen with subsequent digital overlay. A series of novel preparative methods were developed to address the problem of imaging multiple protein species in areas of the plasma membrane or volumes of cytoplasm of individual cells. For multiplexed examination of antibody staining we used straightforward computational techniques to align sequential images, and super-resolution microscopy was used to further define membrane protein colocalization. We give one example of a fibroblast membrane with eight multiplexed proteins. A simple statistical analysis of this limited membrane proteomic dataset is sufficient to demonstrate the analytical power contributed by additional imaged proteins when studying membrane protein domains. PMID:27499335

  9. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications

    PubMed Central

    Kim, Byeong Hak; Kim, Min Young; Chae, You Seong

    2017-01-01

    Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC. PMID:29280970

  10. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications.

    PubMed

    Kim, Byeong Hak; Kim, Min Young; Chae, You Seong

    2017-12-27

    Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC.

  11. Statistical distributions of ultra-low dose CT sinograms and their fundamental limits

    NASA Astrophysics Data System (ADS)

    Lee, Tzu-Cheng; Zhang, Ruoqiao; Alessio, Adam M.; Fu, Lin; De Man, Bruno; Kinahan, Paul E.

    2017-03-01

    Low dose CT imaging is typically constrained to be diagnostic. However, there are applications for even lowerdose CT imaging, including image registration across multi-frame CT images and attenuation correction for PET/CT imaging. We define this as the ultra-low-dose (ULD) CT regime where the exposure level is a factor of 10 lower than current low-dose CT technique levels. In the ULD regime it is possible to use statistically-principled image reconstruction methods that make full use of the raw data information. Since most statistical based iterative reconstruction methods are based on the assumption of that post-log noise distribution is close to Poisson or Gaussian, our goal is to understand the statistical distribution of ULD CT data with different non-positivity correction methods, and to understand when iterative reconstruction methods may be effective in producing images that are useful for image registration or attenuation correction in PET/CT imaging. We first used phantom measurement and calibrated simulation to reveal how the noise distribution deviate from normal assumption under the ULD CT flux environment. In summary, our results indicate that there are three general regimes: (1) Diagnostic CT, where post-log data are well modeled by normal distribution. (2) Lowdose CT, where normal distribution remains a reasonable approximation and statistically-principled (post-log) methods that assume a normal distribution have an advantage. (3) An ULD regime that is photon-starved and the quadratic approximation is no longer effective. For instance, a total integral density of 4.8 (ideal pi for 24 cm of water) for 120kVp, 0.5mAs of radiation source is the maximum pi value where a definitive maximum likelihood value could be found. This leads to fundamental limits in the estimation of ULD CT data when using a standard data processing stream

  12. Viewing region maximization of an integral floating display through location adjustment of viewing window.

    PubMed

    Kim, Joowhan; Min, Sung-Wook; Lee, Byoungho

    2007-10-01

    Integral floating display is a recently proposed three-dimensional (3D) display method which provides a dynamic 3D image in the vicinity to an observer. It has a viewing window only through which correct 3D images can be observed. However, the positional difference between the viewing window and the floating image causes limited viewing zone in integral floating system. In this paper, we provide the principle and experimental results of the location adjustment of the viewing window of the integral floating display system by modifying the elemental image region for integral imaging. We explain the characteristics of the viewing window and propose how to move the viewing window to maximize the viewing zone.

  13. Single-shot thermal ghost imaging using wavelength-division multiplexing

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Suo, Jinli; Wang, Yuwang; Zhang, Zhili; Dai, Qionghai

    2018-01-01

    Ghost imaging (GI) is an emerging technique that reconstructs the target scene from its correlated measurements with a sequence of patterns. Restricted by the multi-shot principle, GI usually requires long acquisition time and is limited in observation of dynamic scenes. To handle this problem, this paper proposes a single-shot thermal ghost imaging scheme via a wavelength-division multiplexing technique. Specifically, we generate thousands of correlated patterns simultaneously by modulating a broadband light source with a wavelength dependent diffuser. These patterns carry the scene's spatial information and then the correlated photons are coupled into a spectrometer for the final reconstruction. This technique increases the speed of ghost imaging and promotes the applications in dynamic ghost imaging with high scalability and compatibility.

  14. Resolution enhancement by extrapolation of coherent diffraction images: a quantitative study on the limits and a numerical study of nonbinary and phase objects.

    PubMed

    Latychevskaia, T; Chushkin, Y; Fink, H-W

    2016-10-01

    In coherent diffractive imaging, the resolution of the reconstructed object is limited by the numerical aperture of the experimental setup. We present here a theoretical and numerical study for achieving super-resolution by postextrapolation of coherent diffraction images, such as diffraction patterns or holograms. We demonstrate that a diffraction pattern can unambiguously be extrapolated from only a fraction of the entire pattern and that the ratio of the extrapolated signal to the originally available signal is linearly proportional to the oversampling ratio. Although there could be in principle other methods to achieve extrapolation, we devote our discussion to employing iterative phase retrieval methods and demonstrate their limits. We present two numerical studies; namely, the extrapolation of diffraction patterns of nonbinary and that of phase objects together with a discussion of the optimal extrapolation procedure. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  15. Snorkelling between the stars: submarine methods for astronomical observations.

    NASA Astrophysics Data System (ADS)

    Velasco, S.; Quevedo, E.; Font, J.; Oscoz, A.; López, R. L.; Puga, M.; Rebolo, R.; Hernáandez Brito, J.; Llinas, O.; Marrero Callico, G.; Sarmiento, R.

    2017-03-01

    Trying to reach diffraction-limited astronomical observations from ground-based telescopes is very challenging due to the atmospheric effects contributing to a general blurring of the images. However, astronomy is not the only science facing turbulence problems; obtaining quality images of the undersea world is as ambitious as it is on the sky. One of the solutions contemplated to reach high-resolution images is the use of multiple frames of the same target, known as fusion super-resolution (Quevedo et al. 2015), which is the principle for Lucky Imaging (Velasco et al. 2016). Here we present the successful result of joining efforts between the undersea and the astronomical research done at the Canary Islands.

  16. Principles for high-quality, high-value testing.

    PubMed

    Power, Michael; Fell, Greg; Wright, Michael

    2013-02-01

    A survey of doctors working in two large NHS hospitals identified over 120 laboratory tests, imaging investigations and investigational procedures that they considered not to be overused. A common suggestion in this survey was that more training was required. And, this prompted the development of a list of core principles for high-quality, high-value testing. The list can be used as a framework for training and as a reference source. The core principles are: (1) Base testing practices on the best available evidence. (2) Apply the evidence on test performance with careful judgement. (3) Test efficiently. (4) Consider the value (and affordability) of a test before requesting it. (5) Be aware of the downsides and drivers of overdiagnosis. (6) Confront uncertainties. (7) Be patient-centred in your approach. (8) Consider ethical issues. (9) Be aware of normal cognitive limitations and biases when testing. (10) Follow the 'knowledge journey' when teaching and learning these core principles.

  17. Systematic, spatial imaging of large multimolecular assemblies and the emerging principles of supramolecular order in biological systems

    PubMed Central

    Schubert, Walter

    2013-01-01

    Understanding biological systems at the level of their relational (emergent) molecular properties in functional protein networks relies on imaging methods, able to spatially resolve a tissue or a cell as a giant, non-random, topologically defined collection of interacting supermolecules executing myriads of subcellular mechanisms. Here, the development and findings of parameter-unlimited functional super-resolution microscopy are described—a technology based on the fluorescence imaging cycler (IC) principle capable of co-mapping thousands of distinct biomolecular assemblies at high spatial resolution and differentiation (<40 nm distances). It is shown that the subcellular and transcellular features of such supermolecules can be described at the compositional and constitutional levels; that the spatial connection, relational stoichiometry, and topology of supermolecules generate hitherto unrecognized functional self-segmentation of biological tissues; that hierarchical features, common to thousands of simultaneously imaged supermolecules, can be identified; and how the resulting supramolecular order relates to spatial coding of cellular functionalities in biological systems. A large body of observations with IC molecular systems microscopy collected over 20 years have disclosed principles governed by a law of supramolecular segregation of cellular functionalities. This pervades phenomena, such as exceptional orderliness, functional selectivity, combinatorial and spatial periodicity, and hierarchical organization of large molecular systems, across all species investigated so far. This insight is based on the high degree of specificity, selectivity, and sensitivity of molecular recognition processes for fluorescence imaging beyond the spectral resolution limit, using probe libraries controlled by ICs. © 2013 The Authors. Journal of Molecular Recognition published by John Wiley & Sons, Ltd. PMID:24375580

  18. Dual-Energy CT: New Horizon in Medical Imaging

    PubMed Central

    Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector. PMID:28670151

  19. CT Perfusion of the Liver: Principles and Applications in Oncology

    PubMed Central

    Kim, Se Hyung; Kamaya, Aya

    2014-01-01

    With the introduction of molecularly targeted chemotherapeutics, there is an increasing need for defining new response criteria for therapeutic success because use of morphologic imaging alone may not fully assess tumor response. Computed tomographic (CT) perfusion imaging of the liver provides functional information about the microcirculation of normal parenchyma and focal liver lesions and is a promising technique for assessing the efficacy of various anticancer treatments. CT perfusion also shows promising results for diagnosing primary or metastatic tumors, for predicting early response to anticancer treatments, and for monitoring tumor recurrence after therapy. Many of the limitations of early CT perfusion studies performed in the liver, such as limited coverage, motion artifacts, and high radiation dose of CT, are being addressed by recent technical advances. These include a wide area detector with or without volumetric spiral or shuttle modes, motion correction algorithms, and new CT reconstruction technologies such as iterative algorithms. Although several issues related to perfusion imaging—such as paucity of large multicenter trials, limited accessibility of perfusion software, and lack of standardization in methods—remain unsolved, CT perfusion has now reached technical maturity, allowing for its use in assessing tumor vascularity in larger-scale prospective clinical trials. In this review, basic principles, current acquisition protocols, and pharmacokinetic models used for CT perfusion imaging of the liver are described. Various oncologic applications of CT perfusion of the liver are discussed and current challenges, as well as possible solutions, for CT perfusion are presented. © RSNA, 2014 Online supplemental material is available for this article. PMID:25058132

  20. High resolution transmission electron microscope Imaging and first-principles simulations of atomic-scale features in graphene membrane

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Bhandari, Sagar; Yi, Wei; Bell, David; Westervelt, Robert; Kaxiras, Efthimios

    2012-02-01

    Ultra-thin membranes such as graphene[1] are of great importance for basic science and technology applications. Graphene sets the ultimate limit of thinness, demonstrating that a free-standing single atomic layer not only exists but can be extremely stable and strong [2--4]. However, both theory [5, 6] and experiments [3, 7] suggest that the existence of graphene relies on intrinsic ripples that suppress the long-wavelength thermal fluctuations which otherwise spontaneously destroy long range order in a two dimensional system. Here we show direct imaging of the atomic features in graphene including the ripples resolved using monochromatic aberration-corrected transmission electron microscopy (TEM). We compare the images observed in TEM with simulated images based on an accurate first-principles total potential. We show that these atomic scale features can be mapped through accurate first-principles simulations into high resolution TEM contrast. [1] Geim, A. K. & Novoselov, K. S. Nat. Mater. 6, 183-191, (2007). [2] Novoselov, K. S.et al. Science 306, 666-669, (2004). [3] Meyer, J. C. et al. Nature 446, 60-63, (2007). [4] Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Science 321, 385-388, (2008). [5] Nelson, D. R. & Peliti, L. J Phys-Paris 48, 1085-1092, (1987). [6] Fasolino, A., Los, J. H. & Katsnelson, M. I. Nat. Mater. 6, 858-861, (2007). [7] Meyer, J. C. et al. Solid State Commun. 143, 101-109, (2007).

  1. Atomic Structure and Properties of Extended Defects in Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buczko, R.; Chisholm, M.F.; Kaplan, T.

    1998-10-15

    The Z-contrast technique represents a new approach to high-resolution electron microscopy allowing for the first time incoherent imaging of materials on the atomic scale. The key advantages of the technique, an intrinsically higher resolution limit and directly interpretable, compositionally sensitive imaging, allow a new level of insight into the atomic configurations of extended defects in silicon. This experimental technique has been combined with theoretical calculations (a combination of first principles, tight binding, and classical methods) to extend this level of insight by obtaining the energetic and electronic structure of the defects.

  2. Fluorescence microscopy.

    PubMed

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  3. Fluorescence Microscopy

    PubMed Central

    Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.

    2016-01-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114

  4. Erythrocyte-Derived Nanoparticles as a Theranostic Agent for Near-Infrared Fluorescence Imaging and Thrombolysis of Blood Clots.

    PubMed

    Vankayala, Raviraj; Corber, Samantha R; Mac, Jenny T; Rao, Masaru P; Shafie, Mohammad; Anvari, Bahman

    2018-04-01

    Ischemic stroke occurs when a blood clot obstructs or narrows the arteries that supply blood to the brain. Currently, tissue plasminogen activator (tPA), a thrombolytic agent, is the only United States Food and Drug Administration (FDA)-approved pharmacologic treatment for ischemic stroke. Despite its effective usage, the major limitation of tPA that stems from its short half-life in plasma (≈5 min) is the potential for increased risk of hemorrhagic complications. To circumvent these limitations, herein, the first proof-of-principle demonstration of a theranostic nanoconstruct system derived from erythrocytes doped with the FDA-approved near-infrared (NIR) imaging agent, indocyanine green, and surface-functionalized with tPA is reported. Using a clot model, the dual functionality of these nanoconstructs in NIR fluorescence imaging and clot lysis is demonstrated. These biomimetic theranostic nanoconstructs may ultimately be effective in imaging and treatment of blood clots involved in ischemic stroke. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Phase modulation atomic force microscope with true atomic resolution

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Kilpatrick, Jason I.; Jarvis, Suzanne P.

    2006-12-01

    We have developed a dynamic force microscope (DFM) working in a novel operation mode which is referred to as phase modulation atomic force microscopy (PM-AFM). PM-AFM utilizes a fixed-frequency excitation signal to drive a cantilever, which ensures stable imaging even with occasional tip crash and adhesion to the surface. The tip-sample interaction force is detected as a change of the phase difference between the cantilever deflection and excitation signals and hence the time response is not influenced by the Q factor of the cantilever. These features make PM-AFM more suitable for high-speed imaging than existing DFM techniques such as amplitude modulation and frequency modulation atomic force microscopies. Here we present the basic principle of PM-AFM and the theoretical limit of its performance. The design of the developed PM-AFM is described and its theoretically limited noise performance is demonstrated. Finally, we demonstrate the true atomic resolution imaging capability of the developed PM-AFM by imaging atomic-scale features of mica in water.

  6. Technology study of quantum remote sensing imaging

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang

    2016-02-01

    According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.

  7. Principles and Applications of Imaging Radar, Manual of Remote Sensing, 3rd Edition, Volume 2

    NASA Astrophysics Data System (ADS)

    Moran, M. Susan

    Aerial photographs and digital images from orbiting optical scanners are a daily source of information for the general public through newspapers, television, magazines, and posters. Such images are just as prevalent in scientific journal literature. In the last 6 months, more than half of the weekly issues of Eos published an image acquired by a remote digital sensor. As a result, most geoscientists are familiar with the characteristics and even the acronyms of the current satellites and their optical sensors, common detector filters, and image presentation. In many cases, this familiarity has bred contempt. This is so because the limitations of optical sensors (imaging in the visible and infrared portions of the electromagnetic spectrum) can be quite formidable. Images of the surface cannot be acquired through clouds, and image quality is impaired with low-light conditions (such as at polar regions), atmospheric scattering and absorption, and variations in sun/sensor/surface geometry.

  8. Theoretical Limitations on Functional Imaging Resolution in Auditory Cortex

    PubMed Central

    Chen, Thomas L.; Watkins, Paul V.; Barbour, Dennis L.

    2010-01-01

    Functional imaging can reveal detailed organizational structure in cerebral cortical areas, but neuronal response features and local neural interconnectivity can influence the resulting images, possibly limiting the inferences that can be drawn about neural function. Discerning the fundamental principles of organizational structure in the auditory cortex of multiple species has been somewhat challenging historically both with functional imaging and with electrophysiology. A possible limitation affecting any methodology using pooled neuronal measures may be the relative distribution of response selectivity throughout the population of auditory cortex neurons. One neuronal response type inherited from the cochlea, for example, exhibits a receptive field that increases in size (i.e., decreases in selectivity) at higher stimulus intensities. Even though these neurons appear to represent a minority of auditory cortex neurons, they are likely to contribute disproportionately to the activity detected in functional images, especially if intense sounds are used for stimulation. To evaluate the potential influence of neuronal subpopulations upon functional images of primary auditory cortex, a model array representing cortical neurons was probed with virtual imaging experiments under various assumptions about the local circuit organization. As expected, different neuronal subpopulations were activated preferentially under different stimulus conditions. In fact, stimulus protocols that can preferentially excite selective neurons, resulting in a relatively sparse activation map, have the potential to improve the effective resolution of functional auditory cortical images. These experimental results also make predictions about auditory cortex organization that can be tested with refined functional imaging experiments. PMID:20079343

  9. HDR imaging and color constancy: two sides of the same coin?

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    2011-01-01

    At first, we think that High Dynamic Range (HDR) imaging is a technique for improved recordings of scene radiances. Many of us think that human color constancy is a variation of a camera's automatic white balance algorithm. However, on closer inspection, glare limits the range of light we can detect in cameras and on retinas. All scene regions below middle gray are influenced, more or less, by the glare from the bright scene segments. Instead of accurate radiance reproduction, HDR imaging works well because it preserves the details in the scene's spatial contrast. Similarly, on closer inspection, human color constancy depends on spatial comparisons that synthesize appearances from all the scene segments. Can spatial image processing play similar principle roles in both HDR imaging and color constancy?

  10. Spherical gradient-index lenses as perfect imaging and maximum power transfer devices.

    PubMed

    Gordon, J M

    2000-08-01

    Gradient-index lenses can be viewed from the perspectives of both imaging and nonimaging optics, that is, in terms of both image fidelity and achievable flux concentration. The simple class of gradient-index lenses with spherical symmetry, often referred to as modified Luneburg lenses, is revisited. An alternative derivation for established solutions is offered; the method of Fermat's strings and the principle of skewness conservation are invoked. Then these nominally perfect imaging devices are examined from the additional vantage point of power transfer, and the degree to which they realize the thermodynamic limit to flux concentration is determined. Finally, the spherical gradient-index lens of the fish eye is considered as a modified Luneburg lens optimized subject to material constraints.

  11. Digital micromirror devices: principles and applications in imaging.

    PubMed

    Bansal, Vivek; Saggau, Peter

    2013-05-01

    A digital micromirror device (DMD) is an array of individually switchable mirrors that can be used in many advanced optical systems as a rapid spatial light modulator. With a DMD, several implementations of confocal microscopy, hyperspectral imaging, and fluorescence lifetime imaging can be realized. The DMD can also be used as a real-time optical processor for applications such as the programmable array microscope and compressive sensing. Advantages and disadvantages of the DMD for these applications as well as methods to overcome some of the limitations will be discussed in this article. Practical considerations when designing with the DMD and sample optical layouts of a completely DMD-based imaging system and one in which acousto-optic deflectors (AODs) are used in the illumination pathway are also provided.

  12. Probabilistic image modeling with an extended chain graph for human activity recognition and image segmentation.

    PubMed

    Zhang, Lei; Zeng, Zhi; Ji, Qiang

    2011-09-01

    Chain graph (CG) is a hybrid probabilistic graphical model (PGM) capable of modeling heterogeneous relationships among random variables. So far, however, its application in image and video analysis is very limited due to lack of principled learning and inference methods for a CG of general topology. To overcome this limitation, we introduce methods to extend the conventional chain-like CG model to CG model with more general topology and the associated methods for learning and inference in such a general CG model. Specifically, we propose techniques to systematically construct a generally structured CG, to parameterize this model, to derive its joint probability distribution, to perform joint parameter learning, and to perform probabilistic inference in this model. To demonstrate the utility of such an extended CG, we apply it to two challenging image and video analysis problems: human activity recognition and image segmentation. The experimental results show improved performance of the extended CG model over the conventional directed or undirected PGMs. This study demonstrates the promise of the extended CG for effective modeling and inference of complex real-world problems.

  13. Distance-dependent magnetic resonance tuning as a versatile MRI sensing platform for biological targets

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Sil; Kim, Soojin; Yoo, Dongwon; Shin, Tae-Hyun; Kim, Hoyoung; Gomes, Muller D.; Kim, Sun Hee; Pines, Alexander; Cheon, Jinwoo

    2017-05-01

    Nanoscale distance-dependent phenomena, such as Förster resonance energy transfer, are important interactions for use in sensing and imaging, but their versatility for bioimaging can be limited by undesirable photon interactions with the surrounding biological matrix, especially in in vivo systems. Here, we report a new type of magnetism-based nanoscale distance-dependent phenomenon that can quantitatively and reversibly sense and image intra-/intermolecular interactions of biologically important targets. We introduce distance-dependent magnetic resonance tuning (MRET), which occurs between a paramagnetic `enhancer' and a superparamagnetic `quencher', where the T1 magnetic resonance imaging (MRI) signal is tuned ON or OFF depending on the separation distance between the quencher and the enhancer. With MRET, we demonstrate the principle of an MRI-based ruler for nanometre-scale distance measurement and the successful detection of both molecular interactions (for example, cleavage, binding, folding and unfolding) and biological targets in in vitro and in vivo systems. MRET can serve as a novel sensing principle to augment the exploration of a wide range of biological systems.

  14. A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis.

    PubMed

    Türker-Kaya, Sevgi; Huck, Christian W

    2017-01-20

    Plant cells, tissues and organs are composed of various biomolecules arranged as structurally diverse units, which represent heterogeneity at microscopic levels. Molecular knowledge about those constituents with their localization in such complexity is very crucial for both basic and applied plant sciences. In this context, infrared imaging techniques have advantages over conventional methods to investigate heterogeneous plant structures in providing quantitative and qualitative analyses with spatial distribution of the components. Thus, particularly, with the use of proper analytical approaches and sampling methods, these technologies offer significant information for the studies on plant classification, physiology, ecology, genetics, pathology and other related disciplines. This review aims to present a general perspective about near-infrared and mid-infrared imaging/microspectroscopy in plant research. It is addressed to compare potentialities of these methodologies with their advantages and limitations. With regard to the organization of the document, the first section will introduce the respective underlying principles followed by instrumentation, sampling techniques, sample preparations, measurement, and an overview of spectral pre-processing and multivariate analysis. The last section will review selected applications in the literature.

  15. High throughput dual-wavelength temperature distribution imaging via compressive imaging

    NASA Astrophysics Data System (ADS)

    Yao, Xu-Ri; Lan, Ruo-Ming; Liu, Xue-Feng; Zhu, Ge; Zheng, Fu; Yu, Wen-Kai; Zhai, Guang-Jie

    2018-03-01

    Thermal imaging is an essential tool in a wide variety of research areas. In this work we demonstrate high-throughput double-wavelength temperature distribution imaging using a modified single-pixel camera without the requirement of a beam splitter (BS). A digital micro-mirror device (DMD) is utilized to display binary masks and split the incident radiation, which eliminates the necessity of a BS. Because the spatial resolution is dictated by the DMD, this thermal imaging system has the advantage of perfect spatial registration between the two images, which limits the need for the pixel registration and fine adjustments. Two bucket detectors, which measures the total light intensity reflected from the DMD, are employed in this system and yield an improvement in the detection efficiency of the narrow-band radiation. A compressive imaging algorithm is utilized to achieve under-sampling recovery. A proof-of-principle experiment was presented to demonstrate the feasibility of this structure.

  16. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE PAGES

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; ...

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  17. Ultimate Limit to the Spatial Resolution in Magnetic Imaging

    NASA Astrophysics Data System (ADS)

    Matthews, John; Wellstood, Frederick C.; Chatraphorn, Sojiphong

    2003-03-01

    Motivated by the continual improvement in the spatial resolution of source currents detected by magnetic field imaging, in particular scanning SQUID microscopy, we have determined a theoretical limit to the spatial resolution for a given set of parameters. The guiding principle here is that by adding known information (e.g. CAD diagram) about the source currents into the inversion algorithm, we reduce the number of unknown parameters and hence lower the uncertainty in the remaining parameters. We consider the ultimate limit to be the case where all the information about the system is known, except for a single parameter, e.g. the separation w of two long, straight wires each carrying a current I/2. For this particular example we find that for a current I=100;μA, with magnetic field noise Δ B=10 pT, at a standoff z=100;μm, the minimum resolvable separation is 2;μm, about an order of magnitude less than the present limit.

  18. How the Hilbert integral theorem inspired flow lines

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Jiang, Lun

    2017-09-01

    Nonimaging Optics has been shown to achieve the theoretical limits constrained only by thermodynamic principles. The designing principles of nonimaging optics allow a non-conventional way of thinking about and generating new optical devices. Compared to conventional imaging optics which rarely utilizes the framework of thermodynamic arguments, nonimaging optics chooses to map etendue instead of rays. This fundamental shift of design paradigm frees the optics design from ray based designs which heavily relies on error tolerance analysis. Instead, the underlying thermodynamic principles guide the nonimaging design to be naturally constructed for extended light source for illumination, non-tracking concentrators and sensors that require sharp cut-off angles. We argue in this article that such optical devices which has enabled a multitude of applications depends on probabilities, geometric flux field and radiative heat transfer while "optics" in the conventional sense recedes into the background.

  19. Cardiovascular Imaging Using Two-Photon Microscopy

    PubMed Central

    Scherschel, John A.; Rubart, Michael

    2008-01-01

    Two-photon excitation microscopy has become the standard technique for high resolution deep tissue and intravital imaging. It provides intrinsic three-dimensional resolution in combination with increased penetration depth compared to single-photon confocal microscopy. This article will describe the basic physical principles of two-photon excitation and will review its multiple applications to cardiovascular imaging, including second harmonic generation and fluorescence laser scanning microscopy. In particular, the capability and limitations of multiphoton microscopy to assess functional heterogeneity on a cellular scale deep within intact, Langendorff-perfused hearts are demonstrated. It will also discuss the use of two-photon excitation-induced release of caged compounds for the study of intracellular calcium signaling and intercellular dye transfer. PMID:18986603

  20. Evaluation of Characterization Techniques for Carbon-Carbon Composites

    DTIC Science & Technology

    1992-05-01

    Enhancement of Resin (50X) 51 28 Confocal Image of Reticulated , Vitreous Carbon Foam 53 29 Schemmtic Principle of Backscattered Electron Microscopy for...future. 7.2 Confocal Microscopy Both carbon - carbon composites and reticulated vitreous carbon foams were submitted to Sarastro, Inc. to evaluate...indicate 1-micron resolutions are possible; however, the depth penetration is limited even further at these parameters. Six reticulated vitreous carbon

  1. Enhanced labeling density and whole-cell 3D dSTORM imaging by repetitive labeling of target proteins.

    PubMed

    Venkataramani, Varun; Kardorff, Markus; Herrmannsdörfer, Frank; Wieneke, Ralph; Klein, Alina; Tampé, Robert; Heilemann, Mike; Kuner, Thomas

    2018-04-03

    With continuing advances in the resolving power of super-resolution microscopy, the inefficient labeling of proteins with suitable fluorophores becomes a limiting factor. For example, the low labeling density achieved with antibodies or small molecule tags limits attempts to reveal local protein nano-architecture of cellular compartments. On the other hand, high laser intensities cause photobleaching within and nearby an imaged region, thereby further reducing labeling density and impairing multi-plane whole-cell 3D super-resolution imaging. Here, we show that both labeling density and photobleaching can be addressed by repetitive application of trisNTA-fluorophore conjugates reversibly binding to a histidine-tagged protein by a novel approach called single-epitope repetitive imaging (SERI). For single-plane super-resolution microscopy, we demonstrate that, after multiple rounds of labeling and imaging, the signal density is increased. Using the same approach of repetitive imaging, washing and re-labeling, we demonstrate whole-cell 3D super-resolution imaging compensated for photobleaching above or below the imaging plane. This proof-of-principle study demonstrates that repetitive labeling of histidine-tagged proteins provides a versatile solution to break the 'labeling barrier' and to bypass photobleaching in multi-plane, whole-cell 3D experiments.

  2. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging.

    PubMed

    Valm, Alex M; Mark Welch, Jessica L; Rieken, Christopher W; Hasegawa, Yuko; Sogin, Mitchell L; Oldenbourg, Rudolf; Dewhirst, Floyd E; Borisy, Gary G

    2011-03-08

    Microbes in nature frequently function as members of complex multitaxon communities, but the structural organization of these communities at the micrometer level is poorly understood because of limitations in labeling and imaging technology. We report here a combinatorial labeling strategy coupled with spectral image acquisition and analysis that greatly expands the number of fluorescent signatures distinguishable in a single image. As an imaging proof of principle, we first demonstrated visualization of Escherichia coli labeled by fluorescence in situ hybridization (FISH) with 28 different binary combinations of eight fluorophores. As a biological proof of principle, we then applied this Combinatorial Labeling and Spectral Imaging FISH (CLASI-FISH) strategy using genus- and family-specific probes to visualize simultaneously and differentiate 15 different phylotypes in an artificial mixture of laboratory-grown microbes. We then illustrated the utility of our method for the structural analysis of a natural microbial community, namely, human dental plaque, a microbial biofilm. We demonstrate that 15 taxa in the plaque community can be imaged simultaneously and analyzed and that this community was dominated by early colonizers, including species of Streptococcus, Prevotella, Actinomyces, and Veillonella. Proximity analysis was used to determine the frequency of inter- and intrataxon cell-to-cell associations which revealed statistically significant intertaxon pairings. Cells of the genera Prevotella and Actinomyces showed the most interspecies associations, suggesting a central role for these genera in establishing and maintaining biofilm complexity. The results provide an initial systems-level structural analysis of biofilm organization.

  3. Beam Combination for Stellar Imager and its Application to Full-Aperture Imaging

    NASA Technical Reports Server (NTRS)

    Mozurkewich, D.; Carpenter, K. G.; Lyon, R. G.

    2007-01-01

    Stellar Imager (SI) will be a Space-Based telescope consisting of 20 to 30 separated apertures. It is designed for UV/Optical imaging of stellar surfaces and asteroseismology. This report describes details of an alternative optical design for the beam combiner, dubbed the Spatial Frequency Remapper (SFR). It sacrifices the large field of view of the Fizeau combiner. In return, spectral resolution is obtained with a diffraction grating rather than an array of energy-resolving detectors. The SFR design works in principle and has been implemented with MIRC at CHARA for a small number of apertures. Here, we show the number of optical surfaces can be reduced and the concept scales gracefully to the large number of apertures needed for Stellar Imager. We also describe a potential application of this spatial frequency remapping to improved imaging with filled aperture systems. For filled-aperture imaging, the SFR becomes the core of an improved aperture masking system. To date, aperture-masking has produced the best images with ground-based telescopes but at the expense of low sensitivity due to short exposures and discarding most of the light collected by the telescope. This design eliminates the light-loss problem previously claimed to be inherent in all aperture-masking designs. We also argue that at least in principle, the short-integration time limit can also be overcome. With these improvements, it becomes an ideal camera for TPF-C; since it can form speckle-free images in the presence of wavefront errors, it should significantly relax the stability requirements of the current designs.

  4. Monte Carlo simulations of medical imaging modalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estes, G.P.

    Because continuous-energy Monte Carlo radiation transport calculations can be nearly exact simulations of physical reality (within data limitations, geometric approximations, transport algorithms, etc.), it follows that one should be able to closely approximate the results of many experiments from first-principles computations. This line of reasoning has led to various MCNP studies that involve simulations of medical imaging modalities and other visualization methods such as radiography, Anger camera, computerized tomography (CT) scans, and SABRINA particle track visualization. It is the intent of this paper to summarize some of these imaging simulations in the hope of stimulating further work, especially as computermore » power increases. Improved interpretation and prediction of medical images should ultimately lead to enhanced medical treatments. It is also reasonable to assume that such computations could be used to design new or more effective imaging instruments.« less

  5. A new scheme for stigmatic x-ray imaging with large magnification.

    PubMed

    Bitter, M; Hill, K W; Delgado-Aparicio, L F; Pablant, N A; Scott, S; Jones, F; Beiersdorfer, P; Wang, E; del Rio, M Sanchez; Caughey, T A; Brunner, J

    2012-10-01

    This paper describes a new x-ray scheme for stigmatic imaging. The scheme consists of one convex spherically bent crystal and one concave spherically bent crystal. The radii of curvature and Bragg reflecting lattice planes of the two crystals are properly matched to eliminate the astigmatism, so that the conditions for stigmatic imaging are met for a particular wavelength. The magnification is adjustable and solely a function of the two Bragg angles or angles of incidence. Although the choice of Bragg angles is constrained by the availability of crystals, this is not a severe limitation for the imaging of plasmas, since a particular wavelength can be selected from the bremsstrahlung continuum. The working principle of this imaging scheme has been verified with visible light. Further tests with x rays are planned for the near future.

  6. WE-E-9A-01: Ultrasound Elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emelianov, S; Hall, T; Bouchard, R

    2014-06-15

    Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitativemore » Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement and imaging can contribute to diagnosis of breast and prostate cancer, staging of liver fibrosis, age estimation of deep veinous fhrombosis, confirmation of thermal lesions in the liver after RF ablation.« less

  7. HVS: an image-based approach for constructing virtual environments

    NASA Astrophysics Data System (ADS)

    Zhang, Maojun; Zhong, Li; Sun, Lifeng; Li, Yunhao

    1998-09-01

    Virtual Reality Systems can construct virtual environment which provide an interactive walkthrough experience. Traditionally, walkthrough is performed by modeling and rendering 3D computer graphics in real-time. Despite the rapid advance of computer graphics technique, the rendering engine usually places a limit on scene complexity and rendering quality. This paper presents a approach which uses the real-world image or synthesized image to comprise a virtual environment. The real-world image or synthesized image can be recorded by camera, or synthesized by off-line multispectral image processing for Landsat TM (Thematic Mapper) Imagery and SPOT HRV imagery. They are digitally warped on-the-fly to simulate walking forward/backward, to left/right and 360-degree watching around. We have developed a system HVS (Hyper Video System) based on these principles. HVS improves upon QuickTime VR and Surround Video in the walking forward/backward.

  8. Medicine, material science and security: the versatility of the coded-aperture approach.

    PubMed

    Munro, P R T; Endrizzi, M; Diemoz, P C; Hagen, C K; Szafraniec, M B; Millard, T P; Zapata, C E; Speller, R D; Olivo, A

    2014-03-06

    The principal limitation to the widespread deployment of X-ray phase imaging in a variety of applications is probably versatility. A versatile X-ray phase imaging system must be able to work with polychromatic and non-microfocus sources (for example, those currently used in medical and industrial applications), have physical dimensions sufficiently large to accommodate samples of interest, be insensitive to environmental disturbances (such as vibrations and temperature variations), require only simple system set-up and maintenance, and be able to perform quantitative imaging. The coded-aperture technique, based upon the edge illumination principle, satisfies each of these criteria. To date, we have applied the technique to mammography, materials science, small-animal imaging, non-destructive testing and security. In this paper, we outline the theory of coded-aperture phase imaging and show an example of how the technique may be applied to imaging samples with a practically important scale.

  9. MR-guided prostate interventions.

    PubMed

    Tempany, Clare; Straus, Sarah; Hata, Nobuhiko; Haker, Steven

    2008-02-01

    In this article the current issues of diagnosis and detection of prostate cancer are reviewed. The limitations for current techniques are highlighted and some possible solutions with MR imaging and MR-guided biopsy approaches are reviewed. There are several different biopsy approaches under investigation. These include transperineal open magnet approaches to closed-bore 1.5T transrectal biopsies. The imaging, image processing, and tracking methods are also discussed. In the arena of therapy, MR guidance has been used in conjunction with radiation methods, either brachytherapy or external delivery. The principles of the radiation treatment, the toxicities, and use of images are outlined. The future role of imaging and image-guided interventions lie with providing a noninvasive surrogate for cancer surveillance or monitoring treatment response. The shift to minimally invasive focal therapies has already begun and will be very exciting when MR-guided focused ultrasound surgery reaches its full potential. (Copyright) 2008 Wiley-Liss, Inc.

  10. MR-Guided Prostate Interventions

    PubMed Central

    Tempany, Clare; Straus, Sarah; Hata, Nobuhiko; Haker, Steven

    2009-01-01

    In this article the current issues of diagnosis and detection of prostate cancer are reviewed. The limitations for current techniques are highlighted and some possible solutions with MR imaging and MR-guided biopsy approaches are reviewed. There are several different biopsy approaches under investigation. These include transperineal open magnet approaches to closed-bore 1.5T transrectal biopsies. The imaging, image processing, and tracking methods are also discussed. In the arena of therapy, MR guidance has been used in conjunction with radiation methods, either brachytherapy or external delivery. The principles of the radiation treatment, the toxicities, and use of images are outlined. The future role of imaging and image-guided interventions lie with providing a noninvasive surrogate for cancer surveillance or monitoring treatment response. The shift to minimally invasive focal therapies has already begun and will be very exciting when MR-guided focused ultrasound surgery reaches its full potential. PMID:18219689

  11. Stochastic Optical Reconstruction Microscopy (STORM).

    PubMed

    Xu, Jianquan; Ma, Hongqiang; Liu, Yang

    2017-07-05

    Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  12. Microlens performance limits in sub-2mum pixel CMOS image sensors.

    PubMed

    Huo, Yijie; Fesenmaier, Christian C; Catrysse, Peter B

    2010-03-15

    CMOS image sensors with smaller pixels are expected to enable digital imaging systems with better resolution. When pixel size scales below 2 mum, however, diffraction affects the optical performance of the pixel and its microlens, in particular. We present a first-principles electromagnetic analysis of microlens behavior during the lateral scaling of CMOS image sensor pixels. We establish for a three-metal-layer pixel that diffraction prevents the microlens from acting as a focusing element when pixels become smaller than 1.4 microm. This severely degrades performance for on and off-axis pixels in red, green and blue color channels. We predict that one-metal-layer or backside-illuminated pixels are required to extend the functionality of microlenses beyond the 1.4 microm pixel node.

  13. Stimulated Raman scattering (SRS) spectroscopic OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Robles, Francisco E.; Zhou, Kevin C.; Fischer, Martin C.; Warren, Warren S.

    2017-02-01

    Optical coherence tomography (OCT) enables non-invasive, high-resolution, tomographic imaging of biological tissues by leveraging principles of low coherence interferometry; however, OCT lacks molecular specificity. Spectroscopic OCT (SOCT) overcomes this limitation by providing depth-resolved spectroscopic signatures of chromophores, but SOCT has been limited to a couple of endogenous molecules, namely hemoglobin and melanin. Stimulated Raman scattering, on the other hand, can provide highly specific molecular information of many endogenous species, but lacks the spatial and spectral multiplexing capabilities of SOCT. In this work we integrate the two methods, SRS and SOCT, to enable simultaneously multiplexed spatial and spectral imaging with sensitivity to many endogenous biochemical species that play an important role in biology and medicine. The method, termed SRS-SOCT, has the potential to achieve fast, volumetric, and highly sensitive label-free molecular imaging, which would be valuable for many applications. We demonstrate the approach by imaging excised human adipose tissue and detecting the lipids' Raman signatures in the high-wavenumber region. Details of this method along with validations and results will be presented.

  14. Imaging Surfaces and Nanostructures

    DTIC Science & Technology

    2011-02-28

    Principles and Perspectives," Phys. Chern. Chern. Phys. 10, 2879 (2008). 8) A. Gahlmann, S. T. Park, and A. H. Zewail , " Ultrashort Electron Pulses ...1~ copy with high spatiotemporal reso- 104 lutions. The time resolution becomes limited only by the laser pulse width and energy width of the...definition, transformations in which atoms move at speeds of the order of I krnls is in the femtosecond domain, and although laser light pulses can

  15. How to COAAD Images. II. A Coaddition Image that is Optimal for Any Purpose in the Background-dominated Noise Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zackay, Barak; Ofek, Eran O.

    Image coaddition is one of the most basic operations that astronomers perform. In Paper I, we presented the optimal ways to coadd images in order to detect faint sources and to perform flux measurements under the assumption that the noise is approximately Gaussian. Here, we build on these results and derive from first principles a coaddition technique that is optimal for any hypothesis testing and measurement (e.g., source detection, flux or shape measurements, and star/galaxy separation), in the background-noise-dominated case. This method has several important properties. The pixels of the resulting coadded image are uncorrelated. This image preserves all themore » information (from the original individual images) on all spatial frequencies. Any hypothesis testing or measurement that can be done on all the individual images simultaneously, can be done on the coadded image without any loss of information. The PSF of this image is typically as narrow, or narrower than the PSF of the best image in the ensemble. Moreover, this image is practically indistinguishable from a regular single image, meaning that any code that measures any property on a regular astronomical image can be applied to it unchanged. In particular, the optimal source detection statistic derived in Paper I is reproduced by matched filtering this image with its own PSF. This coaddition process, which we call proper coaddition, can be understood as the maximum signal-to-noise ratio measurement of the Fourier transform of the image, weighted in such a way that the noise in the entire Fourier domain is of equal variance. This method has important implications for multi-epoch seeing-limited deep surveys, weak lensing galaxy shape measurements, and diffraction-limited imaging via speckle observations. The last topic will be covered in depth in future papers. We provide an implementation of this algorithm in MATLAB.« less

  16. Ship dynamics for maritime ISAR imaging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin Walter

    2008-02-01

    Demand is increasing for imaging ships at sea. Conventional SAR fails because the ships are usually in motion, both with a forward velocity, and other linear and angular motions that accompany sea travel. Because the target itself is moving, this becomes an Inverse- SAR, or ISAR problem. Developing useful ISAR techniques and algorithms is considerably aided by first understanding the nature and characteristics of ship motion. Consequently, a brief study of some principles of naval architecture sheds useful light on this problem. We attempt to do so here. Ship motions are analyzed for their impact on range-Doppler imaging using Inversemore » Synthetic Aperture Radar (ISAR). A framework for analysis is developed, and limitations of simple ISAR systems are discussed.« less

  17. Blind deconvolution of astronomical images with band limitation determined by optical system parameters

    NASA Astrophysics Data System (ADS)

    Luo, L.; Fan, M.; Shen, M. Z.

    2007-07-01

    Atmospheric turbulence greatly limits the spatial resolution of astronomical images acquired by the large ground-based telescope. The record image obtained from telescope was thought as a convolution result of the object function and the point spread function. The statistic relationship of the images measured data, the estimated object and point spread function was in accord with the Bayes conditional probability distribution, and the maximum-likelihood formulation was found. A blind deconvolution approach based on the maximum-likelihood estimation technique with real optical band limitation constraint is presented for removing the effect of atmospheric turbulence on this class images through the minimization of the convolution error function by use of the conjugation gradient optimization algorithm. As a result, the object function and the point spread function could be estimated from a few record images at the same time by the blind deconvolution algorithm. According to the principle of Fourier optics, the relationship between the telescope optical system parameters and the image band constraint in the frequency domain was formulated during the image processing transformation between the spatial domain and the frequency domain. The convergence of the algorithm was increased by use of having the estimated function variable (also is the object function and the point spread function) nonnegative and the point-spread function band limited. Avoiding Fourier transform frequency components beyond the cut off frequency lost during the image processing transformation when the size of the sampled image data, image spatial domain and frequency domain were the same respectively, the detector element (e.g. a pixels in the CCD) should be less than the quarter of the diffraction speckle diameter of the telescope for acquiring the images on the focal plane. The proposed method can easily be applied to the case of wide field-view turbulent-degraded images restoration because of no using the object support constraint in the algorithm. The performance validity of the method is examined by the computer simulation and the restoration of the real Alpha Psc astronomical image data. The results suggest that the blind deconvolution with the real optical band constraint can remove the effect of the atmospheric turbulence on the observed images and the spatial resolution of the object image can arrive at or exceed the diffraction-limited level.

  18. Accelerated gradient methods for the x-ray imaging of solar flares

    NASA Astrophysics Data System (ADS)

    Bonettini, S.; Prato, M.

    2014-05-01

    In this paper we present new optimization strategies for the reconstruction of x-ray images of solar flares by means of the data collected by the Reuven Ramaty high energy solar spectroscopic imager. The imaging concept of the satellite is based on rotating modulation collimator instruments, which allow the use of both Fourier imaging approaches and reconstruction techniques based on the straightforward inversion of the modulated count profiles. Although in the last decade, greater attention has been devoted to the former strategies due to their very limited computational cost, here we consider the latter model and investigate the effectiveness of different accelerated gradient methods for the solution of the corresponding constrained minimization problem. Moreover, regularization is introduced through either an early stopping of the iterative procedure, or a Tikhonov term added to the discrepancy function by means of a discrepancy principle accounting for the Poisson nature of the noise affecting the data.

  19. Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues.

    PubMed

    Ozturk, Mehmet S; Chen, Chao-Wei; Ji, Robin; Zhao, Lingling; Nguyen, Bao-Ngoc B; Fisher, John P; Chen, Yu; Intes, Xavier

    2016-03-01

    Optimization of regenerative medicine strategies includes the design of biomaterials, development of cell-seeding methods, and control of cell-biomaterial interactions within the engineered tissues. Among these steps, one paramount challenge is to non-destructively image the engineered tissues in their entirety to assess structure, function, and molecular expression. It is especially important to be able to enable cell phenotyping and monitor the distribution and migration of cells throughout the bulk scaffold. Advanced fluorescence microscopic techniques are commonly employed to perform such tasks; however, they are limited to superficial examination of tissue constructs. Therefore, the field of tissue engineering and regenerative medicine would greatly benefit from the development of molecular imaging techniques which are capable of non-destructive imaging of three-dimensional cellular distribution and maturation within a tissue-engineered scaffold beyond the limited depth of current microscopic techniques. In this review, we focus on an emerging depth-resolved optical mesoscopic imaging technique, termed laminar optical tomography (LOT) or mesoscopic fluorescence molecular tomography (MFMT), which enables longitudinal imaging of cellular distribution in thick tissue engineering constructs at depths of a few millimeters and with relatively high resolution. The physical principle, image formation, and instrumentation of LOT/MFMT systems are introduced. Representative applications in tissue engineering include imaging the distribution of human mesenchymal stem cells embedded in hydrogels, imaging of bio-printed tissues, and in vivo applications.

  20. A history of scanning electron microscopy developments: towards "wet-STEM" imaging.

    PubMed

    Bogner, A; Jouneau, P-H; Thollet, G; Basset, D; Gauthier, C

    2007-01-01

    A recently developed imaging mode called "wet-STEM" and new developments in environmental scanning electron microscopy (ESEM) allows the observation of nano-objects suspended in a liquid phase, with a few manometers resolution and a good signal to noise ratio. The idea behind this technique is simply to perform STEM-in-SEM, that is SEM in transmission mode, in an environmental SEM. The purpose of the present contribution is to highlight the main advances that contributed to development of the wet-STEM technique. Although simple in principle, the wet-STEM imaging mode would have been limited before high brightness electron sources became available, and needed some progresses and improvements in ESEM. This new technique extends the scope of SEM as a high-resolution microscope, relatively cheap and widely available imaging tool, for a wider variety of samples.

  1. Scheimpflug with computational imaging to extend the depth of field of iris recognition systems

    NASA Astrophysics Data System (ADS)

    Sinharoy, Indranil

    Despite the enormous success of iris recognition in close-range and well-regulated spaces for biometric authentication, it has hitherto failed to gain wide-scale adoption in less controlled, public environments. The problem arises from a limitation in imaging called the depth of field (DOF): the limited range of distances beyond which subjects appear blurry in the image. The loss of spatial details in the iris image outside the small DOF limits the iris image capture to a small volume-the capture volume. Existing techniques to extend the capture volume are usually expensive, computationally intensive, or afflicted by noise. Is there a way to combine the classical Scheimpflug principle with the modern computational imaging techniques to extend the capture volume? The solution we found is, surprisingly, simple; yet, it provides several key advantages over existing approaches. Our method, called Angular Focus Stacking (AFS), consists of capturing a set of images while rotating the lens, followed by registration, and blending of the in-focus regions from the images in the stack. The theoretical underpinnings of AFS arose from a pair of new and general imaging models we developed for Scheimpflug imaging that directly incorporates the pupil parameters. The model revealed that we could register the images in the stack analytically if we pivot the lens at the center of its entrance pupil, rendering the registration process exact. Additionally, we found that a specific lens design further reduces the complexity of image registration making AFS suitable for real-time performance. We have demonstrated up to an order of magnitude improvement in the axial capture volume over conventional image capture without sacrificing optical resolution and signal-to-noise ratio. The total time required for capturing the set of images for AFS is less than the time needed for a single-exposure, conventional image for the same DOF and brightness level. The net reduction in capture time can significantly relax the constraints on subject movement during iris acquisition, making it less restrictive.

  2. Effects of digital phase-conjugate light intensity on time-reversal imaging through animal tissue.

    PubMed

    Toda, Sogo; Kato, Yuji; Kudo, Nobuki; Shimizu, Koichi

    2018-04-01

    For transillumination imaging of animal tissues, we have attempted to suppress the scattering effect in a turbid medium using the time-reversal principle of phase-conjugate light. We constructed a digital phase-conjugate system to enable intensity modulation and phase modulation. Using this system, we clarified the effectiveness of the intensity information for restoration of the original light distribution through a turbid medium. By varying the scattering coefficient of the medium, we clarified the limit of time-reversal ability with intensity information of the phase-conjugate light. Experiment results demonstrated the applicability of the proposed technique to animal tissue.

  3. Financial accounting for radiology executives.

    PubMed

    Seidmann, Abraham; Mehta, Tushar

    2005-03-01

    The authors review the role of financial accounting information from the perspective of a radiology executive. They begin by introducing the role of pro forma statements. They discuss the fundamental concepts of accounting, including the matching principle and accrual accounting. The authors then explore the use of financial accounting information in making investment decisions in diagnostic medical imaging. The paper focuses on critically evaluating the benefits and limitations of financial accounting for decision making in a radiology practice.

  4. MO-DE-BRA-06: 3D Image Acquisition and Reconstruction Explained with Online Animations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesner, A

    Purpose: Understanding the principles of 3D imaging and image reconstruction is fundamental to the field of medical imaging. Clinicians, technologists, physicists, patients, students, and inquisitive minds all stand to benefit from greater comprehension of the supporting technologies. To help explain the basic principles of 3D imaging, we developed multi-frame animations that convey the concepts of tomographic imaging. The series of free (gif) animations are accessible online, and provide a multimedia introduction to the main concepts of image reconstruction. Methods: Text and animations were created to convey the principles of analytic tomography in CT, PET, and SPECT. Specific topics covered included:more » principles of sinograms/image data storage, forward projection, principles of PET acquisitions, and filtered backprojection. A total of 8 animations were created and presented for CT, PET, and digital phantom formats. In addition, a free executable is also provided to allow users to create their own tomographic animations – providing an opportunity for interaction and personalization to help foster user interest. Results: Tutorial text and animations have been posted online, freely available to view or download. The animations are in first position in a google search of “image reconstruction animations”. The website currently receives approximately 200 hits/month, from all over the world, and the usage is growing. Positive feedback has been collected from users. Conclusion: We identified a need for improved teaching tools to help visualize the (temporally variant) concepts of image reconstruction, and have shown that animations can be a useful tool for this aspect of education. Furthermore, posting animations freely on the web has shown to be a good way to maximize their impact in the community. In future endeavors, we hope to expand this animated content, to cover principles of iterative reconstruction, as well as other phenomena relating to imaging.« less

  5. 3D-Holoscopic Imaging: A New Dimension to Enhance Imaging in Minimally Invasive Therapy in Urologic Oncology

    PubMed Central

    Aggoun, Amar; Swash, Mohammad; Grange, Philippe C.R.; Challacombe, Benjamin; Dasgupta, Prokar

    2013-01-01

    Abstract Background and Purpose Existing imaging modalities of urologic pathology are limited by three-dimensional (3D) representation on a two-dimensional screen. We present 3D-holoscopic imaging as a novel method of representing Digital Imaging and Communications in Medicine data images taken from CT and MRI to produce 3D-holographic representations of anatomy without special eyewear in natural light. 3D-holoscopic technology produces images that are true optical models. This technology is based on physical principles with duplication of light fields. The 3D content is captured in real time with the content viewed by multiple viewers independently of their position, without 3D eyewear. Methods We display 3D-holoscopic anatomy relevant to minimally invasive urologic surgery without the need for 3D eyewear. Results The results have demonstrated that medical 3D-holoscopic content can be displayed on commercially available multiview auto-stereoscopic display. Conclusion The next step is validation studies comparing 3D-Holoscopic imaging with conventional imaging. PMID:23216303

  6. Super-resolution imaging of multiple cells by optimized flat-field epi-illumination

    NASA Astrophysics Data System (ADS)

    Douglass, Kyle M.; Sieben, Christian; Archetti, Anna; Lambert, Ambroise; Manley, Suliana

    2016-11-01

    Biological processes are inherently multi-scale, and supramolecular complexes at the nanoscale determine changes at the cellular scale and beyond. Single-molecule localization microscopy (SMLM) techniques have been established as important tools for studying cellular features with resolutions of the order of around 10 nm. However, in their current form these modalities are limited by a highly constrained field of view (FOV) and field-dependent image resolution. Here, we develop a low-cost microlens array (MLA)-based epi-illumination system—flat illumination for field-independent imaging (FIFI)—that can efficiently and homogeneously perform simultaneous imaging of multiple cells with nanoscale resolution. The optical principle of FIFI, which is an extension of the Köhler integrator, is further elucidated and modelled with a new, free simulation package. We demonstrate FIFI's capabilities by imaging multiple COS-7 and bacteria cells in 100 × 100 μm2 SMLM images—more than quadrupling the size of a typical FOV and producing near-gigapixel-sized images of uniformly high quality.

  7. Multiple defocused coherent diffraction imaging: method for simultaneously reconstructing objects and probe using X-ray free-electron lasers.

    PubMed

    Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio

    2016-05-30

    The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.

  8. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy

    PubMed Central

    Zhou, Lulu; Cai, Mingjun; Tong, Ti; Wang, Hongda

    2017-01-01

    Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy. PMID:28441775

  9. Atomistic three-dimensional coherent x-ray imaging of nonbiological systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Phay J.; Knight, Chris; Tegze, Miklos

    We computationally study the resolution limits for three-dimensional coherent x-ray diffractive imaging of heavy, nonbiological systems using Ar clusters as a prototype. We treat electronic and nuclear dynamics on an equal footing and remove the frozen-lattice approximation often used in electronic damage studies. We explore the achievable resolution as a function of pulse parameters (fluence level, pulse duration, and photon energy) and particle size. The contribution of combined lattice and electron dynamics is not negligible even for 2 fs pulses, and the Compton scattering is less deleterious than in biological systems for atomic-scale imaging. Although free-electron scattering represents a significantmore » background, we find that recovery of the original structure is in principle possible with 3 angstrom resolution for particles of 11 nm diameter.« less

  10. Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second.

    PubMed

    Huber, R; Adler, D C; Srinivasan, V J; Fujimoto, J G

    2007-07-15

    A Fourier domain mode-locked (FDML) laser at 1050 nm for ultra-high-speed optical coherence tomography (OCT) imaging of the human retina is demonstrated. Achievable performance, physical limitations, design rules, and scaling principles for FDML operation and component choice in this wavelength range are discussed. The fiber-based FDML laser operates at a sweep rate of 236 kHz over a 63 nm tuning range, with 7 mW average output power. Ultra-high-speed retinal imaging is demonstrated at 236,000 axial scans per second. This represents a speed improvement of approximately10x over typical high-speed OCT systems, paving the way for densely sampled volumetric data sets and new imaging protocols.

  11. Atomistic three-dimensional coherent x-ray imaging of nonbiological systems

    DOE PAGES

    Ho, Phay J.; Knight, Chris; Tegze, Miklos; ...

    2016-12-12

    We computationally study the resolution limits for three-dimensional coherent x-ray diffractive imaging of heavy, nonbiological systems using Ar clusters as a prototype. We treat electronic and nuclear dynamics on an equal footing and remove the frozen-lattice approximation often used in electronic damage studies. We explore the achievable resolution as a function of pulse parameters (fluence level, pulse duration, and photon energy) and particle size. The contribution of combined lattice and electron dynamics is not negligible even for 2 fs pulses, and the Compton scattering is less deleterious than in biological systems for atomic-scale imaging. Although free-electron scattering represents a significantmore » background, we find that recovery of the original structure is in principle possible with 3 angstrom resolution for particles of 11 nm diameter.« less

  12. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production.

    PubMed

    Seibert, J Anthony

    2004-09-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information.

  13. Radiometry rocks

    NASA Astrophysics Data System (ADS)

    Harvey, James E.

    2012-10-01

    Professor Bill Wolfe was an exceptional mentor for his graduate students, and he made a major contribution to the field of optical engineering by teaching the (largely ignored) principles of radiometry for over forty years. This paper describes an extension of Bill's work on surface scatter behavior and the application of the BRDF to practical optical engineering problems. Most currently-available image analysis codes require the BRDF data as input in order to calculate the image degradation from residual optical fabrication errors. This BRDF data is difficult to measure and rarely available for short EUV wavelengths of interest. Due to a smooth-surface approximation, the classical Rayleigh-Rice surface scatter theory cannot be used to calculate BRDFs from surface metrology data for even slightly rough surfaces. The classical Beckmann-Kirchhoff theory has a paraxial limitation and only provides a closed-form solution for Gaussian surfaces. Recognizing that surface scatter is a diffraction process, and by utilizing sound radiometric principles, we first developed a linear systems theory of non-paraxial scalar diffraction in which diffracted radiance is shift-invariant in direction cosine space. Since random rough surfaces are merely a superposition of sinusoidal phase gratings, it was a straightforward extension of this non-paraxial scalar diffraction theory to develop a unified surface scatter theory that is valid for moderately rough surfaces at arbitrary incident and scattered angles. Finally, the above two steps are combined to yield a linear systems approach to modeling image quality for systems suffering from a variety of image degradation mechanisms. A comparison of image quality predictions with experimental results taken from on-orbit Solar X-ray Imager (SXI) data is presented.

  14. Preparing images for publication: part 1.

    PubMed

    Devigus, Alessandro; Paul, Stefan

    2006-04-01

    Images play a vital role in the publication and presentation of clinical and scientific work. Within clinical photography, color reproduction has always been a contentious issue. With the development of new technologies, the variables affecting color reproduction have changed, and photographers have moved away from film-based to digital photographic imaging systems. To develop an understanding of color, knowledge about the basic principles of light and vision is important. An object's color is determined by which wavelengths of light it reflects. Colors of light and colors of pigment behave differently. Due to technical limitations, monitors and printers are unable to reproduce all the colors we can see with our eyes, also called the LAB color space. In order to optimize the output of digital clinical images, color management solutions need to be integrated in the photographic workflow; however, their use is still limited in the medical field. As described in part 2 of this article, calibrating your computer monitor and using an 18% gray background card are easy ways to enable more consistent color reproduction for publication. In addition, some basic information about the various camera settings is given to facilitate the use of this new digital equipment in daily practice.

  15. Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology.

    PubMed

    Johnson, Sam A

    2015-01-01

    Imaging methods have presented scientists with powerful means of investigation for centuries. The ability to resolve structures using light microscopes is though limited to around 200 nm. Fluorescence-based super-resolution light microscopy techniques of several principles and methods have emerged in recent years and offer great potential to extend the capabilities of microscopy. This resolution improvement is especially promising for nanoscience where the imaging of nanoscale structures is inherently restricted by the resolution limit of standard forms of light microscopy. Resolution can be improved by several distinct approaches including structured illumination microscopy, stimulated emission depletion, and single-molecule positioning methods such as photoactivated localization microscopy and stochastic optical reconstruction microscopy and several derivative variations of each of these. These methods involve substantial differences in the resolutions achievable in the different axes, speed of acquisition, compatibility with different labels, ease of use, hardware complexity, and compatibility with live biological samples. The field of super-resolution imaging and its application to nanotechnology is relatively new and still rapidly developing. An overview of how these methods may be used with nanomaterials is presented with some examples of pioneering uses of these approaches. © 2014 Wiley Periodicals, Inc.

  16. Time-resolved ion imaging at free-electron lasers using TimepixCam.

    PubMed

    Fisher-Levine, Merlin; Boll, Rebecca; Ziaee, Farzaneh; Bomme, Cédric; Erk, Benjamin; Rompotis, Dimitrios; Marchenko, Tatiana; Nomerotski, Andrei; Rolles, Daniel

    2018-03-01

    The application of a novel fast optical-imaging camera, TimepixCam, to molecular photoionization experiments using the velocity-map imaging technique at a free-electron laser is described. TimepixCam is a 256 × 256 pixel CMOS camera that is able to detect and time-stamp ion hits with 20 ns timing resolution, thus making it possible to record ion momentum images for all fragment ions simultaneously and avoiding the need to gate the detector on a single fragment. This allows the recording of significantly more data within a given amount of beam time and is particularly useful for pump-probe experiments, where drifts, for example, in the timing and pulse energy of the free-electron laser, severely limit the comparability of pump-probe scans for different fragments taken consecutively. In principle, this also allows ion-ion covariance or coincidence techniques to be applied to determine angular correlations between fragments.

  17. Finding Kuiper Belt Objects Below the Detection Limit

    NASA Astrophysics Data System (ADS)

    Whidden, Peter; Kalmbach, Bryce; Bektesevic, Dino; Connolly, Andrew; Jones, Lynne; Smotherman, Hayden; Becker, Andrew

    2018-01-01

    We demonstrate a novel approach for uncovering the signatures of moving objects (e.g. Kuiper Belt Objects) below the detection thresholds of single astronomical images. To do so, we will employ a matched filter moving at specific rates of proposed orbits through a time-domain dataset. This is analogous to the better-known "shift-and-stack" method; however it uses neither direct shifting nor stacking of the image pixels. Instead of resampling the raw pixels to create an image stack, we will instead integrate the object detection probabilities across multiple single-epoch images to accrue support for a proposed orbit. The filtering kernel provides a measure of the probability that an object is present along a given orbit, and enables the user to make principled decisions about when the search has been successful, and when it may be terminated. The results we present here utilize GPUs to speed up the search by two orders of magnitudes over CPU implementations.

  18. Observer efficiency in discrimination tasks simulating malignant and benign breast lesions imaged with ultrasound

    PubMed Central

    Abbey, Craig K.; Zemp, Roger J.; Liu, Jie; Lindfors, Karen K.; Insana, Michael F.

    2009-01-01

    We investigate and extend the ideal observer methodology developed by Smith and Wagner to detection and discrimination tasks related to breast sonography. We provide a numerical approach for evaluating the ideal observer acting on radio-frequency (RF) frame data, which involves inversion of large nonstationary covariance matrices, and we describe a power-series approach to computing this inverse. Considering a truncated power series suggests that the RF data be Wiener-filtered before forming the final envelope image. We have compared human performance for Wiener-filtered and conventional B-mode envelope images using psychophysical studies for 5 tasks related to breast cancer classification. We find significant improvements in visual detection and discrimination efficiency in four of these five tasks. We also use the Smith-Wagner approach to distinguish between human and processing inefficiencies, and find that generally the principle limitation comes from the information lost in computing the final envelope image. PMID:16468454

  19. Workshop on the Use of Future Multispectral Imaging Capabilities for Lithologic Mapping: Workshop summary

    NASA Technical Reports Server (NTRS)

    Settle, M.; Adams, J.

    1982-01-01

    Improved orbital imaging capabilities from the standpoint of different scientific disciplines, such as geology, botany, hydrology, and geography were evaluated. A discussion on how geologists might exploit the anticipated measurement capabilities of future orbital imaging systems to discriminate and characterize different types of geologic materials exposed at the Earth's surface is presented. Principle objectives are to summarize past accomplishments in the use of multispectral imaging techniques for lithologic mapping; to identify critical gaps in earlier research efforts that currently limit the ability to extract useful information about the physical and chemical characteristics of geological materials from orbital multispectral surveys; and to define major thresholds, resolution and sensitivity within the visible and infrared portions of the electromagnetic spectrum which, if achieved would result in significant improvement in our ability to discriminate and characterize different geological materials exposed at the Earth's surface.

  20. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera

    PubMed Central

    Israel, Yonatan; Tenne, Ron; Oron, Dan; Silberberg, Yaron

    2017-01-01

    Despite advances in low-light-level detection, single-photon methods such as photon correlation have rarely been used in the context of imaging. The few demonstrations, for example of subdiffraction-limited imaging utilizing quantum statistics of photons, have remained in the realm of proof-of-principle demonstrations. This is primarily due to a combination of low values of fill factors, quantum efficiencies, frame rates and signal-to-noise characteristic of most available single-photon sensitive imaging detectors. Here we describe an imaging device based on a fibre bundle coupled to single-photon avalanche detectors that combines a large fill factor, a high quantum efficiency, a low noise and scalable architecture. Our device enables localization-based super-resolution microscopy in a non-sparse non-stationary scene, utilizing information on the number of active emitters, as gathered from non-classical photon statistics. PMID:28287167

  1. New scheme for image edge detection using the switching mechanism of nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Pahari, Nirmalya; Mukhopadhyay, Sourangshu

    2006-03-01

    The limitations of electronics in conducting parallel arithmetic, algebraic, and logic processing are well known. Very high-speed (terahertz) performance cannot be expected in conventional electronic mechanisms. To achieve such performance we can introduce optics instead of electronics for information processing, computing, and data handling. Nonlinear optical material (NOM) is a successful candidate in this regard to play a major role in the domain of optically controlled switching systems. The character of some NOMs is such as to reflect the probe beam in the presence of two read beams (or pump beams) exciting the material from opposite directions, using the principle of four-wave mixing. In image processing, edge extraction from an image is an important and essential task. Several optical methods of digital image processing are used for properly evaluating the image edges. We propose here a new method of image edge detection, extraction, and enhancement by use of AND-based switching operations with NOM. In this process we have used the optically inverted image of a supplied image. This can be obtained by the EXOR switching operation of the NOM.

  2. Basic design principles of colorimetric vision systems

    NASA Astrophysics Data System (ADS)

    Mumzhiu, Alex M.

    1998-10-01

    Color measurement is an important part of overall production quality control in textile, coating, plastics, food, paper and other industries. The color measurement instruments such as colorimeters and spectrophotometers, used for production quality control have many limitations. In many applications they cannot be used for a variety of reasons and have to be replaced with human operators. Machine vision has great potential for color measurement. The components for color machine vision systems, such as broadcast quality 3-CCD cameras, fast and inexpensive PCI frame grabbers, and sophisticated image processing software packages are available. However the machine vision industry has only started to approach the color domain. The few color machine vision systems on the market, produced by the largest machine vision manufacturers have very limited capabilities. A lack of understanding that a vision based color measurement system could fail if it ignores the basic principles of colorimetry is the main reason for the slow progress of color vision systems. the purpose of this paper is to clarify how color measurement principles have to be applied to vision systems and how the electro-optical design features of colorimeters have to be modified in order to implement them for vision systems. The subject of this presentation far exceeds the limitations of a journal paper so only the most important aspects will be discussed. An overview of the major areas of applications for colorimetric vision system will be discussed. Finally, the reasons why some customers are happy with their vision systems and some are not will be analyzed.

  3. Digital holographic 3D imaging spectrometry (a review)

    NASA Astrophysics Data System (ADS)

    Yoshimori, Kyu

    2017-09-01

    This paper reviews recent progress in the digital holographic 3D imaging spectrometry. The principle of this method is a marriage of incoherent holography and Fourier transform spectroscopy. Review includes principle, procedure of signal processing and experimental results to obtain a multispectral set of 3D images for spatially incoherent, polychromatic objects.

  4. [Color processing of ultrasonographic images in extracorporeal lithotripsy].

    PubMed

    Lardennois, B; Ziade, A; Walter, K

    1991-02-01

    A number of technical difficulties are encountered in the ultrasonographic detection of renal stones which unfortunately limit its performance. The margin of error of firing in extracorporeal shock-wave lithotripsy (ESWL) must be reduced to a minimum. The role of the ultrasonographic monitoring during lithotripsy is also essential: continuous control of the focussing of the short-wave beamand assessment if the quality of fragmentation. The authors propose to improve ultrasonographic imaging in ESWL by means of intraoperative colour processing of the stone. Each shot must be directed to its target with an economy of vision avoiding excessive fatigue. The principle of the technique consists of digitalization of the ultrasound video images using a Macintosh Mac 2 computer. The Graphis Paint II program is interfaced directly with the Quick Capture card and recovers the images on its work surface in real time. The program is then able to attribute to each of these 256 shades of grey any one of the 16.6 million colours of the Macintosh universe with specific intensity and saturation. During fragmentation, using the principle of a palette, the stone changes colour from green to red indicating complete fragmentation. A Color Space card converts the digital image obtained into a video analogue source which is visualized on the monitor. It can be superimposed and/or juxtaposed with the source image by means of a multi-standard mixing table. Colour processing of ultrasonographic images in extracoporeal shockwave lithotripsy allows better visualization of the stones and better follow-up of fragmentation and allows the shockwave treatment to be stopped earlier. It increases the stone-free performance at 6 months. This configuration will eventually be able to integrate into the ultrasound apparatus itself.

  5. Determination of scattering structures from spatial coherence measurements.

    PubMed

    Zarubin, A M

    1996-03-01

    A new method of structure determination and microscopic imaging with short-wavelength radiations (charged particles, X-rays, neutrons), based on measurements of the modulus and the phase of the degree of spatial coherence of the scattered radiation, is developed. The underlying principle of the method--transfer of structural information about the scattering potential via spatial coherence of the secondary (scattering) source of radiation formed by this potential--is expressed by the generalization of the van Cittert-Zernike theorem to wave and particle scattering [A.M. Zarubin, Opt. Commun. 100 (1993) 491; Opt. Commun. 102 (1993) 543]. Shearing interferometric techniques are proposed for implementing the above measurements; the limits of spatial resolution attainable by reconstruction of the absolute square of a 3D scattering potential and its 2D projections from the measurements are analyzed. It is shown theoretically that 3D imaging with atomic resolution can be realized in a "synthetic aperture" electron or ion microscope and that a 3D resolution of about 6 nm can be obtained with a "synthetic aperture" X-ray microscope. A proof-of-principle optical experiment is presented.

  6. Fluorescent imaging of cancerous tissues for targeted surgery

    PubMed Central

    Bu, Lihong; Shen, Baozhong; Cheng, Zhen

    2014-01-01

    To maximize tumor excision and minimize collateral damage is the primary goal of cancer surgery. Emerging molecular imaging techniques have to “image-guided surgery” developing into “molecular imaging-guided surgery”, which is termed “targeted surgery” in this review. Consequently, the precision of surgery can be advanced from tissue-scale to molecule-scale, enabling “targeted surgery” to be a component of “targeted therapy”. Evidence from numerous experimental and clinical studies has demonstrated significant benefits of fluorescent imaging in targeted surgery with preoperative molecular diagnostic screening. Fluorescent imaging can help to improve intraoperative staging and enable more radical cytoreduction, detect obscure tumor lesions in special organs, highlight tumor margins, better map lymph node metastases, and identify important normal structures intraoperatively. Though limited tissue penetration of fluorescent imaging and tumor heterogeneity are two major hurdles for current targeted surgery, multimodality imaging and multiplex imaging may provide potential solutions to overcome these issues, respectively. Moreover, though many fluorescent imaging techniques and probes have been investigated, targeted surgery remains at a proof-of-principle stage. The impact of fluorescent imaging on cancer surgery will likely be realized through persistent interdisciplinary amalgamation of research in diverse fields. PMID:25064553

  7. Inspection of float glass using a novel retroreflective laser scanning system

    NASA Astrophysics Data System (ADS)

    Holmes, Jonathan D.

    1997-07-01

    Since 1988, Image Automation has marketed a float glass inspection system using a novel retro-reflective laser scanning system. The (patented) instrument scans a laser beam by use of a polygon through the glass onto a retro-reflective screen, and collects the retro-reflected light off the polygon, such that a stationary image of the moving spot on the screen is produced. The spot image is then analyzed for optical effects introduced by defects within the glass, which typically distort and attenuate the scanned laser beam, by use of suitable detectors. The inspection system processing provides output of defect size, shape and severity, to the factory network for use in rejection or sorting of glass plates to the end customer. This paper briefly describes the principles of operation, the system architecture, and limitations to sensitivity and measurement repeatability. New instruments based on the retro-reflective scanning method have recently been developed. The principles and implementation are described. They include: (1) Simultaneous detection of defects within the glass and defects in a mirror coating on the glass surface using polarized light. (2) A novel distortion detector for very dark glass. (3) Measurement of optical quality (flatness/refractive homogeneity) of the glass using a position sensitive detector.

  8. The application of optical coherence tomography angiography in retinal diseases.

    PubMed

    Sambhav, Kumar; Grover, Sandeep; Chalam, Kakarla V

    Optical coherence tomography angiography (OCTA) is a new, noninvasive imaging technique that generates real-time volumetric data on chorioretinal vasculature and its flow pattern. With the advent of high-speed optical coherence tomography, established enface chorioretinal segmentation, and efficient algorithms, OCTA generates images that resemble an angiogram. The principle of OCTA involves determining the change in backscattering between consecutive B-scans and then attributing the differences to the flow of erythrocytes through retinal blood vessels. OCTA has shown promise in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age-related macular degeneration, and retinal vascular occlusions. It quantifies vascular compromise reflecting the severity of diabetic retinopathy. OCTA detects the presence of choroidal neovascularization in exudative age-related macular degeneration and maps loss of choriocapillaris in nonexudative age-related macular degeneration. We describe principles of OCTA and findings in common and some uncommon retinal pathologies. Finally, we summarize its potential future applications. Its current limitations include a relatively small field of view, inability to show leakage, and a tendency for image artifacts. Further larger studies will define OCTAs utility in clinical settings and establish if the technology may offer its utility in decreasing morbidity through early detection and guide therapeutic interventions in retinal diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Control for well-posedness about a class of non-Newtonian incompressible porous medium fluid equations

    NASA Astrophysics Data System (ADS)

    Deng, Shuxian; Ge, Xinxin

    2017-10-01

    Considering the non-Newtonian fluid equation of incompressible porous media, using the properties of operator semigroup and measure space and the principle of squeezed image, Fourier analysis and a priori estimate in the measurement space are used to discuss the non-compressible porous media, the properness of the solution of the equation, its gradual behavior and its topological properties. Through the diffusion regularization method and the compressed limit compact method, we study the overall decay rate of the solution of the equation in a certain space when the initial value is sufficient. The decay estimation of the solution of the incompressible seepage equation is obtained, and the asymptotic behavior of the solution is obtained by using the double regularization model and the Duhamel principle.

  10. Proper Image Subtraction—Optimal Transient Detection, Photometry, and Hypothesis Testing

    NASA Astrophysics Data System (ADS)

    Zackay, Barak; Ofek, Eran O.; Gal-Yam, Avishay

    2016-10-01

    Transient detection and flux measurement via image subtraction stand at the base of time domain astronomy. Due to the varying seeing conditions, the image subtraction process is non-trivial, and existing solutions suffer from a variety of problems. Starting from basic statistical principles, we develop the optimal statistic for transient detection, flux measurement, and any image-difference hypothesis testing. We derive a closed-form statistic that: (1) is mathematically proven to be the optimal transient detection statistic in the limit of background-dominated noise, (2) is numerically stable, (3) for accurately registered, adequately sampled images, does not leave subtraction or deconvolution artifacts, (4) allows automatic transient detection to the theoretical sensitivity limit by providing credible detection significance, (5) has uncorrelated white noise, (6) is a sufficient statistic for any further statistical test on the difference image, and, in particular, allows us to distinguish particle hits and other image artifacts from real transients, (7) is symmetric to the exchange of the new and reference images, (8) is at least an order of magnitude faster to compute than some popular methods, and (9) is straightforward to implement. Furthermore, we present extensions of this method that make it resilient to registration errors, color-refraction errors, and any noise source that can be modeled. In addition, we show that the optimal way to prepare a reference image is the proper image coaddition presented in Zackay & Ofek. We demonstrate this method on simulated data and real observations from the PTF data release 2. We provide an implementation of this algorithm in MATLAB and Python.

  11. Recent progress in tissue optical clearing for spectroscopic application

    NASA Astrophysics Data System (ADS)

    Sdobnov, A. Yu.; Darvin, M. E.; Genina, E. A.; Bashkatov, A. N.; Lademann, J.; Tuchin, V. V.

    2018-05-01

    This paper aims to review recent progress in optical clearing of the skin and over naturally turbid biological tissues and blood using this technique in vivo and in vitro with multiphoton microscopy, confocal Raman microscopy, confocal microscopy, NIR spectroscopy, optical coherence tomography, and laser speckle contrast imaging. Basic principles of the technique, its safety, advantages and limitations are discussed. The application of optical clearing agent on a tissue allows for controlling the optical properties of tissue. Optical clearing-induced reduction of tissue scattering significantly facilitates the observation of deep-located tissue regions, at the same time improving the resolution and image contrast for a variety of optical imaging methods suitable for clinical applications, such as diagnostics and laser treatment of skin diseases, mucosal tumor imaging, laser disruption of pathological abnormalities, etc. Structural images of different skin layers obtained ex vivo for porcine ear skin samples at application of Omnipaque™ and glycerol solutions during 60 min. Red color corresponds to TPEAF signal channel. Green color corresponds to SHG signal channel.

  12. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology.

    PubMed

    Barrett, Harrison H; Myers, Kyle J; Caucci, Luca

    2014-08-17

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon.

  13. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Caucci, Luca

    2016-01-01

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon. PMID:27478293

  14. Medical photography: principles for orthopedics.

    PubMed

    Uzun, Metin; Bülbül, Murat; Toker, Serdar; Beksaç, Burak; Kara, Adnan

    2014-04-05

    Medical photography is used clinically for patient evaluation, treatment decisions, and scientific documentation. Although standards for medical photography exist in many branches of medicine, we have not encountered such criteria in publications in the area of orthopedics. This study aims to (1) assess the quality of medical images used in an orthopedic publication and (2) to propose standards for medical photography in this area. Clinical photographs were reviewed from all issues of a journal published between the years 2008 and 2012. A quality of clinical images was developed based on the criteria published for the specialties of dermatology and cosmetic surgery. All images were reviewed on the appropriateness of background, patient preparation, and technique. In this study, only 44.9% of clinical images in an orthopedic publication adhered to the proposed conventions. Standards have not been established for medical photography in orthopedics as in other specialty areas. Our results suggest that photographic clinical information in orthopedic publications may be limited by inadequate presentation. We propose that formal conventions for clinical images should be established.

  15. Magnetic resonance imaging of granular materials

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf

    2017-05-01

    Magnetic Resonance Imaging (MRI) has become one of the most important tools to screen humans in medicine; virtually every modern hospital is equipped with a Nuclear Magnetic Resonance (NMR) tomograph. The potential of NMR in 3D imaging tasks is by far greater, but there is only "a handful" of MRI studies of particulate matter. The method is expensive, time-consuming, and requires a deep understanding of pulse sequences, signal acquisition, and processing. We give a short introduction into the physical principles of this imaging technique, describe its advantages and limitations for the screening of granular matter, and present a number of examples of different application purposes, from the exploration of granular packing, via the detection of flow and particle diffusion, to real dynamic measurements. Probably, X-ray computed tomography is preferable in most applications, but fast imaging of single slices with modern MRI techniques is unmatched, and the additional opportunity to retrieve spatially resolved flow and diffusion profiles without particle tracking is a unique feature.

  16. A laboratory demonstration of the capability to image an Earth-like extrasolar planet.

    PubMed

    Trauger, John T; Traub, Wesley A

    2007-04-12

    The detection and characterization of an Earth-like planet orbiting a nearby star requires a telescope with an extraordinarily large contrast at small angular separations. At visible wavelengths, an Earth-like planet would be 1 x 10(-10) times fainter than the star at angular separations of typically 0.1 arcsecond or less. There are several proposed space telescope systems that could, in principle, achieve this. Here we report a laboratory experiment that reaches these limits. We have suppressed the diffracted and scattered light near a star-like source to a level of 6 x 10(-10) times the peak intensity in individual coronagraph images. In a series of such images, together with simple image processing, we have effectively reduced this to a residual noise level of about 0.1 x 10(-10). This demonstrates that a coronagraphic telescope in space could detect and spectroscopically characterize nearby exoplanetary systems, with the sensitivity to image an 'Earth-twin' orbiting a nearby star.

  17. Application of basic principles of physics to head and neck MR angiography: troubleshooting for artifacts.

    PubMed

    Pandey, Shilpa; Hakky, Michael; Kwak, Ellie; Jara, Hernan; Geyer, Carl A; Erbay, Sami H

    2013-05-01

    Neurovascular imaging studies are routinely used for the assessment of headaches and changes in mental status, stroke workup, and evaluation of the arteriovenous structures of the head and neck. These imaging studies are being performed with greater frequency as the aging population continues to increase. Magnetic resonance (MR) angiographic imaging techniques are helpful in this setting. However, mastering these techniques requires an in-depth understanding of the basic principles of physics, complex flow patterns, and the correlation of MR angiographic findings with conventional MR imaging findings. More than one imaging technique may be used to solve difficult cases, with each technique contributing unique information. Unfortunately, incorporating findings obtained with multiple imaging modalities may add to the diagnostic challenge. To ensure diagnostic accuracy, it is essential that the radiologist carefully evaluate the details provided by these modalities in light of basic physics principles, the fundamentals of various imaging techniques, and common neurovascular imaging pitfalls. ©RSNA, 2013.

  18. Resurrecting Limited War Theory

    DTIC Science & Technology

    2008-05-01

    indirectly with an appreciation of the principles and guidelines for limited war. 15. SUBJECT TERMS Limited War, Political Objectives, Total War...conflict between other nations may require the United States to act indirectly with an appreciation of the principles and guidelines for limited war...in war, echoing Clausewitz’s principle of political primacy. Like Clausewitz, he was also a student of

  19. Quantum dots versus organic fluorophores in fluorescent deep-tissue imaging--merits and demerits.

    PubMed

    Bakalova, Rumiana; Zhelev, Zhivko; Gadjeva, Veselina

    2008-12-01

    The use of fluorescence in deep-tissue imaging is rapidly expanding in last several years. The progress in fluorescent molecular probes and fluorescent imaging techniques gives an opportunity to detect single cells and even molecular targets in live organisms. The highly sensitive and high-speed fluorescent molecular sensors and detection devices allow the application of fluorescence in functional imaging. With the development of novel bright fluorophores based on nanotechnologies and 3D fluorescence scanners with high spatial and temporal resolution, the fluorescent imaging has a potential to become an alternative of the other non-invasive imaging techniques as magnetic resonance imaging, positron-emission tomography, X-ray, computing tomography. The fluorescent imaging has also a potential to give a real map of human anatomy and physiology. The current review outlines the advantages of fluorescent nanoparticles over conventional organic dyes in deep-tissue imaging in vivo and defines the major requirements to the "perfect fluorophore". The analysis proceeds from the basic principles of fluorescence and major characteristics of fluorophores, light-tissue interactions, and major limitations of fluorescent deep-tissue imaging. The article is addressed to a broad readership - from specialists in this field to university students.

  20. How does PET/MR work? Basic physics for physicians.

    PubMed

    Delso, Gaspar; Ter Voert, Edwin; Veit-Haibach, Patrick

    2015-08-01

    The aim of this article is to provide Radiologists and Nuclear Medicine physicians the basic information required to understand how PET/MR scanners work, what are their limitations and how to evaluate their performance. It will cover the operational principles of standalone PET and MR imaging, as well as the technical challenges of creating a hybrid system and how they have been solved in the now commercially available scanners. Guidelines will be provided to interpret the main performance figures of hybrid PET/MR systems.

  1. 3D reconstruction techniques made easy: know-how and pictures.

    PubMed

    Luccichenti, Giacomo; Cademartiri, Filippo; Pezzella, Francesca Romana; Runza, Giuseppe; Belgrano, Manuel; Midiri, Massimo; Sabatini, Umberto; Bastianello, Stefano; Krestin, Gabriel P

    2005-10-01

    Three-dimensional reconstructions represent a visual-based tool for illustrating the basis of three-dimensional post-processing such as interpolation, ray-casting, segmentation, percentage classification, gradient calculation, shading and illumination. The knowledge of the optimal scanning and reconstruction parameters facilitates the use of three-dimensional reconstruction techniques in clinical practise. The aim of this article is to explain the principles of multidimensional image processing in a pictorial way and the advantages and limitations of the different possibilities of 3D visualisation.

  2. Application of bacteriorhodopsin films in an adaptive-focusing schlieren system

    NASA Astrophysics Data System (ADS)

    Downie, John D.

    1995-09-01

    The photochromic property of bacteriorhodopsin films is exploited in the application of a focusing schlieren optical system for the visualization of optical phase information. By encoding an image on the film with light of one wavelength and reading out with a different wavelength, the readout beam can effectively see the photographic negative of the original image. The potential advantage of this system over previous focusing schlieren systems is that the updatable nature of the bacteriorhodopsin film allows system adaptation. I discuss two image encoding and readout techniques for the bacteriorhodopsin and use film transmission characteristics to choose the more appropriate method. I demonstrate the system principle with experimental results using argon-ion and He-Cd lasers as the two light sources of different wavelengths, and I discuss current limitations to implementation with a white-light source.

  3. Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization.

    PubMed

    Hurd, Ralph E; Yen, Yi-Fen; Chen, Albert; Ardenkjaer-Larsen, Jan Henrik

    2012-12-01

    This article describes the basic physics of dissolution dynamic nuclear polarization (dissolution-DNP), and the impact of the resulting highly nonequilibrium spin states, on the physics of magnetic resonance imaging (MRI) detection. The hardware requirements for clinical translation of this technology are also presented. For studies that allow the use of externally administered agents, hyperpolarization offers a way to overcome normal magnetic resonance sensitivity limitations, at least for a brief T(1)-dependent observation window. A 10,000-100,000-fold signal-to-noise advantage provides an avenue for real-time measurement of perfusion, metabolite transport, exchange, and metabolism. The principles behind these measurements, as well as the choice of agent, and progress toward the application of hyperpolarized (13)C metabolic imaging in oncology, cardiology, and neurology are reviewed. Copyright © 2012 Wiley Periodicals, Inc.

  4. Application of Bacteriorhodopsin Films in an Adaptive-Focusing Schlieren System

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1995-01-01

    The photochromic property of bacteriorhodopsin films is exploited in the application of a focusing schlieren optical system for the visualization of optical phase information. By encoding an image on the film with light of one wavelength and reading out with a different wavelength, the readout beam can effectively see the photographic negative of the original image. The potential advantage of this system over previous focusing schlieren systems is that the updatable nature of the bacteriorhodopsin film allows system adaptation. I discuss two image encoding and readout techniques for the bacteriorhodopsin and use film transmission characteristics to choose the more appropriate method. I demonstrate the system principle with experimental results using argon-ion and He-Cd lasers as the two light sources of different wavelengths, and I discuss current limitations to implementation with a white-light source.

  5. Computed Tomography Studies of Lung Mechanics

    PubMed Central

    Simon, Brett A.; Christensen, Gary E.; Low, Daniel A.; Reinhardt, Joseph M.

    2005-01-01

    The study of lung mechanics has progressed from global descriptions of lung pressure and volume relationships to the high-resolution, three-dimensional, quantitative measurement of dynamic regional mechanical properties and displacements. X-ray computed tomography (CT) imaging is ideally suited to the study of regional lung mechanics in intact subjects because of its high spatial and temporal resolution, correlation of functional data with anatomic detail, increasing volumetric data acquisition, and the unique relationship between CT density and lung air content. This review presents an overview of CT measurement principles and limitations for the study of regional mechanics, reviews some of the early work that set the stage for modern imaging approaches and impacted the understanding and management of patients with acute lung injury, and presents evolving novel approaches for the analysis and application of dynamic volumetric lung image data. PMID:16352757

  6. [Imaging Mass Spectrometry in Histopathologic Analysis].

    PubMed

    Yamazaki, Fumiyoshi; Seto, Mitsutoshi

    2015-04-01

    Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules. IMS generates data on the distribution of lipids and small molecules in tissues, which is difficult to visualize with either conventional counter-staining or immunohistochemistry. In this review, we firstly introduce the principle of imaging mass spectrometry and recent advances in the sample preparation method. Secondly, we present findings regarding biological samples, especially pathological ones. Finally, we discuss the limitations and problems of the IMS technique and clinical application, such as in drug development.

  7. Multiflash X ray with Image Detanglement for Single Image Isolation

    DTIC Science & Technology

    2017-08-31

    known and separated into individual images. A proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes...Popular Science article.2 For decades, that basic concept dominated the color television market . Those were the days when a large color television...proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes that allowed development of the required image

  8. Biological imaging with coherent Raman scattering microscopy: a tutorial

    PubMed Central

    Alfonso-García, Alba; Mittal, Richa; Lee, Eun Seong; Potma, Eric O.

    2014-01-01

    Abstract. Coherent Raman scattering (CRS) microscopy is gaining acceptance as a valuable addition to the imaging toolset of biological researchers. Optimal use of this label-free imaging technique benefits from a basic understanding of the physical principles and technical merits of the CRS microscope. This tutorial offers qualitative explanations of the principles behind CRS microscopy and provides information about the applicability of this nonlinear optical imaging approach for biological research. PMID:24615671

  9. A Matched Filter Technique for Slow Radio Transient Detection and First Demonstration with the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Feng, L.; Vaulin, R.; Hewitt, J. N.; Remillard, R.; Kaplan, D. L.; Murphy, Tara; Kudryavtseva, N.; Hancock, P.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Gaensler, B. M.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.

    2017-03-01

    Many astronomical sources produce transient phenomena at radio frequencies, but the transient sky at low frequencies (<300 MHz) remains relatively unexplored. Blind surveys with new wide-field radio instruments are setting increasingly stringent limits on the transient surface density on various timescales. Although many of these instruments are limited by classical confusion noise from an ensemble of faint, unresolved sources, one can in principle detect transients below the classical confusion limit to the extent that the classical confusion noise is independent of time. We develop a technique for detecting radio transients that is based on temporal matched filters applied directly to time series of images, rather than relying on source-finding algorithms applied to individual images. This technique has well-defined statistical properties and is applicable to variable and transient searches for both confusion-limited and non-confusion-limited instruments. Using the Murchison Widefield Array as an example, we demonstrate that the technique works well on real data despite the presence of classical confusion noise, sidelobe confusion noise, and other systematic errors. We searched for transients lasting between 2 minutes and 3 months. We found no transients and set improved upper limits on the transient surface density at 182 MHz for flux densities between ˜20 and 200 mJy, providing the best limits to date for hour- and month-long transients.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klima, Matej; Kucharik, MIlan; Shashkov, Mikhail Jurievich

    We analyze several new and existing approaches for limiting tensor quantities in the context of deviatoric stress remapping in an ALE numerical simulation of elastic flow. Remapping and limiting of the tensor component-by-component is shown to violate radial symmetry of derived variables such as elastic energy or force. Therefore, we have extended the symmetry-preserving Vector Image Polygon algorithm, originally designed for limiting vector variables. This limiter constrains the vector (in our case a vector of independent tensor components) within the convex hull formed by the vectors from surrounding cells – an equivalent of the discrete maximum principle in scalar variables.more » We compare this method with a limiter designed specifically for deviatoric stress limiting which aims to constrain the J 2 invariant that is proportional to the specific elastic energy and scale the tensor accordingly. We also propose a method which involves remapping and limiting the J 2 invariant independently using known scalar techniques. The deviatoric stress tensor is then scaled to match this remapped invariant, which guarantees conservation in terms of elastic energy.« less

  11. Achieving real-time capsule endoscopy (CE) video visualization through panoramic imaging

    NASA Astrophysics Data System (ADS)

    Yi, Steven; Xie, Jean; Mui, Peter; Leighton, Jonathan A.

    2013-02-01

    In this paper, we mainly present a novel and real-time capsule endoscopy (CE) video visualization concept based on panoramic imaging. Typical CE videos run about 8 hours and are manually reviewed by physicians to locate diseases such as bleedings and polyps. To date, there is no commercially available tool capable of providing stabilized and processed CE video that is easy to analyze in real time. The burden on physicians' disease finding efforts is thus big. In fact, since the CE camera sensor has a limited forward looking view and low image frame rate (typical 2 frames per second), and captures very close range imaging on the GI tract surface, it is no surprise that traditional visualization method based on tracking and registration often fails to work. This paper presents a novel concept for real-time CE video stabilization and display. Instead of directly working on traditional forward looking FOV (field of view) images, we work on panoramic images to bypass many problems facing traditional imaging modalities. Methods on panoramic image generation based on optical lens principle leading to real-time data visualization will be presented. In addition, non-rigid panoramic image registration methods will be discussed.

  12. Tomographic phase microscopy: principles and applications in bioimaging [Invited

    PubMed Central

    Jin, Di; Zhou, Renjie; Yaqoob, Zahid; So, Peter T. C.

    2017-01-01

    Tomographic phase microscopy (TPM) is an emerging optical microscopic technique for bioimaging. TPM uses digital holographic measurements of complex scattered fields to reconstruct three-dimensional refractive index (RI) maps of cells with diffraction-limited resolution by solving inverse scattering problems. In this paper, we review the developments of TPM from the fundamental physics to its applications in bioimaging. We first provide a comprehensive description of the tomographic reconstruction physical models used in TPM. The RI map reconstruction algorithms and various regularization methods are discussed. Selected TPM applications for cellular imaging, particularly in hematology, are reviewed. Finally, we examine the limitations of current TPM systems, propose future solutions, and envision promising directions in biomedical research. PMID:29386746

  13. [Advance in imaging spectropolarimeter].

    PubMed

    Wang, Xin-quan; Xiangli, Bin; Huang, Min; Hu, Liang; Zhou, Jin-song; Jing, Juan-juan

    2011-07-01

    Imaging spectropolarimeter (ISP) is a type of novel photoelectric sensor which integrated the functions of imaging, spectrometry and polarimetry. In the present paper, the concept of the ISP is introduced, and the advances in ISP at home and abroad in recent years is reviewed. The principles of ISPs based on novel devices, such as acousto-optic tunable filter (AOTF) and liquid crystal tunable filter (LCTF), are illustrated. In addition, the principles of ISPs developed by adding polarized components to the dispersing-type imaging spectrometer, spatially modulated Fourier transform imaging spectrometer, and computer tomography imaging spectrometer are introduced. Moreover, the trends of ISP are discussed too.

  14. Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.

    1992-01-01

    Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.

  15. Radiation tolerant compact image sensor using CdTe photodiode and field emitter array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Masuzawa, Tomoaki; Neo, Yoichiro; Mimura, Hidenori; Okamoto, Tamotsu; Nagao, Masayoshi; Akiyoshi, Masafumi; Sato, Nobuhiro; Takagi, Ikuji; Tsuji, Hiroshi; Gotoh, Yasuhito

    2016-10-01

    A growing demand on incident detection is recognized since the Great East Japan Earthquake and successive accidents in Fukushima nuclear power plant in 2011. Radiation tolerant image sensors are powerful tools to collect crucial information at initial stages of such incidents. However, semiconductor based image sensors such as CMOS and CCD have limited tolerance to radiation exposure. Image sensors used in nuclear facilities are conventional vacuum tubes using thermal cathodes, which have large size and high power consumption. In this study, we propose a compact image sensor composed of a CdTe-based photodiode and a matrix-driven Spindt-type electron beam source called field emitter array (FEA). A basic principle of FEA-based image sensors is similar to conventional Vidicon type camera tubes, but its electron source is replaced from a thermal cathode to FEA. The use of a field emitter as an electron source should enable significant size reduction while maintaining high radiation tolerance. Current researches on radiation tolerant FEAs and development of CdTe based photoconductive films will be presented.

  16. Determining approximate age of digital images using sensor defects

    NASA Astrophysics Data System (ADS)

    Fridrich, Jessica; Goljan, Miroslav

    2011-02-01

    The goal of temporal forensics is to establish temporal relationship among two or more pieces of evidence. In this paper, we focus on digital images and describe a method using which an analyst can estimate the acquisition time of an image given a set of other images from the same camera whose time ordering is known. This is achieved by first estimating the parameters of pixel defects, including their onsets, and then detecting their presence in the image under investigation. Both estimators are constructed using the maximum-likelihood principle. The accuracy and limitations of this approach are illustrated on experiments with three cameras. Forensic and law-enforcement analysts are expected to benefit from this technique in situations when the temporal data stored in the EXIF header is lost due to processing or editing images off-line or when the header cannot be trusted. Reliable methods for establishing temporal order between individual pieces of evidence can help reveal deception attempts of an adversary or a criminal. The causal relationship may also provide information about the whereabouts of the photographer.

  17. Introduction to Color Imaging Science

    NASA Astrophysics Data System (ADS)

    Lee, Hsien-Che

    2005-04-01

    Color imaging technology has become almost ubiquitous in modern life in the form of monitors, liquid crystal screens, color printers, scanners, and digital cameras. This book is a comprehensive guide to the scientific and engineering principles of color imaging. It covers the physics of light and color, how the eye and physical devices capture color images, how color is measured and calibrated, and how images are processed. It stresses physical principles and includes a wealth of real-world examples. The book will be of value to scientists and engineers in the color imaging industry and, with homework problems, can also be used as a text for graduate courses on color imaging.

  18. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.

    PubMed

    Adie, Steven G; Graf, Benedikt W; Ahmad, Adeel; Carney, P Scott; Boppart, Stephen A

    2012-05-08

    Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.

  19. Balloon Exoplanet Nulling Interferometer (BENI)

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-01-01

    We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.

  20. Two-Photon Excitation Microscopy for the Study of Living Cells and Tissues

    PubMed Central

    Benninger, Richard K.P.; Piston, David W.

    2013-01-01

    Two-photon excitation microscopy is an alternative to confocal microscopy that provides advantages for three-dimensional and deep tissue imaging. This unit will describe the basic physical principles behind two-photon excitation and discuss the advantages and limitations of its use in laser-scanning microscopy. The principal advantages of two-photon microscopy are reduced phototoxicity, increased imaging depth, and the ability to initiate highly localized photochemistry in thick samples. Practical considerations for the application of two-photon microscopy will then be discussed, including recent technological advances. This unit will conclude with some recent applications of two-photon microscopy that highlight the key advantages over confocal microscopy and the types of experiments which would benefit most from its application. PMID:23728746

  1. Enabling freehand lateral scanning of optical coherence tomography needle probes with a magnetic tracking system

    PubMed Central

    Yeo, Boon Y.; McLaughlin, Robert A.; Kirk, Rodney W.; Sampson, David D.

    2012-01-01

    We present a high-resolution three-dimensional position tracking method that allows an optical coherence tomography (OCT) needle probe to be scanned laterally by hand, providing the high degree of flexibility and freedom required in clinical usage. The method is based on a magnetic tracking system, which is augmented by cross-correlation-based resampling and a two-stage moving window average algorithm to improve upon the tracker's limited intrinsic spatial resolution, achieving 18 µm RMS position accuracy. A proof-of-principle system was developed, with successful image reconstruction demonstrated on phantoms and on ex vivo human breast tissue validated against histology. This freehand scanning method could contribute toward clinical implementation of OCT needle imaging. PMID:22808429

  2. Susceptibility-Weighted Imaging and Quantitative Susceptibility Mapping in the Brain

    PubMed Central

    Liu, Chunlei; Li, Wei; Tong, Karen A.; Yeom, Kristen W.; Kuzminski, Samuel

    2015-01-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. PMID:25270052

  3. The positive impact of simultaneous implementation of the BD FocalPoint GS Imaging System and lean principles on the operation of gynecologic cytology.

    PubMed

    Wong, Rebecca; Levi, Angelique W; Harigopal, Malini; Schofield, Kevin; Chhieng, David C

    2012-02-01

    Our cytology laboratory, like many others, is under pressure to improve quality and provide test results faster while decreasing costs. We sought to address these issues by introducing new technology and lean principles. To determine the combined impact of the FocalPoint Guided Screener (GS) Imaging System (BD Diagnostics-TriPath, Burlington, North Carolina) and lean manufacturing principles on the turnaround time (TAT) and productivity of the gynecologic cytology operation. We established a baseline measure of the TAT for Papanicolaou tests. We then compared that to the performance after implementing the FocalPoint GS Imaging System and lean principles. The latter included value-stream mapping, workflow modification, and a first in-first out policy. The mean (SD) TAT for Papanicolaou tests before and after the implementation of FocalPoint GS Imaging System and lean principles was 4.38 (1.28) days and 3.20 (1.32) days, respectively. This represented a 27% improvement in the average TAT, which was statistically significant (P < .001). In addition, the productivity of staff improved 17%, as evidenced by the increase in slides screened from 8.85/h to 10.38/h. The false-negative fraction decreased from 1.4% to 0.9%, representing a 36% improvement. In our laboratory, the implementation of FocalPoint GS Imaging System in conjunction with lean principles resulted in a significant decrease in the average TAT for Papanicolaou tests and a substantial increase in the productivity of cytotechnologists while maintaining the diagnostic quality of gynecologic cytology.

  4. Numerical study on simultaneous emission and transmission tomography in the MRI framework

    NASA Astrophysics Data System (ADS)

    Gjesteby, Lars; Cong, Wenxiang; Wang, Ge

    2017-09-01

    Multi-modality imaging methods are instrumental for advanced diagnosis and therapy. Specifically, a hybrid system that combines computed tomography (CT), nuclear imaging, and magnetic resonance imaging (MRI) will be a Holy Grail of medical imaging, delivering complementary structural/morphological, functional, and molecular information for precision medicine. A novel imaging method was recently demonstrated that takes advantage of radiotracer polarization to combine MRI principles with nuclear imaging. This approach allows the concentration of a polarized Υ-ray emitting radioisotope to be imaged with MRI resolution potentially outperforming the standard nuclear imaging mode at a sensitivity significantly higher than that of MRI. In our work, we propose to acquire MRI-modulated nuclear data for simultaneous image reconstruction of both emission and transmission parameters, suggesting the potential for simultaneous CT-SPECT-MRI. The synchronized diverse datasets allow excellent spatiotemporal registration and unique insight into physiological and pathological features. Here we describe the methodology involving the system design with emphasis on the formulation for tomographic images, even when significant radiotracer signals are limited to a region of interest (ROI). Initial numerical results demonstrate the feasibility of our approach for reconstructing concentration and attenuation images through a head phantom with various radio-labeled ROIs. Additional considerations regarding the radioisotope characteristics are also discussed.

  5. State of the art: dual-energy CT of the abdomen.

    PubMed

    Marin, Daniele; Boll, Daniel T; Mileto, Achille; Nelson, Rendon C

    2014-05-01

    Recent technologic advances in computed tomography (CT)--enabling the nearly simultaneous acquisition of clinical images using two different x-ray energy spectra--have sparked renewed interest in dual-energy CT. By interrogating the unique characteristics of different materials at different x-ray energies, dual-energy CT can be used to provide quantitative information about tissue composition, overcoming the limitations of attenuation-based conventional single-energy CT imaging. In the past few years, intensive research efforts have been devoted to exploiting the unique and powerful opportunities of dual-energy CT for a variety of clinical applications. This has led to CT protocol modifications for radiation dose reduction, improved diagnostic performance for detection and characterization of diseases, as well as image quality optimization. In this review, the authors discuss the basic principles, instrumentation and design, examples of current clinical applications in the abdomen and pelvis, and future opportunities of dual-energy CT.

  6. Optofluidic time-stretch quantitative phase microscopy.

    PubMed

    Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke

    2018-03-01

    Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. SQCRAMscope imaging of transport in an iron-pnictide superconductor

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Kollar, Alicia; Taylor, Stephen; Palmstrom, Johanna; Chu, Jiun-Haw; Fisher, Ian; Lev, Benjamin

    2017-04-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We have recently introduced a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. We will report on the first use of the SQCRAMscope for imaging a strongly correlated material. Specifically, we will present measurements of electron transport in iron-pnictide superconductors across the electron nematic phase transition at T = 135 K.

  8. Time-resolved ion imaging at free-electron lasers using TimepixCam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher-Levine, Merlin; Boll, Rebecca; Ziaee, Farzaneh

    In this paper, the application of a novel fast optical-imaging camera, TimepixCam, to molecular photoionization experiments using the velocity-map imaging technique at a free-electron laser is described. TimepixCam is a 256 × 256 pixel CMOS camera that is able to detect and time-stamp ion hits with 20 ns timing resolution, thus making it possible to record ion momentum images for all fragment ions simultaneously and avoiding the need to gate the detector on a single fragment. This allows the recording of significantly more data within a given amount of beam time and is particularly useful for pump–probe experiments, where drifts,more » for example, in the timing and pulse energy of the free-electron laser, severely limit the comparability of pump–probe scans for different fragments taken consecutively. Finally, in principle, this also allows ion–ion covariance or coincidence techniques to be applied to determine angular correlations between fragments.« less

  9. Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning.

    PubMed

    Cha, Kenny H; Hadjiiski, Lubomir; Chan, Heang-Ping; Weizer, Alon Z; Alva, Ajjai; Cohan, Richard H; Caoili, Elaine M; Paramagul, Chintana; Samala, Ravi K

    2017-08-18

    Cross-sectional X-ray imaging has become the standard for staging most solid organ malignancies. However, for some malignancies such as urinary bladder cancer, the ability to accurately assess local extent of the disease and understand response to systemic chemotherapy is limited with current imaging approaches. In this study, we explored the feasibility that radiomics-based predictive models using pre- and post-treatment computed tomography (CT) images might be able to distinguish between bladder cancers with and without complete chemotherapy responses. We assessed three unique radiomics-based predictive models, each of which employed different fundamental design principles ranging from a pattern recognition method via deep-learning convolution neural network (DL-CNN), to a more deterministic radiomics feature-based approach and then a bridging method between the two, utilizing a system which extracts radiomics features from the image patterns. Our study indicates that the computerized assessment using radiomics information from the pre- and post-treatment CT of bladder cancer patients has the potential to assist in assessment of treatment response.

  10. Time-resolved ion imaging at free-electron lasers using TimepixCam

    DOE PAGES

    Fisher-Levine, Merlin; Boll, Rebecca; Ziaee, Farzaneh; ...

    2018-02-20

    In this paper, the application of a novel fast optical-imaging camera, TimepixCam, to molecular photoionization experiments using the velocity-map imaging technique at a free-electron laser is described. TimepixCam is a 256 × 256 pixel CMOS camera that is able to detect and time-stamp ion hits with 20 ns timing resolution, thus making it possible to record ion momentum images for all fragment ions simultaneously and avoiding the need to gate the detector on a single fragment. This allows the recording of significantly more data within a given amount of beam time and is particularly useful for pump–probe experiments, where drifts,more » for example, in the timing and pulse energy of the free-electron laser, severely limit the comparability of pump–probe scans for different fragments taken consecutively. Finally, in principle, this also allows ion–ion covariance or coincidence techniques to be applied to determine angular correlations between fragments.« less

  11. A portable liquid crystal-based polarized light system for the detection of organophosphorus nerve gas.

    PubMed

    He, Feng Jie; Liu, Hui Long; Chen, Long Cong; Xiong, Xing Liang

    2018-03-01

    Liquid crystal (LC)-based sensors have the advantageous properties of being fast, sensitive, and label-free, the results of which can be accessed directly only through the naked eye. However, the inherent disadvantages possessed by LC sensors, such as relying heavily on polarizing microscopes and the difficulty to quantify, have limited the possibility of field applications. Herein, we have addressed these issues by constructing a portable polarized detection system with constant temperature control. This system is mainly composed of four parts: the LC cell, the optics unit, the automatic temperature control unit, and the image processing unit. The LC cell was based on the ordering transitions of LCs in the presence of analytes. The optics unit based on the imaging principle of LCs was designed to substitute the polarizing microscope for the real-time observation. The image processing unit is expected to quantify the concentration of analytes. The results have shown that the presented system can detect dimethyl methyl phosphonate (a stimulant for organophosphorus nerve gas) within 25 s, and the limit of detection is about 10 ppb. In all, our portable system has potential in field applications.

  12. A portable liquid crystal-based polarized light system for the detection of organophosphorus nerve gas

    NASA Astrophysics Data System (ADS)

    He, Feng Jie; Liu, Hui Long; Chen, Long Cong; Xiong, Xing Liang

    2018-03-01

    Liquid crystal (LC)-based sensors have the advantageous properties of being fast, sensitive, and label-free, the results of which can be accessed directly only through the naked eye. However, the inherent disadvantages possessed by LC sensors, such as relying heavily on polarizing microscopes and the difficulty to quantify, have limited the possibility of field applications. Herein, we have addressed these issues by constructing a portable polarized detection system with constant temperature control. This system is mainly composed of four parts: the LC cell, the optics unit, the automatic temperature control unit, and the image processing unit. The LC cell was based on the ordering transitions of LCs in the presence of analytes. The optics unit based on the imaging principle of LCs was designed to substitute the polarizing microscope for the real-time observation. The image processing unit is expected to quantify the concentration of analytes. The results have shown that the presented system can detect dimethyl methyl phosphonate (a stimulant for organophosphorus nerve gas) within 25 s, and the limit of detection is about 10 ppb. In all, our portable system has potential in field applications.

  13. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  14. The Scientific Image in Behavior Analysis.

    PubMed

    Keenan, Mickey

    2016-05-01

    Throughout the history of science, the scientific image has played a significant role in communication. With recent developments in computing technology, there has been an increase in the kinds of opportunities now available for scientists to communicate in more sophisticated ways. Within behavior analysis, though, we are only just beginning to appreciate the importance of going beyond the printing press to elucidate basic principles of behavior. The aim of this manuscript is to stimulate appreciation of both the role of the scientific image and the opportunities provided by a quick response code (QR code) for enhancing the functionality of the printed page. I discuss the limitations of imagery in behavior analysis ("Introduction"), and I show examples of what can be done with animations and multimedia for teaching philosophical issues that arise when teaching about private events ("Private Events 1 and 2"). Animations are also useful for bypassing ethical issues when showing examples of challenging behavior ("Challenging Behavior"). Each of these topics can be accessed only by scanning the QR code provided. This contingency has been arranged to help the reader embrace this new technology. In so doing, I hope to show its potential for going beyond the limitations of the printing press.

  15. Various diffusion magnetic resonance imaging techniques for pancreatic cancer

    PubMed Central

    Tang, Meng-Yue; Zhang, Xiao-Ming; Chen, Tian-Wu; Huang, Xiao-Hua

    2015-01-01

    Pancreatic cancer is one of the most common malignant tumors and remains a treatment-refractory cancer with a poor prognosis. Currently, the diagnosis of pancreatic neoplasm depends mainly on imaging and which methods are conducive to detecting small lesions. Compared to the other techniques, magnetic resonance imaging (MRI) has irreplaceable advantages and can provide valuable information unattainable with other noninvasive or minimally invasive imaging techniques. Advances in MR hardware and pulse sequence design have particularly improved the quality and robustness of MRI of the pancreas. Diffusion MR imaging serves as one of the common functional MRI techniques and is the only technique that can be used to reflect the diffusion movement of water molecules in vivo. It is generally known that diffusion properties depend on the characterization of intrinsic features of tissue microdynamics and microstructure. With the improvement of the diffusion models, diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique to the more complex. In this review, the various diffusion MRI techniques for pancreatic cancer are discussed, including conventional diffusion weighted imaging (DWI), multi-b DWI based on intra-voxel incoherent motion theory, diffusion tensor imaging and diffusion kurtosis imaging. The principles, main parameters, advantages and limitations of these techniques, as well as future directions for pancreatic diffusion imaging are also discussed. PMID:26753059

  16. Multi-material decomposition of spectral CT images

    NASA Astrophysics Data System (ADS)

    Mendonça, Paulo R. S.; Bhotika, Rahul; Maddah, Mahnaz; Thomsen, Brian; Dutta, Sandeep; Licato, Paul E.; Joshi, Mukta C.

    2010-04-01

    Spectral Computed Tomography (Spectral CT), and in particular fast kVp switching dual-energy computed tomography, is an imaging modality that extends the capabilities of conventional computed tomography (CT). Spectral CT enables the estimation of the full linear attenuation curve of the imaged subject at each voxel in the CT volume, instead of a scalar image in Hounsfield units. Because the space of linear attenuation curves in the energy ranges of medical applications can be accurately described through a two-dimensional manifold, this decomposition procedure would be, in principle, limited to two materials. This paper describes an algorithm that overcomes this limitation, allowing for the estimation of N-tuples of material-decomposed images. The algorithm works by assuming that the mixing of substances and tissue types in the human body has the physicochemical properties of an ideal solution, which yields a model for the density of the imaged material mix. Under this model the mass attenuation curve of each voxel in the image can be estimated, immediately resulting in a material-decomposed image triplet. Decomposition into an arbitrary number of pre-selected materials can be achieved by automatically selecting adequate triplets from an application-specific material library. The decomposition is expressed in terms of the volume fractions of each constituent material in the mix; this provides for a straightforward, physically meaningful interpretation of the data. One important application of this technique is in the digital removal of contrast agent from a dual-energy exam, producing a virtual nonenhanced image, as well as in the quantification of the concentration of contrast observed in a targeted region, thus providing an accurate measure of tissue perfusion.

  17. Technical aspects of dental CBCT: state of the art

    PubMed Central

    Araki, K; Siewerdsen, J H; Thongvigitmanee, S S

    2015-01-01

    As CBCT is widely used in dental and maxillofacial imaging, it is important for users as well as referring practitioners to understand the basic concepts of this imaging modality. This review covers the technical aspects of each part of the CBCT imaging chain. First, an overview is given of the hardware of a CBCT device. The principles of cone beam image acquisition and image reconstruction are described. Optimization of imaging protocols in CBCT is briefly discussed. Finally, basic and advanced visualization methods are illustrated. Certain topics in these review are applicable to all types of radiographic imaging (e.g. the principle and properties of an X-ray tube), others are specific for dental CBCT imaging (e.g. advanced visualization techniques). PMID:25263643

  18. Noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice.

    PubMed

    Lyons, Scott K; Lim, Ed; Clermont, Anne O; Dusich, Joan; Zhu, Lingyun; Campbell, Kenneth D; Coffee, Richard J; Grass, David S; Hunter, John; Purchio, Tony; Jenkins, Darlene

    2006-05-01

    Several transgenic mouse models of prostate cancer have been developed recently that are able to recapitulate many key biological features of the human condition. It would, therefore, be desirable to employ these models to test the efficacy of new therapeutics before clinical trial; however, the variable onset and non-visible nature of prostate tumor development limit their use for such applications. We now report the generation of a transgenic reporter mouse that should obviate these limitations by enabling noninvasive in vivo bioluminescence imaging of normal and spontaneously transformed prostate tissue in the mouse. We used an 11-kb fragment of the human prostate-specific antigen (PSA) promoter to achieve specific and robust expression of firefly luciferase in the prostate glands of transgenic mice. Ex vivo bioluminescence imaging and in situ hybridization analysis confirmed that luciferase expression was restricted to the epithelium in all four lobes of the prostate. We also show that PSA-Luc mice exhibit decreased but readily detectable levels of in vivo bioluminescence over extended time periods following androgen ablation. These results suggest that this reporter should enable in vivo imaging of both androgen-dependent and androgen-independent prostate tumor models. As proof-of-principle, we show that we could noninvasively image SV40 T antigen-induced prostate tumorigenesis in mice with PSA-Luc. Furthermore, we show that our noninvasive imaging strategy can be successfully used to image tumor response to androgen ablation in transgenic mice and, as a result, that we can rapidly identify individual animals capable of sustaining tumor growth in the absence of androgen.

  19. Electrochemical atomic force microscopy: In situ monitoring of electrochemical processes

    NASA Astrophysics Data System (ADS)

    Reggente, Melania; Passeri, Daniele; Rossi, Marco; Tamburri, Emanuela; Terranova, Maria Letizia

    2017-08-01

    The in-situ electrodeposition of polyaniline (PANI), one of the most attractive conducting polymers (CP), has been monitored performing electrochemical atomic force microscopy (EC-AFM) experiments. The electropolymerization of PANI on a Pt working electrode has been observed performing cyclic voltammetry experiments and controlling the evolution of current flowing through the electrode surface, together with a standard AFM image. The working principle and the potentialities of this emerging technique are briefly reviewed and factors limiting the studying of the in-situ electrosynthesis of organic compounds discussed.

  20. Effects of Modality and Redundancy Principles on the Learning and Attitude of a Computer-Based Music Theory Lesson among Jordanian Primary Pupils

    ERIC Educational Resources Information Center

    Aldalalah, Osamah Ahmad; Fong, Soon Fook

    2010-01-01

    The purpose of this study was to investigate the effects of modality and redundancy principles on the attitude and learning of music theory among primary pupils of different aptitudes in Jordan. The lesson of music theory was developed in three different modes, audio and image (AI), text with image (TI) and audio with image and text (AIT). The…

  1. An active coronagraph using a liquid crystal array for exoplanet imaging: principle and testing

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Ren, De-Qing; Zhu, Yong-Tian; Dou, Jiang-Pei

    2012-05-01

    High-contrast imaging coronagraphs, used for the detection of exoplanets, have always adopted passive coronagraph optical components. It is therefore impossible to actively optimize the coronagraphs to achieve their best performance. To solve this problem, we propose a novel high-contrast imaging coronagraph which combines a liquid crystal array (LCA) for active pupil apodization and a deformable mirror (DM) for phase correction. The LCA we use is an amplitude-only spatial light modulator. The LCA is well calibrated and compensates for its amplitude non-uniformity and nonlinear intensity responsivity. We measured the imaging contrasts of the coronagraph system with the LCA only and without the DM deployed. Imaging contrasts of 10-4 and 10-5 can be reached at an inner working angular distance of 2.5 and 5λ/D, respectively. A simulation shows that the phase errors on the coronagraph pupil limit the contrast performance. The contrast could be further improved if a DM is deployed to correct the phase errors induced by the LCA and coronagraph optics.

  2. Fabrication of nanoscale patterns in lithium fluoride crystal using a 13.5 nm Schwarzschild objective and a laser produced plasma source.

    PubMed

    Wang, Xin; Mu, Baozhong; Jiang, Li; Zhu, Jingtao; Yi, Shengzhen; Wang, Zhanshan; He, Pengfei

    2011-12-01

    Lithium fluoride (LiF) crystal is a radiation sensitive material widely used as EUV and soft x-ray detector. The LiF-based detector has high resolution, in principle limited by the point defect size, large field of view, and wide dynamic range. Using LiF crystal as an imaging detector, a resolution of 900 nm was achieved by a projection imaging of test meshes with a Schwarzschild objective operating at 13.5 nm. In addition, by imaging of a pinhole illuminated by the plasma, an EUV spot of 1.5 μm diameter in the image plane of the objective was generated, which accomplished direct writing of color centers with resolution of 800 nm. In order to avoid sample damage and contamination due to the influence of huge debris flux produced by the plasma source, a spherical normal-incidence condenser was used to collect EUV radiation. Together with a description of experimental results, the development of the Schwarzschild objective, the influence of condenser on energy density and the alignment of the imaging system are also reported.

  3. Towards Omni-Tomography—Grand Fusion of Multiple Modalities for Simultaneous Interior Tomography

    PubMed Central

    Wang, Ge; Zhang, Jie; Gao, Hao; Weir, Victor; Yu, Hengyong; Cong, Wenxiang; Xu, Xiaochen; Shen, Haiou; Bennett, James; Furth, Mark; Wang, Yue; Vannier, Michael

    2012-01-01

    We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine. PMID:22768108

  4. Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points - A Review.

    PubMed

    Zou, Weibao; Li, Yan; Li, Zhilin; Ding, Xiaoli

    2009-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram.

  5. Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points – A Review

    PubMed Central

    Zou, Weibao; Li, Yan; Li, Zhilin; Ding, Xiaoli

    2009-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram. PMID:22399966

  6. Ultrasound Elastography: Review of Techniques and Clinical Applications

    PubMed Central

    Sigrist, Rosa M.S.; Liau, Joy; Kaffas, Ahmed El; Chammas, Maria Cristina; Willmann, Juergen K.

    2017-01-01

    Elastography-based imaging techniques have received substantial attention in recent years for non-invasive assessment of tissue mechanical properties. These techniques take advantage of changed soft tissue elasticity in various pathologies to yield qualitative and quantitative information that can be used for diagnostic purposes. Measurements are acquired in specialized imaging modes that can detect tissue stiffness in response to an applied mechanical force (compression or shear wave). Ultrasound-based methods are of particular interest due to its many inherent advantages, such as wide availability including at the bedside and relatively low cost. Several ultrasound elastography techniques using different excitation methods have been developed. In general, these can be classified into strain imaging methods that use internal or external compression stimuli, and shear wave imaging that use ultrasound-generated traveling shear wave stimuli. While ultrasound elastography has shown promising results for non-invasive assessment of liver fibrosis, new applications in breast, thyroid, prostate, kidney and lymph node imaging are emerging. Here, we review the basic principles, foundation physics, and limitations of ultrasound elastography and summarize its current clinical use and ongoing developments in various clinical applications. PMID:28435467

  7. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy

    PubMed Central

    Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.

    2017-01-01

    Sub-diffraction resolution imaging has played a pivotal role in biological research by visualizing key, but previously unresolvable, sub-cellular structures. Unfortunately, applications of far-field sub-diffraction resolution are currently divided between fluorescent and coherent-diffraction regimes, and a multimodal sub-diffraction technique that bridges this gap has not yet been demonstrated. Here we report that structured illumination (SI) allows multimodal sub-diffraction imaging of both coherent quantitative-phase (QP) and fluorescence. Due to SI’s conventionally fluorescent applications, we first demonstrate the principle of SI-enabled three-dimensional (3D) QP sub-diffraction imaging with calibration microspheres. Image analysis confirmed enhanced lateral and axial resolutions over diffraction-limited QP imaging, and established striking parallels between coherent SI and conventional optical diffraction tomography. We next introduce an optical system utilizing SI to achieve 3D sub-diffraction, multimodal QP/fluorescent visualization of A549 biological cells fluorescently tagged for F-actin. Our results suggest that SI has a unique utility in studying biological phenomena with significant molecular, biophysical, and biochemical components. PMID:28663887

  8. Investigation on principle of polarization-difference imaging in turbid conditions

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Guan, Jinge

    2018-04-01

    We investigate the principle of polarization-difference imaging (PDI) of objects in optically scattering environments. The work is performed by both Marius's law and Mueller-Stokes formalism, and is further demonstrated by simulation. The results show that the object image is obtained based on the difference in polarization direction between the scatter noise and the target signal, and imaging performance is closely related to the choice of polarization analyzer axis. In addition, this study illustrates the potential of Stoke vector for promoting application of PDI system in the real world scene.

  9. Fundamental uncertainty limit of optical flow velocimetry according to Heisenberg's uncertainty principle.

    PubMed

    Fischer, Andreas

    2016-11-01

    Optical flow velocity measurements are important for understanding the complex behavior of flows. Although a huge variety of methods exist, they are either based on a Doppler or a time-of-flight measurement principle. Doppler velocimetry evaluates the velocity-dependent frequency shift of light scattered at a moving particle, whereas time-of-flight velocimetry evaluates the traveled distance of a scattering particle per time interval. Regarding the aim of achieving a minimal measurement uncertainty, it is unclear if one principle allows to achieve lower uncertainties or if both principles can achieve equal uncertainties. For this reason, the natural, fundamental uncertainty limit according to Heisenberg's uncertainty principle is derived for Doppler and time-of-flight measurement principles, respectively. The obtained limits of the velocity uncertainty are qualitatively identical showing, e.g., a direct proportionality for the absolute value of the velocity to the power of 32 and an indirect proportionality to the square root of the scattered light power. Hence, both measurement principles have identical potentials regarding the fundamental uncertainty limit due to the quantum mechanical behavior of photons. This fundamental limit can be attained (at least asymptotically) in reality either with Doppler or time-of-flight methods, because the respective Cramér-Rao bounds for dominating photon shot noise, which is modeled as white Poissonian noise, are identical with the conclusions from Heisenberg's uncertainty principle.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, Dane R.; Witting, Tobias; Walmsley, Ian A.

    We describe the elimination of the astigmatism of a Czerny-Turner imaging spectrometer, built using spherical optics and a plane grating, over a broad spectral region. Starting with the principle of divergent illumination of the grating, which removes astigmatism at one chosen wavelength, we obtain design equations for the distance from the grating to the focusing mirror and the detector angle that remove the astigmatism to first order in wavelength. Experimentally, we demonstrate near diffraction-limited performance from 740 to 860 nm and over a 5 mm transverse spatial extent, while ray-tracing calculations show that barring finite-aperture and detector size limitations, thismore » range extends from 640 to 900 nm and over 10 mm transversely. Our technique requires no additional optics and uses standard off-the-shelf components.« less

  11. Automated flow quantification in valvular heart disease based on backscattered Doppler power analysis: implementation on matrix-array ultrasound imaging systems.

    PubMed

    Buck, Thomas; Hwang, Shawn M; Plicht, Björn; Mucci, Ronald A; Hunold, Peter; Erbel, Raimund; Levine, Robert A

    2008-06-01

    Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm(2) and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.

  12. Preserving digital images for legal proceedings.

    PubMed

    Benedetto, Anthony R

    2007-12-01

    The legal principles governing the use of radiologic images in court and other legal proceedings were developed before the introduction of computers in radiology and nuclear medicine imaging equipment. Modern digital images present a wide variety of new concerns that are not adequately addressed by the principles used by most lawyers and courts. This article discusses the most important of these new concerns, such as being able to prove that an image has not been altered and being able to prove that the hardware and software used to create it were scientifically reliable. A nonexhaustive set of recommendations are given to guide radiologists in beginning to review the image preservation procedures of their practices.

  13. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    NASA Astrophysics Data System (ADS)

    Wirtz, T.; Philipp, P.; Audinot, J.-N.; Dowsett, D.; Eswara, S.

    2015-10-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM).

  14. Gamma-Ray Telescope and Uncertainty Principle

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  15. Sequential Modelling of Building Rooftops by Integrating Airborne LIDAR Data and Optical Imagery: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Sohn, G.; Jung, J.; Jwa, Y.; Armenakis, C.

    2013-05-01

    This paper presents a sequential rooftop modelling method to refine initial rooftop models derived from airborne LiDAR data by integrating it with linear cues retrieved from single imagery. A cue integration between two datasets is facilitated by creating new topological features connecting between the initial model and image lines, with which new model hypotheses (variances to the initial model) are produced. We adopt Minimum Description Length (MDL) principle for competing the model candidates and selecting the optimal model by considering the balanced trade-off between the model closeness and the model complexity. Our preliminary results, combined with the Vaihingen data provided by ISPRS WGIII/4 demonstrate the image-driven modelling cues can compensate the limitations posed by LiDAR data in rooftop modelling.

  16. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Hao; Yang, Haw

    2018-03-01

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  17. Scintillation Reduction using Conjugate-Plane Imaging

    NASA Astrophysics Data System (ADS)

    Vander Haagen, Gary A.

    2017-06-01

    All observatories are plagued by atmospheric turbulence exhibited as star scintillation or "twinkle" whether a high altitude adaptive optics research or a 30 cm amateur telescope. It is well known that these disturbances are caused by wind and temperature driven refractive gradients in the atmosphere and limit the ultimate photometric resolution of land-based facilities. One approach identified by Fuchs (1998) for scintillation noise reduction was to create a conjugate image space at the telescope and focus on the dominant conjugate turbulent layer within that space. When focused on the turbulent layer little or no scintillation exists. This technique is described whereby noise reductions of 6 to 11/1 have been experienced with mathematical and optical bench simulations. Discussed is a proof-of-principle conjugate optical train design for an 80 mm, f-7 telescope.

  18. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.

    PubMed

    Li, Hao; Yang, Haw

    2018-03-28

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  19. Extreme ultraviolet interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Kenneth A.

    EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for themore » measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources of systematic measurement errors. To overcome a variety of experimental difficulties, several new methods in interferogram analysis and phase-retrieval were developed: the Fourier-Transform Method of Phase-Shift Determination, which uses Fourier-domain analysis to improve the accuracy of phase-shifting interferometry; the Fourier-Transform Guided Unwrap Method, which was developed to overcome difficulties associated with a high density of mid-spatial-frequency blemishes and which uses a low-spatial-frequency approximation to the measured wavefront to guide the phase unwrapping in the presence of noise; and, finally, an expedient method of Gram-Schmidt orthogonalization which facilitates polynomial basis transformations in wave-front surface fitting procedures.« less

  20. Improved specimen reconstruction by Hilbert phase contrast tomography.

    PubMed

    Barton, Bastian; Joos, Friederike; Schröder, Rasmus R

    2008-11-01

    The low signal-to-noise ratio (SNR) in images of unstained specimens recorded with conventional defocus phase contrast makes it difficult to interpret 3D volumes obtained by electron tomography (ET). The high defocus applied for conventional tilt series generates some phase contrast but leads to an incomplete transfer of object information. For tomography of biological weak-phase objects, optimal image contrast and subsequently an optimized SNR are essential for the reconstruction of details such as macromolecular assemblies at molecular resolution. The problem of low contrast can be partially solved by applying a Hilbert phase plate positioned in the back focal plane (BFP) of the objective lens while recording images in Gaussian focus. Images recorded with the Hilbert phase plate provide optimized positive phase contrast at low spatial frequencies, and the contrast transfer in principle extends to the information limit of the microscope. The antisymmetric Hilbert phase contrast (HPC) can be numerically converted into isotropic contrast, which is equivalent to the contrast obtained by a Zernike phase plate. Thus, in-focus HPC provides optimal structure factor information without limiting effects of the transfer function. In this article, we present the first electron tomograms of biological specimens reconstructed from Hilbert phase plate image series. We outline the technical implementation of the phase plate and demonstrate that the technique is routinely applicable for tomography. A comparison between conventional defocus tomograms and in-focus HPC volumes shows an enhanced SNR and an improved specimen visibility for in-focus Hilbert tomography.

  1. Neutron imaging of hydrogen-rich fluids in geomaterials and engineered porous media: A review

    NASA Astrophysics Data System (ADS)

    Perfect, E.; Cheng, C.-L.; Kang, M.; Bilheux, H. Z.; Lamanna, J. M.; Gragg, M. J.; Wright, D. M.

    2014-02-01

    Recent advances in visualization technologies are providing new discoveries as well as answering old questions with respect to the phase structure and flow of hydrogen-rich fluids, such as water and oil, within porous media. Magnetic resonance and x-ray imaging are sometimes employed in this context, but are subject to significant limitations. In contrast, neutrons are ideally suited for imaging hydrogen-rich fluids in abiotic non-hydrogenous porous media because they are strongly attenuated by hydrogen and can "see" through the solid matrix in a non-destructive fashion. This review paper provides an overview of the general principles behind the use of neutrons to image hydrogen-rich fluids in both 2-dimensions (radiography) and 3-dimensions (tomography). Engineering standards for the neutron imaging method are examined. The main body of the paper consists of a comprehensive review of the diverse scientific literature on neutron imaging of static and dynamic experiments involving variably-saturated geomaterials (rocks and soils) and engineered porous media (bricks and ceramics, concrete, fuel cells, heat pipes, and porous glass). Finally some emerging areas that offer promising opportunities for future research are discussed.

  2. Longitudinal in vivo two-photon fluorescence imaging

    PubMed Central

    Crowe, Sarah E.; Ellis-Davies, Graham C.R.

    2014-01-01

    Fluorescence microscopy is an essential technique for the basic sciences, especially biomedical research. Since the invention of laser scanning confocal microscopy in 1980s, that enabled imaging both fixed and living biological tissue with three-dimensional precision, high-resolution fluorescence imaging has revolutionized biological research. Confocal microscopy, by its very nature, has one fundamental limitation. Due to the confocal pinhole, deep tissue fluorescence imaging is not practical. In contrast (no pun intended), two-photon fluorescence microscopy allows, in principle, the collection of all emitted photons from fluorophores in the imaged voxel, dramatically extending our ability to see deep into living tissue. Since the development of transgenic mice with genetically encoded fluorescent protein in neocortical cells in 2000, two-photon imaging has enabled the dynamics of individual synapses to be followed for up to two years. Since the initial landmark contributions to this field in 2002, the technique has been used to understand how neuronal structure are changed by experience, learning and memory and various diseases. Here we provide a basic summary of the crucial elements that are required for such studies, and discuss many applications of longitudinal two-photon fluorescence microscopy that have appeared since 2002. PMID:24214350

  3. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.

    PubMed

    Hamed, Abbi; Masamune, Ken; Tse, Zion Tsz Ho; Lamperth, Michael; Dohi, Takeyoshi

    2012-07-01

    Minimally invasive surgery is a widely used medical technique, one of the drawbacks of which is the loss of direct sense of touch during the operation. Palpation is the use of fingertips to explore and make fast assessments of tissue morphology. Although technologies are developed to equip minimally invasive surgery tools with haptic feedback capabilities, the majority focus on tissue stiffness profiling and tool-tissue interaction force measurement. For greatly increased diagnostic capability, a magnetic resonance imaging-compatible tactile sensor design is proposed, which allows minimally invasive surgery to be performed under image guidance, combining the strong capability of magnetic resonance imaging soft tissue and intuitive palpation. The sensing unit is based on a piezoelectric sensor methodology, which conforms to the stringent mechanical and electrical design requirements imposed by the magnetic resonance environment The sensor mechanical design and the device integration to a 0.2 Tesla open magnetic resonance imaging scanner are described, together with the device's magnetic resonance compatibility testing. Its design limitations and potential future improvements are also discussed. A tactile sensing unit based on a piezoelectric sensor principle is proposed, which is designed for magnetic resonance imaging guided interventions.

  4. Elastography in Chronic Liver Disease: Modalities, Techniques, Limitations, and Future Directions

    PubMed Central

    Srinivasa Babu, Aparna; Wells, Michael L.; Teytelboym, Oleg M.; Mackey, Justin E.; Miller, Frank H.; Yeh, Benjamin M.; Ehman, Richard L.

    2016-01-01

    Chronic liver disease has multiple causes, many of which are increasing in prevalence. The final common pathway of chronic liver disease is tissue destruction and attempted regeneration, a pathway that triggers fibrosis and eventual cirrhosis. Assessment of fibrosis is important not only for diagnosis but also for management, prognostic evaluation, and follow-up of patients with chronic liver disease. Although liver biopsy has traditionally been considered the reference standard for assessment of liver fibrosis, noninvasive techniques are the emerging focus in this field. Ultrasound-based elastography and magnetic resonance (MR) elastography are gaining popularity as the modalities of choice for quantifying hepatic fibrosis. These techniques have been proven superior to conventional cross-sectional imaging for evaluation of fibrosis, especially in the precirrhotic stages. Moreover, elastography has added utility in the follow-up of previously diagnosed fibrosis, the assessment of treatment response, evaluation for the presence of portal hypertension (spleen elastography), and evaluation of patients with unexplained portal hypertension. In this article, a brief overview is provided of chronic liver disease and the tools used for its diagnosis. Ultrasound-based elastography and MR elastography are explored in depth, including a brief glimpse into the evolution of elastography. Elastography is based on the principle of measuring tissue response to a known mechanical stimulus. Specific elastographic techniques used to exploit this principle include MR elastography and ultrasonography-based static or quasistatic strain imaging, one-dimensional transient elastography, point shear-wave elastography, and supersonic shear-wave elastography. The advantages, limitations, and pitfalls of each modality are emphasized. ©RSNA, 2016 PMID:27689833

  5. Superresolution upgrade for confocal spinning disk systems using image scanning microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Isbaner, Sebastian; Hähnel, Dirk; Gregor, Ingo; Enderlein, Jörg

    2017-02-01

    Confocal Spinning Disk Systems are widely used for 3D cell imaging because they offer the advantage of optical sectioning at high framerates and are easy to use. However, as in confocal microscopy, the imaging resolution is diffraction limited, which can be theoretically improved by a factor of 2 using the principle of Image Scanning Microscopy (ISM) [1]. ISM with a Confocal Spinning Disk setup (CSDISM) has been shown to improve contrast as well as lateral resolution (FWHM) from 201 +/- 20 nm to 130 +/- 10 nm at 488 nm excitation. A minimum total acquisition time of one second per ISM image makes this method highly suitable for 3D live cell imaging [2]. Here, we present a multicolor implementation of CSDISM for the popular Micro-Manager Open Source Microscopy platform. Since changes in the optical path are not necessary, this will allow any researcher to easily upgrade their standard Confocal Spinning Disk system at remarkable low cost ( 5000 USD) with an ISM superresolution option. [1]. Müller, C.B. and Enderlein, J. Image Scanning Microscopy. Physical Review Letters 104, (2010). [2]. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 110, 21000-5 (2013).

  6. [Guidelines for wise utilization of knee imaging].

    PubMed

    Finestone, Aharon S; Eshed, Iris; Freedman, Yehuda; Beer, Yiftah; Bar-Sever, Zvi; Kots, Yavvgeni; Adar, Eliyahu; Mann, Gideon

    2012-02-01

    The knee is a complex structure afflicted with diverse pathologies. Correct management of knee complaints demands wise utilization of imaging modalities, considering their accuracy in the specific clinical situation, the patient's safety and availability and financial issues. Some of these considerations are universal, while others are local, depending on medical and insurance systems. There is controversy and unclearness regarding the best imaging modality in different clinical situations. To develop clinical guidelines for utilizing knee imaging. Leading physicians in specialties associated with knee disease and imaging were invited to participate in a panel on the guidelines. Controversies were settled in the main panel or in sub-panels. The panel agreed on the principles in choosing from the various modalities, primarily medical accuracy, followed by patient safety, availability and cost. There was agreement that the physician is responsible to choose the most appropriate diagnostic tool, consulting, when necessary, on the advantages, limitations and risks of the various imaging modalities. A comprehensive table was compiled with the importance of the different imaging modalities in various clinical situations. For the first time, Israeli guidelines on wise utilization of knee imaging are presented. They take into consideration the clinical situations and also availability and financial issues specific to Israel. These guidelines will serve physicians of several disciplines and medical insurers to improve patient management efficiently.

  7. New Technologies for Human Cancer Imaging

    PubMed Central

    Frangioni, John V.

    2008-01-01

    Despite technical advances in many areas of diagnostic radiology, the detection and imaging of human cancer remains poor. A meaningful impact on cancer screening, staging, and treatment is unlikely to occur until the tumor-to-background ratio improves by three to four orders of magnitude (ie, 103- to 104-fold), which in turn will require proportional improvements in sensitivity and contrast agent targeting. This review analyzes the physics and chemistry of cancer imaging and highlights the fundamental principles underlying the detection of malignant cells within a background of normal cells. The use of various contrast agents and radiotracers for cancer imaging is reviewed, as are the current limitations of ultrasound, x-ray imaging, magnetic resonance imaging (MRI), single-photon emission computed tomography, positron emission tomography (PET), and optical imaging. Innovative technologies are emerging that hold great promise for patients, such as positron emission mammography of the breast and spectroscopy-enhanced colonoscopy for cancer screening, hyperpolarization MRI and time-of-flight PET for staging, and ion beam-induced PET scanning and near-infrared fluorescence-guided surgery for cancer treatment. This review explores these emerging technologies and considers their potential impact on clinical care. Finally, those cancers that are currently difficult to image and quantify, such as ovarian cancer and acute leukemia, are discussed. PMID:18711192

  8. [Imaging of pelvic organ prolapse].

    PubMed

    Lapray, Jean-François

    2013-01-01

    Colpocystodefecography (CCD) and dynamic MRI with defecography (MRId) allow an alternation between filling and emptying the hollow organs and the maximum abdominal strain offered by the defecation. When applied in imaging these two principles reveal the masked or underestimated prolapses at the time of the physical examination. A rigorous application of the technique guarantees almost equivalent results from the two examinations. The CCD provides voiding views and improved analysis of the anorectal pathology (intussusception, anismus) but involves radiation and a more invasive examination. MRId has the advantage of providing continuous visibility of the peritoneal compartment, and a multiplanar representation, enabling an examination of the morphology of the pelvic organs and of the supporting structures, with the disadvantage of still necessitating a supine examination, resulting sometimes in an incomplete or impossible evacuation. The normal and abnormal results (cystoptosis, vaginal vault prolapse, enterocele, anorectal intussuception, rectocele, descending perineum, urinary and fecal incontinence) and the respective advantages and limits of the various imaging methods are detailed. Dynamic perineal and introital ultrasound remains more limited in the appreciation of posterior colpoceles and especially in anorectal disorders, than CCD or MRId. Endoanal ultrasound is the first line morphological evaluation of the anal sphincter. Transvaginal and introital ultrasound can detect some complications of suburethral tapes and meshes. Morphological and dynamic imaging are essential complementary tools to the physical examination, especially when a precise anatomic assessment is required to understand the functional complaint or when a reintervention is needed.

  9. A CNN based neurobiology inspired approach for retinal image quality assessment.

    PubMed

    Mahapatra, Dwarikanath; Roy, Pallab K; Sedai, Suman; Garnavi, Rahil

    2016-08-01

    Retinal image quality assessment (IQA) algorithms use different hand crafted features for training classifiers without considering the working of the human visual system (HVS) which plays an important role in IQA. We propose a convolutional neural network (CNN) based approach that determines image quality using the underlying principles behind the working of the HVS. CNNs provide a principled approach to feature learning and hence higher accuracy in decision making. Experimental results demonstrate the superior performance of our proposed algorithm over competing methods.

  10. Threshold secret sharing scheme based on phase-shifting interferometry.

    PubMed

    Deng, Xiaopeng; Shi, Zhengang; Wen, Wei

    2016-11-01

    We propose a new method for secret image sharing with the (3,N) threshold scheme based on phase-shifting interferometry. The secret image, which is multiplied with an encryption key in advance, is first encrypted by using Fourier transformation. Then, the encoded image is shared into N shadow images based on the recording principle of phase-shifting interferometry. Based on the reconstruction principle of phase-shifting interferometry, any three or more shadow images can retrieve the secret image, while any two or fewer shadow images cannot obtain any information of the secret image. Thus, a (3,N) threshold secret sharing scheme can be implemented. Compared with our previously reported method, the algorithm of this paper is suited for not only a binary image but also a gray-scale image. Moreover, the proposed algorithm can obtain a larger threshold value t. Simulation results are presented to demonstrate the feasibility of the proposed method.

  11. Pragmatic ethical basis for radiation protection in diagnostic radiology.

    PubMed

    Malone, Jim; Zölzer, Friedo

    2016-01-01

    Medical ethics has a tried and tested literature and a global active research community. Even among health professionals, literate and fluent in medical ethics, there is low recognition of radiation protection principles such as justification and optimization. On the other hand, many in healthcare environments misunderstand dose limitation obligations and incorrectly believe patients are protected by norms including a dose limit. Implementation problems for radiation protection in medicine possibly flow from apparent inadequacies of the International Commission on Radiological Protection (ICRP) principles taken on their own, coupled with their failure to transfer successfully to the medical world. Medical ethics, on the other hand, is essentially global, is acceptable in most cultures, is intuitively understood in hospitals, and its expectations are monitored, even by managements. This article presents an approach to ethics in diagnostic imaging rooted in the medical tradition, and alert to contemporary social expectations. ICRP and the International Radiation Protection Association (IRPA), both alert to growing ethical concerns, organized a series of consultations on ethics for general radiation protection in the last few years. The literature on medical ethics and implicit ICRP ethical values were reviewed qualitatively, with a view to identifying a system that will help guide contemporary behaviour in radiation protection of patients. Application of the system is illustrated in six clinical scenarios. The proposed system is designed, as far as is possible, so as not to be in conflict with the conclusions emerging from the ICRP/IRPA consultations. A widely recognized and well-respected system of medical ethics was identified that has global reach and claims acceptance in all cultures. Three values based on this system are grouped with two additional values to provide an ethical framework for application in diagnostic imaging. This system has the potential to be robust and to reach conclusions that are in accord with contemporary medical, social and ethical thinking. The system is not intended to replace the ICRP principles. Rather, it is intended as a well-informed interim approach that will help judge and analyse situations that arouse ethical concerns in radiology. Six scenarios illustrate the practicality of the value system in alerting one to possible deficits in practice. Five widely recognized values and the basis for them are identified to support the contemporary practice of diagnostic radiology. These are essential to complement the widely used ICRP principles pending further development in the area.

  12. Fundamental uncertainty limit for speckle displacement measurements.

    PubMed

    Fischer, Andreas

    2017-09-01

    The basic metrological task in speckle photography is to quantify displacements of speckle patterns, allowing for instance the investigation of the mechanical load and modification of objects with rough surfaces. However, the fundamental limit of the measurement uncertainty due to photon shot noise is unknown. For this reason, the Cramér-Rao bound (CRB) is derived for speckle displacement measurements, representing the squared minimal achievable measurement uncertainty. As result, the CRB for speckle patterns is only two times the CRB for an ideal point light source. Hence, speckle photography is an optimal measurement approach for contactless displacement measurements on rough surfaces. In agreement with a derivation from Heisenberg's uncertainty principle, the CRB depends on the number of detected photons and the diffraction limit of the imaging system described by the speckle size. The theoretical results are verified and validated, demonstrating the capability for displacement measurements with nanometer resolution.

  13. WE-H-206-01: Photoacoustic Tomography: Multiscale Imaging From Organelles to Patients by Ultrasonically Beating the Optical Diffusion Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffersmore » from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly to biomedical research during the past decade. The initial development was an extension of clinical PET/CT and SPECT/CT from human to small animals and combine the unique functional information obtained from PET and SPECT with anatomical information provided by the CT in registered multi-modality images. The requirements to image a mouse whose size is an order of magnitude smaller than that of a human have spurred advances in new radiation detector technologies, novel imaging system designs and special image reconstruction and processing techniques. Examples are new detector materials and designs with high intrinsic resolution, multi-pinhole (MPH) collimator design for much improved resolution and detection efficiency compared to the conventional collimator designs in SPECT, 3D high-resolution and artifact-free MPH and sparse-view image reconstruction techniques, and iterative image reconstruction methods with system response modeling for resolution recovery and image noise reduction for much improved image quality. The spatial resolution of PET and SPECT has improved from ∼6–12 mm to ∼1 mm a few years ago to sub-millimeter today. A recent commercial small animal SPECT system has achieved a resolution of ∼0.25 mm which surpasses that of a state-of-art PET system whose resolution is limited by the positron range. More recently, multimodality SA PET/MRI and SPECT/MRI systems have been developed in research laboratories. Also, multi-modality SA imaging systems that include other imaging modalities such as optical and ultrasound are being actively pursued. In this presentation, we will provide a review of the development, recent advances and future outlook of multi-modality molecular imaging of small animals. Learning Objectives: To learn about the two major multi-modality molecular imaging techniques of small animals. To learn about the spatial resolution achievable by the molecular imaging systems for small animal today. To learn about the new multi-modality imaging instrumentation and techniques that are being developed. Sang Hyun Cho; X-ray fluorescence (XRF) imaging, such as x-ray fluorescence computed tomography (XFCT), offers unique capabilities for accurate identification and quantification of metals within the imaging objects. As a result, it has emerged as a promising quantitative imaging modality in recent years, especially in conjunction with metal-based imaging probes. This talk will familiarize the audience with the basic principles of XRF/XFCT imaging. It will also cover the latest development of benchtop XFCT technology. Additionally, the use of metallic nanoparticles such as gold nanoparticles, in conjunction with benchtop XFCT, will be discussed within the context of preclinical multimodal multiplexed molecular imaging. Learning Objectives: To learn the basic principles of XRF/XFCT imaging To learn the latest advances in benchtop XFCT development for preclinical imaging Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; L. Wang, Funding Support: NIH; COI: Microphotoacoustics; S. Cho, Yes: ;NIH/NCI grant R01CA155446 DOD/PCRP grant W81XWH-12-1-0198.« less

  14. Focused Ultrasound Surgery in Oncology: Overview and Principles

    PubMed Central

    McDannold, Nathan J.; Hynynen, Kullervo; Jolesz, Ferenc A.

    2011-01-01

    Focused ultrasound surgery (FUS) is a noninvasive image-guided therapy and an alternative to surgical interventions. It presents an opportunity to revolutionize cancer therapy and to affect or change drug delivery of therapeutic agents in new focally targeted ways. In this article the background, principles, technical devices, and clinical cancer applications of image-guided FUS are reviewed. © RSNA, 2011 PMID:21436096

  15. Holographic Cinematography With The Help Of A Pulse YAG Laser

    NASA Astrophysics Data System (ADS)

    Smigielski, P.; Fagot, H.; Albe, F.

    1985-02-01

    For many years opticists have tried to achieve 3D-cinematography with the help of holography. The term "cineholography" has been introduced in 1965. At that time the method consisted in superimposing on the same photographic plate various holograms recorded at different times. The image separation was achieved by rotating either the plate in its plane or the reference beam during both the recording and reconstructing processes. The number of views was limited by the principle itself, but a high repetition rate (100 kHz) has been obtained with a pulsed ruby laser. Then other experiments have been conducted by different authors, mainly in the Soviet Unions and in the United States of America, by using the principle of classical cinematography in which the image separation is obtained by translating the film. With this method we have recorded the first French holographic movies on 35 mm Agfa films with the help of a pulsed YAG laser built in our laboratory. This frequency doubled laser (X = 0.532 pm) delivers pulses of 20 ns with an energy of 30 HO at a repetition rate of 24 Hz. The experimental arrangements are described and some images of diffuse moving objects are presented. The volume of the recording scene is greater than one cubic meter. The coherence length of the laser is higher than one meter and remains steady during the recording process. Results are discussed and an outlook on the future is given with special respect to high repetition rate techniques.

  16. Automated detection of periventricular veins on 7 T brain MRI

    NASA Astrophysics Data System (ADS)

    Kuijf, Hugo J.; Bouvy, Willem H.; Zwanenburg, Jaco J. M.; Viergever, Max A.; Biessels, Geert Jan; Vincken, Koen L.

    2015-03-01

    Cerebral small vessel disease is common in elderly persons and a leading cause of cognitive decline, dementia, and acute stroke. With the introduction of ultra-high field strength 7.0T MRI, it is possible to visualize small vessels in the brain. In this work, a proof-of-principle study is conducted to assess the feasibility of automatically detecting periventricular veins. Periventricular veins are organized in a fan-pattern and drain venous blood from the brain towards the caudate vein of Schlesinger, which is situated along the lateral ventricles. Just outside this vein, a region-of- interest (ROI) through which all periventricular veins must cross is defined. Within this ROI, a combination of the vesselness filter, tubular tracking, and hysteresis thresholding is applied to locate periventricular veins. All detected locations were evaluated by an expert human observer. The results showed a positive predictive value of 88% and a sensitivity of 95% for detecting periventricular veins. The proposed method shows good results in detecting periventricular veins in the brain on 7.0T MR images. Compared to previous works, that only use a 1D or 2D ROI and limited image processing, our work presents a more comprehensive definition of the ROI, advanced image processing techniques to detect periventricular veins, and a quantitative analysis of the performance. The results of this proof-of-principle study are promising and will be used to assess periventricular veins on 7.0T brain MRI.

  17. New trends in intraocular lens imaging

    NASA Astrophysics Data System (ADS)

    Millán, María S.; Alba-Bueno, Francisco; Vega, Fidel

    2011-08-01

    As a result of modern technological advances, cataract surgery can be seen as not only a rehabilitative operation, but a customized procedure to compensate for important sources of image degradation in the visual system of a patient, such as defocus and some aberrations. With the development of new materials, instruments and surgical techniques in ophthalmology, great progress has been achieved in the imaging capability of a pseudophakic eye implanted with an intraocular lens (IOL). From the very beginning, optical design has played an essential role in this progress. New IOL designs need, on the one hand, theoretical eye models able to predict optical imaging performance and on the other hand, testing methods, verification through in vitro and in vivo measurements, and clinical validation. The implant of an IOL requires a precise biometry of the eye, a prior calculation from physiological data, and an accurate position inside the eye. Otherwise, the effects of IOL calculation errors or misplacements degrade the image very quickly. The incorporation of wavefront aberrometry into clinical ophthalmology practice has motivated new designs of IOLs to compensate for high order aberrations in some extent. Thus, for instance, IOLs with an aspheric design have the potential to improve optical performance and contrast sensitivity by reducing the positive spherical aberration of human cornea. Monofocal IOLs cause a complete loss of accommodation that requires further correction for either distance or near vision. Multifocal IOLs address this limitation using the principle of simultaneous vision. Some multifocal IOLs include a diffractive zone that covers the aperture in part or totally. Reduced image contrast and undesired visual phenomena, such as halos and glare, have been associated to the performance of multifocal IOLs. Based on a different principle, accommodating IOLs rely on the effort of the ciliary body to increase the effective power of the optical system of the eye in near vision. Finally, we present a theoretical approach that considers the modification of less conventional ocular parameters to compensate for possible refractive errors after the IOL implant.

  18. High-resolution, high-throughput imaging with a multibeam scanning electron microscope

    PubMed Central

    EBERLE, AL; MIKULA, S; SCHALEK, R; LICHTMAN, J; TATE, ML KNOTHE; ZEIDLER, D

    2015-01-01

    Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. Lay Description The composition of our world and our bodies on the very small scale has always fascinated people, making them search for ways to make this visible to the human eye. Where light microscopes reach their resolution limit at a certain magnification, electron microscopes can go beyond. But their capability of visualizing extremely small features comes at the cost of a very small field of view. Some of the questions researchers seek to answer today deal with the ultrafine structure of brains, bones or computer chips. Capturing these objects with electron microscopes takes a lot of time – maybe even exceeding the time span of a human being – or new tools that do the job much faster. A new type of scanning electron microscope scans with 61 electron beams in parallel, acquiring 61 adjacent images of the sample at the same time a conventional scanning electron microscope captures one of these images. In principle, the multibeam scanning electron microscope’s field of view is 61 times larger and therefore coverage of the sample surface can be accomplished in less time. This enables researchers to think about large-scale projects, for example in the rather new field of connectomics. A very good introduction to imaging a brain at nanometre resolution can be found within course material from Harvard University on http://www.mcb80x.org/# as featured media entitled ‘connectomics’. PMID:25627873

  19. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited

    PubMed Central

    Pircher, Michael; Zawadzki, Robert J

    2017-01-01

    In vivo imaging of the human retina with a resolution that allows visualization of cellular structures has proven to be essential to broaden our knowledge about the physiology of this precious and very complex neural tissue that enables the first steps in vision. Many pathologic changes originate from functional and structural alterations on a cellular scale, long before any degradation in vision can be noted. Therefore, it is important to investigate these tissues with a sufficient level of detail in order to better understand associated disease development or the effects of therapeutic intervention. Optical retinal imaging modalities rely on the optical elements of the eye itself (mainly the cornea and lens) to produce retinal images and are therefore affected by the specific arrangement of these elements and possible imperfections in curvature. Thus, aberrations are introduced to the imaging light and image quality is degraded. To compensate for these aberrations, adaptive optics (AO), a technology initially developed in astronomy, has been utilized. However, the axial sectioning provided by retinal AO-based fundus cameras and scanning laser ophthalmoscope instruments is limited to tens of micrometers because of the rather small available numerical aperture of the eye. To overcome this limitation and thus achieve much higher axial sectioning in the order of 2-5µm, AO has been combined with optical coherence tomography (OCT) into AO-OCT. This enabled for the first time in vivo volumetric retinal imaging with high isotropic resolution. This article summarizes the technical aspects of AO-OCT and provides an overview on its various implementations and some of its clinical applications. In addition, latest developments in the field, such as computational AO-OCT and wavefront sensor less AO-OCT, are covered. PMID:28663890

  20. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited].

    PubMed

    Pircher, Michael; Zawadzki, Robert J

    2017-05-01

    In vivo imaging of the human retina with a resolution that allows visualization of cellular structures has proven to be essential to broaden our knowledge about the physiology of this precious and very complex neural tissue that enables the first steps in vision. Many pathologic changes originate from functional and structural alterations on a cellular scale, long before any degradation in vision can be noted. Therefore, it is important to investigate these tissues with a sufficient level of detail in order to better understand associated disease development or the effects of therapeutic intervention. Optical retinal imaging modalities rely on the optical elements of the eye itself (mainly the cornea and lens) to produce retinal images and are therefore affected by the specific arrangement of these elements and possible imperfections in curvature. Thus, aberrations are introduced to the imaging light and image quality is degraded. To compensate for these aberrations, adaptive optics (AO), a technology initially developed in astronomy, has been utilized. However, the axial sectioning provided by retinal AO-based fundus cameras and scanning laser ophthalmoscope instruments is limited to tens of micrometers because of the rather small available numerical aperture of the eye. To overcome this limitation and thus achieve much higher axial sectioning in the order of 2-5µm, AO has been combined with optical coherence tomography (OCT) into AO-OCT. This enabled for the first time in vivo volumetric retinal imaging with high isotropic resolution. This article summarizes the technical aspects of AO-OCT and provides an overview on its various implementations and some of its clinical applications. In addition, latest developments in the field, such as computational AO-OCT and wavefront sensor less AO-OCT, are covered.

  1. Tomographic image via background subtraction using an x-ray projection image and a priori computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jin; Yi Byongyong; Lasio, Giovanni

    Kilovoltage x-ray projection images (kV images for brevity) are increasingly available in image guided radiotherapy (IGRT) for patient positioning. These images are two-dimensional (2D) projections of a three-dimensional (3D) object along the x-ray beam direction. Projecting a 3D object onto a plane may lead to ambiguities in the identification of anatomical structures and to poor contrast in kV images. Therefore, the use of kV images in IGRT is mainly limited to bony landmark alignments. This work proposes a novel subtraction technique that isolates a slice of interest (SOI) from a kV image with the assistance of a priori information frommore » a previous CT scan. The method separates structural information within a preselected SOI by suppressing contributions to the unprocessed projection from out-of-SOI-plane structures. Up to a five-fold increase in the contrast-to-noise ratios (CNRs) was observed in selected regions of the isolated SOI, when compared to the original unprocessed kV image. The tomographic image via background subtraction (TIBS) technique aims to provide a quick snapshot of the slice of interest with greatly enhanced image contrast over conventional kV x-ray projections for fast and accurate image guidance of radiation therapy. With further refinements, TIBS could, in principle, provide real-time tumor localization using gantry-mounted x-ray imaging systems without the need for implanted markers.« less

  2. Digital mammography: physical principles and future applications.

    PubMed

    Gambaccini, Mauro; Baldelli, Paola

    2003-01-01

    Mammography is currently considered the best tool for the detection of breast cancer, pathology with a rate of incidence in constant increase. To produce the radiological picture a screen film combination is conventionally used. One of the inherent limitations of screen- film combination is the fact that the detection, display and storage processes are one and the same, making it impossible to separately optimize each stage. These limitations can be overcome with digital systems. In this work we evaluate the main characteristics of digital detectors available on the market and we compare the performance of digital and conventional systems. Digital mammography, due to the possibility to process images, offers many potential advantages, among these the possibility to introduce the dual-energy technique which employs the composition of two digital images obtained with two different energies to enhance the inherent contrast of pathologies by removing the uniform background. This technique was previously tested by using synchrotron monochromatic beam and a digital detector, and then the Senographe 2000D full-field digital system manufactured by GE Medical Systems. In this work we present preliminary results and the future applications of this technique.

  3. Evaluation of Optical Sonography for Real-Time Breast Imaging and Biopsy Guidance

    DTIC Science & Technology

    2002-08-01

    supported through images of target standards and subjective validation using images of human anatomy . Keywords: Diffractive Energy Imaging...real-time imaging technology that uses the principles of acoustical holography to produce unique images of the human anatomy . The ADI technology is

  4. Advanced Trauma Life Support®. ABCDE from a radiological point of view

    PubMed Central

    Blickman, Johan G.

    2007-01-01

    Accidents are the primary cause of death in patients aged 45 years or younger. In many countries, Advanced Trauma Life Support® (ATLS®) is the foundation on which trauma care is based. We will summarize the principles and the radiological aspects of the ATLS®, and we will discuss discrepancies with day to day practice and the radiological literature. Because the ATLS® is neither thorough nor up-to-date concerning several parts of radiology in trauma, it should not be adopted without serious attention to defining the indications and limitations pertaining to diagnostic imaging. PMID:17564732

  5. Achromatic triplet and athermalized lens assembly for both midwave and longwave infrared spectra

    NASA Astrophysics Data System (ADS)

    Kuo, Chih-Wei

    2014-02-01

    Analytic solutions for finding the achromatic triplet in the midwave and longwave infrared spectra simultaneously are explored. The relationship between the combination of promising refractive materials and the system's optical power is also formulated. The principles for stabilizing the effective focal length of an air-spaced lens group with respect to temperature are explored, and the thermal properties of the optical component and mechanical elements mutually counterbalanced. An optical design based on these achromatic and athermal theories is demonstrated, and the image quality of the lens assembly seems to approach the diffractive limitation.

  6. Blind Deconvolution of Astronomical Images with a Constraint on Bandwidth Determined by the Parameters of the Optical System

    NASA Astrophysics Data System (ADS)

    Luo, Lin; Fan, Min; Shen, Mang-zuo

    2008-01-01

    Atmospheric turbulence severely restricts the spatial resolution of astronomical images obtained by a large ground-based telescope. In order to reduce effectively this effect, we propose a method of blind deconvolution, with a bandwidth constraint determined by the parameters of the telescope's optical system based on the principle of maximum likelihood estimation, in which the convolution error function is minimized by using the conjugate gradient algorithm. A relation between the parameters of the telescope optical system and the image's frequency-domain bandwidth is established, and the speed of convergence of the algorithm is improved by using the positivity constraint on the variables and the limited-bandwidth constraint on the point spread function. To avoid the effective Fourier frequencies exceed the cut-off frequency, it is required that each single image element (e.g., the pixel in the CCD imaging) in the sampling focal plane should be smaller than one fourth of the diameter of the diffraction spot. In the algorithm, no object-centered constraint was used, so the proposed method is suitable for the image restoration of a whole field of objects. By the computer simulation and by the restoration of an actually-observed image of α Piscium, the effectiveness of the proposed method is demonstrated.

  7. Ultrahigh-resolution CT and DR scanner

    NASA Astrophysics Data System (ADS)

    DiBianca, Frank A.; Gupta, Vivek; Zou, Ping; Jordan, Lawrence M.; Laughter, Joseph S.; Zeman, Herbert D.; Sebes, Jeno I.

    1999-05-01

    A new technique called Variable-Resolution X-ray (VRX) detection that dramatically increases the spatial resolution in computed tomography (CT) and digital radiography (DR) is presented. The technique is based on a principle called 'projective compression' that allows the resolution element of a CT detector to scale with the subject or field size. For very large (40 - 50 cm) field sizes, resolution exceeding 2 cy/mm is possible and for very small fields, microscopy is attainable with resolution exceeding 100 cy/mm. Several effects that could limit the performance of VRX detectors are considered. Experimental measurements on a 16-channel, CdWO4 scintillator + photodiode test array yield a limiting MTF of 64 cy/mm (8(mu) ) in the highest-resolution configuration reported. Preliminary CT images have been made of small anatomical specimens and small animals using a storage phosphor screen in the VRX mode. Measured detector resolution of the CT projection data exceeds 20 cy/mm (less than 25 (mu) ); however, the final, reconstructed CT images produced thus far exhibit 10 cy/mm (50 (mu) ) resolution because of non-flatness of the storage phosphor plates, focal spot effects and the use of a rudimentary CT reconstruction algorithm. A 576-channel solid-state detector is being fabricated that is expected to achieve CT image resolution in excess of that of the 26-channel test array.

  8. Intracardiac Echocardiography for Structural Heart and Electrophysiological Interventions.

    PubMed

    Basman, Craig; Parmar, Yuvrajsinh J; Kronzon, Itzhak

    2017-09-06

    With an increasing number of interventional procedures performed for structural heart disease and cardiac arrhythmias each year, echocardiographic guidance is necessary for safe and efficient results. The purpose of this review article is to overview the principles of intracardiac echocardiography (ICE) and describes the peri-interventional role of ICE in a variety of structural heart disease and electrophysiological interventions. Both transthoracic (TTE) and transesophageal echocardiography have limitations. ICE provides the advantage of imaging from within the heart, providing shorter image distances and higher resolution. ICE may be performed without sedation and avoids esophageal intubation as with transesophageal echocardiography (TEE). Limitations of ICE include the need for additional venous access with possibility of vascular complications, potentially higher costs, and a learning curve for new operators. Data supports the use of ICE in guiding device closure of interatrial shunts, transseptal puncture, and electrophysiologic procedures. This paper reviews the more recent reports that ICE may be used for primary guidance or as a supplement to TEE in patients undergoing left atrial appendage (LAA) closure, interatrial shunt closure, transaortic valve implantation (TAVI), percutaneous mitral valve repair (PMVR), paravalvular leak (PVL) closure, aortic interventions, transcatheter pulmonary valve replacement (tPVR), ventricular septal defect (VSD), and patent ductus arteriosus (PDA) closure. ICE imaging technology will continue to expand and help improve structural heart and electrophysiology interventions.

  9. SYRMEP Tomo Project: a graphical user interface for customizing CT reconstruction workflows.

    PubMed

    Brun, Francesco; Massimi, Lorenzo; Fratini, Michela; Dreossi, Diego; Billé, Fulvio; Accardo, Agostino; Pugliese, Roberto; Cedola, Alessia

    2017-01-01

    When considering the acquisition of experimental synchrotron radiation (SR) X-ray CT data, the reconstruction workflow cannot be limited to the essential computational steps of flat fielding and filtered back projection (FBP). More refined image processing is often required, usually to compensate artifacts and enhance the quality of the reconstructed images. In principle, it would be desirable to optimize the reconstruction workflow at the facility during the experiment (beamtime). However, several practical factors affect the image reconstruction part of the experiment and users are likely to conclude the beamtime with sub-optimal reconstructed images. Through an example of application, this article presents SYRMEP Tomo Project (STP), an open-source software tool conceived to let users design custom CT reconstruction workflows. STP has been designed for post-beamtime (off-line use) and for a new reconstruction of past archived data at user's home institution where simple computing resources are available. Releases of the software can be downloaded at the Elettra Scientific Computing group GitHub repository https://github.com/ElettraSciComp/STP-Gui.

  10. Error mitigation for CCSD compressed imager data

    NASA Astrophysics Data System (ADS)

    Gladkova, Irina; Grossberg, Michael; Gottipati, Srikanth; Shahriar, Fazlul; Bonev, George

    2009-08-01

    To efficiently use the limited bandwidth available on the downlink from satellite to ground station, imager data is usually compressed before transmission. Transmission introduces unavoidable errors, which are only partially removed by forward error correction and packetization. In the case of the commonly used CCSD Rice-based compression, it results in a contiguous sequence of dummy values along scan lines in a band of the imager data. We have developed a method capable of using the image statistics to provide a principled estimate of the missing data. Our method outperforms interpolation yet can be performed fast enough to provide uninterrupted data flow. The estimation of the lost data provides significant value to end users who may use only part of the data, may not have statistical tools, or lack the expertise to mitigate the impact of the lost data. Since the locations of the lost data will be clearly marked as meta-data in the HDF or NetCDF header, experts who prefer to handle error mitigation themselves will be free to use or ignore our estimates as they see fit.

  11. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    PubMed

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.

  12. Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses.

    PubMed

    Kumar, Manoj; Vijayakumar, A; Rosen, Joseph

    2017-09-14

    We present a lensless, interferenceless incoherent digital holography technique based on the principle of coded aperture correlation holography. The acquired digital hologram by this technique contains a three-dimensional image of some observed scene. Light diffracted by a point object (pinhole) is modulated using a random-like coded phase mask (CPM) and the intensity pattern is recorded and composed as a point spread hologram (PSH). A library of PSHs is created using the same CPM by moving the pinhole to all possible axial locations. Intensity diffracted through the same CPM from an object placed within the axial limits of the PSH library is recorded by a digital camera. The recorded intensity this time is composed as the object hologram. The image of the object at any axial plane is reconstructed by cross-correlating the object hologram with the corresponding component of the PSH library. The reconstruction noise attached to the image is suppressed by various methods. The reconstruction results of multiplane and thick objects by this technique are compared with regular lens-based imaging.

  13. Development of solid tunable optics for ultra-miniature imaging systems

    NASA Astrophysics Data System (ADS)

    Yongchao, Zou

    This thesis focuses on the optimal design, fabrication and testing of solid tunable optics and exploring their applications in miniature imaging systems. It starts with the numerical modelling of such lenses, followed by the optimum design method and alignment tolerance analysis. A miniature solid tunable lens driven by a piezo actuator is then developed. To solve the problem of limited maximum optical power and tuning range in conventional lens designs, a novel multi-element solid tunable lens is proposed and developed. Inspired by the Alvarez principle, a novel miniature solid tunable dual-focus lens, which is designed using freeform surfaces and driven by one micro-electro-mechanical-systems (MEMS) rotary actuator, is demonstrated. To explore the applications of these miniature solid tunable lenses, a miniature adjustable-focus endoscope and one compact adjustable-focus camera module are developed. The adjustable-focus capability of these two miniature imaging systems is fully proved by electrically focusing targets placed at different positions.

  14. Scientific Basis of the Royal College of Radiologists Fellowship; Illustrated questions and answers

    NASA Astrophysics Data System (ADS)

    Sperrin, Malcolm

    2014-12-01

    Science and medicine have long been close partners. This is particularly true in radiology where the availability of imaging techniques is central to diagnosis. However, science is far more than just providing a vehicle for understanding an imaging or therapeutic process. An understanding of the science underlying a process enables the right person to develop new techniques, understand imaging limitations and develop a portfolio of research. A knowledge of scientific principles is also mandated as a result of a need to understand best and safest practice. It is no surprise therefore that radiologists are obliged to study and pass physics exams. Such exams do present a considerable challenge and the authors of this work have set about creating a volume which is intended to be an educational resource and not just a pre-exam 'crammer'. Both authors have considerable experience in teaching, supporting and examining in medical science and have developed an awareness of where those sitting professional exams have traditionally struggled. This text is a distillation of that experience.

  15. Fluorescence spectroscopy using indocyanine green for lymph node mapping

    NASA Astrophysics Data System (ADS)

    Haj-Hosseini, Neda; Behm, Pascal; Shabo, Ivan; Wârdell, Karin

    2014-02-01

    The principles of cancer treatment has for years been radical resection of the primary tumor. In the oncologic surgeries where the affected cancer site is close to the lymphatic system, it is as important to detect the draining lymph nodes for metastasis (lymph node mapping). As a replacement for conventional radioactive labeling, indocyanine green (ICG) has shown successful results in lymph node mapping; however, most of the ICG fluorescence detection techniques developed are based on camera imaging. In this work, fluorescence spectroscopy using a fiber-optical probe was evaluated on a tissue-like ICG phantom with ICG concentrations of 6-64 μM and on breast tissue from five patients. Fiber-optical based spectroscopy was able to detect ICG fluorescence at low intensities; therefore, it is expected to increase the detection threshold of the conventional imaging systems when used intraoperatively. The probe allows spectral characterization of the fluorescence and navigation in the tissue as opposed to camera imaging which is limited to the view on the surface of the tissue.

  16. Segmentation of Image Ensembles via Latent Atlases

    PubMed Central

    Van Leemput, Koen; Menze, Bjoern H.; Wells, William M.; Golland, Polina

    2010-01-01

    Spatial priors, such as probabilistic atlases, play an important role in MRI segmentation. However, the availability of comprehensive, reliable and suitable manual segmentations for atlas construction is limited. We therefore propose a method for joint segmentation of corresponding regions of interest in a collection of aligned images that does not require labeled training data. Instead, a latent atlas, initialized by at most a single manual segmentation, is inferred from the evolving segmentations of the ensemble. The algorithm is based on probabilistic principles but is solved using partial differential equations (PDEs) and energy minimization criteria. We evaluate the method on two datasets, segmenting subcortical and cortical structures in a multi-subject study and extracting brain tumors in a single-subject multi-modal longitudinal experiment. We compare the segmentation results to manual segmentations, when those exist, and to the results of a state-of-the-art atlas-based segmentation method. The quality of the results supports the latent atlas as a promising alternative when existing atlases are not compatible with the images to be segmented. PMID:20580305

  17. X-ray imaging physics for nuclear medicine technologists. Part 2: X-ray interactions and image formation.

    PubMed

    Seibert, J Anthony; Boone, John M

    2005-03-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. In part 1, the production and characteristics of x-rays were reviewed. In this article, the principles of x-ray interactions and image formation are discussed, in preparation for a general review of CT (part 3) and a more detailed investigation of PET/CT scanners in part 4.

  18. Magnetic particle imaging: from proof of principle to preclinical applications

    NASA Astrophysics Data System (ADS)

    Knopp, T.; Gdaniec, N.; Möddel, M.

    2017-07-01

    Tomographic imaging has become a mandatory tool for the diagnosis of a majority of diseases in clinical routine. Since each method has its pros and cons, a variety of them is regularly used in clinics to satisfy all application needs. Magnetic particle imaging (MPI) is a relatively new tomographic imaging technique that images magnetic nanoparticles with a high spatiotemporal resolution in a quantitative way, and in turn is highly suited for vascular and targeted imaging. MPI was introduced in 2005 and now enters the preclinical research phase, where medical researchers get access to this new technology and exploit its potential under physiological conditions. Within this paper, we review the development of MPI since its introduction in 2005. Besides an in-depth description of the basic principles, we provide detailed discussions on imaging sequences, reconstruction algorithms, scanner instrumentation and potential medical applications.

  19. Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators.

    PubMed

    Wang, Huan; Jing, Miao; Li, Yulong

    2018-06-01

    Measuring the precise dynamics of specific neurotransmitters and neuromodulators in the brain is essential for understanding how information is transmitted and processed. Thanks to the development and optimization of various genetically encoded sensors, we are approaching the stage in which a few key neurotransmitters/neuromodulators can be imaged with high cell specificity and good signal-to-noise ratio. Here, we summarize recent progress regarding these sensors, focusing on their design principles, properties, potential applications, and current limitations. We also highlight the G protein-coupled receptor (GPCR) scaffold as a promising platform that may enable the scalable development of the next generation of sensors, enabling the rapid, sensitive, and specific detection of a large repertoire of neurotransmitters/neuromodulators in vivo at cellular or even subcellular resolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Diagnosis and management of transfusion iron overload: The role of imaging

    PubMed Central

    Wood, John C.

    2010-01-01

    The characterization of iron stores is important to prevent and treat iron overload. Serum markers such as ferritin, serum iron, iron binding capacity, transferrin saturation, and nontransferrin-bound iron can be used to follow trends in iron status; however, variability in these markers limits predictive power for any given individual. Liver iron represents the best single marker of total iron balance. Measures of liver iron include biopsy, superconducting quantum interference device, computer tomography, and magnetic resonance imaging (MRI). MRI is the most accurate and widely available noninvasive tool to assess liver iron. The main advantages of MRI include a low-rate of variability between measurements and the ability to assess iron loading in endocrine tissues, the heart and the liver. This manuscript describes the principles, validation, and clinical utility of MRI for tissue iron estimation. PMID:17963249

  1. Scintillation Reduction using Conjugate-Plane Imaging (Abstract)

    NASA Astrophysics Data System (ADS)

    Vander Haagen, G. A.

    2017-12-01

    (Abstract only) All observatories are plagued by atmospheric turbulence exhibited as star scintillation or "twinkle" whether a high altitude adaptive optics research or a 30-cm amateur telescope. It is well known that these disturbances are caused by wind and temperature-driven refractive gradients in the atmosphere and limit the ultimate photometric resolution of land-based facilities. One approach identified by Fuchs (1998) for scintillation noise reduction was to create a conjugate image space at the telescope and focus on the dominant conjugate turbulent layer within that space. When focused on the turbulent layer little or no scintillation exists. This technique is described whereby noise reductions of 6 to 11/1 have been experienced with mathematical and optical bench simulations. Discussed is a proof-of-principle conjugate optical train design for an 80-mm, f7 telescope.

  2. Assessment of probability of detection of delaminations in fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Chern, E. J.; Chu, H. P.; Yang, J. N.

    1991-01-01

    Delamination is one of the critical defects in composite materials and structures. An ultrasonic C-scan imaging technique which maps out the acoustic impedance mismatched areas with respect to the sample coordinates, is particularly well suited for detecting and characterizing delaminations in composites. To properly interpret the results, it is necessary to correlate the indications with the detection limits and probability of detection (POD) of the ultrasonic C-scan imaging technique. The baseline information on the assessment of POD of delaminations in composite materials and structures is very beneficial to the evaluation of spacecraft materials. In this study, we review the principle of POD, describe the laboratory set-up and procedure, and present the experimental results as well as assessment of POD of delaminations in fiber reinforced composite panels using ultrasonic C-scan techniques.

  3. GMTIFS: The Giant Magellan Telescope integral fields spectrograph and imager

    NASA Astrophysics Data System (ADS)

    Sharp, Rob; Bloxham, G.; Boz, R.; Bundy, D.; Davies, J.; Espeland, B.; Fordham, B.; Hart, J.; Herrald, N.; Nielsen, J.; Vaccarella, A.; Vest, C.; Young, P.; McGregor, P.

    2016-08-01

    GMTIFS is the first-generation adaptive optics integral-field spectrograph for the GMT, having been selected through a competitive review process in 2011. The GMTIFS concept is for a workhorse single-object integral-field spectrograph, operating at intermediate resolution (R 5,000 and 10,000) with a parallel imaging channel. The IFS offers variable spaxel scales to Nyquist sample the diffraction limited GMT PSF from λ 1-2.5 μm as well as a 50 mas scale to provide high sensitivity for low surface brightness objects. The GMTIFS will operate with all AO modes of the GMT (Natural guide star - NGSAO, Laser Tomography - LTAO, and, Ground Layer - GLAO) with an emphasis on achieving high sky coverage for LTAO observations. We summarize the principle science drivers for GMTIFS and the major design concepts that allow these goals to be achieved.

  4. Single cell systems biology by super-resolution imaging and combinatorial labeling

    PubMed Central

    Lubeck, Eric; Cai, Long

    2012-01-01

    Fluorescence microscopy is a powerful quantitative tool for exploring regulatory networks in single cells. However, the number of molecular species that can be measured simultaneously is limited by the spectral separability of fluorophores. Here we demonstrate a simple but general strategy to drastically increase the capacity for multiplex detection of molecules in single cells by using optical super-resolution microscopy (SRM) and combinatorial labeling. As a proof of principle, we labeled mRNAs with unique combinations of fluorophores using Fluorescence in situ Hybridization (FISH), and resolved the sequences and combinations of fluorophores with SRM. We measured the mRNA levels of 32 genes simultaneously in single S. cerevisiae cells. These experiments demonstrate that combinatorial labeling and super-resolution imaging of single cells provides a natural approach to bring systems biology into single cells. PMID:22660740

  5. Modern imaging techniques: applications in the management of acute aortic pathologies.

    PubMed

    Nagpal, Prashant; Khandelwal, Ashish; Saboo, Sachin S; Bathla, Girish; Steigner, Michael L; Rybicki, Frank J

    2015-08-01

    Acute aortic pathologies include traumatic and non-traumatic life-threatening emergencies of the aorta. Since the clinical manifestation of these entities can be non-specific and may overlap with other conditions presenting with chest pain, non-invasive imaging plays a crucial role in their rapid and accurate evaluation. The early diagnosis and accurate radiological assessment of acute aortic diseases is essential for improved clinical outcomes. Multidetector CT is the imaging modality of choice for evaluation of acute aortic diseases with MRI playing more of a problem-solving role. The management can be medical, endovascular or surgical depending upon pathology, and imaging remains an indispensable management-guiding tool. It is important to understand the pathogenesis, natural history, and imaging principles of acute aortic diseases for appropriate use of advanced imaging modalities. This understanding helps to formulate a more appropriate management and follow-up plan for optimised care of these patients. Imaging reporting pearls for day-to-day radiology as well as treatment options based on latest multidisciplinary guidelines are discussed. With newer techniques of image acquisition and processing, we are hopeful that imaging would further help in predicting aortic disease progression and assessing the haemodynamic parameters based on which decisions on management can be made. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. 3D Polarized Imaging of Coronal Mass Ejections: Chirality of a CME

    NASA Astrophysics Data System (ADS)

    DeForest, C. E.; de Koning, C. A.; Elliott, H. A.

    2017-12-01

    We report on a direct polarimetric determination of the chirality of a coronal mass ejection (CME), using the physics of Thomson scattering applied to synoptic polarized images from the Solar Terrestrial Relations Observatories/COR2 coronagraph. We confirmed the determination using in situ magnetic field measurements of the same CME with the ACE spacecraft. CME chirality is related to the helicity ejected from the solar corona along with the mass and field entrained in the CME. It is also important to prediction of the space-weather-relevant Z component of the CME magnetic field. Hence, remote measurement of CME chirality is an important step toward both understanding CME physics and predicting geoeffectiveness of individual CMEs. The polarimetric properties of Thomson scattering are well known and can, in principle, be used to measure the 3D structure of imaged objects in the solar corona and inner heliosphere. However, reduction of that principle to practice has been limited by the twin difficulties of background subtraction and the signal-to-noise ratio in coronagraph data. Useful measurements of the 3D structure require relative photometry at a few percent precision level in each linear polarization component of the K corona. This corresponds to a relative photometric precision of order 10-4 in direct images of the sky before subtraction of the F corona and related signal. Our measurement was enabled by recent developments in signal processing, which enable a better separation of the photometric signal from noise in the synoptic COR2 data. We discuss the relevance of this demonstration measurement to future instrument requirements, and to the future measurements of 3D structures in CMEs and other solar wind features.

  7. An Improved Filtering Method for Quantum Color Image in Frequency Domain

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Xiao, Hong

    2018-01-01

    In this paper we investigate the use of quantum Fourier transform (QFT) in the field of image processing. We consider QFT-based color image filtering operations and their applications in image smoothing, sharpening, and selective filtering using quantum frequency domain filters. The underlying principle used for constructing the proposed quantum filters is to use the principle of the quantum Oracle to implement the filter function. Compared with the existing methods, our method is not only suitable for color images, but also can flexibly design the notch filters. We provide the quantum circuit that implements the filtering task and present the results of several simulation experiments on color images. The major advantages of the quantum frequency filtering lies in the exploitation of the efficient implementation of the quantum Fourier transform.

  8. No scanning depth imaging system based on TOF

    NASA Astrophysics Data System (ADS)

    Sun, Rongchun; Piao, Yan; Wang, Yu; Liu, Shuo

    2016-03-01

    To quickly obtain a 3D model of real world objects, multi-point ranging is very important. However, the traditional measuring method usually adopts the principle of point by point or line by line measurement, which is too slow and of poor efficiency. In the paper, a no scanning depth imaging system based on TOF (time of flight) was proposed. The system is composed of light source circuit, special infrared image sensor module, processor and controller of image data, data cache circuit, communication circuit, and so on. According to the working principle of the TOF measurement, image sequence was collected by the high-speed CMOS sensor, and the distance information was obtained by identifying phase difference, and the amplitude image was also calculated. Experiments were conducted and the experimental results show that the depth imaging system can achieve no scanning depth imaging function with good performance.

  9. Open-dish incubator for live cell imaging with an inverted microscope.

    PubMed

    Heidemann, Steven R; Lamoureux, Phillip; Ngo, Kha; Reynolds, Matthew; Buxbaum, Robert E

    2003-10-01

    Here we describe the design and fabrication of an inexpensive cell culture incubator for the stage of an inverted light microscope for use in live cell imaging. This device maintains the temperature of the cell culture at 37 degrees C with great stability and, after reaching equilibrium, provides focal stability of an image for 20-25 min with oil-immersion lenses. We describe two versions of the incubator: one for use with standard 60-mm plastic culture dishes, and the other version for imaging of cells on glass coverslips. Either can be made for less than $400. Most components are widely available commercially, and it requires only simple wiring and 3 h to assemble. Although the device is generally useful for live cell imaging on an inverted microscope, it is particularly suitable for work in which instruments are introduced into the culture, such as electrophysiology or micromanipulation. The design is based on the principle that control performance is limited by the lag time between detection and response. The key element of the design is a heated, temperature-controlled aluminum ring serving as a mini-incubator surrounding the culture vessel. For this reason, we call our design a "ringcubator."

  10. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring.

    PubMed

    Wu, Yichen; Ozcan, Aydogan

    2018-03-01

    Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.

    PubMed

    Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu

    2016-01-01

    The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.

  12. Connection of Scattering Principles: A Visual and Mathematical Tour

    ERIC Educational Resources Information Center

    Broggini, Filippo; Snieder, Roel

    2012-01-01

    Inverse scattering, Green's function reconstruction, focusing, imaging and the optical theorem are subjects usually studied as separate problems in different research areas. We show a physical connection between the principles because the equations that rule these "scattering principles" have a similar functional form. We first lead the reader…

  13. Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Nagarajan, Sounderya; Pioche-Durieu, Catherine; Tizei, Luiz H. G.; Fang, Chia-Yi; Bertrand, Jean-Rémi; Le Cam, Eric; Chang, Huan-Cheng; Treussart, François; Kociak, Mathieu

    2016-06-01

    Light and Transmission Electron Microscopies (LM and TEM) hold potential in bioimaging owing to the advantages of fast imaging of multiple cells with LM and ultrastructure resolution offered by TEM. Integrated or correlated LM and TEM are the current approaches to combine the advantages of both techniques. Here we propose an alternative in which the electron beam of a scanning TEM (STEM) is used to excite concomitantly the luminescence of nanoparticle labels (a process known as cathodoluminescence, CL), and image the cell ultrastructure. This CL-STEM imaging allows obtaining luminescence spectra and imaging ultrastructure simultaneously. We present a proof of principle experiment, showing the potential of this technique in image cytometry of cell vesicular components. To label the vesicles we used fluorescent diamond nanocrystals (nanodiamonds, NDs) of size ~150 nm coated with different cationic polymers, known to trigger different internalization pathways. Each polymer was associated with a type of ND with a different emission spectrum. With CL-STEM, for each individual vesicle, we were able to measure (i) their size with nanometric resolution, (ii) their content in different ND labels, and realize intracellular component cytometry. In contrast to the recently reported organelle flow cytometry technique that requires cell sonication, CL-STEM-based image cytometry preserves the cell integrity and provides a much higher resolution in size. Although this novel approach is still limited by a low throughput, the automatization of data acquisition and image analysis, combined with improved intracellular targeting, should facilitate applications in cell biology at the subcellular level.Light and Transmission Electron Microscopies (LM and TEM) hold potential in bioimaging owing to the advantages of fast imaging of multiple cells with LM and ultrastructure resolution offered by TEM. Integrated or correlated LM and TEM are the current approaches to combine the advantages of both techniques. Here we propose an alternative in which the electron beam of a scanning TEM (STEM) is used to excite concomitantly the luminescence of nanoparticle labels (a process known as cathodoluminescence, CL), and image the cell ultrastructure. This CL-STEM imaging allows obtaining luminescence spectra and imaging ultrastructure simultaneously. We present a proof of principle experiment, showing the potential of this technique in image cytometry of cell vesicular components. To label the vesicles we used fluorescent diamond nanocrystals (nanodiamonds, NDs) of size ~150 nm coated with different cationic polymers, known to trigger different internalization pathways. Each polymer was associated with a type of ND with a different emission spectrum. With CL-STEM, for each individual vesicle, we were able to measure (i) their size with nanometric resolution, (ii) their content in different ND labels, and realize intracellular component cytometry. In contrast to the recently reported organelle flow cytometry technique that requires cell sonication, CL-STEM-based image cytometry preserves the cell integrity and provides a much higher resolution in size. Although this novel approach is still limited by a low throughput, the automatization of data acquisition and image analysis, combined with improved intracellular targeting, should facilitate applications in cell biology at the subcellular level. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01908k

  14. Using Nonprinciple Rays to Form Images in Geometrical Optics

    NASA Astrophysics Data System (ADS)

    Marx, Jeff; Mian, Shabbir

    2015-11-01

    Constructing ray diagrams to locate the image of an object formed by thin lenses and mirrors is a staple of many introductory physics courses at the high school and college levels, and has been the subject of some pedagogy-related articles. Our review of textbooks distributed in the United States suggests that the singular approach involves drawing principle rays to locate an object's image. We were pleasantly surprised to read an article in this journal by Suppapittayaporn et al. in which they use an alternative method to construct rays for thin lenses based on a "tilted principle axis" (TPA). In particular, we were struck by the generality of the approach (a single rule for tracing rays as compared to the typical two or three rules), and how it could help students more easily tackle challenging situations, such as multi-lens systems and occluded lenses, where image construction using principle rays may be impractical. In this paper, we provide simple "proofs" for this alternative approach for the case of thin lenses and single refracting surfaces.

  15. Spectral imaging: principles and applications.

    PubMed

    Garini, Yuval; Young, Ian T; McNamara, George

    2006-08-01

    Spectral imaging extends the capabilities of biological and clinical studies to simultaneously study multiple features such as organelles and proteins qualitatively and quantitatively. Spectral imaging combines two well-known scientific methodologies, namely spectroscopy and imaging, to provide a new advantageous tool. The need to measure the spectrum at each point of the image requires combining dispersive optics with the more common imaging equipment, and introduces constrains as well. The principles of spectral imaging and a few representative applications are described. Spectral imaging analysis is necessary because the complex data structure cannot be analyzed visually. A few of the algorithms are discussed with emphasis on the usage for different experimental modes (fluorescence and bright field). Finally, spectral imaging, like any method, should be evaluated in light of its advantages to specific applications, a selection of which is described. Spectral imaging is a relatively new technique and its full potential is yet to be exploited. Nevertheless, several applications have already shown its potential. (c) 2006 International Society for Analytical Cytology.

  16. Micro-optical system based 3D imaging for full HD depth image capturing

    NASA Astrophysics Data System (ADS)

    Park, Yong-Hwa; Cho, Yong-Chul; You, Jang-Woo; Park, Chang-Young; Yoon, Heesun; Lee, Sang-Hun; Kwon, Jong-Oh; Lee, Seung-Wan

    2012-03-01

    20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical shutter'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation. The optical shutter device is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image. Suggested novel optical shutter device enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously. The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical shutter design, fabrication, characterization, 3D camera system prototype and image test results.

  17. Lossless Astronomical Image Compression and the Effects of Random Noise

    NASA Technical Reports Server (NTRS)

    Pence, William

    2009-01-01

    In this paper we compare a variety of modern image compression methods on a large sample of astronomical images. We begin by demonstrating from first principles how the amount of noise in the image pixel values sets a theoretical upper limit on the lossless compression ratio of the image. We derive simple procedures for measuring the amount of noise in an image and for quantitatively predicting how much compression will be possible. We then compare the traditional technique of using the GZIP utility to externally compress the image, with a newer technique of dividing the image into tiles, and then compressing and storing each tile in a FITS binary table structure. This tiled-image compression technique offers a choice of other compression algorithms besides GZIP, some of which are much better suited to compressing astronomical images. Our tests on a large sample of images show that the Rice algorithm provides the best combination of speed and compression efficiency. In particular, Rice typically produces 1.5 times greater compression and provides much faster compression speed than GZIP. Floating point images generally contain too much noise to be effectively compressed with any lossless algorithm. We have developed a compression technique which discards some of the useless noise bits by quantizing the pixel values as scaled integers. The integer images can then be compressed by a factor of 4 or more. Our image compression and uncompression utilities (called fpack and funpack) that were used in this study are publicly available from the HEASARC web site.Users may run these stand-alone programs to compress and uncompress their own images.

  18. Speckle noise removal applied to ultrasound image of carotid artery based on total least squares model.

    PubMed

    Yang, Lei; Lu, Jun; Dai, Ming; Ren, Li-Jie; Liu, Wei-Zong; Li, Zhen-Zhou; Gong, Xue-Hao

    2016-10-06

    An ultrasonic image speckle noise removal method by using total least squares model is proposed and applied onto images of cardiovascular structures such as the carotid artery. On the basis of the least squares principle, the related principle of minimum square method is applied to cardiac ultrasound image speckle noise removal process to establish the model of total least squares, orthogonal projection transformation processing is utilized for the output of the model, and the denoising processing for the cardiac ultrasound image speckle noise is realized. Experimental results show that the improved algorithm can greatly improve the resolution of the image, and meet the needs of clinical medical diagnosis and treatment of the cardiovascular system for the head and neck. Furthermore, the success in imaging of carotid arteries has strong implications in neurological complications such as stroke.

  19. The benefits of paired-agent imaging in molecular-guided surgery: an update on methods and applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tichauer, Kenneth M.

    2016-03-01

    One of the major complications with conventional imaging-agent-based molecular imaging, particularly for cancer imaging, is variability in agent delivery and nonspecific retention in biological tissue. Such factors can account to "swamp" the signal arising from specifically bound imaging agent, which is presumably indicative of the concentration of targeted biomolecule. In the 1950s, Pressman et al. proposed a method of accounting for these delivery and retention effects by normalizing targeted antibody retention to the retention of a co-administered "untargeted"/control imaging agent [1]. Our group resurrected the approach within the last 5 years, finding ways to utilize this so-called "paired-agent" imaging approach to directly quantify biomolecule concentration in tissue (in vitro, ex vivo, and in vivo) [2]. These novel paired-agent imaging approaches capable of quantifying biomolecule concentration provide enormous potential for being adapted to and optimizing molecular-guided surgery, which has a principle goal of identifying distinct biological tissues (tumor, nerves, etc…) based on their distinct molecular environment. This presentation will cover the principles and nuances of paired-agent imaging, as well as the current status of the field and future applications. [1] D. Pressman, E. D. Day, and M. Blau, "The use of paired labeling in the determination of tumor-localizing antibodies," Cancer Res, 17(9), 845-50 (1957). [2] K. M. Tichauer, Y. Wang, B. W. Pogue et al., "Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging," Phys Med Biol, 60(14), R239-69 (2015).

  20. Resolution limits of ultrafast ultrasound localization microscopy

    NASA Astrophysics Data System (ADS)

    Desailly, Yann; Pierre, Juliette; Couture, Olivier; Tanter, Mickael

    2015-11-01

    As in other imaging methods based on waves, the resolution of ultrasound imaging is limited by the wavelength. However, the diffraction-limit can be overcome by super-localizing single events from isolated sources. In recent years, we developed plane-wave ultrasound allowing frame rates up to 20 000 fps. Ultrafast processes such as rapid movement or disruption of ultrasound contrast agents (UCA) can thus be monitored, providing us with distinct punctual sources that could be localized beyond the diffraction limit. We previously showed experimentally that resolutions beyond λ/10 can be reached in ultrafast ultrasound localization microscopy (uULM) using a 128 transducer matrix in reception. Higher resolutions are theoretically achievable and the aim of this study is to predict the maximum resolution in uULM with respect to acquisition parameters (frequency, transducer geometry, sampling electronics). The accuracy of uULM is the error on the localization of a bubble, considered a point-source in a homogeneous medium. The proposed model consists in two steps: determining the timing accuracy of the microbubble echo in radiofrequency data, then transferring this time accuracy into spatial accuracy. The simplified model predicts a maximum resolution of 40 μm for a 1.75 MHz transducer matrix composed of two rows of 64 elements. Experimental confirmation of the model was performed by flowing microbubbles within a 60 μm microfluidic channel and localizing their blinking under ultrafast imaging (500 Hz frame rate). The experimental resolution, determined as the standard deviation in the positioning of the microbubbles, was predicted within 6 μm (13%) of the theoretical values and followed the analytical relationship with respect to the number of elements and depth. Understanding the underlying physical principles determining the resolution of superlocalization will allow the optimization of the imaging setup for each organ. Ultimately, accuracies better than the size of capillaries are achievable at several centimeter depths.

  1. Urban Space Innovation - “10+” Principles through Designing the New Image of the Existing Shopping Mall in Csepel, Hungary

    NASA Astrophysics Data System (ADS)

    Gyergyak, Janos

    2017-10-01

    The first part of the paper is about to introduce the principles of “placemaking” as an innovation and important tool of the cities in the 21st century. The process helps designers to transform the spaces of “nobody” to a community-based space for supporting the connection among humans. The second part of the paper shows the process of the used principles by the author for designing the new image of the existing shopping mall in Csepel, Hungary. This work was selected as one of the best design ideas for renewing the existing underutilized space.

  2. [Digital breast tomosynthesis : technical principles, current clinical relevance and future perspectives].

    PubMed

    Hellerhoff, K

    2010-11-01

    In recent years digital full field mammography has increasingly replaced conventional film mammography. High quality imaging is guaranteed by high quantum efficiency and very good contrast resolution with optimized dosing even for women with dense glandular tissue. However, digital mammography remains a projection procedure by which overlapping tissue limits the detectability of subtle alterations. Tomosynthesis is a procedure developed from digital mammography for slice examination of breasts which eliminates the effects of overlapping tissue and allows 3D imaging of breasts. A curved movement of the X-ray tube during scanning allows the acquisition of many 2D images from different angles. Subseqently, reconstruction algorithms employing a shift and add method improve the recognition of details at a defined level and at the same time eliminate smear artefacts due to overlapping structures. The total dose corresponds to that of conventional mammography imaging. The technical procedure, including the number of levels, suitable anodes/filter combinations, angle regions of images and selection of reconstruction algorithms, is presently undergoing optimization. Previous studies on the clinical value of tomosynthesis have examined screening parameters, such as recall rate and detection rate as well as information on tumor extent for histologically proven breast tumors. More advanced techniques, such as contrast medium-enhanced tomosynthesis, are presently under development and dual-energy imaging is of particular importance.

  3. Design and fabrication of vertically-integrated CMOS image sensors.

    PubMed

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors.

  4. D Reconstruction from Multi-View Medical X-Ray Images - Review and Evaluation of Existing Methods

    NASA Astrophysics Data System (ADS)

    Hosseinian, S.; Arefi, H.

    2015-12-01

    The 3D concept is extremely important in clinical studies of human body. Accurate 3D models of bony structures are currently required in clinical routine for diagnosis, patient follow-up, surgical planning, computer assisted surgery and biomechanical applications. However, 3D conventional medical imaging techniques such as computed tomography (CT) scan and magnetic resonance imaging (MRI) have serious limitations such as using in non-weight-bearing positions, costs and high radiation dose(for CT). Therefore, 3D reconstruction methods from biplanar X-ray images have been taken into consideration as reliable alternative methods in order to achieve accurate 3D models with low dose radiation in weight-bearing positions. Different methods have been offered for 3D reconstruction from X-ray images using photogrammetry which should be assessed. In this paper, after demonstrating the principles of 3D reconstruction from X-ray images, different existing methods of 3D reconstruction of bony structures from radiographs are classified and evaluated with various metrics and their advantages and disadvantages are mentioned. Finally, a comparison has been done on the presented methods with respect to several metrics such as accuracy, reconstruction time and their applications. With regards to the research, each method has several advantages and disadvantages which should be considered for a specific application.

  5. Semi-automatic mapping for identifying complex geobodies in seismic images

    NASA Astrophysics Data System (ADS)

    Domínguez-C, Raymundo; Romero-Salcedo, Manuel; Velasquillo-Martínez, Luis G.; Shemeretov, Leonid

    2017-03-01

    Seismic images are composed of positive and negative seismic wave traces with different amplitudes (Robein 2010 Seismic Imaging: A Review of the Techniques, their Principles, Merits and Limitations (Houten: EAGE)). The association of these amplitudes together with a color palette forms complex visual patterns. The color intensity of such patterns is directly related to impedance contrasts: the higher the contrast, the higher the color intensity. Generally speaking, low impedance contrasts are depicted with low tone colors, creating zones with different patterns whose features are not evident for a 3D automated mapping option available on commercial software. In this work, a workflow for a semi-automatic mapping of seismic images focused on those areas with low-intensity colored zones that may be associated with geobodies of petroleum interest is proposed. The CIE L*A*B* color space was used to perform the seismic image processing, which helped find small but significant differences between pixel tones. This process generated binary masks that bound color regions to low-intensity colors. The three-dimensional-mask projection allowed the construction of 3D structures for such zones (geobodies). The proposed method was applied to a set of digital images from a seismic cube and tested on four representative study cases. The obtained results are encouraging because interesting geobodies are obtained with a minimum of information.

  6. Design and Fabrication of Vertically-Integrated CMOS Image Sensors

    PubMed Central

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860

  7. Automatic respiration tracking for radiotherapy using optical 3D camera

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New images can be accurately represented as weighted summation of those eigen-vectors, which can be easily discriminated with a trained classifier. We developed algorithms, software and integrated with an O3D imaging system to perform the respiration tracking automatically. The resulting respiration tracking system requires no human intervene during it tracking operation. Experimental results show that our approach to respiration tracking is more accurate and robust than the methods using manual selected markers, even in the presence of incomplete imaging data.

  8. BIOME: An Ecosystem Remote Sensor Based on Imaging Interferometry

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Hammer, Philip; Smith, William H.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Until recent times, optical remote sensing of ecosystem properties from space has been limited to broad band multispectral scanners such as Landsat and AVHRR. While these sensor data can be used to derive important information about ecosystem parameters, they are very limited for measuring key biogeochemical cycling parameters such as the chemical content of plant canopies. Such parameters, for example the lignin and nitrogen contents, are potentially amenable to measurements by very high spectral resolution instruments using a spectroscopic approach. Airborne sensors based on grating imaging spectrometers gave the first promise of such potential but the recent decision not to deploy the space version has left the community without many alternatives. In the past few years, advancements in high performance deep well digital sensor arrays coupled with a patented design for a two-beam interferometer has produced an entirely new design for acquiring imaging spectroscopic data at the signal to noise levels necessary for quantitatively estimating chemical composition (1000:1 at 2 microns). This design has been assembled as a laboratory instrument and the principles demonstrated for acquiring remote scenes. An airborne instrument is in production and spaceborne sensors being proposed. The instrument is extremely promising because of its low cost, lower power requirements, very low weight, simplicity (no moving parts), and high performance. For these reasons, we have called it the first instrument optimized for ecosystem studies as part of a Biological Imaging and Observation Mission to Earth (BIOME).

  9. Basic physics of ultrasound imaging.

    PubMed

    Aldrich, John E

    2007-05-01

    The appearance of ultrasound images depends critically on the physical interactions of sound with the tissues in the body. The basic principles of ultrasound imaging and the physical reasons for many common artifacts are described.

  10. Principle Paradigms Revisiting the Dublin Core 1:1 Principle

    ERIC Educational Resources Information Center

    Urban, Richard J.

    2012-01-01

    The Dublin Core "1:1 Principle" asserts that "related but conceptually different entities, for example a painting and a digital image of the painting, are described by separate metadata records" (Woodley et al., 2005). While this seems to be a simple requirement, studies of metadata quality have found that cultural heritage…

  11. UCXp camera imaging principle and key technologies of data post-processing

    NASA Astrophysics Data System (ADS)

    Yuan, Fangyan; Li, Guoqing; Zuo, Zhengli; Liu, Jianmin; Wu, Liang; Yu, Xiaoping; Zhao, Haitao

    2014-03-01

    The large format digital aerial camera product UCXp was introduced into the Chinese market in 2008, the image consists of 17310 columns and 11310 rows with a pixel size of 6 mm. The UCXp camera has many advantages compared with the same generation camera, with multiple lenses exposed almost at the same time and no oblique lens. The camera has a complex imaging process whose principle will be detailed in this paper. On the other hand, the UCXp image post-processing method, including data pre-processing and orthophoto production, will be emphasized in this article. Based on the data of new Beichuan County, this paper will describe the data processing and effects.

  12. SU-F-T-403: Impact of Dose Reduction for Simulation CT On Radiation Therapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Q; Shah, P; Li, S

    Purpose: To investigate the feasibility of applying ALARA principles to current treatment planning CT scans. The study aims to quantitatively verify lower dose scans does not alter treatment planning. Method: Gammex 467 tissue characterization phantom with inserts of 14 different materials was scanned at seven different mA levels (30∼300 mA). CT numbers of different inserts were measured. Auto contouring for bone and lung in treatment planning system (Pinnacle) was used to evaluate the effect of CT number accuracy from treatment planning aspect, on the 30 and 300 mA-scanned images. A head CT scan intended for a 3D whole brain radiationmore » treatment was evaluated. Dose calculations were performed on normal scanned images using clinical protocol (120 kVP, Smart mA, maximum 291 mA), and the images with added simulating noise mimicking a 70 mA scan. Plan parameters including isocenter, beam arrangements, block shapes, dose grid size and resolution, and prescriptions were kept the same for these two plans. The calculated monitor units (MUs) for these two plans were compared. Results: No significant degradation of CT number accuracy was found at lower dose levels from both the phantom scans, and the patient images with added noise. The CT numbers kept consistent when mA is higher than 60 mA. The auto contoured volumes for lung and cortical bone show 0.3% and 0.12% of differences between 30 mA and 300 mA respectively. The two forward plans created on regular and low dose images gave the same calculated MU, and 98.3% of points having <1% of dose difference. Conclusion: Both phantom and patient studies quantitatively verified low dose CT provides similar quality for treatment planning at 20–25% of regular scan dose. Therefore, there is the potential to optimize simulation CT scan protocol to fulfil the ALARA principle and limit unnecessary radiation exposure to non-targeted tissues.« less

  13. Subpixelic measurement of large 1D displacements: principle, processing algorithms, performances and software.

    PubMed

    Guelpa, Valérian; Laurent, Guillaume J; Sandoz, Patrick; Zea, July Galeano; Clévy, Cédric

    2014-03-12

    This paper presents a visual measurement method able to sense 1D rigid body displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic resolution is obtained thanks to a structured pattern placed on the target. The pattern is made of twin periodic grids with slightly different periods. The periodic frames are suited for Fourier-like phase calculations-leading to high resolution-while the period difference allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper presents the measurement principle as well as the processing algorithms (source files are provided as supplementary materials). The theoretical and experimental performances are also discussed. The processing time is around 3 µs for a line of 780 pixels, which means that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ repeatability of 5 nm is experimentally demonstrated which has to be compared with the 168 µm measurement range.

  14. Subpixelic Measurement of Large 1D Displacements: Principle, Processing Algorithms, Performances and Software

    PubMed Central

    Guelpa, Valérian; Laurent, Guillaume J.; Sandoz, Patrick; Zea, July Galeano; Clévy, Cédric

    2014-01-01

    This paper presents a visual measurement method able to sense 1D rigid body displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic resolution is obtained thanks to a structured pattern placed on the target. The pattern is made of twin periodic grids with slightly different periods. The periodic frames are suited for Fourier-like phase calculations—leading to high resolution—while the period difference allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper presents the measurement principle as well as the processing algorithms (source files are provided as supplementary materials). The theoretical and experimental performances are also discussed. The processing time is around 3 μs for a line of 780 pixels, which means that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ repeatability of 5 nm is experimentally demonstrated which has to be compared with the 168 μm measurement range. PMID:24625736

  15. A Step Beyond BRET: Fluorescence by Unbound Excitation from Luminescence (FUEL)

    PubMed Central

    Dragavon, Joseph; Sinow, Carolyn; Holland, Alexandra D.; Rekiki, Abdessalem; Theodorou, Ioanna; Samson, Chelsea; Blazquez, Samantha; Rogers, Kelly L.; Tournebize, Régis; Shorte, Spencer L.

    2014-01-01

    Fluorescence by Unbound Excitation from Luminescence (FUEL) is a radiative excitation-emission process that produces increased signal and contrast enhancement in vitro and in vivo. FUEL shares many of the same underlying principles as Bioluminescence Resonance Energy Transfer (BRET), yet greatly differs in the acceptable working distances between the luminescent source and the fluorescent entity. While BRET is effectively limited to a maximum of 2 times the Förster radius, commonly less than 14 nm, FUEL can occur at distances up to µm or even cm in the absence of an optical absorber. Here we expand upon the foundation and applicability of FUEL by reviewing the relevant principles behind the phenomenon and demonstrate its compatibility with a wide variety of fluorophores and fluorescent nanoparticles. Further, the utility of antibody-targeted FUEL is explored. The examples shown here provide evidence that FUEL can be utilized for applications where BRET is not possible, filling the spatial void that exists between BRET and traditional whole animal imaging. PMID:24894759

  16. Characterizing polarized illumination in high numerical aperture optical lithography with phase shifting masks

    NASA Astrophysics Data System (ADS)

    McIntyre, Gregory Russell

    The primary objective of this dissertation is to develop the phase shifting mask (PSM) as a precision instrument to characterize effects in optical lithography related to the use of polarized partially coherent illumination. The intent is to provide an in-situ characterization technique to add to the lithographer's tool-kit to help enable the stable and repeatable mass production of integrated circuits with feature sizes approaching 1/6th the wavelength of light being used. A series of complex-valued mathematical functions have been derived from basic principles and recent advances in photomask fabrication technology have enabled their implementation with four-phase mask making. When located in the object plane of an imaging system, these test functions serve to engineer a wavefiront that interacts with one particular optical effect, creating a measurable signal in the image plane. In most cases, these test patterns leverage proximity effects to create a central image intensity and are theoretically the most sensitive to the desired effect. Five novel classes of test patterns have been developed for in-situ characterization. The first two classes, The Linear Phase Grating (LPG) and Linear Phase Ring (LPR), both serve to characterize illumination angular distribution and uniformity by creating signals dependent on illumination angular frequency. The third class consists of the Radial Phase Grating (RPG) and Proximity Effect Polarization Analyzers (PEPA), which each create a polarization-dependent signal by taking advantage of the image reversal of one polarization component at high numerical aperture (NA). PSM Polarimetry employs a series of these patterns to form a complete polarization characterization of any arbitrary illumination scheme. The fourth and fifth classes employ sub-resolution interferometric reference probes to coherently interact with proximity effect spillover from a surrounding pattern. They measure the effective phase and transmission of the shifted regions of an alternating PSM and projection lens birefringence, respectively. A secondary objective of this dissertation has been to leverage some of these functions to extend the application of pattern matching software to rapidly identify areas in a circuit design layout that may be vulnerable to polarization and high-NA effects. Additionally, polarization aberrations have been investigated, as they may become important with hyper-NA imaging systems. Three multi-phase test reticles have been developed for this thesis and have pushed the limits of photomask fabrication. Coupled with a variety of experimental and simulation studies at 193nm wavelength, they have validated the scientific principles of the PSM monitors and have offered unique insight into implementation issues such as electromagnetic (EM) effects and mask making tolerances. Although all five classes are novel theoretical concepts, it is believed that PSM Polarimetry is commercially viable. Despite a 70% loss of sensitivity due to mask making limitations and a 20% loss due to EM effects, it can likely still monitor polarization to within 2%. Experimental results are comparable to the only other known technique, which requires special equipment. Taken collectively, the five novel classes of PSM monitors offer the lithographer an independent tool-kit to ensure proper tool operation. They also provide circuit designers an understanding of the impact of imaging on layouts. Although they have been developed for optical lithography, their principles are relevant to any image-forming optical system and are likely to find applications in other fields of optics or acoustics.

  17. Ultrasound elastography: principles, techniques, and clinical applications.

    PubMed

    Dewall, Ryan J

    2013-01-01

    Ultrasound elastography is an emerging set of imaging modalities used to image tissue elasticity and are often referred to as virtual palpation. These techniques have proven effective in detecting and assessing many different pathologies, because tissue mechanical changes often correlate with tissue pathological changes. This article reviews the principles of ultrasound elastography, many of the ultrasound-based techniques, and popular clinical applications. Originally, elastography was a technique that imaged tissue strain by comparing pre- and postcompression ultrasound images. However, new techniques have been developed that use different excitation methods such as external vibration or acoustic radiation force. Some techniques track transient phenomena such as shear waves to quantitatively measure tissue elasticity. Clinical use of elastography is increasing, with applications including lesion detection and classification, fibrosis staging, treatment monitoring, vascular imaging, and musculoskeletal applications.

  18. Neuroimaging Techniques: a Conceptual Overview of Physical Principles, Contribution and History

    NASA Astrophysics Data System (ADS)

    Minati, Ludovico

    2006-06-01

    This paper is meant to provide a brief overview of the techniques currently used to image the brain and to study non-invasively its anatomy and function. After a historical summary in the first section, general aspects are outlined in the second section. The subsequent six sections survey, in order, computed tomography (CT), morphological magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion-tensor magnetic resonance imaging (DWI/DTI), positron emission tomography (PET), and electro- and magneto-encephalography (EEG/MEG) based imaging. Underlying physical principles, modelling and data processing approaches, as well as clinical and research relevance are briefly outlined for each technique. Given the breadth of the scope, there has been no attempt to be comprehensive. The ninth and final section outlines some aspects of active research in neuroimaging.

  19. Analysis of the kinestatic charge detection system as a high detective quantum efficiency electronic portal imaging device.

    PubMed

    Samant, Sanjiv S; Gopal, Arun

    2006-09-01

    Megavoltage x-ray imaging suffers from reduced image quality due to low differential x-ray attenuation and large Compton scatter compared with kilovoltage imaging. Notwithstanding this, electronic portal imaging devices (EPIDs) are now widely used in portal verification in radiotherapy as they offer significant advantages over film, including immediate digital imaging and superior contrast range. However video-camera-based EPIDs (VEPIDs) are limited by problems of low light collection efficiency and significant light scatter, leading to reduced contrast and spatial resolution. Indirect and direct detection-based flat-panel EPIDs have been developed to overcome these limitations. While flat-panel image quality has been reported to exceed that achieved with portal film, these systems have detective quantum efficiency (DQE) limited by the thin detection medium and are sensitive to radiation damage to peripheral read-out electronics. An alternative technology for high-quality portal imaging is presented here: kinesatic charge detection (KCD). The KCD is a scanning tri-electrode ion-chamber containing high-pressure noble gas (xenon at 100 atm) used in conjunction with a strip-collimated photon beam. The chamber is scanned across the patient, and an external electric field is used to regulate the cation drift velocity. By matching the scanning velocity with that of the cation (i.e., ion) drift velocity, the cations remain static in the object frame of reference, allowing temporal integration of the signal. The KCD offers several advantages as a portal imaging system. It has a thick detector geometry with an active detection depth of 6.1 cm, compared to the sub-millimeter thickness of the phosphor layer in conventional phosphor screens, leading to an order of magnitude advantage in quantum efficiency (>0.3). The unique principle of and the use of the scanning strip-collimated x-ray beam provide further integration of charges in time, reduced scatter, and a significantly reduced imaging dose, enhancing the imaging signal-to-noise ratio (SNR) and leading to high DQE. While thick detectors usually suffer from reduced spatial resolution, the KCD provides good spatial resolution due to high gas pressure that limits the spread of scattered electrons, and a strip-collimated beam that significantly reduces the inclusion of scatter in the imaging signal. A 10 cm wide small-field-of-view (SFOV) prototype of the KCD is presented with a complete analysis of its imaging performance. Measurements of modulation transfer function (MTF), noise power spectrum (NPS), and DQE were in good agreement with Monte Carlo simulations. Imaging signal loss from recombination within the KCD chamber was measured at different gas pressures, ion drift velocities, and strip-collimation widths. Image quality for the prototype KCD was also observed with anthropomorphic phantom imaging in comparison with various commercial and research portal imaging systems, including VEPID, flat-panel imager, and conventional and high contrast film systems. KCD-based imaging provided very good contrast and good spatial resolution at very low imaging dose (0.1 cGy per image). For the prototype KCD, measurements yielded DQE(0)=0.19 and DQE(1 cy/mm)=0.004.

  20. Geometric metasurface enabling polarization independent beam splitting.

    PubMed

    Yoon, Gwanho; Lee, Dasol; Nam, Ki Tae; Rho, Junsuk

    2018-06-21

    A polarization independent holographic beam splitter that generates equal-intensity beams based on geometric metasurface is demonstrated. Although conventional geometric metasurfaces have the advantages of working over a broad frequency range and having intuitive design principles, geometric metasurfaces have the limitation that they only work for circular polarization. In this work, Fourier holography is used to overcome this limitation. A perfect overlap resulting from the origin-symmetry of the encoded image enables polarization independent operation of geometric metasurfaces. The designed metasurface beam splitter is experimentally demonstrated by using hydrogenated amorphous silicon, and the device performs consistent beam splitting regardless of incident polarizations as well as wavelengths. Our device can be applied to generate equal-intensity beams for entangled photon light sources in quantum optics, and the design approach provides a way to develop ultra-thin broadband polarization independent components for modern optics.

  1. Experimental Realization of High-Efficiency Counterfactual Computation.

    PubMed

    Kong, Fei; Ju, Chenyong; Huang, Pu; Wang, Pengfei; Kong, Xi; Shi, Fazhan; Jiang, Liang; Du, Jiangfeng

    2015-08-21

    Counterfactual computation (CFC) exemplifies the fascinating quantum process by which the result of a computation may be learned without actually running the computer. In previous experimental studies, the counterfactual efficiency is limited to below 50%. Here we report an experimental realization of the generalized CFC protocol, in which the counterfactual efficiency can break the 50% limit and even approach unity in principle. The experiment is performed with the spins of a negatively charged nitrogen-vacancy color center in diamond. Taking advantage of the quantum Zeno effect, the computer can remain in the not-running subspace due to the frequent projection by the environment, while the computation result can be revealed by final detection. The counterfactual efficiency up to 85% has been demonstrated in our experiment, which opens the possibility of many exciting applications of CFC, such as high-efficiency quantum integration and imaging.

  2. Experimental Realization of High-Efficiency Counterfactual Computation

    NASA Astrophysics Data System (ADS)

    Kong, Fei; Ju, Chenyong; Huang, Pu; Wang, Pengfei; Kong, Xi; Shi, Fazhan; Jiang, Liang; Du, Jiangfeng

    2015-08-01

    Counterfactual computation (CFC) exemplifies the fascinating quantum process by which the result of a computation may be learned without actually running the computer. In previous experimental studies, the counterfactual efficiency is limited to below 50%. Here we report an experimental realization of the generalized CFC protocol, in which the counterfactual efficiency can break the 50% limit and even approach unity in principle. The experiment is performed with the spins of a negatively charged nitrogen-vacancy color center in diamond. Taking advantage of the quantum Zeno effect, the computer can remain in the not-running subspace due to the frequent projection by the environment, while the computation result can be revealed by final detection. The counterfactual efficiency up to 85% has been demonstrated in our experiment, which opens the possibility of many exciting applications of CFC, such as high-efficiency quantum integration and imaging.

  3. PHARMACOLOGY PART 2: INTRODUCTION TO PHARMACOKINETICS.

    PubMed

    Currie, Geoffrey M

    2018-05-03

    Pharmacology principles provide key understanding that underpins the clinical and research roles of nuclear medicine practitioners. This article is the second in a series of articles that aims to enhance the understanding of pharmacological principles relevant to nuclear medicine. This article will build on the introductory concepts, terminology and principles of pharmacodynamics explored in the first article in the series. Specifically, this article will focus on the basic principles associated with pharmacokinetics. Article 3 will outline pharmacology relevant to pharmaceutical interventions and adjunctive medications employed in general nuclear medicine, the fourth pharmacology relevant to pharmaceutical interventions and adjunctive medications employed in nuclear cardiology, the fifth the pharmacology related to contrast media associated with computed tomography (CT) and magnetic resonance imaging (MRI), and the final article will address drugs in the emergency trolley. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  4. Computed tomography, magnetic resonance, and ultrasound imaging: basic principles, glossary of terms, and patient safety.

    PubMed

    Cogbill, Thomas H; Ziegelbein, Kurt J

    2011-02-01

    The basic principles underlying computed tomography, magnetic resonance, and ultrasound are reviewed to promote better understanding of the properties and appropriate applications of these 3 common imaging modalities. A glossary of frequently used terms for each technique is appended for convenience. Risks to patient safety including contrast-induced nephropathy, radiation-induced malignancy, and nephrogenic systemic fibrosis are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Proliferation assessment in breast carcinomas using digital image analysis based on virtual Ki67/cytokeratin double staining.

    PubMed

    Røge, Rasmus; Riber-Hansen, Rikke; Nielsen, Søren; Vyberg, Mogens

    2016-07-01

    Manual estimation of Ki67 Proliferation Index (PI) in breast carcinoma classification is labor intensive and prone to intra- and interobserver variation. Standard Digital Image Analysis (DIA) has limitations due to issues with tumor cell identification. Recently, a computer algorithm, DIA based on Virtual Double Staining (VDS), segmenting Ki67-positive and -negative tumor cells using digitally fused parallel cytokeratin (CK) and Ki67-stained slides has been introduced. In this study, we compare VDS with manual stereological counting of Ki67-positive and -negative cells and examine the impact of the physical distance of the parallel slides on the alignment of slides. TMAs, containing 140 cores of consecutively obtained breast carcinomas, were stained for CK and Ki67 using optimized staining protocols. By means of stereological principles, Ki67-positive and -negative cell profiles were counted in sampled areas and used for the estimation of PIs of the whole tissue core. The VDS principle was applied to both the same sampled areas and the whole tissue core. Additionally, five neighboring slides were stained for CK in order to examine the alignment algorithm. Correlation between manual counting and VDS in both sampled areas and whole core was almost perfect (correlation coefficients above 0.97). Bland-Altman plots did not reveal any skewness in any data ranges. There was a good agreement in alignment (>85 %) in neighboring slides, whereas agreement decreased in non-neighboring slides. VDS gave similar results compared with manual counting using stereological principles. Introduction of this method in clinical and research practice may improve accuracy and reproducibility of Ki67 PI.

  6. Recent advances in high-performance fluorescent and bioluminescent RNA imaging probes.

    PubMed

    Xia, Yuqiong; Zhang, Ruili; Wang, Zhongliang; Tian, Jie; Chen, Xiaoyuan

    2017-05-22

    RNA plays an important role in life processes. Imaging of messenger RNAs (mRNAs) and micro-RNAs (miRNAs) not only allows us to learn the formation and transcription of mRNAs and the biogenesis of miRNAs involved in various life processes, but also helps in detecting cancer. High-performance RNA imaging probes greatly expand our view of life processes and enhance the cancer detection accuracy. In this review, we summarize the state-of-the-art high-performance RNA imaging probes, including exogenous probes that can image RNA sequences with special modification and endogeneous probes that can directly image endogenous RNAs without special treatment. For each probe, we review its structure and imaging principle in detail. Finally, we summarize the application of mRNA and miRNA imaging probes in studying life processes as well as in detecting cancer. By correlating the structures and principles of various probes with their practical uses, we compare different RNA imaging probes and offer guidance for better utilization of the current imaging probes and the future design of higher-performance RNA imaging probes.

  7. WE-DE-206-03: MRI Image Formation - Slice Selection, Phase Encoding, Frequency Encoding, K-Space, SNR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  8. Interactive full channel teletext system for cable television nets

    NASA Astrophysics Data System (ADS)

    Vandenboom, H. P. A.

    1984-08-01

    A demonstration set-up of an interactive full channel teletext (FCT) system for cable TV networks with two-way data communication possibilities was designed and realized. In FCT all image lines are used for teletext data lines. The FCT decoder was placed in the mini-star, and the FCT encoder which provides the FCT signal was placed in the local center. From the FCT signal a number of data lines are selected using an extra FCT decoder. They are placed on the image lines reserved for teletext so that a normal TV receiver equipped with a teletext decoder, can process the selected data lines. For texts not on hand in the FCT signal, a command can be sent to the local center via the data communication path. A cheap and simple system is offered in which the number of commanded pages or books is in principle unlimited, while the used waiting time and channel capacity is limited.

  9. Prototype of sun projector device

    NASA Astrophysics Data System (ADS)

    Ihsan; Dermawan, B.

    2016-11-01

    One way to introduce astronomy to public, including students, can be handled by solar observation. The widely held device for this purpose is coelostat and heliostat. Besides using filter attached to a device such as telescope, it is safest to use indirect way for observing the Sun. The main principle of the indirect way is deflecting the sun light and projecting image of the sun on a screen. We design and build a simple and low-cost astronomical device, serving as a supplement to increase public service, especially for solar observation. Without using any digital and intricate supporting equipment, people can watch and relish image of the Sun in comfortable condition, i.e. in a sheltered or shady place. Here we describe a design and features of our prototype of the device, which still, of course, has some limitations. In the future, this prototype can be improved for more efficient and useful applications.

  10. [Structuralist reading of radiologic images].

    PubMed

    Wackenheim, A

    1984-02-01

    The author suggests analysing the radiological image according to classical principles of structuralism, gestaltism, semiology, semantics. He describes applications in routine radiology: perception of complete theoretical displacement of parts of the image, phenomenology of three images (A-B-C) in theory and exams, mistake in perception by analogy.

  11. A Tentative Application Of Morphological Filters To Time-Varying Images

    NASA Astrophysics Data System (ADS)

    Billard, D.; Poquillon, B.

    1989-03-01

    In this paper, morphological filters, which are commonly used to process either 2D or multidimensional static images, are generalized to the analysis of time-varying image sequence. The introduction of the time dimension induces then interesting prop-erties when designing such spatio-temporal morphological filters. In particular, the specification of spatio-temporal structuring ele-ments (equivalent to time-varying spatial structuring elements) can be adjusted according to the temporal variations of the image sequences to be processed : this allows to derive specific morphological transforms to perform noise filtering or moving objects discrimination on dynamic images viewed by a non-stationary sensor. First, a brief introduction to the basic principles underlying morphological filters will be given. Then, a straightforward gener-alization of these principles to time-varying images will be pro-posed. This will lead us to define spatio-temporal opening and closing and to introduce some of their possible applications to process dynamic images. At last, preliminary results obtained us-ing a natural forward looking infrared (FUR) image sequence are presented.

  12. WE-H-206-03: Promises and Challenges of Benchtop X-Ray Fluorescence CT (XFCT) for Quantitative in Vivo Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, S.

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffersmore » from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly to biomedical research during the past decade. The initial development was an extension of clinical PET/CT and SPECT/CT from human to small animals and combine the unique functional information obtained from PET and SPECT with anatomical information provided by the CT in registered multi-modality images. The requirements to image a mouse whose size is an order of magnitude smaller than that of a human have spurred advances in new radiation detector technologies, novel imaging system designs and special image reconstruction and processing techniques. Examples are new detector materials and designs with high intrinsic resolution, multi-pinhole (MPH) collimator design for much improved resolution and detection efficiency compared to the conventional collimator designs in SPECT, 3D high-resolution and artifact-free MPH and sparse-view image reconstruction techniques, and iterative image reconstruction methods with system response modeling for resolution recovery and image noise reduction for much improved image quality. The spatial resolution of PET and SPECT has improved from ∼6–12 mm to ∼1 mm a few years ago to sub-millimeter today. A recent commercial small animal SPECT system has achieved a resolution of ∼0.25 mm which surpasses that of a state-of-art PET system whose resolution is limited by the positron range. More recently, multimodality SA PET/MRI and SPECT/MRI systems have been developed in research laboratories. Also, multi-modality SA imaging systems that include other imaging modalities such as optical and ultrasound are being actively pursued. In this presentation, we will provide a review of the development, recent advances and future outlook of multi-modality molecular imaging of small animals. Learning Objectives: To learn about the two major multi-modality molecular imaging techniques of small animals. To learn about the spatial resolution achievable by the molecular imaging systems for small animal today. To learn about the new multi-modality imaging instrumentation and techniques that are being developed. Sang Hyun Cho; X-ray fluorescence (XRF) imaging, such as x-ray fluorescence computed tomography (XFCT), offers unique capabilities for accurate identification and quantification of metals within the imaging objects. As a result, it has emerged as a promising quantitative imaging modality in recent years, especially in conjunction with metal-based imaging probes. This talk will familiarize the audience with the basic principles of XRF/XFCT imaging. It will also cover the latest development of benchtop XFCT technology. Additionally, the use of metallic nanoparticles such as gold nanoparticles, in conjunction with benchtop XFCT, will be discussed within the context of preclinical multimodal multiplexed molecular imaging. Learning Objectives: To learn the basic principles of XRF/XFCT imaging To learn the latest advances in benchtop XFCT development for preclinical imaging Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; L. Wang, Funding Support: NIH; COI: Microphotoacoustics; S. Cho, Yes: ;NIH/NCI grant R01CA155446 DOD/PCRP grant W81XWH-12-1-0198.« less

  13. WE-H-206-00: Advances in Preclinical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffersmore » from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly to biomedical research during the past decade. The initial development was an extension of clinical PET/CT and SPECT/CT from human to small animals and combine the unique functional information obtained from PET and SPECT with anatomical information provided by the CT in registered multi-modality images. The requirements to image a mouse whose size is an order of magnitude smaller than that of a human have spurred advances in new radiation detector technologies, novel imaging system designs and special image reconstruction and processing techniques. Examples are new detector materials and designs with high intrinsic resolution, multi-pinhole (MPH) collimator design for much improved resolution and detection efficiency compared to the conventional collimator designs in SPECT, 3D high-resolution and artifact-free MPH and sparse-view image reconstruction techniques, and iterative image reconstruction methods with system response modeling for resolution recovery and image noise reduction for much improved image quality. The spatial resolution of PET and SPECT has improved from ∼6–12 mm to ∼1 mm a few years ago to sub-millimeter today. A recent commercial small animal SPECT system has achieved a resolution of ∼0.25 mm which surpasses that of a state-of-art PET system whose resolution is limited by the positron range. More recently, multimodality SA PET/MRI and SPECT/MRI systems have been developed in research laboratories. Also, multi-modality SA imaging systems that include other imaging modalities such as optical and ultrasound are being actively pursued. In this presentation, we will provide a review of the development, recent advances and future outlook of multi-modality molecular imaging of small animals. Learning Objectives: To learn about the two major multi-modality molecular imaging techniques of small animals. To learn about the spatial resolution achievable by the molecular imaging systems for small animal today. To learn about the new multi-modality imaging instrumentation and techniques that are being developed. Sang Hyun Cho; X-ray fluorescence (XRF) imaging, such as x-ray fluorescence computed tomography (XFCT), offers unique capabilities for accurate identification and quantification of metals within the imaging objects. As a result, it has emerged as a promising quantitative imaging modality in recent years, especially in conjunction with metal-based imaging probes. This talk will familiarize the audience with the basic principles of XRF/XFCT imaging. It will also cover the latest development of benchtop XFCT technology. Additionally, the use of metallic nanoparticles such as gold nanoparticles, in conjunction with benchtop XFCT, will be discussed within the context of preclinical multimodal multiplexed molecular imaging. Learning Objectives: To learn the basic principles of XRF/XFCT imaging To learn the latest advances in benchtop XFCT development for preclinical imaging Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; L. Wang, Funding Support: NIH; COI: Microphotoacoustics; S. Cho, Yes: ;NIH/NCI grant R01CA155446 DOD/PCRP grant W81XWH-12-1-0198.« less

  14. WE-H-206-02: Recent Advances in Multi-Modality Molecular Imaging of Small Animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsui, B.

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffersmore » from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly to biomedical research during the past decade. The initial development was an extension of clinical PET/CT and SPECT/CT from human to small animals and combine the unique functional information obtained from PET and SPECT with anatomical information provided by the CT in registered multi-modality images. The requirements to image a mouse whose size is an order of magnitude smaller than that of a human have spurred advances in new radiation detector technologies, novel imaging system designs and special image reconstruction and processing techniques. Examples are new detector materials and designs with high intrinsic resolution, multi-pinhole (MPH) collimator design for much improved resolution and detection efficiency compared to the conventional collimator designs in SPECT, 3D high-resolution and artifact-free MPH and sparse-view image reconstruction techniques, and iterative image reconstruction methods with system response modeling for resolution recovery and image noise reduction for much improved image quality. The spatial resolution of PET and SPECT has improved from ∼6–12 mm to ∼1 mm a few years ago to sub-millimeter today. A recent commercial small animal SPECT system has achieved a resolution of ∼0.25 mm which surpasses that of a state-of-art PET system whose resolution is limited by the positron range. More recently, multimodality SA PET/MRI and SPECT/MRI systems have been developed in research laboratories. Also, multi-modality SA imaging systems that include other imaging modalities such as optical and ultrasound are being actively pursued. In this presentation, we will provide a review of the development, recent advances and future outlook of multi-modality molecular imaging of small animals. Learning Objectives: To learn about the two major multi-modality molecular imaging techniques of small animals. To learn about the spatial resolution achievable by the molecular imaging systems for small animal today. To learn about the new multi-modality imaging instrumentation and techniques that are being developed. Sang Hyun Cho; X-ray fluorescence (XRF) imaging, such as x-ray fluorescence computed tomography (XFCT), offers unique capabilities for accurate identification and quantification of metals within the imaging objects. As a result, it has emerged as a promising quantitative imaging modality in recent years, especially in conjunction with metal-based imaging probes. This talk will familiarize the audience with the basic principles of XRF/XFCT imaging. It will also cover the latest development of benchtop XFCT technology. Additionally, the use of metallic nanoparticles such as gold nanoparticles, in conjunction with benchtop XFCT, will be discussed within the context of preclinical multimodal multiplexed molecular imaging. Learning Objectives: To learn the basic principles of XRF/XFCT imaging To learn the latest advances in benchtop XFCT development for preclinical imaging Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; L. Wang, Funding Support: NIH; COI: Microphotoacoustics; S. Cho, Yes: ;NIH/NCI grant R01CA155446 DOD/PCRP grant W81XWH-12-1-0198.« less

  15. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics.

    PubMed

    Sun, Shao-Kai; Wang, He-Fang; Yan, Xiu-Ping

    2018-05-15

    Persistent luminescence nanoparticles (PLNPs) are unique optical materials emitting long-lasting luminescence after ceasing excitation. Such a unique optical feature allows luminescence detection without constant external illumination to avoid the interferences of autofluorescence and scattering light from biological fluids and tissues. Besides, near-infrared (NIR) PLNPs have advantages of deep penetration and the reactivation of the persistent luminescence (PL) by red or NIR light. These features make the application of NIR-emitting PLNPs in long-term bioimaging no longer limited by the lifetime of PL. To take full advantage of PLNPs for biological applications, the versatile strategies for bridging PLNPs and biological system become increasingly significant for the design of PLNPs-based nanoprobes. In this Account, we summarize our systematic achievements in the biological applications of PLNPs from biosensing/bioimaging to theranostics with emphasizing the engineering strategies for fabricating specific PLNPs-based nanoprobes. We take surface engineering and manipulating energy transfer as the major principles to design various PLNPs-based nanoprobes based on the nature of interactions between nanoprobes and targets. We have developed target-induced formation or interruption of fluorescence resonance energy transfer systems for autofluorescence-free biosensing and imaging of cancer biomarkers. We have decorated single or dual targeting ligands on PLNPs for tumor-targeted imaging, and integrated other modal imaging agents into PLNPs for multimodal imaging. We have also employed specific functionalization for various biomedical applications including chemotherapy, photodynamic therapy, photothermal therapy, stem cells tracking and PL imaging-guided gene therapy. Besides, we have modified PLNPs with multiple functional units to achieve challenging metastatic tumor theranostics. The proposed design principle and comprehensive strategies show great potential in guiding the design of PLNPs nanoprobes and promoting further development of PLNPs in the fields of biological science and medicine. We conclude this Account by outlining the future directions to further promote the practical application of PLNPs. The novel protocols for the synthesis of small-size, monodisperse, and water-soluble PLNPs with high NIR PL intensity and superlong afterglow are the vibrant directions for the biomedical applications of PLNPs. In-depth theories and evidence on luminescence mechanism of PLNPs are highly desired for further improvement of their luminescence performance. Furthermore, other irradiations without tissue penetrating depth limit, such as X-ray, are encouraged for use in energy storage and re-excitation of PLNPs, enabling imaging in deep tissue in vivo and integrating other X-ray sensitized theranostic techniques such as computed tomography imaging and radiotherapy. Last but not least, PLNPs-based nanoprobes and the brand new hybrids of PLNPs with other nanomaterials show a bright prospect for accurate diagnosis and efficient treatment of diseases besides tumors.

  16. A new concept of imaging system: telescope windows

    NASA Astrophysics Data System (ADS)

    Bourgenot, Cyril; Cowie, Euan; Young, Laura; Love, Gordon; Girkin, John; Courtial, Johannes

    2018-02-01

    A Telescope window is a novel concept of transformation-optics consisting of an array of micro-telescopes, in our configuration, of a Galilean type. When the array is considered as one multifaceted device, it acts as a traditional Galilean telescope with distinctive and attractive properties such as compactness and modularity. Each lenslet, can in principle, be independently designed for a specific optical function. In this paper, we report on the design, manufacture and prototyping, by diamond precision machining, of 2 concepts of telescope windows, and discuss both their performances and limitations with a view to use them as potential low vision aid devices to support patients with macular degeneration.

  17. Micro-CT of rodents: state-of-the-art and future perspectives

    PubMed Central

    Clark, D. P.; Badea, C. T.

    2014-01-01

    Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g. measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality. PMID:24974176

  18. Iodine and freeze-drying enhanced high-resolution MicroCT imaging for reconstructing 3D intraneural topography of human peripheral nerve fascicles.

    PubMed

    Yan, Liwei; Guo, Yongze; Qi, Jian; Zhu, Qingtang; Gu, Liqiang; Zheng, Canbin; Lin, Tao; Lu, Yutong; Zeng, Zitao; Yu, Sha; Zhu, Shuang; Zhou, Xiang; Zhang, Xi; Du, Yunfei; Yao, Zhi; Lu, Yao; Liu, Xiaolin

    2017-08-01

    The precise annotation and accurate identification of the topography of fascicles to the end organs are prerequisites for studying human peripheral nerves. In this study, we present a feasible imaging method that acquires 3D high-resolution (HR) topography of peripheral nerve fascicles using an iodine and freeze-drying (IFD) micro-computed tomography (microCT) method to greatly increase the contrast of fascicle images. The enhanced microCT imaging method can facilitate the reconstruction of high-contrast HR fascicle images, fascicle segmentation and extraction, feature analysis, and the tracing of fascicle topography to end organs, which define fascicle functions. The complex intraneural aggregation and distribution of fascicles is typically assessed using histological techniques or MR imaging to acquire coarse axial three-dimensional (3D) maps. However, the disadvantages of histological techniques (static, axial manual registration, and data instability) and MR imaging (low-resolution) limit these applications in reconstructing the topography of nerve fascicles. Thus, enhanced microCT is a new technique for acquiring 3D intraneural topography of the human peripheral nerve fascicles both to improve our understanding of neurobiological principles and to guide accurate repair in the clinic. Additionally, 3D microstructure data can be used as a biofabrication model, which in turn can be used to fabricate scaffolds to repair long nerve gaps. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Fast live cell imaging at nanometer scale using annihilating filter-based low-rank Hankel matrix approach

    NASA Astrophysics Data System (ADS)

    Min, Junhong; Carlini, Lina; Unser, Michael; Manley, Suliana; Ye, Jong Chul

    2015-09-01

    Localization microscopy such as STORM/PALM can achieve a nanometer scale spatial resolution by iteratively localizing fluorescence molecules. It was shown that imaging of densely activated molecules can accelerate temporal resolution which was considered as major limitation of localization microscopy. However, this higher density imaging needs to incorporate advanced localization algorithms to deal with overlapping point spread functions (PSFs). In order to address this technical challenges, previously we developed a localization algorithm called FALCON1, 2 using a quasi-continuous localization model with sparsity prior on image space. It was demonstrated in both 2D/3D live cell imaging. However, it has several disadvantages to be further improved. Here, we proposed a new localization algorithm using annihilating filter-based low rank Hankel structured matrix approach (ALOHA). According to ALOHA principle, sparsity in image domain implies the existence of rank-deficient Hankel structured matrix in Fourier space. Thanks to this fundamental duality, our new algorithm can perform data-adaptive PSF estimation and deconvolution of Fourier spectrum, followed by truly grid-free localization using spectral estimation technique. Furthermore, all these optimizations are conducted on Fourier space only. We validated the performance of the new method with numerical experiments and live cell imaging experiment. The results confirmed that it has the higher localization performances in both experiments in terms of accuracy and detection rate.

  20. Novel imaging technologies for characterization of microbial extracellular polysaccharides.

    PubMed

    Lilledahl, Magnus B; Stokke, Bjørn T

    2015-01-01

    Understanding of biology is underpinned by the ability to observe structures at various length scales. This is so in a historical context and is also valid today. Evolution of novel insight often emerges from technological advancement. Recent developments in imaging technologies that is relevant for characterization of extraceullar microbiological polysaccharides are summarized. Emphasis is on scanning probe and optical based techniques since these tools offers imaging capabilities under aqueous conditions more closely resembling the physiological state than other ultramicroscopy imaging techniques. Following the demonstration of the scanning probe microscopy principle, novel operation modes to increase data capture speed toward video rate, exploitation of several cantilever frequencies, and advancement of utilization of specimen mechanical properties as contrast, also including their mode of operation in liquid, have been developed on this platform. Combined with steps in advancing light microscopy with resolution beyond the far field diffraction limit, non-linear methods, and combinations of the various imaging modalities, the potential ultramicroscopy toolbox available for characterization of exopolysaccharides (EPS) are richer than ever. Examples of application of such ultramicroscopy strategies range from imaging of isolated microbial polysaccharides, structures being observed when they are involved in polyelectrolyte complexes, aspects of their enzymatic degradation, and cell surface localization of secreted polysaccharides. These, and other examples, illustrate that the advancement in imaging technologies relevant for EPS characterization supports characterization of structural aspects.

  1. Imaging Genetics

    ERIC Educational Resources Information Center

    Munoz, Karen E.; Hyde, Luke W.; Hariri, Ahmad R.

    2009-01-01

    Imaging genetics is an experimental strategy that integrates molecular genetics and neuroimaging technology to examine biological mechanisms that mediate differences in behavior and the risks for psychiatric disorder. The basic principles in imaging genetics and the development of the field are discussed.

  2. On-site Rapid Diagnosis of Intracranial Hematoma using Portable Multi-slice Microwave Imaging System.

    PubMed

    Mobashsher, Ahmed Toaha; Abbosh, A M

    2016-11-29

    Rapid, on-the-spot diagnostic and monitoring systems are vital for the survival of patients with intracranial hematoma, as their conditions drastically deteriorate with time. To address the limited accessibility, high costs and static structure of currently used MRI and CT scanners, a portable non-invasive multi-slice microwave imaging system is presented for accurate 3D localization of hematoma inside human head. This diagnostic system provides fast data acquisition and imaging compared to the existing systems by means of a compact array of low-profile, unidirectional antennas with wideband operation. The 3D printed low-cost and portable system can be installed in an ambulance for rapid on-site diagnosis by paramedics. In this paper, the multi-slice head imaging system's operating principle is numerically analysed and experimentally validated on realistic head phantoms. Quantitative analyses demonstrate that the multi-slice head imaging system is able to generate better quality reconstructed images providing 70% higher average signal to clutter ratio, 25% enhanced maximum signal to clutter ratio and with around 60% hematoma target localization compared to the previous head imaging systems. Nevertheless, numerical and experimental results demonstrate that previous reported 2D imaging systems are vulnerable to localization error, which is overcome in the presented multi-slice 3D imaging system. The non-ionizing system, which uses safe levels of very low microwave power, is also tested on human subjects. Results of realistic phantom and subjects demonstrate the feasibility of the system in future preclinical trials.

  3. Research on Coordinate Transformation Method of Gb-Sar Image Supported by 3d Laser Scanning Technology

    NASA Astrophysics Data System (ADS)

    Wang, P.; Xing, C.

    2018-04-01

    In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D) plane coordinate system with the common three-dimensional (3D) terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.

  4. Reliable clarity automatic-evaluation method for optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Qin, Bangyong; Shang, Ren; Li, Shengyang; Hei, Baoqin; Liu, Zhiwen

    2015-10-01

    Image clarity, which reflects the sharpness degree at the edge of objects in images, is an important quality evaluate index for optical remote sensing images. Scholars at home and abroad have done a lot of work on estimation of image clarity. At present, common clarity-estimation methods for digital images mainly include frequency-domain function methods, statistical parametric methods, gradient function methods and edge acutance methods. Frequency-domain function method is an accurate clarity-measure approach. However, its calculation process is complicate and cannot be carried out automatically. Statistical parametric methods and gradient function methods are both sensitive to clarity of images, while their results are easy to be affected by the complex degree of images. Edge acutance method is an effective approach for clarity estimate, while it needs picking out the edges manually. Due to the limits in accuracy, consistent or automation, these existing methods are not applicable to quality evaluation of optical remote sensing images. In this article, a new clarity-evaluation method, which is based on the principle of edge acutance algorithm, is proposed. In the new method, edge detection algorithm and gradient search algorithm are adopted to automatically search the object edges in images. Moreover, The calculation algorithm for edge sharpness has been improved. The new method has been tested with several groups of optical remote sensing images. Compared with the existing automatic evaluation methods, the new method perform better both in accuracy and consistency. Thus, the new method is an effective clarity evaluation method for optical remote sensing images.

  5. WE-DE-206-02: MRI Hardware - Magnet, Gradient, RF Coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharian, A.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  6. WE-DE-206-00: MRI Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  7. WE-DE-206-04: MRI Pulse Sequences - Spin Echo, Gradient Echo, EPI, Non-Cartesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooley, R.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  8. WE-DE-206-01: MRI Signal in Biological Tissues - Proton, Spin, T1, T2, T2*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorny, K.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  9. High frame rate imaging system for limited diffraction array beam imaging with square-wave aperture weightings.

    PubMed

    Lu, Jian-Yu; Cheng, Jiqi; Wang, Jing

    2006-10-01

    A general-purpose high frame rate (HFR) medical imaging system has been developed. This system has 128 independent linear transmitters, each of which is capable of producing an arbitrary broadband (about 0.05-10 MHz) waveform of up to +/- 144 V peak voltage on a 75-ohm resistive load using a 12-bit/40-MHz digital-to-analog converter. The system also has 128 independent, broadband (about 0.25-10 MHz), and time-variable-gain receiver channels, each of which has a 12-bit/40-MHz analog-to-digital converter and up to 512 MB of memory. The system is controlled by a personal computer (PC), and radio frequency echo data of each channel are transferred to the same PC via a standard USB 2.0 port for image reconstructions. Using the HFR imaging system, we have developed a new limited-diffraction array beam imaging method with square-wave aperture voltage weightings. With this method, in principle, only one or two transmitters are required to excite a fully populated two-dimensional (2-D) array transducer to achieve an equivalent dynamic focusing in both transmission and reception to reconstruct a high-quality three-dimensional image without the need of the time delays of traditional beam focusing and steering, potentially simplifying the transmitter subsystem of an imager. To validate the method, for simplicity, 2-D imaging experiments were performed using the system. In the in vitro experiment, a custom-made, 128-element, 0.32-mm pitch, 3.5-MHz center frequency linear array transducer with about 50% fractional bandwidth was used to reconstruct images of an ATS 539 tissue-mimicking phantom at an axial distance of 130 mm with a field of view of more than 90 degrees. In the in vivo experiment of a human heart, images with a field of view of more than 90 degrees at 120-mm axial distance were obtained with a 128-element, 2.5-MHz center frequency, 0.15-mm pitch Acuson V2 phased array. To ensure that the system was operated under the limits set by the U.S. Food and Drug Administration, the mechanical index, thermal index, and acoustic output were measured. Results show that higher-quality images can be reconstructed with the square-wave aperture weighting method due to an increased penetration depth as compared to the exact weighting method developed previously, and a frame rate of 486 per second was achieved at a pulse repetition frequency of about 5348 Hz for the human heart.

  10. Clinical application of 'Justification' and 'Optimization' principle of ALARA in pediatric CT imaging: "How many children can be protected from unnecessary radiation?".

    PubMed

    Sodhi, Kushaljit S; Krishna, Satheesh; Saxena, Akshay K; Sinha, Anindita; Khandelwal, Niranjan; Lee, Edward Y

    2015-09-01

    Practice of ALARA (as low as reasonably achievable) principle in the developed world is currently well established. However, there is striking lack of published data regarding such experience in the developing countries. Therefore, the goal of this study is to prospectively evaluate CT request forms to assess how many children could be protected from harmful radiation exposure if 'Justification' and 'Optimization' principles of ALARA are applied before obtaining CT imaging in a developing country. This can save children from potential radiation risks including development of brain cancer and leukemia. Consecutive CT request forms over a six month study period (May 16, 2013 to November 15, 2013) in a tertiary pediatric children's hospital in India were prospectively reviewed by two pediatric radiologists before obtaining CT imaging. First, 'Justification' of CT was evaluated and then 'Optimization' was applied for evaluation of appropriateness of the requested CT studies. The number (and percentage) of CT studies avoided by applying 'Justification' and 'Optimization' principle of ALARA were calculated. The difference in number of declined and optimized CT requests between CT requests from inpatient and outpatient departments was compared using Chi-Square test. A total of 1302 consecutive CT request forms were received during the study period. Some of the request forms (n=86; 6.61%) had requests for more than one (multiple) anatomical regions, hence, a total of 1392 different anatomical CT requests were received. Based on evaluation of the CT request forms for 'Justification' and 'Optimization' principle of ALARA by pediatric radiology reviewers, 111 individual anatomic part CT requests from 105 pediatric patients were avoided. Therefore, 8.06% (105 out of 1302 pediatric patients) were protected from unnecessary or additional radiation exposure.The rates of declined or optimized CT requests from inpatient department was significantly higher than that from outpatient departments (p<0.05). A substantial number of pediatric patients, particularly coming from outpatient departments, can be protected from unnecessary or additional radiation exposure from CT imaging when 'Justification' and 'Optimization' principle of ALARA are applied before obtaining CT imaging in a developing country. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Pragmatic ethical basis for radiation protection in diagnostic radiology

    PubMed Central

    Zölzer, Friedo

    2016-01-01

    Objective: Medical ethics has a tried and tested literature and a global active research community. Even among health professionals, literate and fluent in medical ethics, there is low recognition of radiation protection principles such as justification and optimization. On the other hand, many in healthcare environments misunderstand dose limitation obligations and incorrectly believe patients are protected by norms including a dose limit. Implementation problems for radiation protection in medicine possibly flow from apparent inadequacies of the International Commission on Radiological Protection (ICRP) principles taken on their own, coupled with their failure to transfer successfully to the medical world. Medical ethics, on the other hand, is essentially global, is acceptable in most cultures, is intuitively understood in hospitals, and its expectations are monitored, even by managements. This article presents an approach to ethics in diagnostic imaging rooted in the medical tradition, and alert to contemporary social expectations. ICRP and the International Radiation Protection Association (IRPA), both alert to growing ethical concerns, organized a series of consultations on ethics for general radiation protection in the last few years. Methods: The literature on medical ethics and implicit ICRP ethical values were reviewed qualitatively, with a view to identifying a system that will help guide contemporary behaviour in radiation protection of patients. Application of the system is illustrated in six clinical scenarios. The proposed system is designed, as far as is possible, so as not to be in conflict with the conclusions emerging from the ICRP/IRPA consultations. Results and conclusion: A widely recognized and well-respected system of medical ethics was identified that has global reach and claims acceptance in all cultures. Three values based on this system are grouped with two additional values to provide an ethical framework for application in diagnostic imaging. This system has the potential to be robust and to reach conclusions that are in accord with contemporary medical, social and ethical thinking. The system is not intended to replace the ICRP principles. Rather, it is intended as a well-informed interim approach that will help judge and analyse situations that arouse ethical concerns in radiology. Six scenarios illustrate the practicality of the value system in alerting one to possible deficits in practice. Advances in knowledge: Five widely recognized values and the basis for them are identified to support the contemporary practice of diagnostic radiology. These are essential to complement the widely used ICRP principles pending further development in the area. PMID:26796852

  12. Ultrasound elastography of the prostate: state of the art.

    PubMed

    Correas, J-M; Tissier, A-M; Khairoune, A; Khoury, G; Eiss, D; Hélénon, O

    2013-05-01

    Prostate cancer is the cancer exhibiting the highest incidence rate and it appears as the second cause of cancer death in men, after lung cancer. Prostate cancer is difficult to detect, and the treatment efficacy remains limited despite the increase use of biological tests (prostate-specific antigen [PSA] dosage), the development of new imaging modalities, and the use of invasive procedures such as biopsy. Ultrasound elastography is a novel imaging technique capable of mapping tissue stiffness of the prostate. It is known that prostatic cancer tissue is often harder than healthy tissue (information used by digital rectal examination [DRE]). Two elastography techniques have been developed based on different principles: first, quasi-static (or strain) technique, and second, shear wave technique. The tissue stiffness information provided by US elastography should improve the detection of prostate cancer and provide guidance for biopsy. Prostate elastography provides high sensitivity for detecting prostate cancer and shows high negative predictive values, ensuring that few cancers will be missed. US elastography should become an additional method of imaging the prostate, complementing the conventional transrectal ultrasound and MRI. This technique requires significant training (especially for quasi-static elastography) to become familiar with acquisition process, acquisition technique, characteristics and limitations, and to achieve correct diagnoses. Copyright © 2013 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  13. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging

    PubMed Central

    2016-01-01

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a ‘golden technique’ that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574313

  14. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.

    PubMed

    Ugurbil, Kamil

    2016-10-05

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  15. Doppler color imaging. Principles and instrumentation.

    PubMed

    Kremkau, F W

    1992-01-01

    DCI acquires Doppler-shifted echoes from a cross-section of tissue scanned by an ultrasound beam. These echoes are then presented in color and superimposed on the gray-scale anatomic image of non-Doppler-shifted echoes received during the scan. The flow echoes are assigned colors according to the color map chosen. Usually red, yellow, or white indicates positive Doppler shifts (approaching flow) and blue, cyan, or white indicates negative shifts (receding flow). Green is added to indicate variance (disturbed or turbulent flow). Several pulses (the number is called the ensemble length) are needed to generate a color scan line. Linear, convex, phased, and annular arrays are used to acquire the gray-scale and color-flow information. Doppler color-flow instruments are pulsed-Doppler instruments and are subject to the same limitations, such as Doppler angle dependence and aliasing, as other Doppler instruments. Color controls include gain, TGC, map selection, variance on/off, persistence, ensemble length, color/gray priority. Nyquist limit (PRF), baseline shift, wall filter, and color window angle, location, and size. Doppler color-flow instruments generally have output intensities intermediate between those of gray-scale imaging and pulsed-Doppler duplex instruments. Although there is no known risk with the use of color-flow instruments, prudent practice dictates that they be used for medical indications and with the minimum exposure time and instrument output required to obtain the needed diagnostic information.

  16. Biological applications of confocal fluorescence polarization microscopy

    NASA Astrophysics Data System (ADS)

    Bigelow, Chad E.

    Fluorescence polarization microscopy is a powerful modality capable of sensing changes in the physical properties and local environment of fluorophores. In this thesis we present new applications for the technique in cancer diagnosis and treatment and explore the limits of the modality in scattering media. We describe modifications to our custom-built confocal fluorescence microscope that enable dual-color imaging, optical fiber-based confocal spectroscopy and fluorescence polarization imaging. Experiments are presented that indicate the performance of the instrument for all three modalities. The limits of confocal fluorescence polarization imaging in scattering media are explored and the microscope parameters necessary for accurate polarization images in this regime are determined. A Monte Carlo routine is developed to model the effect of scattering on images. Included in it are routines to track the polarization state of light using the Mueller-Stokes formalism and a model for fluorescence generation that includes sampling the excitation light polarization ellipse, Brownian motion of excited-state fluorophores in solution, and dipole fluorophore emission. Results from this model are compared to experiments performed on a fluorophore-embedded polymer rod in a turbid medium consisting of polystyrene microspheres in aqueous suspension. We demonstrate the utility of the fluorescence polarization imaging technique for removal of contaminating autofluorescence and for imaging photodynamic therapy drugs in cell monolayers. Images of cells expressing green fluorescent protein are extracted from contaminating fluorescein emission. The distribution of meta-tetrahydroxypheny1chlorin in an EMT6 cell monolayer is also presented. A new technique for imaging enzyme activity is presented that is based on observing changes in the anisotropy of fluorescently-labeled substrates. Proof-of-principle studies are performed in a model system consisting of fluorescently labeled bovine serum albumin attached to sepharose beads. The action of trypsin and proteinase K on the albumin is monitored to demonstrate validity of the technique. Images of the processing of the albumin in J774 murine macrophages are also presented indicating large intercellular differences in enzyme activity. Future directions for the technique are also presented, including the design of enzyme probes specific for prostate specific antigen based on fluorescently-labeled dendrimers. A technique for enzyme imaging based on extracellular autofluorescence is also proposed.

  17. RF Tomography for Tunnel Detection: Principles and Inversion Schemes

    NASA Astrophysics Data System (ADS)

    Lo Monte, L.; Erricolo, D.; Inan, U. S.; Wicks, M. C.

    2008-12-01

    We propose a novel way to detect underground tunnels based on classical seismic tomography, Ground Penetrating Radar (GPR), inverse scattering principles, and the deployment of distributed sensors, which we call "Distributed RF Tomography". Tunnel detection has been a critical problem that cannot be considered fully solved. Presently, tunnel detection is performed by methods that include seismic sensors, electrical impedance, microgravity, boreholes, and GPR. All of these methods have drawbacks that make them not applicable for use in unfriendly environments, such as battlefields. Specifically, they do not cover wide surface areas, they are generally shallow, they are limited to vertical prospecting, and require the user to be in situ, which may jeopardize one's safety. Additional application of the proposed distributed RF tomography include monitoring sensitive areas, (e.g. banks, power plants, military bases, prisons, national borders) and civil applications (e.g. environmental engineering, mine safety, search and rescue, speleology, archaeology and geophysics). The novelty of a Distributed RF tomography system consists of the following. 1) Sensors are scattered randomly above the ground, thus saving time and money compared to the use of boreholes. 2) The use of lower operating frequency (around HF), which allows for deeper penetration. 3) The use of CW diffraction tomography, which increases the resolution to sub-wavelength values, independently from the sensor displacement, and increases the SNR. 4) Use of linear inversion schemes that are suited for tunnel detection. 5) The use of modulation schemes and signal processing algorithms to mitigate interferences and noise. This presentation will cover: 1. Current physical limits of existing techniques for tunnel detection. 2. Concept of Distributed RF Tomography. 3. Inversion theories and strategies a. Proper forward model for voids buried into an homogeneous medium b. Extended matched filtering inversion c. Near field formulation : Dyadic representation d. Fourier approach: principles and techniques aimed at improving the reconstructed image. e. Theoretical Limits f. Super-Resolution : Singular Values Decomposition and MUSIC 4. Propagation Model and theoretical limitations. 5. Transmitting and Receiving design, with signal processing and modulation. 6. Numerical Simulations using FDTD tools.

  18. Clinical effectiveness in the diagnosis and acute management of pediatric nephrolithiasis.

    PubMed

    Van Batavia, Jason P; Tasian, Gregory E

    2016-12-01

    The incidence of pediatric nephrolithiasis has risen over the past few decades leading to a growing public health burden. Children and adolescents represent a unique patient population secondary to their higher risks from radiation exposure as compared to adults, high risk of recurrence, and longer follow up time given their longer life expectancies. Ultrasound imaging is the first-line modality for diagnosing suspected nephrolithiasis in children. Although data is limited, the best evidence based medicine supports the use of alpha-blockers as first-line MET in children, especially when stones are small and in a more distal ureteral location. Surgical management of pediatric nephrolithiasis is similar to that in adults with ESWL and URS first-line for smaller stones and PCNL reserved for larger renal stone burden. Clinical effectiveness in minimizing risks in children and adolescents with nephrolithiasis centers around ED pathways that limit CT imaging, strict guidance to ALARA principles or use of US during surgical procedures, and education of both patients and families on the risks of repeat ionizing radiation exposures during follow up and acute colic events. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Light, Imaging, Vision: An interdisciplinary undergraduate course

    NASA Astrophysics Data System (ADS)

    Nelson, Philip

    Students in physical and life science, and in engineering, need to know about the physics and biology of light. In the 21st century, it has become increasingly clear that the quantum nature of light is essential both for the latest imaging modalities and even to advance our knowledge of fundamental processes, such as photosynthesis and human vision. But many optics courses remain rooted in classical physics, with photons as an afterthought. I'll describe a new undergraduate course, for students in several science and engineering majors, that takes students from the rudiments of probability theory to modern methods like fluorescence imaging and Förster resonance energy transfer. After a digression into color vision, students then see how the Feynman principle explains the apparently wavelike phenomena associated to light, including applications like diffraction limit, subdiffraction imaging, total internal reflection and TIRF microscopy. Then we see how scientists documented the single-quantum sensitivity of the eye seven decades earlier than `ought' to have been possible, and finally close with the remarkable signaling cascade that delivers such outstanding performance. A new textbook embodying this course will be published by Princeton University Press in Spring 2017. Partially supported by the United States National Science Foundation under Grant PHY-1601894.

  20. Attomicroscopy: from femtosecond to attosecond electron microscopy

    NASA Astrophysics Data System (ADS)

    Hassan, Mohammed Th

    2018-02-01

    In the last decade, the development of ultrafast electron diffraction (UED) and microscopy (UEM) have enabled the imaging of atomic motion in real time and space. These pivotal table-top tools opened the door for a vast range of applications in different areas of science spanning chemistry, physics, materials science, and biology. We first discuss the basic principles and recent advancements, including some of the important applications, of both UED and UEM. Then, we discuss the recent advances in the field that have enhanced the spatial and temporal resolutions, where the latter, is however, still limited to a few hundreds of femtoseconds, preventing the imaging of ultrafast dynamics of matter lasting few tens of femtoseconds. Then, we present our new optical gating approach for generating an isolated 30 fs electron pulse with sufficient intensity to attain a temporal resolution on the same time scale. This achievement allows, for the first time, imaging the electron dynamics of matter. Finally, we demonstrate the feasibility of the optical gating approach to generate an isolated attosecond electron pulse, utilizing our recently demonstrated optical attosecond laser pulse, which paves the way for establishing the field of ‘Attomicroscopy’, ultimately enabling us to image the electron motion in action.

  1. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils

    PubMed Central

    Georgiadis, Marios; Müller, Ralph; Schneider, Philipp

    2016-01-01

    Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils. PMID:27335222

  2. The cognitive nexus between Bohr's analogy for the atom and Pauli's exclusion schema.

    PubMed

    Ulazia, Alain

    2016-03-01

    The correspondence principle is the primary tool Bohr used to guide his contributions to quantum theory. By examining the cognitive features of the correspondence principle and comparing it with those of Pauli's exclusion principle, I will show that it did more than simply 'save the phenomena'. The correspondence principle in fact rested on powerful analogies and mental schemas. Pauli's rejection of model-based methods in favor of a phenomenological, rule-based approach was therefore not as disruptive as some historians have indicated. Even at a stage that seems purely phenomenological, historical studies of theoretical development should take into account non-formal, model-based approaches in the form of mental schemas, analogies and images. In fact, Bohr's images and analogies had non-classical components which were able to evoke the idea of exclusion as a prohibition law and as a preliminary mental schema. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Introductory review on `Flying Triangulation': a motion-robust optical 3D measurement principle

    NASA Astrophysics Data System (ADS)

    Ettl, Svenja

    2015-04-01

    'Flying Triangulation' (FlyTri) is a recently developed principle which allows for a motion-robust optical 3D measurement of rough surfaces. It combines a simple sensor with sophisticated algorithms: a single-shot sensor acquires 2D camera images. From each camera image, a 3D profile is generated. The series of 3D profiles generated are aligned to one another by algorithms, without relying on any external tracking device. It delivers real-time feedback of the measurement process which enables an all-around measurement of objects. The principle has great potential for small-space acquisition environments, such as the measurement of the interior of a car, and motion-sensitive measurement tasks, such as the intraoral measurement of teeth. This article gives an overview of the basic ideas and applications of FlyTri. The main challenges and their solutions are discussed. Measurement examples are also given to demonstrate the potential of the measurement principle.

  4. The Spatial Vision Tree: A Generic Pattern Recognition Engine- Scientific Foundations, Design Principles, and Preliminary Tree Design

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2010-01-01

    New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.

  5. Voltage Imaging of Waking Mouse Cortex Reveals Emergence of Critical Neuronal Dynamics

    PubMed Central

    Scott, Gregory; Fagerholm, Erik D.; Mutoh, Hiroki; Leech, Robert; Sharp, David J.; Shew, Woodrow L.

    2014-01-01

    Complex cognitive processes require neuronal activity to be coordinated across multiple scales, ranging from local microcircuits to cortex-wide networks. However, multiscale cortical dynamics are not well understood because few experimental approaches have provided sufficient support for hypotheses involving multiscale interactions. To address these limitations, we used, in experiments involving mice, genetically encoded voltage indicator imaging, which measures cortex-wide electrical activity at high spatiotemporal resolution. Here we show that, as mice recovered from anesthesia, scale-invariant spatiotemporal patterns of neuronal activity gradually emerge. We show for the first time that this scale-invariant activity spans four orders of magnitude in awake mice. In contrast, we found that the cortical dynamics of anesthetized mice were not scale invariant. Our results bridge empirical evidence from disparate scales and support theoretical predictions that the awake cortex operates in a dynamical regime known as criticality. The criticality hypothesis predicts that small-scale cortical dynamics are governed by the same principles as those governing larger-scale dynamics. Importantly, these scale-invariant principles also optimize certain aspects of information processing. Our results suggest that during the emergence from anesthesia, criticality arises as information processing demands increase. We expect that, as measurement tools advance toward larger scales and greater resolution, the multiscale framework offered by criticality will continue to provide quantitative predictions and insight on how neurons, microcircuits, and large-scale networks are dynamically coordinated in the brain. PMID:25505314

  6. Construction of single-crystalline supramolecular networks of perchlorinated hexa-peri-hexabenzocoronene on Au(111)

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Zhang, Yanfang; Li, Geng; Lu, Jianchen; Lin, Xiao; Tan, Yuanzhi; Feng, Xinliang; Du, Shixuan; Müllen, Klaus; Gao, Hong-Jun

    2015-03-01

    The self-assembly of the perchlorinated hexa-peri-hexabenzocoronene (PCHBC) molecules on Au(111) has been studied by a low temperature scanning tunneling microscopy (STM) combining with density functional theory based first principle calculations. Highly ordered supramolecular networks with single domains limited by the terraces are formed on Au(111) substrate. High resolution images of the PCHBC molecules, confirmed by first principle simulations, are obtained. It reveals the close-packed arrangement of the PCHBC molecules on Au(111). The calculated charge distribution of PCHBC molecules shows the existence of attractive halogen-halogen interaction between neighboring molecules. Compared with the disordered adsorption of hexa-peri-hexabenzocoronene on Au(111), we conclude that the formation of attractive ClCl interactions between neighbors is the key factor to form the highly ordered, close-packed networks. Due to the steric hindrance resulted from the peripheral chlorine atoms, the PCHBC molecule is contorted and forms the doubly concave conformation, which is different from the hexa-peri-hexabenzocoronene with a planar structure. By using this supramolecular network as a template, we deposited C60 molecules on it at room temperature with low coverage. The STM images taken at low temperature show that the C60 molecules are mono-dispersed on the networks and adsorb on top of the PCHBC molecules, forming a typical concave-convex host-guest system.

  7. 24 CFR 3282.402 - General principles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false General principles. 3282.402... and Remedial Actions § 3282.402 General principles. (a) Nothing in this subpart or in these... manufactured home manufacturers to provide remedial actions under this subpart is limited by the principle that...

  8. The Syntax of Moving Images: Principles and Applications.

    ERIC Educational Resources Information Center

    Metallinos, Nikos

    This paper examines the various theories of motion relating to visual communication media, discusses the syntactic rules of moving images derived from those of still pictures, and underlines the motions employed in the construction of moving images, primarily television pictures. The following theories of motion and moving images are presented:…

  9. Computed tomography imaging and angiography - principles.

    PubMed

    Kamalian, Shervin; Lev, Michael H; Gupta, Rajiv

    2016-01-01

    The evaluation of patients with diverse neurologic disorders was forever changed in the summer of 1973, when the first commercial computed tomography (CT) scanners were introduced. Until then, the detection and characterization of intracranial or spinal lesions could only be inferred by limited spatial resolution radioisotope scans, or by the patterns of tissue and vascular displacement on invasive pneumoencaphalography and direct carotid puncture catheter arteriography. Even the earliest-generation CT scanners - which required tens of minutes for the acquisition and reconstruction of low-resolution images (128×128 matrix) - could, based on density, noninvasively distinguish infarct, hemorrhage, and other mass lesions with unprecedented accuracy. Iodinated, intravenous contrast added further sensitivity and specificity in regions of blood-brain barrier breakdown. The advent of rapid multidetector row CT scanning in the early 1990s created renewed enthusiasm for CT, with CT angiography largely replacing direct catheter angiography. More recently, iterative reconstruction postprocessing techniques have made possible high spatial resolution, reduced noise, very low radiation dose CT scanning. The speed, spatial resolution, contrast resolution, and low radiation dose capability of present-day scanners have also facilitated dual-energy imaging which, like magnetic resonance imaging, for the first time, has allowed tissue-specific CT imaging characterization of intracranial pathology. © 2016 Elsevier B.V. All rights reserved.

  10. Fused oblique incidence reflectometry and confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Risi, Matthew D.; Rouse, Andrew R.; Gmitro, Arthur F.

    2011-03-01

    Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure, but relies on exogenous fluorophores, has a relatively limited penetration depth (100 μm) and field of view (700 μm), and produces a high rate of detailed information to the user. A new catheter based multi-modal system has been designed that combines confocal imaging and oblique incidence reflectometry (OIR), which is a non-invasive method capable of rapidly extracting tissue absorption, μa, and reduced scattering, μ's, spectra from tissue. The system builds on previous developments of a custom slit-scan multi-spectral confocal microendoscope and is designed to rapidly switch between diffuse spectroscopy and confocal fluorescence imaging modes of operation. An experimental proof-of-principle catheter has been developed that consists of a fiber bundle for traditional confocal fluorescence imaging and a single OIR source fiber which is manually redirected at +/- 26 degrees. Diffusely scattered light from each orientation of the source fiber is collected via the fiber bundle, with a frame of data representing spectra collected at a range of distances from the OIR source point. Initial results with intralipid phantoms show good agreement to published data over the 550-650 nm spectral range. We successfully imaged and measured the optical properties of rodent cardiac muscle.

  11. Tracing and quantification of pharmaceuticals using MR imaging and spectroscopy at clinical MRI system

    NASA Astrophysics Data System (ADS)

    Jeong, Eun-Kee; Liu, Xin; Shi, Xianfeng; Yu, Y. Bruce; Lu, Zeng-Rong

    2012-10-01

    Magnetic resonance imaging (MRI) and spectroscopy (MRS) is very powerful modality for imaging and localized investigation of biological tissue. Medical MRI measures nuclear magnetization of the water protons, which consists of 70 % of our body. MRI provides superior contrast among different soft tissues to all other existing medical imaging modalities, including ultrasound, X-ray CT, PET, and SPECT. In principle, MRI/S may be an ideal non-invasive tool for drug delivery research. However, because of its low sensitivity, a large dose is required for tracing pharmaceuticals. Therefore, its use for imaging of pharmaceuticals is very limited mostly to molecules that contain a paramagnetic metal ion, such as gadolinium (Gd3+) and manganese (Mn2+). The paramagnetic metal ion provides a large fluctuating magnetic field at the proton in the water molecule via a coordinate site. The measurement of local drug concentration is the first step for further quantification. Local concentration of the paramagnetic-ion based MRI contrast agent can be indirectly measured via the change in the water signal intensity. 19F MRI/S of fluorinated complex may be an option for drug delivery and tracing agent, because the fluorinated molecule may be directly detected due to its large magnetic moment (94 % of proton) and 100 % abundance.

  12. Combination of confocal principle and aperture stop separation improves suppression of crystalline lens fluorescence in an eye model.

    PubMed

    Klemm, Matthias; Blum, Johannes; Link, Dietmar; Hammer, Martin; Haueisen, Jens; Schweitzer, Dietrich

    2016-09-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique to detect changes in the human retina. The autofluorescence decay over time, generated by endogenous fluorophores, is measured in vivo. The strong autofluorescence of the crystalline lens, however, superimposes the intensity decay of the retina fluorescence, as the confocal principle is not able to suppress it sufficiently. Thus, the crystalline lens autofluorescence causes artifacts in the retinal fluorescence lifetimes determined from the intensity decays. Here, we present a new technique to suppress the autofluorescence of the crystalline lens by introducing an annular stop into the detection light path, which we call Schweitzer's principle. The efficacy of annular stops with an outer diameter of 7 mm and inner diameters of 1 to 5 mm are analyzed in an experimental setup using a model eye based on fluorescent dyes. Compared to the confocal principle, Schweitzer's principle with an inner diameter of 3 mm is able to reduce the simulated crystalline lens fluorescence to 4%, while 42% of the simulated retina fluorescence is preserved. Thus, we recommend the implementation of Schweitzer's principle in scanning laser ophthalmoscopes used for fundus autofluorescence measurements, especially the FLIO device, for improved image quality.

  13. Astrometry for Astrophysics

    NASA Astrophysics Data System (ADS)

    van Altena, William F.

    Part I. Astrometry in the Twenty-First Century: 1. Opportunities and challenges for astrometry in the twenty-first century M. Perryman; 2. Astrometric satellites L. Lindegren; 3. Ground-based opportunities for astrometry N. Zacharias; Part II. Relativistic Foundations of Astrometry and Celestial Mechanics: 4. Vectors in astrometry, an introduction L. Lindegren; 5. Relativistic principles of astrometry and celestial mechanics S. Klioner; 6. Celestial mechanics of the N-body problem S. Klioner; 7. Celestial coordinate systems and positions N. Capitaine and M. Stavinschi; 8. Fundamental algorithms for celestial coordinates and positions P. Wallace; Part III. Observing through the Atmosphere: 9. The Earth's atmosphere: refraction, turbulence, delays and limitations to astrometic precision W. van Altena and E. Fomalont; 10. Astrometry with ground-based diffraction-limited imaging A. Ghez; 11. Optical interferometry A. Glindermann; 12. Radio interferometry E. Fomalont; Part VI. From Detected Photons to the Celestial Sphere: 13. Geometrical optics and astrometry D. Schroeder; 14. CCD imaging detectors S. Howell; 15. Using CCDs in the time-delayed integration mode D. Rabinowitz; 16. Statistical astronomy A. Brown; 17. Analyzing poorly-sampled images: HST imaging astrometry J. Anderson; 18. Image deconvolution J. Nuñez; 19. From measures to celestial coordinates Z. H. Tang and W. van Altena; 20. Astrometric catalogs: concepts, history and necessity C. López; 21. Trigonometric parallaxes F. Benedict and B. McArthur; Part V. Applications of Astrometry to Topics in Astrophysics: 22. Galactic structure astrometry R. Méndez; 23. Binary and multiple stars E. Horch; 24. Binaries: HST, Hipparcos and Gaia D. Pourbaix; 25. Star clusters I. Platais; 26. Solar System astrometry F. Mignard; 27. Extrasolar planets A. Sozzetti; 28. Astrometric measurement and cosmology R. Easther; Appendices; Index.

  14. Astrometry for Astrophysics

    NASA Astrophysics Data System (ADS)

    van Altena, William F.

    2012-11-01

    Part I. Astrometry in the Twenty-First Century: 1. Opportunities and challenges for astrometry in the twenty-first century M. Perryman; 2. Astrometric satellites L. Lindegren; 3. Ground-based opportunities for astrometry N. Zacharias; Part II. Relativistic Foundations of Astrometry and Celestial Mechanics: 4. Vectors in astrometry, an introduction L. Lindegren; 5. Relativistic principles of astrometry and celestial mechanics S. Klioner; 6. Celestial mechanics of the N-body problem S. Klioner; 7. Celestial coordinate systems and positions N. Capitaine and M. Stavinschi; 8. Fundamental algorithms for celestial coordinates and positions P. Wallace; Part III. Observing through the Atmosphere: 9. The Earth's atmosphere: refraction, turbulence, delays and limitations to astrometic precision W. van Altena and E. Fomalont; 10. Astrometry with ground-based diffraction-limited imaging A. Ghez; 11. Optical interferometry A. Glindermann; 12. Radio interferometry E. Fomalont; Part VI. From Detected Photons to the Celestial Sphere: 13. Geometrical optics and astrometry D. Schroeder; 14. CCD imaging detectors S. Howell; 15. Using CCDs in the time-delayed integration mode D. Rabinowitz; 16. StaStatistical astronomy A. Brown; 17. Analyzing poorly-sampled images: HST imaging astrometry J. Anderson; 18. Image deconvolution J. Nuñez; 19. From measures to celestial coordinates Z. H. Tang and W. van Altena; 20. Astrometric catalogs: concepts , history and necessity C. Löpez; 21. Trigonometric parallaxes F. Benedict and B. McArthur; Part V. Applications of Astrometry to Topics in Astrophysics: 22. Galactic structure astrometry R. Méndez; 23. Binary and multiple stars E. Horch; 24. Binaries: HST, Hipparcos and Gaia D. Pourbaix; 25. Star clusters I. Platais; 26. Solar System astrometry F. Mignard; 27. Extrasolar planets A. Sozzetti; 28. Astrometric measurement and cosmology R. Easther; Appendices; Index.

  15. Carbon Dioxide Laser Ablation of Basal Cell Carcinoma with Visual Guidance by Reflectance Confocal Microscopy: A Proof of Principle Pilot Study

    PubMed Central

    Hibler, B.P.; Sierra, H.; Cordova, M.; Phillips, W.; Rajadhyaksha, M.; Nehal, K.S.; Rossi, A.M.

    2016-01-01

    Background Laser ablation is an alternative, non-surgical treatment modality for low-risk basal cell carcinoma (BCC); however, lack of confirmative tumour destruction or residual tumour presence has been a limiting factor to adoption. Reflectance confocal microscopy (RCM) provides non-invasive, cellular-level resolution imaging of the skin and is capable of identifying tumour. Objective To evaluate the use of RCM to guide carbon dioxide (CO2) laser ablation of BCC, confirm destruction, and correlate findings with histology. Methods RCM was used pre-ablation to evaluate for features of BCC. Ablation was performed with a CO2 laser, and the response rapidly assessed using handheld RCM to evaluate for residual tumour. Confirmative pathology was used to verify confocal imaging. Results RCM imaging identified tumour pre-ablation with features not identified on normal, surrounding skin. Post-ablation, RCM documented complete removal of tumour in six cases and residual tumour in two. Histologic examination identified the ablated area and confirmed clearance of tumour in the six aforementioned cases and corroborated confocal findings for residual tumour in the other two cases. Conclusions We report successful treatment of superficial and nodular BCC using CO2 laser ablation augmented by RCM imaging for pre-ablation guidance and verification of tumour removal post-ablation. Akin to complete circumferential and deep margin control techniques, using RCM helps to map peripheral and deep BCC margins to hone in on areas exhibiting persistent tumour after ablation. CO2 laser ablation visually guided by RCM can help circumvent previously cited limiting factors of laser ablation for tumour destruction by providing cellular-level resolution imaging of tumour and margin assessment in between each laser pass and post-ablation. PMID:26800657

  16. Carbon dioxide laser ablation of basal cell carcinoma with visual guidance by reflectance confocal microscopy: a proof-of-principle pilot study.

    PubMed

    Hibler, B P; Sierra, H; Cordova, M; Phillips, W; Rajadhyaksha, M; Nehal, K S; Rossi, A M

    2016-06-01

    Laser ablation is an alternative, nonsurgical treatment modality for low-risk basal cell carcinoma (BCC). However, lack of confirmative tumour destruction or residual tumour presence has been a limiting factor to its adoption. Reflectance confocal microscopy (RCM) provides noninvasive, cellular-level resolution imaging of the skin and is capable of identifying tumour. To evaluate the use of RCM to guide carbon dioxide (CO2 ) laser ablation of BCC, confirm destruction and correlate findings with histology. RCM was used preablation to evaluate for features of BCC. Ablation was performed with a CO2 laser, and the response rapidly assessed using handheld RCM to evaluate for residual tumour. Confirmative pathology was used to verify confocal imaging. Preablation RCM imaging identified tumour with features not identified on normal, surrounding skin. Postablation, RCM documented complete removal of tumour in six cases and residual tumour in two. Histological examination identified the ablated area and confirmed clearance of tumour in the six aforementioned cases and corroborated confocal findings for residual tumour in the other two cases. We report successful treatment of superficial and nodular BCC using CO2 laser ablation augmented by RCM imaging for preablation guidance and verification of tumour removal postablation. Akin to complete circumferential and deep margin control techniques, using RCM helps to map peripheral and deep BCC margins to hone in on areas exhibiting persistent tumour after ablation. CO2 laser ablation visually guided by RCM can help circumvent previously cited limiting factors of laser ablation for tumour destruction by providing cellular-level resolution imaging of tumour and margin assessment in between each laser pass and postablation. © 2016 British Association of Dermatologists.

  17. Pattern-Recognition Processor Using Holographic Photopolymer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Cammack, Kevin

    2006-01-01

    proposed joint-transform optical correlator (JTOC) would be capable of operating as a real-time pattern-recognition processor. The key correlation-filter reading/writing medium of this JTOC would be an updateable holographic photopolymer. The high-resolution, high-speed characteristics of this photopolymer would enable pattern-recognition processing to occur at a speed three orders of magnitude greater than that of state-of-the-art digital pattern-recognition processors. There are many potential applications in biometric personal identification (e.g., using images of fingerprints and faces) and nondestructive industrial inspection. In order to appreciate the advantages of the proposed JTOC, it is necessary to understand the principle of operation of a conventional JTOC. In a conventional JTOC (shown in the upper part of the figure), a collimated laser beam passes through two side-by-side spatial light modulators (SLMs). One SLM displays a real-time input image to be recognized. The other SLM displays a reference image from a digital memory. A Fourier-transform lens is placed at its focal distance from the SLM plane, and a charge-coupled device (CCD) image detector is placed at the back focal plane of the lens for use as a square-law recorder. Processing takes place in two stages. In the first stage, the CCD records the interference pattern between the Fourier transforms of the input and reference images, and the pattern is then digitized and saved in a buffer memory. In the second stage, the reference SLM is turned off and the interference pattern is fed back to the input SLM. The interference pattern thus becomes Fourier-transformed, yielding at the CCD an image representing the joint-transform correlation between the input and reference images. This image contains a sharp correlation peak when the input and reference images are matched. The drawbacks of a conventional JTOC are the following: The CCD has low spatial resolution and is not an ideal square-law detector for the purpose of holographic recording of interference fringes. A typical state-of-the-art CCD has a pixel-pitch limited resolution of about 100 lines/mm. In contrast, the holographic photopolymer to be used in the proposed JTOC offers a resolution > 2,000 lines/mm. In addition to being disadvantageous in itself, the low resolution of the CCD causes overlap of a DC term and the desired correlation term in the output image. This overlap severely limits the correlation signal-to-noise ratio. The two-stage nature of the process limits the achievable throughput rate. A further limit is imposed by the low frame rate (typical video rates) of low- and medium-cost commercial CCDs.

  18. Raman chemical imaging technology for food and agricultural applications

    USDA-ARS?s Scientific Manuscript database

    This paper presents Raman chemical imaging technology for inspecting food and agricultural products. The paper puts emphasis on introducing and demonstrating Raman imaging techniques for practical uses in food analysis. The main topics include Raman scattering principles, Raman spectroscopy measurem...

  19. Perspective: Maximum caliber is a general variational principle for dynamical systems

    NASA Astrophysics Data System (ADS)

    Dixit, Purushottam D.; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A.

    2018-01-01

    We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics—such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production—are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.

  20. Perspective: Maximum caliber is a general variational principle for dynamical systems.

    PubMed

    Dixit, Purushottam D; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A

    2018-01-07

    We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics-such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production-are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.

  1. A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting.

    PubMed

    Haufe, Stefan; Huang, Yu; Parra, Lucas C

    2015-08-01

    In electroencephalographic (EEG) source imaging as well as in transcranial current stimulation (TCS), it is common to model the head using either three-shell boundary element (BEM) or more accurate finite element (FEM) volume conductor models. Since building FEMs is computationally demanding and labor intensive, they are often extensively reused as templates even for subjects with mismatching anatomies. BEMs can in principle be used to efficiently build individual volume conductor models; however, the limiting factor for such individualization are the high acquisition costs of structural magnetic resonance images. Here, we build a highly detailed (0.5mm(3) resolution, 6 tissue type segmentation, 231 electrodes) FEM based on the ICBM152 template, a nonlinear average of 152 adult human heads, which we call ICBM-NY. We show that, through more realistic electrical modeling, our model is similarly accurate as individual BEMs. Moreover, through using an unbiased population average, our model is also more accurate than FEMs built from mismatching individual anatomies. Our model is made available in Matlab format.

  2. Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction.

    PubMed

    Krause, F F; Rosenauer, A; Barthel, J; Mayer, J; Urban, K; Dunin-Borkowski, R E; Brown, H G; Forbes, B D; Allen, L J

    2017-10-01

    This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. 16 CFR 260.6 - General principles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENVIRONMENTAL MARKETING CLAIMS § 260.6 General principles. The following general principles apply to all environmental marketing claims, including, but not limited to, those described in § 260.7. In addition, § 260.7... 16 Commercial Practices 1 2010-01-01 2010-01-01 false General principles. 260.6 Section 260.6...

  4. Low-dose quantitative phase contrast medical CT

    NASA Astrophysics Data System (ADS)

    Mittone, A.; Bravin, A.; Coan, P.

    2018-02-01

    X-ray computed tomography (CT) is a powerful and routinely used clinical diagnostic technique, which is well tolerated by patients, and which provides high-resolution images and volumetric information about the body. However, two important limitations still affect this examination procedure: (1) its low sensitivity with respect to soft tissues, and (2) the hazards associated with x-ray exposure. Conventional radiology is based on the detection of the different photon absorption properties that characterize biological tissues, and thus the obtainable image contrast from soft and/or similar tissues is intrinsically limited. In this scenario, x-ray phase contrast imaging (XPCI) has been extensively tested and proven to overcome some of the main issues surrounding standard x-ray imaging. In addition to the absorption signal, XPCI relies on detecting the phase shifts induced by an object. Interestingly, as the order of magnitude of the phase contrast is higher than that of absorption, XPCI can, in principle, offer higher sensitivity at lower radiation doses. However, other technical aspects may counterbalance this gain, and an optimized setup and image processing solutions need to be implemented. The work presented here describes the strategies and developments we have realized, with the aim of controlling the radiation dose for the highly sensitive and quantitative XPCI-CT. Different algorithms for the phase retrieval and CT reconstruction of the XPCI data are presented. The CT algorithms we have implemented, namely the equally sloped tomography and the dictionary learning method, allow the image quality to be preserved while reducing the number of angular projections required by a factor of five. The results applied to breast imaging report accurate reconstructions at clinically compatible doses of the 3D distribution of the refractive properties of full human organs obtained by using three different phase retrieval methods. The described methodologies and the presented results have been validated by a team of clinical radiologists and represent an important step in the exploitation of XPCI-CT for in vivo and possible clinical applications.

  5. Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine

    PubMed Central

    Vielreicher, M.; Schürmann, S.; Detsch, R.; Schmidt, M. A.; Buttgereit, A.; Boccaccini, A.; Friedrich, O.

    2013-01-01

    This review focuses on modern nonlinear optical microscopy (NLOM) methods that are increasingly being used in the field of tissue engineering (TE) to image tissue non-invasively and without labelling in depths unreached by conventional microscopy techniques. With NLOM techniques, biomaterial matrices, cultured cells and their produced extracellular matrix may be visualized with high resolution. After introducing classical imaging methodologies such as µCT, MRI, optical coherence tomography, electron microscopy and conventional microscopy two-photon fluorescence (2-PF) and second harmonic generation (SHG) imaging are described in detail (principle, power, limitations) together with their most widely used TE applications. Besides our own cell encapsulation, cell printing and collagen scaffolding systems and their NLOM imaging the most current research articles will be reviewed. These cover imaging of autofluorescence and fluorescence-labelled tissue and biomaterial structures, SHG-based quantitative morphometry of collagen I and other proteins, imaging of vascularization and online monitoring techniques in TE. Finally, some insight is given into state-of-the-art three-photon-based imaging methods (e.g. coherent anti-Stokes Raman scattering, third harmonic generation). This review provides an overview of the powerful and constantly evolving field of multiphoton microscopy, which is a powerful and indispensable tool for the development of artificial tissues in regenerative medicine and which is likely to gain importance also as a means for general diagnostic medical imaging. PMID:23864499

  6. The research of statistical properties of colorimetric features of screens with a three-component color formation principle

    NASA Astrophysics Data System (ADS)

    Zharinov, I. O.; Zharinov, O. O.

    2017-12-01

    The problem of the research is concerned with quantitative analysis of influence of technological variation of the screen color profile parameters on chromaticity coordinates of the displayed image. Some mathematical expressions which approximate the two-dimensional distribution of chromaticity coordinates of an image, which is displayed on the screen with a three-component color formation principle were proposed. Proposed mathematical expressions show the way to development of correction techniques to improve reproducibility of the colorimetric features of displays.

  7. Enabling digital pathology in the diagnostic setting: navigating through the implementation journey in an academic medical centre.

    PubMed

    Cheng, Chee Leong; Azhar, Rafay; Sng, Shi Hui Adeline; Chua, Yong Quan; Hwang, Jacqueline Siok Gek; Chin, Jennifer Poi Fun; Seah, Waih Khuen; Loke, Janel Chui Ling; Ang, Roy Hang Leng; Tan, Puay Hoon

    2016-09-01

    As digital pathology (DP) and whole slide imaging (WSI) technology advance and mature, there is an increasing drive to incorporate DP into the diagnostic environment. However, integration of DP into the diagnostic laboratory is a non-trivial task and filled with unexpected challenges unlike standalone implementations. We share our journey of implementing DP in the diagnostic laboratory setting, highlighting seven key guiding principles that drive the progression through implementation into deployment and beyond. The DP implementation with laboratory information system integration was completed in 8 months, including validation of the solution for diagnostic use in accordance with College of American Pathologists guidelines. We also conducted prospective validation via paired delivery of glass slides and WSI to our pathologists postdeployment. Common themes in our guiding principles included emphasis on workflow and being comprehensive in the approach, looking beyond pathologist user champions and expanding into an extended project team involving laboratory technicians, clerical/data room staff and archival staff. Concordance between glass slides and WSI ranged from 93% to 100% among various applications on validation. We also provided equal opportunities for every pathologist throughout the department to be competent and confident with DP through prospective validation, with overall concordance of 96% compared with glass slides, allowing appreciation of the advantages and limitations of WSI, hence enabling the use of DP as a useful diagnostic modality. Smooth integration of DP into the diagnostic laboratory is possible with careful planning, discipline and a systematic approach adhering to our guiding principles. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. EDITORIAL: Imaging systems and techniques Imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios

    2009-10-01

    The papers in this special issue focus on providing the state-of-the-art approaches and solutions to some of the most challenging imaging areas, such as the design, development, evaluation and applications of imaging systems, measuring techniques, image processing algorithms and instrumentation, with an ultimate aim of enhancing the measurement accuracy and image quality. This special issue explores the principles, engineering developments and applications of new imaging systems and techniques, and encourages broad discussion of imaging methodologies, shaping the future and identifying emerging trends. The multi-faceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment and technological evolution. There is an urgent need to address new problems, which tend to be either static but complex, or dynamic, e.g. rapidly evolving with time, with many unknowns, and to propose innovative solutions. For instance, the battles against cancer and terror, monitoring of space resources and enhanced awareness, management of natural resources and environmental monitoring are some of the areas that need to be addressed. The complexity of the involved imaging scenarios and demanding design parameters, e.g. speed, signal-to-noise ratio (SNR), specificity, contrast, spatial resolution, scatter rejection, complex background and harsh environments, necessitate the development of a multi-functional, scalable and efficient imaging suite of sensors, solutions driven by innovation, and operation on diverse detection and imaging principles. Efficient medical imaging techniques capable of providing physiological information at the molecular level present another important research area. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, and using high-resolution, high-selectivity nano-imaging methods, quantum dots, nanoparticles, biomarkers, nanostructures, nanosensors, micro-array imaging chips and nano-clinics for optical diagnostics and targeted therapy, can play an important role in the diagnosis and treatment of cancer. These techniques can also be used to provide efficient drug delivery for treatment of other diseases, with increased sensitivity and specificity. Similarly, enhanced stand-off detection, classification, identification and surveillance techniques, for comprehensive civilian and military target protection and enhanced space situational awareness can open new frontiers of research and applications in the defence arena and homeland security. For instance, the development of potential imaging sensor architectures, enhanced remote sensing systems, ladars, lidars and radars can provide data capable of ensuring continuous monitoring of various imaging/physical/chemical parameters under different operating conditions, using both active and passive detection principles, reconfigurable and scalable focal plane array architectures, reliable systems for stand-off detection of explosives, and enhanced airport security. The above areas pose challenging problems to the technical community and indicate an ever-growing need for innovative and auspicious solutions. We would like to thank all authors for their valuable contributions, without which this special issue would not have become reality.

  9. Prospects for Jovian seismological observations following the impact of comet Shoemaker-Levy 9

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    1994-01-01

    The impact of each fragment of comet SL-9 will produce a downward-propagating pressure wave which will travel at the sound speed through the jovian interior. Since the sound speed increases with depth, most of the energy in the pressure pulse will be strongly refracted and return to the surface, as recently computed by Marley (1994). This wave may in principle be observable as it propagates into the stratosphere, using sufficiently sensitive thermal infrared imaging. If so, it will provide a unique opportunity to constrain models of the jovian interior. This paper extends Marley's calculations to include the effect of the limited spatial resolution which will be characteristic of real observations. The wave pattern on the disk will consist of closely spaced regions of alternating temperature increases and decreases. Spatial averaging will significantly reduce the observed amplitude for resolutions attainable using earth-based telescopes, but the waves should remain above the detection limit.

  10. Positron Emission Tomography: Principles, Technology, and Recent Developments

    NASA Astrophysics Data System (ADS)

    Ziegler, Sibylle I.

    2005-04-01

    Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.

  11. Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling & paired-agent principles from nuclear medicine and optical imaging

    PubMed Central

    Tichauer, Kenneth M.; Wang, Yu; Pogue, Brian W.; Liu, Jonathan T. C.

    2015-01-01

    The development of methods to accurately quantify cell-surface receptors in living tissues would have a seminal impact in oncology. For example, accurate measures of receptor density in vivo could enhance early detection or surgical resection of tumors via protein-based contrast, allowing removal of cancer with high phenotype specificity. Alternatively, accurate receptor expression estimation could be used as a biomarker to guide patient-specific clinical oncology targeting of the same molecular pathway. Unfortunately, conventional molecular contrast-based imaging approaches are not well adapted to accurately estimating the nanomolar-level cell-surface receptor concentrations in tumors, as most images are dominated by nonspecific sources of contrast such as high vascular permeability and lymphatic inhibition. This article reviews approaches for overcoming these limitations based upon tracer kinetic modeling and the use of emerging protocols to estimate binding potential and the related receptor concentration. Methods such as using single time point imaging or a reference-tissue approach tend to have low accuracy in tumors, whereas paired-agent methods or advanced kinetic analyses are more promising to eliminate the dominance of interstitial space in the signals. Nuclear medicine and optical molecular imaging are the primary modalities used, as they have the nanomolar level sensitivity needed to quantify cell-surface receptor concentrations present in tissue, although each likely has a different clinical niche. PMID:26134619

  12. 3D tomography of cells in micro-channels

    NASA Astrophysics Data System (ADS)

    Quint, S.; Christ, A. F.; Guckenberger, A.; Himbert, S.; Kaestner, L.; Gekle, S.; Wagner, C.

    2017-09-01

    We combine confocal imaging, microfluidics, and image analysis to record 3D-images of cells in flow. This enables us to recover the full 3D representation of several hundred living cells per minute. Whereas 3D confocal imaging has thus far been limited to steady specimens, we overcome this restriction and present a method to access the 3D shape of moving objects. The key of our principle is a tilted arrangement of the micro-channel with respect to the focal plane of the microscope. This forces cells to traverse the focal plane in an inclined manner. As a consequence, individual layers of passing cells are recorded, which can then be assembled to obtain the volumetric representation. The full 3D information allows for a detailed comparison with theoretical and numerical predictions unfeasible with, e.g., 2D imaging. Our technique is exemplified by studying flowing red blood cells in a micro-channel reflecting the conditions prevailing in the microvasculature. We observe two very different types of shapes: "croissants" and "slippers." Additionally, we perform 3D numerical simulations of our experiment to confirm the observations. Since 3D confocal imaging of cells in flow has not yet been realized, we see high potential in the field of flow cytometry where cell classification thus far mostly relies on 1D scattering and fluorescence signals.

  13. A wide field-of-view microscope based on holographic focus grid

    NASA Astrophysics Data System (ADS)

    Wu, Jigang; Cui, Xiquan; Zheng, Guoan; Lee, Lap Man; Yang, Changhuei

    2010-02-01

    We have developed a novel microscope technique that can achieve wide field-of-view (FOV) imaging and yet possess resolution that is comparable to conventional microscope. The principle of wide FOV microscope system breaks the link between resolution and FOV magnitude of traditional microscopes. Furthermore, by eliminating bulky optical elements from its design and utilizing holographic optical elements, the wide FOV microscope system is more cost-effective. In our system, a hologram was made to focus incoming collimated beam into a focus grid. The sample is put in the focal plane and the transmissions of the focuses are detected by an imaging sensor. By scanning the incident angle of the incoming beam, the focus grid will scan across the sample and the time-varying transmission can be detected. We can then reconstruct the transmission image of the sample. The resolution of microscopic image is limited by the size of the focus formed by the hologram. The scanning area of each focus spot is determined by the separation of the focus spots and can be made small for fast imaging speed. We have fabricated a prototype system with a 2.4-mm FOV and 1-μm resolution. The prototype system was used to image onion skin cells for a demonstration. The preliminary experiments prove the feasibility of the wide FOV microscope technique, and the possibility of a wider FOV system with better resolution.

  14. TH-A-18A-01: Innovation in Clinical Breast Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, B; Yang, K; Yaffe, M

    Several novel modalities have been or are on the verge of being introduced into the breast imaging clinic. These include tomosynthesis imaging, dedicated breast CT, contrast-enhanced digital mammography, and automated breast ultrasound, all of which are covered in this course. Tomosynthesis and dedicated breast CT address the problem of tissue superimposition that limits mammography screening performance, by improved or full resolution of the 3D breast morphology. Contrast-enhanced digital mammography provides functional information that allows for visualization of tumor angiogenesis. 3D breast ultrasound has high sensitivity for tumor detection in dense breasts, but the imaging exam was traditionally performed by radiologists.more » In automated breast ultrasound, the scan is performed in an automated fashion, making for a more practical imaging tool, that is now used as an adjunct to digital mammography in breast cancer screening. This course will provide medical physicists with an in-depth understanding of the imaging physics of each of these four novel imaging techniques, as well as the rationale and implementation of QC procedures. Further, basic clinical applications and work flow issues will be discussed. Learning Objectives: To be able to describe the underlying physical and physiological principles of each imaging technique, and to understand the corresponding imaging acquisition process. To be able to describe the critical system components and their performance requirements. To understand the rationale and implementation of quality control procedures, as well as regulatory requirements for systems with FDA approval. To learn about clinical applications and understand risks and benefits/strength and weakness of each modality in terms of clinical breast imaging.« less

  15. EDITORIAL: Imaging Systems and Techniques Imaging Systems and Techniques

    NASA Astrophysics Data System (ADS)

    Giakos, George; Yang, Wuqiang; Petrou, M.; Nikita, K. S.; Pastorino, M.; Amanatiadis, A.; Zentai, G.

    2011-10-01

    This special feature on Imaging Systems and Techniques comprises 27 technical papers, covering essential facets in imaging systems and techniques both in theory and applications, from research groups spanning three different continents. It mainly contains peer-reviewed articles from the IEEE International Conference on Imaging Systems and Techniques (IST 2011), held in Thessaloniki, Greece, as well a number of articles relevant to the scope of this issue. The multifaceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment, and the technological revolution; there is an urgent need to address and propose dynamic and innovative solutions to problems that tend to be either complex and static or rapidly evolving with a lot of unknowns. For instance, exploration of the engineering and physical principles of new imaging systems and techniques for medical applications, remote sensing, monitoring of space resources and enhanced awareness, exploration and management of natural resources, and environmental monitoring, are some of the areas that need to be addressed with urgency. Similarly, the development of efficient medical imaging techniques capable of providing physiological information at the molecular level is another important area of research. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, using high resolution and high selectivity nanoimaging techniques, can play an important role in the diagnosis and treatment of cancer, as well as provide efficient drug-delivery imaging solutions for disease treatment with increased sensitivity and specificity. On the other hand, technical advances in the development of efficient digital imaging systems and techniques and tomographic devices operating on electric impedance tomography, computed tomography, single-photon emission and positron emission tomography detection principles are anticipated to have a significant impact on a wide spectrum of technological areas, such as medical imaging, pharmaceutical industry, analytical instrumentation, aerospace, remote sensing, lidars and ladars, surveillance, national defense, corrosion imaging and monitoring, sub-terrestrial and marine imaging. The complexity of the involved imaging scenarios, and demanding design parameters such as speed, signal-to-noise ratio, high specificity, high contrast and spatial resolution, high-scatter rejection, complex background and harsh environment, necessitate the development of a multifunctional, scalable and efficient imaging suite of sensors, solutions driven by innovation, operating on diverse detection and imaging principles. Finally, pattern recognition and image processing algorithms can significantly contribute to enhanced detection and imaging, including object classification, clustering, feature selection, texture analysis, segmentation, image compression and color representation under complex imaging scenarios, with applications in medical imaging, remote sensing, aerospace, radars, defense and homeland security. We feel confident that the exciting new contributions of this special feature on Imaging Systems and Techniques will appeal to the technical community. We would like to thank all authors as well as all anonymous reviewers and the MST Editorial Board, Publisher and staff for their tremendous efforts and invaluable support to enhance the quality of this significant endeavor.

  16. Analysis of STM images with pure and CO-functionalized tips: A first-principles and experimental study

    NASA Astrophysics Data System (ADS)

    Gustafsson, Alexander; Okabayashi, Norio; Peronio, Angelo; Giessibl, Franz J.; Paulsson, Magnus

    2017-08-01

    We describe a first-principles method to calculate scanning tunneling microscopy (STM) images, and compare the results to well-characterized experiments combining STM with atomic force microscopy (AFM). The theory is based on density functional theory with a localized basis set, where the wave functions in the vacuum gap are computed by propagating the localized-basis wave functions into the gap using a real-space grid. Constant-height STM images are computed using Bardeen's approximation method, including averaging over the reciprocal space. We consider copper adatoms and single CO molecules adsorbed on Cu(111), scanned with a single-atom copper tip with and without CO functionalization. The calculated images agree with state-of-the-art experiments, where the atomic structure of the tip apex is determined by AFM. The comparison further allows for detailed interpretation of the STM images.

  17. Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in Musculoskeletal Imaging (Part 1).

    PubMed

    Omoumi, Patrick; Becce, Fabio; Racine, Damien; Ott, Julien G; Andreisek, Gustav; Verdun, Francis R

    2015-12-01

    In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been used successfully in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits; to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in Musculoskeletal Imaging (Part 2).

    PubMed

    Omoumi, Patrick; Verdun, Francis R; Guggenberger, Roman; Andreisek, Gustav; Becce, Fabio

    2015-12-01

    In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been successfully used in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits, to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Winning Before the Fight: An Armed Suasion Approach to Countering Near Peer Competition

    DTIC Science & Technology

    2017-05-25

    the risk of unintended escalation. This monograph also proposes a tailored set of principles , separate from the principles of joint operations...Suasion; Deterrence; Compellence; Armed Conflict; Conflict Continuum; Principles of Joint Operations. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...tailored set of principles , separate from the principles of joint operations, which allow a planning staff to balance achieving success with managing

  20. [Testing method research for key performance indicator of imaging acousto-optic tunable filter (AOTF)].

    PubMed

    Hu, Shan-Zhou; Chen, Fen-Fei; Zeng, Li-Bo; Wu, Qiong-Shui

    2013-01-01

    Imaging AOTF is an important optical filter component for new spectral imaging instruments developed in recent years. The principle of imaging AOTF component was demonstrated, and a set of testing methods for some key performances were studied, such as diffraction efficiency, wavelength shift with temperature, homogeneity in space for diffraction efficiency, imaging shift, etc.

  1. Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Pikichyan, H. V.

    2017-07-01

    In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.

  2. Coaxial volumetric velocimetry

    NASA Astrophysics Data System (ADS)

    Schneiders, Jan F. G.; Scarano, Fulvio; Jux, Constantin; Sciacchitano, Andrea

    2018-06-01

    This study describes the working principles of the coaxial volumetric velocimeter (CVV) for wind tunnel measurements. The measurement system is derived from the concept of tomographic PIV in combination with recent developments of Lagrangian particle tracking. The main characteristic of the CVV is its small tomographic aperture and the coaxial arrangement between the illumination and imaging directions. The system consists of a multi-camera arrangement subtending only few degrees solid angle and a long focal depth. Contrary to established PIV practice, laser illumination is provided along the same direction as that of the camera views, reducing the optical access requirements to a single viewing direction. The laser light is expanded to illuminate the full field of view of the cameras. Such illumination and imaging conditions along a deep measurement volume dictate the use of tracer particles with a large scattering area. In the present work, helium-filled soap bubbles are used. The fundamental principles of the CVV in terms of dynamic velocity and spatial range are discussed. Maximum particle image density is shown to limit tracer particle seeding concentration and instantaneous spatial resolution. Time-averaged flow fields can be obtained at high spatial resolution by ensemble averaging. The use of the CVV for time-averaged measurements is demonstrated in two wind tunnel experiments. After comparing the CVV measurements with the potential flow in front of a sphere, the near-surface flow around a complex wind tunnel model of a cyclist is measured. The measurements yield the volumetric time-averaged velocity and vorticity field. The measurements of the streamlines in proximity of the surface give an indication of the skin-friction lines pattern, which is of use in the interpretation of the surface flow topology.

  3. The rf coil as a sensitive motion detector for magnetic resonance imaging.

    PubMed

    Buikman, D; Helzel, T; Röschmann, P

    1988-01-01

    A new sensor principle for detection of patient movement in magnetic resonance imaging has been successfully applied for the reduction of motion artifacts. It uses a device that is already present in every MRI system, namely the rf coil. Patient movement within the coil causes changes in the rf impedance match of the coil, which can be measured as variations in the reflected rf power. The principle used for the detection of respiratory and cardiac motion is described, and experimental results measured with several coil arrangements are given. Images are presented which were acquired with respiratory gating derived from the rf body coil of a 2 Tesla whole body MRI system.

  4. Photoacoustic tomography: principles and advances

    PubMed Central

    Xia, Jun; Yao, Junjie; Wang, Lihong V.

    2014-01-01

    Photoacoustic tomography (PAT) is an emerging imaging modality that shows great potential for preclinical research and clinical practice. As a hybrid technique, PAT is based on the acoustic detection of optical absorption from either endogenous chromophores, such as oxy-hemoglobin and deoxy-hemoglobin, or exogenous contrast agents, such as organic dyes and nanoparticles. Because ultrasound scatters much less than light in tissue, PAT generates high-resolution images in both the optical ballistic and diffusive regimes. Over the past decade, the photoacoustic technique has been evolving rapidly, leading to a variety of exciting discoveries and applications. This review covers the basic principles of PAT and its different implementations. Strengths of PAT are highlighted, along with the most recent imaging results. PMID:25642127

  5. Cardiovascular magnetic resonance physics for clinicians: part II

    PubMed Central

    2012-01-01

    This is the second of two reviews that is intended to cover the essential aspects of cardiovascular magnetic resonance (CMR) physics in a way that is understandable and relevant to clinicians using CMR in their daily practice. Starting with the basic pulse sequences and contrast mechanisms described in part I, it briefly discusses further approaches to accelerate image acquisition. It then continues by showing in detail how the contrast behaviour of black blood fast spin echo and bright blood cine gradient echo techniques can be modified by adding rf preparation pulses to derive a number of more specialised pulse sequences. The simplest examples described include T2-weighted oedema imaging, fat suppression and myocardial tagging cine pulse sequences. Two further important derivatives of the gradient echo pulse sequence, obtained by adding preparation pulses, are used in combination with the administration of a gadolinium-based contrast agent for myocardial perfusion imaging and the assessment of myocardial tissue viability using a late gadolinium enhancement (LGE) technique. These two imaging techniques are discussed in more detail, outlining the basic principles of each pulse sequence, the practical steps required to achieve the best results in a clinical setting and, in the case of perfusion, explaining some of the factors that influence current approaches to perfusion image analysis. The key principles of contrast-enhanced magnetic resonance angiography (CE-MRA) are also explained in detail, especially focusing on timing of the acquisition following contrast agent bolus administration, and current approaches to achieving time resolved MRA. Alternative MRA techniques that do not require the use of an endogenous contrast agent are summarised, and the specialised pulse sequence used to image the coronary arteries, using respiratory navigator gating, is described in detail. The article concludes by explaining the principle behind phase contrast imaging techniques which create images that represent the phase of the MR signal rather than the magnitude. It is shown how this principle can be used to generate velocity maps by designing gradient waveforms that give rise to a relative phase change that is proportional to velocity. Choice of velocity encoding range and key pitfalls in the use of this technique are discussed. PMID:22995744

  6. Virtual data

    NASA Astrophysics Data System (ADS)

    Bjorklund, E.

    1994-12-01

    In the 1970s, when computers were memory limited, operating system designers created the concept of "virtual memory", which gave users the ability to address more memory than physically existed. In the 1990s, many large control systems have the potential of becoming data limited. We propose that many of the principles behind virtual memory systems (working sets, locality, caching and clustering) can also be applied to data-limited systems, creating, in effect, "virtual data systems". At the Los Alamos National Laboratory's Clinton P. Anderson Meson Physics Facility (LAMPF), we have applied these principles to a moderately sized (10 000 data points) data acquisition and control system. To test the principles, we measured the system's performance during tune-up, production, and maintenance periods. In this paper, we present a general discussion of the principles of a virtual data system along with some discussion of our own implementation and the results of our performance measurements.

  7. A CBCT study of the gravity-induced movement in rotating rabbits

    NASA Astrophysics Data System (ADS)

    Barber, Jeffrey; Shieh, Chun-Chien; Counter, William; Sykes, Jonathan; Bennett, Peter; Ahern, Verity; Corde, Stéphanie; Heng, Soo-Min; White, Paul; Jackson, Michael; Liu, Paul; Keall, Paul J.; Feain, Ilana

    2018-05-01

    Fixed-beam radiotherapy systems with subjects rotating about a longitudinal (horizontal) axis are subject to gravity-induced motion. Limited reports on the degree of this motion, and any deformation, has been reported previously. The purpose of this study is to quantify the degree of anatomical motion caused by rotating a subject around a longitudinal axis, using cone-beam CT (CBCT). In the current study, a purpose-made longitudinal rotating was aligned to a Varian TrueBeam kV imaging system. CBCT images of three live rabbits were acquired at fixed rotational offsets of the cradle. Rigid and deformable image registrations back to the original position were used to quantify the motion experienced by the subjects under rotation. In the rotation offset CBCTs, the mean magnitude of rigid translations was 5.7  ±  2.7 mm across all rabbits and all rotations. The translation motion was reproducible between multiple rotations within 2.1 mm, 1.1 mm, and 2.8 mm difference for rabbit 1, 2, and 3, respectively. The magnitude of the mean and absolute maximum deformation vectors were 0.2  ±  0.1 mm and 5.4  ±  2.0 mm respectively, indicating small residual deformations after rigid registration. In the non-rotated rabbit 4DCBCT, respiratory diaphragm motion up to 5 mm was observed, and the variation in respiratory motion as measured from a series of 4DCBCT scans acquired at each rotation position was small. The principle motion of the rotated subjects was rigid translational motion. The deformation of the anatomy under rotation was found to be similar in scale to normal respiratory motion. This indicates imaging and treatment of rotated subjects with fixed-beam systems can use rigid registration as the primary mode of motion estimation. While the scaling of deformation from rabbits to humans is uncertain, these proof-of-principle results indicate promise for fixed-beam treatment systems.

  8. Depth profile of a time-reversal focus in an elastic solid

    DOE PAGES

    Remillieux, Marcel C.; Anderson, Brian E.; Ulrich, T. J.; ...

    2015-04-01

    The out-of-plane velocity component is focused on the flat surface of an isotropic solid sample using the principle of time reversal. This experiment is often reproduced in the context of nondestructive testing for imaging features near the surface of the sample. However, it is not clear how deep the focus extends into the bulk of the sample and what its profile is. In this paper, this question is answered using both numerical simulations and experimental data. The profiles of the foci are expressed in terms of the wavelengths of the dominant waves, based on the interpretation of the Lamb’s problemmore » and the use of the diffraction limit.« less

  9. Topological study of nanomaterials using surface-enhanced ellipsometric contrast microscopy (SEEC)

    NASA Astrophysics Data System (ADS)

    Muckenhirn, Sylvain

    2016-03-01

    Innovations in nanotechnology are empowering scientists to deepen their understanding of physical, chemical and biological mechanisms. Powerful and precise characterization systems are essential to meet researchers' requirements. SEEC (Surface Enhanced Ellipsometric Contrast) microscopy is an innovative advanced optical technique based on ellipsometric and interference fringes of Fizeau principles. This technique offers live and label-free topographic imaging of organic, inorganic and biological samples with high Z resolution (down to 0.1nm thickness), and enhanced X-Y detection limit (down to 1.5nm width). This technique has been successfully applied to the study of nanometric films and structures, biological layers, and nano-objects. We applied SEEC technology to different applications explored below.

  10. Super-resolution from single photon emission: toward biological application

    NASA Astrophysics Data System (ADS)

    Moreva, E.; Traina, P.; Forneris, J.; Ditalia Tchernij, S.; Guarina, L.; Franchino, C.; Picollo, F.; Ruo Berchera, I.; Brida, G.; Degiovanni, I. P.; Carabelli, V.; Olivero, P.; Genovese, M.

    2017-08-01

    Properties of quantum light represent a tool for overcoming limits of classical optics. Several experiments have demonstrated this advantage ranging from quantum enhanced imaging to quantum illumination. In this work, experimental demonstration of quantum-enhanced resolution in confocal fluorescence microscopy will be presented. This is achieved by exploiting the non-classical photon statistics of fluorescence emission of single nitrogen-vacancy (NV) color centers in diamond. By developing a general model of super-resolution based on the direct sampling of the kth-order autocorrelation function of the photoluminescence signal, we show the possibility to resolve, in principle, arbitrarily close emitting centers. Finally, possible applications of NV-based fluorescent nanodiamonds in biosensing and future developments will be presented.

  11. Examples of current radar technology and applications, chapter 5, part B

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Basic principles and tradeoff considerations for SLAR are summarized. There are two fundamental types of SLAR sensors available to the remote sensing user: real aperture and synthetic aperture. The primary difference between the two types is that a synthetic aperture system is capable of significant improvements in target resolution but requires equally significant added complexity and cost. The advantages of real aperture SLAR include long range coverage, all-weather operation, in-flight processing and image viewing, and lower cost. The fundamental limitation of the real aperture approach is target resolution. Synthetic aperture processing is the most practical approach for remote sensing problems that require resolution higher than 30 to 40 m.

  12. Decoding molecular interactions in microbial communities

    PubMed Central

    Abreu, Nicole A.; Taga, Michiko E.

    2016-01-01

    Microbial communities govern numerous fundamental processes on earth. Discovering and tracking molecular interactions among microbes is critical for understanding how single species and complex communities impact their associated host or natural environment. While recent technological developments in DNA sequencing and functional imaging have led to new and deeper levels of understanding, we are limited now by our inability to predict and interpret the intricate relationships and interspecies dependencies within these communities. In this review, we highlight the multifaceted approaches investigators have taken within their areas of research to decode interspecies molecular interactions that occur between microbes. Understanding these principles can give us greater insight into ecological interactions in natural environments and within synthetic consortia. PMID:27417261

  13. Three-dimensional labeling of newly formed bone using synchrotron radiation barium K-edge subtraction imaging

    NASA Astrophysics Data System (ADS)

    Panahifar, Arash; Swanston, Treena M.; Pushie, M. Jake; Belev, George; Chapman, Dean; Weber, Lynn; Cooper, David M. L.

    2016-07-01

    Bone is a dynamic tissue which exhibits complex patterns of growth as well as continuous internal turnover (i.e. remodeling). Tracking such changes can be challenging and thus a high resolution imaging-based tracer would provide a powerful new perspective on bone tissue dynamics. This is, particularly so if such a tracer can be detected in 3D. Previously, strontium has been demonstrated to be an effective tracer which can be detected by synchrotron-based dual energy K-edge subtraction (KES) imaging in either 2D or 3D. The use of strontium is, however, limited to very small sample thicknesses due to its low K-edge energy (16.105 keV) and thus is not suitable for in vivo application. Here we establish proof-of-principle for the use of barium as an alternative tracer with a higher K-edge energy (37.441 keV), albeit for ex vivo imaging at the moment, which enables application in larger specimens and has the potential to be developed for in vivo imaging of preclinical animal models. New bone formation within growing rats in 2D and 3D was demonstrated at the Biomedical Imaging and Therapy bending magnet (BMIT-BM) beamline of the Canadian Light Source synchrotron. Comparative x-ray fluorescence imaging confirmed those patterns of uptake detected by KES. This initial work provides a platform for the further development of this tracer and its exploration of applications for in vivo development.

  14. Micrometer-scale magnetic imaging of geological samples using a quantum diamond microscope

    NASA Astrophysics Data System (ADS)

    Glenn, D. R.; Fu, R. R.; Kehayias, P.; Le Sage, D.; Lima, E. A.; Weiss, B. P.; Walsworth, R. L.

    2017-08-01

    Remanent magnetization in geological samples may record the past intensity and direction of planetary magnetic fields. Traditionally, this magnetization is analyzed through measurements of the net magnetic moment of bulk millimeter to centimeter sized samples. However, geological samples are often mineralogically and texturally heterogeneous at submillimeter scales, with only a fraction of the ferromagnetic grains carrying the remanent magnetization of interest. Therefore, characterizing this magnetization in such cases requires a technique capable of imaging magnetic fields at fine spatial scales and with high sensitivity. To address this challenge, we developed a new instrument, based on nitrogen-vacancy centers in diamond, which enables direct imaging of magnetic fields due to both remanent and induced magnetization, as well as optical imaging, of room-temperature geological samples with spatial resolution approaching the optical diffraction limit. We describe the operating principles of this device, which we call the quantum diamond microscope (QDM), and report its optimized image-area-normalized magnetic field sensitivity (20 µTṡµm/Hz1/2), spatial resolution (5 µm), and field of view (4 mm), as well as trade-offs between these parameters. We also perform an absolute magnetic field calibration for the device in different modes of operation, including three-axis (vector) and single-axis (projective) magnetic field imaging. Finally, we use the QDM to obtain magnetic images of several terrestrial and meteoritic rock samples, demonstrating its ability to resolve spatially distinct populations of ferromagnetic carriers.

  15. Development of eddy current microscopy for high resolution electrical conductivity imaging using atomic force microscopy.

    PubMed

    Nalladega, V; Sathish, S; Jata, K V; Blodgett, M P

    2008-07-01

    We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.

  16. Hologram-reconstruction signal enhancement

    NASA Technical Reports Server (NTRS)

    Mezrich, R. S.

    1977-01-01

    Principle of heterodyne detection is used to combine object beam and reconstructed virtual image beam. All light valves in page composer are opened, and virtual-image beam is allowed to interfere with light from valves.

  17. Combination of confocal principle and aperture stop separation improves suppression of crystalline lens fluorescence in an eye model

    PubMed Central

    Klemm, Matthias; Blum, Johannes; Link, Dietmar; Hammer, Martin; Haueisen, Jens; Schweitzer, Dietrich

    2016-01-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique to detect changes in the human retina. The autofluorescence decay over time, generated by endogenous fluorophores, is measured in vivo. The strong autofluorescence of the crystalline lens, however, superimposes the intensity decay of the retina fluorescence, as the confocal principle is not able to suppress it sufficiently. Thus, the crystalline lens autofluorescence causes artifacts in the retinal fluorescence lifetimes determined from the intensity decays. Here, we present a new technique to suppress the autofluorescence of the crystalline lens by introducing an annular stop into the detection light path, which we call Schweitzer’s principle. The efficacy of annular stops with an outer diameter of 7 mm and inner diameters of 1 to 5 mm are analyzed in an experimental setup using a model eye based on fluorescent dyes. Compared to the confocal principle, Schweitzer’s principle with an inner diameter of 3 mm is able to reduce the simulated crystalline lens fluorescence to 4%, while 42% of the simulated retina fluorescence is preserved. Thus, we recommend the implementation of Schweitzer’s principle in scanning laser ophthalmoscopes used for fundus autofluorescence measurements, especially the FLIO device, for improved image quality. PMID:27699092

  18. The New Physical Optics Notebook: Tutorials in Fourier Optics.

    ERIC Educational Resources Information Center

    Reynolds, George O.; And Others

    This is a textbook of Fourier optics for the classroom or self-study. Major topics included in the 38 chapters are: Huygens' principle and Fourier transforms; image formation; optical coherence theory; coherent imaging; image analysis; coherent noise; interferometry; holography; communication theory techniques; analog optical computing; phase…

  19. Photoelectron Imaging as a Quantum Chemistry Visualization Tool

    ERIC Educational Resources Information Center

    Grumbling, Emily R.; Pichugin, Kostyantyn; Mabbs, Richard; Sanov, Andrei

    2011-01-01

    An overview and simple example of photoelectron imaging is presented, highlighting its efficacy as a pedagogical tool for visualizing quantum phenomena. Specifically, photoelectron imaging of H[superscript -] (the simplest negative ion) is used to demonstrate several quantum mechanical principles. This example could be incorporated into an…

  20. Airborne imaging spectrometers developed in China

    NASA Astrophysics Data System (ADS)

    Wang, Jianyu; Xue, Yongqi

    1998-08-01

    Airborne imaging spectral technology, principle means in airborne remote sensing, has been developed rapidly both in the world and in China recently. This paper describes Modular Airborne Imaging Spectrometer (MAIS), Operational Modular Airborne Imaging Spectrometer (OMAIS) and Pushbroom Hyperspectral Imagery (PHI) that have been developed or are being developed in Airborne Remote Sensing Lab of Shanghai Institute of Technical Physics, CAS.

  1. Searching for Images: The Analysis of Users' Queries for Image Retrieval in American History.

    ERIC Educational Resources Information Center

    Choi, Youngok; Rasmussen, Edie M.

    2003-01-01

    Studied users' queries for visual information in American history to identify the image attributes important for retrieval and the characteristics of users' queries for digital images, based on queries from 38 faculty and graduate students. Results of pre- and post-test questionnaires and interviews suggest principle categories of search terms.…

  2. Quantum correlations are tightly bound by the exclusivity principle.

    PubMed

    Yan, Bin

    2013-06-28

    It is a fundamental problem in physics of what principle limits the correlations as predicted by our current description of nature, based on quantum mechanics. One possible explanation is the "global exclusivity" principle recently discussed in Phys. Rev. Lett. 110, 060402 (2013). In this work we show that this principle actually has a much stronger restriction on the probability distribution. We provide a tight constraint inequality imposed by this principle and prove that this principle singles out quantum correlations in scenarios represented by any graph. Our result implies that the exclusivity principle might be one of the fundamental principles of nature.

  3. Hands-On Fractals and the Unexpected in Mathematics

    ERIC Educational Resources Information Center

    Gluchoff, Alan

    2006-01-01

    This article describes a hands-on project in which unusual fractal images are produced using only a photocopy machine and office supplies. The resulting images are an example of the contraction mapping principle.

  4. Images in the air

    NASA Astrophysics Data System (ADS)

    Riveros, H. G.; Rosenberger, Franz

    2012-05-01

    This article discusses two 'magic tricks' in terms of underlying optical principles. The first trick is new and produces a 'ghost' in the air, and the second is the classical real image produced with two parabolic mirrors.

  5. New requirements for digital radiographic testing of welds according to ISO standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zscherpel, U.; Ewert, U.; Jechow, M.

    Users of EN 14784-2 (general principles for computed radiography with phosphor imaging plates) reported about difficulties to achieve testing class B in weld testing with imaging plates. One of the reasons is the insufficient consideration of the inherent detector unsharpness (u{sub i}) in the minimum requirements. Digital detectors have a higher inherent unsharpness compared to film, which can even exceed the geometrical unsharpness (u{sub g}) of the typical contact technique. In EN 444 and ISO 5579 (general principles for film radiography) u{sub i} is neglected for the calculation of the minimum source-to-object distance (SOD), because it is small compared tomore » the geometric unsharpness (u{sub g}). Considering u{sub i} for digital detectors results in a new equation for SOD (see ISO/FDIS 17636-2). Therefore, the increase in total image unsharpness requires the compensation by a larger SOD to reduce u{sub g}. This contribution discusses the need for change of the SOD for different setups (detectors, focal spots, etc.) and explains the difference in image quality, achieved on basis of the extended equation of ISO/FDIS 17636-2. Furthermore, the detection of image quality indicators depends on the achieved Contrast-to-Noise ratio (CNR) and total image unsharpness. Both of them are essential parameters, which influence the contrast sensitivity. Additionally, new compensation principles (e.g. compensation of missing spatial resolution by enhanced contrast sensitivity) allow to widen the application range of digital detectors for radiographic weld testing.« less

  6. Dynamics of non-stationary processes that follow the maximum of the Rényi entropy principle.

    PubMed

    Shalymov, Dmitry S; Fradkov, Alexander L

    2016-01-01

    We propose dynamics equations which describe the behaviour of non-stationary processes that follow the maximum Rényi entropy principle. The equations are derived on the basis of the speed-gradient principle originated in the control theory. The maximum of the Rényi entropy principle is analysed for discrete and continuous cases, and both a discrete random variable and probability density function (PDF) are used. We consider mass conservation and energy conservation constraints and demonstrate the uniqueness of the limit distribution and asymptotic convergence of the PDF for both cases. The coincidence of the limit distribution of the proposed equations with the Rényi distribution is examined.

  7. Dynamics of non-stationary processes that follow the maximum of the Rényi entropy principle

    PubMed Central

    2016-01-01

    We propose dynamics equations which describe the behaviour of non-stationary processes that follow the maximum Rényi entropy principle. The equations are derived on the basis of the speed-gradient principle originated in the control theory. The maximum of the Rényi entropy principle is analysed for discrete and continuous cases, and both a discrete random variable and probability density function (PDF) are used. We consider mass conservation and energy conservation constraints and demonstrate the uniqueness of the limit distribution and asymptotic convergence of the PDF for both cases. The coincidence of the limit distribution of the proposed equations with the Rényi distribution is examined. PMID:26997886

  8. Limitations and Functions: Four Examples of Integrating Thermodynamics

    ERIC Educational Resources Information Center

    Chang, Wheijen

    2011-01-01

    Physics students are usually unaware of the limitations and functions of related principles, and they tend to adopt "hot formulas" inappropriately. This paper introduces four real-life examples for bridging five principles, from fluids to thermodynamics, including (1) buoyant force, (2) thermal expansion, (3) the ideal-gas law, (4) the 1st law,…

  9. A new compact, cost-efficient concept for underwater range-gated imaging: the UTOFIA project

    NASA Astrophysics Data System (ADS)

    Mariani, Patrizio; Quincoces, Iñaki; Galparsoro, Ibon; Bald, Juan; Gabiña, Gorka; Visser, Andy; Jónasdóttir, Sigrun; Haugholt, Karl Henrik; Thorstensen, Jostein; Risholm, Petter; Thielemann, Jens

    2017-04-01

    Underwater Time Of Flight Image Acquisition system (UTOFIA) is a recently launched H2020 project (H2020 - 633098) to develop a compact and cost-effective underwater imaging system especially suited for observations in turbid environments. The UTOFIA project targets technology that can overcome the limitations created by scattering, by introducing cost-efficient range-gated imaging for underwater applications. This technology relies on a image acquisition principle that can extends the imaging range of the cameras 2-3 times respect to other cameras. Moreover, the system will simultaneously capture 3D information of the observed objects. Today range-gated imaging is not widely used, as it relies on specialised optical components making systems large and costly. Recent technology developments have made it possible a significant (2-3 times) reduction in size, complexity and cost of underwater imaging systems, whilst addressing the scattering issues at the same time. By acquiring simultaneous 3D data, the system allows to accurately measure the absolute size of marine life and their spatial relationship to their habitat, enhancing the precision of fish stock monitoring and ecology assessment, hence supporting proper management of marine resources. Additionally, the larger observed volume and the improved image quality make the system suitable for cost-effective underwater surveillance operations in e.g. fish farms, underwater infrastructures. The system can be integrated into existing ocean observatories for real time acquisition and can greatly advance present efforts in developing species recognition algorithms, given the additional features provided, the improved image quality and the independent illumination source based on laser. First applications of the most recent prototype of the imaging system will be provided including inspection of underwater infrastructures and observations of marine life under different environmental conditions.

  10. Multimode C-arm fluoroscopy, tomosynthesis, and cone-beam CT for image-guided interventions: from proof of principle to patient protocols

    NASA Astrophysics Data System (ADS)

    Siewerdsen, J. H.; Daly, M. J.; Bachar, G.; Moseley, D. J.; Bootsma, G.; Brock, K. K.; Ansell, S.; Wilson, G. A.; Chhabra, S.; Jaffray, D. A.; Irish, J. C.

    2007-03-01

    High-performance intraoperative imaging is essential to an ever-expanding scope of therapeutic procedures ranging from tumor surgery to interventional radiology. The need for precise visualization of bony and soft-tissue structures with minimal obstruction to the therapy setup presents challenges and opportunities in the development of novel imaging technologies specifically for image-guided procedures. Over the past ~5 years, a mobile C-arm has been modified in collaboration with Siemens Medical Solutions for 3D imaging. Based upon a Siemens PowerMobil, the device includes: a flat-panel detector (Varian PaxScan 4030CB); a motorized orbit; a system for geometric calibration; integration with real-time tracking and navigation (NDI Polaris); and a computer control system for multi-mode fluoroscopy, tomosynthesis, and cone-beam CT. Investigation of 3D imaging performance (noise-equivalent quanta), image quality (human observer studies), and image artifacts (scatter, truncation, and cone-beam artifacts) has driven the development of imaging techniques appropriate to a host of image-guided interventions. Multi-mode functionality presents a valuable spectrum of acquisition techniques: i.) fluoroscopy for real-time 2D guidance; ii.) limited-angle tomosynthesis for fast 3D imaging (e.g., ~10 sec acquisition of coronal slices containing the surgical target); and iii.) fully 3D cone-beam CT (e.g., ~30-60 sec acquisition providing bony and soft-tissue visualization across the field of view). Phantom and cadaver studies clearly indicate the potential for improved surgical performance - up to a factor of 2 increase in challenging surgical target excisions. The C-arm system is currently being deployed in patient protocols ranging from brachytherapy to chest, breast, spine, and head and neck surgery.

  11. Two-dimensional and 3-D images of thick tissue using time-constrained times-of-flight and absorbance spectrophotometry

    NASA Astrophysics Data System (ADS)

    Benaron, David A.; Lennox, M.; Stevenson, David K.

    1992-05-01

    Reconstructing deep-tissue images in real time using spectrophotometric data from optically diffusing thick tissues has been problematic. Continuous wave applications (e.g., pulse oximetry, regional cerebral saturation) ignore both the multiple paths traveled by the photons through the tissue and the effects of scattering, allowing scalar measurements but only under limited conditions; interferometry works poorly in thick, highly-scattering media; frequency- modulated approaches may not allow full deconvolution of scattering and absorbance; and pulsed-light techniques allow for preservation of information regarding the multiple paths taken by light through the tissue, but reconstruction is both computation intensive and limited by the relative surface area available for detection of photons. We have developed a picosecond times-of-flight and absorbance (TOFA) optical system, time-constrained to measure only photons with a narrow range of path lengths and arriving within a narrow angel of the emitter-detector axis. The delay until arrival of the earliest arriving photons is a function of both the scattering and absorbance of the tissues in a direct line between the emitter and detector, reducing the influence of surrounding tissues. Measurement using a variety of emitter and detector locations produces spatial information which can be analyzed in a standard 2-D grid, or subject to computer reconstruction to produce tomographic images representing 3-D structure. Using such a technique, we have been able to demonstrate the principles of tc-TOFA, detect and localize diffusive and/or absorptive objects suspended in highly scattering media (such as blood admixed with yeast), and perform simple 3-D reconstructions using phantom objects. We are now attempting to obtain images in vivo. Potential future applications include use as a research tool, and as a continuous, noninvasive, nondestructive monitor in diagnostic imaging, fetal monitoring, neurologic and cardiac assessment. The technique may lead to real-time optical imaging and quantitation of tissues oxygen delivery.

  12. Physical And Medical Attributes Of Six Contemporary Noninvasive Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Budinger, Thomas F.

    1981-11-01

    Digital subtraction angiography(DSA)is compared to five other noninvasive imaging methods with respect to physical attributes and medical applications. 1) Digital subtraction angiography measures flow channel (vessel) anatomy and vascular leaks in regions where signals from under and overlying vascular pools do not conflict in strength with the vessel or tissue of interest. 2) X-ray computed tomography, in principle, can separate the under and overlying signals, yet presently it is limited in speed, axial coverage, and computational burden for tasks DSA can efficiently perform. Possible exceptions are the dynamic spatial reconstructor (DSR) of Mayo Clinic and the system under construction at the University of California, San Francisco. 3) Heavy ion imaging measures electron density and is less sensitive to injected contrast than x-ray imaging which has the advantage of the photoelectric effect. A unique attribute of heavy ion imaging is its potential for treatment planning and the fact that beam hardening is not a physical problem. 4) Ultrasound detects surfaces, bulk tissue characteristics, and blood velocity. Doppler ultrasound competes with DSA in some regions of the body and generally involves less equipment and patient procedures. Ultrasound vessel imaging and range-gated Doppler have limitations due to sound absorption by atheromatous tissue and available imaging windows. 5) Emission tomography measures receptor site distribution, metabolism, permeability, and tissue perfusion. Resolution is limited to 7mm full width half maximum (FWHM) in the near future, and extraction of metabolic and perfusion information usually requires kinetic analyses with statistically poor data. The ability of positron tomography to measure metabolism (sugar, fatty acid, and oxygen utilization) and the ability to measure tissue perfusion with single photon tomography (17 mm FWHM) or PET (7 mm FWHM) using non-cyclotron produced radionuclides are the major unique features of emission tomography. 6) Nuclear magnetic resonance procedures measure the concentration of some nuclei (e.g., 1H, 23Na, 32P) as well as their chemical state and the local physical-chemical environment of the resolution volume. Velocity and diffusion are also potential measurements. Two unique capabilities of contemporary interest are the ability to image the spatial distribu-tion of relaxation parameters which give information about the local tissue characteristics, and the ability of NMR spectroscopy to sample (not image) the energy state of phosphorous in selected regions of the body. A third attribute of importance is that possible tissue heating seems to be the only hazard and this can be controlled.

  13. WE-G-BRF-01: Adaptation to Intrafraction Tumor Deformation During Intensity-Modulated Radiotherapy: First Proof-Of-Principle Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Y; OBrien, R; Shieh, C

    2014-06-15

    Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor systemmore » phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development of an image-guided radiotherapy system to treat deforming tumors in real-time. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship, Cure Cancer Australia Foundation, NHMRC Project Grant APP1042375 and US NIH/NCI R01CA93626.« less

  14. Confocal Light Absorption and Scattering Spectroscopic (CLASS) imaging: From cancer detection to sub-cellular function

    NASA Astrophysics Data System (ADS)

    Qiu, Le

    Light scattering spectroscopy (LSS), an optical technique that relates the spectroscopic properties of light elastically scattered by small particles to their size, refractive index and shape, has been recently successfully employed for sensing morphological and biochemical properties of epithelial tissues and cells in vivo. LSS does not require exogenous markers, is non-invasive, and, due to its multispectral nature, can sense biological structures well beyond the diffraction limit. All that makes LSS be a very good candidate to be used both in clinical medicine for in vivo detection of disease and in cell biology to monitor cell function on the organelle scale. Recently we developed two LSS-based imaging modalities: clinical Polarized LSS (PLSS) Endoscopic Technique for locating early pre-cancerous changes in GI tract and Confocal Light Absorption and Scattering Spectroscopic (CLASS) Microscopy for studying cells in vivo without exogenous markers. One important application of the clinical PLSS endoscopic instrument, a noncontact scanning imaging device compatible with the standard clinical endoscopes and capable of detecting dysplastic changes, is to serve as a guide for biopsy in Barrett's esophagus (BE). The instrument detects parallel and perpendicular components of the polarized light, backscattered from epithelial tissues, and determines characteristics of epithelial nuclei from the residual spectra. It also can find tissue oxygenation, hemoglobin content and other properties from the diffuse light component. By rapidly scanning esophagus the PLSS endoscopic instrument makes sure the entire BE portion is scanned and examined for the presence of dysplasia. CLASS microscopy, on the other hand, combines principles of light scattering spectroscopy (LSS) with confocal microscopy. Its main purpose is to image cells on organelle scale in vivo without the use of exogenous labels which may affect the cell function. The confocal geometry selects specific region and images are obtained by scanning the confocal volume across the sample. The new beam scanning CLASS microscope is a significant improvement over the previous proof-of-principle device. With this new device we have already performed experiments to monitor morphological changes in cells during apoptosis, differentiated fetal from maternal nucleated red blood cells, and detected plasmon scattering spectra of single gold nanorod.

  15. Principles of visual key construction-with a visual identification key to the Fagaceae of the southeastern United States.

    PubMed

    Kirchoff, Bruce K; Leggett, Roxanne; Her, Va; Moua, Chue; Morrison, Jessica; Poole, Chamika

    2011-01-01

    Advances in digital imaging have made possible the creation of completely visual keys. By a visual key we mean a key based primarily on images, and that contains a minimal amount of text. Characters in visual keys are visually, not verbally defined. In this paper we create the first primarily visual key to a group of taxa, in this case the Fagaceae of the southeastern USA. We also modify our recently published set of best practices for image use in illustrated keys to make them applicable to visual keys. Photographs of the Fagaceae were obtained from internet and herbarium databases or were taken specifically for this project. The images were printed and then sorted into hierarchical groups. These hierarchical groups of images were used to create the 'couplets' in the key. A reciprocal process of key creation and testing was used to produce the final keys. Four keys were created, one for each of the parts-leaves, buds, fruits and bark. Species description pages consisting of multiple images were also created for each of the species in the key. Creation and testing of the key resulted in a modified list of best practices for image use visual keys. The inclusion of images into paper and electronic keys has greatly increased their ease of use. However, virtually all of these keys are still based upon verbally defined, atomistic characters. The creation of primarily visual keys allows us to overcome the well-known limitations of linguistic-based characters and create keys that are much easier to use, especially for botanical novices.

  16. TU-AB-207-01: Introduction to Tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sechopoulos, I.

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact,more » the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.« less

  17. TU-AB-207-03: Tomosynthesis: Clinical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidment, A.

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact,more » the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.« less

  18. TU-AB-207-00: Digital Tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact,more » the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.« less

  19. TU-AB-207-02: Testing of Body and Breast Tomosynthesis Sytems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A.

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact,more » the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.« less

  20. Particle sizing of pharmaceutical aerosols via direct imaging of particle settling velocities.

    PubMed

    Fishler, Rami; Verhoeven, Frank; de Kruijf, Wilbur; Sznitman, Josué

    2018-02-15

    We present a novel method for characterizing in near real-time the aerodynamic particle size distributions from pharmaceutical inhalers. The proposed method is based on direct imaging of airborne particles followed by a particle-by-particle measurement of settling velocities using image analysis and particle tracking algorithms. Due to the simplicity of the principle of operation, this method has the potential of circumventing potential biases of current real-time particle analyzers (e.g. Time of Flight analysis), while offering a cost effective solution. The simple device can also be constructed in laboratory settings from off-the-shelf materials for research purposes. To demonstrate the feasibility and robustness of the measurement technique, we have conducted benchmark experiments whereby aerodynamic particle size distributions are obtained from several commercially-available dry powder inhalers (DPIs). Our measurements yield size distributions (i.e. MMAD and GSD) that are closely in line with those obtained from Time of Flight analysis and cascade impactors suggesting that our imaging-based method may embody an attractive methodology for rapid inhaler testing and characterization. In a final step, we discuss some of the ongoing limitations of the current prototype and conceivable routes for improving the technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. In vivo fluorescence imaging of atherosclerotic plaques with activatable cell-penetrating peptides targeting thrombin activity†

    PubMed Central

    Olson, Emilia S.; Whitney, Michael A.; Friedman, Beth; Aguilera, Todd A.; Crisp, Jessica L.; Baik, Fred M.; Jiang, Tao; Baird, Stephen M.; Tsimikas, Sotirios; Tsien, Roger Y.

    2012-01-01

    Thrombin and other coagulation enzymes have been shown to be important during atherosclerotic disease development. Study of these proteases is currently limited because of lack of robust molecular imaging agents for imaging protease activity in vivo. Activatable cell penetrating peptides (ACPPs) have been used to monitor MMP activity in tumors and, in principle, can be modified to detect other proteases. We have developed a probe that incorporates the peptide sequence DPRSFL from the proteinase activated receptor 1 (PAR-1) into an ACPP and shown that it is preferentially cleaved by purified thrombin. Active thrombin in serum cleaves DPRSFL–ACPP with >90% inhibition by lepirudin or argatroban. The DPRSFL–ACPP cleavage product accumulated in advanced atherosclerotic lesions in living mice, with 85% reduction in retention upon pre-injection of mice with hirudin. Uptake of the ACPP cleavage product was highest in plaques with histological features associated with more severe disease. Freshly resected human atheromas bathed in DPRSFL–ACPP retained 63% greater cleavage product compared to control ACPP. In conclusion, DPRSFL–ACPP can be used to study thrombin activity in coagulation and atherosclerosis with good spatial and temporal resolution. Thrombin-sensitive ACPPs may be developed into probes for early detection and intraoperative imaging of high risk atherosclerotic plaques. PMID:22534729

  2. In vivo fluorescence imaging of atherosclerotic plaques with activatable cell-penetrating peptides targeting thrombin activity.

    PubMed

    Olson, Emilia S; Whitney, Michael A; Friedman, Beth; Aguilera, Todd A; Crisp, Jessica L; Baik, Fred M; Jiang, Tao; Baird, Stephen M; Tsimikas, Sotirios; Tsien, Roger Y; Nguyen, Quyen T

    2012-06-01

    Thrombin and other coagulation enzymes have been shown to be important during atherosclerotic disease development. Study of these proteases is currently limited because of lack of robust molecular imaging agents for imaging protease activity in vivo. Activatable cell penetrating peptides (ACPPs) have been used to monitor MMP activity in tumors and, in principle, can be modified to detect other proteases. We have developed a probe that incorporates the peptide sequence DPRSFL from the proteinase activated receptor 1 (PAR-1) into an ACPP and shown that it is preferentially cleaved by purified thrombin. Active thrombin in serum cleaves DPRSFL-ACPP with >90% inhibition by lepirudin or argatroban. The DPRSFL-ACPP cleavage product accumulated in advanced atherosclerotic lesions in living mice, with 85% reduction in retention upon pre-injection of mice with hirudin. Uptake of the ACPP cleavage product was highest in plaques with histological features associated with more severe disease. Freshly resected human atheromas bathed in DPRSFL-ACPP retained 63% greater cleavage product compared to control ACPP. In conclusion, DPRSFL-ACPP can be used to study thrombin activity in coagulation and atherosclerosis with good spatial and temporal resolution. Thrombin-sensitive ACPPs may be developed into probes for early detection and intraoperative imaging of high risk atherosclerotic plaques.

  3. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chi, E-mail: chizheung@gmail.com; Xu, Yiqing; Wei, Xiaoming

    2014-07-28

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated bymore » a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier.« less

  4. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders.

    PubMed

    Edlow, Brian L; Takahashi, Emi; Wu, Ona; Benner, Thomas; Dai, Guangping; Bu, Lihong; Grant, Patricia Ellen; Greer, David M; Greenberg, Steven M; Kinney, Hannah C; Folkerth, Rebecca D

    2012-06-01

    The ascending reticular activating system (ARAS) mediates arousal, an essential component of human consciousness. Lesions of the ARAS cause coma, the most severe disorder of consciousness. Because of current methodological limitations, including of postmortem tissue analysis, the neuroanatomic connectivity of the human ARAS is poorly understood. We applied the advanced imaging technique of high angular resolution diffusion imaging (HARDI) to elucidate the structural connectivity of the ARAS in 3 adult human brains, 2 of which were imaged postmortem. High angular resolution diffusion imaging tractography identified the ARAS connectivity previously described in animals and also revealed novel human pathways connecting the brainstem to the thalamus, the hypothalamus, and the basal forebrain. Each pathway contained different distributions of fiber tracts from known neurotransmitter-specific ARAS nuclei in the brainstem. The histologically guided tractography findings reported here provide initial evidence for human-specific pathways of the ARAS. The unique composition of neurotransmitter-specific fiber tracts within each ARAS pathway suggests structural specializations that subserve the different functional characteristics of human arousal. This ARAS connectivity analysis provides proof of principle that HARDI tractography may affect the study of human consciousness and its disorders, including in neuropathologic studies of patients dying in coma and the persistent vegetative state.

  5. Referral criteria and clinical decision support: radiological protection aspects for justification.

    PubMed

    Pérez, M del Rosario

    2015-06-01

    Advanced imaging technology has opened new horizons for medical diagnostics and improved patient care. However, many procedures are unjustified and do not provide a net benefit. An area of particular concern is the unnecessary use of radiation when clinical evaluation or other imaging modalities could provide an accurate diagnosis. Referral criteria for medical imaging are consensus statements based on the best-available evidence to assist the decision-making process when choosing the best imaging procedure for a given patient. Although they are advisory rather than compulsory, physicians should have good reasons for deviation from these criteria. Voluntary use of referral criteria has shown limited success compared with integration into clinical decision support systems. These systems support good medical practice, can improve health service delivery, and foster safer, more efficient, fair, cost-effective care, thus contributing to the strengthening of health systems. Justification of procedures and optimisation of protection, the two pillars of radiological protection in health care, are implicit in the notion of good medical practice. However, some health professionals are not familiar with these principles, and have low awareness of radiological protection aspects of justification. A stronger collaboration between radiation protection and healthcare communities could contribute to improve the radiation protection culture in medical practice. © The Chartered Institution of Building Services Engineers 2014.

  6. Direct estimation of evoked hemoglobin changes by multimodality fusion imaging

    PubMed Central

    Huppert, Theodore J.; Diamond, Solomon G.; Boas, David A.

    2009-01-01

    In the last two decades, both diffuse optical tomography (DOT) and blood oxygen level dependent (BOLD)-based functional magnetic resonance imaging (fMRI) methods have been developed as noninvasive tools for imaging evoked cerebral hemodynamic changes in studies of brain activity. Although these two technologies measure functional contrast from similar physiological sources, i.e., changes in hemoglobin levels, these two modalities are based on distinct physical and biophysical principles leading to both limitations and strengths to each method. In this work, we describe a unified linear model to combine the complimentary spatial, temporal, and spectroscopic resolutions of concurrently measured optical tomography and fMRI signals. Using numerical simulations, we demonstrate that concurrent optical and BOLD measurements can be used to create cross-calibrated estimates of absolute micromolar deoxyhemoglobin changes. We apply this new analysis tool to experimental data acquired simultaneously with both DOT and BOLD imaging during a motor task, demonstrate the ability to more robustly estimate hemoglobin changes in comparison to DOT alone, and show how this approach can provide cross-calibrated estimates of hemoglobin changes. Using this multimodal method, we estimate the calibration of the 3 tesla BOLD signal to be −0.55% ± 0.40% signal change per micromolar change of deoxyhemoglobin. PMID:19021411

  7. Towards an improved LAI collection protocol via simulated field-based PAR sensing

    DOE PAGES

    Yao, Wei; Van Leeuwen, Martin; Romanczyk, Paul; ...

    2016-07-14

    In support of NASA’s next-generation spectrometer—the Hyperspectral Infrared Imager (HyspIRI)—we are working towards assessing sub-pixel vegetation structure from imaging spectroscopy data. Of particular interest is Leaf Area Index (LAI), which is an informative, yet notoriously challenging parameter to efficiently measure in situ. While photosynthetically-active radiation (PAR) sensors have been validated for measuring crop LAI, there is limited literature on the efficacy of PAR-based LAI measurement in the forest environment. This study (i) validates PAR-based LAI measurement in forest environments, and (ii) proposes a suitable collection protocol, which balances efficiency with measurement variation, e.g., due to sun flecks and various-sized canopymore » gaps. A synthetic PAR sensor model was developed in the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model and used to validate LAI measurement based on first-principles and explicitly-known leaf geometry. Simulated collection parameters were adjusted to empirically identify optimal collection protocols. Furthermore, these collection protocols were then validated in the field by correlating PAR-based LAI measurement to the normalized difference vegetation index (NDVI) extracted from the “classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) data (R 2 was 0.61). The results indicate that our proposed collecting protocol is suitable for measuring the LAI of sparse forest (LAI < 3–5 ( m 2/m 2)).« less

  8. Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer.

    PubMed

    De, Abhijit; Gambhir, Sanjiv Sam

    2005-12-01

    This study demonstrates a significant advancement of imaging of a distance-dependent physical process, known as the bioluminescent resonance energy transfer (BRET2) signal in living subjects, by using a cooled charge-coupled device (CCD) camera. A CCD camera-based spectral imaging strategy enables simultaneous visualization and quantitation of BRET signal from live cells and cells implanted in living mice. We used the BRET2 system, which utilizes Renilla luciferase (hRluc) protein and its substrate DeepBlueC (DBC) as an energy donor and a mutant green fluorescent protein (GFP2) as the acceptor. To accomplish this objective in this proof-of-principle study, the donor and acceptor proteins were fused to FKBP12 and FRB, respectively, which are known to interact only in the presence of the small molecule mediator rapamycin. Mammalian cells expressing these fusion constructs were imaged using a cooled-CCD camera either directly from culture dishes or by implanting them into mice. By comparing the emission photon yields in the presence and absence of rapamycin, the specific BRET signal was determined. The CCD imaging approach of BRET signal is particularly appealing due to its capacity to seamlessly bridge the gap between in vitro and in vivo studies. This work validates BRET as a powerful tool for interrogating and observing protein-protein interactions directly at limited depths in living mice.

  9. Muon imaging: Principles, technologies and applications

    NASA Astrophysics Data System (ADS)

    Procureur, S.

    2018-01-01

    During the last 15 years muon-based imaging, or muography, has experienced an impressive development and has found applications in many different fields requiring penetrating probes. Structures of very different sizes and densities can be imaged thanks to the various implementations it offers: either in absorption/transmission or in deviation modes, not to mention the muon metrology for monitoring. The goal of this paper is to give an overview of the main principles of the muography, as well as the technologies employed nowadays and its current and potential applications. Considering the amount of studies dedicated to muography and the number of projects conducted in the last decade, this review focuses on the fields which are the most representative of the muography capabilities.

  10. Simulation of target interpretation based on infrared image features and psychology principle

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Chen, Yu-hua; Gao, Hong-sheng; Wang, Zhan-feng; Wang, Ji-jun; Su, Rong-hua; Huang, Yan-ping

    2009-07-01

    It's an important and complicated process in target interpretation that target features extraction and identification, which effect psychosensorial quantity of interpretation person to target infrared image directly, and decide target viability finally. Using statistical decision theory and psychology principle, designing four psychophysical experiment, the interpretation model of the infrared target is established. The model can get target detection probability by calculating four features similarity degree between target region and background region, which were plotted out on the infrared image. With the verification of a great deal target interpretation in practice, the model can simulate target interpretation and detection process effectively, get the result of target interpretation impersonality, which can provide technique support for target extraction, identification and decision-making.

  11. An imaging system based on laser optical feedback for fog vision applications

    NASA Astrophysics Data System (ADS)

    Belin, E.; Boucher, V.

    2008-08-01

    The Laboratoire Régional des Ponts et Chaussées d'Angers - LRPC of Angers is currently studying the feasability of applying an optical technique based on the principle of the laser optical feedback to long distance fog vision. Optical feedback set up allows the creation of images on roadsigns. To create artificial fog conditions we used a vibrating cell that produces a micro-spray of water according to the principle of acoustic cavitation. To scale the sensitivity of the system under duplicatible conditions we also used optical densities linked to first-sight visibility distances. The current system produces, in a few seconds, 200 × 200 pixel images of a roadsign seen through dense artificial fog.

  12. Tests of a Compton imaging prototype in a monoenergetic 4.44 MeV photon field—a benchmark setup for prompt gamma-ray imaging devices

    NASA Astrophysics Data System (ADS)

    Golnik, C.; Bemmerer, D.; Enghardt, W.; Fiedler, F.; Hueso-González, F.; Pausch, G.; Römer, K.; Rohling, H.; Schöne, S.; Wagner, L.; Kormoll, T.

    2016-06-01

    The finite range of a proton beam in tissue opens new vistas for the delivery of a highly conformal dose distribution in radiotherapy. However, the actual particle range, and therefore the accurate dose deposition, is sensitive to the tissue composition in the proton path. Range uncertainties, resulting from limited knowledge of this tissue composition or positioning errors, are accounted for in the form of safety margins. Thus, the unverified particle range constrains the principle benefit of proton therapy. Detecting prompt γ-rays, a side product of proton-tissue interaction, aims at an on-line and non-invasive monitoring of the particle range, and therefore towards exploiting the potential of proton therapy. Compton imaging of the spatial prompt γ-ray emission is a promising measurement approach. Prompt γ-rays exhibit emission energies of several MeV. Hence, common radioactive sources cannot provide the energy range a prompt γ-ray imaging device must be designed for. In this work a benchmark measurement-setup for the production of a localized, monoenergetic 4.44 MeV γ-ray source is introduced. At the Tandetron accelerator at the HZDR, the proton-capture resonance reaction 15N(p,α γ4.439)12C is utilized. This reaction provides the same nuclear de-excitation (and γ-ray emission) occurrent as an intense prompt γ-ray line in proton therapy. The emission yield is quantitatively described. A two-stage Compton imaging device, dedicated for prompt γ-ray imaging, is tested at the setup exemplarily. Besides successful imaging tests, the detection efficiency of the prototype at 4.44 MeV is derived from the measured data. Combining this efficiency with the emission yield for prompt γ-rays, the number of valid Compton events, induced by γ-rays in the energy region around 4.44 MeV, is estimated for the prototype being implemented in a therapeutic treatment scenario. As a consequence, the detection efficiency turns out to be a key parameter for prompt γ-rays Compton imaging limiting the applicability of the prototype in its current realization.

  13. Accounting for tissue heterogeneity in infrared spectroscopic imaging for accurate diagnosis of thyroid carcinoma subtypes.

    PubMed

    Martinez-Marin, David; Sreedhar, Hari; Varma, Vishal K; Eloy, Catarina; Sobrinho-Simões, Manuel; Kajdacsy-Balla, André; Walsh, Michael J

    2017-07-01

    Fourier transform infrared (FT-IR) microscopy was used to image tissue samples from twenty patients diagnosed with thyroid carcinoma. The spectral data were then used to differentiate between follicular thyroid carcinoma and follicular variant of papillary thyroid carcinoma using principle component analysis coupled with linear discriminant analysis and a Naïve Bayesian classifier operating on a set of computed spectral metrics. Classification of patients' disease type was accomplished by using average spectra from a wide region containing follicular cells, colloid, and fibrosis; however, classification of disease state at the pixel level was only possible when the extracted spectra were limited to follicular epithelial cells in the samples, excluding the relatively uninformative areas of fibrosis. The results demonstrate the potential of FT-IR microscopy as a tool to assist in the difficult diagnosis of these subtypes of thyroid cancer, and also highlights the importance of selectively and separately analyzing spectral information from different features of a tissue of interest.

  14. Direct single-shot phase retrieval from the diffraction pattern of separated objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leshem, Ben; Xu, Rui; Dallal, Yehonatan

    The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less

  15. Direct single-shot phase retrieval from the diffraction pattern of separated objects

    DOE PAGES

    Leshem, Ben; Xu, Rui; Dallal, Yehonatan; ...

    2016-02-22

    The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less

  16. Infrared Technology Trends and Implications to Home and Building Energy Use Efficiency

    NASA Astrophysics Data System (ADS)

    Woolaway, James T.

    2008-09-01

    It has long been realized that infrared technology would have applicability in improving the energy efficiency of homes and buildings. Walls that are missing or are poorly insulated can be quickly evaluated by looking at the thermal images of these surfaces. Similarly, air infiltration leaks under doors and around windows leave a telltale thermal signature easily seen in the infrared. The ability to view, evaluate and quickly respond to these images has immediate benefits in addressing and correcting situations where these types of losses are occurring. The principle issue that has been limiting the use of infrared technology in these applications has been the lack of availability and accessibility of infrared technology at a cost point suited to this market. The emergence of low cost microbolometer based infrared cameras, not needing sensor cooling, will greatly increase the accessibility and use of infrared technology for House Doctor inspections. The technology cost for this use is projected to be less than 1 per inspection.

  17. An effective approach of lesion segmentation within the breast ultrasound image based on the cellular automata principle.

    PubMed

    Liu, Yan; Cheng, H D; Huang, Jianhua; Zhang, Yingtao; Tang, Xianglong

    2012-10-01

    In this paper, a novel lesion segmentation within breast ultrasound (BUS) image based on the cellular automata principle is proposed. Its energy transition function is formulated based on global image information difference and local image information difference using different energy transfer strategies. First, an energy decrease strategy is used for modeling the spatial relation information of pixels. For modeling global image information difference, a seed information comparison function is developed using an energy preserve strategy. Then, a texture information comparison function is proposed for considering local image difference in different regions, which is helpful for handling blurry boundaries. Moreover, two neighborhood systems (von Neumann and Moore neighborhood systems) are integrated as the evolution environment, and a similarity-based criterion is used for suppressing noise and reducing computation complexity. The proposed method was applied to 205 clinical BUS images for studying its characteristic and functionality, and several overlapping area error metrics and statistical evaluation methods are utilized for evaluating its performance. The experimental results demonstrate that the proposed method can handle BUS images with blurry boundaries and low contrast well and can segment breast lesions accurately and effectively.

  18. A novel false color mapping model-based fusion method of visual and infrared images

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Kun, Gao; Tian, Yue-xin; Zhu, Zhen-yu

    2013-12-01

    A fast and efficient image fusion method is presented to generate near-natural colors from panchromatic visual and thermal imaging sensors. Firstly, a set of daytime color reference images are analyzed and the false color mapping principle is proposed according to human's visual and emotional habits. That is, object colors should remain invariant after color mapping operations, differences between infrared and visual images should be enhanced and the background color should be consistent with the main scene content. Then a novel nonlinear color mapping model is given by introducing the geometric average value of the input visual and infrared image gray and the weighted average algorithm. To determine the control parameters in the mapping model, the boundary conditions are listed according to the mapping principle above. Fusion experiments show that the new fusion method can achieve the near-natural appearance of the fused image, and has the features of enhancing color contrasts and highlighting the infrared brilliant objects when comparing with the traditional TNO algorithm. Moreover, it owns the low complexity and is easy to realize real-time processing. So it is quite suitable for the nighttime imaging apparatus.

  19. The Golden Rule Agreement is Psychometrically Defensible.

    ERIC Educational Resources Information Center

    Gonzalez-Tamayo, Eulogio

    The agreement between the Educational Testing Service (ETS) and the Golden Rule Insurance Company of Illinois is interpreted as setting the general principles on which items must be selected to be included in a licensure test. These principles put a limit to the difficulty level of any item, and they also limit the size of the difference in…

  20. Spiders in Lyot Coronagraphs

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Anand; Lloyd, James P.

    2005-11-01

    In principle, suppression of on-axis stellar light by a coronagraph is easier on an unobscured aperture telescope than on one with an obscured aperture. Recent designs such as the apodized pupil Lyot coronagraph, the ``band-limited'' Lyot coronagraph, and several variants of phase-mask coronagraphs work best on unobscured circular aperture telescopes. These designs were developed to enable the discovery and characterization of nearby Jovian or even terrestrial exoplanets. All of today's major space-based and adaptive optics-equipped ground-based telescopes are obscured-aperture systems with a secondary mirror held in place by secondary support ``spider'' vanes. The presence of a secondary obscuration can be dealt with by ingenious coronagraph designs, but the spider vanes themselves cause diffracted light, which can hamper the search for Jovian exoplanets around nearby stars. We look at the problem of suppressing spider vane diffraction in Lyot coronagraphs, including apodized pupil and band-limited designs. We show how spider vane diffraction can be reduced drastically and in fact contained in the final coronagraphic image, within one resolution element of the geometric image of the focal plane mask's occulting spot. This makes adaptive optics coronagraphic searches for exojupiters possible with the next generation of adaptive optics systems being developed for 8-10 m class telescopes such as Gemini and the Very Large Telescopes.

  1. Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection

    PubMed Central

    Zhi, Yanan; Wang, Benquan; Yao, Xincheng

    2016-01-01

    Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches—including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy—have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact–free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina. PMID:27480461

  2. Proof of principle study of the use of a CMOS active pixel sensor for proton radiography.

    PubMed

    Seco, Joao; Depauw, Nicolas

    2011-02-01

    Proof of principle study of the use of a CMOS active pixel sensor (APS) in producing proton radiographic images using the proton beam at the Massachusetts General Hospital (MGH). A CMOS APS, previously tested for use in s-ray radiation therapy applications, was used for proton beam radiographic imaging at the MGH. Two different setups were used as a proof of principle that CMOS can be used as proton imaging device: (i) a pen with two metal screws to assess spatial resolution of the CMOS and (ii) a phantom with lung tissue, bone tissue, and water to assess tissue contrast of the CMOS. The sensor was then traversed by a double scattered monoenergetic proton beam at 117 MeV, and the energy deposition inside the detector was recorded to assess its energy response. Conventional x-ray images with similar setup at voltages of 70 kVp and proton images using commercial Gafchromic EBT 2 and Kodak X-Omat V films were also taken for comparison purposes. Images were successfully acquired and compared to x-ray kVp and proton EBT2/X-Omat film images. The spatial resolution of the CMOS detector image is subjectively comparable to the EBT2 and Kodak X-Omat V film images obtained at the same object-detector distance. X-rays have apparent higher spatial resolution than the CMOS. However, further studies with different commercial films using proton beam irradiation demonstrate that the distance of the detector to the object is important to the amount of proton scatter contributing to the proton image. Proton images obtained with films at different distances from the source indicate that proton scatter significantly affects the CMOS image quality. Proton radiographic images were successfully acquired at MGH using a CMOS active pixel sensor detector. The CMOS demonstrated spatial resolution subjectively comparable to films at the same object-detector distance. Further work will be done in order to establish the spatial and energy resolution of the CMOS detector for protons. The development and use of CMOS in proton radiography could allow in vivo proton range checks, patient setup QA, and real-time tumor tracking.

  3. Brain single-photon emission CT physics principles.

    PubMed

    Accorsi, R

    2008-08-01

    The basic principles of scintigraphy are reviewed and extended to 3D imaging. Single-photon emission computed tomography (SPECT) is a sensitive and specific 3D technique to monitor in vivo functional processes in both clinical and preclinical studies. SPECT/CT systems are becoming increasingly common and can provide accurately registered anatomic information as well. In general, SPECT is affected by low photon-collection efficiency, but in brain imaging, not all of the large FOV of clinical gamma cameras is needed: The use of fan- and cone-beam collimation trades off the unused FOV for increased sensitivity and resolution. The design of dedicated cameras aims at increased angular coverage and resolution by minimizing the distance from the patient. The corrections needed for quantitative imaging are challenging but can take advantage of the relative spatial uniformity of attenuation and scatter. Preclinical systems can provide submillimeter resolution in small animal brain imaging with workable sensitivity.

  4. Principle component analysis and linear discriminant analysis of multi-spectral autofluorescence imaging data for differentiating basal cell carcinoma and healthy skin

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Zaytsev, Kirill I.; Lesnichaya, Anastasiya D.; Kudrin, Konstantin G.; Cherkasova, Olga P.; Kurlov, Vladimir N.; Shikunova, Irina A.; Perchik, Alexei V.; Yurchenko, Stanislav O.; Reshetov, Igor V.

    2016-09-01

    In present paper, an ability to differentiate basal cell carcinoma (BCC) and healthy skin by combining multi-spectral autofluorescence imaging, principle component analysis (PCA), and linear discriminant analysis (LDA) has been demonstrated. For this purpose, the experimental setup, which includes excitation and detection branches, has been assembled. The excitation branch utilizes a mercury arc lamp equipped with a 365-nm narrow-linewidth excitation filter, a beam homogenizer, and a mechanical chopper. The detection branch employs a set of bandpass filters with the central wavelength of spectral transparency of λ = 400, 450, 500, and 550 nm, and a digital camera. The setup has been used to study three samples of freshly excised BCC. PCA and LDA have been implemented to analyze the data of multi-spectral fluorescence imaging. Observed results of this pilot study highlight the advantages of proposed imaging technique for skin cancer diagnosis.

  5. High-sensitivity chemical imaging for biomedicine by SRS microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Min, Wei

    2017-02-01

    Innovations in spectroscopy principles and microscopy technology have significantly impacted modern biology and medicine. While most of the contemporary bio-imaging modalities harness electronic transition, nuclear spin or radioactivity, vibrational spectroscopy has not been widely used yet. Here we will discuss an emerging chemical imaging platform, stimulated Raman scattering (SRS) microscopy, which can enhance the otherwise feeble spontaneous Raman eight orders of magnitude by virtue of stimulated emission. When coupled with stable isotopes (e.g., deuterium and 13C) or bioorthogonal chemical moieties (e.g., alkynes), SRS microscopy is well suited for probing in vivo metabolic dynamics of small bio-molecules which cannot be labeled by bulky fluorophores. Physical principle of the underlying optical spectroscopy and exciting biomedical applications such as imaging lipid metabolism, protein synthesis, DNA replication, protein degradation, RNA synthesis, glucose uptake, drug trafficking and tumor metabolism will be presented.

  6. Dynamic dual-isotope molecular imaging elucidates principles for optimizing intrathecal drug delivery

    PubMed Central

    Wolf, Daniel A.; Hesterman, Jacob Y.; Sullivan, Jenna M.; Orcutt, Kelly D.; Silva, Matthew D.; Lobo, Merryl; Wellman, Tyler; Hoppin, Jack

    2016-01-01

    The intrathecal (IT) dosing route offers a seemingly obvious solution for delivering drugs directly to the central nervous system. However, gaps in understanding drug molecule behavior within the anatomically and kinetically unique environment of the mammalian IT space have impeded the establishment of pharmacokinetic principles for optimizing regional drug exposure along the neuraxis. Here, we have utilized high-resolution single-photon emission tomography with X-ray computed tomography to study the behavior of multiple molecular imaging tracers following an IT bolus injection, with supporting histology, autoradiography, block-face tomography, and MRI. Using simultaneous dual-isotope imaging, we demonstrate that the regional CNS tissue exposure of molecules with varying chemical properties is affected by IT space anatomy, cerebrospinal fluid (CSF) dynamics, CSF clearance routes, and the location and volume of the injected bolus. These imaging approaches can be used across species to optimize the safety and efficacy of IT drug therapy for neurological disorders. PMID:27699254

  7. Optimizing technology development and adoption in medical imaging using the principles of innovation diffusion, part II: practical applications.

    PubMed

    Reiner, Bruce I

    2012-02-01

    Successful adoption of new technology development can be accentuated by learning and applying the scientific principles of innovation diffusion. This is of particular importance to areas within the medical imaging practice which have lagged in innovation; perhaps, the most notable of which is reporting which has remained relatively stagnant for over a century. While the theoretical advantages of structured reporting have been well documented throughout the medical imaging community, adoption to date has been tepid and largely relegated to the academic and breast imaging communities. Widespread adoption will likely require an alternative approach to innovation, which addresses the heterogeneity and diversity of the practicing radiologist community along with the ever-changing expectations in service delivery. The challenges and strategies for reporting innovation and adoption are discussed, with the goal of adapting and customizing new technology to the preferences and needs of individual end-users.

  8. Increasing the space-time product of super-resolution structured illumination microscopy by means of two-pattern illumination

    NASA Astrophysics Data System (ADS)

    Inochkin, F. M.; Pozzi, P.; Bezzubik, V. V.; Belashenkov, N. R.

    2017-06-01

    Superresolution image reconstruction method based on the structured illumination microscopy (SIM) principle with reduced and simplified pattern set is presented. The method described needs only 2 sinusoidal patterns shifted by half a period for each spatial direction of reconstruction, instead of the minimum of 3 for the previously known methods. The method is based on estimating redundant frequency components in the acquired set of modulated images. Digital processing is based on linear operations. When applied to several spatial orientations, the image set can be further reduced to a single pattern for each spatial orientation, complemented by a single non-modulated image for all the orientations. By utilizing this method for the case of two spatial orientations, the total input image set is reduced up to 3 images, providing up to 2-fold improvement in data acquisition time compared to the conventional 3-pattern SIM method. Using the simplified pattern design, the field of view can be doubled with the same number of spatial light modulator raster elements, resulting in a total 4-fold increase in the space-time product. The method requires precise knowledge of the optical transfer function (OTF). The key limitation is the thickness of object layer that scatters or emits light, which requires to be sufficiently small relatively to the lens depth of field. Numerical simulations and experimental results are presented. Experimental results are obtained on the SIM setup with the spatial light modulator based on the 1920x1080 digital micromirror device.

  9. Coded-aperture Compton camera for gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Farber, Aaron M.

    This dissertation describes the development of a novel gamma-ray imaging system concept and presents results from Monte Carlo simulations of the new design. Current designs for large field-of-view gamma cameras suitable for homeland security applications implement either a coded aperture or a Compton scattering geometry to image a gamma-ray source. Both of these systems require large, expensive position-sensitive detectors in order to work effectively. By combining characteristics of both of these systems, a new design can be implemented that does not require such expensive detectors and that can be scaled down to a portable size. This new system has significant promise in homeland security, astronomy, botany and other fields, while future iterations may prove useful in medical imaging, other biological sciences and other areas, such as non-destructive testing. A proof-of-principle study of the new gamma-ray imaging system has been performed by Monte Carlo simulation. Various reconstruction methods have been explored and compared. General-Purpose Graphics-Processor-Unit (GPGPU) computation has also been incorporated. The resulting code is a primary design tool for exploring variables such as detector spacing, material selection and thickness and pixel geometry. The advancement of the system from a simple 1-dimensional simulation to a full 3-dimensional model is described. Methods of image reconstruction are discussed and results of simulations consisting of both a 4 x 4 and a 16 x 16 object space mesh have been presented. A discussion of the limitations and potential areas of further study is also presented.

  10. Using Principles of Programmed Instruction

    ERIC Educational Resources Information Center

    Huffman, Harry

    1971-01-01

    Although programmed instruction in accounting is available, it is limited in scope and in acceptance. Teachers, however, may apply principles of programming to the individualizing of instruction. (Author)

  11. Image improvement and three-dimensional reconstruction using holographic image processing

    NASA Technical Reports Server (NTRS)

    Stroke, G. W.; Halioua, M.; Thon, F.; Willasch, D. H.

    1977-01-01

    Holographic computing principles make possible image improvement and synthesis in many cases of current scientific and engineering interest. Examples are given for the improvement of resolution in electron microscopy and 3-D reconstruction in electron microscopy and X-ray crystallography, following an analysis of optical versus digital computing in such applications.

  12. Incorporating Animation Concepts and Principles in STEM Education

    ERIC Educational Resources Information Center

    Harrison, Henry L., III; Hummell, Laura J.

    2010-01-01

    Animation is the rapid display of a sequence of static images that creates the illusion of movement. This optical illusion is often called perception of motion, persistence of vision, illusion of motion, or short-range apparent motion. The phenomenon occurs when the eye is exposed to rapidly changing still images, with each image being changed…

  13. Analysis of contour images using optics of spiral beams

    NASA Astrophysics Data System (ADS)

    Volostnikov, V. G.; Kishkin, S. A.; Kotova, S. P.

    2018-03-01

    An approach is outlined to the recognition of contour images using computer technology based on coherent optics principles. A mathematical description of the recognition process algorithm and the results of numerical modelling are presented. The developed approach to the recognition of contour images using optics of spiral beams is described and justified.

  14. Visual Literacy and Visual Thinking.

    ERIC Educational Resources Information Center

    Hortin, John A.

    It is proposed that visual literacy be defined as the ability to understand (read) and use (write) images and to think and learn in terms of images. This definition includes three basic principles: (1) visuals are a language and thus analogous to verbal language; (2) a visually literate person should be able to understand (read) images and use…

  15. A new method for electric impedance imaging using an eddy current with a tetrapolar circuit.

    PubMed

    Ahsan-Ul-Ambia; Toda, Shogo; Takemae, Tadashi; Kosugi, Yukio; Hongo, Minoru

    2009-02-01

    A new contactless technique for electrical impedance imaging, using an eddy current managed along with the tetrapolar circuit method, is proposed. The eddy current produced by a magnetic field is superimposed on a constant current that is normally used in the tetrapolar circuit method, and thus is used to control the current distribution in the body. By changing the current distribution, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in the image reconstruction of the resistivity distribution. The least square error minimization method is used in the reconstruction algorithm. The principle of this method is explained theoretically. A backprojection algorithm was used to get 2-D images. Based on this principle, a measurement system was developed and model experiments were conducted with a saline-filled phantom. The estimated shape of each model in the reconstructed image was similar to that of the corresponding model. From the results of these experiments, it is confirmed that the proposed method is applicable to the realization of electrical conductivity imaging.

  16. Indocyanine green fluorescence imaging in the surgical management of liver cancers: current facts and future implications.

    PubMed

    Lim, C; Vibert, E; Azoulay, D; Salloum, C; Ishizawa, T; Yoshioka, R; Mise, Y; Sakamoto, Y; Aoki, T; Sugawara, Y; Hasegawa, K; Kokudo, N

    2014-04-01

    Imaging detection of liver cancers and identification of the bile ducts during surgery, based on the fluorescence properties of indocyanine green, has recently been developed in liver surgery. The principle of this imaging technique relies on the intravenous administration of indocyanine green before surgery and the illumination of the surface of the liver by an infrared camera that simultaneously induces and collects the fluorescence. Detection by fluorescence is based on the contrast between the (fluorescent) tumoral or peri-tumoral tissues and the healthy (non-fluorescent) liver. Results suggest that indocyanine green fluorescence imaging is capable of identification of new liver cancers and enables the characterization of known hepatic lesions in real time during liver resection. The purpose of this paper is to present the fundamental principles of fluorescence imaging detection, to describe successively the practical and technical aspects of its use and the appearance of hepatic lesions in fluorescence, and to expose the diagnostic and therapeutic perspectives of this innovative imaging technique in liver surgery. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. SU-E-E-06: Teaching About the Gamma Camera and Ultrasound Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, M; Spiro, A; Vogel, R

    Purpose: Instructional modules on applications of physics in medicine are being developed. The target audience consists of students who have had an introductory undergraduate physics course. This presentation will concentrate on an active learning approach to teach the principles of the gamma camera. There will also be a description of an apparatus to teach ultrasound imaging. Methods: Since a real gamma camera is not feasible in the undergraduate classroom, we have developed two types of optical apparatus that teach the main principles. To understand the collimator, LEDS mimic gamma emitters in the body, and the photons pass through an arraymore » of tubes. The distance, spacing, diameter, and length of the tubes can be varied to understand the effect upon the resolution of the image. To determine the positions of the gamma emitters, a second apparatus uses a movable green laser, fluorescent plastic in lieu of the scintillation crystal, acrylic rods that mimic the PMTs, and a photodetector to measure the intensity. The position of the laser is calculated with a centroid algorithm.To teach the principles of ultrasound imaging, we are using the sound head and pulser box of an educational product, variable gain amplifier, rotation table, digital oscilloscope, Matlab software, and phantoms. Results: Gamma camera curriculum materials have been implemented in the classroom at Loyola in 2014 and 2015. Written work shows good knowledge retention and a more complete understanding of the material. Preliminary ultrasound imaging materials were run in 2015. Conclusion: Active learning methods add another dimension to descriptions in textbooks and are effective in keeping the students engaged during class time. The teaching apparatus for the gamma camera and ultrasound imaging can be expanded to include more cases, and could potentially improve students’ understanding of artifacts and distortions in the images.« less

  18. At the cross-roads of participatory research and biomarker discovery in autism: the need for empirical data.

    PubMed

    Yusuf, Afiqah; Elsabbagh, Mayada

    2015-12-15

    Identifying biomarkers for autism can improve outcomes for those affected by autism. Engaging the diverse stakeholders in the research process using community-based participatory research (CBPR) can accelerate biomarker discovery into clinical applications. However, there are limited examples of stakeholder involvement in autism research, possibly due to conceptual and practical concerns. We evaluate the applicability of CBPR principles to biomarker discovery in autism and critically review empirical studies adopting these principles. Using a scoping review methodology, we identified and evaluated seven studies using CBPR principles in biomarker discovery. The limited number of studies in biomarker discovery adopting CBPR principles coupled with their methodological limitations suggests that such applications are feasible but challenging. These studies illustrate three CBPR themes: community assessment, setting global priorities, and collaboration in research design. We propose that further research using participatory principles would be useful in accelerating the pace of discovery and the development of clinically meaningful biomarkers. For this goal to be successful we advocate for increased attention to previously identified conceptual and methodological challenges to participatory approaches in health research, including improving scientific rigor and developing long-term partnerships among stakeholders.

  19. Imaging tristimulus colorimeter for the evaluation of color in printed textiles

    NASA Astrophysics Data System (ADS)

    Hunt, Martin A.; Goddard, James S., Jr.; Hylton, Kathy W.; Karnowski, Thomas P.; Richards, Roger K.; Simpson, Marc L.; Tobin, Kenneth W., Jr.; Treece, Dale A.

    1999-03-01

    The high-speed production of textiles with complicated printed patterns presents a difficult problem for a colorimetric measurement system. Accurate assessment of product quality requires a repeatable measurement using a standard color space, such as CIELAB, and the use of a perceptually based color difference formula, e.g. (Delta) ECMC color difference formula. Image based color sensors used for on-line measurement are not colorimetric by nature and require a non-linear transformation of the component colors based on the spectral properties of the incident illumination, imaging sensor, and the actual textile color. This research and development effort describes a benchtop, proof-of-principle system that implements a projection onto convex sets (POCS) algorithm for mapping component color measurements to standard tristimulus values and incorporates structural and color based segmentation for improved precision and accuracy. The POCS algorithm consists of determining the closed convex sets that describe the constraints on the reconstruction of the true tristimulus values based on the measured imperfect values. We show that using a simulated D65 standard illuminant, commercial filters and a CCD camera, accurate (under perceptibility limits) per-region based (Delta) ECMC values can be measured on real textile samples.

  20. Multiple speckle illumination for optical-resolution photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Poisson, Florian; Stasio, Nicolino; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel

    2017-03-01

    Optical-resolution photoacoustic microscopy offers exquisite and specific contrast to optical absorption. Conventional approaches generally involves raster scanning a focused spot over the sample. Here, we demonstrate that a full-field illumination approach with multiple speckle illumination can also provide diffraction-limited optical-resolution photoacoustic images. Two different proof-of-concepts are demonstrated with micro-structured test samples. The first approach follows the principle of correlation/ghost imaging,1, 2 and is based on cross-correlating photoacoustic signals under multiple speckle illumination with known speckle patterns measured during a calibration step. The second approach is a speckle scanning microscopy technique, which adapts the technique proposed in fluorescence microscopy by Bertolotti and al.:3 in our work, spatially unresolved photoacoustic measurements are performed for various translations of unknown speckle patterns. A phase-retrieval algorithm is used to reconstruct the object from the knowledge of the modulus of its Fourier Transform yielded by the measurements. Because speckle patterns naturally appear in many various situations, including propagation through biological tissue or multi-mode fibers (for which focusing light is either very demanding if not impossible), speckle-illumination-based photoacoustic microscopy provides a powerful framework for the development of novel reconstruction approaches, well-suited to compressed sensing approaches.2

  1. Precision platform for convex lens-induced confinement microscopy

    NASA Astrophysics Data System (ADS)

    Berard, Daniel; McFaul, Christopher M. J.; Leith, Jason S.; Arsenault, Adriel K. J.; Michaud, François; Leslie, Sabrina R.

    2013-10-01

    We present the conception, fabrication, and demonstration of a versatile, computer-controlled microscopy device which transforms a standard inverted fluorescence microscope into a precision single-molecule imaging station. The device uses the principle of convex lens-induced confinement [S. R. Leslie, A. P. Fields, and A. E. Cohen, Anal. Chem. 82, 6224 (2010)], which employs a tunable imaging chamber to enhance background rejection and extend diffusion-limited observation periods. Using nanopositioning stages, this device achieves repeatable and dynamic control over the geometry of the sample chamber on scales as small as the size of individual molecules, enabling regulation of their configurations and dynamics. Using microfluidics, this device enables serial insertion as well as sample recovery, facilitating temporally controlled, high-throughput measurements of multiple reagents. We report on the simulation and experimental characterization of this tunable chamber geometry, and its influence upon the diffusion and conformations of DNA molecules over extended observation periods. This new microscopy platform has the potential to capture, probe, and influence the configurations of single molecules, with dramatically improved imaging conditions in comparison to existing technologies. These capabilities are of immediate interest to a wide range of research and industry sectors in biotechnology, biophysics, materials, and chemistry.

  2. Transparent 3D display for augmented reality

    NASA Astrophysics Data System (ADS)

    Lee, Byoungho; Hong, Jisoo

    2012-11-01

    Two types of transparent three-dimensional display systems applicable for the augmented reality are demonstrated. One of them is a head-mounted-display-type implementation which utilizes the principle of the system adopting the concave floating lens to the virtual mode integral imaging. Such configuration has an advantage in that the threedimensional image can be displayed at sufficiently far distance resolving the accommodation conflict with the real world scene. Incorporating the convex half mirror, which shows a partial transparency, instead of the concave floating lens, makes it possible to implement the transparent three-dimensional display system. The other type is the projection-type implementation, which is more appropriate for the general use than the head-mounted-display-type implementation. Its imaging principle is based on the well-known reflection-type integral imaging. We realize the feature of transparent display by imposing the partial transparency to the array of concave mirror which is used for the screen of reflection-type integral imaging. Two types of configurations, relying on incoherent and coherent light sources, are both possible. For the incoherent configuration, we introduce the concave half mirror array, whereas the coherent one adopts the holographic optical element which replicates the functionality of the lenslet array. Though the projection-type implementation is beneficial than the head-mounted-display in principle, the present status of the technical advance of the spatial light modulator still does not provide the satisfactory visual quality of the displayed three-dimensional image. Hence we expect that the head-mounted-display-type and projection-type implementations will come up in the market in sequence.

  3. 75 FR 12962 - Transitional Safe Harbor Protection for Treatment by the Federal Deposit Insurance Corporation as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... be affected by recent changes to generally accepted accounting principles. In effect, the Final Rule... complied with the preexisting requirements under generally accepted accounting principles in effect prior... accounting principles (``GAAP''). The rule was a clarification, rather than a limitation, of the repudiation...

  4. MRI for peripheral artery disease: Introductory physics for vascular physicians.

    PubMed

    Roy, Trisha L; Forbes, Thomas L; Dueck, Andrew D; Wright, Graham A

    2018-04-01

    Magnetic resonance imaging (MRI) has advanced significantly in the past decade and provides a safe and non-invasive method of evaluating peripheral artery disease (PAD), with and without using exogenous contrast agents. MRI offers a promising alternative for imaging patients but the complexity of MRI can make it less accessible for physicians to understand or use. This article provides a brief introduction to the technical principles of MRI for physicians who manage PAD patients. We discuss the basic principles of how MRI works and tailor the discussion to how MRI can evaluate anatomic characteristics of peripheral arterial lesions.

  5. Digital Mirror Device Application in Reduction of Wave-front Phase Errors

    PubMed Central

    Zhang, Yaping; Liu, Yan; Wang, Shuxue

    2009-01-01

    In order to correct the image distortion created by the mixing/shear layer, creative and effectual correction methods are necessary. First, a method combining adaptive optics (AO) correction with a digital micro-mirror device (DMD) is presented. Second, performance of an AO system using the Phase Diverse Speckle (PDS) principle is characterized in detail. Through combining the DMD method with PDS, a significant reduction in wavefront phase error is achieved in simulations and experiments. This kind of complex correction principle can be used to recovery the degraded images caused by unforeseen error sources. PMID:22574016

  6. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  7. Images in the Air

    ERIC Educational Resources Information Center

    Riveros, H. G.; Rosenberger, Franz

    2012-01-01

    This article discusses two "magic tricks" in terms of underlying optical principles. The first trick is new and produces a "ghost" in the air, and the second is the classical real image produced with two parabolic mirrors. (Contains 2 figure and 6 photos.)

  8. On the Front Lines: Presidents Build Institutional Image.

    ERIC Educational Resources Information Center

    Justiz, Manuel J.; And Others

    1986-01-01

    The principles used by college presidents in enhancing their institutions' images are outlined and illustrated in profiles of the presidents' roles at the University of South Carolina, Trinity University, Tuskegee University, and the Community College of Philadelphia. (MSE)

  9. Rigorous accuracy assessment for 3D reconstruction using time-series Dual Fluoroscopy (DF) image pairs

    NASA Astrophysics Data System (ADS)

    Al-Durgham, Kaleel; Lichti, Derek D.; Kuntze, Gregor; Ronsky, Janet

    2017-06-01

    High-speed biplanar videoradiography, or clinically referred to as dual fluoroscopy (DF), imaging systems are being used increasingly for skeletal kinematics analysis. Typically, a DF system comprises two X-ray sources, two image intensifiers and two high-speed video cameras. The combination of these elements provides time-series image pairs of articulating bones of a joint, which permits the measurement of bony rotation and translation in 3D at high temporal resolution (e.g., 120-250 Hz). Assessment of the accuracy of 3D measurements derived from DF imaging has been the subject of recent research efforts by several groups, however with methodological limitations. This paper presents a novel and simple accuracy assessment procedure based on using precise photogrammetric tools. We address the fundamental photogrammetry principles for the accuracy evaluation of an imaging system. Bundle adjustment with selfcalibration is used for the estimation of the system parameters. The bundle adjustment calibration uses an appropriate sensor model and applies free-network constraints and relative orientation stability constraints for a precise estimation of the system parameters. A photogrammetric intersection of time-series image pairs is used for the 3D reconstruction of a rotating planar object. A point-based registration method is used to combine the 3D coordinates from the intersection and independently surveyed coordinates. The final DF accuracy measure is reported as the distance between 3D coordinates from image intersection and the independently surveyed coordinates. The accuracy assessment procedure is designed to evaluate the accuracy over the full DF image format and a wide range of object rotation. Experiment of reconstruction of a rotating planar object reported an average positional error of 0.44 +/- 0.2 mm in the derived 3D coordinates (minimum 0.05 and maximum 1.2 mm).

  10. AN OVERVIEW OF ELASTOGRAPHY – AN EMERGING BRANCH OF MEDICAL IMAGING

    PubMed Central

    Sarvazyan, Armen; Hall, Timothy J.; Urban, Matthew W.; Fatemi, Mostafa; Aglyamov, Salavat R.; Garra, Brian S.

    2011-01-01

    From times immemorial manual palpation served as a source of information on the state of soft tissues and allowed detection of various diseases accompanied by changes in tissue elasticity. During the last two decades, the ancient art of palpation gained new life due to numerous emerging elasticity imaging (EI) methods. Areas of applications of EI in medical diagnostics and treatment monitoring are steadily expanding. Elasticity imaging methods are emerging as commercial applications, a true testament to the progress and importance of the field. In this paper we present a brief history and theoretical basis of EI, describe various techniques of EI and, analyze their advantages and limitations, and overview main clinical applications. We present a classification of elasticity measurement and imaging techniques based on the methods used for generating a stress in the tissue (external mechanical force, internal ultrasound radiation force, or an internal endogenous force), and measurement of the tissue response. The measurement method can be performed using differing physical principles including magnetic resonance imaging (MRI), ultrasound imaging, X-ray imaging, optical and acoustic signals. Until recently, EI was largely a research method used by a few select institutions having the special equipment needed to perform the studies. Since 2005 however, increasing numbers of mainstream manufacturers have added EI to their ultrasound systems so that today the majority of manufacturers offer some sort of Elastography or tissue stiffness imaging on their clinical systems. Now it is safe to say that some sort of elasticity imaging may be performed on virtually all types of focal and diffuse disease. Most of the new applications are still in the early stages of research, but a few are becoming common applications in clinical practice. PMID:22308105

  11. A Low-Cost Demonstration Kit for Locating an Image Formed by a Plane Mirror Integrated with a Ray Diagram

    ERIC Educational Resources Information Center

    Kaewkhong, Kreetha; Chitaree, Ratchapak

    2015-01-01

    This article introduces a low-cost, easy to make apparatus that can be used to locate the position of an image formed by a plane mirror. The apparatus is combined with a method used to identify an image's position by drawing a ray diagram, based on the principle of reflection, to show how an image is formed. An image's distance and an object's…

  12. The quantum limit for gravitational-wave detectors and methods of circumventing it

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Caves, C. M.; Sandberg, V. D.; Zimmermann, M.; Drever, R. W. P.

    1979-01-01

    The Heisenberg uncertainty principle prevents the monitoring of the complex amplitude of a mechanical oscillator more accurately than a certain limit value. This 'quantum limit' is a serious obstacle to the achievement of a 10 to the -21st gravitational-wave detection sensitivity. This paper examines the principles of the back-action evasion technique and finds that this technique may be able to overcome the problem of the quantum limit. Back-action evasion does not solve, however, other problems of detection, such as weak coupling, large amplifier noise, and large Nyquist noise.

  13. [Research Progress of Multi-Model Medical Image Fusion at Feature Level].

    PubMed

    Zhang, Junjie; Zhou, Tao; Lu, Huiling; Wang, Huiqun

    2016-04-01

    Medical image fusion realizes advantage integration of functional images and anatomical images.This article discusses the research progress of multi-model medical image fusion at feature level.We firstly describe the principle of medical image fusion at feature level.Then we analyze and summarize fuzzy sets,rough sets,D-S evidence theory,artificial neural network,principal component analysis and other fusion methods’ applications in medical image fusion and get summery.Lastly,we in this article indicate present problems and the research direction of multi-model medical images in the future.

  14. Internet virtual studio: low-cost augmented reality system for WebTV

    NASA Astrophysics Data System (ADS)

    Sitnik, Robert; Pasko, Slawomir; Karaszewski, Maciej; Witkowski, Marcin

    2008-02-01

    In this paper a concept of a Internet Virtual Studio as a modern system for production of news, entertainment, educational and training material is proposed. This system is based on virtual studio technology and integrated with multimedia data base. Its was developed for web television content production. In successive subentries the general system architecture, as well as the architecture of modules one by one is discussed. The authors describe each module by presentation of a brief information about work principles and technical limitations. The presentation of modules is strictly connected with a presentation of their capabilities. Results produced by each of them are shown in the form of exemplary images. Finally, exemplary short production is presented and discussed.

  15. Large-memory real-time multichannel multiplexed pattern recognition

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Liu, H. K.

    1984-01-01

    The principle and experimental design of a real-time multichannel multiplexed optical pattern recognition system via use of a 25-focus dichromated gelatin holographic lens (hololens) are described. Each of the 25 foci of the hololens may have a storage and matched filtering capability approaching that of a single-lens correlator. If the space-bandwidth product of an input image is limited, as is true in most practical cases, the 25-focus hololens system has 25 times the capability of a single lens. Experimental results have shown that the interfilter noise is not serious. The system has already demonstrated the storage and recognition of over 70 matched filters - which is a larger capacity than any optical pattern recognition system reported to date.

  16. Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model

    NASA Astrophysics Data System (ADS)

    Afraimovich, Valentin; Tristan, Irma; Huerta, Ramon; Rabinovich, Mikhail I.

    2008-12-01

    Predicting the evolution of multispecies ecological systems is an intriguing problem. A sufficiently complex model with the necessary predicting power requires solutions that are structurally stable. Small variations of the system parameters should not qualitatively perturb its solutions. When one is interested in just asymptotic results of evolution (as time goes to infinity), then the problem has a straightforward mathematical image involving simple attractors (fixed points or limit cycles) of a dynamical system. However, for an accurate prediction of evolution, the analysis of transient solutions is critical. In this paper, in the framework of the traditional Lotka-Volterra model (generalized in some sense), we show that the transient solution representing multispecies sequential competition can be reproducible and predictable with high probability.

  17. Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model.

    PubMed

    Afraimovich, Valentin; Tristan, Irma; Huerta, Ramon; Rabinovich, Mikhail I

    2008-12-01

    Predicting the evolution of multispecies ecological systems is an intriguing problem. A sufficiently complex model with the necessary predicting power requires solutions that are structurally stable. Small variations of the system parameters should not qualitatively perturb its solutions. When one is interested in just asymptotic results of evolution (as time goes to infinity), then the problem has a straightforward mathematical image involving simple attractors (fixed points or limit cycles) of a dynamical system. However, for an accurate prediction of evolution, the analysis of transient solutions is critical. In this paper, in the framework of the traditional Lotka-Volterra model (generalized in some sense), we show that the transient solution representing multispecies sequential competition can be reproducible and predictable with high probability.

  18. Optical biosensors.

    PubMed

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. Interferometric Scattering Microscopy for the Study of Molecular Motors

    PubMed Central

    Andrecka, J.; Takagi, Y.; Mickolajczyk, K.J.; Lippert, L.G.; Sellers, J.R.; Hancock, W.O.; Goldman, Y.E.; Kukura, P.

    2016-01-01

    Our understanding of molecular motor function has been greatly improved by the development of imaging modalities, which enable real-time observation of their motion at the single-molecule level. Here, we describe the use of a new method, interferometric scattering microscopy, for the investigation of motor protein dynamics by attaching and tracking the motion of metallic nanoparticle labels as small as 20 nm diameter. Using myosin-5, kinesin-1, and dynein as examples, we describe the basic assays, labeling strategies, and principles of data analysis. Our approach is relevant not only for motor protein dynamics but also provides a general tool for single-particle tracking with high spatiotemporal precision, which overcomes the limitations of single-molecule fluorescence methods. PMID:27793291

  20. Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds.

    PubMed

    Nagarajan, Sounderya; Pioche-Durieu, Catherine; Tizei, Luiz H G; Fang, Chia-Yi; Bertrand, Jean-Rémi; Le Cam, Eric; Chang, Huan-Cheng; Treussart, François; Kociak, Mathieu

    2016-06-02

    Light and Transmission Electron Microscopies (LM and TEM) hold potential in bioimaging owing to the advantages of fast imaging of multiple cells with LM and ultrastructure resolution offered by TEM. Integrated or correlated LM and TEM are the current approaches to combine the advantages of both techniques. Here we propose an alternative in which the electron beam of a scanning TEM (STEM) is used to excite concomitantly the luminescence of nanoparticle labels (a process known as cathodoluminescence, CL), and image the cell ultrastructure. This CL-STEM imaging allows obtaining luminescence spectra and imaging ultrastructure simultaneously. We present a proof of principle experiment, showing the potential of this technique in image cytometry of cell vesicular components. To label the vesicles we used fluorescent diamond nanocrystals (nanodiamonds, NDs) of size ≈150 nm coated with different cationic polymers, known to trigger different internalization pathways. Each polymer was associated with a type of ND with a different emission spectrum. With CL-STEM, for each individual vesicle, we were able to measure (i) their size with nanometric resolution, (ii) their content in different ND labels, and realize intracellular component cytometry. In contrast to the recently reported organelle flow cytometry technique that requires cell sonication, CL-STEM-based image cytometry preserves the cell integrity and provides a much higher resolution in size. Although this novel approach is still limited by a low throughput, the automatization of data acquisition and image analysis, combined with improved intracellular targeting, should facilitate applications in cell biology at the subcellular level.

  1. Cross-cutting Relationships of Surface Features on Europa

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of Jupiter's moon Europa shows a very complex terrain of ridges and fractures. The absence of large craters and the low number of small craters indicates that this surface is geologically young. The relative ages of the ridges can be determined by using the principle of cross-cutting relationships; i.e. older features are cross-cut by younger features. Using this principle, planetary geologists are able to unravel the sequence of events in this seemingly chaotic terrain to unfold Europa's unique geologic history.

    The spacecraft Galileo obtained this image on February 20, 1997. The area covered in this image is approximately 11 miles (18 kilometers) by 8.5 miles (14 kilometers) across, near 15 North, 273 West. North is toward the top of the image, with the sun illuminating from the right.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  2. [Analysis of images in Japanese book Fukusho-Kiran (Medical Book Focusing on Abdominal Palpation) and Fukusho-Kiran yoku (Supplement to Medical Book Focusing on Abdominal Palpation)].

    PubMed

    Zhang, Lijun; DI, Kan; Song, Yuanliang

    2014-09-01

    Hukusyo-kiran (Medical Book Focusing on Abdominal Palpation) and Hukusyo-kiran yoku (Supplement to Medical Book Focusing on Abdominal Palpation) are two typical monographs of Fukushin (abdominal palpation), with a total of 148 images about abdominal palpation. These images can be divided into 5 kinds: locations, theories, techniques, diseases and medicines, with its own system covering the theories, principles, prescriptions and medicines of abdominal palpation. It can be used as a guide for clinicians to differentiate the locations and qualities of diseases, confirm the principles of treatment, guide the usage of medicines, and predict the prognosis, with the rather high theoretic and academic value, deserving further research and analysis for the modern scholars.

  3. Biological applications of phase-contrast electron microscopy.

    PubMed

    Nagayama, Kuniaki

    2014-01-01

    Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.

  4. Discovering Psychological Principles by Mining Naturally Occurring Data Sets.

    PubMed

    Goldstone, Robert L; Lupyan, Gary

    2016-07-01

    The very expertise with which psychologists wield their tools for achieving laboratory control may have had the unwelcome effect of blinding psychologists to the possibilities of discovering principles of behavior without conducting experiments. When creatively interrogated, a diverse range of large, real-world data sets provides powerful diagnostic tools for revealing principles of human judgment, perception, categorization, decision-making, language use, inference, problem solving, and representation. Examples of these data sets include patterns of website links, dictionaries, logs of group interactions, collections of images and image tags, text corpora, history of financial transactions, trends in twitter tag usage and propagation, patents, consumer product sales, performance in high-stakes sporting events, dialect maps, and scientific citations. The goal of this issue is to present some exemplary case studies of mining naturally existing data sets to reveal important principles and phenomena in cognitive science, and to discuss some of the underlying issues involved with conducting traditional experiments, analyses of naturally occurring data, computational modeling, and the synthesis of all three methods. Copyright © 2016 Cognitive Science Society, Inc.

  5. Computational principles of working memory in sentence comprehension.

    PubMed

    Lewis, Richard L; Vasishth, Shravan; Van Dyke, Julie A

    2006-10-01

    Understanding a sentence requires a working memory of the partial products of comprehension, so that linguistic relations between temporally distal parts of the sentence can be rapidly computed. We describe an emerging theoretical framework for this working memory system that incorporates several independently motivated principles of memory: a sharply limited attentional focus, rapid retrieval of item (but not order) information subject to interference from similar items, and activation decay (forgetting over time). A computational model embodying these principles provides an explanation of the functional capacities and severe limitations of human processing, as well as accounts of reading times. The broad implication is that the detailed nature of cross-linguistic sentence processing emerges from the interaction of general principles of human memory with the specialized task of language comprehension.

  6. Optical coherence tomography - principles and applications

    NASA Astrophysics Data System (ADS)

    Fercher, A. F.; Drexler, W.; Hitzenberger, C. K.; Lasser, T.

    2003-02-01

    There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a short presentation of important OCT applications. Ophthalmology is, due to the transparent ocular structures, still the main field of OCT application. The first commercial instrument too has been introduced for ophthalmic diagnostics (Carl Zeiss Meditec AG). Advances in using near-infrared light, however, opened the path for OCT imaging in strongly scattering tissues. Today, optical in vivo biopsy is one of the most challenging fields of OCT application. High resolution, high penetration depth, and its potential for functional imaging attribute to OCT an optical biopsy quality, which can be used to assess tissue and cell function and morphology in situ. OCT can already clarify the relevant architectural tissue morphology. For many diseases, however, including cancer in its early stages, higher resolution is necessary. New broad-bandwidth light sources, like photonic crystal fibres and superfluorescent fibre sources, and new contrasting techniques, give access to new sample properties and unmatched sensitivity and resolution.

  7. Using an NMR Spectrometer to Do Magnetic Resonance Imaging: An Undergraduate Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Steinmetz, Wayne E.; Maher, M. Cyrus

    2007-01-01

    A conventional Fourier-transform NMR spectrometer with a triple-axis gradient probe can function as a MRI imager. In this experiment students gain hands-on experience with MRI while they learn about important principles underlying the practice of NMR, such as gradients, multi-dimensional spectroscopy, and relaxation. Students image a biological…

  8. Remote Sensing: Analyzing Satellite Images to Create Higher Order Thinking Skills.

    ERIC Educational Resources Information Center

    Marks, Steven K.; And Others

    1996-01-01

    Presents a unit that uses remote-sensing images from satellites and other spacecraft to provide new perspectives of the earth and generate greater global awareness. Relates the levels of Bloom's hierarchy to different aspects of the remote sensing unit to confirm that the concepts and principles of remote sensing and related images belong in…

  9. A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings

    NASA Astrophysics Data System (ADS)

    Barwick, Brett; Gronniger, Glen; Yuan, Lu; Liou, Sy-Hwang; Batelaan, Herman

    2006-10-01

    Electron diffraction from metal coated freestanding nanofabricated gratings is presented, with a quantitative path integral analysis of the electron-grating interactions. Electron diffraction out to the 20th order was observed indicating the high quality of our nanofabricated gratings. The electron beam is collimated to its diffraction limit with ion-milled material slits. Our path integral analysis is first tested against single slit electron diffraction, and then further expanded with the same theoretical approach to describe grating diffraction. Rotation of the grating with respect to the incident electron beam varies the effective distance between the electron and grating bars. This allows the measurement of the image charge potential between the electron and the grating bars. Image charge potentials that were about 15% of the value for that of a pure electron-metal wall interaction were found. We varied the electron energy from 50to900eV. The interaction time is of the order of typical metal image charge response times and in principle allows the investigation of image charge formation. In addition to the image charge interaction there is a dephasing process reducing the transverse coherence length of the electron wave. The dephasing process causes broadening of the diffraction peaks and is consistent with a model that ascribes the dephasing process to microscopic contact potentials. Surface structures with length scales of about 200nm observed with a scanning tunneling microscope, and dephasing interaction strength typical of contact potentials of 0.35eV support this claim. Such a dephasing model motivated the investigation of different metallic coatings, in particular Ni, Ti, Al, and different thickness Au-Pd coatings. Improved quality of diffraction patterns was found for Ni. This coating made electron diffraction possible at energies as low as 50eV. This energy was limited by our electron gun design. These results are particularly relevant for the use of these gratings as coherent beam splitters in low energy electron interferometry.

  10. High-Resolution Imaging of Axial Volcano, Juan de Fuca ridge.

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G. M.

    2014-12-01

    To date, seismic experiments have been key in our understanding of the internal structure of volcanic systems. However, most experiments, especially subaerial-based, are often restricted to refraction geometries with limited numbers of sources and receivers, and employ smoothing constraints required by tomographic inversions that produce smoothed and blurry images with spatial resolutions well below the length scale of important features that define these magmatic systems. Taking advantage of the high density of sources and receivers from multichannel seismic (MCS) data should, in principle, allow detailed images of velocity and reflectivity to be recovered. Unfortunately, the depth of mid-ocean ridges has the detrimental effect of concealing critical velocity information behind the seafloor reflection, preventing first arrival travel-time tomographic approaches from imaging the shallowest and most heterogeneous part of the crust. To overcome the limitations of the acquisition geometry, here we are using an innovative multistep approach. We combine a synthetic ocean bottom experiment (SOBE), 3-D traveltime tomography, 2D elastic full waveform and a reverse time migration (RTM) formalism, and present one of the most detailed imagery to date of a massive and complex magmatic system beneath Axial seamount, an active submarine volcano that lies at the intersection of the Juan de Fuca ridge and the Cobb-Eickelberg seamount chain. We present high-resolution images along 12 seismic lines that span the volcano. We refine the extent/volume of the main crustal magma reservoir that lies beneath the central caldera. We investigate the extent, volume and physical state of a secondary magma body present to the southwest and study its connections with the main magma reservoir. Additionally, we present a 3D tomographic model of the entire volcano that reveals a subsiding caldera floor that provides a near perfect trap for the ponding of lava flows, supporting a "trapdoor" mechanism for caldera formation. Finally, we show that crustal aging (increase in layer 2A velocity with age) is controlled by pipe-like pattern of focused hydrothermal mineralization.

  11. PHARMACOLOGY PART 1: INTRODUCTION TO PHARMAOCLOGY AND PHARMACODYNAMICS.

    PubMed

    Currie, Geoffrey M

    2018-03-29

    There is an emerging need for greater understanding of pharmacology principles amongst technical staff. Indeed, the responsibility of dose preparation and administration, under any level of supervision, demands foundation understanding of pharmacology. This is true for radiopharmaceuticals, contrast media and pharmaceutical interventions / adjunctive medications. Regulation around the same might suggest a need to embed pharmacology theory in undergraduate education programs and there is a need to disseminate that same foundation understanding to practicing clinicians. Moreover, pharmacology foundations can provide key understanding of the principles that underpin quantitative techniques (e.g. pharmacokinetics). This article is the first in a series of articles that aims to enhance the understanding of pharmacological principles relevant to nuclear medicine. This article will deal with the introductory concepts, terminology and principles that underpin the concepts to be discussed in the remainder of the series. The second article will build on the pharmacodynamic principles examined in this article with a treatment of pharmacokinetics. Article 3 will outline pharmacology relevant to pharmaceutical interventions and adjunctive medications employed in general nuclear medicine, the fourth pharmacology relevant to pharmaceutical interventions and adjunctive medications employed in nuclear cardiology, and the fifth the pharmacology related to contrast media associated with computed tomography (CT) and magnetic resonance imaging (MRI). Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  12. Students' and Teachers' Misapplication of Le Chatelier's Principle: Implications for the Teaching of Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Quilez-Pardo, Juan; Solaz-Portoles, Joan Josep

    1995-01-01

    Study of strategies and procedures of 170 students and 40 teachers when solving chemical equilibrium problems found misconceptions emerging through: misapplication of Le Chatelier's Principle, use of rote-learning recall, incorrect control of variables, limited use of chemical equilibrium law, lack of mastery of chemical equilibrium principles,…

  13. Executive Financial Reporting: Seven Principles to Use in Developing Effective Reports.

    ERIC Educational Resources Information Center

    Jenkins, William A.; Fischer, Mary

    1991-01-01

    Higher education institution business officers need to follow principles of presentation, judgment, and measurement in developing effective executive financial reports. Principles include (1) keep the statement simple; (2) be consistent in reporting from year to year; (3) determine user needs and interests; (4) limit data; (5) provide trend lines;…

  14. The optics of microscope image formation.

    PubMed

    Wolf, David E

    2013-01-01

    Although geometric optics gives a good understanding of how the microscope works, it fails in one critical area, which is explaining the origin of microscope resolution. To accomplish this, one must consider the microscope from the viewpoint of physical optics. This chapter describes the theory of the microscope-relating resolution to the highest spatial frequency that a microscope can collect. The chapter illustrates how Huygens' principle or construction can be used to explain the propagation of a plane wave. It is shown that this limit increases with increasing numerical aperture (NA). As a corollary to this, resolution increases with decreasing wavelength because of how NA depends on wavelength. The resolution is higher for blue light than red light. Resolution is dependent on contrast, and the higher the contrast, the higher the resolution. This last point relates to issues of signal-to-noise and dynamic range. The use of video and new digital cameras has necessitated redefining classical limits such as those of Rayleigh's criterion. Copyright © 2007 Elsevier Inc. All rights reserved.

  15. A methodological evaluation of volumetric measurement techniques including three-dimensional imaging in breast surgery.

    PubMed

    Hoeffelin, H; Jacquemin, D; Defaweux, V; Nizet, J L

    2014-01-01

    Breast surgery currently remains very subjective and each intervention depends on the ability and experience of the operator. To date, no objective measurement of this anatomical region can codify surgery. In this light, we wanted to compare and validate a new technique for 3D scanning (LifeViz 3D) and its clinical application. We tested the use of the 3D LifeViz system (Quantificare) to perform volumetric calculations in various settings (in situ in cadaveric dissection, of control prostheses, and in clinical patients) and we compared this system to other techniques (CT scanning and Archimedes' principle) under the same conditions. We were able to identify the benefits (feasibility, safety, portability, and low patient stress) and limitations (underestimation of the in situ volume, subjectivity of contouring, and patient selection) of the LifeViz 3D system, concluding that the results are comparable with other measurement techniques. The prospects of this technology seem promising in numerous applications in clinical practice to limit the subjectivity of breast surgery.

  16. A Methodological Evaluation of Volumetric Measurement Techniques including Three-Dimensional Imaging in Breast Surgery

    PubMed Central

    Hoeffelin, H.; Jacquemin, D.; Defaweux, V.; Nizet, J L.

    2014-01-01

    Breast surgery currently remains very subjective and each intervention depends on the ability and experience of the operator. To date, no objective measurement of this anatomical region can codify surgery. In this light, we wanted to compare and validate a new technique for 3D scanning (LifeViz 3D) and its clinical application. We tested the use of the 3D LifeViz system (Quantificare) to perform volumetric calculations in various settings (in situ in cadaveric dissection, of control prostheses, and in clinical patients) and we compared this system to other techniques (CT scanning and Archimedes' principle) under the same conditions. We were able to identify the benefits (feasibility, safety, portability, and low patient stress) and limitations (underestimation of the in situ volume, subjectivity of contouring, and patient selection) of the LifeViz 3D system, concluding that the results are comparable with other measurement techniques. The prospects of this technology seem promising in numerous applications in clinical practice to limit the subjectivity of breast surgery. PMID:24511536

  17. Hyperspectral data analysis procedures with reduced sensitivity to noise

    NASA Technical Reports Server (NTRS)

    Landgrebe, David A.

    1993-01-01

    Multispectral sensor systems have become steadily improved over the years in their ability to deliver increased spectral detail. With the advent of hyperspectral sensors, including imaging spectrometers, this technology is in the process of taking a large leap forward, thus providing the possibility of enabling delivery of much more detailed information. However, this direction of development has drawn even more attention to the matter of noise and other deleterious effects in the data, because reducing the fundamental limitations of spectral detail on information collection raises the limitations presented by noise to even greater importance. Much current effort in remote sensing research is thus being devoted to adjusting the data to mitigate the effects of noise and other deleterious effects. A parallel approach to the problem is to look for analysis approaches and procedures which have reduced sensitivity to such effects. We discuss some of the fundamental principles which define analysis algorithm characteristics providing such reduced sensitivity. One such analysis procedure including an example analysis of a data set is described, illustrating this effect.

  18. A solution to the biodiversity paradox by logical deterministic cellular automata.

    PubMed

    Kalmykov, Lev V; Kalmykov, Vyacheslav L

    2015-06-01

    The paradox of biological diversity is the key problem of theoretical ecology. The paradox consists in the contradiction between the competitive exclusion principle and the observed biodiversity. The principle is important as the basis for ecological theory. On a relatively simple model we show a mechanism of indefinite coexistence of complete competitors which violates the known formulations of the competitive exclusion principle. This mechanism is based on timely recovery of limiting resources and their spatio-temporal allocation between competitors. Because of limitations of the black-box modeling there was a problem to formulate the exclusion principle correctly. Our white-box multiscale model of two-species competition is based on logical deterministic individual-based cellular automata. This approach provides an automatic deductive inference on the basis of a system of axioms, and gives a direct insight into mechanisms of the studied system. It is one of the most promising methods of artificial intelligence. We reformulate and generalize the competitive exclusion principle and explain why this formulation provides a solution of the biodiversity paradox. In addition, we propose a principle of competitive coexistence.

  19. Image Quality Assessment Using the Joint Spatial/Spatial-Frequency Representation

    NASA Astrophysics Data System (ADS)

    Beghdadi, Azeddine; Iordache, Răzvan

    2006-12-01

    This paper demonstrates the usefulness of spatial/spatial-frequency representations in image quality assessment by introducing a new image dissimilarity measure based on 2D Wigner-Ville distribution (WVD). The properties of 2D WVD are shortly reviewed, and the important issue of choosing the analytic image is emphasized. The WVD-based measure is shown to be correlated with subjective human evaluation, which is the premise towards an image quality assessor developed on this principle.

  20. Tutorial on photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Yao, Junjie; Wang, Lihong V.

    2016-06-01

    Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics. Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic detection to image optical absorption contrast with high-resolution deep into scattering tissue. So far, PAT has been widely used for multiscale anatomical, functional, and molecular imaging of biological tissues. We focus on PAT's basic principles, major implementations, imaging contrasts, and recent applications.

  1. Registration of Aerial Optical Images with LiDAR Data Using the Closest Point Principle and Collinearity Equations.

    PubMed

    Huang, Rongyong; Zheng, Shunyi; Hu, Kun

    2018-06-01

    Registration of large-scale optical images with airborne LiDAR data is the basis of the integration of photogrammetry and LiDAR. However, geometric misalignments still exist between some aerial optical images and airborne LiDAR point clouds. To eliminate such misalignments, we extended a method for registering close-range optical images with terrestrial LiDAR data to a variety of large-scale aerial optical images and airborne LiDAR data. The fundamental principle is to minimize the distances from the photogrammetric matching points to the terrestrial LiDAR data surface. Except for the satisfactory efficiency of about 79 s per 6732 × 8984 image, the experimental results also show that the unit weighted root mean square (RMS) of the image points is able to reach a sub-pixel level (0.45 to 0.62 pixel), and the actual horizontal and vertical accuracy can be greatly improved to a high level of 1/4⁻1/2 (0.17⁻0.27 m) and 1/8⁻1/4 (0.10⁻0.15 m) of the average LiDAR point distance respectively. Finally, the method is proved to be more accurate, feasible, efficient, and practical in variety of large-scale aerial optical image and LiDAR data.

  2. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging.

    PubMed

    Wáng, Yì-Xiáng J; Zhang, Qinwei; Li, Xiaojuan; Chen, Weitian; Ahuja, Anil; Yuan, Jing

    2015-12-01

    T1ρ relaxation time provides a new contrast mechanism that differs from T1- and T2-weighted contrast, and is useful to study low-frequency motional processes and chemical exchange in biological tissues. T1ρ imaging can be performed in the forms of T1ρ-weighted image, T1ρ mapping and T1ρ dispersion. T1ρ imaging, particularly at low spin-lock frequency, is sensitive to B0 and B1 inhomogeneity. Various composite spin-lock pulses have been proposed to alleviate the influence of field inhomogeneity so as to reduce the banding-like spin-lock artifacts. T1ρ imaging could be specific absorption rate (SAR) intensive and time consuming. Efforts to address these issues and speed-up data acquisition are being explored to facilitate wider clinical applications. This paper reviews the T1ρ imaging's basic physic principles, as well as its application for cartilage imaging and intervertebral disc imaging. Compared to more established T2 relaxation time, it has been shown that T1ρ provides more sensitive detection of proteoglycan (PG) loss at early stages of cartilage degeneration. T1ρ has also been shown to provide more sensitive evaluation of annulus fibrosis (AF) degeneration of the discs.

  3. Principles and application of shock-tubes and shock tunnels

    NASA Technical Reports Server (NTRS)

    Ried, R. C.; Clauss, H. G., Jr.

    1963-01-01

    The principles, theoretical flow equations, calculation techniques, limitations and practical performance characteristics of basic and high performance shock tubes and shock tunnels are presented. Selected operating curves are included.

  4. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    NASA Astrophysics Data System (ADS)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  5. Objective straylight assessment of the human eye with a novel device

    NASA Astrophysics Data System (ADS)

    Schramm, Stefan; Schikowski, Patrick; Lerm, Elena; Kaeding, André; Klemm, Matthias; Haueisen, Jens; Baumgarten, Daniel

    2016-03-01

    Forward scattered light from the anterior segment of the human eye can be measured by Shack-Hartmann (SH) wavefront aberrometers with limited visual angle. We propose a novel Point Spread Function (PSF) reconstruction algorithm based on SH measurements with a novel measurement devise to overcome these limitations. In our optical setup, we use a Digital Mirror Device as variable field stop, which is conventionally a pinhole suppressing scatter and reflections. Images with 21 different stop diameters were captured and from each image the average subaperture image intensity and the average intensity of the pupil were computed. The 21 intensities represent integral values of the PSF which is consequently reconstructed by derivation with respect to the visual angle. A generalized form of the Stiles-Holladay-approximation is fitted to the PSF resulting in a stray light parameter Log(IS). Additionaly the transmission loss of eye is computed. For the proof of principle, a study on 13 healthy young volunteers was carried out. Scatter filters were positioned in front of the volunteer's eye during C-Quant and scatter measurements to generate straylight emulating scatter in the lens. The straylight parameter is compared to the C-Quant measurement parameter Log(ISC) and scatter density of the filters SDF with a partial correlation. Log(IS) shows significant correlation with the SDF and Log(ISC). The correlation is more prominent between Log(IS) combined with the transmission loss and the SDF and Log(ISC). Our novel measurement and reconstruction technique allow for objective stray light analysis of visual angles up to 4 degrees.

  6. Differentiating Biological Colours with Few and Many Sensors: Spectral Reconstruction with RGB and Hyperspectral Cameras

    PubMed Central

    Garcia, Jair E.; Girard, Madeline B.; Kasumovic, Michael; Petersen, Phred; Wilksch, Philip A.; Dyer, Adrian G.

    2015-01-01

    Background The ability to discriminate between two similar or progressively dissimilar colours is important for many animals as it allows for accurately interpreting visual signals produced by key target stimuli or distractor information. Spectrophotometry objectively measures the spectral characteristics of these signals, but is often limited to point samples that could underestimate spectral variability within a single sample. Algorithms for RGB images and digital imaging devices with many more than three channels, hyperspectral cameras, have been recently developed to produce image spectrophotometers to recover reflectance spectra at individual pixel locations. We compare a linearised RGB and a hyperspectral camera in terms of their individual capacities to discriminate between colour targets of varying perceptual similarity for a human observer. Main Findings (1) The colour discrimination power of the RGB device is dependent on colour similarity between the samples whilst the hyperspectral device enables the reconstruction of a unique spectrum for each sampled pixel location independently from their chromatic appearance. (2) Uncertainty associated with spectral reconstruction from RGB responses results from the joint effect of metamerism and spectral variability within a single sample. Conclusion (1) RGB devices give a valuable insight into the limitations of colour discrimination with a low number of photoreceptors, as the principles involved in the interpretation of photoreceptor signals in trichromatic animals also apply to RGB camera responses. (2) The hyperspectral camera architecture provides means to explore other important aspects of colour vision like the perception of certain types of camouflage and colour constancy where multiple, narrow-band sensors increase resolution. PMID:25965264

  7. Live-cell super-resolution imaging of intrinsically fast moving flagellates

    NASA Astrophysics Data System (ADS)

    Glogger, M.; Stichler, S.; Subota, I.; Bertlein, S.; Spindler, M.-C.; Teßmar, J.; Groll, J.; Engstler, M.; Fenz, S. F.

    2017-02-01

    Recent developments in super-resolution microscopy make it possible to resolve structures in biological cells at a spatial resolution of a few nm and observe dynamical processes with a temporal resolution of ms to μs. However, the optimal structural resolution requires repeated illumination cycles and is thus limited to chemically fixed cells. For live cell applications substantial improvement over classical Abbe-limited imaging can already be obtained in adherent or slow moving cells. Nonetheless, a large group of cells are fast moving and thus could not yet be addressed with live cell super-resolution microscopy. These include flagellate pathogens like African trypanosomes, the causative agents of sleeping sickness in humans and nagana in livestock. Here, we present an embedding method based on a in situ forming cytocompatible UV-crosslinked hydrogel. The fast cross-linking hydrogel immobilizes trypanosomes efficiently to allow microscopy on the nanoscale. We characterized both the trypanosomes and the hydrogel with respect to their autofluorescence properties and found them suitable for single-molecule fluorescence microscopy (SMFM). As a proof of principle, SMFM was applied to super-resolve a structure inside the living trypanosome. We present an image of a flagellar axoneme component recorded by using the intrinsic blinking behavior of eYFP. , which features invited work from the best early-career researchers working within the scope of J Phys D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Susanne Fenz was selected by the Editorial Board of J Phys D as an Emerging Talent/Leader.

  8. Automated discrete electron tomography - Towards routine high-fidelity reconstruction of nanomaterials.

    PubMed

    Zhuge, Xiaodong; Jinnai, Hiroshi; Dunin-Borkowski, Rafal E; Migunov, Vadim; Bals, Sara; Cool, Pegie; Bons, Anton-Jan; Batenburg, Kees Joost

    2017-04-01

    Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing

    PubMed Central

    Berke, Ian M.; Miola, Joseph P.; David, Michael A.; Smith, Melanie K.; Price, Christopher

    2016-01-01

    In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues. PMID:26930293

  10. Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing.

    PubMed

    Berke, Ian M; Miola, Joseph P; David, Michael A; Smith, Melanie K; Price, Christopher

    2016-01-01

    In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues.

  11. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  12. A first principles calculation and statistical mechanics modeling of defects in Al-H system

    NASA Astrophysics Data System (ADS)

    Ji, Min; Wang, Cai-Zhuang; Ho, Kai-Ming

    2007-03-01

    The behavior of defects and hydrogen in Al was investigated by first principles calculations and statistical mechanics modeling. The formation energy of different defects in Al+H system such as Al vacancy, H in institution and multiple H in Al vacancy were calculated by first principles method. Defect concentration in thermodynamical equilibrium was studied by total free energy calculation including configuration entropy and defect-defect interaction from low concentration limit to hydride limit. In our grand canonical ensemble model, hydrogen chemical potential under different environment plays an important role in determing the defect concentration and properties in Al-H system.

  13. Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review

    PubMed Central

    Iordachita, Iulian I.; Tokuda, Junichi; Hata, Nobuhiko; Liu, Xuan; Seifabadi, Reza; Xu, Sheng; Wood, Bradford; Fischer, Gregory S.

    2017-01-01

    Magnetic Resonance Imaging (MRI) provides both anatomical imaging with excellent soft tissue contrast and functional MRI imaging (fMRI) of physiological parameters. The last two decades have witnessed the manifestation of increased interest in MRI-guided minimally invasive intervention procedures and fMRI for rehabilitation and neuroscience research. Accompanying the aspiration to utilize MRI to provide imaging feedback during interventions and brain activity for neuroscience study, there is an accumulated effort to utilize force sensors compatible with the MRI environment to meet the growing demand of these procedures, with the goal of enhanced interventional safety and accuracy, improved efficacy and rehabilitation outcome. This paper summarizes the fundamental principles, the state of the art development and challenges of fiber optic force sensors for MRI-guided interventions and rehabilitation. It provides an overview of MRI-compatible fiber optic force sensors based on different sensing principles, including light intensity modulation, wavelength modulation, and phase modulation. Extensive design prototypes are reviewed to illustrate the detailed implementation of these principles. Advantages and disadvantages of the sensor designs are compared and analyzed. A perspective on the future development of fiber optic sensors is also presented which may have additional broad clinical applications. Future surgical interventions or rehabilitation will rely on intelligent force sensors to provide situational awareness to augment or complement human perception in these procedures. PMID:28652857

  14. [Computerization and robotics in medical practice].

    PubMed

    Dervaderics, J

    1997-10-26

    The article gives the outlines of all principles used in computing included the non-electrical and analog computers and the artifical intelligence followed by citing examples as well. The principles and medical utilization of virtual reality are also mentioned. There are discussed: surgical planning, image guided surgery, robotic surgery, telepresence and telesurgery, and telemedicine implemented partially via Internet.

  15. Social Role Valorization: A Proposed New Term for the Principle of Normalization

    ERIC Educational Resources Information Center

    Wolfensberger, Wolf

    2011-01-01

    The highest goal of the principle of normalization has recently been clarified to be the establishment, enhancement, or defense of the social role(s) of a person or group, via the enhancement of people's social images and personal competencies. In consequence, it is proposed that normalization be henceforth called "social role valorization."

  16. [Principles of PET].

    PubMed

    Beuthien-Baumann, B

    2018-05-01

    Positron emission tomography (PET) is a procedure in nuclear medicine, which is applied predominantly in oncological diagnostics. In the form of modern hybrid machines, such as PET computed tomography (PET/CT) and PET magnetic resonance imaging (PET/MRI) it has found wide acceptance and availability. The PET procedure is more than just another imaging technique, but a functional method with the capability for quantification in addition to the distribution pattern of the radiopharmaceutical, the results of which are used for therapeutic decisions. A profound knowledge of the principles of PET including the correct indications, patient preparation, and possible artifacts is mandatory for the correct interpretation of PET results.

  17. Imaging through scattering media by Fourier filtering and single-pixel detection

    NASA Astrophysics Data System (ADS)

    Jauregui-Sánchez, Y.; Clemente, P.; Lancis, J.; Tajahuerce, E.

    2018-02-01

    We present a novel imaging system that combines the principles of Fourier spatial filtering and single-pixel imaging in order to recover images of an object hidden behind a turbid medium by transillumination. We compare the performance of our single-pixel imaging setup with that of a conventional system. We conclude that the introduction of Fourier gating improves the contrast of images in both cases. Furthermore, we show that the combination of single-pixel imaging and Fourier spatial filtering techniques is particularly well adapted to provide images of objects transmitted through scattering media.

  18. High resolution microphotonic needle for endoscopic imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tadayon, Mohammad Amin; Mohanty, Aseema; Roberts, Samantha P.; Barbosa, Felippe; Lipson, Michal

    2017-02-01

    GRIN (Graded index) lens have revolutionized micro endoscopy enabling deep tissue imaging with high resolution. The challenges of traditional GRIN lenses are their large size (when compared with the field of view) and their limited resolution. This is because of the relatively weak NA in standard graded index lenses. Here we introduce a novel micro-needle platform for endoscopy with much higher resolution than traditional GRIN lenses and a FOV that corresponds to the whole cross section of the needle. The platform is based on polymeric (SU-8) waveguide integrated with a microlens micro fabricated on a silicon substrate using a unique molding process. Due to the high index of refraction of the material the NA of the needle is much higher than traditional GRIN lenses. We tested the probe in a fluorescent dye solution (19.6 µM Alexa Flour 647 solution) and measured a numerical aperture of 0.25, focal length of about 175 µm and minimal spot size of about 1.6 µm. We show that the platform can image a sample with the field of view corresponding to the cross sectional area of the waveguide (80x100 µm2). The waveguide size can in principle be modified to vary size of the imaging field of view. This demonstration, combined with our previous work demonstrating our ability to implant the high NA needle in a live animal, shows that the proposed system can be used for deep tissue imaging with very high resolution and high field of view.

  19. Atom-counting in High Resolution Electron Microscopy:TEM or STEM - That's the question.

    PubMed

    Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S

    2017-03-01

    In this work, a recently developed quantitative approach based on the principles of detection theory is used in order to determine the possibilities and limitations of High Resolution Scanning Transmission Electron Microscopy (HR STEM) and HR TEM for atom-counting. So far, HR STEM has been shown to be an appropriate imaging mode to count the number of atoms in a projected atomic column. Recently, it has been demonstrated that HR TEM, when using negative spherical aberration imaging, is suitable for atom-counting as well. The capabilities of both imaging techniques are investigated and compared using the probability of error as a criterion. It is shown that for the same incoming electron dose, HR STEM outperforms HR TEM under common practice standards, i.e. when the decision is based on the probability function of the peak intensities in HR TEM and of the scattering cross-sections in HR STEM. If the atom-counting decision is based on the joint probability function of the image pixel values, the dependence of all image pixel intensities as a function of thickness should be known accurately. Under this assumption, the probability of error may decrease significantly for atom-counting in HR TEM and may, in theory, become lower as compared to HR STEM under the predicted optimal experimental settings. However, the commonly used standard for atom-counting in HR STEM leads to a high performance and has been shown to work in practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. AI-augmented time stretch microscopy

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, Ata; Chen, Claire L.; Lin, Jiahao; Jalali, Bahram

    2017-02-01

    Cell reagents used in biomedical analysis often change behavior of the cells that they are attached to, inhibiting their native signaling. On the other hand, label-free cell analysis techniques have long been viewed as challenging either due to insufficient accuracy by limited features, or because of low throughput as a sacrifice of improved precision. We present a recently developed artificial-intelligence augmented microscope, which builds upon high-throughput time stretch quantitative phase imaging (TS-QPI) and deep learning to perform label-free cell classification with record high-accuracy. Our system captures quantitative optical phase and intensity images simultaneously by frequency multiplexing, extracts multiple biophysical features of the individual cells from these images fused, and feeds these features into a supervised machine learning model for classification. The enhanced performance of our system compared to other label-free assays is demonstrated by classification of white blood T-cells versus colon cancer cells and lipid accumulating algal strains for biofuel production, which is as much as five-fold reduction in inaccuracy. This system obtains the accuracy required in practical applications such as personalized drug development, while the cells remain intact and the throughput is not sacrificed. Here, we introduce a data acquisition scheme based on quadrature phase demodulation that enables interruptionless storage of TS-QPI cell images. Our proof of principle demonstration is capable of saving 40 TB of cell images in about four hours, i.e. pictures of every single cell in 10 mL of a sample.

Top