A software platform for the analysis of dermatology images
NASA Astrophysics Data System (ADS)
Vlassi, Maria; Mavraganis, Vlasios; Asvestas, Panteleimon
2017-11-01
The purpose of this paper is to present a software platform developed in Python programming environment that can be used for the processing and analysis of dermatology images. The platform provides the capability for reading a file that contains a dermatology image. The platform supports image formats such as Windows bitmaps, JPEG, JPEG2000, portable network graphics, TIFF. Furthermore, it provides suitable tools for selecting, either manually or automatically, a region of interest (ROI) on the image. The automated selection of a ROI includes filtering for smoothing the image and thresholding. The proposed software platform has a friendly and clear graphical user interface and could be a useful second-opinion tool to a dermatologist. Furthermore, it could be used to classify images including from other anatomical parts such as breast or lung, after proper re-training of the classification algorithms.
A software platform for phase contrast x-ray breast imaging research.
Bliznakova, K; Russo, P; Mettivier, G; Requardt, H; Popov, P; Bravin, A; Buliev, I
2015-06-01
To present and validate a computer-based simulation platform dedicated for phase contrast x-ray breast imaging research. The software platform, developed at the Technical University of Varna on the basis of a previously validated x-ray imaging software simulator, comprises modules for object creation and for x-ray image formation. These modules were updated to take into account the refractive index for phase contrast imaging as well as implementation of the Fresnel-Kirchhoff diffraction theory of the propagating x-ray waves. Projection images are generated in an in-line acquisition geometry. To test and validate the platform, several phantoms differing in their complexity were constructed and imaged at 25 keV and 60 keV at the beamline ID17 of the European Synchrotron Radiation Facility. The software platform was used to design computational phantoms that mimic those used in the experimental study and to generate x-ray images in absorption and phase contrast modes. The visual and quantitative results of the validation process showed an overall good correlation between simulated and experimental images and show the potential of this platform for research in phase contrast x-ray imaging of the breast. The application of the platform is demonstrated in a feasibility study for phase contrast images of complex inhomogeneous and anthropomorphic breast phantoms, compared to x-ray images generated in absorption mode. The improved visibility of mammographic structures suggests further investigation and optimisation of phase contrast x-ray breast imaging, especially when abnormalities are present. The software platform can be exploited also for educational purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Platform-independent software for medical image processing on the Internet
NASA Astrophysics Data System (ADS)
Mancuso, Michael E.; Pathak, Sayan D.; Kim, Yongmin
1997-05-01
We have developed a software tool for image processing over the Internet. The tool is a general purpose, easy to use, flexible, platform independent image processing software package with functions most commonly used in medical image processing.It provides for processing of medical images located wither remotely on the Internet or locally. The software was written in Java - the new programming language developed by Sun Microsystems. It was compiled and tested using Microsoft's Visual Java 1.0 and Microsoft's Just in Time Compiler 1.00.6211. The software is simple and easy to use. In order to use the tool, the user needs to download the software from our site before he/she runs it using any Java interpreter, such as those supplied by Sun, Symantec, Borland or Microsoft. Future versions of the operating systems supplied by Sun, Microsoft, Apple, IBM, and others will include Java interpreters. The software is then able to access and process any image on the iNternet or on the local computer. Using a 512 X 512 X 8-bit image, a 3 X 3 convolution took 0.88 seconds on an Intel Pentium Pro PC running at 200 MHz with 64 Mbytes of memory. A window/level operation took 0.38 seconds while a 3 X 3 median filter took 0.71 seconds. These performance numbers demonstrate the feasibility of using this software interactively on desktop computes. Our software tool supports various image processing techniques commonly used in medical image processing and can run without the need of any specialized hardware. It can become an easily accessible resource over the Internet to promote the learning and of understanding image processing algorithms. Also, it could facilitate sharing of medical image databases and collaboration amongst researchers and clinicians, regardless of location.
A user-friendly LabVIEW software platform for grating based X-ray phase-contrast imaging.
Wang, Shenghao; Han, Huajie; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Wu, Zhao; Wu, Ziyu
2015-01-01
X-ray phase-contrast imaging can provide greatly improved contrast over conventional absorption-based imaging for weakly absorbing samples, such as biological soft tissues and fibre composites. In this study, we introduced an easy and fast way to develop a user-friendly software platform dedicated to the new grating-based X-ray phase-contrast imaging setup at the National Synchrotron Radiation Laboratory of the University of Science and Technology of China. The control of 21 motorized stages, of a piezoelectric stage and of an X-ray tube are achieved with this software, it also covers image acquisition with a flat panel detector for automatic phase stepping scan. Moreover, a data post-processing module for signals retrieval and other custom features are in principle available. With a seamless integration of all the necessary functions in one software package, this platform greatly facilitate users' activities during experimental runs with this grating based X-ray phase contrast imaging setup.
Churilov, Leonid; Liu, Daniel; Ma, Henry; Christensen, Soren; Nagakane, Yoshinari; Campbell, Bruce; Parsons, Mark W; Levi, Christopher R; Davis, Stephen M; Donnan, Geoffrey A
2013-04-01
The appropriateness of a software platform for rapid MRI assessment of the amount of salvageable brain tissue after stroke is critical for both the validity of the Extending the Time for Thrombolysis in Emergency Neurological Deficits (EXTEND) Clinical Trial of stroke thrombolysis beyond 4.5 hours and for stroke patient care outcomes. The objective of this research is to develop and implement a methodology for selecting the acute stroke imaging software platform most appropriate for the setting of a multi-centre clinical trial. A multi-disciplinary decision making panel formulated the set of preferentially independent evaluation attributes. Alternative Multi-Attribute Value Measurement methods were used to identify the best imaging software platform followed by sensitivity analysis to ensure the validity and robustness of the proposed solution. Four alternative imaging software platforms were identified. RApid processing of PerfusIon and Diffusion (RAPID) software was selected as the most appropriate for the needs of the EXTEND trial. A theoretically grounded generic multi-attribute selection methodology for imaging software was developed and implemented. The developed methodology assured both a high quality decision outcome and a rational and transparent decision process. This development contributes to stroke literature in the area of comprehensive evaluation of MRI clinical software. At the time of evaluation, RAPID software presented the most appropriate imaging software platform for use in the EXTEND clinical trial. The proposed multi-attribute imaging software evaluation methodology is based on sound theoretical foundations of multiple criteria decision analysis and can be successfully used for choosing the most appropriate imaging software while ensuring both robust decision process and outcomes. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.
Clarkson, Matthew J; Zombori, Gergely; Thompson, Steve; Totz, Johannes; Song, Yi; Espak, Miklos; Johnsen, Stian; Hawkes, David; Ourselin, Sébastien
2015-03-01
To perform research in image-guided interventions, researchers need a wide variety of software components, and assembling these components into a flexible and reliable system can be a challenging task. In this paper, the NifTK software platform is presented. A key focus has been high-performance streaming of stereo laparoscopic video data, ultrasound data and tracking data simultaneously. A new messaging library called NiftyLink is introduced that uses the OpenIGTLink protocol and provides the user with easy-to-use asynchronous two-way messaging, high reliability and comprehensive error reporting. A small suite of applications called NiftyGuide has been developed, containing lightweight applications for grabbing data, currently from position trackers and ultrasound scanners. These applications use NiftyLink to stream data into NiftyIGI, which is a workstation-based application, built on top of MITK, for visualisation and user interaction. Design decisions, performance characteristics and initial applications are described in detail. NiftyLink was tested for latency when transmitting images, tracking data, and interleaved imaging and tracking data. NiftyLink can transmit tracking data at 1,024 frames per second (fps) with latency of 0.31 milliseconds, and 512 KB images with latency of 6.06 milliseconds at 32 fps. NiftyIGI was tested, receiving stereo high-definition laparoscopic video at 30 fps, tracking data from 4 rigid bodies at 20-30 fps and ultrasound data at 20 fps with rendering refresh rates between 2 and 20 Hz with no loss of user interaction. These packages form part of the NifTK platform and have proven to be successful in a variety of image-guided surgery projects. Code and documentation for the NifTK platform are available from http://www.niftk.org . NiftyLink is provided open-source under a BSD license and available from http://github.com/NifTK/NiftyLink . The code for this paper is tagged IJCARS-2014.
Cryo-Imaging and Software Platform for Analysis of Molecular MR Imaging of Micrometastases
Qutaish, Mohammed Q.; Zhou, Zhuxian; Prabhu, David; Liu, Yiqiao; Busso, Mallory R.; Izadnegahdar, Donna; Gargesha, Madhusudhana; Lu, Hong; Lu, Zheng-Rong
2018-01-01
We created and evaluated a preclinical, multimodality imaging, and software platform to assess molecular imaging of small metastases. This included experimental methods (e.g., GFP-labeled tumor and high resolution multispectral cryo-imaging), nonrigid image registration, and interactive visualization of imaging agent targeting. We describe technological details earlier applied to GFP-labeled metastatic tumor targeting by molecular MR (CREKA-Gd) and red fluorescent (CREKA-Cy5) imaging agents. Optimized nonrigid cryo-MRI registration enabled nonambiguous association of MR signals to GFP tumors. Interactive visualization of out-of-RAM volumetric image data allowed one to zoom to a GFP-labeled micrometastasis, determine its anatomical location from color cryo-images, and establish the presence/absence of targeted CREKA-Gd and CREKA-Cy5. In a mouse with >160 GFP-labeled tumors, we determined that in the MR images every tumor in the lung >0.3 mm2 had visible signal and that some metastases as small as 0.1 mm2 were also visible. More tumors were visible in CREKA-Cy5 than in CREKA-Gd MRI. Tape transfer method and nonrigid registration allowed accurate (<11 μm error) registration of whole mouse histology to corresponding cryo-images. Histology showed inflammation and necrotic regions not labeled by imaging agents. This mouse-to-cells multiscale and multimodality platform should uniquely enable more informative and accurate studies of metastatic cancer imaging and therapy. PMID:29805438
Three-Dimensional Root Phenotyping with a Novel Imaging and Software Platform1[C][W][OA
Clark, Randy T.; MacCurdy, Robert B.; Jung, Janelle K.; Shaff, Jon E.; McCouch, Susan R.; Aneshansley, Daniel J.; Kochian, Leon V.
2011-01-01
A novel imaging and software platform was developed for the high-throughput phenotyping of three-dimensional root traits during seedling development. To demonstrate the platform’s capacity, plants of two rice (Oryza sativa) genotypes, Azucena and IR64, were grown in a transparent gellan gum system and imaged daily for 10 d. Rotational image sequences consisting of 40 two-dimensional images were captured using an optically corrected digital imaging system. Three-dimensional root reconstructions were generated and analyzed using a custom-designed software, RootReader3D. Using the automated and interactive capabilities of RootReader3D, five rice root types were classified and 27 phenotypic root traits were measured to characterize these two genotypes. Where possible, measurements from the three-dimensional platform were validated and were highly correlated with conventional two-dimensional measurements. When comparing gellan gum-grown plants with those grown under hydroponic and sand culture, significant differences were detected in morphological root traits (P < 0.05). This highly flexible platform provides the capacity to measure root traits with a high degree of spatial and temporal resolution and will facilitate novel investigations into the development of entire root systems or selected components of root systems. In combination with the extensive genetic resources that are now available, this platform will be a powerful resource to further explore the molecular and genetic determinants of root system architecture. PMID:21454799
VA's Integrated Imaging System on three platforms.
Dayhoff, R E; Maloney, D L; Majurski, W J
1992-01-01
The DHCP Integrated Imaging System provides users with integrated patient data including text, image and graphics data. This system has been transferred from its original two screen DOS-based MUMPS platform to an X window workstation and a Microsoft Windows-based workstation. There are differences between these various platforms that impact on software design and on software development strategy. Data structures and conventions were used to isolate hardware, operating system, imaging software, and user-interface differences between platforms in the implementation of functionality for text and image display and interaction. The use of an object-oriented approach greatly increased system portability.
VA's Integrated Imaging System on three platforms.
Dayhoff, R. E.; Maloney, D. L.; Majurski, W. J.
1992-01-01
The DHCP Integrated Imaging System provides users with integrated patient data including text, image and graphics data. This system has been transferred from its original two screen DOS-based MUMPS platform to an X window workstation and a Microsoft Windows-based workstation. There are differences between these various platforms that impact on software design and on software development strategy. Data structures and conventions were used to isolate hardware, operating system, imaging software, and user-interface differences between platforms in the implementation of functionality for text and image display and interaction. The use of an object-oriented approach greatly increased system portability. PMID:1482983
Using MATLAB software with Tomcat server and Java platform for remote image analysis in pathology.
Markiewicz, Tomasz
2011-03-30
The Matlab software is a one of the most advanced development tool for application in engineering practice. From our point of view the most important is the image processing toolbox, offering many built-in functions, including mathematical morphology, and implementation of a many artificial neural networks as AI. It is very popular platform for creation of the specialized program for image analysis, also in pathology. Based on the latest version of Matlab Builder Java toolbox, it is possible to create the software, serving as a remote system for image analysis in pathology via internet communication. The internet platform can be realized based on Java Servlet Pages with Tomcat server as servlet container. In presented software implementation we propose remote image analysis realized by Matlab algorithms. These algorithms can be compiled to executable jar file with the help of Matlab Builder Java toolbox. The Matlab function must be declared with the set of input data, output structure with numerical results and Matlab web figure. Any function prepared in that manner can be used as a Java function in Java Servlet Pages (JSP). The graphical user interface providing the input data and displaying the results (also in graphical form) must be implemented in JSP. Additionally the data storage to database can be implemented within algorithm written in Matlab with the help of Matlab Database Toolbox directly with the image processing. The complete JSP page can be run by Tomcat server. The proposed tool for remote image analysis was tested on the Computerized Analysis of Medical Images (CAMI) software developed by author. The user provides image and case information (diagnosis, staining, image parameter etc.). When analysis is initialized, input data with image are sent to servlet on Tomcat. When analysis is done, client obtains the graphical results as an image with marked recognized cells and also the quantitative output. Additionally, the results are stored in a server
A Software Platform for Post-Processing Waveform-Based NDE
NASA Technical Reports Server (NTRS)
Roth, Donald J.; Martin, Richard E.; Seebo, Jeff P.; Trinh, Long B.; Walker, James L.; Winfree, William P.
2007-01-01
Ultrasonic, microwave, and terahertz nondestructive evaluation imaging systems generally require the acquisition of waveforms at each scan point to form an image. For such systems, signal and image processing methods are commonly needed to extract information from the waves and improve resolution of, and highlight, defects in the image. Since some similarity exists for all waveform-based NDE methods, it would seem a common software platform containing multiple signal and image processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. This presentation describes NASA Glenn Research Center's approach in developing a common software platform for processing waveform-based NDE signals and images. This platform is currently in use at NASA Glenn and at Lockheed Martin Michoud Assembly Facility for processing of pulsed terahertz and ultrasonic data. Highlights of the software operation will be given. A case study will be shown for use with terahertz data. The authors also request scientists and engineers who are interested in sharing customized signal and image processing algorithms to contribute to this effort by letting the authors code up and include these algorithms in future releases.
Using MATLAB software with Tomcat server and Java platform for remote image analysis in pathology
2011-01-01
Background The Matlab software is a one of the most advanced development tool for application in engineering practice. From our point of view the most important is the image processing toolbox, offering many built-in functions, including mathematical morphology, and implementation of a many artificial neural networks as AI. It is very popular platform for creation of the specialized program for image analysis, also in pathology. Based on the latest version of Matlab Builder Java toolbox, it is possible to create the software, serving as a remote system for image analysis in pathology via internet communication. The internet platform can be realized based on Java Servlet Pages with Tomcat server as servlet container. Methods In presented software implementation we propose remote image analysis realized by Matlab algorithms. These algorithms can be compiled to executable jar file with the help of Matlab Builder Java toolbox. The Matlab function must be declared with the set of input data, output structure with numerical results and Matlab web figure. Any function prepared in that manner can be used as a Java function in Java Servlet Pages (JSP). The graphical user interface providing the input data and displaying the results (also in graphical form) must be implemented in JSP. Additionally the data storage to database can be implemented within algorithm written in Matlab with the help of Matlab Database Toolbox directly with the image processing. The complete JSP page can be run by Tomcat server. Results The proposed tool for remote image analysis was tested on the Computerized Analysis of Medical Images (CAMI) software developed by author. The user provides image and case information (diagnosis, staining, image parameter etc.). When analysis is initialized, input data with image are sent to servlet on Tomcat. When analysis is done, client obtains the graphical results as an image with marked recognized cells and also the quantitative output. Additionally, the
Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin
2013-01-01
One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. PMID:23366803
Markiewicz, Pawel J; Ehrhardt, Matthias J; Erlandsson, Kjell; Noonan, Philip J; Barnes, Anna; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Ourselin, Sebastien
2018-01-01
We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage. The pipeline of the platform starts from MR and raw PET input data and is divided into the following processing stages: (1) list-mode data processing; (2) accurate attenuation coefficient map generation; (3) detector normalisation; (4) exact forward and back projection between sinogram and image space; (5) estimation of reduced-variance random events; (6) high accuracy fully 3D estimation of scatter events; (7) voxel-based partial volume correction; (8) region- and voxel-level image analysis. We demonstrate the advantages of this platform using an amyloid brain scan where all the processing is executed from a single and uniform computational environment in Python. The high accuracy acquisition modelling is achieved through span-1 (no axial compression) ray tracing for true, random and scatter events. Furthermore, the platform offers uncertainty estimation of any image derived statistic to facilitate robust tracking of subtle physiological changes in longitudinal studies. The platform also supports the development of new reconstruction and analysis algorithms through restricting the axial field of view to any set of rings covering a region of interest and thus performing fully 3D reconstruction and corrections using real data significantly faster. All the software is available as open source with the accompanying wiki-page and test data.
Image processing in biodosimetry: A proposal of a generic free software platform.
Dumpelmann, Matthias; Cadena da Matta, Mariel; Pereira de Lemos Pinto, Marcela Maria; de Salazar E Fernandes, Thiago; Borges da Silva, Edvane; Amaral, Ademir
2015-08-01
The scoring of chromosome aberrations is the most reliable biological method for evaluating individual exposure to ionizing radiation. However, microscopic analyses of chromosome human metaphases, generally employed to identify aberrations mainly dicentrics (chromosome with two centromeres), is a laborious task. This method is time consuming and its application in biological dosimetry would be almost impossible in case of a large scale radiation incidents. In this project, a generic software was enhanced for automatic chromosome image processing from a framework originally developed for the Framework V project Simbio, of the European Union for applications in the area of source localization from electroencephalographic signals. The platforms capability is demonstrated by a study comparing automatic segmentation strategies of chromosomes from microscopic images.
Toth, Robert J.; Shih, Natalie; Tomaszewski, John E.; Feldman, Michael D.; Kutter, Oliver; Yu, Daphne N.; Paulus, John C.; Paladini, Ginaluca; Madabhushi, Anant
2014-01-01
Context: Co-registration of ex-vivo histologic images with pre-operative imaging (e.g., magnetic resonance imaging [MRI]) can be used to align and map disease extent, and to identify quantitative imaging signatures. However, ex-vivo histology images are frequently sectioned into quarters prior to imaging. Aims: This work presents Histostitcher™, a software system designed to create a pseudo whole mount histology section (WMHS) from a stitching of four individual histology quadrant images. Materials and Methods: Histostitcher™ uses user-identified fiducials on the boundary of two quadrants to stitch such quadrants. An original prototype of Histostitcher™ was designed using the Matlab programming languages. However, clinical use was limited due to slow performance, computer memory constraints and an inefficient workflow. The latest version was created using the extensible imaging platform (XIP™) architecture in the C++ programming language. A fast, graphics processor unit renderer was designed to intelligently cache the visible parts of the histology quadrants and the workflow was significantly improved to allow modifying existing fiducials, fast transformations of the quadrants and saving/loading sessions. Results: The new stitching platform yielded significantly more efficient workflow and reconstruction than the previous prototype. It was tested on a traditional desktop computer, a Windows 8 Surface Pro table device and a 27 inch multi-touch display, with little performance difference between the different devices. Conclusions: Histostitcher™ is a fast, efficient framework for reconstructing pseudo WMHS from individually imaged quadrants. The highly modular XIP™ framework was used to develop an intuitive interface and future work will entail mapping the disease extent from the pseudo WMHS onto pre-operative MRI. PMID:24843820
Software platform for simulation of a prototype proton CT scanner.
Giacometti, Valentina; Bashkirov, Vladimir A; Piersimoni, Pierluigi; Guatelli, Susanna; Plautz, Tia E; Sadrozinski, Hartmut F-W; Johnson, Robert P; Zatserklyaniy, Andriy; Tessonnier, Thomas; Parodi, Katia; Rosenfeld, Anatoly B; Schulte, Reinhard W
2017-03-01
Proton computed tomography (pCT) is a promising imaging technique to substitute or at least complement x-ray CT for more accurate proton therapy treatment planning as it allows calculating directly proton relative stopping power from proton energy loss measurements. A proton CT scanner with a silicon-based particle tracking system and a five-stage scintillating energy detector has been completed. In parallel a modular software platform was developed to characterize the performance of the proposed pCT. The modular pCT software platform consists of (1) a Geant4-based simulation modeling the Loma Linda proton therapy beam line and the prototype proton CT scanner, (2) water equivalent path length (WEPL) calibration of the scintillating energy detector, and (3) image reconstruction algorithm for the reconstruction of the relative stopping power (RSP) of the scanned object. In this work, each component of the modular pCT software platform is described and validated with respect to experimental data and benchmarked against theoretical predictions. In particular, the RSP reconstruction was validated with both experimental scans, water column measurements, and theoretical calculations. The results show that the pCT software platform accurately reproduces the performance of the existing prototype pCT scanner with a RSP agreement between experimental and simulated values to better than 1.5%. The validated platform is a versatile tool for clinical proton CT performance and application studies in a virtual setting. The platform is flexible and can be modified to simulate not yet existing versions of pCT scanners and higher proton energies than those currently clinically available. © 2017 American Association of Physicists in Medicine.
Spotlight-8 Image Analysis Software
NASA Technical Reports Server (NTRS)
Klimek, Robert; Wright, Ted
2006-01-01
Spotlight is a cross-platform GUI-based software package designed to perform image analysis on sequences of images generated by combustion and fluid physics experiments run in a microgravity environment. Spotlight can perform analysis on a single image in an interactive mode or perform analysis on a sequence of images in an automated fashion. Image processing operations can be employed to enhance the image before various statistics and measurement operations are performed. An arbitrarily large number of objects can be analyzed simultaneously with independent areas of interest. Spotlight saves results in a text file that can be imported into other programs for graphing or further analysis. Spotlight can be run on Microsoft Windows, Linux, and Apple OS X platforms.
OSIRIX: open source multimodality image navigation software
NASA Astrophysics Data System (ADS)
Rosset, Antoine; Pysher, Lance; Spadola, Luca; Ratib, Osman
2005-04-01
The goal of our project is to develop a completely new software platform that will allow users to efficiently and conveniently navigate through large sets of multidimensional data without the need of high-end expensive hardware or software. We also elected to develop our system on new open source software libraries allowing other institutions and developers to contribute to this project. OsiriX is a free and open-source imaging software designed manipulate and visualize large sets of medical images: http://homepage.mac.com/rossetantoine/osirix/
Fiji: an open-source platform for biological-image analysis.
Schindelin, Johannes; Arganda-Carreras, Ignacio; Frise, Erwin; Kaynig, Verena; Longair, Mark; Pietzsch, Tobias; Preibisch, Stephan; Rueden, Curtis; Saalfeld, Stephan; Schmid, Benjamin; Tinevez, Jean-Yves; White, Daniel James; Hartenstein, Volker; Eliceiri, Kevin; Tomancak, Pavel; Cardona, Albert
2012-06-28
Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.
Publishing Platform for Scientific Software - Lessons Learned
NASA Astrophysics Data System (ADS)
Hammitzsch, Martin; Fritzsch, Bernadette; Reusser, Dominik; Brembs, Björn; Deinzer, Gernot; Loewe, Peter; Fenner, Martin; van Edig, Xenia; Bertelmann, Roland; Pampel, Heinz; Klump, Jens; Wächter, Joachim
2015-04-01
Scientific software has become an indispensable commodity for the production, processing and analysis of empirical data but also for modelling and simulation of complex processes. Software has a significant influence on the quality of research results. For strengthening the recognition of the academic performance of scientific software development, for increasing its visibility and for promoting the reproducibility of research results, concepts for the publication of scientific software have to be developed, tested, evaluated, and then transferred into operations. For this, the publication and citability of scientific software have to fulfil scientific criteria by means of defined processes and the use of persistent identifiers, similar to data publications. The SciForge project is addressing these challenges. Based on interviews a blueprint for a scientific software publishing platform and a systematic implementation plan has been designed. In addition, the potential of journals, software repositories and persistent identifiers have been evaluated to improve the publication and dissemination of reusable software solutions. It is important that procedures for publishing software as well as methods and tools for software engineering are reflected in the architecture of the platform, in order to improve the quality of the software and the results of research. In addition, it is necessary to work continuously on improving specific conditions that promote the adoption and sustainable utilization of scientific software publications. Among others, this would include policies for the development and publication of scientific software in the institutions but also policies for establishing the necessary competencies and skills of scientists and IT personnel. To implement the concepts developed in SciForge a combined bottom-up / top-down approach is considered that will be implemented in parallel in different scientific domains, e.g. in earth sciences, climate research and
The ImageJ ecosystem: an open platform for biomedical image analysis
Schindelin, Johannes; Rueden, Curtis T.; Hiner, Mark C.; Eliceiri, Kevin W.
2015-01-01
Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is available – from commercial to academic, special-purpose to Swiss army knife, small to large–but a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the open-software platform ImageJ has had a huge impact on life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts life science, how it inspires other projects, and how it is self-influenced by coevolving projects within the ImageJ ecosystem. PMID:26153368
[Porting Radiotherapy Software of Varian to Cloud Platform].
Zou, Lian; Zhang, Weisha; Liu, Xiangxiang; Xie, Zhao; Xie, Yaoqin
2017-09-30
To develop a low-cost private cloud platform of radiotherapy software. First, a private cloud platform which was based on OpenStack and the virtual GPU hardware was builded. Then on the private cloud platform, all the Varian radiotherapy software modules were installed to the virtual machine, and the corresponding function configuration was completed. Finally the software on the cloud was able to be accessed by virtual desktop client. The function test results of the cloud workstation show that a cloud workstation is equivalent to an isolated physical workstation, and any clients on the LAN can use the cloud workstation smoothly. The cloud platform transplantation in this study is economical and practical. The project not only improves the utilization rates of radiotherapy software, but also makes it possible that the cloud computing technology can expand its applications to the field of radiation oncology.
The ImageJ ecosystem: An open platform for biomedical image analysis.
Schindelin, Johannes; Rueden, Curtis T; Hiner, Mark C; Eliceiri, Kevin W
2015-01-01
Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is available-from commercial to academic, special-purpose to Swiss army knife, small to large-but a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the open-software platform ImageJ has had a huge impact on the life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts the life sciences, how it inspires other projects, and how it is self-influenced by coevolving projects within the ImageJ ecosystem. © 2015 Wiley Periodicals, Inc.
Creating Math Videos: Comparing Platforms and Software
ERIC Educational Resources Information Center
Abbasian, Reza O.; Sieben, John T.
2016-01-01
In this paper we present a short tutorial on creating mini-videos using two platforms--PCs and tablets such as iPads--and software packages that work with these devices. Specifically, we describe the step-by-step process of creating and editing videos using a Wacom Intuos pen-tablet plus Camtasia software on a PC platform and using the software…
CONRAD—A software framework for cone-beam imaging in radiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, Andreas; Choi, Jang-Hwan; Riess, Christian
2013-11-15
Purpose: In the community of x-ray imaging, there is a multitude of tools and applications that are used in scientific practice. Many of these tools are proprietary and can only be used within a certain lab. Often the same algorithm is implemented multiple times by different groups in order to enable comparison. In an effort to tackle this problem, the authors created CONRAD, a software framework that provides many of the tools that are required to simulate basic processes in x-ray imaging and perform image reconstruction with consideration of nonlinear physical effects.Methods: CONRAD is a Java-based state-of-the-art software platform withmore » extensive documentation. It is based on platform-independent technologies. Special libraries offer access to hardware acceleration such as OpenCL. There is an easy-to-use interface for parallel processing. The software package includes different simulation tools that are able to generate up to 4D projection and volume data and respective vector motion fields. Well known reconstruction algorithms such as FBP, DBP, and ART are included. All algorithms in the package are referenced to a scientific source.Results: A total of 13 different phantoms and 30 processing steps have already been integrated into the platform at the time of writing. The platform comprises 74.000 nonblank lines of code out of which 19% are used for documentation. The software package is available for download at http://conrad.stanford.edu. To demonstrate the use of the package, the authors reconstructed images from two different scanners, a table top system and a clinical C-arm system. Runtimes were evaluated using the RabbitCT platform and demonstrate state-of-the-art runtimes with 2.5 s for the 256 problem size and 12.4 s for the 512 problem size.Conclusions: As a common software framework, CONRAD enables the medical physics community to share algorithms and develop new ideas. In particular this offers new opportunities for scientific collaboration
OIPAV: an integrated software system for ophthalmic image processing, analysis and visualization
NASA Astrophysics Data System (ADS)
Zhang, Lichun; Xiang, Dehui; Jin, Chao; Shi, Fei; Yu, Kai; Chen, Xinjian
2018-03-01
OIPAV (Ophthalmic Images Processing, Analysis and Visualization) is a cross-platform software which is specially oriented to ophthalmic images. It provides a wide range of functionalities including data I/O, image processing, interaction, ophthalmic diseases detection, data analysis and visualization to help researchers and clinicians deal with various ophthalmic images such as optical coherence tomography (OCT) images and color photo of fundus, etc. It enables users to easily access to different ophthalmic image data manufactured from different imaging devices, facilitate workflows of processing ophthalmic images and improve quantitative evaluations. In this paper, we will present the system design and functional modules of the platform and demonstrate various applications. With a satisfying function scalability and expandability, we believe that the software can be widely applied in ophthalmology field.
TDat: An Efficient Platform for Processing Petabyte-Scale Whole-Brain Volumetric Images.
Li, Yuxin; Gong, Hui; Yang, Xiaoquan; Yuan, Jing; Jiang, Tao; Li, Xiangning; Sun, Qingtao; Zhu, Dan; Wang, Zhenyu; Luo, Qingming; Li, Anan
2017-01-01
Three-dimensional imaging of whole mammalian brains at single-neuron resolution has generated terabyte (TB)- and even petabyte (PB)-sized datasets. Due to their size, processing these massive image datasets can be hindered by the computer hardware and software typically found in biological laboratories. To fill this gap, we have developed an efficient platform named TDat, which adopts a novel data reformatting strategy by reading cuboid data and employing parallel computing. In data reformatting, TDat is more efficient than any other software. In data accessing, we adopted parallelization to fully explore the capability for data transmission in computers. We applied TDat in large-volume data rigid registration and neuron tracing in whole-brain data with single-neuron resolution, which has never been demonstrated in other studies. We also showed its compatibility with various computing platforms, image processing software and imaging systems.
REVEAL: Software Documentation and Platform Migration
NASA Technical Reports Server (NTRS)
Wilson, Michael A.; Veibell, Victoir T.; Freudinger, Lawrence C.
2008-01-01
The Research Environment for Vehicle Embedded Analysis on Linux (REVEAL) is reconfigurable data acquisition software designed for network-distributed test and measurement applications. In development since 2001, it has been successfully demonstrated in support of a number of actual missions within NASA s Suborbital Science Program. Improvements to software configuration control were needed to properly support both an ongoing transition to operational status and continued evolution of REVEAL capabilities. For this reason the project described in this report targets REVEAL software source documentation and deployment of the software on a small set of hardware platforms different from what is currently used in the baseline system implementation. This report specifically describes the actions taken over a ten week period by two undergraduate student interns and serves as a final report for that internship. The topics discussed include: the documentation of REVEAL source code; the migration of REVEAL to other platforms; and an end-to-end field test that successfully validates the efforts.
Free and open source software for the manipulation of digital images.
Solomon, Robert W
2009-06-01
Free and open source software is a type of software that is nearly as powerful as commercial software but is freely downloadable. This software can do almost everything that the expensive programs can. GIMP (gnu image manipulation program) is the free program that is comparable to Photoshop, and versions are available for Windows, Macintosh, and Linux platforms. This article briefly describes how GIMP can be installed and used to manipulate radiology images. It is no longer necessary to budget large amounts of money for high-quality software to achieve the goals of image processing and document creation because free and open source software is available for the user to download at will.
Willoughby, Alex S.; Chiu, Stephanie J.; Silverman, Rachel K.; Farsiu, Sina; Bailey, Clare; Wiley, Henry E.; Ferris, Frederick L.; Jaffe, Glenn J.
2017-01-01
Purpose We determine whether the automated segmentation software, Duke Optical Coherence Tomography Retinal Analysis Program (DOCTRAP), can measure, in a platform-independent manner, retinal thickness on Cirrus and Spectralis spectral domain optical coherence tomography (SD-OCT) images in eyes with diabetic macular edema (DME) under treatment in a clinical trial. Methods Automatic segmentation software was used to segment the internal limiting membrane (ILM), inner retinal pigment epithelium (RPE), and Bruch's membrane (BM) in SD-OCT images acquired by Cirrus and Spectralis commercial systems, from the same eye, on the same day during a clinical interventional DME trial. Mean retinal thickness differences were compared across commercial and DOCTRAP platforms using intraclass correlation (ICC) and Bland-Altman plots. Results The mean 1 mm central subfield thickness difference (standard error [SE]) comparing segmentation of Spectralis images with DOCTRAP versus HEYEX was 0.7 (0.3) μm (0.2 pixels). The corresponding values comparing segmentation of Cirrus images with DOCTRAP versus Cirrus software was 2.2 (0.7) μm. The mean 1 mm central subfield thickness difference (SE) comparing segmentation of Cirrus and Spectralis scan pairs with DOCTRAP using BM as the outer retinal boundary was −2.3 (0.9) μm compared to 2.8 (0.9) μm with inner RPE as the outer boundary. Conclusions DOCTRAP segmentation of Cirrus and Spectralis images produces validated thickness measurements that are very similar to each other, and very similar to the values generated by the corresponding commercial software in eyes with treated DME. Translational Relevance This software enables automatic total retinal thickness measurements across two OCT platforms, a process that is impractical to perform manually. PMID:28180033
IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics.
Zhang, Lifei; Fried, David V; Fave, Xenia J; Hunter, Luke A; Yang, Jinzhong; Court, Laurence E
2015-03-01
Radiomics, which is the high-throughput extraction and analysis of quantitative image features, has been shown to have considerable potential to quantify the tumor phenotype. However, at present, a lack of software infrastructure has impeded the development of radiomics and its applications. Therefore, the authors developed the imaging biomarker explorer (IBEX), an open infrastructure software platform that flexibly supports common radiomics workflow tasks such as multimodality image data import and review, development of feature extraction algorithms, model validation, and consistent data sharing among multiple institutions. The IBEX software package was developed using the MATLAB and c/c++ programming languages. The software architecture deploys the modern model-view-controller, unit testing, and function handle programming concepts to isolate each quantitative imaging analysis task, to validate if their relevant data and algorithms are fit for use, and to plug in new modules. On one hand, IBEX is self-contained and ready to use: it has implemented common data importers, common image filters, and common feature extraction algorithms. On the other hand, IBEX provides an integrated development environment on top of MATLAB and c/c++, so users are not limited to its built-in functions. In the IBEX developer studio, users can plug in, debug, and test new algorithms, extending IBEX's functionality. IBEX also supports quality assurance for data and feature algorithms: image data, regions of interest, and feature algorithm-related data can be reviewed, validated, and/or modified. More importantly, two key elements in collaborative workflows, the consistency of data sharing and the reproducibility of calculation result, are embedded in the IBEX workflow: image data, feature algorithms, and model validation including newly developed ones from different users can be easily and consistently shared so that results can be more easily reproduced between institutions
TU-AB-303-08: GPU-Based Software Platform for Efficient Image-Guided Adaptive Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S; Robinson, A; McNutt, T
2015-06-15
Purpose: In this study, we develop an integrated software platform for adaptive radiation therapy (ART) that combines fast and accurate image registration, segmentation, and dose computation/accumulation methods. Methods: The proposed system consists of three key components; 1) deformable image registration (DIR), 2) automatic segmentation, and 3) dose computation/accumulation. The computationally intensive modules including DIR and dose computation have been implemented on a graphics processing unit (GPU). All required patient-specific data including the planning CT (pCT) with contours, daily cone-beam CTs, and treatment plan are automatically queried and retrieved from their own databases. To improve the accuracy of DIR between pCTmore » and CBCTs, we use the double force demons DIR algorithm in combination with iterative CBCT intensity correction by local intensity histogram matching. Segmentation of daily CBCT is then obtained by propagating contours from the pCT. Daily dose delivered to the patient is computed on the registered pCT by a GPU-accelerated superposition/convolution algorithm. Finally, computed daily doses are accumulated to show the total delivered dose to date. Results: Since the accuracy of DIR critically affects the quality of the other processes, we first evaluated our DIR method on eight head-and-neck cancer cases and compared its performance. Normalized mutual-information (NMI) and normalized cross-correlation (NCC) computed as similarity measures, and our method produced overall NMI of 0.663 and NCC of 0.987, outperforming conventional methods by 3.8% and 1.9%, respectively. Experimental results show that our registration method is more consistent and roust than existing algorithms, and also computationally efficient. Computation time at each fraction took around one minute (30–50 seconds for registration and 15–25 seconds for dose computation). Conclusion: We developed an integrated GPU-accelerated software platform that enables
Analyzing huge pathology images with open source software.
Deroulers, Christophe; Ameisen, David; Badoual, Mathilde; Gerin, Chloé; Granier, Alexandre; Lartaud, Marc
2013-06-06
Digital pathology images are increasingly used both for diagnosis and research, because slide scanners are nowadays broadly available and because the quantitative study of these images yields new insights in systems biology. However, such virtual slides build up a technical challenge since the images occupy often several gigabytes and cannot be fully opened in a computer's memory. Moreover, there is no standard format. Therefore, most common open source tools such as ImageJ fail at treating them, and the others require expensive hardware while still being prohibitively slow. We have developed several cross-platform open source software tools to overcome these limitations. The NDPITools provide a way to transform microscopy images initially in the loosely supported NDPI format into one or several standard TIFF files, and to create mosaics (division of huge images into small ones, with or without overlap) in various TIFF and JPEG formats. They can be driven through ImageJ plugins. The LargeTIFFTools achieve similar functionality for huge TIFF images which do not fit into RAM. We test the performance of these tools on several digital slides and compare them, when applicable, to standard software. A statistical study of the cells in a tissue sample from an oligodendroglioma was performed on an average laptop computer to demonstrate the efficiency of the tools. Our open source software enables dealing with huge images with standard software on average computers. They are cross-platform, independent of proprietary libraries and very modular, allowing them to be used in other open source projects. They have excellent performance in terms of execution speed and RAM requirements. They open promising perspectives both to the clinician who wants to study a single slide and to the research team or data centre who do image analysis of many slides on a computer cluster. The virtual slide(s) for this article can be found here
Analyzing huge pathology images with open source software
2013-01-01
Background Digital pathology images are increasingly used both for diagnosis and research, because slide scanners are nowadays broadly available and because the quantitative study of these images yields new insights in systems biology. However, such virtual slides build up a technical challenge since the images occupy often several gigabytes and cannot be fully opened in a computer’s memory. Moreover, there is no standard format. Therefore, most common open source tools such as ImageJ fail at treating them, and the others require expensive hardware while still being prohibitively slow. Results We have developed several cross-platform open source software tools to overcome these limitations. The NDPITools provide a way to transform microscopy images initially in the loosely supported NDPI format into one or several standard TIFF files, and to create mosaics (division of huge images into small ones, with or without overlap) in various TIFF and JPEG formats. They can be driven through ImageJ plugins. The LargeTIFFTools achieve similar functionality for huge TIFF images which do not fit into RAM. We test the performance of these tools on several digital slides and compare them, when applicable, to standard software. A statistical study of the cells in a tissue sample from an oligodendroglioma was performed on an average laptop computer to demonstrate the efficiency of the tools. Conclusions Our open source software enables dealing with huge images with standard software on average computers. They are cross-platform, independent of proprietary libraries and very modular, allowing them to be used in other open source projects. They have excellent performance in terms of execution speed and RAM requirements. They open promising perspectives both to the clinician who wants to study a single slide and to the research team or data centre who do image analysis of many slides on a computer cluster. Virtual slides The virtual slide(s) for this article can be found here: http
MMX-I: data-processing software for multimodal X-ray imaging and tomography
Bergamaschi, Antoine; Medjoubi, Kadda; Messaoudi, Cédric; Marco, Sergio; Somogyi, Andrea
2016-01-01
A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors’ knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments. PMID:27140159
MMX-I: data-processing software for multimodal X-ray imaging and tomography.
Bergamaschi, Antoine; Medjoubi, Kadda; Messaoudi, Cédric; Marco, Sergio; Somogyi, Andrea
2016-05-01
A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors' knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments.
Wang, Anliang; Yan, Xiaolong; Wei, Zhijun
2018-04-27
This note presents the design of a scalable software package named ImagePy for analysing biological images. Our contribution is concentrated on facilitating extensibility and interoperability of the software through decoupling the data model from the user interface. Especially with assistance from the Python ecosystem, this software framework makes modern computer algorithms easier to be applied in bioimage analysis. ImagePy is free and open source software, with documentation and code available at https://github.com/Image-Py/imagepy under the BSD license. It has been tested on the Windows, Mac and Linux operating systems. wzjdlut@dlut.edu.cn or yxdragon@imagepy.org.
Global Software Development with Cloud Platforms
NASA Astrophysics Data System (ADS)
Yara, Pavan; Ramachandran, Ramaseshan; Balasubramanian, Gayathri; Muthuswamy, Karthik; Chandrasekar, Divya
Offshore and outsourced distributed software development models and processes are facing challenges, previously unknown, with respect to computing capacity, bandwidth, storage, security, complexity, reliability, and business uncertainty. Clouds promise to address these challenges by adopting recent advances in virtualization, parallel and distributed systems, utility computing, and software services. In this paper, we envision a cloud-based platform that addresses some of these core problems. We outline a generic cloud architecture, its design and our first implementation results for three cloud forms - a compute cloud, a storage cloud and a cloud-based software service- in the context of global distributed software development (GSD). Our ”compute cloud” provides computational services such as continuous code integration and a compile server farm, ”storage cloud” offers storage (block or file-based) services with an on-line virtual storage service, whereas the on-line virtual labs represent a useful cloud service. We note some of the use cases for clouds in GSD, the lessons learned with our prototypes and identify challenges that must be conquered before realizing the full business benefits. We believe that in the future, software practitioners will focus more on these cloud computing platforms and see clouds as a means to supporting a ecosystem of clients, developers and other key stakeholders.
Open-source platforms for navigated image-guided interventions.
Ungi, Tamas; Lasso, Andras; Fichtinger, Gabor
2016-10-01
Navigation technology is changing the clinical standards in medical interventions by making existing procedures more accurate, and new procedures possible. Navigation is based on preoperative or intraoperative imaging combined with 3-dimensional position tracking of interventional tools registered to the images. Research of navigation technology in medical interventions requires significant engineering efforts. The difficulty of developing such complex systems has been limiting the clinical translation of new methods and ideas. A key to the future success of this field is to provide researchers with platforms that allow rapid implementation of applications with minimal resources spent on reimplementing existing system features. A number of platforms have been already developed that can share data in real time through standard interfaces. Complete navigation systems can be built using these platforms using a layered software architecture. In this paper, we review the most popular platforms, and show an effective way to take advantage of them through an example surgical navigation application. Copyright © 2016 Elsevier B.V. All rights reserved.
Minervini, Massimo; Giuffrida, Mario V; Perata, Pierdomenico; Tsaftaris, Sotirios A
2017-04-01
Phenotyping is important to understand plant biology, but current solutions are costly, not versatile or are difficult to deploy. To solve this problem, we present Phenotiki, an affordable system for plant phenotyping that, relying on off-the-shelf parts, provides an easy to install and maintain platform, offering an out-of-box experience for a well-established phenotyping need: imaging rosette-shaped plants. The accompanying software (with available source code) processes data originating from our device seamlessly and automatically. Our software relies on machine learning to devise robust algorithms, and includes an automated leaf count obtained from 2D images without the need of depth (3D). Our affordable device (~€200) can be deployed in growth chambers or greenhouse to acquire optical 2D images of approximately up to 60 adult Arabidopsis rosettes concurrently. Data from the device are processed remotely on a workstation or via a cloud application (based on CyVerse). In this paper, we present a proof-of-concept validation experiment on top-view images of 24 Arabidopsis plants in a combination of genotypes that has not been compared previously. Phenotypic analysis with respect to morphology, growth, color and leaf count has not been performed comprehensively before now. We confirm the findings of others on some of the extracted traits, showing that we can phenotype at reduced cost. We also perform extensive validations with external measurements and with higher fidelity equipment, and find no loss in statistical accuracy when we use the affordable setting that we propose. Device set-up instructions and analysis software are publicly available ( http://phenotiki.com). © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Develop Direct Geo-referencing System Based on Open Source Software and Hardware Platform
NASA Astrophysics Data System (ADS)
Liu, H. S.; Liao, H. M.
2015-08-01
Direct geo-referencing system uses the technology of remote sensing to quickly grasp images, GPS tracks, and camera position. These data allows the construction of large volumes of images with geographic coordinates. So that users can be measured directly on the images. In order to properly calculate positioning, all the sensor signals must be synchronized. Traditional aerial photography use Position and Orientation System (POS) to integrate image, coordinates and camera position. However, it is very expensive. And users could not use the result immediately because the position information does not embed into image. To considerations of economy and efficiency, this study aims to develop a direct geo-referencing system based on open source software and hardware platform. After using Arduino microcontroller board to integrate the signals, we then can calculate positioning with open source software OpenCV. In the end, we use open source panorama browser, panini, and integrate all these to open source GIS software, Quantum GIS. A wholesome collection of data - a data processing system could be constructed.
Technical Note: scuda: A software platform for cumulative dose assessment.
Park, Seyoun; McNutt, Todd; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon
2016-10-01
Accurate tracking of anatomical changes and computation of actually delivered dose to the patient are critical for successful adaptive radiation therapy (ART). Additionally, efficient data management and fast processing are practically important for the adoption in clinic as ART involves a large amount of image and treatment data. The purpose of this study was to develop an accurate and efficient Software platform for CUmulative Dose Assessment (scuda) that can be seamlessly integrated into the clinical workflow. scuda consists of deformable image registration (DIR), segmentation, dose computation modules, and a graphical user interface. It is connected to our image PACS and radiotherapy informatics databases from which it automatically queries/retrieves patient images, radiotherapy plan, beam data, and daily treatment information, thus providing an efficient and unified workflow. For accurate registration of the planning CT and daily CBCTs, the authors iteratively correct CBCT intensities by matching local intensity histograms during the DIR process. Contours of the target tumor and critical structures are then propagated from the planning CT to daily CBCTs using the computed deformations. The actual delivered daily dose is computed using the registered CT and patient setup information by a superposition/convolution algorithm, and accumulated using the computed deformation fields. Both DIR and dose computation modules are accelerated by a graphics processing unit. The cumulative dose computation process has been validated on 30 head and neck (HN) cancer cases, showing 3.5 ± 5.0 Gy (mean±STD) absolute mean dose differences between the planned and the actually delivered doses in the parotid glands. On average, DIR, dose computation, and segmentation take 20 s/fraction and 17 min for a 35-fraction treatment including additional computation for dose accumulation. The authors developed a unified software platform that provides accurate and efficient monitoring of
ibex: An open infrastructure software platform to facilitate collaborative work in radiomics
Zhang, Lifei; Fried, David V.; Fave, Xenia J.; Hunter, Luke A.; Court, Laurence E.
2015-01-01
Purpose: Radiomics, which is the high-throughput extraction and analysis of quantitative image features, has been shown to have considerable potential to quantify the tumor phenotype. However, at present, a lack of software infrastructure has impeded the development of radiomics and its applications. Therefore, the authors developed the imaging biomarker explorer (ibex), an open infrastructure software platform that flexibly supports common radiomics workflow tasks such as multimodality image data import and review, development of feature extraction algorithms, model validation, and consistent data sharing among multiple institutions. Methods: The ibex software package was developed using the matlab and c/c++ programming languages. The software architecture deploys the modern model-view-controller, unit testing, and function handle programming concepts to isolate each quantitative imaging analysis task, to validate if their relevant data and algorithms are fit for use, and to plug in new modules. On one hand, ibex is self-contained and ready to use: it has implemented common data importers, common image filters, and common feature extraction algorithms. On the other hand, ibex provides an integrated development environment on top of matlab and c/c++, so users are not limited to its built-in functions. In the ibex developer studio, users can plug in, debug, and test new algorithms, extending ibex’s functionality. ibex also supports quality assurance for data and feature algorithms: image data, regions of interest, and feature algorithm-related data can be reviewed, validated, and/or modified. More importantly, two key elements in collaborative workflows, the consistency of data sharing and the reproducibility of calculation result, are embedded in the ibex workflow: image data, feature algorithms, and model validation including newly developed ones from different users can be easily and consistently shared so that results can be more easily reproduced between
Open-source software platform for medical image segmentation applications
NASA Astrophysics Data System (ADS)
Namías, R.; D'Amato, J. P.; del Fresno, M.
2017-11-01
Segmenting 2D and 3D images is a crucial and challenging problem in medical image analysis. Although several image segmentation algorithms have been proposed for different applications, no universal method currently exists. Moreover, their use is usually limited when detection of complex and multiple adjacent objects of interest is needed. In addition, the continually increasing volumes of medical imaging scans require more efficient segmentation software design and highly usable applications. In this context, we present an extension of our previous segmentation framework which allows the combination of existing explicit deformable models in an efficient and transparent way, handling simultaneously different segmentation strategies and interacting with a graphic user interface (GUI). We present the object-oriented design and the general architecture which consist of two layers: the GUI at the top layer, and the processing core filters at the bottom layer. We apply the framework for segmenting different real-case medical image scenarios on public available datasets including bladder and prostate segmentation from 2D MRI, and heart segmentation in 3D CT. Our experiments on these concrete problems show that this framework facilitates complex and multi-object segmentation goals while providing a fast prototyping open-source segmentation tool.
Current and future trends in marine image annotation software
NASA Astrophysics Data System (ADS)
Gomes-Pereira, Jose Nuno; Auger, Vincent; Beisiegel, Kolja; Benjamin, Robert; Bergmann, Melanie; Bowden, David; Buhl-Mortensen, Pal; De Leo, Fabio C.; Dionísio, Gisela; Durden, Jennifer M.; Edwards, Luke; Friedman, Ariell; Greinert, Jens; Jacobsen-Stout, Nancy; Lerner, Steve; Leslie, Murray; Nattkemper, Tim W.; Sameoto, Jessica A.; Schoening, Timm; Schouten, Ronald; Seager, James; Singh, Hanumant; Soubigou, Olivier; Tojeira, Inês; van den Beld, Inge; Dias, Frederico; Tempera, Fernando; Santos, Ricardo S.
2016-12-01
Given the need to describe, analyze and index large quantities of marine imagery data for exploration and monitoring activities, a range of specialized image annotation tools have been developed worldwide. Image annotation - the process of transposing objects or events represented in a video or still image to the semantic level, may involve human interactions and computer-assisted solutions. Marine image annotation software (MIAS) have enabled over 500 publications to date. We review the functioning, application trends and developments, by comparing general and advanced features of 23 different tools utilized in underwater image analysis. MIAS requiring human input are basically a graphical user interface, with a video player or image browser that recognizes a specific time code or image code, allowing to log events in a time-stamped (and/or geo-referenced) manner. MIAS differ from similar software by the capability of integrating data associated to video collection, the most simple being the position coordinates of the video recording platform. MIAS have three main characteristics: annotating events in real time, posteriorly to annotation and interact with a database. These range from simple annotation interfaces, to full onboard data management systems, with a variety of toolboxes. Advanced packages allow to input and display data from multiple sensors or multiple annotators via intranet or internet. Posterior human-mediated annotation often include tools for data display and image analysis, e.g. length, area, image segmentation, point count; and in a few cases the possibility of browsing and editing previous dive logs or to analyze the annotations. The interaction with a database allows the automatic integration of annotations from different surveys, repeated annotation and collaborative annotation of shared datasets, browsing and querying of data. Progress in the field of automated annotation is mostly in post processing, for stable platforms or still images
Prior, Fred W; Erickson, Bradley J; Tarbox, Lawrence
2007-11-01
The Cancer Bioinformatics Grid (caBIG) program was created by the National Cancer Institute to facilitate sharing of IT infrastructure, data, and applications among the National Cancer Institute-sponsored cancer research centers. The program was launched in February 2004 and now links more than 50 cancer centers. In April 2005, the In Vivo Imaging Workspace was added to promote the use of imaging in cancer clinical trials. At the inaugural meeting, four special interest groups (SIGs) were established. The Software SIG was charged with identifying projects that focus on open-source software for image visualization and analysis. To date, two projects have been defined by the Software SIG. The eXtensible Imaging Platform project has produced a rapid application development environment that researchers may use to create targeted workflows customized for specific research projects. The Algorithm Validation Tools project will provide a set of tools and data structures that will be used to capture measurement information and associated needed to allow a gold standard to be defined for the given database against which change analysis algorithms can be tested. Through these and future efforts, the caBIG In Vivo Imaging Workspace Software SIG endeavors to advance imaging informatics and provide new open-source software tools to advance cancer research.
High-speed laser photoacoustic imaging system combined with a digital ultrasonic imaging platform
NASA Astrophysics Data System (ADS)
Zeng, Lvming; Liu, Guodong; Ji, Xuanrong; Ren, Zhong; Huang, Zhen
2009-07-01
As a new field of combined ultrasound/photoacoustic imaging in biomedical photonics research, we present and demonstrate a high-speed laser photoacoustic imaging system combined with digital ultrasound imaging platform. In the prototype system, a new B-mode digital ultrasonic imaging system is modified as the hardware platform with 384 vertical transducer elements. The centre resonance frequency of the piezoelectric transducer is 5.0 MHz with greater than 70% pulse-echo -6dB fractional bandwidth. The modular instrument of PCI-6541 is used as the hardware control centre of the testing system, which features 32 high-speed channels to build low-skew and multi-channel system. The digital photoacoustic data is transported into computer for subsequent reconstruction at 25 MHz clock frequency. Meantime, the software system for controlling and analyzing is correspondingly explored with LabVIEW language on virtual instrument platform. In the breast tissue experiment, the reconstructed image agrees well with the original sample, and the spatial resolution of the system can reach 0.2 mm with multi-element synthetic aperture focusing technique. Therefore, the system and method may have a significant value in improving early detecting level of cancer in the breast and other organs.
Image manipulation software portable on different hardware platforms: what is the cost?
NASA Astrophysics Data System (ADS)
Ligier, Yves; Ratib, Osman M.; Funk, Matthieu; Perrier, Rene; Girard, Christian; Logean, Marianne
1992-07-01
A hospital wide PACS project is currently under development at the University Hospital of Geneva. The visualization and manipulation of images provided by different imaging modalities constitutes one of the most challenging components of a PACS. Because there are different requirements depending on the clinical usage, it was necessary for such a visualization software to be provided on different types of workstations in different sectors of the PACS. The user interface has to be the same independently of the underlying workstation. Beside, in addition to a standard set of image manipulation and processing tools there is a need for more specific clinical tools that should be easily adapted to specific medical requirements. To achieve operating and windowing systems: the standard Unix/X-11/OSF-Motif based workstations and the Macintosh family and should be easily ported on other systems. This paper describes the design of such a system and discusses the extra cost and efforts involved in the development of a portable and easily expandable software.
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
Fedorov, Andriy; Beichel, Reinhard; Kalpathy-Cramer, Jayashree; Finet, Julien; Fillion-Robin, Jean-Christophe; Pujol, Sonia; Bauer, Christian; Jennings, Dominique; Fennessy, Fiona; Sonka, Milan; Buatti, John; Aylward, Stephen; Miller, James V.; Pieper, Steve; Kikinis, Ron
2012-01-01
Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm, and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future
REVEAL: Software Documentation and Platform Migration
NASA Technical Reports Server (NTRS)
Wilson, Michael A.; Veibell, Victoir T.
2011-01-01
The Research Environment for Vehicle Embedded Analysis on Linux (REVEAL) is reconfigurable data acquisition software designed for network-distributed test and measurement applications. In development since 2001, it has been successfully demonstrated in support of a number of actual missions within NASA's Suborbital Science Program. Improvements to software configuration control were needed to properly support both an ongoing transition to operational status and continued evolution of REVEAL capabilities. For this reason the project described in this report targets REVEAL software source documentation and deployment of the software on a small set of hardware platforms different from what is currently used in the baseline system implementation. This presentation specifically describes the actions taken over a ten week period by two undergraduate student interns and serves as an overview of the content of the final report for that internship.
The design of real time infrared image generation software based on Creator and Vega
NASA Astrophysics Data System (ADS)
Wang, Rui-feng; Wu, Wei-dong; Huo, Jun-xiu
2013-09-01
Considering the requirement of high reality and real-time quality dynamic infrared image of an infrared image simulation, a method to design real-time infrared image simulation application on the platform of VC++ is proposed. This is based on visual simulation software Creator and Vega. The functions of Creator are introduced simply, and the main features of Vega developing environment are analyzed. The methods of infrared modeling and background are offered, the designing flow chart of the developing process of IR image real-time generation software and the functions of TMM Tool and MAT Tool and sensor module are explained, at the same time, the real-time of software is designed.
Technical Note: SCUDA: A software platform for cumulative dose assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Seyoun; McNutt, Todd; Quon, Harry
Purpose: Accurate tracking of anatomical changes and computation of actually delivered dose to the patient are critical for successful adaptive radiation therapy (ART). Additionally, efficient data management and fast processing are practically important for the adoption in clinic as ART involves a large amount of image and treatment data. The purpose of this study was to develop an accurate and efficient Software platform for CUmulative Dose Assessment (SCUDA) that can be seamlessly integrated into the clinical workflow. Methods: SCUDA consists of deformable image registration (DIR), segmentation, dose computation modules, and a graphical user interface. It is connected to our imagemore » PACS and radiotherapy informatics databases from which it automatically queries/retrieves patient images, radiotherapy plan, beam data, and daily treatment information, thus providing an efficient and unified workflow. For accurate registration of the planning CT and daily CBCTs, the authors iteratively correct CBCT intensities by matching local intensity histograms during the DIR process. Contours of the target tumor and critical structures are then propagated from the planning CT to daily CBCTs using the computed deformations. The actual delivered daily dose is computed using the registered CT and patient setup information by a superposition/convolution algorithm, and accumulated using the computed deformation fields. Both DIR and dose computation modules are accelerated by a graphics processing unit. Results: The cumulative dose computation process has been validated on 30 head and neck (HN) cancer cases, showing 3.5 ± 5.0 Gy (mean±STD) absolute mean dose differences between the planned and the actually delivered doses in the parotid glands. On average, DIR, dose computation, and segmentation take 20 s/fraction and 17 min for a 35-fraction treatment including additional computation for dose accumulation. Conclusions: The authors developed a unified software platform that
Campagnola, Luke; Kratz, Megan B; Manis, Paul B
2014-01-01
The complexity of modern neurophysiology experiments requires specialized software to coordinate multiple acquisition devices and analyze the collected data. We have developed ACQ4, an open-source software platform for performing data acquisition and analysis in experimental neurophysiology. This software integrates the tasks of acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which facilitates the addition of new devices and functionality. The modules included with ACQ4 provide for rapid construction of acquisition protocols, live video display, and customizable analysis tools. Position-aware data collection allows automated construction of image mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses free and open-source tools including Python, NumPy/SciPy for numerical computation, PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells, motorized stages, and more. ACQ4 is available for download at http://www.acq4.org.
Toward an integrated software platform for systems pharmacology
Ghosh, Samik; Matsuoka, Yukiko; Asai, Yoshiyuki; Hsin, Kun-Yi; Kitano, Hiroaki
2013-01-01
Understanding complex biological systems requires the extensive support of computational tools. This is particularly true for systems pharmacology, which aims to understand the action of drugs and their interactions in a systems context. Computational models play an important role as they can be viewed as an explicit representation of biological hypotheses to be tested. A series of software and data resources are used for model development, verification and exploration of the possible behaviors of biological systems using the model that may not be possible or not cost effective by experiments. Software platforms play a dominant role in creativity and productivity support and have transformed many industries, techniques that can be applied to biology as well. Establishing an integrated software platform will be the next important step in the field. © 2013 The Authors. Biopharmaceutics & Drug Disposition published by John Wiley & Sons, Ltd. PMID:24150748
DPOI: Distributed software system development platform for ocean information service
NASA Astrophysics Data System (ADS)
Guo, Zhongwen; Hu, Keyong; Jiang, Yongguo; Sun, Zhaosui
2015-02-01
Ocean information management is of great importance as it has been employed in many areas of ocean science and technology. However, the developments of Ocean Information Systems (OISs) often suffer from low efficiency because of repetitive work and continuous modifications caused by dynamic requirements. In this paper, the basic requirements of OISs are analyzed first, and then a novel platform DPOI is proposed to improve development efficiency and enhance software quality of OISs by providing off-the-shelf resources. In the platform, the OIS is decomposed hierarchically into a set of modules, which can be reused in different system developments. These modules include the acquisition middleware and data loader that collect data from instruments and files respectively, the database that stores data consistently, the components that support fast application generation, the web services that make the data from distributed sources syntactical by use of predefined schemas and the configuration toolkit that enables software customization. With the assistance of the development platform, the software development needs no programming and the development procedure is thus accelerated greatly. We have applied the development platform in practical developments and evaluated its efficiency in several development practices and different development approaches. The results show that DPOI significantly improves development efficiency and software quality.
A Software Development Platform for Wearable Medical Applications.
Zhang, Ruikai; Lin, Wei
2015-10-01
Wearable medical devices have become a leading trend in healthcare industry. Microcontrollers are computers on a chip with sufficient processing power and preferred embedded computing units in those devices. We have developed a software platform specifically for the design of the wearable medical applications with a small code footprint on the microcontrollers. It is supported by the open source real time operating system FreeRTOS and supplemented with a set of standard APIs for the architectural specific hardware interfaces on the microcontrollers for data acquisition and wireless communication. We modified the tick counter routine in FreeRTOS to include a real time soft clock. When combined with the multitasking features in the FreeRTOS, the platform offers the quick development of wearable applications and easy porting of the application code to different microprocessors. Test results have demonstrated that the application software developed using this platform are highly efficient in CPU usage while maintaining a small code foot print to accommodate the limited memory space in microcontrollers.
Software components for medical image visualization and surgical planning
NASA Astrophysics Data System (ADS)
Starreveld, Yves P.; Gobbi, David G.; Finnis, Kirk; Peters, Terence M.
2001-05-01
Purpose: The development of new applications in medical image visualization and surgical planning requires the completion of many common tasks such as image reading and re-sampling, segmentation, volume rendering, and surface display. Intra-operative use requires an interface to a tracking system and image registration, and the application requires basic, easy to understand user interface components. Rapid changes in computer and end-application hardware, as well as in operating systems and network environments make it desirable to have a hardware and operating system as an independent collection of reusable software components that can be assembled rapidly to prototype new applications. Methods: Using the OpenGL based Visualization Toolkit as a base, we have developed a set of components that implement the above mentioned tasks. The components are written in both C++ and Python, but all are accessible from Python, a byte compiled scripting language. The components have been used on the Red Hat Linux, Silicon Graphics Iris, Microsoft Windows, and Apple OS X platforms. Rigorous object-oriented software design methods have been applied to ensure hardware independence and a standard application programming interface (API). There are components to acquire, display, and register images from MRI, MRA, CT, Computed Rotational Angiography (CRA), Digital Subtraction Angiography (DSA), 2D and 3D ultrasound, video and physiological recordings. Interfaces to various tracking systems for intra-operative use have also been implemented. Results: The described components have been implemented and tested. To date they have been used to create image manipulation and viewing tools, a deep brain functional atlas, a 3D ultrasound acquisition and display platform, a prototype minimally invasive robotic coronary artery bypass graft planning system, a tracked neuro-endoscope guidance system and a frame-based stereotaxy neurosurgery planning tool. The frame-based stereotaxy module has been
MOPEX: a software package for astronomical image processing and visualization
NASA Astrophysics Data System (ADS)
Makovoz, David; Roby, Trey; Khan, Iffat; Booth, Hartley
2006-06-01
We present MOPEX - a software package for astronomical image processing and display. The package is a combination of command-line driven image processing software written in C/C++ with a Java-based GUI. The main image processing capabilities include creating mosaic images, image registration, background matching, point source extraction, as well as a number of minor image processing tasks. The combination of the image processing and display capabilities allows for much more intuitive and efficient way of performing image processing. The GUI allows for the control over the image processing and display to be closely intertwined. Parameter setting, validation, and specific processing options are entered by the user through a set of intuitive dialog boxes. Visualization feeds back into further processing by providing a prompt feedback of the processing results. The GUI also allows for further analysis by accessing and displaying data from existing image and catalog servers using a virtual observatory approach. Even though originally designed for the Spitzer Space Telescope mission, a lot of functionalities are of general usefulness and can be used for working with existing astronomical data and for new missions. The software used in the package has undergone intensive testing and benefited greatly from effective software reuse. The visualization part has been used for observation planning for both the Spitzer and Herschel Space Telescopes as part the tool Spot. The visualization capabilities of Spot have been enhanced and integrated with the image processing functionality of the command-line driven MOPEX. The image processing software is used in the Spitzer automated pipeline processing, which has been in operation for nearly 3 years. The image processing capabilities have also been tested in off-line processing by numerous astronomers at various institutions around the world. The package is multi-platform and includes automatic update capabilities. The software
Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy
NASA Astrophysics Data System (ADS)
Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli
2014-03-01
One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3DMIP platform when a larger number of cores is available.
A specialized plug-in software module for computer-aided quantitative measurement of medical images.
Wang, Q; Zeng, Y J; Huo, P; Hu, J L; Zhang, J H
2003-12-01
This paper presents a specialized system for quantitative measurement of medical images. Using Visual C++, we developed a computer-aided software based on Image-Pro Plus (IPP), a software development platform. When transferred to the hard disk of a computer by an MVPCI-V3A frame grabber, medical images can be automatically processed by our own IPP plug-in for immunohistochemical analysis, cytomorphological measurement and blood vessel segmentation. In 34 clinical studies, the system has shown its high stability, reliability and ease of utility.
NASA Technical Reports Server (NTRS)
1990-01-01
The Ames digital image velocimetry technology has been incorporated in a commercially available image processing software package that allows motion measurement of images on a PC alone. The software, manufactured by Werner Frei Associates, is IMAGELAB FFT. IMAGELAB FFT is a general purpose image processing system with a variety of other applications, among them image enhancement of fingerprints and use by banks and law enforcement agencies for analysis of videos run during robberies.
Software designs of image processing tasks with incremental refinement of computation.
Anastasia, Davide; Andreopoulos, Yiannis
2010-08-01
Software realizations of computationally-demanding image processing tasks (e.g., image transforms and convolution) do not currently provide graceful degradation when their clock-cycles budgets are reduced, e.g., when delay deadlines are imposed in a multitasking environment to meet throughput requirements. This is an important obstacle in the quest for full utilization of modern programmable platforms' capabilities since worst-case considerations must be in place for reasonable quality of results. In this paper, we propose (and make available online) platform-independent software designs performing bitplane-based computation combined with an incremental packing framework in order to realize block transforms, 2-D convolution and frame-by-frame block matching. The proposed framework realizes incremental computation: progressive processing of input-source increments improves the output quality monotonically. Comparisons with the equivalent nonincremental software realization of each algorithm reveal that, for the same precision of the result, the proposed approach can lead to comparable or faster execution, while it can be arbitrarily terminated and provide the result up to the computed precision. Application examples with region-of-interest based incremental computation, task scheduling per frame, and energy-distortion scalability verify that our proposal provides significant performance scalability with graceful degradation.
ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research
Campagnola, Luke; Kratz, Megan B.; Manis, Paul B.
2014-01-01
The complexity of modern neurophysiology experiments requires specialized software to coordinate multiple acquisition devices and analyze the collected data. We have developed ACQ4, an open-source software platform for performing data acquisition and analysis in experimental neurophysiology. This software integrates the tasks of acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which facilitates the addition of new devices and functionality. The modules included with ACQ4 provide for rapid construction of acquisition protocols, live video display, and customizable analysis tools. Position-aware data collection allows automated construction of image mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses free and open-source tools including Python, NumPy/SciPy for numerical computation, PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells, motorized stages, and more. ACQ4 is available for download at http://www.acq4.org. PMID:24523692
NASA Astrophysics Data System (ADS)
Li, Qing; Lin, Haibo; Xiu, Yu-Feng; Wang, Ruixue; Yi, Chuijie
The test platform of wheat precision seeding based on image processing techniques is designed to develop the wheat precision seed metering device with high efficiency and precision. Using image processing techniques, this platform gathers images of seeds (wheat) on the conveyer belt which are falling from seed metering device. Then these data are processed and analyzed to calculate the qualified rate, reseeding rate and leakage sowing rate, etc. This paper introduces the whole structure, design parameters of the platform and hardware & software of the image acquisition system were introduced, as well as the method of seed identification and seed-space measurement using image's threshold and counting the seed's center. By analyzing the experimental result, the measurement error is less than ± 1mm.
Software for Automated Image-to-Image Co-registration
NASA Technical Reports Server (NTRS)
Benkelman, Cody A.; Hughes, Heidi
2007-01-01
The project objectives are: a) Develop software to fine-tune image-to-image co-registration, presuming images are orthorectified prior to input; b) Create a reusable software development kit (SDK) to enable incorporation of these tools into other software; d) provide automated testing for quantitative analysis; and e) Develop software that applies multiple techniques to achieve subpixel precision in the co-registration of image pairs.
GIFT-Cloud: A data sharing and collaboration platform for medical imaging research.
Doel, Tom; Shakir, Dzhoshkun I; Pratt, Rosalind; Aertsen, Michael; Moggridge, James; Bellon, Erwin; David, Anna L; Deprest, Jan; Vercauteren, Tom; Ourselin, Sébastien
2017-02-01
Clinical imaging data are essential for developing research software for computer-aided diagnosis, treatment planning and image-guided surgery, yet existing systems are poorly suited for data sharing between healthcare and academia: research systems rarely provide an integrated approach for data exchange with clinicians; hospital systems are focused towards clinical patient care with limited access for external researchers; and safe haven environments are not well suited to algorithm development. We have established GIFT-Cloud, a data and medical image sharing platform, to meet the needs of GIFT-Surg, an international research collaboration that is developing novel imaging methods for fetal surgery. GIFT-Cloud also has general applicability to other areas of imaging research. GIFT-Cloud builds upon well-established cross-platform technologies. The Server provides secure anonymised data storage, direct web-based data access and a REST API for integrating external software. The Uploader provides automated on-site anonymisation, encryption and data upload. Gateways provide a seamless process for uploading medical data from clinical systems to the research server. GIFT-Cloud has been implemented in a multi-centre study for fetal medicine research. We present a case study of placental segmentation for pre-operative surgical planning, showing how GIFT-Cloud underpins the research and integrates with the clinical workflow. GIFT-Cloud simplifies the transfer of imaging data from clinical to research institutions, facilitating the development and validation of medical research software and the sharing of results back to the clinical partners. GIFT-Cloud supports collaboration between multiple healthcare and research institutions while satisfying the demands of patient confidentiality, data security and data ownership. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
AMIDE: a free software tool for multimodality medical image analysis.
Loening, Andreas Markus; Gambhir, Sanjiv Sam
2003-07-01
Amide's a Medical Image Data Examiner (AMIDE) has been developed as a user-friendly, open-source software tool for displaying and analyzing multimodality volumetric medical images. Central to the package's abilities to simultaneously display multiple data sets (e.g., PET, CT, MRI) and regions of interest is the on-demand data reslicing implemented within the program. Data sets can be freely shifted, rotated, viewed, and analyzed with the program automatically handling interpolation as needed from the original data. Validation has been performed by comparing the output of AMIDE with that of several existing software packages. AMIDE runs on UNIX, Macintosh OS X, and Microsoft Windows platforms, and it is freely available with source code under the terms of the GNU General Public License.
Open Marketplace for Simulation Software on the Basis of a Web Platform
NASA Astrophysics Data System (ADS)
Kryukov, A. P.; Demichev, A. P.
2016-02-01
The focus in development of a new generation of middleware shifts from the global grid systems to building convenient and efficient web platforms for remote access to individual computing resources. Further line of their development, suggested in this work, is related not only with the quantitative increase in their number and with the expansion of scientific, engineering, and manufacturing areas in which they are used, but also with improved technology for remote deployment of application software on the resources interacting with the web platforms. Currently, the services for providers of application software in the context of scientific-oriented web platforms is not developed enough. The proposed in this work new web platforms of application software market should have all the features of the existing web platforms for submissions of jobs to remote resources plus the provision of specific web services for interaction on market principles between the providers and consumers of application packages. The suggested approach will be approved on the example of simulation applications in the field of nonlinear optics.
Open source hardware and software platform for robotics and artificial intelligence applications
NASA Astrophysics Data System (ADS)
Liang, S. Ng; Tan, K. O.; Lai Clement, T. H.; Ng, S. K.; Mohammed, A. H. Ali; Mailah, Musa; Azhar Yussof, Wan; Hamedon, Zamzuri; Yussof, Zulkifli
2016-02-01
Recent developments in open source hardware and software platforms (Android, Arduino, Linux, OpenCV etc.) have enabled rapid development of previously expensive and sophisticated system within a lower budget and flatter learning curves for developers. Using these platform, we designed and developed a Java-based 3D robotic simulation system, with graph database, which is integrated in online and offline modes with an Android-Arduino based rubbish picking remote control car. The combination of the open source hardware and software system created a flexible and expandable platform for further developments in the future, both in the software and hardware areas, in particular in combination with graph database for artificial intelligence, as well as more sophisticated hardware, such as legged or humanoid robots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, X; Liu, L; Xing, L
Purpose: Visualization and processing of medical images and radiation treatment plan evaluation have traditionally been constrained to local workstations with limited computation power and ability of data sharing and software update. We present a web-based image processing and planning evaluation platform (WIPPEP) for radiotherapy applications with high efficiency, ubiquitous web access, and real-time data sharing. Methods: This software platform consists of three parts: web server, image server and computation server. Each independent server communicates with each other through HTTP requests. The web server is the key component that provides visualizations and user interface through front-end web browsers and relay informationmore » to the backend to process user requests. The image server serves as a PACS system. The computation server performs the actual image processing and dose calculation. The web server backend is developed using Java Servlets and the frontend is developed using HTML5, Javascript, and jQuery. The image server is based on open source DCME4CHEE PACS system. The computation server can be written in any programming language as long as it can send/receive HTTP requests. Our computation server was implemented in Delphi, Python and PHP, which can process data directly or via a C++ program DLL. Results: This software platform is running on a 32-core CPU server virtually hosting the web server, image server, and computation servers separately. Users can visit our internal website with Chrome browser, select a specific patient, visualize image and RT structures belonging to this patient and perform image segmentation running Delphi computation server and Monte Carlo dose calculation on Python or PHP computation server. Conclusion: We have developed a webbased image processing and plan evaluation platform prototype for radiotherapy. This system has clearly demonstrated the feasibility of performing image processing and plan evaluation platform
Pathogen metadata platform: software for accessing and analyzing pathogen strain information.
Chang, Wenling E; Peterson, Matthew W; Garay, Christopher D; Korves, Tonia
2016-09-15
Pathogen metadata includes information about where and when a pathogen was collected and the type of environment it came from. Along with genomic nucleotide sequence data, this metadata is growing rapidly and becoming a valuable resource not only for research but for biosurveillance and public health. However, current freely available tools for analyzing this data are geared towards bioinformaticians and/or do not provide summaries and visualizations needed to readily interpret results. We designed a platform to easily access and summarize data about pathogen samples. The software includes a PostgreSQL database that captures metadata useful for disease outbreak investigations, and scripts for downloading and parsing data from NCBI BioSample and BioProject into the database. The software provides a user interface to query metadata and obtain standardized results in an exportable, tab-delimited format. To visually summarize results, the user interface provides a 2D histogram for user-selected metadata types and mapping of geolocated entries. The software is built on the LabKey data platform, an open-source data management platform, which enables developers to add functionalities. We demonstrate the use of the software in querying for a pathogen serovar and for genome sequence identifiers. This software enables users to create a local database for pathogen metadata, populate it with data from NCBI, easily query the data, and obtain visual summaries. Some of the components, such as the database, are modular and can be incorporated into other data platforms. The source code is freely available for download at https://github.com/wchangmitre/bioattribution .
Saul, Katherine R.; Hu, Xiao; Goehler, Craig M.; Vidt, Meghan E.; Daly, Melissa; Velisar, Anca; Murray, Wendy M.
2014-01-01
Several opensource or commercially available software platforms are widely used to develop dynamic simulations of movement. While computational approaches are conceptually similar across platforms, technical differences in implementation may influence output. We present a new upper limb dynamic model as a tool to evaluate potential differences in predictive behavior between platforms. We evaluated to what extent differences in technical implementations in popular simulation software environments result in differences in kinematic predictions for single and multijoint movements using EMG- and optimization-based approaches for deriving control signals. We illustrate the benchmarking comparison using SIMM-Dynamics Pipeline-SD/Fast and OpenSim platforms. The most substantial divergence results from differences in muscle model and actuator paths. This model is a valuable resource and is available for download by other researchers. The model, data, and simulation results presented here can be used by future researchers to benchmark other software platforms and software upgrades for these two platforms. PMID:24995410
Saul, Katherine R; Hu, Xiao; Goehler, Craig M; Vidt, Meghan E; Daly, Melissa; Velisar, Anca; Murray, Wendy M
2015-01-01
Several opensource or commercially available software platforms are widely used to develop dynamic simulations of movement. While computational approaches are conceptually similar across platforms, technical differences in implementation may influence output. We present a new upper limb dynamic model as a tool to evaluate potential differences in predictive behavior between platforms. We evaluated to what extent differences in technical implementations in popular simulation software environments result in differences in kinematic predictions for single and multijoint movements using EMG- and optimization-based approaches for deriving control signals. We illustrate the benchmarking comparison using SIMM-Dynamics Pipeline-SD/Fast and OpenSim platforms. The most substantial divergence results from differences in muscle model and actuator paths. This model is a valuable resource and is available for download by other researchers. The model, data, and simulation results presented here can be used by future researchers to benchmark other software platforms and software upgrades for these two platforms.
Escott, Edward J; Rubinstein, David
2004-01-01
It is often necessary for radiologists to use digital images in presentations and conferences. Most imaging modalities produce images in the Digital Imaging and Communications in Medicine (DICOM) format. The image files tend to be large and thus cannot be directly imported into most presentation software, such as Microsoft PowerPoint; the large files also consume storage space. There are many free programs that allow viewing and processing of these files on a personal computer, including conversion to more common file formats such as the Joint Photographic Experts Group (JPEG) format. Free DICOM image viewing and processing software for computers running on the Microsoft Windows operating system has already been evaluated. However, many people use the Macintosh (Apple Computer) platform, and a number of programs are available for these users. The World Wide Web was searched for free DICOM image viewing or processing software that was designed for the Macintosh platform or is written in Java and is therefore platform independent. The features of these programs and their usability were evaluated. There are many free programs for the Macintosh platform that enable viewing and processing of DICOM images. (c) RSNA, 2004.
Towards multi-platform software architecture for Collaborative Teleoperation
NASA Astrophysics Data System (ADS)
Domingues, Christophe; Otmane, Samir; Davesne, Frederic; Mallem, Malik
2009-03-01
Augmented Reality (AR) can provide to a Human Operator (HO) a real help in achieving complex tasks, such as remote control of robots and cooperative teleassistance. Using appropriate augmentations, the HO can interact faster, safer and easier with the remote real world. In this paper, we present an extension of an existing distributed software and network architecture for collaborative teleoperation based on networked human-scaled mixed reality and mobile platform. The first teleoperation system was composed by a VR application and a Web application. However the 2 systems cannot be used together and it is impossible to control a distant robot simultaneously. Our goal is to update the teleoperation system to permit a heterogeneous collaborative teleoperation between the 2 platforms. An important feature of this interface is based on the use of different Virtual Reality platforms and different Mobile platforms to control one or many robots.
Towards multi-platform software architecture for Collaborative Teleoperation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domingues, Christophe; Otmane, Samir; Davesne, Frederic
2009-03-05
Augmented Reality (AR) can provide to a Human Operator (HO) a real help in achieving complex tasks, such as remote control of robots and cooperative teleassistance. Using appropriate augmentations, the HO can interact faster, safer and easier with the remote real world. In this paper, we present an extension of an existing distributed software and network architecture for collaborative teleoperation based on networked human-scaled mixed reality and mobile platform. The first teleoperation system was composed by a VR application and a Web application. However the 2 systems cannot be used together and it is impossible to control a distant robotmore » simultaneously. Our goal is to update the teleoperation system to permit a heterogeneous collaborative teleoperation between the 2 platforms. An important feature of this interface is based on the use of different Virtual Reality platforms and different Mobile platforms to control one or many robots.« less
An image-processing software package: UU and Fig for optical metrology applications
NASA Astrophysics Data System (ADS)
Chen, Lujie
2013-06-01
Modern optical metrology applications are largely supported by computational methods, such as phase shifting [1], Fourier Transform [2], digital image correlation [3], camera calibration [4], etc, in which image processing is a critical and indispensable component. While it is not too difficult to obtain a wide variety of image-processing programs from the internet; few are catered for the relatively special area of optical metrology. This paper introduces an image-processing software package: UU (data processing) and Fig (data rendering) that incorporates many useful functions to process optical metrological data. The cross-platform programs UU and Fig are developed based on wxWidgets. At the time of writing, it has been tested on Windows, Linux and Mac OS. The userinterface is designed to offer precise control of the underline processing procedures in a scientific manner. The data input/output mechanism is designed to accommodate diverse file formats and to facilitate the interaction with other independent programs. In terms of robustness, although the software was initially developed for personal use, it is comparably stable and accurate to most of the commercial software of similar nature. In addition to functions for optical metrology, the software package has a rich collection of useful tools in the following areas: real-time image streaming from USB and GigE cameras, computational geometry, computer vision, fitting of data, 3D image processing, vector image processing, precision device control (rotary stage, PZT stage, etc), point cloud to surface reconstruction, volume rendering, batch processing, etc. The software package is currently used in a number of universities for teaching and research.
NASA Astrophysics Data System (ADS)
Ozkaya, Sait I.
2018-03-01
Fracture corridors are interconnected large fractures in a narrow sub vertical tabular array, which usually traverse entire reservoir vertically and extended for several hundreds of meters laterally. Fracture corridors with their huge conductivities constitute an important element of many fractured reservoirs. Unlike small diffuse fractures, actual fracture corridors must be mapped deterministically for simulation or field development purposes. Fracture corridors can be identified and quantified definitely with borehole image logs and well testing. However, there are rarely sufficient image logs or well tests, and it is necessary to utilize various fracture corridor indicators with varying degrees of reliability. Integration of data from many different sources, in turn, requires a platform with powerful editing and layering capability. Available commercial reservoir characterization software packages, with layering and editing capabilities, can be cost intensive. CAD packages are far more affordable and may easily acquire the versatility and power of commercial software packages with addition of a small software toolbox. The objective of this communication is to present FRACOR, a software toolbox which enables deterministic 2D fracture corridor mapping and modeling on AutoCAD platform. The FRACOR toolbox is written in AutoLISPand contains several independent routines to import and integrate available fracture corridor data from an oil field, and export results as text files. The resulting fracture corridor maps consists mainly of fracture corridors with different confidence levels from combination of static and dynamic data and exclusion zones where no fracture corridor can exist. The exported text file of fracture corridors from FRACOR can be imported into an upscaling programs to generate fracture grid for dual porosity simulation or used for field development and well planning.
A LabVIEW® based generic CT scanner control software platform.
Dierick, M; Van Loo, D; Masschaele, B; Boone, M; Van Hoorebeke, L
2010-01-01
UGCT, the Centre for X-ray tomography at Ghent University (Belgium) does research on X-ray tomography and its applications. This includes the development and construction of state-of-the-art CT scanners for scientific research. Because these scanners are built for very different purposes they differ considerably in their physical implementations. However, they all share common principle functionality. In this context a generic software platform was developed using LabVIEW® in order to provide the same interface and functionality on all scanners. This article describes the concept and features of this software, and its potential for tomography in a research setting. The core concept is to rigorously separate the abstract operation of a CT scanner from its actual physical configuration. This separation is achieved by implementing a sender-listener architecture. The advantages are that the resulting software platform is generic, scalable, highly efficient, easy to develop and to extend, and that it can be deployed on future scanners with minimal effort.
Portable image-manipulation software: what is the extra development cost?
Ligier, Y; Ratib, O; Funk, M; Perrier, R; Girard, C; Logean, M
1992-08-01
A hospital-wide picture archiving and communication system (PACS) project is currently under development at the University Hospital of Geneva. The visualization and manipulation of images provided by different imaging modalities constitutes one of the most challenging component of a PACS. It was necessary to provide this visualization software on a number of types of workstations because of the varying requirements imposed by the range of clinical uses it must serve. The user interface must be the same, independent of the underlying workstation. In addition to a standard set of image-manipulation and processing tools, there is a need for more specific clinical tools that can be easily adapted to specific medical requirements. To achieve this goal, it was elected to develop a modular and portable software called OSIRIS. This software is available on two different operating systems (the UNIX standard X-11/OSF-Motif based workstations and the Macintosh family) and can be easily ported to other systems. The extra effort required to design such software in a modular and portable way was worthwhile because it resulted in a platform that can be easily expanded and adapted to a variety of specific clinical applications. Its portability allows users to benefit from the rapidly evolving workstation technology and to adapt the performance to suit their needs.
Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software
NASA Technical Reports Server (NTRS)
Hunter, George; Boisvert, Benjamin
2013-01-01
This document is the final report for the project entitled "Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software." This report consists of 17 sections which document the results of the several subtasks of this effort. The Probabilistic NAS Platform (PNP) is an air operations simulation platform developed and maintained by the Saab Sensis Corporation. The improvements made to the PNP simulation include the following: an airborne distributed separation assurance capability, a required time of arrival assignment and conformance capability, and a tactical and strategic weather avoidance capability.
NASA Technical Reports Server (NTRS)
Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, John W., IV; Henderson, Richard; Futrell, Michael T.
1991-01-01
The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The focus here is on the design of components that make up the FPP. These components serve as supporting systems for the Integration Mechanism and the Framework Processor and provide the 'glue' that ties the FPP together. Also discussed are the components that allow the platform to operate in a distributed, heterogeneous environment and to manage the development and evolution of software system artifacts.
Optimizing Flight Control Software With an Application Platform
NASA Technical Reports Server (NTRS)
Smith, Irene Skupniewicz; Shi, Nija; Webster, Christopher
2012-01-01
Flight controllers in NASA s mission control centers work day and night to ensure that missions succeed and crews are safe. The IT goals of NASA mission control centers are similar to those of most businesses: to evolve IT infrastructure from basic to dynamic. This paper describes Mission Control Technologies (MCT), an application platform that is powering mission control today and is designed to meet the needs of future NASA control centers. MCT is an extensible platform that provides GUI components and a runtime environment. The platform enables NASA s IT goals through its use of lightweight interfaces and configurable components, which promote standardization and incorporate useful solution patterns. The MCT architecture positions mission control centers to reach the goal of dynamic IT, leading to lower cost of ownership, and treating software as a strategic investment.
microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling
NASA Astrophysics Data System (ADS)
Comi, Troy J.; Neumann, Elizabeth K.; Do, Thanh D.; Sweedler, Jonathan V.
2017-09-01
Image-guided mass spectrometry (MS) profiling provides a facile framework for analyzing samples ranging from single cells to tissue sections. The fundamental workflow utilizes a whole-slide microscopy image to select targets of interest, determine their spatial locations, and subsequently perform MS analysis at those locations. Improving upon prior reported methodology, a software package was developed for working with microscopy images. microMS, for microscopy-guided mass spectrometry, allows the user to select and profile diverse samples using a variety of target patterns and mass analyzers. Written in Python, the program provides an intuitive graphical user interface to simplify image-guided MS for novice users. The class hierarchy of instrument interactions permits integration of new MS systems while retaining the feature-rich image analysis framework. microMS is a versatile platform for performing targeted profiling experiments using a series of mass spectrometers. The flexibility in mass analyzers greatly simplifies serial analyses of the same targets by different instruments. The current capabilities of microMS are presented, and its application for off-line analysis of single cells on three distinct instruments is demonstrated. The software has been made freely available for research purposes. [Figure not available: see fulltext.
microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling.
Comi, Troy J; Neumann, Elizabeth K; Do, Thanh D; Sweedler, Jonathan V
2017-09-01
Image-guided mass spectrometry (MS) profiling provides a facile framework for analyzing samples ranging from single cells to tissue sections. The fundamental workflow utilizes a whole-slide microscopy image to select targets of interest, determine their spatial locations, and subsequently perform MS analysis at those locations. Improving upon prior reported methodology, a software package was developed for working with microscopy images. microMS, for microscopy-guided mass spectrometry, allows the user to select and profile diverse samples using a variety of target patterns and mass analyzers. Written in Python, the program provides an intuitive graphical user interface to simplify image-guided MS for novice users. The class hierarchy of instrument interactions permits integration of new MS systems while retaining the feature-rich image analysis framework. microMS is a versatile platform for performing targeted profiling experiments using a series of mass spectrometers. The flexibility in mass analyzers greatly simplifies serial analyses of the same targets by different instruments. The current capabilities of microMS are presented, and its application for off-line analysis of single cells on three distinct instruments is demonstrated. The software has been made freely available for research purposes. Graphical Abstract ᅟ.
A resilient and secure software platform and architecture for distributed spacecraft
NASA Astrophysics Data System (ADS)
Otte, William R.; Dubey, Abhishek; Karsai, Gabor
2014-06-01
A distributed spacecraft is a cluster of independent satellite modules flying in formation that communicate via ad-hoc wireless networks. This system in space is a cloud platform that facilitates sharing sensors and other computing and communication resources across multiple applications, potentially developed and maintained by different organizations. Effectively, such architecture can realize the functions of monolithic satellites at a reduced cost and with improved adaptivity and robustness. Openness of these architectures pose special challenges because the distributed software platform has to support applications from different security domains and organizations, and where information flows have to be carefully managed and compartmentalized. If the platform is used as a robust shared resource its management, configuration, and resilience becomes a challenge in itself. We have designed and prototyped a distributed software platform for such architectures. The core element of the platform is a new operating system whose services were designed to restrict access to the network and the file system, and to enforce resource management constraints for all non-privileged processes Mixed-criticality applications operating at different security labels are deployed and controlled by a privileged management process that is also pre-configuring all information flows. This paper describes the design and objective of this layer.
Platform for Automated Real-Time High Performance Analytics on Medical Image Data.
Allen, William J; Gabr, Refaat E; Tefera, Getaneh B; Pednekar, Amol S; Vaughn, Matthew W; Narayana, Ponnada A
2018-03-01
Biomedical data are quickly growing in volume and in variety, providing clinicians an opportunity for better clinical decision support. Here, we demonstrate a robust platform that uses software automation and high performance computing (HPC) resources to achieve real-time analytics of clinical data, specifically magnetic resonance imaging (MRI) data. We used the Agave application programming interface to facilitate communication, data transfer, and job control between an MRI scanner and an off-site HPC resource. In this use case, Agave executed the graphical pipeline tool GRAphical Pipeline Environment (GRAPE) to perform automated, real-time, quantitative analysis of MRI scans. Same-session image processing will open the door for adaptive scanning and real-time quality control, potentially accelerating the discovery of pathologies and minimizing patient callbacks. We envision this platform can be adapted to other medical instruments, HPC resources, and analytics tools.
AGScan: a pluggable microarray image quantification software based on the ImageJ library.
Cathelin, R; Lopez, F; Klopp, Ch
2007-01-15
Many different programs are available to analyze microarray images. Most programs are commercial packages, some are free. In the latter group only few propose automatic grid alignment and batch mode. More often than not a program implements only one quantification algorithm. AGScan is an open source program that works on all major platforms. It is based on the ImageJ library [Rasband (1997-2006)] and offers a plug-in extension system to add new functions to manipulate images, align grid and quantify spots. It is appropriate for daily laboratory use and also as a framework for new algorithms. The program is freely distributed under X11 Licence. The install instructions can be found in the user manual. The software can be downloaded from http://mulcyber.toulouse.inra.fr/projects/agscan/. The questions and plug-ins can be sent to the contact listed below.
NASA Astrophysics Data System (ADS)
Furtado, H.; Gendrin, C.; Spoerk, J.; Steiner, E.; Underwood, T.; Kuenzler, T.; Georg, D.; Birkfellner, W.
2016-03-01
Radiotherapy treatments have changed at a tremendously rapid pace. Dose delivered to the tumor has escalated while organs at risk (OARs) are better spared. The impact of moving tumors during dose delivery has become higher due to very steep dose gradients. Intra-fractional tumor motion has to be managed adequately to reduce errors in dose delivery. For tumors with large motion such as tumors in the lung, tracking is an approach that can reduce position uncertainty. Tumor tracking approaches range from purely image intensity based techniques to motion estimation based on surrogate tracking. Research efforts are often based on custom designed software platforms which take too much time and effort to develop. To address this challenge we have developed an open software platform especially focusing on tumor motion management. FLIRT is a freely available open-source software platform. The core method for tumor tracking is purely intensity based 2D/3D registration. The platform is written in C++ using the Qt framework for the user interface. The performance critical methods are implemented on the graphics processor using the CUDA extension. One registration can be as fast as 90ms (11Hz). This is suitable to track tumors moving due to respiration (~0.3Hz) or heartbeat (~1Hz). Apart from focusing on high performance, the platform is designed to be flexible and easy to use. Current use cases range from tracking feasibility studies, patient positioning and method validation. Such a framework has the potential of enabling the research community to rapidly perform patient studies or try new methods.
NASA Astrophysics Data System (ADS)
Changyong, Dou; Huadong, Guo; Chunming, Han; Ming, Liu
2014-03-01
With more and more Earth observation data available to the community, how to manage and sharing these valuable remote sensing datasets is becoming an urgent issue to be solved. The web based Geographical Information Systems (GIS) technology provides a convenient way for the users in different locations to share and make use of the same dataset. In order to efficiently use the airborne Synthetic Aperture Radar (SAR) remote sensing data acquired in the Airborne Remote Sensing Center of the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), a Web-GIS based platform for airborne SAR data management, distribution and sharing was designed and developed. The major features of the system include map based navigation search interface, full resolution imagery shown overlaid the map, and all the software adopted in the platform are Open Source Software (OSS). The functions of the platform include browsing the imagery on the map navigation based interface, ordering and downloading data online, image dataset and user management, etc. At present, the system is under testing in RADI and will come to regular operation soon.
Energy Tracking Software Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan Davis; Nathan Bird; Rebecca Birx
2011-04-04
Acceleration has created an interactive energy tracking and visualization platform that supports decreasing electric, water, and gas usage. Homeowners have access to tools that allow them to gauge their use and track progress toward a smaller energy footprint. Real estate agents have access to consumption data, allowing for sharing a comparison with potential home buyers. Home builders have the opportunity to compare their neighborhood's energy efficiency with competitors. Home energy raters have a tool for gauging the progress of their clients after efficiency changes. And, social groups are able to help encourage members to reduce their energy bills and helpmore » their environment. EnergyIT.com is the business umbrella for all energy tracking solutions and is designed to provide information about our energy tracking software and promote sales. CompareAndConserve.com (Gainesville-Green.com) helps homeowners conserve energy through education and competition. ToolsForTenants.com helps renters factor energy usage into their housing decisions.« less
NASA Astrophysics Data System (ADS)
Silva, F.; Maechling, P. J.; Goulet, C.; Somerville, P.; Jordan, T. H.
2013-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Broadband Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms of a historical earthquake for which observed strong ground motion data is available. Also in validation mode, the Broadband Platform calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. During the past year, we have modified the software to enable the addition of a large number of historical events, and we are now adding validation simulation inputs and observational data for 23 historical events covering the Eastern and Western United States, Japan, Taiwan, Turkey, and Italy. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. By establishing an interface between scientific modules with a common set of input and output files, the Broadband
OsiriX: an open-source software for navigating in multidimensional DICOM images.
Rosset, Antoine; Spadola, Luca; Ratib, Osman
2004-09-01
A multidimensional image navigation and display software was designed for display and interpretation of large sets of multidimensional and multimodality images such as combined PET-CT studies. The software is developed in Objective-C on a Macintosh platform under the MacOS X operating system using the GNUstep development environment. It also benefits from the extremely fast and optimized 3D graphic capabilities of the OpenGL graphic standard widely used for computer games optimized for taking advantage of any hardware graphic accelerator boards available. In the design of the software special attention was given to adapt the user interface to the specific and complex tasks of navigating through large sets of image data. An interactive jog-wheel device widely used in the video and movie industry was implemented to allow users to navigate in the different dimensions of an image set much faster than with a traditional mouse or on-screen cursors and sliders. The program can easily be adapted for very specific tasks that require a limited number of functions, by adding and removing tools from the program's toolbar and avoiding an overwhelming number of unnecessary tools and functions. The processing and image rendering tools of the software are based on the open-source libraries ITK and VTK. This ensures that all new developments in image processing that could emerge from other academic institutions using these libraries can be directly ported to the OsiriX program. OsiriX is provided free of charge under the GNU open-source licensing agreement at http://homepage.mac.com/rossetantoine/osirix.
eSciMart: Web Platform for Scientific Software Marketplace
NASA Astrophysics Data System (ADS)
Kryukov, A. P.; Demichev, A. P.
2016-10-01
In this paper we suggest a design of a web marketplace where users of scientific application software and databases, presented in the form of web services, as well as their providers will have presence simultaneously. The model, which will be the basis for the web marketplace is close to the customer-to-customer (C2C) model, which has been successfully used, for example, on the auction sites such as eBay (ebay.com). Unlike the classical model of C2C the suggested marketplace focuses on application software in the form of web services, and standardization of API through which application software will be integrated into the web marketplace. A prototype of such a platform, entitled eSciMart, is currently being developed at SINP MSU.
NASA Astrophysics Data System (ADS)
Silva, F.; Maechling, P. J.; Goulet, C. A.; Somerville, P.; Jordan, T. H.
2014-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving geoscientists, earthquake engineers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform (BBP) is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms for a well-observed historical earthquake. Then, the BBP calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results
Web Platform for Sharing Modeling Software in the Field of Nonlinear Optics
NASA Astrophysics Data System (ADS)
Dubenskaya, Julia; Kryukov, Alexander; Demichev, Andrey
2018-02-01
We describe the prototype of a Web platform intended for sharing software programs for computer modeling in the rapidly developing field of the nonlinear optics phenomena. The suggested platform is built on the top of the HUBZero open-source middleware. In addition to the basic HUBZero installation we added to our platform the capability to run Docker containers via an external application server and to send calculation programs to those containers for execution. The presented web platform provides a wide range of features and might be of benefit to nonlinear optics researchers.
Future Directions for Astronomical Image Display
NASA Technical Reports Server (NTRS)
Mandel, Eric
2000-01-01
In the "Future Directions for Astronomical Image Displav" project, the Smithsonian Astrophysical Observatory (SAO) and the National Optical Astronomy Observatories (NOAO) evolved our existing image display program into fully extensible. cross-platform image display software. We also devised messaging software to support integration of image display into astronomical analysis systems. Finally, we migrated our software from reliance on Unix and the X Window System to a platform-independent architecture that utilizes the cross-platform Tcl/Tk technology.
NASA Technical Reports Server (NTRS)
Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Reddy, Uday; Ackley, Keith; Futrell, Mike
1991-01-01
The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by this model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated.
NASA Astrophysics Data System (ADS)
Barnett, Barry S.; Bovik, Alan C.
1995-04-01
This paper presents a real time full motion video conferencing system based on the Visual Pattern Image Sequence Coding (VPISC) software codec. The prototype system hardware is comprised of two personal computers, two camcorders, two frame grabbers, and an ethernet connection. The prototype system software has a simple structure. It runs under the Disk Operating System, and includes a user interface, a video I/O interface, an event driven network interface, and a free running or frame synchronous video codec that also acts as the controller for the video and network interfaces. Two video coders have been tested in this system. Simple implementations of Visual Pattern Image Coding and VPISC have both proven to support full motion video conferencing with good visual quality. Future work will concentrate on expanding this prototype to support the motion compensated version of VPISC, as well as encompassing point-to-point modem I/O and multiple network protocols. The application will be ported to multiple hardware platforms and operating systems. The motivation for developing this prototype system is to demonstrate the practicality of software based real time video codecs. Furthermore, software video codecs are not only cheaper, but are more flexible system solutions because they enable different computer platforms to exchange encoded video information without requiring on-board protocol compatible video codex hardware. Software based solutions enable true low cost video conferencing that fits the `open systems' model of interoperability that is so important for building portable hardware and software applications.
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Flatley, Thomas P.; Hestnes, Phyllis; Jentoft-Nilsen, Marit; Petrick, David J.; Day, John H. (Technical Monitor)
2001-01-01
Spacecraft telemetry rates have steadily increased over the last decade presenting a problem for real-time processing by ground facilities. This paper proposes a solution to a related problem for the Geostationary Operational Environmental Spacecraft (GOES-8) image processing application. Although large super-computer facilities are the obvious heritage solution, they are very costly, making it imperative to seek a feasible alternative engineering solution at a fraction of the cost. The solution is based on a Personal Computer (PC) platform and synergy of optimized software algorithms and re-configurable computing hardware technologies, such as Field Programmable Gate Arrays (FPGA) and Digital Signal Processing (DSP). It has been shown in [1] and [2] that this configuration can provide superior inexpensive performance for a chosen application on the ground station or on-board a spacecraft. However, since this technology is still maturing, intensive pre-hardware steps are necessary to achieve the benefits of hardware implementation. This paper describes these steps for the GOES-8 application, a software project developed using Interactive Data Language (IDL) (Trademark of Research Systems, Inc.) on a Workstation/UNIX platform. The solution involves converting the application to a PC/Windows/RC platform, selected mainly by the availability of low cost, adaptable high-speed RC hardware. In order for the hybrid system to run, the IDL software was modified to account for platform differences. It was interesting to examine the gains and losses in performance on the new platform, as well as unexpected observations before implementing hardware. After substantial pre-hardware optimization steps, the necessity of hardware implementation for bottleneck code in the PC environment became evident and solvable beginning with the methodology described in [1], [2], and implementing a novel methodology for this specific application [6]. The PC-RC interface bandwidth problem for the
Wang, Yu; Helminen, Emily; Jiang, Jingfeng
2015-09-01
Quasistatic ultrasound elastography (QUE) is being used to augment in vivo characterization of breast lesions. Results from early clinical trials indicated that there was a lack of confidence in image interpretation. Such confidence can only be gained through rigorous imaging tests using complex, heterogeneous but known media. The objective of this study is to build a virtual breast QUE simulation platform in the public domain that can be used not only for innovative QUE research but also for rigorous imaging tests. The main thrust of this work is to streamline biomedical ultrasound simulations by leveraging existing open source software packages including Field II (ultrasound simulator), VTK (geometrical visualization and processing), FEBio [finite element (FE) analysis], and Tetgen (mesh generator). However, integration of these open source packages is nontrivial and requires interdisciplinary knowledge. In the first step, a virtual breast model containing complex anatomical geometries was created through a novel combination of image-based landmark structures and randomly distributed (small) structures. Image-based landmark structures were based on data from the NIH Visible Human Project. Subsequently, an unstructured FE-mesh was created by Tetgen. In the second step, randomly positioned point scatterers were placed within the meshed breast model through an octree-based algorithm to make a virtual breast ultrasound phantom. In the third step, an ultrasound simulator (Field II) was used to interrogate the virtual breast phantom to obtain simulated ultrasound echo data. Of note, tissue deformation generated using a FE-simulator (FEBio) was the basis of deforming the original virtual breast phantom in order to obtain the postdeformation breast phantom for subsequent ultrasound simulations. Using the procedures described above, a full cycle of QUE simulations involving complex and highly heterogeneous virtual breast phantoms can be accomplished for the first time
Wang, Yu; Helminen, Emily; Jiang, Jingfeng
2015-01-01
Purpose: Quasistatic ultrasound elastography (QUE) is being used to augment in vivo characterization of breast lesions. Results from early clinical trials indicated that there was a lack of confidence in image interpretation. Such confidence can only be gained through rigorous imaging tests using complex, heterogeneous but known media. The objective of this study is to build a virtual breast QUE simulation platform in the public domain that can be used not only for innovative QUE research but also for rigorous imaging tests. Methods: The main thrust of this work is to streamline biomedical ultrasound simulations by leveraging existing open source software packages including Field II (ultrasound simulator), VTK (geometrical visualization and processing), FEBio [finite element (FE) analysis], and Tetgen (mesh generator). However, integration of these open source packages is nontrivial and requires interdisciplinary knowledge. In the first step, a virtual breast model containing complex anatomical geometries was created through a novel combination of image-based landmark structures and randomly distributed (small) structures. Image-based landmark structures were based on data from the NIH Visible Human Project. Subsequently, an unstructured FE-mesh was created by Tetgen. In the second step, randomly positioned point scatterers were placed within the meshed breast model through an octree-based algorithm to make a virtual breast ultrasound phantom. In the third step, an ultrasound simulator (Field II) was used to interrogate the virtual breast phantom to obtain simulated ultrasound echo data. Of note, tissue deformation generated using a FE-simulator (FEBio) was the basis of deforming the original virtual breast phantom in order to obtain the postdeformation breast phantom for subsequent ultrasound simulations. Using the procedures described above, a full cycle of QUE simulations involving complex and highly heterogeneous virtual breast phantoms can be accomplished for
Software platform virtualization in chemistry research and university teaching.
Kind, Tobias; Leamy, Tim; Leary, Julie A; Fiehn, Oliver
2009-11-16
Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide.
Evolution of a Reconfigurable Processing Platform for a Next Generation Space Software Defined Radio
NASA Technical Reports Server (NTRS)
Kacpura, Thomas J.; Downey, Joseph A.; Anderson, Keffery R.; Baldwin, Keith
2014-01-01
The National Aeronautics and Space Administration (NASA)Harris Ka-Band Software Defined Radio (SDR) is the first, fully reprogrammable space-qualified SDR operating in the Ka-Band frequency range. Providing exceptionally higher data communication rates than previously possible, this SDR offers in-orbit reconfiguration, multi-waveform operation, and fast deployment due to its highly modular hardware and software architecture. Currently in operation on the International Space Station (ISS), this new paradigm of reconfigurable technology is enabling experimenters to investigate navigation and networking in the space environment.The modular SDR and the NASA developed Space Telecommunications Radio System (STRS) architecture standard are the basis for Harris reusable, digital signal processing space platform trademarked as AppSTAR. As a result, two new space radio products are a synthetic aperture radar payload and an Automatic Detection Surveillance Broadcast (ADS-B) receiver. In addition, Harris is currently developing many new products similar to the Ka-Band software defined radio for other applications. For NASAs next generation flight Ka-Band radio development, leveraging these advancements could lead to a more robust and more capable software defined radio.The space environment has special considerations different from terrestrial applications that must be considered for any system operated in space. Each space mission has unique requirements that can make these systems unique. These unique requirements can make products that are expensive and limited in reuse. Space systems put a premium on size, weight and power. A key trade is the amount of reconfigurability in a space system. The more reconfigurable the hardware platform, the easier it is to adapt to the platform to the next mission, and this reduces the amount of non-recurring engineering costs. However, the more reconfigurable platforms often use more spacecraft resources. Software has similar considerations
NASA Astrophysics Data System (ADS)
Shameoni Niaei, M.; Kilic, Y.; Yildiran, B. E.; Yüzlükoglu, F.; Yesilyaprak, C.
2016-12-01
We have described a new software (MIPS) about the analysis and image processing of the meteorological satellite (Meteosat) data for an astronomical observatory. This software will be able to help to make some atmospherical forecast (cloud, humidity, rain) using meteosat data for robotic telescopes. MIPS uses a python library for Eumetsat data that aims to be completely open-source and licenced under GNU/General Public Licence (GPL). MIPS is a platform independent and uses h5py, numpy, and PIL with the general-purpose and high-level programming language Python and the QT framework.
GISentinel: a software platform for automatic ulcer detection on capsule endoscopy videos
NASA Astrophysics Data System (ADS)
Yi, Steven; Jiao, Heng; Meng, Fan; Leighton, Jonathon A.; Shabana, Pasha; Rentz, Lauri
2014-03-01
In this paper, we present a novel and clinically valuable software platform for automatic ulcer detection on gastrointestinal (GI) tract from Capsule Endoscopy (CE) videos. Typical CE videos take about 8 hours. They have to be reviewed manually by physicians to detect and locate diseases such as ulcers and bleedings. The process is time consuming. Moreover, because of the long-time manual review, it is easy to lead to miss-finding. Working with our collaborators, we were focusing on developing a software platform called GISentinel, which can fully automated GI tract ulcer detection and classification. This software includes 3 parts: the frequency based Log-Gabor filter regions of interest (ROI) extraction, the unique feature selection and validation method (e.g. illumination invariant feature, color independent features, and symmetrical texture features), and the cascade SVM classification for handling "ulcer vs. non-ulcer" cases. After the experiments, this SW gave descent results. In frame-wise, the ulcer detection rate is 69.65% (319/458). In instance-wise, the ulcer detection rate is 82.35%(28/34).The false alarm rate is 16.43% (34/207). This work is a part of our innovative 2D/3D based GI tract disease detection software platform. The final goal of this SW is to find and classification of major GI tract diseases intelligently, such as bleeding, ulcer, and polyp from the CE videos. This paper will mainly describe the automatic ulcer detection functional module.
The Image Data Resource: A Bioimage Data Integration and Publication Platform.
Williams, Eleanor; Moore, Josh; Li, Simon W; Rustici, Gabriella; Tarkowska, Aleksandra; Chessel, Anatole; Leo, Simone; Antal, Bálint; Ferguson, Richard K; Sarkans, Ugis; Brazma, Alvis; Salas, Rafael E Carazo; Swedlow, Jason R
2017-08-01
Access to primary research data is vital for the advancement of science. To extend the data types supported by community repositories, we built a prototype Image Data Resource (IDR) that collects and integrates imaging data acquired across many different imaging modalities. IDR links data from several imaging modalities, including high-content screening, super-resolution and time-lapse microscopy, digital pathology, public genetic or chemical databases, and cell and tissue phenotypes expressed using controlled ontologies. Using this integration, IDR facilitates the analysis of gene networks and reveals functional interactions that are inaccessible to individual studies. To enable re-analysis, we also established a computational resource based on Jupyter notebooks that allows remote access to the entire IDR. IDR is also an open source platform that others can use to publish their own image data. Thus IDR provides both a novel on-line resource and a software infrastructure that promotes and extends publication and re-analysis of scientific image data.
NASA Technical Reports Server (NTRS)
1992-01-01
To convert raw data into environmental products, the National Weather Service and other organizations use the Global 9000 image processing system marketed by Global Imaging, Inc. The company's GAE software package is an enhanced version of the TAE, developed by Goddard Space Flight Center to support remote sensing and image processing applications. The system can be operated in three modes and is combined with HP Apollo workstation hardware.
Remote sensing image segmentation based on Hadoop cloud platform
NASA Astrophysics Data System (ADS)
Li, Jie; Zhu, Lingling; Cao, Fubin
2018-01-01
To solve the problem that the remote sensing image segmentation speed is slow and the real-time performance is poor, this paper studies the method of remote sensing image segmentation based on Hadoop platform. On the basis of analyzing the structural characteristics of Hadoop cloud platform and its component MapReduce programming, this paper proposes a method of image segmentation based on the combination of OpenCV and Hadoop cloud platform. Firstly, the MapReduce image processing model of Hadoop cloud platform is designed, the input and output of image are customized and the segmentation method of the data file is rewritten. Then the Mean Shift image segmentation algorithm is implemented. Finally, this paper makes a segmentation experiment on remote sensing image, and uses MATLAB to realize the Mean Shift image segmentation algorithm to compare the same image segmentation experiment. The experimental results show that under the premise of ensuring good effect, the segmentation rate of remote sensing image segmentation based on Hadoop cloud Platform has been greatly improved compared with the single MATLAB image segmentation, and there is a great improvement in the effectiveness of image segmentation.
Software platform virtualization in chemistry research and university teaching
2009-01-01
Background Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Results Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Conclusion Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide. PMID:20150997
Open source software in a practical approach for post processing of radiologic images.
Valeri, Gianluca; Mazza, Francesco Antonino; Maggi, Stefania; Aramini, Daniele; La Riccia, Luigi; Mazzoni, Giovanni; Giovagnoni, Andrea
2015-03-01
The purpose of this paper is to evaluate the use of open source software (OSS) to process DICOM images. We selected 23 programs for Windows and 20 programs for Mac from 150 possible OSS programs including DICOM viewers and various tools (converters, DICOM header editors, etc.). The programs selected all meet the basic requirements such as free availability, stand-alone application, presence of graphical user interface, ease of installation and advanced features beyond simple display monitor. Capabilities of data import, data export, metadata, 2D viewer, 3D viewer, support platform and usability of each selected program were evaluated on a scale ranging from 1 to 10 points. Twelve programs received a score higher than or equal to eight. Among them, five obtained a score of 9: 3D Slicer, MedINRIA, MITK 3M3, VolView, VR Render; while OsiriX received 10. OsiriX appears to be the only program able to perform all the operations taken into consideration, similar to a workstation equipped with proprietary software, allowing the analysis and interpretation of images in a simple and intuitive way. OsiriX is a DICOM PACS workstation for medical imaging and software for image processing for medical research, functional imaging, 3D imaging, confocal microscopy and molecular imaging. This application is also a good tool for teaching activities because it facilitates the attainment of learning objectives among students and other specialists.
NASA Technical Reports Server (NTRS)
Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, Wes; Sanders, Les
1991-01-01
The design of the Framework Processor (FP) component of the Framework Programmable Software Development Platform (FFP) is described. The FFP is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by the model, this Framework Processor will take advantage of an integrated operating environment to provide automated support for the management and control of the software development process so that costly mistakes during the development phase can be eliminated.
Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei
2012-01-01
Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com PMID:22543367
Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei
2012-06-15
The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl.
Crick, Alex J; Cammarota, Eugenia; Moulang, Katie; Kotar, Jurij; Cicuta, Pietro
2015-01-01
Live optical microscopy has become an essential tool for studying the dynamical behaviors and variability of single cells, and cell-cell interactions. However, experiments and data analysis in this area are often extremely labor intensive, and it has often not been achievable or practical to perform properly standardized experiments on a statistically viable scale. We have addressed this challenge by developing automated live imaging platforms, to help standardize experiments, increasing throughput, and unlocking previously impossible ones. Our real-time cell tracking programs communicate in feedback with microscope and camera control software, and they are highly customizable, flexible, and efficient. As examples of our current research which utilize these automated platforms, we describe two quite different applications: egress-invasion interactions of malaria parasites and red blood cells, and imaging of immune cells which possess high motility and internal dynamics. The automated imaging platforms are able to track a large number of motile cells simultaneously, over hours or even days at a time, greatly increasing data throughput and opening up new experimental possibilities. Copyright © 2015 Elsevier Inc. All rights reserved.
A novel real time imaging platform to quantify macrophage phagocytosis.
Kapellos, Theodore S; Taylor, Lewis; Lee, Heyne; Cowley, Sally A; James, William S; Iqbal, Asif J; Greaves, David R
2016-09-15
Phagocytosis of pathogens, apoptotic cells and debris is a key feature of macrophage function in host defense and tissue homeostasis. Quantification of macrophage phagocytosis in vitro has traditionally been technically challenging. Here we report the optimization and validation of the IncuCyte ZOOM® real time imaging platform for macrophage phagocytosis based on pHrodo® pathogen bioparticles, which only fluoresce when localized in the acidic environment of the phagolysosome. Image analysis and fluorescence quantification were performed with the automated IncuCyte™ Basic Software. Titration of the bioparticle number showed that the system is more sensitive than a spectrofluorometer, as it can detect phagocytosis when using 20× less E. coli bioparticles. We exemplified the power of this real time imaging platform by studying phagocytosis of murine alveolar, bone marrow and peritoneal macrophages. We further demonstrate the ability of this platform to study modulation of the phagocytic process, as pharmacological inhibitors of phagocytosis suppressed bioparticle uptake in a concentration-dependent manner, whereas opsonins augmented phagocytosis. We also investigated the effects of macrophage polarization on E. coli phagocytosis. Bone marrow-derived macrophage (BMDM) priming with M2 stimuli, such as IL-4 and IL-10 resulted in higher engulfment of bioparticles in comparison with M1 polarization. Moreover, we demonstrated that tolerization of BMDMs with lipopolysaccharide (LPS) results in impaired E. coli bioparticle phagocytosis. This novel real time assay will enable researchers to quantify macrophage phagocytosis with a higher degree of accuracy and sensitivity and will allow investigation of limited populations of primary phagocytes in vitro. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Castel, Anne Laure; Toledano, Manuel; Tribouilloy, Christophe; Delelis, François; Mailliet, Amandine; Marotte, Nathalie; Guerbaai, Raphaëlle A; Levy, Franck; Graux, Pierre; Ennezat, Pierre-Vladimir; Maréchaux, Sylvestre
2018-05-27
Whether echocardiography platform and analysis software impact left ventricular (LV) volumes, ejection fraction (EF), and stroke volume (SV) by transthoracic tridimensional echocardiography (3DE) has not yet been assessed. Hence, our aim was to compare 3DE LV end-diastolic and end-systolic volumes (EDV and ESV), LVEF, and SV obtained with echocardiography platform from 2 different manufacturers. 3DE was performed in 84 patients (65% of screened consecutive patients), with equipment from 2 different manufacturers, with subsequent off-line postprocessing to obtain parameters of LV function and size (Philips QLAB 3DQ and General Electric EchoPAC 4D autoLVQ). Twenty-five patients with clinical indication for cardiac magnetic resonance imaging served as a validation subgroup. LVEDV and LVESV from 2 vendors were highly correlated (r = 0.93), but compared with 4D autoLVQ, the use of Qlab 3DQ resulted in lower LVEDV and LVESV (bias: 11 mL, limits of agreement: -25 to +47 and bias: 6 mL, limits of agreement: -22 to +34, respectively). The agreement between LVEF values of each software was poor (intraclass correlation coefficient 0.62) despite no or minimal bias. SVs were also lower with Qlab 3DQ advanced compared with 4D autoLVQ, and both were poorly correlated (r = 0.66). Consistently, the underestimation of LVEDV, LVESV, and SV by 3DE compared with cardiac magnetic resonance imaging was more pronounced with Philips QLAB 3DQ advanced than with 4D autoLVQ. The echocardiography platform and analysis software significantly affect the values of LV parameters obtained by 3DE. Intervendor standardization and improvements in 3DE modalities are needed to broaden the use of LV parameters obtained by 3DE in clinical practice. Copyright © 2018. Published by Elsevier Inc.
Image Harvest: an open-source platform for high-throughput plant image processing and analysis
Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal
2016-01-01
High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917
Open Source software and social networks: disruptive alternatives for medical imaging.
Ratib, Osman; Rosset, Antoine; Heuberger, Joris
2011-05-01
In recent decades several major changes in computer and communication technology have pushed the limits of imaging informatics and PACS beyond the traditional system architecture providing new perspectives and innovative approach to a traditionally conservative medical community. Disruptive technologies such as the world-wide-web, wireless networking, Open Source software and recent emergence of cyber communities and social networks have imposed an accelerated pace and major quantum leaps in the progress of computer and technology infrastructure applicable to medical imaging applications. This paper reviews the impact and potential benefits of two major trends in consumer market software development and how they will influence the future of medical imaging informatics. Open Source software is emerging as an attractive and cost effective alternative to traditional commercial software developments and collaborative social networks provide a new model of communication that is better suited to the needs of the medical community. Evidence shows that successful Open Source software tools have penetrated the medical market and have proven to be more robust and cost effective than their commercial counterparts. Developed by developers that are themselves part of the user community, these tools are usually better adapted to the user's need and are more robust than traditional software programs being developed and tested by a large number of contributing users. This context allows a much faster and more appropriate development and evolution of the software platforms. Similarly, communication technology has opened up to the general public in a way that has changed the social behavior and habits adding a new dimension to the way people communicate and interact with each other. The new paradigms have also slowly penetrated the professional market and ultimately the medical community. Secure social networks allowing groups of people to easily communicate and exchange information
Imaging of karsts on buried carbonate platform in Central Luconia Province, Malaysia
NASA Astrophysics Data System (ADS)
Nur Fathiyah Jamaludin, Siti; Mubin, Mukhriz; Latiff, Abdul Halim Abdul
2017-10-01
Imaging of carbonate rocks in the subsurface through seismic method is always challenging due to its heterogeneity and fast velocity compared to the other rock types. Existence of karsts features on the carbonate rocks make it more complicated to interpret the reflectors. Utilization of modern interpretation software such as PETREL and GeoTeric® to image the karsts morphology make it possible to model the karst network within the buried carbonate platform used in this study. Using combination of different seismic attributes such as Variance, Conformance, Continuity, Amplitude, Frequency and Edge attributes, we are able to image the karsts features that are available in the proven gas-field in Central Luconia Province, Malaysia. The mentioned attributes are excellent in visualize and image the stratigraphic features based on the difference in their acoustic impedance as well as structural features, which include karst. 2D & 3D Karst Models were developed to give a better understanding on the characteristics of the identified karsts. From the models, it is found that the karsts are concentrated in the top part of the carbonate reservoir (epikarst) and the middle layer with some of them becomes extensive and create karst networks, either laterally or vertically. Most of the vertical network karst are related to the existence of faults that displaced all the horizons in the carbonate platform.
Image Harvest: an open-source platform for high-throughput plant image processing and analysis.
Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal
2016-05-01
High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Object-oriented design of medical imaging software.
Ligier, Y; Ratib, O; Logean, M; Girard, C; Perrier, R; Scherrer, J R
1994-01-01
A special software package for interactive display and manipulation of medical images was developed at the University Hospital of Geneva, as part of a hospital wide Picture Archiving and Communication System (PACS). This software package, called Osiris, was especially designed to be easily usable and adaptable to the needs of noncomputer-oriented physicians. The Osiris software has been developed to allow the visualization of medical images obtained from any imaging modality. It provides generic manipulation tools, processing tools, and analysis tools more specific to clinical applications. This software, based on an object-oriented paradigm, is portable and extensible. Osiris is available on two different operating systems: the Unix X-11/OSF-Motif based workstations, and the Macintosh family.
NASA Astrophysics Data System (ADS)
Mori, Kensaku; Suenaga, Yasuhito; Toriwaki, Jun-ichiro
2003-05-01
This paper describes a software-based fast volume rendering (VolR) method on a PC platform by using multimedia instructions, such as SIMD instructions, which are currently available in PCs' CPUs. This method achieves fast rendering speed through highly optimizing software rather than an improved rendering algorithm. In volume rendering using a ray casting method, the system requires fast execution of the following processes: (a) interpolation of voxel or color values at sample points, (b) computation of normal vectors (gray-level gradient vectors), (c) calculation of shaded values obtained by dot-products of normal vectors and light source direction vectors, (d) memory access to a huge area, and (e) efficient ray skipping at translucent regions. The proposed software implements these fundamental processes in volume rending by using special instruction sets for multimedia processing. The proposed software can generate virtual endoscopic images of a 3-D volume of 512x512x489 voxel size by volume rendering with perspective projection, specular reflection, and on-the-fly normal vector computation on a conventional PC without any special hardware at thirteen frames per second. Semi-translucent display is also possible.
NASA Astrophysics Data System (ADS)
Gonçalves, Vânia
The environments of software development and software provision are shifting to Web-based platforms supported by Platform/Software as a Service (PaaS/SaaS) models. This paper will make the case that there is equally an opportunity for mobile operators to identify additional sources of revenue by exposing network functionalities through Web-based service platforms. By elaborating on the concepts, benefits and risks of SaaS and PaaS, several factors that should be taken into consideration in applying these models to the telecom world are delineated.
A Flexible Annular-Array Imaging Platform for Micro-Ultrasound
Qiu, Weibao; Yu, Yanyan; Chabok, Hamid Reza; Liu, Cheng; Tsang, Fu Keung; Zhou, Qifa; Shung, K. Kirk; Zheng, Hairong; Sun, Lei
2013-01-01
Micro-ultrasound is an invaluable imaging tool for many clinical and preclinical applications requiring high resolution (approximately several tens of micrometers). Imaging systems for micro-ultrasound, including single-element imaging systems and linear-array imaging systems, have been developed extensively in recent years. Single-element systems are cheaper, but linear-array systems give much better image quality at a higher expense. Annular-array-based systems provide a third alternative, striking a balance between image quality and expense. This paper presents the development of a novel programmable and real-time annular-array imaging platform for micro-ultrasound. It supports multi-channel dynamic beamforming techniques for large-depth-of-field imaging. The major image processing algorithms were achieved by a novel field-programmable gate array technology for high speed and flexibility. Real-time imaging was achieved by fast processing algorithms and high-speed data transfer interface. The platform utilizes a printed circuit board scheme incorporating state-of-the-art electronics for compactness and cost effectiveness. Extensive tests including hardware, algorithms, wire phantom, and tissue mimicking phantom measurements were conducted to demonstrate good performance of the platform. The calculated contrast-to-noise ratio (CNR) of the tissue phantom measurements were higher than 1.2 in the range of 3.8 to 8.7 mm imaging depth. The platform supported more than 25 images per second for real-time image acquisition. The depth-of-field had about 2.5-fold improvement compared to single-element transducer imaging. PMID:23287923
Evaluation of the BreastSimulator software platform for breast tomography
NASA Astrophysics Data System (ADS)
Mettivier, G.; Bliznakova, K.; Sechopoulos, I.; Boone, J. M.; Di Lillo, F.; Sarno, A.; Castriconi, R.; Russo, P.
2017-08-01
The aim of this work was the evaluation of the software BreastSimulator, a breast x-ray imaging simulation software, as a tool for the creation of 3D uncompressed breast digital models and for the simulation and the optimization of computed tomography (CT) scanners dedicated to the breast. Eight 3D digital breast phantoms were created with glandular fractions in the range 10%-35%. The models are characterised by different sizes and modelled realistic anatomical features. X-ray CT projections were simulated for a dedicated cone-beam CT scanner and reconstructed with the FDK algorithm. X-ray projection images were simulated for 5 mono-energetic (27, 32, 35, 43 and 51 keV) and 3 poly-energetic x-ray spectra typically employed in current CT scanners dedicated to the breast (49, 60, or 80 kVp). Clinical CT images acquired from two different clinical breast CT scanners were used for comparison purposes. The quantitative evaluation included calculation of the power-law exponent, β, from simulated and real breast tomograms, based on the power spectrum fitted with a function of the spatial frequency, f, of the form S(f) = α/f β . The breast models were validated by comparison against clinical breast CT and published data. We found that the calculated β coefficients were close to that of clinical CT data from a dedicated breast CT scanner and reported data in the literature. In evaluating the software package BreastSimulator to generate breast models suitable for use with breast CT imaging, we found that the breast phantoms produced with the software tool can reproduce the anatomical structure of real breasts, as evaluated by calculating the β exponent from the power spectral analysis of simulated images. As such, this research tool might contribute considerably to the further development, testing and optimisation of breast CT imaging techniques.
Virtual network computing: cross-platform remote display and collaboration software.
Konerding, D E
1999-04-01
VNC (Virtual Network Computing) is a computer program written to address the problem of cross-platform remote desktop/application display. VNC uses a client/server model in which an image of the desktop of the server is transmitted to the client and displayed. The client collects mouse and keyboard input from the user and transmits them back to the server. The VNC client and server can run on Windows 95/98/NT, MacOS, and Unix (including Linux) operating systems. VNC is multi-user on Unix machines (any number of servers can be run are unrelated to the primary display of the computer), while it is effectively single-user on Macintosh and Windows machines (only one server can be run, displaying the contents of the primary display of the server). The VNC servers can be configured to allow more than one client to connect at one time, effectively allowing collaboration through the shared desktop. I describe the function of VNC, provide details of installation, describe how it achieves its goal, and evaluate the use of VNC for molecular modelling. VNC is an extremely useful tool for collaboration, instruction, software development, and debugging of graphical programs with remote users.
A flexible software architecture for scalable real-time image and video processing applications
NASA Astrophysics Data System (ADS)
Usamentiaga, Rubén; Molleda, Julio; García, Daniel F.; Bulnes, Francisco G.
2012-06-01
Real-time image and video processing applications require skilled architects, and recent trends in the hardware platform make the design and implementation of these applications increasingly complex. Many frameworks and libraries have been proposed or commercialized to simplify the design and tuning of real-time image processing applications. However, they tend to lack flexibility because they are normally oriented towards particular types of applications, or they impose specific data processing models such as the pipeline. Other issues include large memory footprints, difficulty for reuse and inefficient execution on multicore processors. This paper presents a novel software architecture for real-time image and video processing applications which addresses these issues. The architecture is divided into three layers: the platform abstraction layer, the messaging layer, and the application layer. The platform abstraction layer provides a high level application programming interface for the rest of the architecture. The messaging layer provides a message passing interface based on a dynamic publish/subscribe pattern. A topic-based filtering in which messages are published to topics is used to route the messages from the publishers to the subscribers interested in a particular type of messages. The application layer provides a repository for reusable application modules designed for real-time image and video processing applications. These modules, which include acquisition, visualization, communication, user interface and data processing modules, take advantage of the power of other well-known libraries such as OpenCV, Intel IPP, or CUDA. Finally, we present different prototypes and applications to show the possibilities of the proposed architecture.
SPEKTROP DPU: optoelectronic platform for fast multispectral imaging
NASA Astrophysics Data System (ADS)
Graczyk, Rafal; Sitek, Piotr; Stolarski, Marcin
2010-09-01
In recent years it easy to spot and increasing need of high-quality Earth imaging in airborne and space applications. This is due fact that government and local authorities urge for up to date topological data for administrative purposes. On the other hand, interest in environmental sciences, push for ecological approach, efficient agriculture and forests management are also heavily supported by Earth images in various resolutions and spectral ranges. "SPEKTROP DPU: Opto-electronic platform for fast multi-spectral imaging" paper describes architectural datails of data processing unit, part of universal and modular platform that provides high quality imaging functionality in aerospace applications.
A software platform for continuum modeling of ion channels based on unstructured mesh
NASA Astrophysics Data System (ADS)
Tu, B.; Bai, S. Y.; Chen, M. X.; Xie, Y.; Zhang, L. B.; Lu, B. Z.
2014-01-01
Most traditional continuum molecular modeling adopted finite difference or finite volume methods which were based on a structured mesh (grid). Unstructured meshes were only occasionally used, but an increased number of applications emerge in molecular simulations. To facilitate the continuum modeling of biomolecular systems based on unstructured meshes, we are developing a software platform with tools which are particularly beneficial to those approaches. This work describes the software system specifically for the simulation of a typical, complex molecular procedure: ion transport through a three-dimensional channel system that consists of a protein and a membrane. The platform contains three parts: a meshing tool chain for ion channel systems, a parallel finite element solver for the Poisson-Nernst-Planck equations describing the electrodiffusion process of ion transport, and a visualization program for continuum molecular modeling. The meshing tool chain in the platform, which consists of a set of mesh generation tools, is able to generate high-quality surface and volume meshes for ion channel systems. The parallel finite element solver in our platform is based on the parallel adaptive finite element package PHG which wass developed by one of the authors [1]. As a featured component of the platform, a new visualization program, VCMM, has specifically been developed for continuum molecular modeling with an emphasis on providing useful facilities for unstructured mesh-based methods and for their output analysis and visualization. VCMM provides a graphic user interface and consists of three modules: a molecular module, a meshing module and a numerical module. A demonstration of the platform is provided with a study of two real proteins, the connexin 26 and hemolysin ion channels.
Measuring the complexity of design in real-time imaging software
NASA Astrophysics Data System (ADS)
Sangwan, Raghvinder S.; Vercellone-Smith, Pamela; Laplante, Phillip A.
2007-02-01
Due to the intricacies in the algorithms involved, the design of imaging software is considered to be more complex than non-image processing software (Sangwan et al, 2005). A recent investigation (Larsson and Laplante, 2006) examined the complexity of several image processing and non-image processing software packages along a wide variety of metrics, including those postulated by McCabe (1976), Chidamber and Kemerer (1994), and Martin (2003). This work found that it was not always possible to quantitatively compare the complexity between imaging applications and nonimage processing systems. Newer research and an accompanying tool (Structure 101, 2006), however, provides a greatly simplified approach to measuring software complexity. Therefore it may be possible to definitively quantify the complexity differences between imaging and non-imaging software, between imaging and real-time imaging software, and between software programs of the same application type. In this paper, we review prior results and describe the methodology for measuring complexity in imaging systems. We then apply a new complexity measurement methodology to several sets of imaging and non-imaging code in order to compare the complexity differences between the two types of applications. The benefit of such quantification is far reaching, for example, leading to more easily measured performance improvement and quality in real-time imaging code.
Software for Simulation of Hyperspectral Images
NASA Technical Reports Server (NTRS)
Richtsmeier, Steven C.; Singer-Berk, Alexander; Bernstein, Lawrence S.
2002-01-01
A package of software generates simulated hyperspectral images for use in validating algorithms that generate estimates of Earth-surface spectral reflectance from hyperspectral images acquired by airborne and spaceborne instruments. This software is based on a direct simulation Monte Carlo approach for modeling three-dimensional atmospheric radiative transport as well as surfaces characterized by spatially inhomogeneous bidirectional reflectance distribution functions. In this approach, 'ground truth' is accurately known through input specification of surface and atmospheric properties, and it is practical to consider wide variations of these properties. The software can treat both land and ocean surfaces and the effects of finite clouds with surface shadowing. The spectral/spatial data cubes computed by use of this software can serve both as a substitute for and a supplement to field validation data.
UltraPse: A Universal and Extensible Software Platform for Representing Biological Sequences.
Du, Pu-Feng; Zhao, Wei; Miao, Yang-Yang; Wei, Le-Yi; Wang, Likun
2017-11-14
With the avalanche of biological sequences in public databases, one of the most challenging problems in computational biology is to predict their biological functions and cellular attributes. Most of the existing prediction algorithms can only handle fixed-length numerical vectors. Therefore, it is important to be able to represent biological sequences with various lengths using fixed-length numerical vectors. Although several algorithms, as well as software implementations, have been developed to address this problem, these existing programs can only provide a fixed number of representation modes. Every time a new sequence representation mode is developed, a new program will be needed. In this paper, we propose the UltraPse as a universal software platform for this problem. The function of the UltraPse is not only to generate various existing sequence representation modes, but also to simplify all future programming works in developing novel representation modes. The extensibility of UltraPse is particularly enhanced. It allows the users to define their own representation mode, their own physicochemical properties, or even their own types of biological sequences. Moreover, UltraPse is also the fastest software of its kind. The source code package, as well as the executables for both Linux and Windows platforms, can be downloaded from the GitHub repository.
Use of Fisheye Parrot Bebop 2 Images for 3d Modelling Using Commercial Photogrammetric Software
NASA Astrophysics Data System (ADS)
Pagliari, D.; Pinto, L.
2018-05-01
Fisheye camera installed on-board mass market UAS are becoming very popular and it is more and more frequent the use of such platforms for photogrammetric purposes. The interest of wide-angles images for 3D modelling is confirmed by the introduction of fisheye models in several commercial software packages. The paper exploits the different mathematical models implemented in the most famous commercial photogrammetric software packages, highlighting the different processing pipelines and analysing the achievable results in terms of checkpoint residuals, as well as the quality of the delivered 3D point clouds. A two-step approach based on the creation of undistorted images has been tested too. An experimental test has been carried out using a Parrot Bebop 2 UAS by performing a flight over an historical complex located near Piacenza (Northern Italy), which is characterized by the simultaneous presence of horizontal, vertical and oblique surfaces. Different flight configurations have been tested to evaluate the potentiality and possible drawbacks of the previously mentioned UAS platform. Results confirmed that the fisheye images acquired with the Parrot Bebop 2 are suitable for 3D modelling, ensuring accuracies of the photogrammetric blocks of the order of the GSD (about 0.05 m normal to the optic axis in case of a flight height equal to 35 m). The generated point clouds have been compared to a reference scan, acquired by means of a MS60 MultiStation, resulting in differences below 0.05 in all directions.
NASA Astrophysics Data System (ADS)
Hu, Philip; Mingozzi, Marco; Higgins, Laura M.; Ganapathy, Vidya; Zevon, Margot; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.
2015-03-01
We report the design, calibration, and testing of a pre-clinical small animal imaging platform for use with short-wave infrared (SWIR) emitting contrast agents. Unlike materials emitting at visible or near-infrared wavelengths, SWIR-emitting agents require detection systems with sensitivity in the 1-2 μm wavelength region, beyond the range of commercially available small animal imagers. We used a collimated 980 nm laser beam to excite rare-earth-doped NaYF4:Er,Yb nanocomposites, as an example of a SWIR emitting material under development for biomedical imaging applications. This beam was raster scanned across the animal, with fluorescence in the 1550 nm wavelength region detected by an InGaAs area camera. Background adjustment and intensity non-uniformity corrections were applied in software. The final SWIR fluorescence image was overlaid onto a standard white-light image for registration of contrast agent uptake with respect to anatomical features.
Gutman, David A; Khalilia, Mohammed; Lee, Sanghoon; Nalisnik, Michael; Mullen, Zach; Beezley, Jonathan; Chittajallu, Deepak R; Manthey, David; Cooper, Lee A D
2017-11-01
Tissue-based cancer studies can generate large amounts of histology data in the form of glass slides. These slides contain important diagnostic, prognostic, and biological information and can be digitized into expansive and high-resolution whole-slide images using slide-scanning devices. Effectively utilizing digital pathology data in cancer research requires the ability to manage, visualize, share, and perform quantitative analysis on these large amounts of image data, tasks that are often complex and difficult for investigators with the current state of commercial digital pathology software. In this article, we describe the Digital Slide Archive (DSA), an open-source web-based platform for digital pathology. DSA allows investigators to manage large collections of histologic images and integrate them with clinical and genomic metadata. The open-source model enables DSA to be extended to provide additional capabilities. Cancer Res; 77(21); e75-78. ©2017 AACR . ©2017 American Association for Cancer Research.
gr-MRI: A software package for magnetic resonance imaging using software defined radios
NASA Astrophysics Data System (ADS)
Hasselwander, Christopher J.; Cao, Zhipeng; Grissom, William A.
2016-09-01
The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately 2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.
gr-MRI: A software package for magnetic resonance imaging using software defined radios.
Hasselwander, Christopher J; Cao, Zhipeng; Grissom, William A
2016-09-01
The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately $2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs. Copyright
Supporting in- and off-Hospital Patient Management Using a Web-based Integrated Software Platform.
Spyropoulos, Basile; Botsivali, Maria; Tzavaras, Aris; Pierros, Vasileios
2015-01-01
In this paper, a Web-based software platform appropriately designed to support the continuity of health care information and management for both in and out of hospital care is presented. The system has some additional features as it is the formation of continuity of care records and the transmission of referral letters with a semantically annotated web service. The platform's Web-orientation provides significant advantages, allowing for easily accomplished remote access.
Assessing the Effects of Software Platforms on Volumetric Segmentation of Glioblastoma
Dunn, William D.; Aerts, Hugo J.W.L.; Cooper, Lee A.; Holder, Chad A.; Hwang, Scott N.; Jaffe, Carle C.; Brat, Daniel J.; Jain, Rajan; Flanders, Adam E.; Zinn, Pascal O.; Colen, Rivka R.; Gutman, David A.
2017-01-01
Background Radiological assessments of biologically relevant regions in glioblastoma have been associated with genotypic characteristics, implying a potential role in personalized medicine. Here, we assess the reproducibility and association with survival of two volumetric segmentation platforms and explore how methodology could impact subsequent interpretation and analysis. Methods Post-contrast T1- and T2-weighted FLAIR MR images of 67 TCGA patients were segmented into five distinct compartments (necrosis, contrast-enhancement, FLAIR, post contrast abnormal, and total abnormal tumor volumes) by two quantitative image segmentation platforms - 3D Slicer and a method based on Velocity AI and FSL. We investigated the internal consistency of each platform by correlation statistics, association with survival, and concordance with consensus neuroradiologist ratings using ordinal logistic regression. Results We found high correlations between the two platforms for FLAIR, post contrast abnormal, and total abnormal tumor volumes (spearman’s r(67) = 0.952, 0.959, and 0.969 respectively). Only modest agreement was observed for necrosis and contrast-enhancement volumes (r(67) = 0.693 and 0.773 respectively), likely arising from differences in manual and automated segmentation methods of these regions by 3D Slicer and Velocity AI/FSL, respectively. Survival analysis based on AUC revealed significant predictive power of both platforms for the following volumes: contrast-enhancement, post contrast abnormal, and total abnormal tumor volumes. Finally, ordinal logistic regression demonstrated correspondence to manual ratings for several features. Conclusion Tumor volume measurements from both volumetric platforms produced highly concordant and reproducible estimates across platforms for general features. As automated or semi-automated volumetric measurements replace manual linear or area measurements, it will become increasingly important to keep in mind that measurement
An online database for plant image analysis software tools.
Lobet, Guillaume; Draye, Xavier; Périlleux, Claire
2013-10-09
Recent years have seen an increase in methods for plant phenotyping using image analyses. These methods require new software solutions for data extraction and treatment. These solutions are instrumental in supporting various research pipelines, ranging from the localisation of cellular compounds to the quantification of tree canopies. However, due to the variety of existing tools and the lack of central repository, it is challenging for researchers to identify the software that is best suited for their research. We present an online, manually curated, database referencing more than 90 plant image analysis software solutions. The website, plant-image-analysis.org, presents each software in a uniform and concise manner enabling users to identify the available solutions for their experimental needs. The website also enables user feedback, evaluations and new software submissions. The plant-image-analysis.org database provides an overview of existing plant image analysis software. The aim of such a toolbox is to help users to find solutions, and to provide developers a way to exchange and communicate about their work.
Improved Software to Browse the Serial Medical Images for Learning
2017-01-01
The thousands of serial images used for medical pedagogy cannot be included in a printed book; they also cannot be efficiently handled by ordinary image viewer software. The purpose of this study was to provide browsing software to grasp serial medical images efficiently. The primary function of the newly programmed software was to select images using 3 types of interfaces: buttons or a horizontal scroll bar, a vertical scroll bar, and a checkbox. The secondary function was to show the names of the structures that had been outlined on the images. To confirm the functions of the software, 3 different types of image data of cadavers (sectioned and outlined images, volume models of the stomach, and photos of the dissected knees) were inputted. The browsing software was downloadable for free from the homepage (anatomy.co.kr) and available off-line. The data sets provided could be replaced by any developers for their educational achievements. We anticipate that the software will contribute to medical education by allowing users to browse a variety of images. PMID:28581279
Improved Software to Browse the Serial Medical Images for Learning.
Kwon, Koojoo; Chung, Min Suk; Park, Jin Seo; Shin, Byeong Seok; Chung, Beom Sun
2017-07-01
The thousands of serial images used for medical pedagogy cannot be included in a printed book; they also cannot be efficiently handled by ordinary image viewer software. The purpose of this study was to provide browsing software to grasp serial medical images efficiently. The primary function of the newly programmed software was to select images using 3 types of interfaces: buttons or a horizontal scroll bar, a vertical scroll bar, and a checkbox. The secondary function was to show the names of the structures that had been outlined on the images. To confirm the functions of the software, 3 different types of image data of cadavers (sectioned and outlined images, volume models of the stomach, and photos of the dissected knees) were inputted. The browsing software was downloadable for free from the homepage (anatomy.co.kr) and available off-line. The data sets provided could be replaced by any developers for their educational achievements. We anticipate that the software will contribute to medical education by allowing users to browse a variety of images. © 2017 The Korean Academy of Medical Sciences.
Video Image Stabilization and Registration (VISAR) Software
NASA Technical Reports Server (NTRS)
1999-01-01
Two scientists at NASA's Marshall Space Flight Center,atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image Stabilization and Registration (VISAR). VISAR may help law enforcement agencies catch criminals by improving the quality of video recorded at crime scenes. In this photograph, the single frame at left, taken at night, was brightened in order to enhance details and reduce noise or snow. To further overcome the video defects in one frame, Law enforcement officials can use VISAR software to add information from multiple frames to reveal a person. Images from less than a second of videotape were added together to create the clarified image at right. VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. The software can be used for defense application by improving recornaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.
Image enhancement software for underwater recovery operations: User's manual
NASA Astrophysics Data System (ADS)
Partridge, William J.; Therrien, Charles W.
1989-06-01
This report describes software for performing image enhancement on live or recorded video images. The software was developed for operational use during underwater recovery operations at the Naval Undersea Warfare Engineering Station. The image processing is performed on an IBM-PC/AT compatible computer equipped with hardware to digitize and display video images. The software provides the capability to provide contrast enhancement and other similar functions in real time through hardware lookup tables, to automatically perform histogram equalization, to capture one or more frames and average them or apply one of several different processing algorithms to a captured frame. The report is in the form of a user manual for the software and includes guided tutorial and reference sections. A Digital Image Processing Primer in the appendix serves to explain the principle concepts that are used in the image processing.
Retina Image Screening and Analysis Software Version 2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin, Jr., Kenneth W.; Karnowski, Thomas P.; Aykac, Deniz
2009-04-01
The software allows physicians or researchers to ground-truth images of retinas, identifying key physiological features and lesions that are indicative of disease. The software features methods to automatically detect the physiological features and lesions. The software contains code to measure the quality of images received from a telemedicine network; create and populate a database for a telemedicine network; review and report the diagnosis of a set of images; and also contains components to transmit images from a Zeiss camera to the network through SFTP.
NASA Astrophysics Data System (ADS)
Kang, Won-Seok; Son, Chang-Sik; Lee, Sangho; Choi, Rock-Hyun; Ha, Yeong-Mi
2017-07-01
In this paper, we introduce a wellness software platform, called WellnessHumanCare, is a semi-automatic wellness management software platform which has the functions of complex wellness data acquisition(mental, physical and environmental one) with smart wearable devices, complex wellness condition analysis, private-aware online/offline recommendation, real-time monitoring apps (Smartphone-based, Web-based) and so on and we has demonstrated a wellness management service with 79 participants (experimental group: 39, control group: 40) who has worked at experimental group (H Corp.) and control group (K Corp.), Korea and 3 months in order to show the efficiency of the WellnessHumanCare.
NASA Astrophysics Data System (ADS)
Boss, Stephen K.
1996-11-01
A mosaic image of the northern Great Bahama Bank was created from separate gray-scale Landsat images using photo-editing and image analysis software that is commercially available for desktop computers. Measurements of pixel gray levels (relative scale from 0 to 255 referred to as digital number, DN) on the mosaic image were compared to bank-top bathymetry (determined from a network of single-channel, high-resolution seismic profiles), bottom type (coarse sand, sandy mud, barren rock, or reef determined from seismic profiles and diver observations), and vegetative cover (presence and/or absence and relative density of the marine angiosperm Thalassia testudinum determined from diver observations). Results of these analyses indicate that bank-top bathymetry is a primary control on observed pixel DN, bottom type is a secondary control on pixel DN, and vegetative cover is a tertiary influence on pixel DN. Consequently, processing of the gray-scale Landsat mosaic with a directional gradient edge-detection filter generated a physiographic shaded relief image resembling bank-top bathymetric patterns related to submerged physiographic features across the platform. The visibility of submerged karst landforms, Pleistocene eolianite ridges, islands, and possible paleo-drainage patterns created during sea-level lowstands is significantly enhanced on processed images relative to the original mosaic. Bank-margin ooid shoals, platform interior sand bodies, reef edifices, and bidirectional sand waves are features resulting from Holocene carbonate deposition that are also more clearly visible on the new physiographic images. Combined with observational data (single-channel, high-resolution seismic profiles, bottom observations by SCUBA divers, sediment and rock cores) across the northern Great Bahama Bank, these physiographic images facilitate comprehension of areal relations among antecedent platform topography, physical processes, and ensuing depositional patterns during sea
Bokhart, Mark T; Nazari, Milad; Garrard, Kenneth P; Muddiman, David C
2018-01-01
A major update to the mass spectrometry imaging (MSI) software MSiReader is presented, offering a multitude of newly added features critical to MSI analyses. MSiReader is a free, open-source, and vendor-neutral software written in the MATLAB platform and is capable of analyzing most common MSI data formats. A standalone version of the software, which does not require a MATLAB license, is also distributed. The newly incorporated data analysis features expand the utility of MSiReader beyond simple visualization of molecular distributions. The MSiQuantification tool allows researchers to calculate absolute concentrations from quantification MSI experiments exclusively through MSiReader software, significantly reducing data analysis time. An image overlay feature allows the incorporation of complementary imaging modalities to be displayed with the MSI data. A polarity filter has also been incorporated into the data loading step, allowing the facile analysis of polarity switching experiments without the need for data parsing prior to loading the data file into MSiReader. A quality assurance feature to generate a mass measurement accuracy (MMA) heatmap for an analyte of interest has also been added to allow for the investigation of MMA across the imaging experiment. Most importantly, as new features have been added performance has not degraded, in fact it has been dramatically improved. These new tools and the improvements to the performance in MSiReader v1.0 enable the MSI community to evaluate their data in greater depth and in less time. Graphical Abstract ᅟ.
Video Image Stabilization and Registration (VISAR) Software
NASA Technical Reports Server (NTRS)
1999-01-01
Two scientists at NASA's Marshall Space Flight Center, atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image Stabilization and Registration (VISAR), which is illustrated in this Quick Time movie. VISAR is a computer algorithm that stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. VISAR could also have applications in law enforcement, medical, and meteorological imaging. The software can be used for defense application by improving reconnaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.
Video Image Stabilization and Registration (VISAR) Software
NASA Technical Reports Server (NTRS)
1999-01-01
Two scientists at NASA's Marshall Space Flight Center,atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image stabilization and Registration (VISAR), which is illustrated in this Quick Time movie. VISAR is a computer algorithm that stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. VISAR could also have applications in law enforcement, medical, and meteorological imaging. The software can be used for defense application by improving reconnaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuohy, R; Stathakis, S; Mavroidis, P
2014-06-01
Purpose: To evaluate and compare the deformable image registration algorithms available in the Velocity (Velocity Medical Solutions, Atlanta, GA) and RayStation (RaySearch Americas, Inc., Garden city NY). Methods: Ten consecutive patient cone beam CTs (CBCT) for each fraction were collected. The CBCTs along with the simulation CT were exported to the Velocity and the RayStation software. Each CBCT was registered using deformable image registration to the simulation CT and the resulting deformable vector matrix was generated. Each registration was visually inspected by a physicist and the prescribing physician. The volumes of the critical organs were calculated for each deformable CTmore » and used for comparison. Results: The resulting deformable registrations revealed differences between the two algorithms. These differences were realized when the organs at risk were contoured on each deformed CBCT. Differences in the order of 10% ±30% in volume were observed for bladder, 17 ±21% for rectum and 16±10% for sigmoid. The prostate and PTV volume differences were in the order of 3±5%. The volumetric differences observed had a respective impact on the DVHs of all organs at risk. Differences of 8–10% in the mean dose were observed for all organs above. Conclusion: Deformable registration is a powerful tool that aids in the definition of critical structures and is often used for the evaluation of daily dose delivered to the patient. It should be noted that extended QA should be performed before clinical implementation of the software and the users should be aware of advantages and limitations of the methods.« less
Cui, Yang; Hanley, Luke
2015-06-01
ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.
NASA Astrophysics Data System (ADS)
Cui, Yang; Hanley, Luke
2015-06-01
ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.
Yang, Deshan; Brame, Scott; El Naqa, Issam; Aditya, Apte; Wu, Yu; Goddu, S Murty; Mutic, Sasa; Deasy, Joseph O; Low, Daniel A
2011-01-01
Recent years have witnessed tremendous progress in image guide radiotherapy technology and a growing interest in the possibilities for adapting treatment planning and delivery over the course of treatment. One obstacle faced by the research community has been the lack of a comprehensive open-source software toolkit dedicated for adaptive radiotherapy (ART). To address this need, the authors have developed a software suite called the Deformable Image Registration and Adaptive Radiotherapy Toolkit (DIRART). DIRART is an open-source toolkit developed in MATLAB. It is designed in an object-oriented style with focus on user-friendliness, features, and flexibility. It contains four classes of DIR algorithms, including the newer inverse consistency algorithms to provide consistent displacement vector field in both directions. It also contains common ART functions, an integrated graphical user interface, a variety of visualization and image-processing features, dose metric analysis functions, and interface routines. These interface routines make DIRART a powerful complement to the Computational Environment for Radiotherapy Research (CERR) and popular image-processing toolkits such as ITK. DIRART provides a set of image processing/registration algorithms and postprocessing functions to facilitate the development and testing of DIR algorithms. It also offers a good amount of options for DIR results visualization, evaluation, and validation. By exchanging data with treatment planning systems via DICOM-RT files and CERR, and by bringing image registration algorithms closer to radiotherapy applications, DIRART is potentially a convenient and flexible platform that may facilitate ART and DIR research. 0 2011 Ameri-
NASA Technical Reports Server (NTRS)
McNeill, Justin
1995-01-01
The Multimission Image Processing Subsystem (MIPS) at the Jet Propulsion Laboratory (JPL) has managed transitions of application software sets from one operating system and hardware platform to multiple operating systems and hardware platforms. As a part of these transitions, cost estimates were generated from the personal experience of in-house developers and managers to calculate the total effort required for such projects. Productivity measures have been collected for two such transitions, one very large and the other relatively small in terms of source lines of code. These estimates used a cost estimation model similar to the Software Engineering Laboratory (SEL) Effort Estimation Model. Experience in transitioning software within JPL MIPS have uncovered a high incidence of interface complexity. Interfaces, both internal and external to individual software applications, have contributed to software transition project complexity, and thus to scheduling difficulties and larger than anticipated design work on software to be ported.
OpenMSI: A High-Performance Web-Based Platform for Mass Spectrometry Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubel, Oliver; Greiner, Annette; Cholia, Shreyas
Mass spectrometry imaging (MSI) enables researchers to directly probe endogenous molecules directly within the architecture of the biological matrix. Unfortunately, efficient access, management, and analysis of the data generated by MSI approaches remain major challenges to this rapidly developing field. Despite the availability of numerous dedicated file formats and software packages, it is a widely held viewpoint that the biggest challenge is simply opening, sharing, and analyzing a file without loss of information. Here we present OpenMSI, a software framework and platform that addresses these challenges via an advanced, high-performance, extensible file format and Web API for remote data accessmore » (http://openmsi.nersc.gov). The OpenMSI file format supports storage of raw MSI data, metadata, and derived analyses in a single, self-describing format based on HDF5 and is supported by a large range of analysis software (e.g., Matlab and R) and programming languages (e.g., C++, Fortran, and Python). Careful optimization of the storage layout of MSI data sets using chunking, compression, and data replication accelerates common, selective data access operations while minimizing data storage requirements and are critical enablers of rapid data I/O. The OpenMSI file format has shown to provide >2000-fold improvement for image access operations, enabling spectrum and image retrieval in less than 0.3 s across the Internet even for 50 GB MSI data sets. To make remote high-performance compute resources accessible for analysis and to facilitate data sharing and collaboration, we describe an easy-to-use yet powerful Web API, enabling fast and convenient access to MSI data, metadata, and derived analysis results stored remotely to facilitate high-performance data analysis and enable implementation of Web based data sharing, visualization, and analysis.« less
Software for simulation of a computed tomography imaging spectrometer using optical design software
NASA Astrophysics Data System (ADS)
Spuhler, Peter T.; Willer, Mark R.; Volin, Curtis E.; Descour, Michael R.; Dereniak, Eustace L.
2000-11-01
Our Imaging Spectrometer Simulation Software known under the name Eikon should improve and speed up the design of a Computed Tomography Imaging Spectrometer (CTIS). Eikon uses existing raytracing software to simulate a virtual instrument. Eikon enables designers to virtually run through the design, calibration and data acquisition, saving significant cost and time when designing an instrument. We anticipate that Eikon simulations will improve future designs of CTIS by allowing engineers to explore more instrument options.
Real-time software-based end-to-end wireless visual communications simulation platform
NASA Astrophysics Data System (ADS)
Chen, Ting-Chung; Chang, Li-Fung; Wong, Andria H.; Sun, Ming-Ting; Hsing, T. Russell
1995-04-01
Wireless channel impairments pose many challenges to real-time visual communications. In this paper, we describe a real-time software based wireless visual communications simulation platform which can be used for performance evaluation in real-time. This simulation platform consists of two personal computers serving as hosts. Major components of each PC host include a real-time programmable video code, a wireless channel simulator, and a network interface for data transport between the two hosts. The three major components are interfaced in real-time to show the interaction of various wireless channels and video coding algorithms. The programmable features in the above components allow users to do performance evaluation of user-controlled wireless channel effects without physically carrying out these experiments which are limited in scope, time-consuming, and costly. Using this simulation platform as a testbed, we have experimented with several wireless channel effects including Rayleigh fading, antenna diversity, channel filtering, symbol timing, modulation, and packet loss.
Imaging enabled platforms for development of therapeutics
NASA Astrophysics Data System (ADS)
Celli, Jonathan; Rizvi, Imran; Blanden, Adam R.; Evans, Conor L.; Abu-Yousif, Adnan O.; Spring, Bryan Q.; Muzikansky, Alona; Pogue, Brian W.; Finkelstein, Dianne M.; Hasan, Tayyaba
2011-03-01
Advances in imaging and spectroscopic technologies have enabled the optimization of many therapeutic modalities in cancer and noncancer pathologies either by earlier disease detection or by allowing therapy monitoring. Amongst the therapeutic options benefiting from developments in imaging technologies, photodynamic therapy (PDT) is exceptional. PDT is a photochemistry-based therapeutic approach where a light-sensitive molecule (photosensitizer) is activated with light of appropriate energy (wavelength) to produce reactive molecular species such as free radicals and singlet oxygen. These molecular entities then react with biological targets such as DNA, membranes and other cellular components to impair their function and lead to eventual cell and tissue death. Development of PDT-based imaging also provides a platform for rapid screening of new therapeutics in novel in vitro models prior to expensive and labor-intensive animal studies. In this study we demonstrate how an imaging platform can be used for strategizing a novel combination treatment strategy for multifocal ovarian cancer. Using an in vitro 3D model for micrometastatic ovarian cancer in conjunction with quantitative imaging we examine dose and scheduling strategies for PDT in combination with carboplatin, a chemotherapeutic agent presently in clinical use for management of this deadly form of cancer.
Kadoya, Noriyuki; Nakajima, Yujiro; Saito, Masahide; Miyabe, Yuki; Kurooka, Masahiko; Kito, Satoshi; Fujita, Yukio; Sasaki, Motoharu; Arai, Kazuhiro; Tani, Kensuke; Yagi, Masashi; Wakita, Akihisa; Tohyama, Naoki; Jingu, Keiichi
2016-10-01
To assess the accuracy of the commercially available deformable image registration (DIR) software for thoracic images at multiple institutions. Thoracic 4-dimensional (4D) CT images of 10 patients with esophageal or lung cancer were used. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomic landmarks (300 bronchial bifurcations) that had been manually identified. Deformable image registration was performed between the peak-inhale and -exhale images. Deformable image registration error was determined by calculating the difference at each landmark point between the displacement calculated by DIR software and that calculated by the landmark. Eleven institutions participated in this study: 4 used RayStation (RaySearch Laboratories, Stockholm, Sweden), 5 used MIM Software (Cleveland, OH), and 3 used Velocity (Varian Medical Systems, Palo Alto, CA). The ranges of the average absolute registration errors over all cases were as follows: 0.48 to 1.51 mm (right-left), 0.53 to 2.86 mm (anterior-posterior), 0.85 to 4.46 mm (superior-inferior), and 1.26 to 6.20 mm (3-dimensional). For each DIR software package, the average 3-dimensional registration error (range) was as follows: RayStation, 3.28 mm (1.26-3.91 mm); MIM Software, 3.29 mm (2.17-3.61 mm); and Velocity, 5.01 mm (4.02-6.20 mm). These results demonstrate that there was moderate variation among institutions, although the DIR software was the same. We evaluated the commercially available DIR software using thoracic 4D-CT images from multiple centers. Our results demonstrated that DIR accuracy differed among institutions because it was dependent on both the DIR software and procedure. Our results could be helpful for establishing prospective clinical trials and for the widespread use of DIR software. In addition, for clinical care, we should try to find the optimal DIR procedure using thoracic 4D-CT data. Copyright © 2016 Elsevier Inc. All rights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadoya, Noriyuki, E-mail: kadoya.n@rad.med.tohoku.ac.jp; Nakajima, Yujiro; Saito, Masahide
Purpose: To assess the accuracy of the commercially available deformable image registration (DIR) software for thoracic images at multiple institutions. Methods and Materials: Thoracic 4-dimensional (4D) CT images of 10 patients with esophageal or lung cancer were used. Datasets for these patients were provided by DIR-lab ( (dir-lab.com)) and included a coordinate list of anatomic landmarks (300 bronchial bifurcations) that had been manually identified. Deformable image registration was performed between the peak-inhale and -exhale images. Deformable image registration error was determined by calculating the difference at each landmark point between the displacement calculated by DIR software and that calculated bymore » the landmark. Results: Eleven institutions participated in this study: 4 used RayStation (RaySearch Laboratories, Stockholm, Sweden), 5 used MIM Software (Cleveland, OH), and 3 used Velocity (Varian Medical Systems, Palo Alto, CA). The ranges of the average absolute registration errors over all cases were as follows: 0.48 to 1.51 mm (right-left), 0.53 to 2.86 mm (anterior-posterior), 0.85 to 4.46 mm (superior-inferior), and 1.26 to 6.20 mm (3-dimensional). For each DIR software package, the average 3-dimensional registration error (range) was as follows: RayStation, 3.28 mm (1.26-3.91 mm); MIM Software, 3.29 mm (2.17-3.61 mm); and Velocity, 5.01 mm (4.02-6.20 mm). These results demonstrate that there was moderate variation among institutions, although the DIR software was the same. Conclusions: We evaluated the commercially available DIR software using thoracic 4D-CT images from multiple centers. Our results demonstrated that DIR accuracy differed among institutions because it was dependent on both the DIR software and procedure. Our results could be helpful for establishing prospective clinical trials and for the widespread use of DIR software. In addition, for clinical care, we should try to find the optimal DIR procedure using
Cui, Yang; Hanley, Luke
2015-01-01
ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science. PMID:26133872
Development of Automated Image Analysis Software for Suspended Marine Particle Classification
2003-09-30
Development of Automated Image Analysis Software for Suspended Marine Particle Classification Scott Samson Center for Ocean Technology...REPORT TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE Development of Automated Image Analysis Software for Suspended...objective is to develop automated image analysis software to reduce the effort and time required for manual identification of plankton images. Automated
Potential of the Cogex Software Platform to Replace Logbooks in Capstone Design Projects
ERIC Educational Resources Information Center
Foley, David; Charron, François; Plante, Jean-Sébastien
2018-01-01
Recent technologies are offering the power to share and grow knowledge and ideas in unprecedented ways. The CogEx software platform was developed to take advantage of the digital world with innovative ideas to support designers work in both industrial and academic contexts. This paper presents a qualitative study on the usage of CogEx during…
MOSAIC: Software for creating mosaics from collections of images
NASA Technical Reports Server (NTRS)
Varosi, F.; Gezari, D. Y.
1992-01-01
We have developed a powerful, versatile image processing and analysis software package called MOSAIC, designed specifically for the manipulation of digital astronomical image data obtained with (but not limited to) two-dimensional array detectors. The software package is implemented using the Interactive Data Language (IDL), and incorporates new methods for processing, calibration, analysis, and visualization of astronomical image data, stressing effective methods for the creation of mosaic images from collections of individual exposures, while at the same time preserving the photometric integrity of the original data. Since IDL is available on many computers, the MOSAIC software runs on most UNIX and VAX workstations with the X-Windows or Sun View graphics interface.
NASA Astrophysics Data System (ADS)
Bokhart, Mark T.; Nazari, Milad; Garrard, Kenneth P.; Muddiman, David C.
2018-01-01
A major update to the mass spectrometry imaging (MSI) software MSiReader is presented, offering a multitude of newly added features critical to MSI analyses. MSiReader is a free, open-source, and vendor-neutral software written in the MATLAB platform and is capable of analyzing most common MSI data formats. A standalone version of the software, which does not require a MATLAB license, is also distributed. The newly incorporated data analysis features expand the utility of MSiReader beyond simple visualization of molecular distributions. The MSiQuantification tool allows researchers to calculate absolute concentrations from quantification MSI experiments exclusively through MSiReader software, significantly reducing data analysis time. An image overlay feature allows the incorporation of complementary imaging modalities to be displayed with the MSI data. A polarity filter has also been incorporated into the data loading step, allowing the facile analysis of polarity switching experiments without the need for data parsing prior to loading the data file into MSiReader. A quality assurance feature to generate a mass measurement accuracy (MMA) heatmap for an analyte of interest has also been added to allow for the investigation of MMA across the imaging experiment. Most importantly, as new features have been added performance has not degraded, in fact it has been dramatically improved. These new tools and the improvements to the performance in MSiReader v1.0 enable the MSI community to evaluate their data in greater depth and in less time. [Figure not available: see fulltext.
Software to model AXAF-I image quality
NASA Technical Reports Server (NTRS)
Ahmad, Anees; Feng, Chen
1995-01-01
A modular user-friendly computer program for the modeling of grazing-incidence type x-ray optical systems has been developed. This comprehensive computer software GRAZTRACE covers the manipulation of input data, ray tracing with reflectivity and surface deformation effects, convolution with x-ray source shape, and x-ray scattering. The program also includes the capabilities for image analysis, detector scan modeling, and graphical presentation of the results. A number of utilities have been developed to interface the predicted Advanced X-ray Astrophysics Facility-Imaging (AXAF-I) mirror structural and thermal distortions with the ray-trace. This software is written in FORTRAN 77 and runs on a SUN/SPARC station. An interactive command mode version and a batch mode version of the software have been developed.
A parallel and sensitive software tool for methylation analysis on multicore platforms.
Tárraga, Joaquín; Pérez, Mariano; Orduña, Juan M; Duato, José; Medina, Ignacio; Dopazo, Joaquín
2015-10-01
DNA methylation analysis suffers from very long processing time, as the advent of Next-Generation Sequencers has shifted the bottleneck of genomic studies from the sequencers that obtain the DNA samples to the software that performs the analysis of these samples. The existing software for methylation analysis does not seem to scale efficiently neither with the size of the dataset nor with the length of the reads to be analyzed. As it is expected that the sequencers will provide longer and longer reads in the near future, efficient and scalable methylation software should be developed. We present a new software tool, called HPG-Methyl, which efficiently maps bisulphite sequencing reads on DNA, analyzing DNA methylation. The strategy used by this software consists of leveraging the speed of the Burrows-Wheeler Transform to map a large number of DNA fragments (reads) rapidly, as well as the accuracy of the Smith-Waterman algorithm, which is exclusively employed to deal with the most ambiguous and shortest reads. Experimental results on platforms with Intel multicore processors show that HPG-Methyl significantly outperforms in both execution time and sensitivity state-of-the-art software such as Bismark, BS-Seeker or BSMAP, particularly for long bisulphite reads. Software in the form of C libraries and functions, together with instructions to compile and execute this software. Available by sftp to anonymous@clariano.uv.es (password 'anonymous'). juan.orduna@uv.es or jdopazo@cipf.es. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A novel medical image data-based multi-physics simulation platform for computational life sciences.
Neufeld, Esra; Szczerba, Dominik; Chavannes, Nicolas; Kuster, Niels
2013-04-06
Simulating and modelling complex biological systems in computational life sciences requires specialized software tools that can perform medical image data-based modelling, jointly visualize the data and computational results, and handle large, complex, realistic and often noisy anatomical models. The required novel solvers must provide the power to model the physics, biology and physiology of living tissue within the full complexity of the human anatomy (e.g. neuronal activity, perfusion and ultrasound propagation). A multi-physics simulation platform satisfying these requirements has been developed for applications including device development and optimization, safety assessment, basic research, and treatment planning. This simulation platform consists of detailed, parametrized anatomical models, a segmentation and meshing tool, a wide range of solvers and optimizers, a framework for the rapid development of specialized and parallelized finite element method solvers, a visualization toolkit-based visualization engine, a Python scripting interface for customized applications, a coupling framework, and more. Core components are cross-platform compatible and use open formats. Several examples of applications are presented: hyperthermia cancer treatment planning, tumour growth modelling, evaluating the magneto-haemodynamic effect as a biomarker and physics-based morphing of anatomical models.
Development and implementation of software systems for imaging spectroscopy
Boardman, J.W.; Clark, R.N.; Mazer, A.S.; Biehl, L.L.; Kruse, F.A.; Torson, J.; Staenz, K.
2006-01-01
Specialized software systems have played a crucial role throughout the twenty-five year course of the development of the new technology of imaging spectroscopy, or hyperspectral remote sensing. By their very nature, hyperspectral data place unique and demanding requirements on the computer software used to visualize, analyze, process and interpret them. Often described as a marriage of the two technologies of reflectance spectroscopy and airborne/spaceborne remote sensing, imaging spectroscopy, in fact, produces data sets with unique qualities, unlike previous remote sensing or spectrometer data. Because of these unique spatial and spectral properties hyperspectral data are not readily processed or exploited with legacy software systems inherited from either of the two parent fields of study. This paper provides brief reviews of seven important software systems developed specifically for imaging spectroscopy.
On-Board Software Payload Platform over RTEMS and LEON3FT Processing Units
NASA Astrophysics Data System (ADS)
Martins, Rodolfo; Ribeiro, Pedro; Furano, Gianluca; Costa Pinto, Joao; Habinc, Sandi
2013-08-01
Under ESA and Inmarsat ARTES 8 Alphabus/Alphasat specific programme a technology demonstration payload (TDP) was developed. The payload called TDP8 is an Environment Effects Facility to monitor the GEO radiation environment and its effects on electronic components and sensors. This paper will discuss the on-board software payload platform approach developed since then and based on the TDP8 validation activities.
Computer Software Configuration Item-Specific Flight Software Image Transfer Script Generator
NASA Technical Reports Server (NTRS)
Bolen, Kenny; Greenlaw, Ronald
2010-01-01
A K-shell UNIX script enables the International Space Station (ISS) Flight Control Team (FCT) operators in NASA s Mission Control Center (MCC) in Houston to transfer an entire or partial computer software configuration item (CSCI) from a flight software compact disk (CD) to the onboard Portable Computer System (PCS). The tool is designed to read the content stored on a flight software CD and generate individual CSCI transfer scripts that are capable of transferring the flight software content in a given subdirectory on the CD to the scratch directory on the PCS. The flight control team can then transfer the flight software from the PCS scratch directory to the Electronically Erasable Programmable Read Only Memory (EEPROM) of an ISS Multiplexer/ Demultiplexer (MDM) via the Indirect File Transfer capability. The individual CSCI scripts and the CSCI Specific Flight Software Image Transfer Script Generator (CFITSG), when executed a second time, will remove all components from their original execution. The tool will identify errors in the transfer process and create logs of the transferred software for the purposes of configuration management.
S-Genius, a universal software platform with versatile inverse problem resolution for scatterometry
NASA Astrophysics Data System (ADS)
Fuard, David; Troscompt, Nicolas; El Kalyoubi, Ismael; Soulan, Sébastien; Besacier, Maxime
2013-05-01
S-Genius is a new universal scatterometry platform, which gathers all the LTM-CNRS know-how regarding the rigorous electromagnetic computation and several inverse problem solver solutions. This software platform is built to be a userfriendly, light, swift, accurate, user-oriented scatterometry tool, compatible with any ellipsometric measurements to fit and any types of pattern. It aims to combine a set of inverse problem solver capabilities — via adapted Levenberg- Marquard optimization, Kriging, Neural Network solutions — that greatly improve the reliability and the velocity of the solution determination. Furthermore, as the model solution is mainly vulnerable to materials optical properties, S-Genius may be coupled with an innovative material refractive indices determination. This paper will a little bit more focuses on the modified Levenberg-Marquardt optimization, one of the indirect method solver built up in parallel with the total SGenius software coding by yours truly. This modified Levenberg-Marquardt optimization corresponds to a Newton algorithm with an adapted damping parameter regarding the definition domains of the optimized parameters. Currently, S-Genius is technically ready for scientific collaboration, python-powered, multi-platform (windows/linux/macOS), multi-core, ready for 2D- (infinite features along the direction perpendicular to the incident plane), conical, and 3D-features computation, compatible with all kinds of input data from any possible ellipsometers (angle or wavelength resolved) or reflectometers, and widely used in our laboratory for resist trimming studies, etching features characterization (such as complex stack) or nano-imprint lithography measurements for instance. The work about kriging solver, neural network solver and material refractive indices determination is done (or about to) by other LTM members and about to be integrated on S-Genius platform.
Automatic AVHRR image navigation software
NASA Technical Reports Server (NTRS)
Baldwin, Dan; Emery, William
1992-01-01
This is the final report describing the work done on the project entitled Automatic AVHRR Image Navigation Software funded through NASA-Washington, award NAGW-3224, Account 153-7529. At the onset of this project, we had developed image navigation software capable of producing geo-registered images from AVHRR data. The registrations were highly accurate but required a priori knowledge of the spacecraft's axes alignment deviations, commonly known as attitude. The three angles needed to describe the attitude are called roll, pitch, and yaw, and are the components of the deviations in the along scan, along track and about center directions. The inclusion of the attitude corrections in the navigation software results in highly accurate georegistrations, however, the computation of the angles is very tedious and involves human interpretation for several steps. The technique also requires easily identifiable ground features which may not be available due to cloud cover or for ocean data. The current project was motivated by the need for a navigation system which was automatic and did not require human intervention or ground control points. The first step in creating such a system must be the ability to parameterize the spacecraft's attitude. The immediate goal of this project was to study the attitude fluctuations and determine if they displayed any systematic behavior which could be modeled or parameterized. We chose a period in 1991-1992 to study the attitude of the NOAA 11 spacecraft using data from the Tiros receiving station at the Colorado Center for Astrodynamic Research (CCAR) at the University of Colorado.
NiftyNet: a deep-learning platform for medical imaging.
Gibson, Eli; Li, Wenqi; Sudre, Carole; Fidon, Lucas; Shakir, Dzhoshkun I; Wang, Guotai; Eaton-Rosen, Zach; Gray, Robert; Doel, Tom; Hu, Yipeng; Whyntie, Tom; Nachev, Parashkev; Modat, Marc; Barratt, Dean C; Ourselin, Sébastien; Cardoso, M Jorge; Vercauteren, Tom
2018-05-01
Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new
Colonoscopy tutorial software made with a cadaver's sectioned images.
Chung, Beom Sun; Chung, Min Suk; Park, Hyung Seon; Shin, Byeong-Seok; Kwon, Koojoo
2016-11-01
Novice doctors may watch tutorial videos in training for actual or computed tomographic (CT) colonoscopy. The conventional learning videos can be complemented by virtual colonoscopy software made with a cadaver's sectioned images (SIs). The objective of this study was to assist colonoscopy trainees with the new interactive software. Submucosal segmentation on the SIs was carried out through the whole length of the large intestine. With the SIs and segmented images, a three dimensional model was reconstructed. Six-hundred seventy-one proximal colonoscopic views (conventional views) and corresponding distal colonoscopic views (simulating the retroflexion of a colonoscope) were produced. Not only navigation views showing the current location of the colonoscope tip and its course, but also, supplementary description views were elaborated. The four corresponding views were put into convenient browsing software to be downloaded free from the homepage (anatomy.co.kr). The SI colonoscopy software with the realistic images and supportive tools was available to anybody. Users could readily notice the position and direction of the virtual colonoscope tip and recognize meaningful structures in colonoscopic views. The software is expected to be an auxiliary learning tool to improve technique and related knowledge in actual and CT colonoscopies. Hopefully, the software will be updated using raw images from the Visible Korean project. Copyright © 2016 Elsevier GmbH. All rights reserved.
SignalPlant: an open signal processing software platform.
Plesinger, F; Jurco, J; Halamek, J; Jurak, P
2016-07-01
The growing technical standard of acquisition systems allows the acquisition of large records, often reaching gigabytes or more in size as is the case with whole-day electroencephalograph (EEG) recordings, for example. Although current 64-bit software for signal processing is able to process (e.g. filter, analyze, etc) such data, visual inspection and labeling will probably suffer from rather long latency during the rendering of large portions of recorded signals. For this reason, we have developed SignalPlant-a stand-alone application for signal inspection, labeling and processing. The main motivation was to supply investigators with a tool allowing fast and interactive work with large multichannel records produced by EEG, electrocardiograph and similar devices. The rendering latency was compared with EEGLAB and proves significantly faster when displaying an image from a large number of samples (e.g. 163-times faster for 75 × 10(6) samples). The presented SignalPlant software is available free and does not depend on any other computation software. Furthermore, it can be extended with plugins by third parties ensuring its adaptability to future research tasks and new data formats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellens, N; Partanen, A; Ghoshal, G
Purpose: Interstitial high intensity therapeutic ultrasound (HITU) applicators can be used to ablate tissue percutaneously, allowing for minimally-invasive treatment without ionizing radiation [1,2]. The purpose of this study was to evaluate the feasibility and usability of combining multielement interstitial HITU applicators with a clinical magnetic resonance imaging (MRI)-guided focused ultrasound software platform. Methods: The Sonalleve software platform (Philips Healthcare, Vantaa, Finland) combines anatomical MRI for target selection and multi-planar MRI thermometry to provide real-time temperature information. The MRI-compatible interstitial US applicators (Acoustic MedSystems, Savoy, IL, USA) had 1–4 cylindrical US elements, each 1 cm long with either 180° or 360°more » of active surface. Each applicator (4 Fr diameter, enclosed within a 13 Fr flexible catheter) was inserted into a tissue-mimicking agar-silica phantom. Degassed water was circulated around the transducers for cooling and coupling. Based on the location of the applicator, a virtual transducer overlay was added to the software to assist targeting and to allow automatic thermometry slice placement. The phantom was sonicated at 7 MHz for 5 minutes with 6–8 W of acoustic power for each element. MR thermometry data were collected during and after sonication. Results: Preliminary testing indicated that the applicator location could be identified in the planning images and the transducer locations predicted within 1 mm accuracy using the overlay. Ablation zones (thermal dose ≥ 240 CEM43) for 2 active, adjacent US elements ranged from 18 mm × 24 mm (width × length) to 25 mm × 25 mm for the 6 W and 8 W sonications, respectively. Conclusion: The combination of interstitial HITU applicators and this software platform holds promise for novel approaches in minimally-invasive MRI-guided therapy, especially when bony structures or air-filled cavities may preclude extracorporeal HIFU.[1
A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT.
Badea, Cristian T; Hedlund, Laurence W; Johnson, G Allan
2013-01-01
CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.
A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT
Badea, Cristian T.; Hedlund, Laurence W.; Johnson, G. Allan
2013-01-01
CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging. PMID:27006920
Software-defined Radio Based Measurement Platform for Wireless Networks
Chao, I-Chun; Lee, Kang B.; Candell, Richard; Proctor, Frederick; Shen, Chien-Chung; Lin, Shinn-Yan
2015-01-01
End-to-end latency is critical to many distributed applications and services that are based on computer networks. There has been a dramatic push to adopt wireless networking technologies and protocols (such as WiFi, ZigBee, WirelessHART, Bluetooth, ISA100.11a, etc.) into time-critical applications. Examples of such applications include industrial automation, telecommunications, power utility, and financial services. While performance measurement of wired networks has been extensively studied, measuring and quantifying the performance of wireless networks face new challenges and demand different approaches and techniques. In this paper, we describe the design of a measurement platform based on the technologies of software-defined radio (SDR) and IEEE 1588 Precision Time Protocol (PTP) for evaluating the performance of wireless networks. PMID:27891210
Software-defined Radio Based Measurement Platform for Wireless Networks.
Chao, I-Chun; Lee, Kang B; Candell, Richard; Proctor, Frederick; Shen, Chien-Chung; Lin, Shinn-Yan
2015-10-01
End-to-end latency is critical to many distributed applications and services that are based on computer networks. There has been a dramatic push to adopt wireless networking technologies and protocols (such as WiFi, ZigBee, WirelessHART, Bluetooth, ISA100.11a, etc. ) into time-critical applications. Examples of such applications include industrial automation, telecommunications, power utility, and financial services. While performance measurement of wired networks has been extensively studied, measuring and quantifying the performance of wireless networks face new challenges and demand different approaches and techniques. In this paper, we describe the design of a measurement platform based on the technologies of software-defined radio (SDR) and IEEE 1588 Precision Time Protocol (PTP) for evaluating the performance of wireless networks.
ViPAR: a software platform for the Virtual Pooling and Analysis of Research Data.
Carter, Kim W; Francis, Richard W; Carter, K W; Francis, R W; Bresnahan, M; Gissler, M; Grønborg, T K; Gross, R; Gunnes, N; Hammond, G; Hornig, M; Hultman, C M; Huttunen, J; Langridge, A; Leonard, H; Newman, S; Parner, E T; Petersson, G; Reichenberg, A; Sandin, S; Schendel, D E; Schalkwyk, L; Sourander, A; Steadman, C; Stoltenberg, C; Suominen, A; Surén, P; Susser, E; Sylvester Vethanayagam, A; Yusof, Z
2016-04-01
Research studies exploring the determinants of disease require sufficient statistical power to detect meaningful effects. Sample size is often increased through centralized pooling of disparately located datasets, though ethical, privacy and data ownership issues can often hamper this process. Methods that facilitate the sharing of research data that are sympathetic with these issues and which allow flexible and detailed statistical analyses are therefore in critical need. We have created a software platform for the Virtual Pooling and Analysis of Research data (ViPAR), which employs free and open source methods to provide researchers with a web-based platform to analyse datasets housed in disparate locations. Database federation permits controlled access to remotely located datasets from a central location. The Secure Shell protocol allows data to be securely exchanged between devices over an insecure network. ViPAR combines these free technologies into a solution that facilitates 'virtual pooling' where data can be temporarily pooled into computer memory and made available for analysis without the need for permanent central storage. Within the ViPAR infrastructure, remote sites manage their own harmonized research dataset in a database hosted at their site, while a central server hosts the data federation component and a secure analysis portal. When an analysis is initiated, requested data are retrieved from each remote site and virtually pooled at the central site. The data are then analysed by statistical software and, on completion, results of the analysis are returned to the user and the virtually pooled data are removed from memory. ViPAR is a secure, flexible and powerful analysis platform built on open source technology that is currently in use by large international consortia, and is made publicly available at [http://bioinformatics.childhealthresearch.org.au/software/vipar/]. © The Author 2015. Published by Oxford University Press on behalf of the
Development of an optoelectronic holographic platform for otolaryngology applications
NASA Astrophysics Data System (ADS)
Harrington, Ellery; Dobrev, Ivo; Bapat, Nikhil; Flores, Jorge Mauricio; Furlong, Cosme; Rosowski, John; Cheng, Jeffery Tao; Scarpino, Chris; Ravicz, Michael
2010-08-01
In this paper, we present advances on our development of an optoelectronic holographic computing platform with the ability to quantitatively measure full-field-of-view nanometer-scale movements of the tympanic membrane (TM). These measurements can facilitate otologists' ability to study and diagnose hearing disorders in humans. The holographic platform consists of a laser delivery system and an otoscope. The control software, called LaserView, is written in Visual C++ and handles communication and synchronization between hardware components. It provides a user-friendly interface to allow viewing of holographic images with several tools to automate holography-related tasks and facilitate hardware communication. The software uses a series of concurrent threads to acquire images, control the hardware, and display quantitative holographic data at video rates and in two modes of operation: optoelectronic holography and lensless digital holography. The holographic platform has been used to perform experiments on several live and post-mortem specimens, and is to be deployed in a medical research environment with future developments leading to its eventual clinical use.
Recent Progress in Optical Biosensors Based on Smartphone Platforms
Geng, Zhaoxin; Zhang, Xiong; Fan, Zhiyuan; Lv, Xiaoqing; Su, Yue; Chen, Hongda
2017-01-01
With a rapid improvement of smartphone hardware and software, especially complementary metal oxide semiconductor (CMOS) cameras, many optical biosensors based on smartphone platforms have been presented, which have pushed the development of the point-of-care testing (POCT). Imaging-based and spectrometry-based detection techniques have been widely explored via different approaches. Combined with the smartphone, imaging-based and spectrometry-based methods are currently used to investigate a wide range of molecular properties in chemical and biological science for biosensing and diagnostics. Imaging techniques based on smartphone-based microscopes are utilized to capture microscale analysts, while spectrometry-based techniques are used to probe reactions or changes of molecules. Here, we critically review the most recent progress in imaging-based and spectrometry-based smartphone-integrated platforms that have been developed for chemical experiments and biological diagnosis. We focus on the analytical performance and the complexity for implementation of the platforms. PMID:29068375
Recent Progress in Optical Biosensors Based on Smartphone Platforms.
Geng, Zhaoxin; Zhang, Xiong; Fan, Zhiyuan; Lv, Xiaoqing; Su, Yue; Chen, Hongda
2017-10-25
With a rapid improvement of smartphone hardware and software, especially complementary metal oxide semiconductor (CMOS) cameras, many optical biosensors based on smartphone platforms have been presented, which have pushed the development of the point-of-care testing (POCT). Imaging-based and spectrometry-based detection techniques have been widely explored via different approaches. Combined with the smartphone, imaging-based and spectrometry-based methods are currently used to investigate a wide range of molecular properties in chemical and biological science for biosensing and diagnostics. Imaging techniques based on smartphone-based microscopes are utilized to capture microscale analysts, while spectrometry-based techniques are used to probe reactions or changes of molecules. Here, we critically review the most recent progress in imaging-based and spectrometry-based smartphone-integrated platforms that have been developed for chemical experiments and biological diagnosis. We focus on the analytical performance and the complexity for implementation of the platforms.
Design and validation of Segment--freely available software for cardiovascular image analysis.
Heiberg, Einar; Sjögren, Jane; Ugander, Martin; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan
2010-01-11
Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page http://segment.heiberg.se. Segment is
Software-based high-level synthesis design of FPGA beamformers for synthetic aperture imaging.
Amaro, Joao; Yiu, Billy Y S; Falcao, Gabriel; Gomes, Marco A C; Yu, Alfred C H
2015-05-01
Field-programmable gate arrays (FPGAs) can potentially be configured as beamforming platforms for ultrasound imaging, but a long design time and skilled expertise in hardware programming are typically required. In this article, we present a novel approach to the efficient design of FPGA beamformers for synthetic aperture (SA) imaging via the use of software-based high-level synthesis techniques. Software kernels (coded in OpenCL) were first developed to stage-wise handle SA beamforming operations, and their corresponding FPGA logic circuitry was emulated through a high-level synthesis framework. After design space analysis, the fine-tuned OpenCL kernels were compiled into register transfer level descriptions to configure an FPGA as a beamformer module. The processing performance of this beamformer was assessed through a series of offline emulation experiments that sought to derive beamformed images from SA channel-domain raw data (40-MHz sampling rate, 12 bit resolution). With 128 channels, our FPGA-based SA beamformer can achieve 41 frames per second (fps) processing throughput (3.44 × 10(8) pixels per second for frame size of 256 × 256 pixels) at 31.5 W power consumption (1.30 fps/W power efficiency). It utilized 86.9% of the FPGA fabric and operated at a 196.5 MHz clock frequency (after optimization). Based on these findings, we anticipate that FPGA and high-level synthesis can together foster rapid prototyping of real-time ultrasound processor modules at low power consumption budgets.
OpenStereo: Open Source, Cross-Platform Software for Structural Geology Analysis
NASA Astrophysics Data System (ADS)
Grohmann, C. H.; Campanha, G. A.
2010-12-01
Free and open source software (FOSS) are increasingly seen as synonyms of innovation and progress. Freedom to run, copy, distribute, study, change and improve the software (through access to the source code) assure a high level of positive feedback between users and developers, which results in stable, secure and constantly updated systems. Several software packages for structural geology analysis are available to the user, with commercial licenses or that can be downloaded at no cost from the Internet. Some provide basic tools of stereographic projections such as plotting poles, great circles, density contouring, eigenvector analysis, data rotation etc, while others perform more specific tasks, such as paleostress or geotechnical/rock stability analysis. This variety also means a wide range of data formating for input, Graphical User Interface (GUI) design and graphic export format. The majority of packages is built for MS-Windows and even though there are packages for the UNIX-based MacOS, there aren't native packages for *nix (UNIX, Linux, BSD etc) Operating Systems (OS), forcing the users to run these programs with emulators or virtual machines. Those limitations lead us to develop OpenStereo, an open source, cross-platform software for stereographic projections and structural geology. The software is written in Python, a high-level, cross-platform programming language and the GUI is designed with wxPython, which provide a consistent look regardless the OS. Numeric operations (like matrix and linear algebra) are performed with the Numpy module and all graphic capabilities are provided by the Matplolib library, including on-screen plotting and graphic exporting to common desktop formats (emf, eps, ps, pdf, png, svg). Data input is done with simple ASCII text files, with values of dip direction and dip/plunge separated by spaces, tabs or commas. The user can open multiple file at the same time (or the same file more than once), and overlay different elements of
Yang, Deshan; Brame, Scott; El Naqa, Issam; Aditya, Apte; Wu, Yu; Murty Goddu, S.; Mutic, Sasa; Deasy, Joseph O.; Low, Daniel A.
2011-01-01
Purpose: Recent years have witnessed tremendous progress in image guide radiotherapy technology and a growing interest in the possibilities for adapting treatment planning and delivery over the course of treatment. One obstacle faced by the research community has been the lack of a comprehensive open-source software toolkit dedicated for adaptive radiotherapy (ART). To address this need, the authors have developed a software suite called the Deformable Image Registration and Adaptive Radiotherapy Toolkit (DIRART). Methods:DIRART is an open-source toolkit developed in MATLAB. It is designed in an object-oriented style with focus on user-friendliness, features, and flexibility. It contains four classes of DIR algorithms, including the newer inverse consistency algorithms to provide consistent displacement vector field in both directions. It also contains common ART functions, an integrated graphical user interface, a variety of visualization and image-processing features, dose metric analysis functions, and interface routines. These interface routines make DIRART a powerful complement to the Computational Environment for Radiotherapy Research (CERR) and popular image-processing toolkits such as ITK. Results: DIRART provides a set of image processing∕registration algorithms and postprocessing functions to facilitate the development and testing of DIR algorithms. It also offers a good amount of options for DIR results visualization, evaluation, and validation. Conclusions: By exchanging data with treatment planning systems via DICOM-RT files and CERR, and by bringing image registration algorithms closer to radiotherapy applications, DIRART is potentially a convenient and flexible platform that may facilitate ART and DIR research. PMID:21361176
The influence of software filtering in digital mammography image quality
NASA Astrophysics Data System (ADS)
Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.
2009-05-01
Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.
Platform for Post-Processing Waveform-Based NDE
NASA Technical Reports Server (NTRS)
Roth, Don J.
2010-01-01
Signal- and image-processing methods are commonly needed to extract information from the waves, improve resolution of, and highlight defects in an image. Since some similarity exists for all waveform-based nondestructive evaluation (NDE) methods, it would seem that a common software platform containing multiple signal- and image-processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. NDE Wave & Image Processor Version 2.0 software provides a single, integrated signal- and image-processing and analysis environment for total NDE data processing and analysis. It brings some of the most useful algorithms developed for NDE over the past 20 years into a commercial-grade product. The software can import signal/spectroscopic data, image data, and image series data. This software offers the user hundreds of basic and advanced signal- and image-processing capabilities including esoteric 1D and 2D wavelet-based de-noising, de-trending, and filtering. Batch processing is included for signal- and image-processing capability so that an optimized sequence of processing operations can be applied to entire folders of signals, spectra, and images. Additionally, an extensive interactive model-based curve-fitting facility has been included to allow fitting of spectroscopy data such as from Raman spectroscopy. An extensive joint-time frequency module is included for analysis of non-stationary or transient data such as that from acoustic emission, vibration, or earthquake data.
ScanImage: flexible software for operating laser scanning microscopes.
Pologruto, Thomas A; Sabatini, Bernardo L; Svoboda, Karel
2003-05-17
Laser scanning microscopy is a powerful tool for analyzing the structure and function of biological specimens. Although numerous commercial laser scanning microscopes exist, some of the more interesting and challenging applications demand custom design. A major impediment to custom design is the difficulty of building custom data acquisition hardware and writing the complex software required to run the laser scanning microscope. We describe a simple, software-based approach to operating a laser scanning microscope without the need for custom data acquisition hardware. Data acquisition and control of laser scanning are achieved through standard data acquisition boards. The entire burden of signal integration and image processing is placed on the CPU of the computer. We quantitate the effectiveness of our data acquisition and signal conditioning algorithm under a variety of conditions. We implement our approach in an open source software package (ScanImage) and describe its functionality. We present ScanImage, software to run a flexible laser scanning microscope that allows easy custom design.
Platforms for hyperspectral imaging, in-situ optical and acoustical imaging in urbanized regions
NASA Astrophysics Data System (ADS)
Bostater, Charles R.; Oney, Taylor
2016-10-01
Hyperspectral measurements of the water surface of urban coastal waters are presented. Oblique bidirectional reflectance factor imagery was acquired made in a turbid coastal sub estuary of the Indian River Lagoon, Florida and along coastal surf zone waters of the nearby Atlantic Ocean. Imagery was also collected using a pushbroom hyperspectral imager mounted on a fixed platform with a calibrated circular mechatronic rotation stage. Oblique imagery of the shoreline and subsurface features clearly shows subsurface bottom features and rip current features within the surf zone water column. In-situ hyperspectral optical signatures were acquired from a vessel as a function of depth to determine the attenuation spectrum in Palm Bay. A unique stationary platform methodology to acquire subsurface acoustic images showing the presence of moving bottom boundary nephelometric layers passing through the acoustic fan beam. The acoustic fan beam imagery indicated the presence of oscillatory subsurface waves in the urbanized coastal estuary. Hyperspectral imaging using the fixed platform techniques are being used to collect hyperspectral bidirectional reflectance factor (BRF) measurements from locations at buildings and bridges in order to provide new opportunities to advance our scientific understanding of aquatic environments in urbanized regions.
Brunner, J; Krummenauer, F; Lehr, H A
2000-04-01
Study end-points in microcirculation research are usually video-taped images rather than numeric computer print-outs. Analysis of these video-taped images for the quantification of microcirculatory parameters usually requires computer-based image analysis systems. Most software programs for image analysis are custom-made, expensive, and limited in their applicability to selected parameters and study end-points. We demonstrate herein that an inexpensive, commercially available computer software (Adobe Photoshop), run on a Macintosh G3 computer with inbuilt graphic capture board provides versatile, easy to use tools for the quantification of digitized video images. Using images obtained by intravital fluorescence microscopy from the pre- and postischemic muscle microcirculation in the skinfold chamber model in hamsters, Photoshop allows simple and rapid quantification (i) of microvessel diameters, (ii) of the functional capillary density and (iii) of postischemic leakage of FITC-labeled high molecular weight dextran from postcapillary venules. We present evidence of the technical accuracy of the software tools and of a high degree of interobserver reliability. Inexpensive commercially available imaging programs (i.e., Adobe Photoshop) provide versatile tools for image analysis with a wide range of potential applications in microcirculation research.
NASA Technical Reports Server (NTRS)
Mayer, Richard J.; Blinn, Thomas M.; Dewitte, Paul S.; Crump, John W.; Ackley, Keith A.
1992-01-01
The Framework Programmable Software Development Platform (FPP) is a project aimed at effectively combining tool and data integration mechanisms with a model of the software development process to provide an intelligent integrated software development environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The Advanced Software Development Workstation (ASDW) program is conducting research into development of advanced technologies for Computer Aided Software Engineering (CASE).
NASA Astrophysics Data System (ADS)
van Tuyet, Dao; Tuan, Ngo Anh; van Lang, Tran
Grid computing has been an increasing topic in recent years. It attracts the attention of many scientists from many fields. As a result, many Grid systems have been built for serving people's demands. At present, many tools for developing the Grid systems such as Globus, gLite, Unicore still developed incessantly. Especially, gLite - the Grid Middleware - was developed by the Europe Community scientific in recent years. Constant growth of Grid technology opened the way for new opportunities in term of information and data exchange in a secure and collaborative context. These new opportunities can be exploited to offer physicians new telemedicine services in order to improve their collaborative capacities. Our platform gives physicians an easy method to use telemedicine environment to manage and share patient's information (such as electronic medical record, images formatted DICOM) between remote locations. This paper presents the Grid Infrastructure based on gLite; some main components of gLite; the challenge scenario in which new applications can be developed to improve collaborative work between scientists; the process of deploying Hospital Open software Platform for E-health (HOPE) on the Grid.
DynamicRoots: A Software Platform for the Reconstruction and Analysis of Growing Plant Roots.
Symonova, Olga; Topp, Christopher N; Edelsbrunner, Herbert
2015-01-01
We present a software platform for reconstructing and analyzing the growth of a plant root system from a time-series of 3D voxelized shapes. It aligns the shapes with each other, constructs a geometric graph representation together with the function that records the time of growth, and organizes the branches into a hierarchy that reflects the order of creation. The software includes the automatic computation of structural and dynamic traits for each root in the system enabling the quantification of growth on fine-scale. These are important advances in plant phenotyping with applications to the study of genetic and environmental influences on growth.
DrishtiCare: a telescreening platform for diabetic retinopathy powered with fundus image analysis.
Joshi, Gopal Datt; Sivaswamy, Jayanthi
2011-01-01
Diabetic retinopathy is the leading cause of blindness in urban populations. Early diagnosis through regular screening and timely treatment has been shown to prevent visual loss and blindness. It is very difficult to cater to this vast set of diabetes patients, primarily because of high costs in reaching out to patients and a scarcity of skilled personnel. Telescreening offers a cost-effective solution to reach out to patients but is still inadequate due to an insufficient number of experts who serve the diabetes population. Developments toward fundus image analysis have shown promise in addressing the scarcity of skilled personnel for large-scale screening. This article aims at addressing the underlying issues in traditional telescreening to develop a solution that leverages the developments carried out in fundus image analysis. We propose a novel Web-based telescreening solution (called DrishtiCare) integrating various value-added fundus image analysis components. A Web-based platform on the software as a service (SaaS) delivery model is chosen to make the service cost-effective, easy to use, and scalable. A server-based prescreening system is employed to scrutinize the fundus images of patients and to refer them to the experts. An automatic quality assessment module ensures transfer of fundus images that meet grading standards. An easy-to-use interface, enabled with new visualization features, is designed for case examination by experts. Three local primary eye hospitals have participated and used DrishtiCare's telescreening service. A preliminary evaluation of the proposed platform is performed on a set of 119 patients, of which 23% are identified with the sight-threatening retinopathy. Currently, evaluation at a larger scale is under process, and a total of 450 patients have been enrolled. The proposed approach provides an innovative way of integrating automated fundus image analysis in the telescreening framework to address well-known challenges in large
Software for imaging phase-shift interference microscope
NASA Astrophysics Data System (ADS)
Malinovski, I.; França, R. S.; Couceiro, I. B.
2018-03-01
In recent years absolute interference microscope was created at National Metrology Institute of Brazil (INMETRO). The instrument by principle of operation is imaging phase-shifting interferometer (PSI) equipped with two stabilized lasers of different colour as traceable reference wavelength sources. We report here some progress in development of the software for this instrument. The status of undergoing internal validation and verification of the software is also reported. In contrast with standard PSI method, different methodology of phase evaluation is applied. Therefore, instrument specific procedures for software validation and verification are adapted and discussed.
SIMA: Python software for analysis of dynamic fluorescence imaging data.
Kaifosh, Patrick; Zaremba, Jeffrey D; Danielson, Nathan B; Losonczy, Attila
2014-01-01
Fluorescence imaging is a powerful method for monitoring dynamic signals in the nervous system. However, analysis of dynamic fluorescence imaging data remains burdensome, in part due to the shortage of available software tools. To address this need, we have developed SIMA, an open source Python package that facilitates common analysis tasks related to fluorescence imaging. Functionality of this package includes correction of motion artifacts occurring during in vivo imaging with laser-scanning microscopy, segmentation of imaged fields into regions of interest (ROIs), and extraction of signals from the segmented ROIs. We have also developed a graphical user interface (GUI) for manual editing of the automatically segmented ROIs and automated registration of ROIs across multiple imaging datasets. This software has been designed with flexibility in mind to allow for future extension with different analysis methods and potential integration with other packages. Software, documentation, and source code for the SIMA package and ROI Buddy GUI are freely available at http://www.losonczylab.org/sima/.
[Design of visualized medical images network and web platform based on MeVisLab].
Xiang, Jun; Ye, Qing; Yuan, Xun
2017-04-01
With the trend of the development of "Internet +", some further requirements for the mobility of medical images have been required in the medical field. In view of this demand, this paper presents a web-based visual medical imaging platform. First, the feasibility of medical imaging is analyzed and technical points. CT (Computed Tomography) or MRI (Magnetic Resonance Imaging) images are reconstructed three-dimensionally by MeVisLab and packaged as X3D (Extensible 3D Graphics) files shown in the present paper. Then, the B/S (Browser/Server) system specially designed for 3D image is designed by using the HTML 5 and WebGL rendering engine library, and the X3D image file is parsed and rendered by the system. The results of this study showed that the platform was suitable for multiple operating systems to realize the platform-crossing and mobilization of medical image data. The development of medical imaging platform is also pointed out in this paper. It notes that web application technology will not only promote the sharing of medical image data, but also facilitate image-based medical remote consultations and distance learning.
Robichaud, Guillaume; Garrard, Kenneth P; Barry, Jeremy A; Muddiman, David C
2013-05-01
During the past decade, the field of mass spectrometry imaging (MSI) has greatly evolved, to a point where it has now been fully integrated by most vendors as an optional or dedicated platform that can be purchased with their instruments. However, the technology is not mature and multiple research groups in both academia and industry are still very actively studying the fundamentals of imaging techniques, adapting the technology to new ionization sources, and developing new applications. As a result, there important varieties of data file formats used to store mass spectrometry imaging data and, concurrent to the development of MSi, collaborative efforts have been undertaken to introduce common imaging data file formats. However, few free software packages to read and analyze files of these different formats are readily available. We introduce here MSiReader, a free open source application to read and analyze high resolution MSI data from the most common MSi data formats. The application is built on the Matlab platform (Mathworks, Natick, MA, USA) and includes a large selection of data analysis tools and features. People who are unfamiliar with the Matlab language will have little difficult navigating the user-friendly interface, and users with Matlab programming experience can adapt and customize MSiReader for their own needs.
NASA Astrophysics Data System (ADS)
Robichaud, Guillaume; Garrard, Kenneth P.; Barry, Jeremy A.; Muddiman, David C.
2013-05-01
During the past decade, the field of mass spectrometry imaging (MSI) has greatly evolved, to a point where it has now been fully integrated by most vendors as an optional or dedicated platform that can be purchased with their instruments. However, the technology is not mature and multiple research groups in both academia and industry are still very actively studying the fundamentals of imaging techniques, adapting the technology to new ionization sources, and developing new applications. As a result, there important varieties of data file formats used to store mass spectrometry imaging data and, concurrent to the development of MSi, collaborative efforts have been undertaken to introduce common imaging data file formats. However, few free software packages to read and analyze files of these different formats are readily available. We introduce here MSiReader, a free open source application to read and analyze high resolution MSI data from the most common MSi data formats. The application is built on the Matlab platform (Mathworks, Natick, MA, USA) and includes a large selection of data analysis tools and features. People who are unfamiliar with the Matlab language will have little difficult navigating the user-friendly interface, and users with Matlab programming experience can adapt and customize MSiReader for their own needs.
Fast high-energy X-ray imaging for Severe Accidents experiments on the future PLINIUS-2 platform
NASA Astrophysics Data System (ADS)
Berge, L.; Estre, N.; Tisseur, D.; Payan, E.; Eck, D.; Bouyer, V.; Cassiaut-Louis, N.; Journeau, C.; Tellier, R. Le; Pluyette, E.
2018-01-01
The future PLINIUS-2 platform of CEA Cadarache will be dedicated to the study of corium interactions in severe nuclear accidents, and will host innovative large-scale experiments. The Nuclear Measurement Laboratory of CEA Cadarache is in charge of real-time high-energy X-ray imaging set-ups, for the study of the corium-water and corium-sodium interaction, and of the corium stratification process. Imaging such large and high-density objects requires a 15 MeV linear electron accelerator coupled to a tungsten target creating a high-energy Bremsstrahlung X-ray flux, with corresponding dose rate about 100 Gy/min at 1 m. The signal is detected by phosphor screens coupled to high-framerate scientific CMOS cameras. The imaging set-up is established using an experimentally-validated home-made simulation software (MODHERATO). The code computes quantitative radiographic signals from the description of the source, object geometry and composition, detector, and geometrical configuration (magnification factor, etc.). It accounts for several noise sources (photonic and electronic noises, swank and readout noise), and for image blur due to the source spot-size and to the detector unsharpness. In a view to PLINIUS-2, the simulation has been improved to account for the scattered flux, which is expected to be significant. The paper presents the scattered flux calculation using the MCNP transport code, and its integration into the MODHERATO simulation. Then the validation of the improved simulation is presented, through confrontation to real measurement images taken on a small-scale equivalent set-up on the PLINIUS platform. Excellent agreement is achieved. This improved simulation is therefore being used to design the PLINIUS-2 imaging set-ups (source, detectors, cameras, etc.).
Paskevich, Valerie F.
1992-01-01
The Branch of Atlantic Marine Geology has been involved in the collection, processing and digital mosaicking of high, medium and low-resolution side-scan sonar data during the past 6 years. In the past, processing and digital mosaicking has been accomplished with a dedicated, shore-based computer system. With the need to process sidescan data in the field with increased power and reduced cost of major workstations, a need to have an image processing package on a UNIX based computer system which could be utilized in the field as well as be more generally available to Branch personnel was identified. This report describes the initial development of that package referred to as the Woods Hole Image Processing System (WHIPS). The software was developed using the Unidata NetCDF software interface to allow data to be more readily portable between different computer operating systems.
Advantages and Disadvantages in Image Processing with Free Software in Radiology.
Mujika, Katrin Muradas; Méndez, Juan Antonio Juanes; de Miguel, Andrés Framiñan
2018-01-15
Currently, there are sophisticated applications that make it possible to visualize medical images and even to manipulate them. These software applications are of great interest, both from a teaching and a radiological perspective. In addition, some of these applications are known as Free Open Source Software because they are free and the source code is freely available, and therefore it can be easily obtained even on personal computers. Two examples of free open source software are Osirix Lite® and 3D Slicer®. However, this last group of free applications have limitations in its use. For the radiological field, manipulating and post-processing images is increasingly important. Consequently, sophisticated computing tools that combine software and hardware to process medical images are needed. In radiology, graphic workstations allow their users to process, review, analyse, communicate and exchange multidimensional digital images acquired with different image-capturing radiological devices. These radiological devices are basically CT (Computerised Tomography), MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), etc. Nevertheless, the programs included in these workstations have a high cost which always depends on the software provider and is always subject to its norms and requirements. With this study, we aim to present the advantages and disadvantages of these radiological image visualization systems in the advanced management of radiological studies. We will compare the features of the VITREA2® and AW VolumeShare 5® radiology workstation with free open source software applications like OsiriX® and 3D Slicer®, with examples from specific studies.
Appel, R D; Palagi, P M; Walther, D; Vargas, J R; Sanchez, J C; Ravier, F; Pasquali, C; Hochstrasser, D F
1997-12-01
Although two-dimensional electrophoresis (2-DE) computer analysis software packages have existed ever since 2-DE technology was developed, it is only now that the hardware and software technology allows large-scale studies to be performed on low-cost personal computers or workstations, and that setting up a 2-DE computer analysis system in a small laboratory is no longer considered a luxury. After a first attempt in the seventies and early eighties to develop 2-DE analysis software systems on hardware that had poor or even no graphical capabilities, followed in the late eighties by a wave of innovative software developments that were possible thanks to new graphical interface standards such as XWindows, a third generation of 2-DE analysis software packages has now come to maturity. It can be run on a variety of low-cost, general-purpose personal computers, thus making the purchase of a 2-DE analysis system easily attainable for even the smallest laboratory that is involved in proteome research. Melanie II 2-D PAGE, developed at the University Hospital of Geneva, is such a third-generation software system for 2-DE analysis. Based on unique image processing algorithms, this user-friendly object-oriented software package runs on multiple platforms, including Unix, MS-Windows 95 and NT, and Power Macintosh. It provides efficient spot detection and quantitation, state-of-the-art image comparison, statistical data analysis facilities, and is Internet-ready. Linked to proteome databases such as those available on the World Wide Web, it represents a valuable tool for the "Virtual Lab" of the post-genome area.
FITS Liberator: Image processing software
NASA Astrophysics Data System (ADS)
Lindberg Christensen, Lars; Nielsen, Lars Holm; Nielsen, Kaspar K.; Johansen, Teis; Hurt, Robert; de Martin, David
2012-06-01
The ESA/ESO/NASA FITS Liberator makes it possible to process and edit astronomical science data in the FITS format to produce stunning images of the universe. Formerly a plugin for Adobe Photoshop, the current version of FITS Liberator is a stand-alone application and no longer requires Photoshop. This image processing software makes it possible to create color images using raw observations from a range of telescopes; the FITS Liberator continues to support the FITS and PDS formats, preferred by astronomers and planetary scientists respectively, which enables data to be processed from a wide range of telescopes and planetary probes, including ESO's Very Large Telescope, the NASA/ESA Hubble Space Telescope, NASA's Spitzer Space Telescope, ESA's XMM-Newton Telescope and Cassini-Huygens or Mars Reconnaissance Orbiter.
Image-Processing Software For A Hypercube Computer
NASA Technical Reports Server (NTRS)
Lee, Meemong; Mazer, Alan S.; Groom, Steven L.; Williams, Winifred I.
1992-01-01
Concurrent Image Processing Executive (CIPE) is software system intended to develop and use image-processing application programs on concurrent computing environment. Designed to shield programmer from complexities of concurrent-system architecture, it provides interactive image-processing environment for end user. CIPE utilizes architectural characteristics of particular concurrent system to maximize efficiency while preserving architectural independence from user and programmer. CIPE runs on Mark-IIIfp 8-node hypercube computer and associated SUN-4 host computer.
PySE: Software for extracting sources from radio images
NASA Astrophysics Data System (ADS)
Carbone, D.; Garsden, H.; Spreeuw, H.; Swinbank, J. D.; van der Horst, A. J.; Rowlinson, A.; Broderick, J. W.; Rol, E.; Law, C.; Molenaar, G.; Wijers, R. A. M. J.
2018-04-01
PySE is a Python software package for finding and measuring sources in radio telescope images. The software was designed to detect sources in the LOFAR telescope images, but can be used with images from other radio telescopes as well. We introduce the LOFAR Telescope, the context within which PySE was developed, the design of PySE, and describe how it is used. Detailed experiments on the validation and testing of PySE are then presented, along with results of performance testing. We discuss some of the current issues with the algorithms implemented in PySE and their interaction with LOFAR images, concluding with the current status of PySE and its future development.
Development of Automated Image Analysis Software for Suspended Marine Particle Classification
2002-09-30
Development of Automated Image Analysis Software for Suspended Marine Particle Classification Scott Samson Center for Ocean Technology...and global water column. 1 OBJECTIVES The project’s objective is to develop automated image analysis software to reduce the effort and time
Optimization of image processing algorithms on mobile platforms
NASA Astrophysics Data System (ADS)
Poudel, Pramod; Shirvaikar, Mukul
2011-03-01
This work presents a technique to optimize popular image processing algorithms on mobile platforms such as cell phones, net-books and personal digital assistants (PDAs). The increasing demand for video applications like context-aware computing on mobile embedded systems requires the use of computationally intensive image processing algorithms. The system engineer has a mandate to optimize them so as to meet real-time deadlines. A methodology to take advantage of the asymmetric dual-core processor, which includes an ARM and a DSP core supported by shared memory, is presented with implementation details. The target platform chosen is the popular OMAP 3530 processor for embedded media systems. It has an asymmetric dual-core architecture with an ARM Cortex-A8 and a TMS320C64x Digital Signal Processor (DSP). The development platform was the BeagleBoard with 256 MB of NAND RAM and 256 MB SDRAM memory. The basic image correlation algorithm is chosen for benchmarking as it finds widespread application for various template matching tasks such as face-recognition. The basic algorithm prototypes conform to OpenCV, a popular computer vision library. OpenCV algorithms can be easily ported to the ARM core which runs a popular operating system such as Linux or Windows CE. However, the DSP is architecturally more efficient at handling DFT algorithms. The algorithms are tested on a variety of images and performance results are presented measuring the speedup obtained due to dual-core implementation. A major advantage of this approach is that it allows the ARM processor to perform important real-time tasks, while the DSP addresses performance-hungry algorithms.
Clark, Randy T; Famoso, Adam N; Zhao, Keyan; Shaff, Jon E; Craft, Eric J; Bustamante, Carlos D; McCouch, Susan R; Aneshansley, Daniel J; Kochian, Leon V
2013-02-01
High-throughput phenotyping of root systems requires a combination of specialized techniques and adaptable plant growth, root imaging and software tools. A custom phenotyping platform was designed to capture images of whole root systems, and novel software tools were developed to process and analyse these images. The platform and its components are adaptable to a wide range root phenotyping studies using diverse growth systems (hydroponics, paper pouches, gel and soil) involving several plant species, including, but not limited to, rice, maize, sorghum, tomato and Arabidopsis. The RootReader2D software tool is free and publicly available and was designed with both user-guided and automated features that increase flexibility and enhance efficiency when measuring root growth traits from specific roots or entire root systems during large-scale phenotyping studies. To demonstrate the unique capabilities and high-throughput capacity of this phenotyping platform for studying root systems, genome-wide association studies on rice (Oryza sativa) and maize (Zea mays) root growth were performed and root traits related to aluminium (Al) tolerance were analysed on the parents of the maize nested association mapping (NAM) population. © 2012 Blackwell Publishing Ltd.
Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improvemore » the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanekoff, Ingela T.; Heath, Brandi S.; Liyu, Andrey V.
2012-10-02
An automated platform has been developed for acquisition and visualization of mass spectrometry imaging (MSI) data using nanospray desorption electrospray ionization (nano-DESI). The new system enables robust operation of the nano-DESI imaging source over many hours. This is achieved by controlling the distance between the sample and the probe by mounting the sample holder onto an automated XYZ stage and defining the tilt of the sample plane. This approach is useful for imaging of relatively flat samples such as thin tissue sections. Custom software called MSI QuickView was developed for visualization of large data sets generated in imaging experiments. MSImore » QuickView enables fast visualization of the imaging data during data acquisition and detailed processing after the entire image is acquired. The performance of the system is demonstrated by imaging rat brain tissue sections. High resolution mass analysis combined with MS/MS experiments enabled identification of lipids and metabolites in the tissue section. In addition, high dynamic range and sensitivity of the technique allowed us to generate ion images of low-abundance isobaric lipids. High-spatial resolution image acquired over a small region of the tissue section revealed the spatial distribution of an abundant brain metabolite, creatine, in the white and gray matter that is consistent with the literature data obtained using magnetic resonance spectroscopy.« less
NASA Astrophysics Data System (ADS)
Yang, Feng; Zhang, Xiaofang; Huang, Yu; Hao, Weiwei; Guo, Baiwei
2012-11-01
Satellite platform vibration causes the image quality to be degraded, it is necessary to study its influence on image quality. The forms of Satellite platform vibration consist of linear vibration, sinusoidal vibration and random vibration. Based on Matlab & Zemax, the simulation system has been developed for simulating impact caused by satellite platform vibration on image quality. Dynamic Data Exchange is used for the communication between Matlab and Zemax. The data of sinusoidal vibration are produced by sinusoidal curve with specific amplitude and frequency. The data of random vibration are obtained by combining sinusoidal signals with 10Hz, 100Hz and 200Hz's frequency, 100, 12, 1.9's amplitude and white noise with zero mean value. Satellite platform vibration data which produced by Matlab are added to the optical system, and its point spread function can be obtained by Zemax. Blurred image can be gained by making the convolution of PSF and the original image. The definition of the original image and the blurred image are evaluated by using average gradient values of image gray. The impact caused by the sine and random vibration of six DOFs on the image quality are respectively simulated. The simulation result reveal that the decenter of X-, Y-, Z- direction and the tilt of Z-direction have a little effect on image quality, while the tilt of X-, Y- direction make image quality seriously degraded. Thus, it can be concluded that correcting the error of satellite platform vibration by FSM is a viable and effective way.
ROS-IGTL-Bridge: an open network interface for image-guided therapy using the ROS environment.
Frank, Tobias; Krieger, Axel; Leonard, Simon; Patel, Niravkumar A; Tokuda, Junichi
2017-08-01
With the growing interest in advanced image-guidance for surgical robot systems, rapid integration and testing of robotic devices and medical image computing software are becoming essential in the research and development. Maximizing the use of existing engineering resources built on widely accepted platforms in different fields, such as robot operating system (ROS) in robotics and 3D Slicer in medical image computing could simplify these tasks. We propose a new open network bridge interface integrated in ROS to ensure seamless cross-platform data sharing. A ROS node named ROS-IGTL-Bridge was implemented. It establishes a TCP/IP network connection between the ROS environment and external medical image computing software using the OpenIGTLink protocol. The node exports ROS messages to the external software over the network and vice versa simultaneously, allowing seamless and transparent data sharing between the ROS-based devices and the medical image computing platforms. Performance tests demonstrated that the bridge could stream transforms, strings, points, and images at 30 fps in both directions successfully. The data transfer latency was <1.2 ms for transforms, strings and points, and 25.2 ms for color VGA images. A separate test also demonstrated that the bridge could achieve 900 fps for transforms. Additionally, the bridge was demonstrated in two representative systems: a mock image-guided surgical robot setup consisting of 3D slicer, and Lego Mindstorms with ROS as a prototyping and educational platform for IGT research; and the smart tissue autonomous robot surgical setup with 3D Slicer. The study demonstrated that the bridge enabled cross-platform data sharing between ROS and medical image computing software. This will allow rapid and seamless integration of advanced image-based planning/navigation offered by the medical image computing software such as 3D Slicer into ROS-based surgical robot systems.
Raspberry Pi-powered imaging for plant phenotyping.
Tovar, Jose C; Hoyer, J Steen; Lin, Andy; Tielking, Allison; Callen, Steven T; Elizabeth Castillo, S; Miller, Michael; Tessman, Monica; Fahlgren, Noah; Carrington, James C; Nusinow, Dmitri A; Gehan, Malia A
2018-03-01
Image-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost-prohibitive. To make high-throughput phenotyping methods more accessible, low-cost microcomputers and cameras can be used to acquire plant image data. We used low-cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi-controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open-source image processing software such as PlantCV. This protocol describes three low-cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open-source image processing tools, these imaging platforms provide viable low-cost solutions for incorporating high-throughput phenomics into a wide range of research programs.
Image analysis software versus direct anthropometry for breast measurements.
Quieregatto, Paulo Rogério; Hochman, Bernardo; Furtado, Fabianne; Machado, Aline Fernanda Perez; Sabino Neto, Miguel; Ferreira, Lydia Masako
2014-10-01
To compare breast measurements performed using the software packages ImageTool(r), AutoCAD(r) and Adobe Photoshop(r) with direct anthropometric measurements. Points were marked on the breasts and arms of 40 volunteer women aged between 18 and 60 years. When connecting the points, seven linear segments and one angular measurement on each half of the body, and one medial segment common to both body halves were defined. The volunteers were photographed in a standardized manner. Photogrammetric measurements were performed by three independent observers using the three software packages and compared to direct anthropometric measurements made with calipers and a protractor. Measurements obtained with AutoCAD(r) were the most reproducible and those made with ImageTool(r) were the most similar to direct anthropometry, while measurements with Adobe Photoshop(r) showed the largest differences. Except for angular measurements, significant differences were found between measurements of line segments made using the three software packages and those obtained by direct anthropometry. AutoCAD(r) provided the highest precision and intermediate accuracy; ImageTool(r) had the highest accuracy and lowest precision; and Adobe Photoshop(r) showed intermediate precision and the worst accuracy among the three software packages.
Data to Pictures to Data: Outreach Imaging Software and Metadata
NASA Astrophysics Data System (ADS)
Levay, Z.
2011-07-01
A convergence between astronomy science and digital photography has enabled a steady stream of visually rich imagery from state-of-the-art data. The accessibility of hardware and software has facilitated an explosion of astronomical images for outreach, from space-based observatories, ground-based professional facilities and among the vibrant amateur astrophotography community. Producing imagery from science data involves a combination of custom software to understand FITS data (FITS Liberator), off-the-shelf, industry-standard software to composite multi-wavelength data and edit digital photographs (Adobe Photoshop), and application of photo/image-processing techniques. Some additional effort is needed to close the loop and enable this imagery to be conveniently available for various purposes beyond web and print publication. The metadata paradigms in digital photography are now complying with FITS and science software to carry information such as keyword tags and world coordinates, enabling these images to be usable in more sophisticated, imaginative ways exemplified by Sky in Google Earth and World Wide Telescope.
ICER-3D Hyperspectral Image Compression Software
NASA Technical Reports Server (NTRS)
Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh
2010-01-01
Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received
An Open Software Platform for Sharing Water Resource Models, Code and Data
NASA Astrophysics Data System (ADS)
Knox, Stephen; Meier, Philipp; Mohamed, Khaled; Korteling, Brett; Matrosov, Evgenii; Huskova, Ivana; Harou, Julien; Rosenberg, David; Tilmant, Amaury; Medellin-Azuara, Josue; Wicks, Jon
2016-04-01
The modelling of managed water resource systems requires new approaches in the face of increasing future uncertainty. Water resources management models, even if applied to diverse problem areas, use common approaches such as representing the problem as a network of nodes and links. We propose a data management software platform, called Hydra, that uses this commonality to allow multiple models using a node-link structure to be managed and run using a single software system. Hydra's user interface allows users to manage network topology and associated data. Hydra feeds this data directly into a model, importing from and exporting to different file formats using Apps. An App connects Hydra to a custom model, a modelling system such as GAMS or MATLAB or to different file formats such as MS Excel, CSV and ESRI Shapefiles. Hydra allows users to manage their data in a single, consistent place. Apps can be used to run domain-specific models and allow users to work with their own required file formats. The Hydra App Store offers a collaborative space where model developers can publish, review and comment on Apps, models and data. Example Apps and open-source libraries are available in a variety of languages (Python, Java and .NET). The App Store can act as a hub for water resource modellers to view and share Apps, models and data easily. This encourages an ecosystem of development using a shared platform, resulting in more model integration and potentially greater unity within resource modelling communities. www.hydraplatform.org www.hydraappstore.com
The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation
NASA Astrophysics Data System (ADS)
Goulet, C.; Silva, F.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.
2015-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100Hz) ground motions for earthquakes at regional scales. The BBP scientific software modules implement kinematic rupture generation, low and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, seismogram ground motion amplitude calculations, and goodness of fit measurements. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground motion seismograms, using multiple alternative ground motion simulation methods, and software utilities that can generate plots, charts, and maps. The BBP has been developed over the last five years in a collaborative scientific, engineering, and software development project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The SCEC BBP software released in 2015 can be compiled and run on recent Linux systems with GNU compilers. It includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, updated ground motion simulation methods, and a simplified command line user interface.
OpenMS: a flexible open-source software platform for mass spectrometry data analysis.
Röst, Hannes L; Sachsenberg, Timo; Aiche, Stephan; Bielow, Chris; Weisser, Hendrik; Aicheler, Fabian; Andreotti, Sandro; Ehrlich, Hans-Christian; Gutenbrunner, Petra; Kenar, Erhan; Liang, Xiao; Nahnsen, Sven; Nilse, Lars; Pfeuffer, Julianus; Rosenberger, George; Rurik, Marc; Schmitt, Uwe; Veit, Johannes; Walzer, Mathias; Wojnar, David; Wolski, Witold E; Schilling, Oliver; Choudhary, Jyoti S; Malmström, Lars; Aebersold, Ruedi; Reinert, Knut; Kohlbacher, Oliver
2016-08-30
High-resolution mass spectrometry (MS) has become an important tool in the life sciences, contributing to the diagnosis and understanding of human diseases, elucidating biomolecular structural information and characterizing cellular signaling networks. However, the rapid growth in the volume and complexity of MS data makes transparent, accurate and reproducible analysis difficult. We present OpenMS 2.0 (http://www.openms.de), a robust, open-source, cross-platform software specifically designed for the flexible and reproducible analysis of high-throughput MS data. The extensible OpenMS software implements common mass spectrometric data processing tasks through a well-defined application programming interface in C++ and Python and through standardized open data formats. OpenMS additionally provides a set of 185 tools and ready-made workflows for common mass spectrometric data processing tasks, which enable users to perform complex quantitative mass spectrometric analyses with ease.
Rueckl, Martin; Lenzi, Stephen C; Moreno-Velasquez, Laura; Parthier, Daniel; Schmitz, Dietmar; Ruediger, Sten; Johenning, Friedrich W
2017-01-01
The measurement of activity in vivo and in vitro has shifted from electrical to optical methods. While the indicators for imaging activity have improved significantly over the last decade, tools for analysing optical data have not kept pace. Most available analysis tools are limited in their flexibility and applicability to datasets obtained at different spatial scales. Here, we present SamuROI (Structured analysis of multiple user-defined ROIs), an open source Python-based analysis environment for imaging data. SamuROI simplifies exploratory analysis and visualization of image series of fluorescence changes in complex structures over time and is readily applicable at different spatial scales. In this paper, we show the utility of SamuROI in Ca 2+ -imaging based applications at three spatial scales: the micro-scale (i.e., sub-cellular compartments including cell bodies, dendrites and spines); the meso-scale, (i.e., whole cell and population imaging with single-cell resolution); and the macro-scale (i.e., imaging of changes in bulk fluorescence in large brain areas, without cellular resolution). The software described here provides a graphical user interface for intuitive data exploration and region of interest (ROI) management that can be used interactively within Jupyter Notebook: a publicly available interactive Python platform that allows simple integration of our software with existing tools for automated ROI generation and post-processing, as well as custom analysis pipelines. SamuROI software, source code and installation instructions are publicly available on GitHub and documentation is available online. SamuROI reduces the energy barrier for manual exploration and semi-automated analysis of spatially complex Ca 2+ imaging datasets, particularly when these have been acquired at different spatial scales.
Rueckl, Martin; Lenzi, Stephen C.; Moreno-Velasquez, Laura; Parthier, Daniel; Schmitz, Dietmar; Ruediger, Sten; Johenning, Friedrich W.
2017-01-01
The measurement of activity in vivo and in vitro has shifted from electrical to optical methods. While the indicators for imaging activity have improved significantly over the last decade, tools for analysing optical data have not kept pace. Most available analysis tools are limited in their flexibility and applicability to datasets obtained at different spatial scales. Here, we present SamuROI (Structured analysis of multiple user-defined ROIs), an open source Python-based analysis environment for imaging data. SamuROI simplifies exploratory analysis and visualization of image series of fluorescence changes in complex structures over time and is readily applicable at different spatial scales. In this paper, we show the utility of SamuROI in Ca2+-imaging based applications at three spatial scales: the micro-scale (i.e., sub-cellular compartments including cell bodies, dendrites and spines); the meso-scale, (i.e., whole cell and population imaging with single-cell resolution); and the macro-scale (i.e., imaging of changes in bulk fluorescence in large brain areas, without cellular resolution). The software described here provides a graphical user interface for intuitive data exploration and region of interest (ROI) management that can be used interactively within Jupyter Notebook: a publicly available interactive Python platform that allows simple integration of our software with existing tools for automated ROI generation and post-processing, as well as custom analysis pipelines. SamuROI software, source code and installation instructions are publicly available on GitHub and documentation is available online. SamuROI reduces the energy barrier for manual exploration and semi-automated analysis of spatially complex Ca2+ imaging datasets, particularly when these have been acquired at different spatial scales. PMID:28706482
Software for Managing an Archive of Images
NASA Technical Reports Server (NTRS)
Hallai, Charles; Jones, Helene; Callac, Chris
2003-01-01
This is a revised draft by Innovators concerning the report on Software for Managing and Archive of Images.The SSC Multimedia Archive is an automated electronic system to manage images, acquired both by film and digital cameras, for the Public Affairs Office (PAO) at Stennis Space Center (SSC). Previously, the image archive was based on film photography and utilized a manual system that, by todays standards, had become inefficient and expensive. Now, the SSC Multimedia Archive, based on a server at SSC, contains both catalogs and images for pictures taken both digitally and with a traditional film-based camera, along with metadata about each image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Leary, Conlan
Over the project, Sighten built a comprehensive software-as-a-service (Saas) platform to automate and streamline the residential solar financing workflow. Before the project period, significant time and money was spent by companies on front-end tools related to system design and proposal creation, but comparatively few resources were available to support the many back-end calculations and data management processes that underpin third party financing. Without a tool like Sighten, the solar financing processes involved passing information from the homeowner prospect into separate tools for system design, financing, and then later to reporting tools including Microsoft Excel, CRM software, in-house software, outside software,more » and offline, manual processes. Passing data between tools and attempting to connect disparate systems results in inefficiency and inaccuracy for the industry. Sighten was built to consolidate all financial and solar-related calculations in a single software platform. It significantly improves upon the accuracy of these calculations and exposes sophisticated new analysis tools resulting in a rigorous, efficient and cost-effective toolset for scaling residential solar. Widely deploying a platform like Sighten’s significantly and immediately impacts the residential solar space in several important ways: 1) standardizing and improving the quality of all quantitative calculations involved in the residential financing process, most notably project finance, system production and reporting calculations; 2) representing a true step change in terms of reporting and analysis capabilities by maintaining more accurate data and exposing sophisticated tools around simulation, tranching, and financial reporting, among others, to all stakeholders in the space; 3) allowing a broader group of developers/installers/finance companies to access the capital markets by providing an out-of-the-box toolset that handles the execution of running investor capital
Protyping machine vision software on the World Wide Web
NASA Astrophysics Data System (ADS)
Karantalis, George; Batchelor, Bruce G.
1998-10-01
Interactive image processing is a proven technique for analyzing industrial vision applications and building prototype systems. Several of the previous implementations have used dedicated hardware to perform the image processing, with a top layer of software providing a convenient user interface. More recently, self-contained software packages have been devised and these run on a standard computer. The advent of the Java programming language has made it possible to write platform-independent software, operating over the Internet, or a company-wide Intranet. Thus, there arises the possibility of designing at least some shop-floor inspection/control systems, without the vision engineer ever entering the factories where they will be used. It successful, this project will have a major impact on the productivity of vision systems designers.
An automated live imaging platform for studying merozoite egress-invasion in malaria cultures.
Crick, Alex J; Tiffert, Teresa; Shah, Sheel M; Kotar, Jurij; Lew, Virgilio L; Cicuta, Pietro
2013-03-05
Most cases of severe and fatal malaria are caused by the intraerythrocytic asexual reproduction cycle of Plasmodium falciparum. One of the most intriguing and least understood stages in this cycle is the brief preinvasion period during which dynamic merozoite-red-cell interactions align the merozoite apex in preparation for penetration. Studies of the molecular mechanisms involved in this process face formidable technical challenges, requiring multiple observations of merozoite egress-invasion sequences in live cultures under controlled experimental conditions, using high-resolution microscopy and a variety of fluorescent imaging tools. Here we describe a first successful step in the development of a fully automated, robotic imaging platform to enable such studies. Schizont-enriched live cultures of P. falciparum were set up on an inverted stage microscope with software-controlled motorized functions. By applying a variety of imaging filters and selection criteria, we identified infected red cells that were likely to rupture imminently, and recorded their coordinates. We developed a video-image analysis to detect and automatically record merozoite egress events in 100% of the 40 egress-invasion sequences recorded in this study. We observed a substantial polymorphism of the dynamic condition of pre-egress infected cells, probably reflecting asynchronies in the diversity of confluent processes leading to merozoite release. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Imaging Sensor Flight and Test Equipment Software
NASA Technical Reports Server (NTRS)
Freestone, Kathleen; Simeone, Louis; Robertson, Byran; Frankford, Maytha; Trice, David; Wallace, Kevin; Wilkerson, DeLisa
2007-01-01
The Lightning Imaging Sensor (LIS) is one of the components onboard the Tropical Rainfall Measuring Mission (TRMM) satellite, and was designed to detect and locate lightning over the tropics. The LIS flight code was developed to run on a single onboard digital signal processor, and has operated the LIS instrument since 1997 when the TRMM satellite was launched. The software provides controller functions to the LIS Real-Time Event Processor (RTEP) and onboard heaters, collects the lightning event data from the RTEP, compresses and formats the data for downlink to the satellite, collects housekeeping data and formats the data for downlink to the satellite, provides command processing and interface to the spacecraft communications and data bus, and provides watchdog functions for error detection. The Special Test Equipment (STE) software was designed to operate specific test equipment used to support the LIS hardware through development, calibration, qualification, and integration with the TRMM spacecraft. The STE software provides the capability to control instrument activation, commanding (including both data formatting and user interfacing), data collection, decompression, and display and image simulation. The LIS STE code was developed for the DOS operating system in the C programming language. Because of the many unique data formats implemented by the flight instrument, the STE software was required to comprehend the same formats, and translate them for the test operator. The hardware interfaces to the LIS instrument using both commercial and custom computer boards, requiring that the STE code integrate this variety into a working system. In addition, the requirement to provide RTEP test capability dictated the need to provide simulations of background image data with short-duration lightning transients superimposed. This led to the development of unique code used to control the location, intensity, and variation above background for simulated lightning strikes
PScan 1.0: flexible software framework for polygon based multiphoton microscopy
NASA Astrophysics Data System (ADS)
Li, Yongxiao; Lee, Woei Ming
2016-12-01
Multiphoton laser scanning microscopes exhibit highly localized nonlinear optical excitation and are powerful instruments for in-vivo deep tissue imaging. Customized multiphoton microscopy has a significantly superior performance for in-vivo imaging because of precise control over the scanning and detection system. To date, there have been several flexible software platforms catered to custom built microscopy systems i.e. ScanImage, HelioScan, MicroManager, that perform at imaging speeds of 30-100fps. In this paper, we describe a flexible software framework for high speed imaging systems capable of operating from 5 fps to 1600 fps. The software is based on the MATLAB image processing toolbox. It has the capability to communicate directly with a high performing imaging card (Matrox Solios eA/XA), thus retaining high speed acquisition. The program is also designed to communicate with LabVIEW and Fiji for instrument control and image processing. Pscan 1.0 can handle high imaging rates and contains sufficient flexibility for users to adapt to their high speed imaging systems.
Platform for Postprocessing Waveform-Based NDE
NASA Technical Reports Server (NTRS)
Roth, Don
2008-01-01
Taking advantage of the similarities that exist among all waveform-based non-destructive evaluation (NDE) methods, a common software platform has been developed containing multiple- signal and image-processing techniques for waveforms and images. The NASA NDE Signal and Image Processing software has been developed using the latest versions of LabVIEW, and its associated Advanced Signal Processing and Vision Toolkits. The software is useable on a PC with Windows XP and Windows Vista. The software has been designed with a commercial grade interface in which two main windows, Waveform Window and Image Window, are displayed if the user chooses a waveform file to display. Within these two main windows, most actions are chosen through logically conceived run-time menus. The Waveform Window has plots for both the raw time-domain waves and their frequency- domain transformations (fast Fourier transform and power spectral density). The Image Window shows the C-scan image formed from information of the time-domain waveform (such as peak amplitude) or its frequency-domain transformation at each scan location. The user also has the ability to open an image, or series of images, or a simple set of X-Y paired data set in text format. Each of the Waveform and Image Windows contains menus from which to perform many user actions. An option exists to use raw waves obtained directly from scan, or waves after deconvolution if system wave response is provided. Two types of deconvolution, time-based subtraction or inverse-filter, can be performed to arrive at a deconvolved wave set. Additionally, the menu on the Waveform Window allows preprocessing of waveforms prior to image formation, scaling and display of waveforms, formation of different types of images (including non-standard types such as velocity), gating of portions of waves prior to image formation, and several other miscellaneous and specialized operations. The menu available on the Image Window allows many further image
Image fusion and navigation platforms for percutaneous image-guided interventions.
Rajagopal, Manoj; Venkatesan, Aradhana M
2016-04-01
Image-guided interventional procedures, particularly image guided biopsy and ablation, serve an important role in the care of the oncology patient. The need for tumor genomic and proteomic profiling, early tumor response assessment and confirmation of early recurrence are common scenarios that may necessitate successful biopsies of targets, including those that are small, anatomically unfavorable or inconspicuous. As image-guided ablation is increasingly incorporated into interventional oncology practice, similar obstacles are posed for the ablation of technically challenging tumor targets. Navigation tools, including image fusion and device tracking, can enable abdominal interventionalists to more accurately target challenging biopsy and ablation targets. Image fusion technologies enable multimodality fusion and real-time co-displays of US, CT, MRI, and PET/CT data, with navigational technologies including electromagnetic tracking, robotic, cone beam CT, optical, and laser guidance of interventional devices. Image fusion and navigational platform technology is reviewed in this article, including the results of studies implementing their use for interventional procedures. Pre-clinical and clinical experiences to date suggest these technologies have the potential to reduce procedure risk, time, and radiation dose to both the patient and the operator, with a valuable role to play for complex image-guided interventions.
Parallel-Processing Software for Creating Mosaic Images
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Deen, Robert; McCauley, Michael; DeJong, Eric
2008-01-01
A computer program implements parallel processing for nearly real-time creation of panoramic mosaics of images of terrain acquired by video cameras on an exploratory robotic vehicle (e.g., a Mars rover). Because the original images are typically acquired at various camera positions and orientations, it is necessary to warp the images into the reference frame of the mosaic before stitching them together to create the mosaic. [Also see "Parallel-Processing Software for Correlating Stereo Images," Software Supplement to NASA Tech Briefs, Vol. 31, No. 9 (September 2007) page 26.] The warping algorithm in this computer program reflects the considerations that (1) for every pixel in the desired final mosaic, a good corresponding point must be found in one or more of the original images and (2) for this purpose, one needs a good mathematical model of the cameras and a good correlation of individual pixels with respect to their positions in three dimensions. The desired mosaic is divided into slices, each of which is assigned to one of a number of central processing units (CPUs) operating simultaneously. The results from the CPUs are gathered and placed into the final mosaic. The time taken to create the mosaic depends upon the number of CPUs, the speed of each CPU, and whether a local or a remote data-staging mechanism is used.
QuantWorm: a comprehensive software package for Caenorhabditis elegans phenotypic assays.
Jung, Sang-Kyu; Aleman-Meza, Boanerges; Riepe, Celeste; Zhong, Weiwei
2014-01-01
Phenotypic assays are crucial in genetics; however, traditional methods that rely on human observation are unsuitable for quantitative, large-scale experiments. Furthermore, there is an increasing need for comprehensive analyses of multiple phenotypes to provide multidimensional information. Here we developed an automated, high-throughput computer imaging system for quantifying multiple Caenorhabditis elegans phenotypes. Our imaging system is composed of a microscope equipped with a digital camera and a motorized stage connected to a computer running the QuantWorm software package. Currently, the software package contains one data acquisition module and four image analysis programs: WormLifespan, WormLocomotion, WormLength, and WormEgg. The data acquisition module collects images and videos. The WormLifespan software counts the number of moving worms by using two time-lapse images; the WormLocomotion software computes the velocity of moving worms; the WormLength software measures worm body size; and the WormEgg software counts the number of eggs. To evaluate the performance of our software, we compared the results of our software with manual measurements. We then demonstrated the application of the QuantWorm software in a drug assay and a genetic assay. Overall, the QuantWorm software provided accurate measurements at a high speed. Software source code, executable programs, and sample images are available at www.quantworm.org. Our software package has several advantages over current imaging systems for C. elegans. It is an all-in-one package for quantifying multiple phenotypes. The QuantWorm software is written in Java and its source code is freely available, so it does not require use of commercial software or libraries. It can be run on multiple platforms and easily customized to cope with new methods and requirements.
A Java software for creation of image mosaics.
Bossert, Oliver
2004-08-01
Besides the dimensions of the selected image field width, the resolution of the individual objects is also of major importance for automatic reconstruction and other sophisticated histological work. The software solution presented here allows the user to create image mosaics by using a combination of several photographs. Optimum control is achieved by combining two procedures and several control mechanisms. In sample tests involving 50 image pairs, all images were mosaiced without giving rise to error. The program is ready for public download.
NASA Astrophysics Data System (ADS)
Ye, Jinzuo; Chi, Chongwei; Zhang, Shuang; Ma, Xibo; Tian, Jie
2014-02-01
Sentinel lymph node (SLN) in vivo detection is vital in breast cancer surgery. A new near-infrared fluorescence-based surgical navigation system (SNS) imaging software, which has been developed by our research group, is presented for SLN detection surgery in this paper. The software is based on the fluorescence-based surgical navigation hardware system (SNHS) which has been developed in our lab, and is designed specifically for intraoperative imaging and postoperative data analysis. The surgical navigation imaging software consists of the following software modules, which mainly include the control module, the image grabbing module, the real-time display module, the data saving module and the image processing module. And some algorithms have been designed to achieve the performance of the software, for example, the image registration algorithm based on correlation matching. Some of the key features of the software include: setting the control parameters of the SNS; acquiring, display and storing the intraoperative imaging data in real-time automatically; analysis and processing of the saved image data. The developed software has been used to successfully detect the SLNs in 21 cases of breast cancer patients. In the near future, we plan to improve the software performance and it will be extensively used for clinical purpose.
Space-Shuttle Emulator Software
NASA Technical Reports Server (NTRS)
Arnold, Scott; Askew, Bill; Barry, Matthew R.; Leigh, Agnes; Mermelstein, Scott; Owens, James; Payne, Dan; Pemble, Jim; Sollinger, John; Thompson, Hiram;
2007-01-01
A package of software has been developed to execute a raw binary image of the space shuttle flight software for simulation of the computational effects of operation of space shuttle avionics. This software can be run on inexpensive computer workstations. Heretofore, it was necessary to use real flight computers to perform such tests and simulations. The package includes a program that emulates the space shuttle orbiter general- purpose computer [consisting of a central processing unit (CPU), input/output processor (IOP), master sequence controller, and buscontrol elements]; an emulator of the orbiter display electronics unit and models of the associated cathode-ray tubes, keyboards, and switch controls; computational models of the data-bus network; computational models of the multiplexer-demultiplexer components; an emulation of the pulse-code modulation master unit; an emulation of the payload data interleaver; a model of the master timing unit; a model of the mass memory unit; and a software component that ensures compatibility of telemetry and command services between the simulated space shuttle avionics and a mission control center. The software package is portable to several host platforms.
e-Science platform for translational biomedical imaging research: running, statistics, and analysis
NASA Astrophysics Data System (ADS)
Wang, Tusheng; Yang, Yuanyuan; Zhang, Kai; Wang, Mingqing; Zhao, Jun; Xu, Lisa; Zhang, Jianguo
2015-03-01
In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. In past the two-years, we implemented a biomedical image chain including communication, storage, cooperation and computing based on this e-Science platform. In this presentation, we presented the operating status of this system in supporting biomedical imaging research, analyzed and discussed results of this system in supporting multi-disciplines collaboration cross-multiple institutions.
Software Graphical User Interface For Analysis Of Images
NASA Technical Reports Server (NTRS)
Leonard, Desiree M.; Nolf, Scott R.; Avis, Elizabeth L.; Stacy, Kathryn
1992-01-01
CAMTOOL software provides graphical interface between Sun Microsystems workstation and Eikonix Model 1412 digitizing camera system. Camera scans and digitizes images, halftones, reflectives, transmissives, rigid or flexible flat material, or three-dimensional objects. Users digitize images and select from three destinations: work-station display screen, magnetic-tape drive, or hard disk. Written in C.
ERIC Educational Resources Information Center
Tay, Lee Yong; Lim, Cher Ping; Lye, Sze Yee; Ng, Kay Joo; Lim, Siew Khiaw
2011-01-01
This paper analyses how an elementary-level future school in Singapore implements and uses various open-source online platforms, which are easily available online and could be implemented with minimal software cost, for the purpose of teaching and learning. Online platforms have the potential to facilitate students' engagement for independent and…
Hybrid Geometric Calibration Method for Multi-Platform Spaceborne SAR Image with Sparse Gcps
NASA Astrophysics Data System (ADS)
Lv, G.; Tang, X.; Ai, B.; Li, T.; Chen, Q.
2018-04-01
Geometric calibration is able to provide high-accuracy geometric coordinates of spaceborne SAR image through accurate geometric parameters in the Range-Doppler model by ground control points (GCPs). However, it is very difficult to obtain GCPs that covering large-scale areas, especially in the mountainous regions. In addition, the traditional calibration method is only used for single platform SAR images and can't support the hybrid geometric calibration for multi-platform images. To solve the above problems, a hybrid geometric calibration method for multi-platform spaceborne SAR images with sparse GCPs is proposed in this paper. First, we calibrate the master image that contains GCPs. Secondly, the point tracking algorithm is used to obtain the tie points (TPs) between the master and slave images. Finally, we calibrate the slave images using TPs as the GCPs. We take the Beijing-Tianjin- Hebei region as an example to study SAR image hybrid geometric calibration method using 3 TerraSAR-X images, 3 TanDEM-X images and 5 GF-3 images covering more than 235 kilometers in the north-south direction. Geometric calibration of all images is completed using only 5 GCPs. The GPS data extracted from GNSS receiver are used to assess the plane accuracy after calibration. The results after geometric calibration with sparse GCPs show that the geometric positioning accuracy is 3 m for TSX/TDX images and 7.5 m for GF-3 images.
Fahlgren, Noah; Feldman, Maximilian; Gehan, Malia A; Wilson, Melinda S; Shyu, Christine; Bryant, Douglas W; Hill, Steven T; McEntee, Colton J; Warnasooriya, Sankalpi N; Kumar, Indrajit; Ficor, Tracy; Turnipseed, Stephanie; Gilbert, Kerrigan B; Brutnell, Thomas P; Carrington, James C; Mockler, Todd C; Baxter, Ivan
2015-10-05
Phenotyping has become the rate-limiting step in using large-scale genomic data to understand and improve agricultural crops. Here, the Bellwether Phenotyping Platform for controlled-environment plant growth and automated multimodal phenotyping is described. The system has capacity for 1140 plants, which pass daily through stations to record fluorescence, near-infrared, and visible images. Plant Computer Vision (PlantCV) was developed as open-source, hardware platform-independent software for quantitative image analysis. In a 4-week experiment, wild Setaria viridis and domesticated Setaria italica had fundamentally different temporal responses to water availability. While both lines produced similar levels of biomass under limited water conditions, Setaria viridis maintained the same water-use efficiency under water replete conditions, while Setaria italica shifted to less efficient growth. Overall, the Bellwether Phenotyping Platform and PlantCV software detected significant effects of genotype and environment on height, biomass, water-use efficiency, color, plant architecture, and tissue water status traits. All ∼ 79,000 images acquired during the course of the experiment are publicly available. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
Digital radiography: optimization of image quality and dose using multi-frequency software.
Precht, H; Gerke, O; Rosendahl, K; Tingberg, A; Waaler, D
2012-09-01
New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults. To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms. A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment. Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band. By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.
The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation
NASA Astrophysics Data System (ADS)
Silva, F.; Goulet, C. A.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.
2016-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100 Hz) ground motions for earthquakes at regional scales. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The BBP scientific software modules implement kinematic rupture generation, low- and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, several ground motion intensity measure calculations, and various ground motion goodness-of-fit tools. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground-motion seismograms, using multiple alternative ground motion simulation methods, and software utilities to generate tables, plots, and maps. The BBP has been developed over the last five years in a collaborative project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The SCEC BBP software released in 2016 can be compiled and run on recent Linux and Mac OS X systems with GNU compilers. It includes five simulation methods, seven simulation regions covering California, Japan, and Eastern North America, and the ability to compare simulation results against empirical ground motion models (aka GMPEs). The latest version includes updated ground motion simulation methods, a suite of new validation metrics and a simplified command line user interface.
A quantitative reconstruction software suite for SPECT imaging
NASA Astrophysics Data System (ADS)
Namías, Mauro; Jeraj, Robert
2017-11-01
Quantitative Single Photon Emission Tomography (SPECT) imaging allows for measurement of activity concentrations of a given radiotracer in vivo. Although SPECT has usually been perceived as non-quantitative by the medical community, the introduction of accurate CT based attenuation correction and scatter correction from hybrid SPECT/CT scanners has enabled SPECT systems to be as quantitative as Positron Emission Tomography (PET) systems. We implemented a software suite to reconstruct quantitative SPECT images from hybrid or dedicated SPECT systems with a separate CT scanner. Attenuation, scatter and collimator response corrections were included in an Ordered Subset Expectation Maximization (OSEM) algorithm. A novel scatter fraction estimation technique was introduced. The SPECT/CT system was calibrated with a cylindrical phantom and quantitative accuracy was assessed with an anthropomorphic phantom and a NEMA/IEC image quality phantom. Accurate activity measurements were achieved at an organ level. This software suite helps increasing quantitative accuracy of SPECT scanners.
NASA Astrophysics Data System (ADS)
Szidarovszky, Tamás; Jono, Maho; Yamanouchi, Kaoru
2018-07-01
A user-friendly and cross-platform software called Laser-Induced Molecular Alignment and Orientation simulator (LIMAO) has been developed. The program can be used to simulate within the rigid rotor approximation the rotational dynamics of gas phase molecules induced by linearly polarized intense laser fields at a given temperature. The software is implemented in the Java and Mathematica programming languages. The primary aim of LIMAO is to aid experimental scientists in predicting and analyzing experimental data representing laser-induced spatial alignment and orientation of molecules.
Langer, Dominik; van 't Hoff, Marcel; Keller, Andreas J; Nagaraja, Chetan; Pfäffli, Oliver A; Göldi, Maurice; Kasper, Hansjörg; Helmchen, Fritjof
2013-04-30
Intravital microscopy such as in vivo imaging of brain dynamics is often performed with custom-built microscope setups controlled by custom-written software to meet specific requirements. Continuous technological advancement in the field has created a need for new control software that is flexible enough to support the biological researcher with innovative imaging techniques and provide the developer with a solid platform for quickly and easily implementing new extensions. Here, we introduce HelioScan, a software package written in LabVIEW, as a platform serving this dual role. HelioScan is designed as a collection of components that can be flexibly assembled into microscope control software tailored to the particular hardware and functionality requirements. Moreover, HelioScan provides a software framework, within which new functionality can be implemented in a quick and structured manner. A specific HelioScan application assembles at run-time from individual software components, based on user-definable configuration files. Due to its component-based architecture, HelioScan can exploit synergies of multiple developers working in parallel on different components in a community effort. We exemplify the capabilities and versatility of HelioScan by demonstrating several in vivo brain imaging modes, including camera-based intrinsic optical signal imaging for functional mapping of cortical areas, standard two-photon laser-scanning microscopy using galvanometric mirrors, and high-speed in vivo two-photon calcium imaging using either acousto-optic deflectors or a resonant scanner. We recommend HelioScan as a convenient software framework for the in vivo imaging community. Copyright © 2013 Elsevier B.V. All rights reserved.
Lee, Jun Chang; Nam, Kyoung Won; Jang, Dong Pyo; Paik, Nam Jong; Ryu, Ju Seok; Kim, In Young
2017-04-01
Conventional kinematic analysis of videofluoroscopic (VF) swallowing image, most popular for dysphagia diagnosis, requires time-consuming and repetitive manual extraction of diagnostic information from multiple images representing one swallowing period, which results in a heavy work load for clinicians and excessive hospital visits for patients to receive counseling and prescriptions. In this study, a software platform was developed that can assist in the VF diagnosis of dysphagia by automatically extracting a two-dimensional moving trajectory of the hyoid bone as well as 11 temporal and kinematic parameters. Fifty VF swallowing videos containing both non-mandible-overlapped and mandible-overlapped cases from eight patients with dysphagia of various etiologies and 19 videos from ten healthy controls were utilized for performance verification. Percent errors of hyoid bone tracking were 1.7 ± 2.1% for non-overlapped images and 4.2 ± 4.8% for overlapped images. Correlation coefficients between manually extracted and automatically extracted moving trajectories of the hyoid bone were 0.986 ± 0.017 (X-axis) and 0.992 ± 0.006 (Y-axis) for non-overlapped images, and 0.988 ± 0.009 (X-axis) and 0.991 ± 0.006 (Y-axis) for overlapped images. Based on the experimental results, we believe that the proposed platform has the potential to improve the satisfaction of both clinicians and patients with dysphagia.
Sun, Ryan; Bouchard, Matthew B.; Hillman, Elizabeth M. C.
2010-01-01
Camera-based in-vivo optical imaging can provide detailed images of living tissue that reveal structure, function, and disease. High-speed, high resolution imaging can reveal dynamic events such as changes in blood flow and responses to stimulation. Despite these benefits, commercially available scientific cameras rarely include software that is suitable for in-vivo imaging applications, making this highly versatile form of optical imaging challenging and time-consuming to implement. To address this issue, we have developed a novel, open-source software package to control high-speed, multispectral optical imaging systems. The software integrates a number of modular functions through a custom graphical user interface (GUI) and provides extensive control over a wide range of inexpensive IEEE 1394 Firewire cameras. Multispectral illumination can be incorporated through the use of off-the-shelf light emitting diodes which the software synchronizes to image acquisition via a programmed microcontroller, allowing arbitrary high-speed illumination sequences. The complete software suite is available for free download. Here we describe the software’s framework and provide details to guide users with development of this and similar software. PMID:21258475
Avoidable Software Procurements
2012-09-01
software license, software usage, ELA, Software as a Service , SaaS , Software Asset...PaaS Platform as a Service SaaS Software as a Service SAM Software Asset Management SMS System Management Server SEWP Solutions for Enterprise Wide...delivery of full Cloud Services , we will see the transition of the Cloud Computing service model from Iaas to SaaS , or Software as a Service . Software
Brown, Kerry M; Donohue, Duncan E; D'Alessandro, Giampaolo; Ascoli, Giorgio A
2005-01-01
Digital reconstruction of neuronal arborizations is an important step in the quantitative investigation of cellular neuroanatomy. In this process, neurites imaged by microscopy are semi-manually traced through the use of specialized computer software and represented as binary trees of branching cylinders (or truncated cones). Such form of the reconstruction files is efficient and parsimonious, and allows extensive morphometric analysis as well as the implementation of biophysical models of electrophysiology. Here, we describe Neuron_ Morpho, a plugin for the popular Java application ImageJ that mediates the digital reconstruction of neurons from image stacks. Both the executable and code of Neuron_ Morpho are freely distributed (www.maths. soton.ac.uk/staff/D'Alessandro/morpho or www.krasnow.gmu.edu/L-Neuron), and are compatible with all major computer platforms (including Windows, Mac, and Linux). We tested Neuron_Morpho by reconstructing two neurons from each of the two preparations representing different brain areas (hippocampus and cerebellum), neuritic type (pyramidal cell dendrites and olivar axonal projection terminals), and labeling method (rapid Golgi impregnation and anterograde dextran amine), and quantitatively comparing the resulting morphologies to those of the same cells reconstructed with the standard commercial system, Neurolucida. None of the numerous morphometric measures that were analyzed displayed any significant or systematic difference between the two reconstructing systems.
Video Image Stabilization and Registration (VISAR) Software
NASA Technical Reports Server (NTRS)
1999-01-01
Two scientists at NASA Marshall Space Flight Center, atmospheric scientist Paul Meyer (left) and solar physicist Dr. David Hathaway, have developed promising new software, called Video Image Stabilization and Registration (VISAR), that may help law enforcement agencies to catch criminals by improving the quality of video recorded at crime scenes, VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects; produces clearer images of moving objects; smoothes jagged edges; enhances still images; and reduces video noise of snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of Ultrasounds which are infamous for their grainy, blurred quality. It would be especially useful for tornadoes, tracking whirling objects and helping to determine the tornado's wind speed. This image shows two scientists reviewing an enhanced video image of a license plate taken from a moving automobile.
Designing Tracking Software for Image-Guided Surgery Applications: IGSTK Experience
Enquobahrie, Andinet; Gobbi, David; Turek, Matt; Cheng, Patrick; Yaniv, Ziv; Lindseth, Frank; Cleary, Kevin
2009-01-01
Objective Many image-guided surgery applications require tracking devices as part of their core functionality. The Image-Guided Surgery Toolkit (IGSTK) was designed and developed to interface tracking devices with software applications incorporating medical images. Methods IGSTK was designed as an open source C++ library that provides the basic components needed for fast prototyping and development of image-guided surgery applications. This library follows a component-based architecture with several components designed for specific sets of image-guided surgery functions. At the core of the toolkit is the tracker component that handles communication between a control computer and navigation device to gather pose measurements of surgical instruments present in the surgical scene. The representations of the tracked instruments are superimposed on anatomical images to provide visual feedback to the clinician during surgical procedures. Results The initial version of the IGSTK toolkit has been released in the public domain and several trackers are supported. The toolkit and related information are available at www.igstk.org. Conclusion With the increased popularity of minimally invasive procedures in health care, several tracking devices have been developed for medical applications. Designing and implementing high-quality and safe software to handle these different types of trackers in a common framework is a challenging task. It requires establishing key software design principles that emphasize abstraction, extensibility, reusability, fault-tolerance, and portability. IGSTK is an open source library that satisfies these needs for the image-guided surgery community. PMID:20037671
A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform
Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.
2013-01-01
Point matching is crucial for many computer vision applications. Establishing the correspondence between a large number of data points is a computationally intensive process. Some point matching related applications, such as medical image registration, require real time or near real time performance if applied to critical clinical applications like image assisted surgery. In this paper, we report a new multicore platform based parallel algorithm for fast point matching in the context of landmark based medical image registration. We introduced a non-regular data partition algorithm which utilizes the K-means clustering algorithm to group the landmarks based on the number of available processing cores, which optimize the memory usage and data transfer. We have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results demonstrated a significant speed up over its sequential implementation. The proposed data partition and parallelization algorithm, though tested only on one multicore platform, is generic by its design. Therefore the parallel algorithm can be extended to other computing platforms, as well as other point matching related applications. PMID:24308014
NASA Astrophysics Data System (ADS)
Ahmadia, A. J.; Kees, C. E.
2014-12-01
Developing scientific software is a continuous balance between not reinventing the wheel and getting fragile codes to interoperate with one another. Binary software distributions such as Anaconda provide a robust starting point for many scientific software packages, but this solution alone is insufficient for many scientific software developers. HashDist provides a critical component of the development workflow, enabling highly customizable, source-driven, and reproducible builds for scientific software stacks, available from both the IPython Notebook and the command line. To address these issues, the Coastal and Hydraulics Laboratory at the US Army Engineer Research and Development Center has funded the development of HashDist in collaboration with Simula Research Laboratories and the University of Texas at Austin. HashDist is motivated by a functional approach to package build management, and features intelligent caching of sources and builds, parametrized build specifications, and the ability to interoperate with system compilers and packages. HashDist enables the easy specification of "software stacks", which allow both the novice user to install a default environment and the advanced user to configure every aspect of their build in a modular fashion. As an advanced feature, HashDist builds can be made relocatable, allowing the easy redistribution of binaries on all three major operating systems as well as cloud, and supercomputing platforms. As a final benefit, all HashDist builds are reproducible, with a build hash specifying exactly how each component of the software stack was installed. This talk discusses the role of HashDist in the hydrological sciences, including its use by the Coastal and Hydraulics Laboratory in the development and deployment of the Proteus Toolkit as well as the Rapid Operational Access and Maneuver Support project. We demonstrate HashDist in action, and show how it can effectively support development, deployment, teaching, and
Different source image fusion based on FPGA
NASA Astrophysics Data System (ADS)
Luo, Xiao; Piao, Yan
2016-03-01
The fusion technology of video image is to make the video obtained by different image sensors complementary to each other by some technical means, so as to obtain the video information which is rich in information and suitable for the human eye system. Infrared cameras in harsh environments such as when smoke, fog and low light situations penetrating power, but the ability to obtain the details of the image is poor, does not meet the human visual system. Single visible light imaging can be rich in detail, high resolution images and for the visual system, but the visible image easily affected by the external environment. Infrared image and visible image fusion process involved in the video image fusion algorithm complexity and high calculation capacity, have occupied more memory resources, high clock rate requirements, such as software, c ++, c, etc. to achieve more, but based on Hardware platform less. In this paper, based on the imaging characteristics of infrared images and visible light images, the software and hardware are combined to obtain the registration parameters through software matlab, and the gray level weighted average method is used to implement the hardware platform. Information fusion, and finally the fusion image can achieve the goal of effectively improving the acquisition of information to increase the amount of information in the image.
Wenig, Philip; Odermatt, Juergen
2010-07-30
Today, data evaluation has become a bottleneck in chromatographic science. Analytical instruments equipped with automated samplers yield large amounts of measurement data, which needs to be verified and analyzed. Since nearly every GC/MS instrument vendor offers its own data format and software tools, the consequences are problems with data exchange and a lack of comparability between the analytical results. To challenge this situation a number of either commercial or non-profit software applications have been developed. These applications provide functionalities to import and analyze several data formats but have shortcomings in terms of the transparency of the implemented analytical algorithms and/or are restricted to a specific computer platform. This work describes a native approach to handle chromatographic data files. The approach can be extended in its functionality such as facilities to detect baselines, to detect, integrate and identify peaks and to compare mass spectra, as well as the ability to internationalize the application. Additionally, filters can be applied on the chromatographic data to enhance its quality, for example to remove background and noise. Extended operations like do, undo and redo are supported. OpenChrom is a software application to edit and analyze mass spectrometric chromatographic data. It is extensible in many different ways, depending on the demands of the users or the analytical procedures and algorithms. It offers a customizable graphical user interface. The software is independent of the operating system, due to the fact that the Rich Client Platform is written in Java. OpenChrom is released under the Eclipse Public License 1.0 (EPL). There are no license constraints regarding extensions. They can be published using open source as well as proprietary licenses. OpenChrom is available free of charge at http://www.openchrom.net.
NASA Astrophysics Data System (ADS)
Zhang, Jianguo; Zhang, Kai; Yang, Yuanyuan; Ling, Tonghui; Wang, Tusheng; Wang, Mingqing; Hu, Haibo; Xu, Xuemin
2012-02-01
More and more image informatics researchers and engineers are considering to re-construct imaging and informatics infrastructure or to build new framework to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment. In this presentation, we show an outline and our preliminary design work of building an e-Science platform for biomedical imaging and informatics research and application in Shanghai. We will present our consideration and strategy on designing this platform, and preliminary results. We also will discuss some challenges and solutions in building this platform.
Zhu, Yun; Lao, Yanwen; Jang, Carey; Lin, Chen-Jen; Xing, Jia; Wang, Shuxiao; Fu, Joshua S; Deng, Shuang; Xie, Junping; Long, Shicheng
2015-01-01
This article describes the development and implementations of a novel software platform that supports real-time, science-based policy making on air quality through a user-friendly interface. The software, RSM-VAT, uses a response surface modeling (RSM) methodology and serves as a visualization and analysis tool (VAT) for three-dimensional air quality data obtained by atmospheric models. The software features a number of powerful and intuitive data visualization functions for illustrating the complex nonlinear relationship between emission reductions and air quality benefits. The case study of contiguous U.S. demonstrates that the enhanced RSM-VAT is capable of reproducing the air quality model results with Normalized Mean Bias <2% and assisting in air quality policy making in near real time. Copyright © 2014. Published by Elsevier B.V.
Determining Angle of Humeral Torsion Using Image Software Technique.
Patil, Sachin; Sethi, Madhu; Vasudeva, Neelam
2016-10-01
Several researches have been done on the measurement of angles of humeral torsion in different parts of the world. Previously described methods were more complicated, not much accurate, cumbersome or required sophisticated instruments. The present study was conducted with the aim to determine the angles of humeral torsion with a newer simple technique using digital images and image tool software. A total of 250 dry normal adult human humeri were obtained from the bone bank of Department of Anatomy. The length and mid-shaft circumference of each bone was measured with the help of measuring tape. The angle of humeral torsion was measured directly from the digital images by the image analysis using Image Tool 3.0 software program. The data was analysed statistically with SPSS version 17 using unpaired t-test and Spearman's rank order correlation coefficient. The mean angle of torsion was 64.57°±7.56°. On the right side it was 66.84°±9.69°, whereas, on the left side it was found to be 63.31±9.50°. The mean humeral length was 31.6 cm on right side and 30.33 cm on left side. Mid shaft circumference was 5.79 on right side and 5.63 cm on left side. No statistical differences were seen in angles between right and left humeri (p>0.001). From our study, it was concluded that circumference of shaft is inversely proportional to angle of humeral torsion. The length and side of humerus has no relation with the humeral torsion. With advancement of digital technology, it is better to use new image softwares for anatomical studies.
Sanyal, Parikshit; Ganguli, Prosenjit; Barui, Sanghita; Deb, Prabal
2018-01-01
The Pap stained cervical smear is a screening tool for cervical cancer. Commercial systems are used for automated screening of liquid based cervical smears. However, there is no image analysis software used for conventional cervical smears. The aim of this study was to develop and test the diagnostic accuracy of a software for analysis of conventional smears. The software was developed using Python programming language and open source libraries. It was standardized with images from Bethesda Interobserver Reproducibility Project. One hundred and thirty images from smears which were reported Negative for Intraepithelial Lesion or Malignancy (NILM), and 45 images where some abnormality has been reported, were collected from the archives of the hospital. The software was then tested on the images. The software was able to segregate images based on overall nuclear: cytoplasmic ratio, coefficient of variation (CV) in nuclear size, nuclear membrane irregularity, and clustering. 68.88% of abnormal images were flagged by the software, as well as 19.23% of NILM images. The major difficulties faced were segmentation of overlapping cell clusters and separation of neutrophils. The software shows potential as a screening tool for conventional cervical smears; however, further refinement in technique is required.
Big capabilities in small packages: hyperspectral imaging from a compact platform
NASA Astrophysics Data System (ADS)
Beasley, Matthew; Goldberg, Hannah; Voorhees, Christopher; Illsley, Peter
2016-09-01
We present the Compact Holographic Aberration-corrected Platform (CHAP) instrument, designed and developed at Planetary Resources Development Corporation. By combining a dispersive element with the secondary of a telescope, we are able to produce a relatively long focal length with moderate dispersion at the focal plane. This design enables us to build a capable hyperspectral imaging instrument within the size constraints of the Cubesat form-factor. The advantages of our design revolves around its simplicity: there are only two optical elements, producing both a white light and diffracted image. With the use of a replicated grating, we can produce a long focal length hyperspectral imager at a price point far below other spaceflight instruments. The design is scalable for larger platforms and since it has no transmitting optics and only two reflective surfaces could be designed to function at any desired wavelength. Our system will be capable of spectral imaging across the 400 to 900 nm spectral range for use in small body surveys.
Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W; Gautier, Virginie W
2015-01-01
We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip.
Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W.; Gautier, Virginie W.
2015-01-01
We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip. PMID:26485569
A Common DPU Platform for ESA JUICE Mission Instruments
NASA Astrophysics Data System (ADS)
Aberg, Martin; Hellstrom, Daniel; Samuelsson, Arne; Torelli, Felice
2016-08-01
This paper describes the resulting hardware and software platform based on GR712RC [1] LEON3-FT that Cobham Gaisler developed in accordance with the common system requirements of the ten scientific instruments on-board the ESA JUICE spacecraft destined the Jupiter system [8].The radiation hardened DPU platform features EDAC protected boot, application memory and working memory of configurable sizes and SpaceWire, FPGA I/O-32/16/8, GPIO, UART and SPI I/O interfaces. The design has undergone PSA, Risk, WCA, Radiation analyses etc. to justify component and design choices resulting in a robust design that can be used in spacecrafts requiring a total dose up to 100krad(Si). The prototype board manufactured uses engineering models of the flight components to ensure that development is representative.Validated boot, standby and driver software accommodates the various DPU platform configurations. The boot performs low-level DPU initialization, standby handles OBC SpaceWire communication and finally the loading and executing of application images typically stored in the non-volatile application memory.
Report of AAPM Task Group 162: Software for planar image quality metrology.
Samei, Ehsan; Ikejimba, Lynda C; Harrawood, Brian P; Rong, John; Cunningham, Ian A; Flynn, Michael J
2018-02-01
The AAPM Task Group 162 aimed to provide a standardized approach for the assessment of image quality in planar imaging systems. This report offers a description of the approach as well as the details of the resultant software bundle to measure detective quantum efficiency (DQE) as well as its basis components and derivatives. The methodology and the associated software include the characterization of the noise power spectrum (NPS) from planar images acquired under specific acquisition conditions, modulation transfer function (MTF) using an edge test object, the DQE, and effective DQE (eDQE). First, a methodological framework is provided to highlight the theoretical basis of the work. Then, a step-by-step guide is included to assist in proper execution of each component of the code. Lastly, an evaluation of the method is included to validate its accuracy against model-based and experimental data. The code was built using a Macintosh OSX operating system. The software package contains all the source codes to permit an experienced user to build the suite on a Linux or other *nix type system. The package further includes manuals and sample images and scripts to demonstrate use of the software for new users. The results of the code are in close alignment with theoretical expectations and published results of experimental data. The methodology and the software package offered in AAPM TG162 can be used as baseline for characterization of inherent image quality attributes of planar imaging systems. © 2017 American Association of Physicists in Medicine.
Hadlich, Marcelo Souza; Oliveira, Gláucia Maria Moraes; Feijóo, Raúl A; Azevedo, Clerio F; Tura, Bernardo Rangel; Ziemer, Paulo Gustavo Portela; Blanco, Pablo Javier; Pina, Gustavo; Meira, Márcio; Souza e Silva, Nelson Albuquerque de
2012-10-01
The standardization of images used in Medicine in 1993 was performed using the DICOM (Digital Imaging and Communications in Medicine) standard. Several tests use this standard and it is increasingly necessary to design software applications capable of handling this type of image; however, these software applications are not usually free and open-source, and this fact hinders their adjustment to most diverse interests. To develop and validate a free and open-source software application capable of handling DICOM coronary computed tomography angiography images. We developed and tested the ImageLab software in the evaluation of 100 tests randomly selected from a database. We carried out 600 tests divided between two observers using ImageLab and another software sold with Philips Brilliance computed tomography appliances in the evaluation of coronary lesions and plaques around the left main coronary artery (LMCA) and the anterior descending artery (ADA). To evaluate intraobserver, interobserver and intersoftware agreements, we used simple and kappa statistics agreements. The agreements observed between software applications were generally classified as substantial or almost perfect in most comparisons. The ImageLab software agreed with the Philips software in the evaluation of coronary computed tomography angiography tests, especially in patients without lesions, with lesions < 50% in the LMCA and < 70% in the ADA. The agreement for lesions > 70% in the ADA was lower, but this is also observed when the anatomical reference standard is used.
Colombet, B; Woodman, M; Badier, J M; Bénar, C G
2015-03-15
The importance of digital signal processing in clinical neurophysiology is growing steadily, involving clinical researchers and methodologists. There is a need for crossing the gap between these communities by providing efficient delivery of newly designed algorithms to end users. We have developed such a tool which both visualizes and processes data and, additionally, acts as a software development platform. AnyWave was designed to run on all common operating systems. It provides access to a variety of data formats and it employs high fidelity visualization techniques. It also allows using external tools as plug-ins, which can be developed in languages including C++, MATLAB and Python. In the current version, plug-ins allow computation of connectivity graphs (non-linear correlation h2) and time-frequency representation (Morlet wavelets). The software is freely available under the LGPL3 license. AnyWave is designed as an open, highly extensible solution, with an architecture that permits rapid delivery of new techniques to end users. We have developed AnyWave software as an efficient neurophysiological data visualizer able to integrate state of the art techniques. AnyWave offers an interface well suited to the needs of clinical research and an architecture designed for integrating new tools. We expect this software to strengthen the collaboration between clinical neurophysiologists and researchers in biomedical engineering and signal processing. Copyright © 2015 Elsevier B.V. All rights reserved.
Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-11-01
Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes
Software Reliability Analysis of NASA Space Flight Software: A Practical Experience
Sukhwani, Harish; Alonso, Javier; Trivedi, Kishor S.; Mcginnis, Issac
2017-01-01
In this paper, we present the software reliability analysis of the flight software of a recently launched space mission. For our analysis, we use the defect reports collected during the flight software development. We find that this software was developed in multiple releases, each release spanning across all software life-cycle phases. We also find that the software releases were developed and tested for four different hardware platforms, spanning from off-the-shelf or emulation hardware to actual flight hardware. For releases that exhibit reliability growth or decay, we fit Software Reliability Growth Models (SRGM); otherwise we fit a distribution function. We find that most releases exhibit reliability growth, with Log-Logistic (NHPP) and S-Shaped (NHPP) as the best-fit SRGMs. For the releases that experience reliability decay, we investigate the causes for the same. We find that such releases were the first software releases to be tested on a new hardware platform, and hence they encountered major hardware integration issues. Also such releases seem to have been developed under time pressure in order to start testing on the new hardware platform sooner. Such releases exhibit poor reliability growth, and hence exhibit high predicted failure rate. Other problems include hardware specification changes and delivery delays from vendors. Thus, our analysis provides critical insights and inputs to the management to improve the software development process. As NASA has moved towards a product line engineering for its flight software development, software for future space missions will be developed in a similar manner and hence the analysis results for this mission can be considered as a baseline for future flight software missions. PMID:29278255
Software Reliability Analysis of NASA Space Flight Software: A Practical Experience.
Sukhwani, Harish; Alonso, Javier; Trivedi, Kishor S; Mcginnis, Issac
2016-01-01
In this paper, we present the software reliability analysis of the flight software of a recently launched space mission. For our analysis, we use the defect reports collected during the flight software development. We find that this software was developed in multiple releases, each release spanning across all software life-cycle phases. We also find that the software releases were developed and tested for four different hardware platforms, spanning from off-the-shelf or emulation hardware to actual flight hardware. For releases that exhibit reliability growth or decay, we fit Software Reliability Growth Models (SRGM); otherwise we fit a distribution function. We find that most releases exhibit reliability growth, with Log-Logistic (NHPP) and S-Shaped (NHPP) as the best-fit SRGMs. For the releases that experience reliability decay, we investigate the causes for the same. We find that such releases were the first software releases to be tested on a new hardware platform, and hence they encountered major hardware integration issues. Also such releases seem to have been developed under time pressure in order to start testing on the new hardware platform sooner. Such releases exhibit poor reliability growth, and hence exhibit high predicted failure rate. Other problems include hardware specification changes and delivery delays from vendors. Thus, our analysis provides critical insights and inputs to the management to improve the software development process. As NASA has moved towards a product line engineering for its flight software development, software for future space missions will be developed in a similar manner and hence the analysis results for this mission can be considered as a baseline for future flight software missions.
A platform for European CMOS image sensors for space applications
NASA Astrophysics Data System (ADS)
Minoglou, K.; San Segundo Bello, D.; Sabuncuoglu Tezcan, D.; Haspeslagh, L.; Van Olmen, J.; Merry, B.; Cavaco, C.; Mazzamuto, F.; Toqué-Trésonne, I.; Moirin, R.; Brouwer, M.; Toccafondi, M.; Preti, G.; Rosmeulen, M.; De Moor, P.
2017-11-01
Both ESA and the EC have identified the need for a supply chain of CMOS imagers for space applications which uses solely European sources. An essential requirement on this supply chain is the platformization of the process modules, in particular when it comes to very specific processing steps, such as those required for the manufacturing of backside illuminated image sensors. This is the goal of the European (EC/FP7/SPACE) funded project EUROCIS. All EUROCIS partners have excellent know-how and track record in the expertise fields required. Imec has been leading the imager chip design and the front side and backside processing. LASSE, as a major player in the laser annealing supplier sector, has been focusing on the optimization of the process related to the backside passivation of the image sensors. TNO, known worldwide as a top developer of instruments for scientific research, including space research and sensors for satellites, has contributed in the domain of optical layers for space instruments and optimized antireflective coatings. Finally, Selex ES, as a world-wide leader for manufacturing instruments with expertise in various space missions and programs, has defined the image sensor specifications and is taking care of the final device characterization. In this paper, an overview of the process flow, the results on test structures and imagers processed using this platform will be presented.
NASA Astrophysics Data System (ADS)
Celicourt, P.; Sam, R.; Piasecki, M.
2016-12-01
Global phenomena such as climate change and large scale environmental degradation require the collection of accurate environmental data at detailed spatial and temporal scales from which knowledge and actionable insights can be derived using data science methods. Despite significant advances in sensor network technologies, sensors and sensor network deployment remains a labor-intensive, time consuming, cumbersome and expensive task. These factors demonstrate why environmental data collection remains a challenge especially in developing countries where technical infrastructure, expertise and pecuniary resources are scarce. In addition, they also demonstrate the reason why dense and long-term environmental data collection has been historically quite difficult. Moreover, hydrometeorological data collection efforts usually overlook the (critically important) inclusion of a standards-based system for storing, managing, organizing, indexing, documenting and sharing sensor data. We are developing a cross-platform software framework using the Python programming language that will allow us to develop a low cost end-to-end (from sensor to publication) system for hydrometeorological conditions monitoring. The software framework contains provision for sensor, sensor platforms, calibration and network protocols description, sensor programming, data storage, data publication and visualization and more importantly data retrieval in a desired unit system. It is being tested on the Raspberry Pi microcomputer as end node and a laptop PC as the base station in a wireless setting.
Golberg, Alexander; Linshiz, Gregory; Kravets, Ilia; Stawski, Nina; Hillson, Nathan J; Yarmush, Martin L; Marks, Robert S; Konry, Tania
2014-01-01
We report an all-in-one platform - ScanDrop - for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a "cloud" network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2-4 days for other currently available standard detection methods.
Kravets, Ilia; Stawski, Nina; Hillson, Nathan J.; Yarmush, Martin L.; Marks, Robert S.; Konry, Tania
2014-01-01
We report an all-in-one platform – ScanDrop – for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a “cloud” network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2–4 days for other currently available standard detection methods. PMID:24475107
Solar Asset Management Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iverson, Aaron; Zviagin, George
Ra Power Management (RPM) has developed a cloud based software platform that manages the financial and operational functions of third party financed solar projects throughout their lifecycle. RPM’s software streamlines and automates the sales, financing, and management of a portfolio of solar assets. The software helps solar developers automate the most difficult aspects of asset management, leading to increased transparency, efficiency, and reduction in human error. More importantly, our platform will help developers save money by improving their operating margins.
Predictive images of postoperative levator resection outcome using image processing software.
Mawatari, Yuki; Fukushima, Mikiko
2016-01-01
This study aims to evaluate the efficacy of processed images to predict postoperative appearance following levator resection. Analysis involved 109 eyes from 65 patients with blepharoptosis who underwent advancement of levator aponeurosis and Müller's muscle complex (levator resection). Predictive images were prepared from preoperative photographs using the image processing software (Adobe Photoshop ® ). Images of selected eyes were digitally enlarged in an appropriate manner and shown to patients prior to surgery. Approximately 1 month postoperatively, we surveyed our patients using questionnaires. Fifty-six patients (89.2%) were satisfied with their postoperative appearances, and 55 patients (84.8%) positively responded to the usefulness of processed images to predict postoperative appearance. Showing processed images that predict postoperative appearance to patients prior to blepharoptosis surgery can be useful for those patients concerned with their postoperative appearance. This approach may serve as a useful tool to simulate blepharoptosis surgery.
Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee; Yoo, Sooyoung
2015-04-01
To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs.
New Antifouling Platform Characterized by Single-Molecule Imaging
2015-01-01
Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm2 which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm2 adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm2). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others. PMID:24503420
New antifouling platform characterized by single-molecule imaging.
Ryu, Ji Young; Song, In Taek; Lau, K H Aaron; Messersmith, Phillip B; Yoon, Tae-Young; Lee, Haeshin
2014-03-12
Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm(2) which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm(2) adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm(2)). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others.
Trivedi, Prinal; Edwards, Jode W; Wang, Jelai; Gadbury, Gary L; Srinivasasainagendra, Vinodh; Zakharkin, Stanislav O; Kim, Kyoungmi; Mehta, Tapan; Brand, Jacob P L; Patki, Amit; Page, Grier P; Allison, David B
2005-04-06
Many efforts in microarray data analysis are focused on providing tools and methods for the qualitative analysis of microarray data. HDBStat! (High-Dimensional Biology-Statistics) is a software package designed for analysis of high dimensional biology data such as microarray data. It was initially developed for the analysis of microarray gene expression data, but it can also be used for some applications in proteomics and other aspects of genomics. HDBStat! provides statisticians and biologists a flexible and easy-to-use interface to analyze complex microarray data using a variety of methods for data preprocessing, quality control analysis and hypothesis testing. Results generated from data preprocessing methods, quality control analysis and hypothesis testing methods are output in the form of Excel CSV tables, graphs and an Html report summarizing data analysis. HDBStat! is a platform-independent software that is freely available to academic institutions and non-profit organizations. It can be downloaded from our website http://www.soph.uab.edu/ssg_content.asp?id=1164.
NASA Astrophysics Data System (ADS)
Zhang, Haichong K.; Huang, Howard; Lei, Chen; Kim, Younsu; Boctor, Emad M.
2017-03-01
Photoacoustic (PA) imaging has shown its potential for many clinical applications, but current research and usage of PA imaging are constrained by additional hardware costs to collect channel data, as the PA signals are incorrectly processed in existing clinical ultrasound systems. This problem arises from the fact that ultrasound systems beamform the PA signals as echoes from the ultrasound transducer instead of directly from illuminated sources. Consequently, conventional implementations of PA imaging rely on parallel channel acquisition from research platforms, which are not only slow and expensive, but are also mostly not approved by the FDA for clinical use. In previous studies, we have proposed the synthetic-aperture based photoacoustic re-beamformer (SPARE) that uses ultrasound beamformed radio frequency (RF) data as the input, which is readily available in clinical ultrasound scanners. The goal of this work is to implement the SPARE beamformer in a clinical ultrasound system, and to experimentally demonstrate its real-time visualization. Assuming a high pulsed repetition frequency (PRF) laser is used, a PZT-based pseudo PA source transmission was synchronized with the ultrasound line trigger. As a result, the frame-rate increases when limiting the image field-of-view (FOV), with 50 to 20 frames per second achieved for FOVs from 35 mm to 70 mm depth, respectively. Although in reality the maximum PRF of laser firing limits the PA image frame rate, this result indicates that the developed software is capable of displaying PA images with the maximum possible frame-rate for certain laser system without acquiring channel data.
Vasconcelos, Taruska Ventorini; Neves, Frederico Sampaio; Moraes, Lívia Almeida Bueno; Freitas, Deborah Queiroz
2015-01-01
This article aimed at comparing the accuracy of linear measurement tools of different commercial software packages. Eight fully edentulous dry mandibles were selected for this study. Incisor, canine, premolar, first molar and second molar regions were selected. Cone beam computed tomography (CBCT) images were obtained with i-CAT Next Generation. Linear bone measurements were performed by one observer on the cross-sectional images using three different software packages: XoranCat®, OnDemand3D® and KDIS3D®, all able to assess DICOM images. In addition, 25% of the sample was reevaluated for the purpose of reproducibility. The mandibles were sectioned to obtain the gold standard for each region. Intraclass coefficients (ICC) were calculated to examine the agreement between the two periods of evaluation; the one-way analysis of variance performed with the post-hoc Dunnett test was used to compare each of the software-derived measurements with the gold standard. The ICC values were excellent for all software packages. The least difference between the software-derived measurements and the gold standard was obtained with the OnDemand3D and KDIS3D (-0.11 and -0.14 mm, respectively), and the greatest, with the XoranCAT (+0.25 mm). However, there was no statistical significant difference between the measurements obtained with the different software packages and the gold standard (p> 0.05). In conclusion, linear bone measurements were not influenced by the software package used to reconstruct the image from CBCT DICOM data.
Predictive images of postoperative levator resection outcome using image processing software
Mawatari, Yuki; Fukushima, Mikiko
2016-01-01
Purpose This study aims to evaluate the efficacy of processed images to predict postoperative appearance following levator resection. Methods Analysis involved 109 eyes from 65 patients with blepharoptosis who underwent advancement of levator aponeurosis and Müller’s muscle complex (levator resection). Predictive images were prepared from preoperative photographs using the image processing software (Adobe Photoshop®). Images of selected eyes were digitally enlarged in an appropriate manner and shown to patients prior to surgery. Results Approximately 1 month postoperatively, we surveyed our patients using questionnaires. Fifty-six patients (89.2%) were satisfied with their postoperative appearances, and 55 patients (84.8%) positively responded to the usefulness of processed images to predict postoperative appearance. Conclusion Showing processed images that predict postoperative appearance to patients prior to blepharoptosis surgery can be useful for those patients concerned with their postoperative appearance. This approach may serve as a useful tool to simulate blepharoptosis surgery. PMID:27757008
Computer-aided diagnosis software for vulvovaginal candidiasis detection from Pap smear images.
Momenzadeh, Mohammadreza; Vard, Alireza; Talebi, Ardeshir; Mehri Dehnavi, Alireza; Rabbani, Hossein
2018-01-01
Vulvovaginal candidiasis (VVC) is a common gynecologic infection and it occurs when there is overgrowth of the yeast called Candida. VVC diagnosis is usually done by observing a Pap smear sample under a microscope and searching for the conidium and mycelium components of Candida. This manual method is time consuming, subjective and tedious. Any diagnosis tools that detect VVC, semi- or full-automatically, can be very helpful to pathologists. This article presents a computer aided diagnosis (CAD) software to improve human diagnosis of VVC from Pap smear samples. The proposed software is designed based on phenotypic and morphology features of the Candida in Pap smear sample images. This software provide a user-friendly interface which consists of a set of image processing tools and analytical results that helps to detect Candida and determine severity of illness. The software was evaluated on 200 Pap smear sample images and obtained specificity of 91.04% and sensitivity of 92.48% to detect VVC. As a result, the use of the proposed software reduces diagnostic time and can be employed as a second objective opinion for pathologists. © 2017 Wiley Periodicals, Inc.
RayPlus: a Web-Based Platform for Medical Image Processing.
Yuan, Rong; Luo, Ming; Sun, Zhi; Shi, Shuyue; Xiao, Peng; Xie, Qingguo
2017-04-01
Medical image can provide valuable information for preclinical research, clinical diagnosis, and treatment. As the widespread use of digital medical imaging, many researchers are currently developing medical image processing algorithms and systems in order to accommodate a better result to clinical community, including accurate clinical parameters or processed images from the original images. In this paper, we propose a web-based platform to present and process medical images. By using Internet and novel database technologies, authorized users can easily access to medical images and facilitate their workflows of processing with server-side powerful computing performance without any installation. We implement a series of algorithms of image processing and visualization in the initial version of Rayplus. Integration of our system allows much flexibility and convenience for both research and clinical communities.
Development of a customizable software application for medical imaging analysis and visualization.
Martinez-Escobar, Marisol; Peloquin, Catherine; Juhnke, Bethany; Peddicord, Joanna; Jose, Sonia; Noon, Christian; Foo, Jung Leng; Winer, Eliot
2011-01-01
Graphics technology has extended medical imaging tools to the hands of surgeons and doctors, beyond the radiology suite. However, a common issue in most medical imaging software is the added complexity for non-radiologists. This paper presents the development of a unique software toolset that is highly customizable and targeted at the general physicians as well as the medical specialists. The core functionality includes features such as viewing medical images in two-and three-dimensional representations, clipping, tissue windowing, and coloring. Additional features can be loaded in the form of 'plug-ins' such as tumor segmentation, tissue deformation, and surgical planning. This allows the software to be lightweight and easy to use while still giving the user the flexibility of adding the necessary features, thus catering to a wide range of user population.
F3D Image Processing and Analysis for Many - and Multi-core Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
F3D is written in OpenCL, so it achieve[sic] platform-portable parallelism on modern mutli-core CPUs and many-core GPUs. The interface and mechanims to access F3D core are written in Java as a plugin for Fiji/ImageJ to deliver several key image-processing algorithms necessary to remove artifacts from micro-tomography data. The algorithms consist of data parallel aware filters that can efficiently utilizes[sic] resources and can work on out of core datasets and scale efficiently across multiple accelerators. Optimizing for data parallel filters, streaming out of core datasets, and efficient resource and memory and data managements over complex execution sequence of filters greatly expeditesmore » any scientific workflow with image processing requirements. F3D performs several different types of 3D image processing operations, such as non-linear filtering using bilateral filtering and/or median filtering and/or morphological operators (MM). F3D gray-level MM operators are one-pass constant time methods that can perform morphological transformations with a line-structuring element oriented in discrete directions. Additionally, MM operators can be applied to gray-scale images, and consist of two parts: (a) a reference shape or structuring element, which is translated over the image, and (b) a mechanism, or operation, that defines the comparisons to be performed between the image and the structuring element. This tool provides a critical component within many complex pipelines such as those for performing automated segmentation of image stacks. F3D is also called a "descendent" of Quant-CT, another software we developed in the past. These two modules are to be integrated in a next version. Further details were reported in: D.M. Ushizima, T. Perciano, H. Krishnan, B. Loring, H. Bale, D. Parkinson, and J. Sethian. Structure recognition from high-resolution images of ceramic composites. IEEE International Conference on Big Data, October 2014.« less
Distributed and Collaborative Software Analysis
NASA Astrophysics Data System (ADS)
Ghezzi, Giacomo; Gall, Harald C.
Throughout the years software engineers have come up with a myriad of specialized tools and techniques that focus on a certain type of
Secure public cloud platform for medical images sharing.
Pan, Wei; Coatrieux, Gouenou; Bouslimi, Dalel; Prigent, Nicolas
2015-01-01
Cloud computing promises medical imaging services offering large storage and computing capabilities for limited costs. In this data outsourcing framework, one of the greatest issues to deal with is data security. To do so, we propose to secure a public cloud platform devoted to medical image sharing by defining and deploying a security policy so as to control various security mechanisms. This policy stands on a risk assessment we conducted so as to identify security objectives with a special interest for digital content protection. These objectives are addressed by means of different security mechanisms like access and usage control policy, partial-encryption and watermarking.
NASA Astrophysics Data System (ADS)
Rasmussen, John C.; Bautista, Merrick; Tan, I.-Chih; Adams, Kristen E.; Aldrich, Melissa; Marshall, Milton V.; Fife, Caroline E.; Maus, Erik A.; Smith, Latisha A.; Zhang, Jingdan; Xiang, Xiaoyan; Zhou, Shaohua Kevin; Sevick-Muraca, Eva M.
2011-02-01
Recently, we demonstrated near-infrared (NIR) fluorescence imaging for quantifying real-time lymphatic propulsion in humans following intradermal injections of microdose amounts of indocyanine green. However computational methods for image analysis are underdeveloped, hindering the translation and clinical adaptation of NIR fluorescent lymphatic imaging. In our initial work we used ImageJ and custom MatLab programs to manually identify lymphatic vessels and individual propulsion events using the temporal transit of the fluorescent dye. In addition, we extracted the apparent velocities of contractile propagation and time periods between propulsion events. Extensive time and effort were required to analyze the 6-8 gigabytes of NIR fluorescent images obtained for each subject. To alleviate this bottleneck, we commenced development of ALFIA, an integrated software platform which will permit automated, near real-time analysis of lymphatic function using NIR fluorescent imaging. However, prior to automation, the base algorithms calculating the apparent velocity and period must be validated to verify that they produce results consistent with the proof-of-concept programs. To do this, both methods were used to analyze NIR fluorescent images of two subjects and the number of propulsive events identified, the average apparent velocities, and the average periods for each subject were compared. Paired Student's t-tests indicate that the differences between their average results are not significant. With the base algorithms validated, further development and automation of ALFIA can be realized, significantly reducing the amount of user interaction required, and potentially enabling the near real-time, clinical evaluation of NIR fluorescent lymphatic imaging.
Anser EMT: the first open-source electromagnetic tracking platform for image-guided interventions.
Jaeger, Herman Alexander; Franz, Alfred Michael; O'Donoghue, Kilian; Seitel, Alexander; Trauzettel, Fabian; Maier-Hein, Lena; Cantillon-Murphy, Pádraig
2017-06-01
Electromagnetic tracking is the gold standard for instrument tracking and navigation in the clinical setting without line of sight. Whilst clinical platforms exist for interventional bronchoscopy and neurosurgical navigation, the limited flexibility and high costs of electromagnetic tracking (EMT) systems for research investigations mitigate against a better understanding of the technology's characterisation and limitations. The Anser project provides an open-source implementation for EMT with particular application to image-guided interventions. This work provides implementation schematics for our previously reported EMT system which relies on low-cost acquisition and demodulation techniques using both National Instruments and Arduino hardware alongside MATLAB support code. The system performance is objectively compared to other commercial tracking platforms using the Hummel assessment protocol. Positional accuracy of 1.14 mm and angular rotation accuracy of [Formula: see text] are reported. Like other EMT platforms, Anser is susceptible to tracking errors due to eddy current and ferromagnetic distortion. The system is compatible with commercially available EMT sensors as well as the Open Network Interface for image-guided therapy (OpenIGTLink) for easy communication with visualisation and medical imaging toolkits such as MITK and 3D Slicer. By providing an open-source platform for research investigations, we believe that novel and collaborative approaches can overcome the limitations of current EMT technology.
Time and Space Partition Platform for Safe and Secure Flight Software
NASA Astrophysics Data System (ADS)
Esquinas, Angel; Zamorano, Juan; de la Puente, Juan A.; Masmano, Miguel; Crespo, Alfons
2012-08-01
There are a number of research and development activities that are exploring Time and Space Partition (TSP) to implement safe and secure flight software. This approach allows to execute different real-time applications with different levels of criticality in the same computer board. In order to do that, flight applications must be isolated from each other in the temporal and spatial domains. This paper presents the first results of a partitioning platform based on the Open Ravenscar Kernel (ORK+) and the XtratuM hypervisor. ORK+ is a small, reliable realtime kernel supporting the Ada Ravenscar Computational model that is central to the ASSERT development process. XtratuM supports multiple virtual machines, i.e. partitions, on a single computer and is being used in the Integrated Modular Avionics for Space study. ORK+ executes in an XtratuM partition enabling Ada applications to share the computer board with other applications.
Image reconstruction of x-ray tomography by using image J platform
NASA Astrophysics Data System (ADS)
Zain, R. M.; Razali, A. M.; Salleh, K. A. M.; Yahya, R.
2017-01-01
A tomogram is a technical term for a CT image. It is also called a slice because it corresponds to what the object being scanned would look like if it were sliced open along a plane. A CT slice corresponds to a certain thickness of the object being scanned. So, while a typical digital image is composed of pixels, a CT slice image is composed of voxels (volume elements). In the case of x-ray tomography, similar to x-ray Radiography, the quantity being imaged is the distribution of the attenuation coefficient μ(x) within the object of interest. The different is only on the technique to produce the tomogram. The image of x-ray radiography can be produced straight foward after exposed to x-ray, while the image of tomography produces by combination of radiography images in every angle of projection. A number of image reconstruction methods by converting x-ray attenuation data into a tomography image have been produced by researchers. In this work, Ramp filter in "filtered back projection" has been applied. The linear data acquired at each angular orientation are convolved with a specially designed filter and then back projected across a pixel field at the same angle. This paper describe the step of using Image J software to produce image reconstruction of x-ray tomography.
NASA Astrophysics Data System (ADS)
Uneri, Ali; Schafer, Sebastian; Mirota, Daniel; Nithiananthan, Sajendra; Otake, Yoshito; Reaungamornrat, Sureerat; Yoo, Jongheun; Stayman, J. Webster; Reh, Douglas; Gallia, Gary L.; Khanna, A. Jay; Hager, Gregory; Taylor, Russell H.; Kleinszig, Gerhard; Siewerdsen, Jeffrey H.
2011-03-01
Intraoperative imaging modalities are becoming more prevalent in recent years, and the need for integration of these modalities with surgical guidance is rising, creating new possibilities as well as challenges. In the context of such emerging technologies and new clinical applications, a software architecture for cone-beam CT (CBCT) guided surgery has been developed with emphasis on binding open-source surgical navigation libraries and integrating intraoperative CBCT with novel, application-specific registration and guidance technologies. The architecture design is focused on accelerating translation of task-specific technical development in a wide range of applications, including orthopaedic, head-and-neck, and thoracic surgeries. The surgical guidance system is interfaced with a prototype mobile C-arm for high-quality CBCT and through a modular software architecture, integration of different tools and devices consistent with surgical workflow in each of these applications is realized. Specific modules are developed according to the surgical task, such as: 3D-3D rigid or deformable registration of preoperative images, surgical planning data, and up-to-date CBCT images; 3D-2D registration of planning and image data in real-time fluoroscopy and/or digitally reconstructed radiographs (DRRs); compatibility with infrared, electromagnetic, and video-based trackers used individually or in hybrid arrangements; augmented overlay of image and planning data in endoscopic or in-room video; real-time "virtual fluoroscopy" computed from GPU-accelerated DRRs; and multi-modality image display. The platform aims to minimize offline data processing by exposing quantitative tools that analyze and communicate factors of geometric precision. The system was translated to preclinical phantom and cadaver studies for assessment of fiducial (FRE) and target registration error (TRE) showing sub-mm accuracy in targeting and video overlay within intraoperative CBCT. The work culminates in
Fan, Shounian; Jiang, Yi; Jiang, Chenxi; Yang, Tianhe; Zhang, Chengyun; Liu, Junshi; Wu, Qiang; Zheng, Yaxi; Liu, Xiaoqiao
2004-10-01
Polygraph has become a necessary instrument in interventional cardiology and fundamental research of medicine up to the present. In this study, a LabView development system (DS) (developed by NI in U.S.) used as software platform, a DAQ data acquisition module and universal computer used as hardware platform, were creatively coupled with our self-made low noise multi-channels preamplifier to develop Multi-channels electrocardiograph. The device possessed the functions such as real time display of physiological process, digit highpass and lowpass, 50Hz filtered and gain adjustment, instant storing, random playback and printing, and process control stimulation. Besides, it was small-sized, economically practical and easy to operate. It could advance the spread of cardiac intervention treatment in hospitals.
Design and Applications of Rapid Image Tile Producing Software Based on Mosaic Dataset
NASA Astrophysics Data System (ADS)
Zha, Z.; Huang, W.; Wang, C.; Tang, D.; Zhu, L.
2018-04-01
Map tile technology is widely used in web geographic information services. How to efficiently produce map tiles is key technology for rapid service of images on web. In this paper, a rapid producing software for image tile data based on mosaic dataset is designed, meanwhile, the flow of tile producing is given. Key technologies such as cluster processing, map representation, tile checking, tile conversion and compression in memory are discussed. Accomplished by software development and tested by actual image data, the results show that this software has a high degree of automation, would be able to effectively reducing the number of IO and improve the tile producing efficiency. Moreover, the manual operations would be reduced significantly.
Barbesi, Donato; Vicente Vilas, Víctor; Millet, Sylvain; Sandow, Miguel; Colle, Jean-Yves; Aldave de Las Heras, Laura
2017-01-01
A LabVIEW ® -based software for the control of the fully automated multi-sequential flow injection analysis Lab-on-Valve (MSFIA-LOV) platform AutoRAD performing radiochemical analysis is described. The analytical platform interfaces an Arduino ® -based device triggering multiple detectors providing a flexible and fit for purpose choice of detection systems. The different analytical devices are interfaced to the PC running LabVIEW ® VI software using USB and RS232 interfaces, both for sending commands and receiving confirmation or error responses. The AUTORAD platform has been successfully applied for the chemical separation and determination of Sr, an important fission product pertinent to nuclear waste.
Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee
2015-01-01
Objectives To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. Methods We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. Results The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. Conclusions We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs. PMID:25995962
Web-based interactive 2D/3D medical image processing and visualization software.
Mahmoudi, Seyyed Ehsan; Akhondi-Asl, Alireza; Rahmani, Roohollah; Faghih-Roohi, Shahrooz; Taimouri, Vahid; Sabouri, Ahmad; Soltanian-Zadeh, Hamid
2010-05-01
There are many medical image processing software tools available for research and diagnosis purposes. However, most of these tools are available only as local applications. This limits the accessibility of the software to a specific machine, and thus the data and processing power of that application are not available to other workstations. Further, there are operating system and processing power limitations which prevent such applications from running on every type of workstation. By developing web-based tools, it is possible for users to access the medical image processing functionalities wherever the internet is available. In this paper, we introduce a pure web-based, interactive, extendable, 2D and 3D medical image processing and visualization application that requires no client installation. Our software uses a four-layered design consisting of an algorithm layer, web-user-interface layer, server communication layer, and wrapper layer. To compete with extendibility of the current local medical image processing software, each layer is highly independent of other layers. A wide range of medical image preprocessing, registration, and segmentation methods are implemented using open source libraries. Desktop-like user interaction is provided by using AJAX technology in the web-user-interface. For the visualization functionality of the software, the VRML standard is used to provide 3D features over the web. Integration of these technologies has allowed implementation of our purely web-based software with high functionality without requiring powerful computational resources in the client side. The user-interface is designed such that the users can select appropriate parameters for practical research and clinical studies. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Moseley, Warren
1989-01-01
The early stages of a research program designed to establish an experimental research platform for software engineering are described. Major emphasis is placed on Computer Assisted Software Engineering (CASE). The Poor Man's CASE Tool is based on the Apple Macintosh system, employing available software including Focal Point II, Hypercard, XRefText, and Macproject. These programs are functional in themselves, but through advanced linking are available for operation from within the tool being developed. The research platform is intended to merge software engineering technology with artificial intelligence (AI). In the first prototype of the PMCT, however, the sections of AI are not included. CASE tools assist the software engineer in planning goals, routes to those goals, and ways to measure progress. The method described allows software to be synthesized instead of being written or built.
Development of image analysis software for quantification of viable cells in microchips.
Georg, Maximilian; Fernández-Cabada, Tamara; Bourguignon, Natalia; Karp, Paola; Peñaherrera, Ana B; Helguera, Gustavo; Lerner, Betiana; Pérez, Maximiliano S; Mertelsmann, Roland
2018-01-01
Over the past few years, image analysis has emerged as a powerful tool for analyzing various cell biology parameters in an unprecedented and highly specific manner. The amount of data that is generated requires automated methods for the processing and analysis of all the resulting information. The software available so far are suitable for the processing of fluorescence and phase contrast images, but often do not provide good results from transmission light microscopy images, due to the intrinsic variation of the acquisition of images technique itself (adjustment of brightness / contrast, for instance) and the variability between image acquisition introduced by operators / equipment. In this contribution, it has been presented an image processing software, Python based image analysis for cell growth (PIACG), that is able to calculate the total area of the well occupied by cells with fusiform and rounded morphology in response to different concentrations of fetal bovine serum in microfluidic chips, from microscopy images in transmission light, in a highly efficient way.
IHE cross-enterprise document sharing for imaging: interoperability testing software.
Noumeir, Rita; Renaud, Bérubé
2010-09-21
With the deployments of Electronic Health Records (EHR), interoperability testing in healthcare is becoming crucial. EHR enables access to prior diagnostic information in order to assist in health decisions. It is a virtual system that results from the cooperation of several heterogeneous distributed systems. Interoperability between peers is therefore essential. Achieving interoperability requires various types of testing. Implementations need to be tested using software that simulates communication partners, and that provides test data and test plans. In this paper we describe a software that is used to test systems that are involved in sharing medical images within the EHR. Our software is used as part of the Integrating the Healthcare Enterprise (IHE) testing process to test the Cross Enterprise Document Sharing for imaging (XDS-I) integration profile. We describe its architecture and functionalities; we also expose the challenges encountered and discuss the elected design solutions. EHR is being deployed in several countries. The EHR infrastructure will be continuously evolving to embrace advances in the information technology domain. Our software is built on a web framework to allow for an easy evolution with web technology. The testing software is publicly available; it can be used by system implementers to test their implementations. It can also be used by site integrators to verify and test the interoperability of systems, or by developers to understand specifications ambiguities, or to resolve implementations difficulties.
Software Development for EECU Platform of Turbofan Engine
NASA Astrophysics Data System (ADS)
Kim, Bo Gyoung; Kwak, Dohyup; Kim, Byunghyun; Choi, Hee ju; Kong, Changduk
2017-04-01
The turbofan engine operation consists of a number of hardware and software. The engine is controlled by Electronic Engine Control Unit (EECU). In order to control the engine, EECU communicates with an aircraft system, Actuator Drive Unit (ADU), Engine Power Unit (EPU) and sensors on the engine. This paper tried to investigate the process form starting to taking-off and aims to design the EECU software mode and defined communication data format. The software is implemented according to the designed software mode.
Software and Algorithms for Biomedical Image Data Processing and Visualization
NASA Technical Reports Server (NTRS)
Talukder, Ashit; Lambert, James; Lam, Raymond
2004-01-01
A new software equipped with novel image processing algorithms and graphical-user-interface (GUI) tools has been designed for automated analysis and processing of large amounts of biomedical image data. The software, called PlaqTrak, has been specifically used for analysis of plaque on teeth of patients. New algorithms have been developed and implemented to segment teeth of interest from surrounding gum, and a real-time image-based morphing procedure is used to automatically overlay a grid onto each segmented tooth. Pattern recognition methods are used to classify plaque from surrounding gum and enamel, while ignoring glare effects due to the reflection of camera light and ambient light from enamel regions. The PlaqTrak system integrates these components into a single software suite with an easy-to-use GUI (see Figure 1) that allows users to do an end-to-end run of a patient s record, including tooth segmentation of all teeth, grid morphing of each segmented tooth, and plaque classification of each tooth image. The automated and accurate processing of the captured images to segment each tooth [see Figure 2(a)] and then detect plaque on a tooth-by-tooth basis is a critical component of the PlaqTrak system to do clinical trials and analysis with minimal human intervention. These features offer distinct advantages over other competing systems that analyze groups of teeth or synthetic teeth. PlaqTrak divides each segmented tooth into eight regions using an advanced graphics morphing procedure [see results on a chipped tooth in Figure 2(b)], and a pattern recognition classifier is then used to locate plaque [red regions in Figure 2(d)] and enamel regions. The morphing allows analysis within regions of teeth, thereby facilitating detailed statistical analysis such as the amount of plaque present on the biting surfaces on teeth. This software system is applicable to a host of biomedical applications, such as cell analysis and life detection, or robotic applications, such
Development of Software to Model AXAF-I Image Quality
NASA Technical Reports Server (NTRS)
Ahmad, Anees; Hawkins, Lamar
1996-01-01
This draft final report describes the work performed under the delivery order number 145 from May 1995 through August 1996. The scope of work included a number of software development tasks for the performance modeling of AXAF-I. A number of new capabilities and functions have been added to the GT software, which is the command mode version of the GRAZTRACE software, originally developed by MSFC. A structural data interface has been developed for the EAL (old SPAR) finite element analysis FEA program, which is being used by MSFC Structural Analysis group for the analysis of AXAF-I. This interface utility can read the structural deformation file from the EAL and other finite element analysis programs such as NASTRAN and COSMOS/M, and convert the data to a suitable format that can be used for the deformation ray-tracing to predict the image quality for a distorted mirror. There is a provision in this utility to expand the data from finite element models assuming 180 degrees symmetry. This utility has been used to predict image characteristics for the AXAF-I HRMA, when subjected to gravity effects in the horizontal x-ray ground test configuration. The development of the metrology data processing interface software has also been completed. It can read the HDOS FITS format surface map files, manipulate and filter the metrology data, and produce a deformation file, which can be used by GT for ray tracing for the mirror surface figure errors. This utility has been used to determine the optimum alignment (axial spacing and clocking) for the four pairs of AXAF-I mirrors. Based on this optimized alignment, the geometric images and effective focal lengths for the as built mirrors were predicted to cross check the results obtained by Kodak.
NASA Astrophysics Data System (ADS)
Candia, Sante; Lisio, Giovanni; Campolo, Giovanni; Pascucci, Dario
2010-08-01
The Avionics Software (ASW), in charge of controlling the Low Earth Orbit (LEO) Spacecraft PRIMA Platform (Piattaforma Ri-configurabile Italiana Multi-Applicativa), is evolving towards a highly modular and re-usable architecture based on an architectural framework allowing the effective integration of the software building blocks (SWBBs) providing the on-board control functions. During the recent years, the PRIMA ASW design and production processes have been improved to reach the following objectives: (a) at PUS Services level, separation of the mission-independent software mechanisms from the mission-dependent configuration information; (b) at Application level, identification of mission-independent recurrent functions for promoting abstraction and obtaining a more efficient and safe ASW production, with positive implications also on the software validation activities. This paper is dedicated to the characterisation activity which has been performed at Application level for a software component abstracting a set of functions for the generic On-Board Assembly (OBA), a set of hardware units used to deliver an on-board service. Moreover, the ASW production process is specified to show how it results after the introduction of the new design features.
An instructional guide for leaf color analysis using digital imaging software
Paula F. Murakami; Michelle R. Turner; Abby K. van den Berg; Paul G. Schaberg
2005-01-01
Digital color analysis has become an increasingly popular and cost-effective method utilized by resource managers and scientists for evaluating foliar nutrition and health in response to environmental stresses. We developed and tested a new method of digital image analysis that uses Scion Image or NIH image public domain software to quantify leaf color. This...
A Control System and Streaming DAQ Platform with Image-Based Trigger for X-ray Imaging
NASA Astrophysics Data System (ADS)
Stevanovic, Uros; Caselle, Michele; Cecilia, Angelica; Chilingaryan, Suren; Farago, Tomas; Gasilov, Sergey; Herth, Armin; Kopmann, Andreas; Vogelgesang, Matthias; Balzer, Matthias; Baumbach, Tilo; Weber, Marc
2015-06-01
High-speed X-ray imaging applications play a crucial role for non-destructive investigations of the dynamics in material science and biology. On-line data analysis is necessary for quality assurance and data-driven feedback, leading to a more efficient use of a beam time and increased data quality. In this article we present a smart camera platform with embedded Field Programmable Gate Array (FPGA) processing that is able to stream and process data continuously in real-time. The setup consists of a Complementary Metal-Oxide-Semiconductor (CMOS) sensor, an FPGA readout card, and a readout computer. It is seamlessly integrated in a new custom experiment control system called Concert that provides a more efficient way of operating a beamline by integrating device control, experiment process control, and data analysis. The potential of the embedded processing is demonstrated by implementing an image-based trigger. It records the temporal evolution of physical events with increased speed while maintaining the full field of view. The complete data acquisition system, with Concert and the smart camera platform was successfully integrated and used for fast X-ray imaging experiments at KIT's synchrotron radiation facility ANKA.
Spatial data software integration - Merging CAD/CAM/mapping with GIS and image processing
NASA Technical Reports Server (NTRS)
Logan, Thomas L.; Bryant, Nevin A.
1987-01-01
The integration of CAD/CAM/mapping with image processing using geographic information systems (GISs) as the interface is examined. Particular emphasis is given to the development of software interfaces between JPL's Video Image Communication and Retrieval (VICAR)/Imaged Based Information System (IBIS) raster-based GIS and the CAD/CAM/mapping system. The design and functions of the VICAR and IBIS are described. Vector data capture and editing are studied. Various software programs for interfacing between the VICAR/IBIS and CAD/CAM/mapping are presented and analyzed.
Fang, Yu-Hua Dean; Asthana, Pravesh; Salinas, Cristian; Huang, Hsuan-Ming; Muzic, Raymond F
2010-01-01
An integrated software package, Compartment Model Kinetic Analysis Tool (COMKAT), is presented in this report. COMKAT is an open-source software package with many functions for incorporating pharmacokinetic analysis in molecular imaging research and has both command-line and graphical user interfaces. With COMKAT, users may load and display images, draw regions of interest, load input functions, select kinetic models from a predefined list, or create a novel model and perform parameter estimation, all without having to write any computer code. For image analysis, COMKAT image tool supports multiple image file formats, including the Digital Imaging and Communications in Medicine (DICOM) standard. Image contrast, zoom, reslicing, display color table, and frame summation can be adjusted in COMKAT image tool. It also displays and automatically registers images from 2 modalities. Parametric imaging capability is provided and can be combined with the distributed computing support to enhance computation speeds. For users without MATLAB licenses, a compiled, executable version of COMKAT is available, although it currently has only a subset of the full COMKAT capability. Both the compiled and the noncompiled versions of COMKAT are free for academic research use. Extensive documentation, examples, and COMKAT itself are available on its wiki-based Web site, http://comkat.case.edu. Users are encouraged to contribute, sharing their experience, examples, and extensions of COMKAT. With integrated functionality specifically designed for imaging and kinetic modeling analysis, COMKAT can be used as a software environment for molecular imaging and pharmacokinetic analysis.
MedXViewer: an extensible web-enabled software package for medical imaging
NASA Astrophysics Data System (ADS)
Looney, P. T.; Young, K. C.; Mackenzie, Alistair; Halling-Brown, Mark D.
2014-03-01
MedXViewer (Medical eXtensible Viewer) is an application designed to allow workstation-independent, PACS-less viewing and interaction with anonymised medical images (e.g. observer studies). The application was initially implemented for use in digital mammography and tomosynthesis but the flexible software design allows it to be easily extended to other imaging modalities. Regions of interest can be identified by a user and any associated information about a mark, an image or a study can be added. The questions and settings can be easily configured depending on the need of the research allowing both ROC and FROC studies to be performed. The extensible nature of the design allows for other functionality and hanging protocols to be available for each study. Panning, windowing, zooming and moving through slices are all available while modality-specific features can be easily enabled e.g. quadrant zooming in mammographic studies. MedXViewer can integrate with a web-based image database allowing results and images to be stored centrally. The software and images can be downloaded remotely from this centralised data-store. Alternatively, the software can run without a network connection where the images and results can be encrypted and stored locally on a machine or external drive. Due to the advanced workstation-style functionality, the simple deployment on heterogeneous systems over the internet without a requirement for administrative access and the ability to utilise a centralised database, MedXViewer has been used for running remote paper-less observer studies and is capable of providing a training infrastructure and co-ordinating remote collaborative viewing sessions (e.g. cancer reviews, interesting cases).
Volumetric neuroimage analysis extensions for the MIPAV software package.
Bazin, Pierre-Louis; Cuzzocreo, Jennifer L; Yassa, Michael A; Gandler, William; McAuliffe, Matthew J; Bassett, Susan S; Pham, Dzung L
2007-09-15
We describe a new collection of publicly available software tools for performing quantitative neuroimage analysis. The tools perform semi-automatic brain extraction, tissue classification, Talairach alignment, and atlas-based measurements within a user-friendly graphical environment. They are implemented as plug-ins for MIPAV, a freely available medical image processing software package from the National Institutes of Health. Because the plug-ins and MIPAV are implemented in Java, both can be utilized on nearly any operating system platform. In addition to the software plug-ins, we have also released a digital version of the Talairach atlas that can be used to perform regional volumetric analyses. Several studies are conducted applying the new tools to simulated and real neuroimaging data sets.
IHE cross-enterprise document sharing for imaging: interoperability testing software
2010-01-01
Background With the deployments of Electronic Health Records (EHR), interoperability testing in healthcare is becoming crucial. EHR enables access to prior diagnostic information in order to assist in health decisions. It is a virtual system that results from the cooperation of several heterogeneous distributed systems. Interoperability between peers is therefore essential. Achieving interoperability requires various types of testing. Implementations need to be tested using software that simulates communication partners, and that provides test data and test plans. Results In this paper we describe a software that is used to test systems that are involved in sharing medical images within the EHR. Our software is used as part of the Integrating the Healthcare Enterprise (IHE) testing process to test the Cross Enterprise Document Sharing for imaging (XDS-I) integration profile. We describe its architecture and functionalities; we also expose the challenges encountered and discuss the elected design solutions. Conclusions EHR is being deployed in several countries. The EHR infrastructure will be continuously evolving to embrace advances in the information technology domain. Our software is built on a web framework to allow for an easy evolution with web technology. The testing software is publicly available; it can be used by system implementers to test their implementations. It can also be used by site integrators to verify and test the interoperability of systems, or by developers to understand specifications ambiguities, or to resolve implementations difficulties. PMID:20858241
NASA Astrophysics Data System (ADS)
Ormerod, R.; Scholl, M.
2017-12-01
Rapid evolution is occurring in the monitoring and assessment of air emissions and their impacts. The development of next generation lower cost sensor technologies creates the potential for much more intensive and far-reaching monitoring networks that provide spatially rich data. While much attention at present is being directed at the types and performance characteristics of sensor technologies, it is important also that the full potential of rich data sources be realized. Parallel to sensor developments, software platforms to display and manage data in real time are increasingly common adjuncts to sensor networks. However, the full value of data can be realized by extending platform capabilities to include complex scientific functions that are integrated into an action-oriented management framework. Depending on the purpose and nature of a monitoring network, there will be a variety of potential uses of the data or its derivatives, for example: statistical analysis for policy development, event analysis, real-time issue management including emergency response and complaints, and predictive management. Moving these functions into an on-demand, optionally mobile, environment greatly increases the value and accessibility of the data. Increased interplay between monitoring data and decision-making in an operational environment is optimised by a system that is designed with equal weight on technical robustness and user experience. A system now being used by several regulatory agencies and a larger number of industries in the US, Latin America, Europe, Australia and Asia has been developed to provide a wide range of on-demand decision-support in addition to the basic data collection, display and management that most platforms offer. With stable multi-year operation, the platform, known as Envirosuite, is assisting organisations to both reduce operating costs and improve environmental performance. Some current examples of its application across a range of applications
Software for X-Ray Images Calculation of Hydrogen Compression Device in Megabar Pressure Range
NASA Astrophysics Data System (ADS)
Egorov, Nikolay; Bykov, Alexander; Pavlov, Valery
2007-06-01
Software for x-ray images simulation is described. The software is a part of x-ray method used for investigation of an equation of state of hydrogen in a megabar pressure range. A graphical interface that clearly and simply allows users to input data for x-ray image calculation: properties of the studied device, parameters of the x-ray radiation source, parameters of the x-ray radiation recorder, the experiment geometry; to represent the calculation results and efficiently transmit them to other software for processing. The calculation time is minimized. This makes it possible to perform calculations in a dialogue regime. The software is written in ``MATLAB'' system.
Performance Evaluation of 3d Modeling Software for Uav Photogrammetry
NASA Astrophysics Data System (ADS)
Yanagi, H.; Chikatsu, H.
2016-06-01
UAV (Unmanned Aerial Vehicle) photogrammetry, which combines UAV and freely available internet-based 3D modeling software, is widely used as a low-cost and user-friendly photogrammetry technique in the fields such as remote sensing and geosciences. In UAV photogrammetry, only the platform used in conventional aerial photogrammetry is changed. Consequently, 3D modeling software contributes significantly to its expansion. However, the algorithms of the 3D modelling software are black box algorithms. As a result, only a few studies have been able to evaluate their accuracy using 3D coordinate check points. With this motive, Smart3DCapture and Pix4Dmapper were downloaded from the Internet and commercial software PhotoScan was also employed; investigations were performed in this paper using check points and images obtained from UAV.
Open source software and low cost sensors for teaching UAV science
NASA Astrophysics Data System (ADS)
Kefauver, S. C.; Sanchez-Bragado, R.; El-Haddad, G.; Araus, J. L.
2016-12-01
Drones, also known as UASs (unmanned aerial systems), UAVs (Unmanned Aerial Vehicles) or RPAS (Remotely piloted aircraft systems), are both useful advanced scientific platforms and recreational toys that are appealing to younger generations. As such, they can make for excellent education tools as well as low-cost scientific research project alternatives. However, the process of taking pretty pictures to remote sensing science can be daunting if one is presented with only expensive software and sensor options. There are a number of open-source tools and low cost platform and sensor options available that can provide excellent scientific research results, and, by often requiring more user-involvement than commercial software and sensors, provide even greater educational benefits. Scale-invariant feature transform (SIFT) algorithm implementations, such as the Microsoft Image Composite Editor (ICE), which can create quality 2D image mosaics with some motion and terrain adjustments and VisualSFM (Structure from Motion), which can provide full image mosaicking with movement and orthorectification capacities. RGB image quantification using alternate color space transforms, such as the BreedPix indices, can be calculated via plugins in the open-source software Fiji (http://fiji.sc/Fiji; http://github.com/george-haddad/CIMMYT). Recent analyses of aerial images from UAVs over different vegetation types and environments have shown RGB metrics can outperform more costly commercial sensors. Specifically, Hue-based pixel counts, the Triangle Greenness Index (TGI), and the Normalized Green Red Difference Index (NGRDI) consistently outperformed NDVI in estimating abiotic and biotic stress impacts on crop health. Also, simple kits are available for NDVI camera conversions. Furthermore, suggestions for multivariate analyses of the different RGB indices in the "R program for statistical computing", such as classification and regression trees can allow for a more approachable
Design of verification platform for wireless vision sensor networks
NASA Astrophysics Data System (ADS)
Ye, Juanjuan; Shang, Fei; Yu, Chuang
2017-08-01
At present, the majority of research for wireless vision sensor networks (WVSNs) still remains in the software simulation stage, and the verification platforms of WVSNs that available for use are very few. This situation seriously restricts the transformation from theory research of WVSNs to practical application. Therefore, it is necessary to study the construction of verification platform of WVSNs. This paper combines wireless transceiver module, visual information acquisition module and power acquisition module, designs a high-performance wireless vision sensor node whose core is ARM11 microprocessor and selects AODV as the routing protocol to set up a verification platform called AdvanWorks for WVSNs. Experiments show that the AdvanWorks can successfully achieve functions of image acquisition, coding, wireless transmission, and obtain the effective distance parameters between nodes, which lays a good foundation for the follow-up application of WVSNs.
NASA Astrophysics Data System (ADS)
Da Silva, A.; Sánchez Prieto, S.; Polo, O.; Parra Espada, P.
2013-05-01
Because of the tough robustness requirements in space software development, it is imperative to carry out verification tasks at a very early development stage to ensure that the implemented exception mechanisms work properly. All this should be done long time before the real hardware is available. But even if real hardware is available the verification of software fault tolerance mechanisms can be difficult since real faulty situations must be systematically and artificially brought about which can be imposible on real hardware. To solve this problem the Alcala Space Research Group (SRG) has developed a LEON2 virtual platform (Leon2ViP) with fault injection capabilities. This way it is posible to run the exact same target binary software as runs on the physical system in a more controlled and deterministic environment, allowing a more strict requirements verification. Leon2ViP enables unmanned and tightly focused fault injection campaigns, not possible otherwise, in order to expose and diagnose flaws in the software implementation early. Furthermore, the use of a virtual hardware-in-the-loop approach makes it possible to carry out preliminary integration tests with the spacecraft emulator or the sensors. The use of Leon2ViP has meant a signicant improvement, in both time and cost, in the development and verification processes of the Instrument Control Unit boot software on board Solar Orbiter's Energetic Particle Detector.
Ogura, Akio; Hayashi, Norio; Negishi, Tohru; Watanabe, Haruyuki
2018-05-09
Medical staff must be able to perform accurate initial interpretations of radiography to prevent diagnostic errors. Education in medical image interpretation is an ongoing need that is addressed by text-based and e-learning platforms. The effectiveness of these methods has been previously reported. Here, we describe the effectiveness of an e-learning platform used for medical image interpretation education. Ten third-year medical students without previous experience in chest radiography interpretation were provided with e-learning instructions. Accuracy of diagnosis using chest radiography was provided before and after e-learning education. We measured detection accuracy for two image groups: nodular shadow and ground-glass shadow. We also distributed the e-learning system to the two groups and analyzed the effectiveness of education for both types of image shadow. The mean correct answer rate after the 2-week e-learning period increased from 34.5 to 72.7%. Diagnosis of the ground glass shadow improved significantly more than that of the mass shadow. Education using the e-leaning platform is effective for interpretation of chest radiography results. E-learning is particularly effective for the interpretation of chest radiography images containing ground glass shadow.
NASA Astrophysics Data System (ADS)
Lelièvre, Peter G.; Grey, Melissa
2017-08-01
Quantitative morphometric analyses of form are widely used in palaeontology, especially for taxonomic and evolutionary research. These analyses can involve several measurements performed on hundreds or even thousands of samples. Performing measurements of size and shape on large assemblages of macro- or microfossil samples is generally infeasible or impossible with traditional instruments such as vernier calipers. Instead, digital image processing software is required to perform measurements via suitable digital images of samples. Many software packages exist for morphometric analyses but there is not much available for the integral stage of data collection, particularly for the measurement of the outlines of samples. Some software exists to automatically detect the outline of a fossil sample from a digital image. However, automatic outline detection methods may perform inadequately when samples have incomplete outlines or images contain poor contrast between the sample and staging background. Hence, a manual digitization approach may be the only option. We are not aware of any software packages that are designed specifically for efficient digital measurement of fossil assemblages with numerous samples, especially for the purposes of manual outline analysis. Throughout several previous studies, we have developed a new software tool, JMorph, that is custom-built for that task. JMorph provides the means to perform many different types of measurements, which we describe in this manuscript. We focus on JMorph's ability to rapidly and accurately digitize the outlines of fossils. JMorph is freely available from the authors.
NASA Astrophysics Data System (ADS)
Law, Yuen C.; Tenbrinck, Daniel; Jiang, Xiaoyi; Kuhlen, Torsten
2014-03-01
Computer-assisted processing and interpretation of medical ultrasound images is one of the most challenging tasks within image analysis. Physical phenomena in ultrasonographic images, e.g., the characteristic speckle noise and shadowing effects, make the majority of standard methods from image analysis non optimal. Furthermore, validation of adapted computer vision methods proves to be difficult due to missing ground truth information. There is no widely accepted software phantom in the community and existing software phantoms are not exible enough to support the use of specific speckle models for different tissue types, e.g., muscle and fat tissue. In this work we propose an anatomical software phantom with a realistic speckle pattern simulation to _ll this gap and provide a exible tool for validation purposes in medical ultrasound image analysis. We discuss the generation of speckle patterns and perform statistical analysis of the simulated textures to obtain quantitative measures of the realism and accuracy regarding the resulting textures.
Software for browsing sectioned images of a dog body and generating a 3D model.
Park, Jin Seo; Jung, Yong Wook
2016-01-01
The goals of this study were (1) to provide accessible and instructive browsing software for sectioned images and a portable document format (PDF) file that includes three-dimensional (3D) models of an entire dog body and (2) to develop techniques for segmentation and 3D modeling that would enable an investigator to perform these tasks without the aid of a computer engineer. To achieve these goals, relatively important or large structures in the sectioned images were outlined to generate segmented images. The sectioned and segmented images were then packaged into browsing software. In this software, structures in the sectioned images are shown in detail and in real color. After 3D models were made from the segmented images, the 3D models were exported into a PDF file. In this format, the 3D models could be manipulated freely. The browsing software and PDF file are available for study by students, for lecture for teachers, and for training for clinicians. These files will be helpful for anatomical study by and clinical training of veterinary students and clinicians. Furthermore, these techniques will be useful for researchers who study two-dimensional images and 3D models. © 2015 Wiley Periodicals, Inc.
JIP: Java image processing on the Internet
NASA Astrophysics Data System (ADS)
Wang, Dongyan; Lin, Bo; Zhang, Jun
1998-12-01
In this paper, we present JIP - Java Image Processing on the Internet, a new Internet based application for remote education and software presentation. JIP offers an integrate learning environment on the Internet where remote users not only can share static HTML documents and lectures notes, but also can run and reuse dynamic distributed software components, without having the source code or any extra work of software compilation, installation and configuration. By implementing a platform-independent distributed computational model, local computational resources are consumed instead of the resources on a central server. As an extended Java applet, JIP allows users to selected local image files on their computers or specify any image on the Internet using an URL as input. Multimedia lectures such as streaming video/audio and digital images are integrated into JIP and intelligently associated with specific image processing functions. Watching demonstrations an practicing the functions with user-selected input data dramatically encourages leaning interest, while promoting the understanding of image processing theory. The JIP framework can be easily applied to other subjects in education or software presentation, such as digital signal processing, business, mathematics, physics, or other areas such as employee training and charged software consumption.
Molecular Platform for Design and Synthesis of Targeted Dual-Modality Imaging Probes
2015-01-01
We report a versatile dendritic structure based platform for construction of targeted dual-modality imaging probes. The platform contains multiple copies of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) branching out from a 1,4,7-triazacyclononane-N,N′,N″-triacetic acid (NOTA) core. The specific coordination chemistries of the NOTA and DOTA moieties offer specific loading of 68/67Ga3+ and Gd3+, respectively, into a common molecular scaffold. The platform also contains three amino groups which can potentiate targeted dual-modality imaging of PET/MRI or SPECT/MRI (PET: positron emission tomography; SPECT: single photon emission computed tomography; MRI: magnetic resonance imaging) when further functionalized by targeting vectors of interest. To validate this design concept, a bimetallic complex was synthesized with six peripheral Gd-DOTA units and one Ga-NOTA core at the center, whose ion T1 relaxivity per gadolinium atom was measured to be 15.99 mM–1 s–1 at 20 MHz. Further, the bimetallic agent demonstrated its anticipated in vivo stability, tissue distribution, and pharmacokinetic profile when labeled with 67Ga. When conjugated with a model targeting peptide sequence, the trivalent construct was able to visualize tumors in a mouse xenograft model by both PET and MRI via a single dose injection. PMID:25615011
MassImager: A software for interactive and in-depth analysis of mass spectrometry imaging data.
He, Jiuming; Huang, Luojiao; Tian, Runtao; Li, Tiegang; Sun, Chenglong; Song, Xiaowei; Lv, Yiwei; Luo, Zhigang; Li, Xin; Abliz, Zeper
2018-07-26
Mass spectrometry imaging (MSI) has become a powerful tool to probe molecule events in biological tissue. However, it is a widely held viewpoint that one of the biggest challenges is an easy-to-use data processing software for discovering the underlying biological information from complicated and huge MSI dataset. Here, a user-friendly and full-featured MSI software including three subsystems, Solution, Visualization and Intelligence, named MassImager, is developed focusing on interactive visualization, in-situ biomarker discovery and artificial intelligent pathological diagnosis. Simplified data preprocessing and high-throughput MSI data exchange, serialization jointly guarantee the quick reconstruction of ion image and rapid analysis of dozens of gigabytes datasets. It also offers diverse self-defined operations for visual processing, including multiple ion visualization, multiple channel superposition, image normalization, visual resolution enhancement and image filter. Regions-of-interest analysis can be performed precisely through the interactive visualization between the ion images and mass spectra, also the overlaid optical image guide, to directly find out the region-specific biomarkers. Moreover, automatic pattern recognition can be achieved immediately upon the supervised or unsupervised multivariate statistical modeling. Clear discrimination between cancer tissue and adjacent tissue within a MSI dataset can be seen in the generated pattern image, which shows great potential in visually in-situ biomarker discovery and artificial intelligent pathological diagnosis of cancer. All the features are integrated together in MassImager to provide a deep MSI processing solution at the in-situ metabolomics level for biomarker discovery and future clinical pathological diagnosis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Research based on the SoPC platform of feature-based image registration
NASA Astrophysics Data System (ADS)
Shi, Yue-dong; Wang, Zhi-hui
2015-12-01
This paper focuses on the study of implementing feature-based image registration by System on a Programmable Chip (SoPC) hardware platform. We solidify the image registration algorithm on the FPGA chip, in which embedded soft core processor Nios II can speed up the image processing system. In this way, we can make image registration technology get rid of the PC. And, consequently, this kind of technology will be got an extensive use. The experiment result indicates that our system shows stable performance, particularly in terms of matching processing which noise immunity is good. And feature points of images show a reasonable distribution.
The image-guided surgery toolkit IGSTK: an open source C++ software toolkit.
Enquobahrie, Andinet; Cheng, Patrick; Gary, Kevin; Ibanez, Luis; Gobbi, David; Lindseth, Frank; Yaniv, Ziv; Aylward, Stephen; Jomier, Julien; Cleary, Kevin
2007-11-01
This paper presents an overview of the image-guided surgery toolkit (IGSTK). IGSTK is an open source C++ software library that provides the basic components needed to develop image-guided surgery applications. It is intended for fast prototyping and development of image-guided surgery applications. The toolkit was developed through a collaboration between academic and industry partners. Because IGSTK was designed for safety-critical applications, the development team has adopted lightweight software processes that emphasizes safety and robustness while, at the same time, supporting geographically separated developers. A software process that is philosophically similar to agile software methods was adopted emphasizing iterative, incremental, and test-driven development principles. The guiding principle in the architecture design of IGSTK is patient safety. The IGSTK team implemented a component-based architecture and used state machine software design methodologies to improve the reliability and safety of the components. Every IGSTK component has a well-defined set of features that are governed by state machines. The state machine ensures that the component is always in a valid state and that all state transitions are valid and meaningful. Realizing that the continued success and viability of an open source toolkit depends on a strong user community, the IGSTK team is following several key strategies to build an active user community. These include maintaining a users and developers' mailing list, providing documentation (application programming interface reference document and book), presenting demonstration applications, and delivering tutorial sessions at relevant scientific conferences.
Mirion--a software package for automatic processing of mass spectrometric images.
Paschke, C; Leisner, A; Hester, A; Maass, K; Guenther, S; Bouschen, W; Spengler, B
2013-08-01
Mass spectrometric imaging (MSI) techniques are of growing interest for the Life Sciences. In recent years, the development of new instruments employing ion sources that are tailored for spatial scanning allowed the acquisition of large data sets. A subsequent data processing, however, is still a bottleneck in the analytical process, as a manual data interpretation is impossible within a reasonable time frame. The transformation of mass spectrometric data into spatial distribution images of detected compounds turned out to be the most appropriate method to visualize the results of such scans, as humans are able to interpret images faster and easier than plain numbers. Image generation, thus, is a time-consuming and complex yet very efficient task. The free software package "Mirion," presented in this paper, allows the handling and analysis of data sets acquired by mass spectrometry imaging. Mirion can be used for image processing of MSI data obtained from many different sources, as it uses the HUPO-PSI-based standard data format imzML, which is implemented in the proprietary software of most of the mass spectrometer companies. Different graphical representations of the recorded data are available. Furthermore, automatic calculation and overlay of mass spectrometric images promotes direct comparison of different analytes for data evaluation. The program also includes tools for image processing and image analysis.
JHelioviewer: Open-Source Software for Discovery and Image Access in the Petabyte Age (Invited)
NASA Astrophysics Data System (ADS)
Mueller, D.; Dimitoglou, G.; Langenberg, M.; Pagel, S.; Dau, A.; Nuhn, M.; Garcia Ortiz, J. P.; Dietert, H.; Schmidt, L.; Hughitt, V. K.; Ireland, J.; Fleck, B.
2010-12-01
The unprecedented torrent of data returned by the Solar Dynamics Observatory is both a blessing and a barrier: a blessing for making available data with significantly higher spatial and temporal resolution, but a barrier for scientists to access, browse and analyze them. With such staggering data volume, the data is bound to be accessible only from a few repositories and users will have to deal with data sets effectively immobile and practically difficult to download. From a scientist's perspective this poses three challenges: accessing, browsing and finding interesting data while avoiding the proverbial search for a needle in a haystack. To address these challenges, we have developed JHelioviewer, an open-source visualization software that lets users browse large data volumes both as still images and movies. We did so by deploying an efficient image encoding, storage, and dissemination solution using the JPEG 2000 standard. This solution enables users to access remote images at different resolution levels as a single data stream. Users can view, manipulate, pan, zoom, and overlay JPEG 2000 compressed data quickly, without severe network bandwidth penalties. Besides viewing data, the browser provides third-party metadata and event catalog integration to quickly locate data of interest, as well as an interface to the Virtual Solar Observatory to download science-quality data. As part of the Helioviewer Project, JHelioviewer offers intuitive ways to browse large amounts of heterogeneous data remotely and provides an extensible and customizable open-source platform for the scientific community.
Wang, Chunliang; Ritter, Felix; Smedby, Orjan
2010-07-01
To enhance the functional expandability of a picture archiving and communication systems (PACS) workstation and to facilitate the integration of third-part image-processing modules, we propose a browser-server style method. In the proposed solution, the PACS workstation shows the front-end user interface defined in an XML file while the image processing software is running in the background as a server. Inter-process communication (IPC) techniques allow an efficient exchange of image data, parameters, and user input between the PACS workstation and stand-alone image-processing software. Using a predefined communication protocol, the PACS workstation developer or image processing software developer does not need detailed information about the other system, but will still be able to achieve seamless integration between the two systems and the IPC procedure is totally transparent to the final user. A browser-server style solution was built between OsiriX (PACS workstation software) and MeVisLab (Image-Processing Software). Ten example image-processing modules were easily added to OsiriX by converting existing MeVisLab image processing networks. Image data transfer using shared memory added <10ms of processing time while the other IPC methods cost 1-5 s in our experiments. The browser-server style communication based on IPC techniques is an appealing method that allows PACS workstation developers and image processing software developers to cooperate while focusing on different interests.
Introducing PLIA: Planetary Laboratory for Image Analysis
NASA Astrophysics Data System (ADS)
Peralta, J.; Hueso, R.; Barrado, N.; Sánchez-Lavega, A.
2005-08-01
We present a graphical software tool developed under IDL software to navigate, process and analyze planetary images. The software has a complete Graphical User Interface and is cross-platform. It can also run under the IDL Virtual Machine without the need to own an IDL license. The set of tools included allow image navigation (orientation, centring and automatic limb determination), dynamical and photometric atmospheric measurements (winds and cloud albedos), cylindrical and polar projections, as well as image treatment under several procedures. Being written in IDL, it is modular and easy to modify and grow for adding new capabilities. We show several examples of the software capabilities with Galileo-Venus observations: Image navigation, photometrical corrections, wind profiles obtained by cloud tracking, cylindrical projections and cloud photometric measurements. Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.
Uses of software in digital image analysis: a forensic report
NASA Astrophysics Data System (ADS)
Sharma, Mukesh; Jha, Shailendra
2010-02-01
Forensic image analysis is required an expertise to interpret the content of an image or the image itself in legal matters. Major sub-disciplines of forensic image analysis with law enforcement applications include photo-grammetry, photographic comparison, content analysis and image authentication. It has wide applications in forensic science range from documenting crime scenes to enhancing faint or indistinct patterns such as partial fingerprints. The process of forensic image analysis can involve several different tasks, regardless of the type of image analysis performed. Through this paper authors have tried to explain these tasks, which are described in to three categories: Image Compression, Image Enhancement & Restoration and Measurement Extraction. With the help of examples like signature comparison, counterfeit currency comparison and foot-wear sole impression using the software Canvas and Corel Draw.
The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design
NASA Astrophysics Data System (ADS)
Riza, Nabeel A.
2017-02-01
Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications.
Modi, Riddhi A; Mugavero, Michael J; Amico, Rivet K; Keruly, Jeanne; Quinlivan, Evelyn Byrd; Crane, Heidi M; Guzman, Alfredo; Zinski, Anne; Montue, Solange; Roytburd, Katya; Church, Anna; Willig, James H
2017-06-16
Meticulous tracking of study data must begin early in the study recruitment phase and must account for regulatory compliance, minimize missing data, and provide high information integrity and/or reduction of errors. In behavioral intervention trials, participants typically complete several study procedures at different time points. Among HIV-infected patients, behavioral interventions can favorably affect health outcomes. In order to empower newly diagnosed HIV positive individuals to learn skills to enhance retention in HIV care, we developed the behavioral health intervention Integrating ENGagement and Adherence Goals upon Entry (iENGAGE) funded by the National Institute of Allergy and Infectious Diseases (NIAID), where we deployed an in-clinic behavioral health intervention in 4 urban HIV outpatient clinics in the United States. To scale our intervention strategy homogenously across sites, we developed software that would function as a behavioral sciences research platform. This manuscript aimed to: (1) describe the design and implementation of a Web-based software application to facilitate deployment of a multisite behavioral science intervention; and (2) report on results of a survey to capture end-user perspectives of the impact of this platform on the conduct of a behavioral intervention trial. In order to support the implementation of the NIAID-funded trial iENGAGE, we developed software to deploy a 4-site behavioral intervention for new clinic patients with HIV/AIDS. We integrated the study coordinator into the informatics team to participate in the software development process. Here, we report the key software features and the results of the 25-item survey to evaluate user perspectives on research and intervention activities specific to the iENGAGE trial (N=13). The key features addressed are study enrollment, participant randomization, real-time data collection, facilitation of longitudinal workflow, reporting, and reusability. We found 100% user
Application of the GNU Radio platform in the multistatic radar
NASA Astrophysics Data System (ADS)
Szlachetko, Boguslaw; Lewandowski, Andrzej
2009-06-01
This document presents the application of the Software Defined Radio-based platform in the multistatic radar. This platform consists of four-sensor linear antenna, Universal Software Radio Peripheral (USRP) hardware (radio frequency frontend) and GNU-Radio PC software. The paper provides information about architecture of digital signal processing performed by USRP's FPGA (digital down converting blocks) and PC host (implementation of the multichannel digital beamforming). The preliminary results of the signal recording performed by our experimental platform are presented.
Software for MR image overlay guided needle insertions: the clinical translation process
NASA Astrophysics Data System (ADS)
Ungi, Tamas; U-Thainual, Paweena; Fritz, Jan; Iordachita, Iulian I.; Flammang, Aaron J.; Carrino, John A.; Fichtinger, Gabor
2013-03-01
PURPOSE: Needle guidance software using augmented reality image overlay was translated from the experimental phase to support preclinical and clinical studies. Major functional and structural changes were needed to meet clinical requirements. We present the process applied to fulfill these requirements, and selected features that may be applied in the translational phase of other image-guided surgical navigation systems. METHODS: We used an agile software development process for rapid adaptation to unforeseen clinical requests. The process is based on iterations of operating room test sessions, feedback discussions, and software development sprints. The open-source application framework of 3D Slicer and the NA-MIC kit provided sufficient flexibility and stable software foundations for this work. RESULTS: All requirements were addressed in a process with 19 operating room test iterations. Most features developed in this phase were related to workflow simplification and operator feedback. CONCLUSION: Efficient and affordable modifications were facilitated by an open source application framework and frequent clinical feedback sessions. Results of cadaver experiments show that software requirements were successfully solved after a limited number of operating room tests.
A Platform-Independent Plugin for Navigating Online Radiology Cases.
Balkman, Jason D; Awan, Omer A
2016-06-01
Software methods that enable navigation of radiology cases on various digital platforms differ between handheld devices and desktop computers. This has resulted in poor compatibility of online radiology teaching files across mobile smartphones, tablets, and desktop computers. A standardized, platform-independent, or "agnostic" approach for presenting online radiology content was produced in this work by leveraging modern hypertext markup language (HTML) and JavaScript web software technology. We describe the design and evaluation of this software, demonstrate its use across multiple viewing platforms, and make it publicly available as a model for future development efforts.
Zhou, Ji; Applegate, Christopher; Alonso, Albor Dobon; Reynolds, Daniel; Orford, Simon; Mackiewicz, Michal; Griffiths, Simon; Penfield, Steven; Pullen, Nick
2017-01-01
Plants demonstrate dynamic growth phenotypes that are determined by genetic and environmental factors. Phenotypic analysis of growth features over time is a key approach to understand how plants interact with environmental change as well as respond to different treatments. Although the importance of measuring dynamic growth traits is widely recognised, available open software tools are limited in terms of batch image processing, multiple traits analyses, software usability and cross-referencing results between experiments, making automated phenotypic analysis problematic. Here, we present Leaf-GP (Growth Phenotypes), an easy-to-use and open software application that can be executed on different computing platforms. To facilitate diverse scientific communities, we provide three software versions, including a graphic user interface (GUI) for personal computer (PC) users, a command-line interface for high-performance computer (HPC) users, and a well-commented interactive Jupyter Notebook (also known as the iPython Notebook) for computational biologists and computer scientists. The software is capable of extracting multiple growth traits automatically from large image datasets. We have utilised it in Arabidopsis thaliana and wheat ( Triticum aestivum ) growth studies at the Norwich Research Park (NRP, UK). By quantifying a number of growth phenotypes over time, we have identified diverse plant growth patterns between different genotypes under several experimental conditions. As Leaf-GP has been evaluated with noisy image series acquired by different imaging devices (e.g. smartphones and digital cameras) and still produced reliable biological outputs, we therefore believe that our automated analysis workflow and customised computer vision based feature extraction software implementation can facilitate a broader plant research community for their growth and development studies. Furthermore, because we implemented Leaf-GP based on open Python-based computer vision, image
Coronagraphic Imaging of Debris Disks from a High Altitude Balloon Platform
NASA Technical Reports Server (NTRS)
Unwin, Stephen; Traub, Wesley; Bryden, Geoffrey; Brugarolas, Paul; Chen, Pin; Guyon, Olivier; Hillenbrand, Lynne; Kasdin, Jeremy; Krist, John; Macintosh, Bruce;
2012-01-01
Debris disks around nearby stars are tracers of the planet formation process, and they are a key element of our understanding of the formation and evolution of extrasolar planetary systems. With multi-color images of a significant number of disks, we can probe important questions: can we learn about planetary system evolution; what materials are the disks made of; and can they reveal the presence of planets? Most disks are known to exist only through their infrared flux excesses as measured by the Spitzer Space Telescope, and through images measured by Herschel. The brightest, most extended disks have been imaged with HST, and a few, such as Fomalhaut, can be observed using ground-based telescopes. But the number of good images is still very small, and there are none of disks with densities as low as the disk associated with the asteroid belt and Edgeworth-Kuiper belt in our own Solar System. Direct imaging of disks is a major observational challenge, demanding high angular resolution and extremely high dynamic range close to the parent star. The ultimate experiment requires a space-based platform, but demonstrating much of the needed technology, mitigating the technical risks of a space-based coronagrap, and performing valuable measurements of circumstellar debris disks, can be done from a high-altitude balloon platform. In this paper we present a balloon-borne telescope experiment based on the Zodiac II design that would undertake compelling studies of a sample of debris disks.
Coronagraphic Imaging of Debris Disks from a High Altitude Balloon Platform
NASA Technical Reports Server (NTRS)
Unwin, Stephen; Traub, Wesley; Bryden, Geoffrey; Brugarolas, Paul; Chen, Pin; Guyon, Olivier; Hillenbrand, Lynne; Krist, John; Macintosh, Bruce; Mawet, Dimitri;
2012-01-01
Debris disks around nearby stars are tracers of the planet formation process, and they are a key element of our understanding of the formation and evolution of extrasolar planetary systems. With multi-color images of a significant number of disks, we can probe important questions: can we learn about planetary system evolution; what materials are the disks made of; and can they reveal the presence of planets? Most disks are known to exist only through their infrared flux excesses as measured by the Spitzer Space Telescope, and through images measaured by Herschel. The brightest, most extended disks have been imaged with HST, and a few, such as Fomalhaut, can be observed using ground-based telescopes. But the number of good images is still very small, and there are none of disks with densities as low as the disk associated with the asteroid belt and Edgeworth-Kuiper belt in our own Solar System. Direct imaging of disks is major observational challenge, demanding high angular resolution and extremely high dynamic range close to the parent star. The ultimate experiment requires a space-based platform, but demonstrating much of the needed technology, mitigating the technical risks of a space-based coronagraph, and performing valuable measurements of circumstellar debris disks, can be done from a high-altitude balloon platform. In this paper we present a balloon-borne telescope concept based on the Zodiac II design that could undertake compelling studies of a sample of debris disks.
Software Tools for Development on the Peregrine System | High-Performance
Computing | NREL Software Tools for Development on the Peregrine System Software Tools for and manage software at the source code level. Cross-Platform Make and SCons The "Cross-Platform Make" (CMake) package is from Kitware, and SCons is a modern software build tool based on Python
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-19
... Devices and Related Software; Notice of Investigation AGENCY: U.S. International Trade Commission. ACTION... certain digital imaging devices and related software by reason of infringement of certain claims of U.S... digital imaging devices and related software that infringe one or more of claim 1-3 and 5-8 of U.S. Patent...
NASA Astrophysics Data System (ADS)
Lu, Xiaodong; Wu, Tianze; Zhou, Jun; Zhao, Bin; Ma, Xiaoyuan; Tang, Xiucheng
2016-03-01
An electronic image stabilization method compounded with inertia information, which can compensate the coupling interference caused by the pitch-yaw movement of the optical stable platform system, has been proposed in this paper. Firstly the mechanisms of coning rotation and lever-arm translation of line of sight (LOS) are analyzed during the stabilization process under moving carriers, and the mathematical model which describes the relationship between LOS rotation angle and platform attitude angle are derived. Then the image spin angle caused by coning rotation is estimated by using inertia information. Furthermore, an adaptive block matching method, which based on image edge and angular point, is proposed to smooth the jitter created by the lever-arm translation. This method optimizes the matching process and strategies. Finally, the results of hardware-in-the-loop simulation verified the effectiveness and real-time performance of the proposed method.
The relationships between software publications and software systems
NASA Astrophysics Data System (ADS)
Hogg, David W.
2017-01-01
When we build software systems or software tools for astronomy, we sometimes do and sometimes don't also write and publish standard scientific papers about those software systems. I will discuss the pros and cons of writing such publications. There are impacts of writing such papers immediately (they can affect the design and structure of the software project itself), in the short term (they can promote adoption and legitimize the software), in the medium term (they can provide a platform for all the literature's mechanisms for citation, criticism, and reuse), and in the long term (they can preserve ideas that are embodied in the software, possibly on timescales much longer than the lifetime of any software context). I will argue that as important as pure software contributions are to astronomy—and I am both a preacher and a practitioner—software contributions are even more valuable when they are associated with traditional scientific publications. There are exceptions and complexities of course, which I will discuss.
IMCAT: Image and Catalogue Manipulation Software
NASA Astrophysics Data System (ADS)
Kaiser, Nick
2011-08-01
The IMCAT software was developed initially to do faint galaxy photometry for weak lensing studies, and provides a fairly complete set of tools for this kind of work. Unlike most packages for doing data analysis, the tools are standalone unix commands which you can invoke from the shell, via shell scripts or from perl scripts. The tools are arranges in a tree of directories. One main branch is the ’imtools’. These deal only with fits files. The most important imtool is the ’image calculator’ ’ic’ which allows one to do rather general operations on fits images. A second branch is the ’catools’ which operate only on catalogues. The key cattool is ’lc’; this effectively defines the format of IMCAT catalogues, and allows one to do very general operations on and filtering of such catalogues. A third branch is the ’imcattools’. These tend to be much more specialised than the cattools and imcattools and are focussed on faint galaxy photometry.
The Performance Evaluation of Multi-Image 3d Reconstruction Software with Different Sensors
NASA Astrophysics Data System (ADS)
Mousavi, V.; Khosravi, M.; Ahmadi, M.; Noori, N.; Naveh, A. Hosseini; Varshosaz, M.
2015-12-01
Today, multi-image 3D reconstruction is an active research field and generating three dimensional model of the objects is one the most discussed issues in Photogrammetry and Computer Vision that can be accomplished using range-based or image-based methods. Very accurate and dense point clouds generated by range-based methods such as structured light systems and laser scanners has introduced them as reliable tools in the industry. Image-based 3D digitization methodologies offer the option of reconstructing an object by a set of unordered images that depict it from different viewpoints. As their hardware requirements are narrowed down to a digital camera and a computer system, they compose an attractive 3D digitization approach, consequently, although range-based methods are generally very accurate, image-based methods are low-cost and can be easily used by non-professional users. One of the factors affecting the accuracy of the obtained model in image-based methods is the software and algorithm used to generate three dimensional model. These algorithms are provided in the form of commercial software, open source and web-based services. Another important factor in the accuracy of the obtained model is the type of sensor used. Due to availability of mobile sensors to the public, popularity of professional sensors and the advent of stereo sensors, a comparison of these three sensors plays an effective role in evaluating and finding the optimized method to generate three-dimensional models. Lots of research has been accomplished to identify a suitable software and algorithm to achieve an accurate and complete model, however little attention is paid to the type of sensors used and its effects on the quality of the final model. The purpose of this paper is deliberation and the introduction of an appropriate combination of a sensor and software to provide a complete model with the highest accuracy. To do this, different software, used in previous studies, were compared and
GPU-Based Real-Time Volumetric Ultrasound Image Reconstruction for a Ring Array
Choe, Jung Woo; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T.
2014-01-01
Synthetic phased array (SPA) beamforming with Hadamard coding and aperture weighting is an optimal option for real-time volumetric imaging with a ring array, a particularly attractive geometry in intracardiac and intravascular applications. However, the imaging frame rate of this method is limited by the immense computational load required in synthetic beamforming. For fast imaging with a ring array, we developed graphics processing unit (GPU)-based, real-time image reconstruction software that exploits massive data-level parallelism in beamforming operations. The GPU-based software reconstructs and displays three cross-sectional images at 45 frames per second (fps). This frame rate is 4.5 times higher than that for our previously-developed multi-core CPU-based software. In an alternative imaging mode, it shows one B-mode image rotating about the axis and its maximum intensity projection (MIP), processed at a rate of 104 fps. This paper describes the image reconstruction procedure on the GPU platform and presents the experimental images obtained using this software. PMID:23529080
Garcia, Marie-Paule; Villoing, Daphnée; McKay, Erin; Ferrer, Ludovic; Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila; Bardiès, Manuel
2015-12-01
The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit gate offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on gate to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user's imaging requirements and generates automatically command files used as input for gate. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant gate input files are generated for the virtual patient model and associated pharmacokinetics. Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body "step and shoot" acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry computation performed on the ICRP 110
Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; Cristini, Vittorio; Brinker, Lina M.; Staquicini, Fernanda I.; Cardó-Vila, Marina; D’Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R.; Dogra, Prashant; Melancon, Marites P.; Stafford, R. Jason; Miyazono, Kohei; Gelovani, Juri G.; Kataoka, Kazunori; Brinker, C. Jeffrey; Sidman, Richard L.; Arap, Wadih; Pasqualini, Renata
2016-01-01
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications. PMID:26839407
Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata
2016-02-16
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.
Software system design for the non-null digital Moiré interferometer
NASA Astrophysics Data System (ADS)
Chen, Meng; Hao, Qun; Hu, Yao; Wang, Shaopu; Li, Tengfei; Li, Lin
2016-11-01
Aspheric optical components are an indispensable part of modern optics systems. With the development of aspheric optical elements fabrication technique, high-precision figure error test method of aspheric surfaces is a quite urgent issue now. We proposed a digital Moiré interferometer technique (DMIT) based on partial compensation principle for aspheric and freeform surface measurement. Different from traditional interferometer, DMIT consists of a real and a virtual interferometer. The virtual interferometer is simulated with Zemax software to perform phase-shifting and alignment. We can get the results by a series of calculation with the real interferogram and virtual interferograms generated by computer. DMIT requires a specific, reliable software system to ensure its normal work. Image acquisition and data processing are two important parts in this system. And it is also a challenge to realize the connection between the real and virtual interferometer. In this paper, we present a software system design for DMIT with friendly user interface and robust data processing features, enabling us to acquire the figure error of the measured asphere. We choose Visual C++ as the software development platform and control the ideal interferometer by using hybrid programming with Zemax. After image acquisition and data transmission, the system calls image processing algorithms written with Matlab to calculate the figure error of the measured asphere. We test the software system experimentally. In the experiment, we realize the measurement of an aspheric surface and prove the feasibility of the software system.
Interfaces and Integration of Medical Image Analysis Frameworks: Challenges and Opportunities.
Covington, Kelsie; McCreedy, Evan S; Chen, Min; Carass, Aaron; Aucoin, Nicole; Landman, Bennett A
2010-05-25
Clinical research with medical imaging typically involves large-scale data analysis with interdependent software toolsets tied together in a processing workflow. Numerous, complementary platforms are available, but these are not readily compatible in terms of workflows or data formats. Both image scientists and clinical investigators could benefit from using the framework which is a most natural fit to the specific problem at hand, but pragmatic choices often dictate that a compromise platform is used for collaboration. Manual merging of platforms through carefully tuned scripts has been effective, but exceptionally time consuming and is not feasible for large-scale integration efforts. Hence, the benefits of innovation are constrained by platform dependence. Removing this constraint via integration of algorithms from one framework into another is the focus of this work. We propose and demonstrate a light-weight interface system to expose parameters across platforms and provide seamless integration. In this initial effort, we focus on four platforms Medical Image Analysis and Visualization (MIPAV), Java Image Science Toolkit (JIST), command line tools, and 3D Slicer. We explore three case studies: (1) providing a system for MIPAV to expose internal algorithms and utilize these algorithms within JIST, (2) exposing JIST modules through self-documenting command line interface for inclusion in scripting environments, and (3) detecting and using JIST modules in 3D Slicer. We review the challenges and opportunities for light-weight software integration both within development language (e.g., Java in MIPAV and JIST) and across languages (e.g., C/C++ in 3D Slicer and shell in command line tools).
A Low-Cost Tele-Imaging Platform for Developing Countries
Adambounou, Kokou; Adjenou, Victor; Salam, Alex P.; Farin, Fabien; N’Dakena, Koffi Gilbert; Gbeassor, Messanvi; Arbeille, Philippe
2014-01-01
Purpose: To design a “low-cost” tele-imaging method allowing real-time tele-ultrasound expertise, delayed tele-ultrasound diagnosis, and tele-radiology between remote peripherals hospitals and clinics (patient centers) and university hospital centers (expert center). Materials and methods: A system of communication via internet (IP camera and remote access software) enabling transfer of ultrasound videos and images between two centers allows a real-time tele-radiology expertise in the presence of a junior sonographer or radiologist at the patient center. In the absence of a sonographer or radiologist at the patient center, a 3D reconstruction program allows a delayed tele-ultrasound diagnosis with images acquired by a lay operator (e.g., midwife, nurse, technician). The system was tested both with high and low bandwidth. The system can further accommodate non-ultrasound tele-radiology (conventional radiography, mammography, and computer tomography for example). The system was tested on 50 patients between CHR Tsevie in Togo (40 km from Lomé-Togo and 4500 km from Tours-France) and CHU Campus at Lomé and CHU Trousseau in Tours. Results: A real-time tele-expertise was successfully performed with a delay of approximately 1.5 s with an internet bandwidth of around 1 Mbps (IP Camera) and 512 kbps (remote access software). A delayed tele-ultrasound diagnosis was also performed with satisfactory results. The transmission of radiological images from the patient center to the expert center was of adequate quality. Delayed tele-ultrasound and tele-radiology was possible even in the presence of a low-bandwidth internet connection. Conclusion: This tele-imaging method, requiring nothing by readily available and inexpensive technology and equipment, offers a major opportunity for telemedicine in developing countries. PMID:25250306
Software for Verifying Image-Correlation Tie Points
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Yagi, Gary
2008-01-01
A computer program enables assessment of the quality of tie points in the image-correlation processes of the software described in the immediately preceding article. Tie points are computed in mappings between corresponding pixels in the left and right images of a stereoscopic pair. The mappings are sometimes not perfect because image data can be noisy and parallax can cause some points to appear in one image but not the other. The present computer program relies on the availability of a left- right correlation map in addition to the usual right left correlation map. The additional map must be generated, which doubles the processing time. Such increased time can now be afforded in the data-processing pipeline, since the time for map generation is now reduced from about 60 to 3 minutes by the parallelization discussed in the previous article. Parallel cluster processing time, therefore, enabled this better science result. The first mapping is typically from a point (denoted by coordinates x,y) in the left image to a point (x',y') in the right image. The second mapping is from (x',y') in the right image to some point (x",y") in the left image. If (x,y) and(x",y") are identical, then the mapping is considered perfect. The perfect-match criterion can be relaxed by introducing an error window that admits of round-off error and a small amount of noise. The mapping procedure can be repeated until all points in each image not connected to points in the other image are eliminated, so that what remains are verified correlation data.
Software architecture for intelligent image processing using Prolog
NASA Astrophysics Data System (ADS)
Jones, Andrew C.; Batchelor, Bruce G.
1994-10-01
We describe a prototype system for interactive image processing using Prolog, implemented by the first author on an Apple Macintosh computer. This system is inspired by Prolog+, but differs from it in two particularly important respects. The first is that whereas Prolog+ assumes the availability of dedicated image processing hardware, with which the Prolog system communicates, our present system implements image processing functions in software using the C programming language. The second difference is that although our present system supports Prolog+ commands, these are implemented in terms of lower-level Prolog predicates which provide a more flexible approach to image manipulation. We discuss the impact of the Apple Macintosh operating system upon the implementation of the image-processing functions, and the interface between these functions and the Prolog system. We also explain how the Prolog+ commands have been implemented. The system described in this paper is a fairly early prototype, and we outline how we intend to develop the system, a task which is expedited by the extensible architecture we have implemented.
Gallo-Oller, Gabriel; Ordoñez, Raquel; Dotor, Javier
2018-06-01
Since its first description, Western blot has been widely used in molecular labs. It constitutes a multistep method that allows the detection and/or quantification of proteins from simple to complex protein mixtures. Western blot quantification method constitutes a critical step in order to obtain accurate and reproducible results. Due to the technical knowledge required for densitometry analysis together with the resources availability, standard office scanners are often used for the imaging acquisition of developed Western blot films. Furthermore, the use of semi-quantitative software as ImageJ (Java-based image-processing and analysis software) is clearly increasing in different scientific fields. In this work, we describe the use of office scanner coupled with the ImageJ software together with a new image background subtraction method for accurate Western blot quantification. The proposed method represents an affordable, accurate and reproducible approximation that could be used in the presence of limited resources availability. Copyright © 2018 Elsevier B.V. All rights reserved.
VirtualPlant: A Software Platform to Support Systems Biology Research1[W][OA
Katari, Manpreet S.; Nowicki, Steve D.; Aceituno, Felipe F.; Nero, Damion; Kelfer, Jonathan; Thompson, Lee Parnell; Cabello, Juan M.; Davidson, Rebecca S.; Goldberg, Arthur P.; Shasha, Dennis E.; Coruzzi, Gloria M.; Gutiérrez, Rodrigo A.
2010-01-01
Data generation is no longer the limiting factor in advancing biological research. In addition, data integration, analysis, and interpretation have become key bottlenecks and challenges that biologists conducting genomic research face daily. To enable biologists to derive testable hypotheses from the increasing amount of genomic data, we have developed the VirtualPlant software platform. VirtualPlant enables scientists to visualize, integrate, and analyze genomic data from a systems biology perspective. VirtualPlant integrates genome-wide data concerning the known and predicted relationships among genes, proteins, and molecules, as well as genome-scale experimental measurements. VirtualPlant also provides visualization techniques that render multivariate information in visual formats that facilitate the extraction of biological concepts. Importantly, VirtualPlant helps biologists who are not trained in computer science to mine lists of genes, microarray experiments, and gene networks to address questions in plant biology, such as: What are the molecular mechanisms by which internal or external perturbations affect processes controlling growth and development? We illustrate the use of VirtualPlant with three case studies, ranging from querying a gene of interest to the identification of gene networks and regulatory hubs that control seed development. Whereas the VirtualPlant software was developed to mine Arabidopsis (Arabidopsis thaliana) genomic data, its data structures, algorithms, and visualization tools are designed in a species-independent way. VirtualPlant is freely available at www.virtualplant.org. PMID:20007449
NASA Astrophysics Data System (ADS)
Jia, Yongwei; Cheng, Liming; Yu, Guangrong; Lou, Yongjian; Yu, Yan; Chen, Bo; Ding, Zuquan
2008-03-01
A method of digital image measurement of specimen deformation based on CCD cameras and Image J software was developed. This method was used to measure the biomechanics behavior of human pelvis. Six cadaveric specimens from the third lumbar vertebra to the proximal 1/3 part of femur were tested. The specimens without any structural abnormalities were dissected of all soft tissue, sparing the hip joint capsules and the ligaments of the pelvic ring and floor. Markers with black dot on white background were affixed to the key regions of the pelvis. Axial loading from the proximal lumbar was applied by MTS in the gradient of 0N to 500N, which simulated the double feet standing stance. The anterior and lateral images of the specimen were obtained through two CCD cameras. Based on Image J software, digital image processing software, which can be freely downloaded from the National Institutes of Health, digital 8-bit images were processed. The procedure includes the recognition of digital marker, image invert, sub-pixel reconstruction, image segmentation, center of mass algorithm based on weighted average of pixel gray values. Vertical displacements of S1 (the first sacral vertebrae) in front view and micro-angular rotation of sacroiliac joint in lateral view were calculated according to the marker movement. The results of digital image measurement showed as following: marker image correlation before and after deformation was excellent. The average correlation coefficient was about 0.983. According to the 768 × 576 pixels image (pixel size 0.68mm × 0.68mm), the precision of the displacement detected in our experiment was about 0.018 pixels and the comparatively error could achieve 1.11\\perthou. The average vertical displacement of S1 of the pelvis was 0.8356+/-0.2830mm under vertical load of 500 Newtons and the average micro-angular rotation of sacroiliac joint in lateral view was 0.584+/-0.221°. The load-displacement curves obtained from our optical measure system
Using Deep Learning Algorithm to Enhance Image-review Software for Surveillance Cameras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Yonggang; Thomas, Maikael A.
We propose the development of proven deep learning algorithms to flag objects and events of interest in Next Generation Surveillance System (NGSS) surveillance to make IAEA image review more efficient. Video surveillance is one of the core monitoring technologies used by the IAEA Department of Safeguards when implementing safeguards at nuclear facilities worldwide. The current image review software GARS has limited automated functions, such as scene-change detection, black image detection and missing scene analysis, but struggles with highly cluttered backgrounds. A cutting-edge algorithm to be developed in this project will enable efficient and effective searches in images and video streamsmore » by identifying and tracking safeguards relevant objects and detect anomalies in their vicinity. In this project, we will develop the algorithm, test it with the IAEA surveillance cameras and data sets collected at simulated nuclear facilities at BNL and SNL, and implement it in a software program for potential integration into the IAEA’s IRAP (Integrated Review and Analysis Program).« less
JHelioviewer: Open-Source Software for Discovery and Image Access in the Petabyte Age
NASA Astrophysics Data System (ADS)
Mueller, D.; Dimitoglou, G.; Garcia Ortiz, J.; Langenberg, M.; Nuhn, M.; Dau, A.; Pagel, S.; Schmidt, L.; Hughitt, V. K.; Ireland, J.; Fleck, B.
2011-12-01
The unprecedented torrent of data returned by the Solar Dynamics Observatory is both a blessing and a barrier: a blessing for making available data with significantly higher spatial and temporal resolution, but a barrier for scientists to access, browse and analyze them. With such staggering data volume, the data is accessible only from a few repositories and users have to deal with data sets effectively immobile and practically difficult to download. From a scientist's perspective this poses three challenges: accessing, browsing and finding interesting data while avoiding the proverbial search for a needle in a haystack. To address these challenges, we have developed JHelioviewer, an open-source visualization software that lets users browse large data volumes both as still images and movies. We did so by deploying an efficient image encoding, storage, and dissemination solution using the JPEG 2000 standard. This solution enables users to access remote images at different resolution levels as a single data stream. Users can view, manipulate, pan, zoom, and overlay JPEG 2000 compressed data quickly, without severe network bandwidth penalties. Besides viewing data, the browser provides third-party metadata and event catalog integration to quickly locate data of interest, as well as an interface to the Virtual Solar Observatory to download science-quality data. As part of the ESA/NASA Helioviewer Project, JHelioviewer offers intuitive ways to browse large amounts of heterogeneous data remotely and provides an extensible and customizable open-source platform for the scientific community. In addition, the easy-to-use graphical user interface enables the general public and educators to access, enjoy and reuse data from space missions without barriers.
Shenoy, Shailesh M
2016-07-01
A challenge in any imaging laboratory, especially one that uses modern techniques, is to achieve a sustainable and productive balance between using open source and commercial software to perform quantitative image acquisition, analysis and visualization. In addition to considering the expense of software licensing, one must consider factors such as the quality and usefulness of the software's support, training and documentation. Also, one must consider the reproducibility with which multiple people generate results using the same software to perform the same analysis, how one may distribute their methods to the community using the software and the potential for achieving automation to improve productivity.
In Search of the Optimal Heart Perfusion Ultrasound Imaging Platform.
Grishenkov, Dmitry; Gonon, Adrian; Janerot-Sjoberg, Birgitta
2015-09-01
Quantification of myocardial perfusion by contrast echocardiography remains a challenge. Existing imaging phantoms used to evaluate the performance of ultrasound scanners do not comply with perfusion basics in the myocardium, where perfusion and motion are inherently coupled. To contribute toward an improvement, we developed a contrast echocardiographic perfusion imaging platform based on an isolated rat heart coupled to an ultrasound scanner. Perfusion was assessed by using 3 different types of contrast agents: dextran-based Promiten (Meda AB, Solna, Sweden), phospholipid-shelled SonoVue (Bracco Diagnostics, Inc, Princeton, NJ), and polymer-shelled MB-pH5-RT, developed in-house. The myocardial video intensity was monitored over time from contrast agent administration to peak, and 2 characteristic constants were calculated by using an exponential fit: A, representing capillary volume; and β, representing inflow velocity. Acquired experimental evidence demonstrates that the application of all 3 contrast agents allows sonographic estimation of myocardial perfusion in the isolated rat heart. Video intensity maps show that an increase in contrast concentration increases the late-plateau values, A, mimicking increased capillary volume. Estimated values of the flow, proportional to A × β, increase when the pressure of the perfusate column increases from 80 to 110 cm of water. This finding is in agreement with the true values of the coronary flow increase measured by a flowmeter attached to the aortic cannula. The contrast echocardiographic perfusion imaging platform described holds promise for standardized evaluation and optimization of contrast perfusion ultrasound imaging in which real-time inflow curves at low acoustic power semiquantitatively reflect coronary flow. © 2015 by the American Institute of Ultrasound in Medicine.
Skounakis, Emmanouil; Farmaki, Christina; Sakkalis, Vangelis; Roniotis, Alexandros; Banitsas, Konstantinos; Graf, Norbert; Marias, Konstantinos
2010-01-01
This paper presents a novel, open access interactive platform for 3D medical image analysis, simulation and visualization, focusing in oncology images. The platform was developed through constant interaction and feedback from expert clinicians integrating a thorough analysis of their requirements while having an ultimate goal of assisting in accurately delineating tumors. It allows clinicians not only to work with a large number of 3D tomographic datasets but also to efficiently annotate multiple regions of interest in the same session. Manual and semi-automatic segmentation techniques combined with integrated correction tools assist in the quick and refined delineation of tumors while different users can add different components related to oncology such as tumor growth and simulation algorithms for improving therapy planning. The platform has been tested by different users and over large number of heterogeneous tomographic datasets to ensure stability, usability, extensibility and robustness with promising results. the platform, a manual and tutorial videos are available at: http://biomodeling.ics.forth.gr. it is free to use under the GNU General Public License.
On-line 3-dimensional confocal imaging in vivo.
Li, J; Jester, J V; Cavanagh, H D; Black, T D; Petroll, W M
2000-09-01
In vivo confocal microscopy through focusing (CMTF) can provide a 3-D stack of high-resolution corneal images and allows objective measurements of corneal sublayer thickness and backscattering. However, current systems require time-consuming off-line image processing and analysis on multiple software platforms. Furthermore, there is a trade off between the CMTF speed and measurement precision. The purpose of this study was to develop a novel on-line system for in vivo corneal imaging and analysis that overcomes these limitations. A tandem scanning confocal microscope (TSCM) was used for corneal imaging. The TSCM video camera was interfaced directly to a PC image acquisition board to implement real-time digitization. Software was developed to allow in vivo 2-D imaging, CMTF image acquisition, interactive 3-D reconstruction, and analysis of CMTF data to be performed on line in a single user-friendly environment. A procedure was also incorporated to separate the odd/even video fields, thereby doubling the CMTF sampling rate and theoretically improving the precision of CMTF thickness measurements by a factor of two. In vivo corneal examinations of a normal human and a photorefractive keratectomy patient are presented to demonstrate the capabilities of the new system. Improvements in the convenience, speed, and functionality of in vivo CMTF image acquisition, display, and analysis are demonstrated. This is the first full-featured software package designed for in vivo TSCM imaging of the cornea, which performs both 2-D and 3-D image acquisition, display, and processing as well as CMTF analysis. The use of a PC platform and incorporation of easy to use, on line, and interactive features should help to improve the clinical utility of this technology.
A DICOM Based Collaborative Platform for Real-Time Medical Teleconsultation on Medical Images.
Maglogiannis, Ilias; Andrikos, Christos; Rassias, Georgios; Tsanakas, Panayiotis
2017-01-01
The paper deals with the design of a Web-based platform for real-time medical teleconsultation on medical images. The proposed platform combines the principles of heterogeneous Workflow Management Systems (WfMSs), the peer-to-peer networking architecture and the SPA (Single-Page Application) concept, to facilitate medical collaboration among healthcare professionals geographically distributed. The presented work leverages state-of-the-art features of the web to support peer-to-peer communication using the WebRTC (Web Real Time Communication) protocol and client-side data processing for creating an integrated collaboration environment. The paper discusses the technical details of implementation and presents the operation of the platform in practice along with some initial results.
NASA Astrophysics Data System (ADS)
Dervilllé, A.; Labrosse, A.; Zimmermann, Y.; Foucher, J.; Gronheid, R.; Boeckx, C.; Singh, A.; Leray, P.; Halder, S.
2016-03-01
The dimensional scaling in IC manufacturing strongly drives the demands on CD and defect metrology techniques and their measurement uncertainties. Defect review has become as important as CD metrology and both of them create a new metrology paradigm because it creates a completely new need for flexible, robust and scalable metrology software. Current, software architectures and metrology algorithms are performant but it must be pushed to another higher level in order to follow roadmap speed and requirements. For example: manage defect and CD in one step algorithm, customize algorithms and outputs features for each R&D team environment, provide software update every day or every week for R&D teams in order to explore easily various development strategies. The final goal is to avoid spending hours and days to manually tune algorithm to analyze metrology data and to allow R&D teams to stay focus on their expertise. The benefits are drastic costs reduction, more efficient R&D team and better process quality. In this paper, we propose a new generation of software platform and development infrastructure which can integrate specific metrology business modules. For example, we will show the integration of a chemistry module dedicated to electronics materials like Direct Self Assembly features. We will show a new generation of image analysis algorithms which are able to manage at the same time defect rates, images classifications, CD and roughness measurements with high throughput performances in order to be compatible with HVM. In a second part, we will assess the reliability, the customization of algorithm and the software platform capabilities to follow new specific semiconductor metrology software requirements: flexibility, robustness, high throughput and scalability. Finally, we will demonstrate how such environment has allowed a drastic reduction of data analysis cycle time.
The Orthanc Ecosystem for Medical Imaging.
Jodogne, Sébastien
2018-05-03
This paper reviews the components of Orthanc, a free and open-source, highly versatile ecosystem for medical imaging. At the core of the Orthanc ecosystem, the Orthanc server is a lightweight vendor neutral archive that provides PACS managers with a powerful environment to automate and optimize the imaging flows that are very specific to each hospital. The Orthanc server can be extended with plugins that provide solutions for teleradiology, digital pathology, or enterprise-ready databases. It is shown how software developers and research engineers can easily develop external software or Web portals dealing with medical images, with minimal knowledge of the DICOM standard, thanks to the advanced programming interface of the Orthanc server. The paper concludes by introducing the Stone of Orthanc, an innovative toolkit for the cross-platform rendering of medical images.
FTOOLS: A general package of software to manipulate FITS files
NASA Astrophysics Data System (ADS)
Blackburn, J. K.; Shaw, R. A.; Payne, H. E.; Hayes, J. J. E.; Heasarc
1999-12-01
FTOOLS, a highly modular collection of utilities for processing and analyzing data in the FITS (Flexible Image Transport System) format, has been developed in support of the HEASARC (High Energy Astrophysics Research Archive Center) at NASA's Goddard Space Flight Center. The FTOOLS package contains many utility programs which perform modular tasks on any FITS image or table, as well as higher-level analysis programs designed specifically for data from current and past high energy astrophysics missions. The utility programs for FITS tables are especially rich and powerful, and provide functions for presentation of file contents, extraction of specific rows or columns, appending or merging tables, binning values in a column or selecting subsets of rows based on a boolean expression. Individual FTOOLS programs can easily be chained together in scripts to achieve more complex operations such as the generation and displaying of spectra or light curves. FTOOLS development began in 1991 and has produced the main set of data analysis software for the current ASCA and RXTE space missions and for other archival sets of X-ray and gamma-ray data. The FTOOLS software package is supported on most UNIX platforms and on Windows machines. The user interface is controlled by standard parameter files that are very similar to those used by IRAF. The package is self documenting through a stand alone help task called fhelp. Software is written in ANSI C and FORTRAN to provide portability across most computer systems. The data format dependencies between hardware platforms are isolated through the FITSIO library package.
Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; ...
2016-02-02
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less
NASA Technical Reports Server (NTRS)
Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim
2012-01-01
Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.
The ALMA Common Software as a Basis for a Distributed Software Development
NASA Astrophysics Data System (ADS)
Raffi, Gianni; Chiozzi, Gianluca; Glendenning, Brian
The Atacama Large Millimeter Array (ALMA) is a joint project involving astronomical organizations in Europe, North America and Japan. ALMA will consist of 64 12-m antennas operating in the millimetre and sub-millimetre wavelength range, with baselines of more than 10 km. It will be located at an altitude above 5000 m in the Chilean Atacama desert. The ALMA Computing group is a joint group with staff scattered on 3 continents and is responsible for all the control and data flow software related to ALMA, including tools ranging from support of proposal preparation to archive access of automatically created images. Early in the project it was decided that an ALMA Common Software (ACS) would be developed as a way to provide to all partners involved in the development a common software platform. The original assumption was that some key middleware like communication via CORBA and the use of XML and Java would be part of the project. It was intended from the beginning to develop this software in an incremental way based on releases, so that it would then evolve into an essential embedded part of all ALMA software applications. In this way we would build a basic unity and coherence into a system that will have been developed in a distributed fashion. This paper evaluates our progress after 1.5 year of work, following a few tests and preliminary releases. It analyzes the advantages and difficulties of such an ambitious approach, which creates an interface across all the various control and data flow applications.
A modular and programmable development platform for capsule endoscopy system.
Khan, Tareq Hasan; Shrestha, Ravi; Wahid, Khan A
2014-06-01
The state-of-the-art capsule endoscopy (CE) technology offers painless examination for the patients and the ability to examine the interior of the gastrointestinal tract by a noninvasive procedure for the gastroenterologists. In this work, a modular and flexible CE development system platform consisting of a miniature field programmable gate array (FPGA) based electronic capsule, a microcontroller based portable data recorder unit and computer software is designed and developed. Due to the flexible and reprogrammable nature of the system, various image processing and compression algorithms can be tested in the design without requiring any hardware change. The designed capsule prototype supports various imaging modes including white light imaging (WLI) and narrow band imaging (NBI), and communicates with the data recorder in full duplex fashion, which enables configuring the image size and imaging mode in real time during examination. A low complexity image compressor based on a novel color-space is implemented inside the capsule to reduce the amount of RF transmission data. The data recorder contains graphical LCD for real time image viewing and SD cards for storing image data. Data can be uploaded to a computer or Smartphone by SD card, USB interface or by wireless Bluetooth link. Computer software is developed that decompresses and reconstructs images. The fabricated capsule PCBs have a diameter of 16 mm. An ex-vivo animal testing has also been conducted to validate the results.
Oliveira, M; Lopez, G; Geambastiani, P; Ubeda, C
2018-05-01
A quality assurance (QA) program is a valuable tool for the continuous production of optimal quality images. The aim of this paper is to assess a newly developed automatic computer software for image quality (IR) evaluation in fluoroscopy X-ray systems. Test object images were acquired using one fluoroscopy system, Siemens Axiom Artis model (Siemens AG, Medical Solutions Erlangen, Germany). The software was developed as an ImageJ plugin. Two image quality parameters were assessed: high-contrast spatial resolution (HCSR) and signal-to-noise ratio (SNR). The time between manual and automatic image quality assessment procedures were compared. The paired t-test was used to assess the data. p Values of less than 0.05 were considered significant. The Fluoro-QC software generated faster IQ evaluation results (mean = 0.31 ± 0.08 min) than manual procedure (mean = 4.68 ± 0.09 min). The mean difference between techniques was 4.36 min. Discrepancies were identified in the region of interest (ROI) areas drawn manually with evidence of user dependence. The new software presented the results of two tests (HCSR = 3.06, SNR = 5.17) and also collected information from the DICOM header. Significant differences were not identified between manual and automatic measures of SNR (p value = 0.22) and HCRS (p value = 0.46). The Fluoro-QC software is a feasible, fast and free to use method for evaluating imaging quality parameters on fluoroscopy systems. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
Radiology and Enterprise Medical Imaging Extensions (REMIX).
Erdal, Barbaros S; Prevedello, Luciano M; Qian, Songyue; Demirer, Mutlu; Little, Kevin; Ryu, John; O'Donnell, Thomas; White, Richard D
2018-02-01
Radiology and Enterprise Medical Imaging Extensions (REMIX) is a platform originally designed to both support the medical imaging-driven clinical and clinical research operational needs of Department of Radiology of The Ohio State University Wexner Medical Center. REMIX accommodates the storage and handling of "big imaging data," as needed for large multi-disciplinary cancer-focused programs. The evolving REMIX platform contains an array of integrated tools/software packages for the following: (1) server and storage management; (2) image reconstruction; (3) digital pathology; (4) de-identification; (5) business intelligence; (6) texture analysis; and (7) artificial intelligence. These capabilities, along with documentation and guidance, explaining how to interact with a commercial system (e.g., PACS, EHR, commercial database) that currently exists in clinical environments, are to be made freely available.
McCord, Layne K; Scarfe, William C; Naylor, Rachel H; Scheetz, James P; Silveira, Anibal; Gillespie, Kevin R
2007-05-01
The objectives of this study were to compare the effect of JPEG 2000 compression of hand-wrist radiographs on observer image quality qualitative assessment and to compare with a software-derived quantitative image quality index. Fifteen hand-wrist radiographs were digitized and saved as TIFF and JPEG 2000 images at 4 levels of compression (20:1, 40:1, 60:1, and 80:1). The images, including rereads, were viewed by 13 orthodontic residents who determined the image quality rating on a scale of 1 to 5. A quantitative analysis was also performed by using a readily available software based on the human visual system (Image Quality Measure Computer Program, version 6.2, Mitre, Bedford, Mass). ANOVA was used to determine the optimal compression level (P < or =.05). When we compared subjective indexes, JPEG compression greater than 60:1 significantly reduced image quality. When we used quantitative indexes, the JPEG 2000 images had lower quality at all compression ratios compared with the original TIFF images. There was excellent correlation (R2 >0.92) between qualitative and quantitative indexes. Image Quality Measure indexes are more sensitive than subjective image quality assessments in quantifying image degradation with compression. There is potential for this software-based quantitative method in determining the optimal compression ratio for any image without the use of subjective raters.
Electrophoresis gel image processing and analysis using the KODAK 1D software.
Pizzonia, J
2001-06-01
The present article reports on the performance of the KODAK 1D Image Analysis Software for the acquisition of information from electrophoresis experiments and highlights the utility of several mathematical functions for subsequent image processing, analysis, and presentation. Digital images of Coomassie-stained polyacrylamide protein gels containing molecular weight standards and ethidium bromide stained agarose gels containing DNA mass standards are acquired using the KODAK Electrophoresis Documentation and Analysis System 290 (EDAS 290). The KODAK 1D software is used to optimize lane and band identification using features such as isomolecular weight lines. Mathematical functions for mass standard representation are presented, and two methods for estimation of unknown band mass are compared. Given the progressive transition of electrophoresis data acquisition and daily reporting in peer-reviewed journals to digital formats ranging from 8-bit systems such as EDAS 290 to more expensive 16-bit systems, the utility of algorithms such as Gaussian modeling, which can correct geometric aberrations such as clipping due to signal saturation common at lower bit depth levels, is discussed. Finally, image-processing tools that can facilitate image preparation for presentation are demonstrated.
Dynamic CT myocardial perfusion imaging: performance of 3D semi-automated evaluation software.
Ebersberger, Ullrich; Marcus, Roy P; Schoepf, U Joseph; Lo, Gladys G; Wang, Yining; Blanke, Philipp; Geyer, Lucas L; Gray, J Cranston; McQuiston, Andrew D; Cho, Young Jun; Scheuering, Michael; Canstein, Christian; Nikolaou, Konstantin; Hoffmann, Ellen; Bamberg, Fabian
2014-01-01
To evaluate the performance of three-dimensional semi-automated evaluation software for the assessment of myocardial blood flow (MBF) and blood volume (MBV) at dynamic myocardial perfusion computed tomography (CT). Volume-based software relying on marginal space learning and probabilistic boosting tree-based contour fitting was applied to CT myocardial perfusion imaging data of 37 subjects. In addition, all image data were analysed manually and both approaches were compared with SPECT findings. Study endpoints included time of analysis and conventional measures of diagnostic accuracy. Of 592 analysable segments, 42 showed perfusion defects on SPECT. Average analysis times for the manual and software-based approaches were 49.1 ± 11.2 and 16.5 ± 3.7 min respectively (P < 0.01). There was strong agreement between the two measures of interest (MBF, ICC = 0.91, and MBV, ICC = 0.88, both P < 0.01) and no significant difference in MBF/MBV with respect to diagnostic accuracy between the two approaches for both MBF and MBV for manual versus software-based approach; respectively; all comparisons P > 0.05. Three-dimensional semi-automated evaluation of dynamic myocardial perfusion CT data provides similar measures and diagnostic accuracy to manual evaluation, albeit with substantially reduced analysis times. This capability may aid the integration of this test into clinical workflows. • Myocardial perfusion CT is attractive for comprehensive coronary heart disease assessment. • Traditional image analysis methods are cumbersome and time-consuming. • Automated 3D perfusion software shortens analysis times. • Automated 3D perfusion software increases standardisation of myocardial perfusion CT. • Automated, standardised analysis fosters myocardial perfusion CT integration into clinical practice.
Assessing UAV platform types and optical sensor specifications
NASA Astrophysics Data System (ADS)
Altena, B.; Goedemé, T.
2014-05-01
Photogrammetric acquisition with unmanned aerial vehicles (UAV) has grown extensively over the last couple of years. Such mobile platforms and their processing software have matured, resulting in a market which offers off-the-shelf mapping solutions to surveying companies and geospatial enterprises. Different approaches in platform type and optical instruments exist, though its resulting products have similar specifications. To demonstrate differences in acquisitioning practice, a case study over an open mine was flown with two different off-the-shelf UAVs (a fixed-wing and a multi-rotor). The resulting imagery is analyzed to clarify the differences in collection quality. We look at image settings, and stress the fact of photographic experience if manual setting are applied. For mapping production it might be safest to set the camera on automatic. Furthermore, we try to estimate if blur is present due to image motion. A subtle trend seems to be present, for the fast flying platform though its extent is of similar order to the slow moving one. It shows both systems operate at their limits. Finally, the lens distortion is assessed with special attention to chromatic aberration. Here we see that through calibration such aberrations could be present, however detecting this phenomena directly on imagery is not straightforward. For such effects a normal lens is sufficient, though a better lens and collimator does give significant improvement.
NASA Astrophysics Data System (ADS)
Lyu, Bo-Han; Wang, Chen; Tsai, Chun-Wei
2017-08-01
Jasper Display Corp. (JDC) offer high reflectivity, high resolution Liquid Crystal on Silicon - Spatial Light Modulator (LCoS-SLM) which include an associated controller ASIC and LabVIEW based modulation software. Based on this LCoS-SLM, also called Education Kit (EDK), we provide a training platform which includes a series of optical theory and experiments to university students. This EDK not only provides a LabVIEW based operation software to produce Computer Generated Holograms (CGH) to generate some basic diffraction image or holographic image, but also provides simulation software to verity the experiment results simultaneously. However, we believe that a robust LCoSSLM, operation software, simulation software, training system, and training course can help students to study the fundamental optics, wave optics, and Fourier optics more easily. Based on these fundamental knowledges, they could develop their unique skills and create their new innovations on the optoelectronic application in the future.
Choudhri, Asim F; Radvany, Martin G
2011-04-01
Medical imaging is commonly used to diagnose many emergent conditions, as well as plan treatment. Digital images can be reviewed on almost any computing platform. Modern mobile phones and handheld devices are portable computing platforms with robust software programming interfaces, powerful processors, and high-resolution displays. OsiriX mobile, a new Digital Imaging and Communications in Medicine viewing program, is available for the iPhone/iPod touch platform. This raises the possibility of mobile review of diagnostic medical images to expedite diagnosis and treatment planning using a commercial off the shelf solution, facilitating communication among radiologists and referring clinicians.
Sonoda, Shozo; Sakamoto, Taiji; Kakiuchi, Naoko; Shiihara, Hideki; Sakoguchi, Tomonori; Tomita, Masatoshi; Yamashita, Takehiro; Uchino, Eisuke
2018-03-01
To determine the capabilities of "EyeGround" software in measuring the choroidal cross sectional areas in optical coherence tomographic (OCT) images. Cross sectional, prospective study. The cross-sectional area of the subfoveal choroid within a 1500 µm diameter circle centered on the fovea was measured both with and without using the EyeGround software in the OCT images. The differences between the evaluation times and the results of the measurements were compared. The inter-rater, intra-rater, inter-method agreements were determined. Fifty-one eyes of 51 healthy subjects were studied: 24 men and 27 women with an average age of 35.0 ± 8.8 years. The time for analyzing a single image was significantly shorter with the software at 3.2±1.1 min than without the software at 12.1±5.1 min (P <0.001). The inter-method correlation efficient for the measurements of the whole choroid was high [0.989, 95% CI (0.981-0.994)]. With the software, the inter-rater correlation efficient was significantly high [0.997, 95% CI (0.995-0.999)], and the intra-rater correlation efficient was also significantly high [0.999, 95% CI (0.999-1.0)]. The EyeGround software can measure the choroidal area in the OCT cross sectional images with good reproducibility and in a significantly shorter times. It can be a valuable tool for analyzing the choroid.
NASA Astrophysics Data System (ADS)
Yoon, Jayoung; Kim, Gerard J.
2003-04-01
Traditionally, three dimension models have been used for building virtual worlds, and a data structure called the "scene graph" is often employed to organize these 3D objects in the virtual space. On the other hand, image-based rendering has recently been suggested as a probable alternative VR platform for its photo-realism, however, due to limited interactivity, it has only been used for simple navigation systems. To combine the merits of these two approaches to object/scene representations, this paper proposes for a scene graph structure in which both 3D models and various image-based scenes/objects can be defined, traversed, and rendered together. In fact, as suggested by Shade et al., these different representations can be used as different LOD's for a given object. For instance, an object might be rendered using a 3D model at close range, a billboard at an intermediate range, and as part of an environment map at far range. The ultimate objective of this mixed platform is to breath more interactivity into the image based rendered VE's by employing 3D models as well. There are several technical challenges in devising such a platform: designing scene graph nodes for various types of image based techniques, establishing criteria for LOD/representation selection, handling their transitions, implementing appropriate interaction schemes, and correctly rendering the overall scene. Currently, we have extended the scene graph structure of the Sense8's WorldToolKit, to accommodate new node types for environment maps billboards, moving textures and sprites, "Tour-into-the-Picture" structure, and view interpolated objects. As for choosing the right LOD level, the usual viewing distance and image space criteria are used, however, the switching between the image and 3D model occurs at a distance from the user where the user starts to perceive the object's internal depth. Also, during interaction, regardless of the viewing distance, a 3D representation would be used, it if
Burrell, Thomas; Fozard, Susan; Holroyd, Geoff H; French, Andrew P; Pound, Michael P; Bigley, Christopher J; James Taylor, C; Forde, Brian G
2017-01-01
Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. The 'Microphenotron' platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the 'Phytostrip', a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m 2 , giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. The Microphenotron is an automated screening platform that for the first time is able to combine large numbers of individual chemical
NASA Astrophysics Data System (ADS)
Ziemke, Claas; Kuwahara, Toshinori; Kossev, Ivan
2011-09-01
Even in the field of small satellites, the on-board data handling subsystem has become complex and powerful. With the introduction of powerful CPUs and the availability of considerable amounts of memory on-board a small satellite it has become possible to utilize the flexibility and power of contemporary platform-independent real-time operating systems. Especially the non-commercial sector such like university institutes and community projects such as AMSAT or SSETI are characterized by the inherent lack of financial as well as manpower resources. The opportunity to utilize such real-time operating systems will contribute significantly to achieve a successful mission. Nevertheless the on-board software of a satellite is much more than just an operating system. It has to fulfill a multitude of functional requirements such as: Telecommand interpretation and execution, execution of control loops, generation of telemetry data and frames, failure detection isolation and recovery, the communication with peripherals and so on. Most of the aforementioned tasks are of generic nature and have to be conducted on any satellite with only minor modifications. A general set of functional requirements as well as a protocol for communication is defined in the SA ECSS-E-70-41A standard "Telemetry and telecommand packet utilization". This standard not only defines the communication protocol of the satellite-ground link but also defines a set of so called services which have to be available on-board of every compliant satellite and which are of generic nature. In this paper, a platform-independent and reusable framework is described which is implementing not only the ECSS-E-70-41A standard but also functionalities for interprocess communication, scheduling and a multitude of tasks commonly performed on-board of a satellite. By making use of the capabilities of the high-level programming language C/C++, the powerful open source library BOOST, the real-time operating system RTEMS and
GiNA, an Efficient and High-Throughput Software for Horticultural Phenotyping
Diaz-Garcia, Luis; Covarrubias-Pazaran, Giovanny; Schlautman, Brandon; Zalapa, Juan
2016-01-01
Traditional methods for trait phenotyping have been a bottleneck for research in many crop species due to their intensive labor, high cost, complex implementation, lack of reproducibility and propensity to subjective bias. Recently, multiple high-throughput phenotyping platforms have been developed, but most of them are expensive, species-dependent, complex to use, and available only for major crops. To overcome such limitations, we present the open-source software GiNA, which is a simple and free tool for measuring horticultural traits such as shape- and color-related parameters of fruits, vegetables, and seeds. GiNA is multiplatform software available in both R and MATLAB® programming languages and uses conventional images from digital cameras with minimal requirements. It can process up to 11 different horticultural morphological traits such as length, width, two-dimensional area, volume, projected skin, surface area, RGB color, among other parameters. Different validation tests produced highly consistent results under different lighting conditions and camera setups making GiNA a very reliable platform for high-throughput phenotyping. In addition, five-fold cross validation between manually generated and GiNA measurements for length and width in cranberry fruits were 0.97 and 0.92. In addition, the same strategy yielded prediction accuracies above 0.83 for color estimates produced from images of cranberries analyzed with GiNA compared to total anthocyanin content (TAcy) of the same fruits measured with the standard methodology of the industry. Our platform provides a scalable, easy-to-use and affordable tool for massive acquisition of phenotypic data of fruits, seeds, and vegetables. PMID:27529547
GiNA, an Efficient and High-Throughput Software for Horticultural Phenotyping.
Diaz-Garcia, Luis; Covarrubias-Pazaran, Giovanny; Schlautman, Brandon; Zalapa, Juan
2016-01-01
Traditional methods for trait phenotyping have been a bottleneck for research in many crop species due to their intensive labor, high cost, complex implementation, lack of reproducibility and propensity to subjective bias. Recently, multiple high-throughput phenotyping platforms have been developed, but most of them are expensive, species-dependent, complex to use, and available only for major crops. To overcome such limitations, we present the open-source software GiNA, which is a simple and free tool for measuring horticultural traits such as shape- and color-related parameters of fruits, vegetables, and seeds. GiNA is multiplatform software available in both R and MATLAB® programming languages and uses conventional images from digital cameras with minimal requirements. It can process up to 11 different horticultural morphological traits such as length, width, two-dimensional area, volume, projected skin, surface area, RGB color, among other parameters. Different validation tests produced highly consistent results under different lighting conditions and camera setups making GiNA a very reliable platform for high-throughput phenotyping. In addition, five-fold cross validation between manually generated and GiNA measurements for length and width in cranberry fruits were 0.97 and 0.92. In addition, the same strategy yielded prediction accuracies above 0.83 for color estimates produced from images of cranberries analyzed with GiNA compared to total anthocyanin content (TAcy) of the same fruits measured with the standard methodology of the industry. Our platform provides a scalable, easy-to-use and affordable tool for massive acquisition of phenotypic data of fruits, seeds, and vegetables.
Towards an Open, Distributed Software Architecture for UxS Operations
NASA Technical Reports Server (NTRS)
Cross, Charles D.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc; Trujillo, Anna C.; Allen, B. Danette
2015-01-01
To address the growing need to evaluate, test, and certify an ever expanding ecosystem of UxS platforms in preparation of cultural integration, NASA Langley Research Center's Autonomy Incubator (AI) has taken on the challenge of developing a software framework in which UxS platforms developed by third parties can be integrated into a single system which provides evaluation and testing, mission planning and operation, and out-of-the-box autonomy and data fusion capabilities. This software framework, named AEON (Autonomous Entity Operations Network), has two main goals. The first goal is the development of a cross-platform, extensible, onboard software system that provides autonomy at the mission execution and course-planning level, a highly configurable data fusion framework sensitive to the platform's available sensor hardware, and plug-and-play compatibility with a wide array of computer systems, sensors, software, and controls hardware. The second goal is the development of a ground control system that acts as a test-bed for integration of the proposed heterogeneous fleet, and allows for complex mission planning, tracking, and debugging capabilities. The ground control system should also be highly extensible and allow plug-and-play interoperability with third party software systems. In order to achieve these goals, this paper proposes an open, distributed software architecture which utilizes at its core the Data Distribution Service (DDS) standards, established by the Object Management Group (OMG), for inter-process communication and data flow. The design decisions proposed herein leverage the advantages of existing robotics software architectures and the DDS standards to develop software that is scalable, high-performance, fault tolerant, modular, and readily interoperable with external platforms and software.
SU-E-I-13: Evaluation of Metal Artifact Reduction (MAR) Software On Computed Tomography (CT) Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, V; Kohli, K
2015-06-15
Purpose: A new commercially available metal artifact reduction (MAR) software in computed tomography (CT) imaging was evaluated with phantoms in the presence of metals. The goal was to assess the ability of the software to restore the CT number in the vicinity of the metals without impacting the image quality. Methods: A Catphan 504 was scanned with a GE Optima RT 580 CT scanner (GE Healthcare, Milwaukee, WI) and the images were reconstructed with and without the MAR software. Both datasets were analyzed with Image Owl QA software (Image Owl Inc, Greenwich, NY). CT number sensitometry, MTF, low contrast, uniformity,more » noise and spatial accuracy were compared for scans with and without MAR software. In addition, an in-house made phantom was scanned with and without a stainless steel insert at three different locations. The accuracy of the CT number and metal insert dimension were investigated as well. Results: Comparisons between scans with and without MAR algorithm on the Catphan phantom demonstrate similar results for image quality. However, noise was slightly higher for the MAR algorithm. Evaluation of the CT number at various locations of the in-house made phantom was also performed. The baseline HU, obtained from the scan without metal insert, was compared to scans with the stainless steel insert at 3 different locations. The HU difference between the baseline scan versus metal scan was improved when the MAR algorithm was applied. In addition, the physical diameter of the stainless steel rod was over-estimated by the MAR algorithm by 0.9 mm. Conclusion: This work indicates with the presence of metal in CT scans, the MAR algorithm is capable of providing a more accurate CT number without compromising the overall image quality. Future work will include the dosimetric impact on the MAR algorithm.« less
Integrated platform for optimized solar PV system design and engineering plan set generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adeyemo, Samuel
2015-12-30
The Aurora team has developed software that allows users to quickly generate a three-dimensional model for a building, with a corresponding irradiance map, from any two-dimensional image with associated geo-coordinates. The purpose of this project is to build upon that technology by developing and distributing to solar installers a software platform that automatically retrieves engineering, financial and geographic data for a specific site, and quickly generates an optimal customer proposal and corresponding engineering plans for that site. At the end of the project, Aurora’s optimization platform would have been used to make at least one thousand proposals from at leastmore » ten unique solar installation companies, two of whom would sign economically viable contracts to use the software. Furthermore, Aurora’s algorithms would be tested to show that in at least seventy percent of cases, Aurora automatically generated a design equivalent to or better than what a human could have done manually. A ‘better’ design is one that generates more energy for the same cost, or that generates a higher return on investment, while complying with all site-specific aesthetic, electrical and spatial requirements.« less
TRIO Platform: A Novel Low Profile In vivo Imaging Support and Restraint System for Mice.
Voziyanov, Vladislav; Kemp, Benjamin S; Dressel, Chelsea A; Ponder, Kayla; Murray, Teresa A
2016-01-01
High resolution, in vivo optical imaging of the mouse brain over time often requires anesthesia, which necessitates maintaining the animal's body temperature and level of anesthesia, as well as securing the head in an optimal, stable position. Controlling each parameter usually requires using multiple systems. Assembling multiple components into the small space on a standard microscope stage can be difficult and some commercially available parts simply do not fit. Furthermore, it is time-consuming to position an animal in the identical position over multiple imaging sessions for longitudinal studies. This is especially true when using an implanted gradient index (GRIN) lens for deep brain imaging. The multiphoton laser beam must be parallel with the shaft of the lens because even a slight tilt of the lens can degrade image quality. In response to these challenges, we have designed a compact, integrated in vivo imaging support system to overcome the problems created by using separate systems during optical imaging in mice. It is a single platform that provides (1) sturdy head fixation, (2) an integrated gas anesthesia mask, and (3) safe warm water heating. This THREE-IN-ONE (TRIO) Platform has a small footprint and a low profile that positions a mouse's head only 20 mm above the microscope stage. This height is about one half to one third the height of most commercially available immobilization devices. We have successfully employed this system, using isoflurane in over 40 imaging sessions with an average of 2 h per session with no leaks or other malfunctions. Due to its smaller size, the TRIO Platform can be used with a wider range of upright microscopes and stages. Most of the components were designed in SOLIDWORKS® and fabricated using a 3D printer. This additive manufacturing approach also readily permits size modifications for creating systems for other small animals.
TRIO Platform: A Novel Low Profile In vivo Imaging Support and Restraint System for Mice
Voziyanov, Vladislav; Kemp, Benjamin S.; Dressel, Chelsea A.; Ponder, Kayla; Murray, Teresa A.
2016-01-01
High resolution, in vivo optical imaging of the mouse brain over time often requires anesthesia, which necessitates maintaining the animal's body temperature and level of anesthesia, as well as securing the head in an optimal, stable position. Controlling each parameter usually requires using multiple systems. Assembling multiple components into the small space on a standard microscope stage can be difficult and some commercially available parts simply do not fit. Furthermore, it is time-consuming to position an animal in the identical position over multiple imaging sessions for longitudinal studies. This is especially true when using an implanted gradient index (GRIN) lens for deep brain imaging. The multiphoton laser beam must be parallel with the shaft of the lens because even a slight tilt of the lens can degrade image quality. In response to these challenges, we have designed a compact, integrated in vivo imaging support system to overcome the problems created by using separate systems during optical imaging in mice. It is a single platform that provides (1) sturdy head fixation, (2) an integrated gas anesthesia mask, and (3) safe warm water heating. This THREE-IN-ONE (TRIO) Platform has a small footprint and a low profile that positions a mouse's head only 20 mm above the microscope stage. This height is about one half to one third the height of most commercially available immobilization devices. We have successfully employed this system, using isoflurane in over 40 imaging sessions with an average of 2 h per session with no leaks or other malfunctions. Due to its smaller size, the TRIO Platform can be used with a wider range of upright microscopes and stages. Most of the components were designed in SOLIDWORKS® and fabricated using a 3D printer. This additive manufacturing approach also readily permits size modifications for creating systems for other small animals. PMID:27199633
Transplant Image Processing Technology under Windows into the Platform Based on MiniGUI
NASA Astrophysics Data System (ADS)
Gan, Lan; Zhang, Xu; Lv, Wenya; Yu, Jia
MFC has a large number of digital image processing-related API functions, object-oriented and class mechanisms which provides image processing technology strong support in Windows. But in embedded systems, image processing technology dues to the restrictions of hardware and software do not have the environment of MFC in Windows. Therefore, this paper draws on the experience of image processing technology of Windows and transplants it into MiniGUI embedded systems. The results show that MiniGUI/Embedded graphical user interface applications about image processing which used in embedded image processing system can be good results.
mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data.
Strohalm, Martin; Kavan, Daniel; Novák, Petr; Volný, Michael; Havlícek, Vladimír
2010-06-01
While tools for the automated analysis of MS and LC-MS/MS data are continuously improving, it is still often the case that at the end of an experiment, the mass spectrometrist will spend time carefully examining individual spectra. Current software support is mostly provided only by the instrument vendors, and the available software tools are often instrument-dependent. Here we present a new generation of mMass, a cross-platform environment for the precise analysis of individual mass spectra. The software covers a wide range of processing tasks such as import from various data formats, smoothing, baseline correction, peak picking, deisotoping, charge determination, and recalibration. Functions presented in the earlier versions such as in silico digestion and fragmentation were redesigned and improved. In addition to Mascot, an interface for ProFound has been implemented. A specific tool is available for isotopic pattern modeling to enable precise data validation. The largest available lipid database (from the LIPID MAPS Consortium) has been incorporated and together with the new compound search tool lipids can be rapidly identified. In addition, the user can define custom libraries of compounds and use them analogously. The new version of mMass is based on a stand-alone Python library, which provides the basic functionality for data processing and interpretation. This library can serve as a good starting point for other developers in their projects. Binary distributions of mMass, its source code, a detailed user's guide, and video tutorials are freely available from www.mmass.org .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Marie-Paule, E-mail: marie-paule.garcia@univ-brest.fr; Villoing, Daphnée; McKay, Erin
Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of amore » given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry
Gouret, Philippe; Vitiello, Vérane; Balandraud, Nathalie; Gilles, André; Pontarotti, Pierre; Danchin, Etienne GJ
2005-01-01
Background Two of the main objectives of the genomic and post-genomic era are to structurally and functionally annotate genomes which consists of detecting genes' position and structure, and inferring their function (as well as of other features of genomes). Structural and functional annotation both require the complex chaining of numerous different software, algorithms and methods under the supervision of a biologist. The automation of these pipelines is necessary to manage huge amounts of data released by sequencing projects. Several pipelines already automate some of these complex chaining but still necessitate an important contribution of biologists for supervising and controlling the results at various steps. Results Here we propose an innovative automated platform, FIGENIX, which includes an expert system capable to substitute to human expertise at several key steps. FIGENIX currently automates complex pipelines of structural and functional annotation under the supervision of the expert system (which allows for example to make key decisions, check intermediate results or refine the dataset). The quality of the results produced by FIGENIX is comparable to those obtained by expert biologists with a drastic gain in terms of time costs and avoidance of errors due to the human manipulation of data. Conclusion The core engine and expert system of the FIGENIX platform currently handle complex annotation processes of broad interest for the genomic community. They could be easily adapted to new, or more specialized pipelines, such as for example the annotation of miRNAs, the classification of complex multigenic families, annotation of regulatory elements and other genomic features of interest. PMID:16083500
The Role and Design of Screen Images in Software Documentation.
ERIC Educational Resources Information Center
van der Meij, Hans
2000-01-01
Discussion of learning a new computer software program focuses on how to support the joint handling of a manual, input devices, and screen display. Describes a study that examined three design styles for manuals that included screen images to reduce split-attention problems and discusses theory versus practice and cognitive load theory.…
NASA Astrophysics Data System (ADS)
Knox, S.; Meier, P.; Mohammed, K.; Korteling, B.; Matrosov, E. S.; Hurford, A.; Huskova, I.; Harou, J. J.; Rosenberg, D. E.; Thilmant, A.; Medellin-Azuara, J.; Wicks, J.
2015-12-01
Capacity expansion on resource networks is essential to adapting to economic and population growth and pressures such as climate change. Engineered infrastructure systems such as water, energy, or transport networks require sophisticated and bespoke models to refine management and investment strategies. Successful modeling of such complex systems relies on good data management and advanced methods to visualize and share data.Engineered infrastructure systems are often represented as networks of nodes and links with operating rules describing their interactions. Infrastructure system management and planning can be abstracted to simulating or optimizing new operations and extensions of the network. By separating the data storage of abstract networks from manipulation and modeling we have created a system where infrastructure modeling across various domains is facilitated.We introduce Hydra Platform, a Free Open Source Software designed for analysts and modelers to store, manage and share network topology and data. Hydra Platform is a Python library with a web service layer for remote applications, called Apps, to connect. Apps serve various functions including network or results visualization, data export (e.g. into a proprietary format) or model execution. This Client-Server architecture allows users to manipulate and share centrally stored data. XML templates allow a standardised description of the data structure required for storing network data such that it is compatible with specific models.Hydra Platform represents networks in an abstract way and is therefore not bound to a single modeling domain. It is the Apps that create domain-specific functionality. Using Apps researchers from different domains can incorporate different models within the same network enabling cross-disciplinary modeling while minimizing errors and streamlining data sharing. Separating the Python library from the web layer allows developers to natively expand the software or build web
NASA Technical Reports Server (NTRS)
Brown, Charles; Andrew, Robert; Roe, Scott; Frye, Ronald; Harvey, Michael; Vu, Tuan; Balachandran, Krishnaiyer; Bly, Ben
2012-01-01
The Ascent/Descent Software Suite has been used to support a variety of NASA Shuttle Program mission planning and analysis activities, such as range safety, on the Integrated Planning System (IPS) platform. The Ascent/Descent Software Suite, containing Ascent Flight Design (ASC)/Descent Flight Design (DESC) Configuration items (Cis), lifecycle documents, and data files used for shuttle ascent and entry modeling analysis and mission design, resides on IPS/Linux workstations. A list of tools in Navigation (NAV)/Prop Software Suite represents tool versions established during or after the IPS Equipment Rehost-3 project.
OptFlux: an open-source software platform for in silico metabolic engineering.
Rocha, Isabel; Maia, Paulo; Evangelista, Pedro; Vilaça, Paulo; Soares, Simão; Pinto, José P; Nielsen, Jens; Patil, Kiran R; Ferreira, Eugénio C; Rocha, Miguel
2010-04-19
Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. OptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes. OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms. The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph. The OptFlux software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization
OptFlux: an open-source software platform for in silico metabolic engineering
2010-01-01
Background Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. Results OptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes. OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms. The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph. Conclusions The OptFlux software is freely available, together with documentation and other resources, thus bridging the gap from
A versatile nondestructive evaluation imaging workstation
NASA Technical Reports Server (NTRS)
Chern, E. James; Butler, David W.
1994-01-01
Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.
A versatile nondestructive evaluation imaging workstation
NASA Astrophysics Data System (ADS)
Chern, E. James; Butler, David W.
1994-02-01
Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.
MorphoGraphX: A platform for quantifying morphogenesis in 4D.
Barbier de Reuille, Pierre; Routier-Kierzkowska, Anne-Lise; Kierzkowski, Daniel; Bassel, George W; Schüpbach, Thierry; Tauriello, Gerardo; Bajpai, Namrata; Strauss, Sören; Weber, Alain; Kiss, Annamaria; Burian, Agata; Hofhuis, Hugo; Sapala, Aleksandra; Lipowczan, Marcin; Heimlicher, Maria B; Robinson, Sarah; Bayer, Emmanuelle M; Basler, Konrad; Koumoutsakos, Petros; Roeder, Adrienne H K; Aegerter-Wilmsen, Tinri; Nakayama, Naomi; Tsiantis, Miltos; Hay, Angela; Kwiatkowska, Dorota; Xenarios, Ioannis; Kuhlemeier, Cris; Smith, Richard S
2015-05-06
Morphogenesis emerges from complex multiscale interactions between genetic and mechanical processes. To understand these processes, the evolution of cell shape, proliferation and gene expression must be quantified. This quantification is usually performed either in full 3D, which is computationally expensive and technically challenging, or on 2D planar projections, which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX ( www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface images extracted from 3D data. In addition to traditional 3D image analysis, we have developed algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and fluorescence signal quantification. The software's modular design makes it easy to include existing libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be exported and used as templates for simulation models, providing a powerful platform to investigate the interactions between shape, genes and growth.
Das, Abhiram; Schneider, Hannah; Burridge, James; Ascanio, Ana Karine Martinez; Wojciechowski, Tobias; Topp, Christopher N; Lynch, Jonathan P; Weitz, Joshua S; Bucksch, Alexander
2015-01-01
Plant root systems are key drivers of plant function and yield. They are also under-explored targets to meet global food and energy demands. Many new technologies have been developed to characterize crop root system architecture (CRSA). These technologies have the potential to accelerate the progress in understanding the genetic control and environmental response of CRSA. Putting this potential into practice requires new methods and algorithms to analyze CRSA in digital images. Most prior approaches have solely focused on the estimation of root traits from images, yet no integrated platform exists that allows easy and intuitive access to trait extraction and analysis methods from images combined with storage solutions linked to metadata. Automated high-throughput phenotyping methods are increasingly used in laboratory-based efforts to link plant genotype with phenotype, whereas similar field-based studies remain predominantly manual low-throughput. Here, we present an open-source phenomics platform "DIRT", as a means to integrate scalable supercomputing architectures into field experiments and analysis pipelines. DIRT is an online platform that enables researchers to store images of plant roots, measure dicot and monocot root traits under field conditions, and share data and results within collaborative teams and the broader community. The DIRT platform seamlessly connects end-users with large-scale compute "commons" enabling the estimation and analysis of root phenotypes from field experiments of unprecedented size. DIRT is an automated high-throughput computing and collaboration platform for field based crop root phenomics. The platform is accessible at http://www.dirt.iplantcollaborative.org/ and hosted on the iPlant cyber-infrastructure using high-throughput grid computing resources of the Texas Advanced Computing Center (TACC). DIRT is a high volume central depository and high-throughput RSA trait computation platform for plant scientists working on crop roots
A medical image-based graphical platform -- features, applications and relevance for brachytherapy.
Fonseca, Gabriel P; Reniers, Brigitte; Landry, Guillaume; White, Shane; Bellezzo, Murillo; Antunes, Paula C G; de Sales, Camila P; Welteman, Eduardo; Yoriyaz, Hélio; Verhaegen, Frank
2014-01-01
Brachytherapy dose calculation is commonly performed using the Task Group-No 43 Report-Updated protocol (TG-43U1) formalism. Recently, a more accurate approach has been proposed that can handle tissue composition, tissue density, body shape, applicator geometry, and dose reporting either in media or water. Some model-based dose calculation algorithms are based on Monte Carlo (MC) simulations. This work presents a software platform capable of processing medical images and treatment plans, and preparing the required input data for MC simulations. The A Medical Image-based Graphical platfOrm-Brachytherapy module (AMIGOBrachy) is a user interface, coupled to the MCNP6 MC code, for absorbed dose calculations. The AMIGOBrachy was first validated in water for a high-dose-rate (192)Ir source. Next, dose distributions were validated in uniform phantoms consisting of different materials. Finally, dose distributions were obtained in patient geometries. Results were compared against a treatment planning system including a linear Boltzmann transport equation (LBTE) solver capable of handling nonwater heterogeneities. The TG-43U1 source parameters are in good agreement with literature with more than 90% of anisotropy values within 1%. No significant dependence on the tissue composition was observed comparing MC results against an LBTE solver. Clinical cases showed differences up to 25%, when comparing MC results against TG-43U1. About 92% of the voxels exhibited dose differences lower than 2% when comparing MC results against an LBTE solver. The AMIGOBrachy can improve the accuracy of the TG-43U1 dose calculation by using a more accurate MC dose calculation algorithm. The AMIGOBrachy can be incorporated in clinical practice via a user-friendly graphical interface. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Evaluation of a breast software model for 2D and 3D X-ray imaging studies of the breast.
Baneva, Yanka; Bliznakova, Kristina; Cockmartin, Lesley; Marinov, Stoyko; Buliev, Ivan; Mettivier, Giovanni; Bosmans, Hilde; Russo, Paolo; Marshall, Nicholas; Bliznakov, Zhivko
2017-09-01
In X-ray imaging, test objects reproducing breast anatomy characteristics are realized to optimize issues such as image processing or reconstruction, lesion detection performance, image quality and radiation induced detriment. Recently, a physical phantom with a structured background has been introduced for both 2D mammography and breast tomosynthesis. A software version of this phantom and a few related versions are now available and a comparison between these 3D software phantoms and the physical phantom will be presented. The software breast phantom simulates a semi-cylindrical container filled with spherical beads of different diameters. Four computational breast phantoms were generated with a dedicated software application and for two of these, physical phantoms are also available and they are used for the side by side comparison. Planar projections in mammography and tomosynthesis were simulated under identical incident air kerma conditions. Tomosynthesis slices were reconstructed with an in-house developed reconstruction software. In addition to a visual comparison, parameters like fractal dimension, power law exponent β and second order statistics (skewness, kurtosis) of planar projections and tomosynthesis reconstructed images were compared. Visually, an excellent agreement between simulated and real planar and tomosynthesis images is observed. The comparison shows also an overall very good agreement between parameters evaluated from simulated and experimental images. The computational breast phantoms showed a close match with their physical versions. The detailed mathematical analysis of the images confirms the agreement between real and simulated 2D mammography and tomosynthesis images. The software phantom is ready for optimization purpose and extrapolation of the phantom to other breast imaging techniques. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
cisTEM, user-friendly software for single-particle image processing.
Grant, Timothy; Rohou, Alexis; Grigorieff, Nikolaus
2018-03-07
We have developed new open-source software called cis TEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cis TEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k - 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cis TEM is available for download from cistem.org. © 2018, Grant et al.
cisTEM, user-friendly software for single-particle image processing
2018-01-01
We have developed new open-source software called cisTEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cisTEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k – 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cisTEM is available for download from cistem.org. PMID:29513216
A system for the real-time display of radar and video images of targets
NASA Technical Reports Server (NTRS)
Allen, W. W.; Burnside, W. D.
1990-01-01
Described here is a software and hardware system for the real-time display of radar and video images for use in a measurement range. The main purpose is to give the reader a clear idea of the software and hardware design and its functions. This system is designed around a Tektronix XD88-30 graphics workstation, used to display radar images superimposed on video images of the actual target. The system's purpose is to provide a platform for tha analysis and documentation of radar images and their associated targets in a menu-driven, user oriented environment.
How to Build a Hybrid Neurofeedback Platform Combining EEG and fMRI
Mano, Marsel; Lécuyer, Anatole; Bannier, Elise; Perronnet, Lorraine; Noorzadeh, Saman; Barillot, Christian
2017-01-01
Multimodal neurofeedback estimates brain activity using information acquired with more than one neurosignal measurement technology. In this paper we describe how to set up and use a hybrid platform based on simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), then we illustrate how to use it for conducting bimodal neurofeedback experiments. The paper is intended for those willing to build a multimodal neurofeedback system, to guide them through the different steps of the design, setup, and experimental applications, and help them choose a suitable hardware and software configuration. Furthermore, it reports practical information from bimodal neurofeedback experiments conducted in our lab. The platform presented here has a modular parallel processing architecture that promotes real-time signal processing performance and simple future addition and/or replacement of processing modules. Various unimodal and bimodal neurofeedback experiments conducted in our lab showed high performance and accuracy. Currently, the platform is able to provide neurofeedback based on electroencephalography and functional magnetic resonance imaging, but the architecture and the working principles described here are valid for any other combination of two or more real-time brain activity measurement technologies. PMID:28377691
NeuroPG: open source software for optical pattern generation and data acquisition
Avants, Benjamin W.; Murphy, Daniel B.; Dapello, Joel A.; Robinson, Jacob T.
2015-01-01
Patterned illumination using a digital micromirror device (DMD) is a powerful tool for optogenetics. Compared to a scanning laser, DMDs are inexpensive and can easily create complex illumination patterns. Combining these complex spatiotemporal illumination patterns with optogenetics allows DMD-equipped microscopes to probe neural circuits by selectively manipulating the activity of many individual cells or many subcellular regions at the same time. To use DMDs to study neural activity, scientists must develop specialized software to coordinate optical stimulation patterns with the acquisition of electrophysiological and fluorescence data. To meet this growing need we have developed an open source optical pattern generation software for neuroscience—NeuroPG—that combines, DMD control, sample visualization, and data acquisition in one application. Built on a MATLAB platform, NeuroPG can also process, analyze, and visualize data. The software is designed specifically for the Mightex Polygon400; however, as an open source package, NeuroPG can be modified to incorporate any data acquisition, imaging, or illumination equipment that is compatible with MATLAB’s Data Acquisition and Image Acquisition toolboxes. PMID:25784873
Spagnolo, Daniel M; Al-Kofahi, Yousef; Zhu, Peihong; Lezon, Timothy R; Gough, Albert; Stern, Andrew M; Lee, Adrian V; Ginty, Fiona; Sarachan, Brion; Taylor, D Lansing; Chennubhotla, S Chakra
2017-11-01
We introduce THRIVE (Tumor Heterogeneity Research Interactive Visualization Environment), an open-source tool developed to assist cancer researchers in interactive hypothesis testing. The focus of this tool is to quantify spatial intratumoral heterogeneity (ITH), and the interactions between different cell phenotypes and noncellular constituents. Specifically, we foresee applications in phenotyping cells within tumor microenvironments, recognizing tumor boundaries, identifying degrees of immune infiltration and epithelial/stromal separation, and identification of heterotypic signaling networks underlying microdomains. The THRIVE platform provides an integrated workflow for analyzing whole-slide immunofluorescence images and tissue microarrays, including algorithms for segmentation, quantification, and heterogeneity analysis. THRIVE promotes flexible deployment, a maintainable code base using open-source libraries, and an extensible framework for customizing algorithms with ease. THRIVE was designed with highly multiplexed immunofluorescence images in mind, and, by providing a platform to efficiently analyze high-dimensional immunofluorescence signals, we hope to advance these data toward mainstream adoption in cancer research. Cancer Res; 77(21); e71-74. ©2017 AACR . ©2017 American Association for Cancer Research.
Bioboxes: standardised containers for interchangeable bioinformatics software.
Belmann, Peter; Dröge, Johannes; Bremges, Andreas; McHardy, Alice C; Sczyrba, Alexander; Barton, Michael D
2015-01-01
Software is now both central and essential to modern biology, yet lack of availability, difficult installations, and complex user interfaces make software hard to obtain and use. Containerisation, as exemplified by the Docker platform, has the potential to solve the problems associated with sharing software. We propose bioboxes: containers with standardised interfaces to make bioinformatics software interchangeable.
NASA Astrophysics Data System (ADS)
Maj, P.; Kasiński, K.; Gryboś, P.; Szczygieł, R.; Kozioł, A.
2015-12-01
Integrated circuits designed for specific applications generally use non-standard communication methods. Hybrid pixel detector readout electronics produces a huge amount of data as a result of number of frames per seconds. The data needs to be transmitted to a higher level system without limiting the ASIC's capabilities. Nowadays, the Camera Link interface is still one of the fastest communication methods, allowing transmission speeds up to 800 MB/s. In order to communicate between a higher level system and the ASIC with a dedicated protocol, an FPGA with dedicated code is required. The configuration data is received from the PC and written to the ASIC. At the same time, the same FPGA should be able to transmit the data from the ASIC to the PC at the very high speed. The camera should be an embedded system enabling autonomous operation and self-monitoring. In the presented solution, at least three different hardware platforms are used—FPGA, microprocessor with real-time operating system and the PC with end-user software. We present the use of a single software platform for high speed data transfer from 65k pixel camera to the personal computer.
An FPGA-based heterogeneous image fusion system design method
NASA Astrophysics Data System (ADS)
Song, Le; Lin, Yu-chi; Chen, Yan-hua; Zhao, Mei-rong
2011-08-01
Taking the advantages of FPGA's low cost and compact structure, an FPGA-based heterogeneous image fusion platform is established in this study. Altera's Cyclone IV series FPGA is adopted as the core processor of the platform, and the visible light CCD camera and infrared thermal imager are used as the image-capturing device in order to obtain dualchannel heterogeneous video images. Tailor-made image fusion algorithms such as gray-scale weighted averaging, maximum selection and minimum selection methods are analyzed and compared. VHDL language and the synchronous design method are utilized to perform a reliable RTL-level description. Altera's Quartus II 9.0 software is applied to simulate and implement the algorithm modules. The contrast experiments of various fusion algorithms show that, preferably image quality of the heterogeneous image fusion can be obtained on top of the proposed system. The applied range of the different fusion algorithms is also discussed.
Flexible Software Architecture for Visualization and Seismic Data Analysis
NASA Astrophysics Data System (ADS)
Petunin, S.; Pavlov, I.; Mogilenskikh, D.; Podzyuban, D.; Arkhipov, A.; Baturuin, N.; Lisin, A.; Smith, A.; Rivers, W.; Harben, P.
2007-12-01
Research in the field of seismology requires software and signal processing utilities for seismogram manipulation and analysis. Seismologists and data analysts often encounter a major problem in the use of any particular software application specific to seismic data analysis: the tuning of commands and windows to the specific waveforms and hot key combinations so as to fit their familiar informational environment. The ability to modify the user's interface independently from the developer requires an adaptive code structure. An adaptive code structure also allows for expansion of software capabilities such as new signal processing modules and implementation of more efficient algorithms. Our approach is to use a flexible "open" architecture for development of geophysical software. This report presents an integrated solution for organizing a logical software architecture based on the Unix version of the Geotool software implemented on the Microsoft NET 2.0 platform. Selection of this platform greatly expands the variety and number of computers that can implement the software, including laptops that can be utilized in field conditions. It also facilitates implementation of communication functions for seismic data requests from remote databases through the Internet. The main principle of the new architecture for Geotool is that scientists should be able to add new routines for digital waveform analysis via software plug-ins that utilize the basic Geotool display for GUI interaction. The use of plug-ins allows the efficient integration of diverse signal-processing software, including software still in preliminary development, into an organized platform without changing the fundamental structure of that platform itself. An analyst's use of Geotool is tracked via a metadata file so that future studies can reconstruct, and alter, the original signal processing operations. The work has been completed in the framework of a joint Russian- American project.
Development of a phenotyping platform for high throughput screening of nodal root angle in sorghum.
Joshi, Dinesh C; Singh, Vijaya; Hunt, Colleen; Mace, Emma; van Oosterom, Erik; Sulman, Richard; Jordan, David; Hammer, Graeme
2017-01-01
In sorghum, the growth angle of nodal roots is a major component of root system architecture. It strongly influences the spatial distribution of roots of mature plants in the soil profile, which can impact drought adaptation. However, selection for nodal root angle in sorghum breeding programs has been restricted by the absence of a suitable high throughput phenotyping platform. The aim of this study was to develop a phenotyping platform for the rapid, non-destructive and digital measurement of nodal root angle of sorghum at the seedling stage. The phenotyping platform comprises of 500 soil filled root chambers (50 × 45 × 0.3 cm in size), made of transparent perspex sheets that were placed in metal tubs and covered with polycarbonate sheets. Around 3 weeks after sowing, once the first flush of nodal roots was visible, roots were imaged in situ using an imaging box that included two digital cameras that were remotely controlled by two android tablets. Free software ( openGelPhoto.tcl ) allowed precise measurement of nodal root angle from the digital images. The reliability and efficiency of the platform was evaluated by screening a large nested association mapping population of sorghum and a set of hybrids in six independent experimental runs that included up to 500 plants each. The platform revealed extensive genetic variation and high heritability (repeatability) for nodal root angle. High genetic correlations and consistent ranking of genotypes across experimental runs confirmed the reproducibility of the platform. This low cost, high throughput root phenotyping platform requires no sophisticated equipment, is adaptable to most glasshouse environments and is well suited to dissect the genetic control of nodal root angle of sorghum. The platform is suitable for use in sorghum breeding programs aiming to improve drought adaptation through root system architecture manipulation.
The Ettention software package.
Dahmen, Tim; Marsalek, Lukas; Marniok, Nico; Turoňová, Beata; Bogachev, Sviatoslav; Trampert, Patrick; Nickels, Stefan; Slusallek, Philipp
2016-02-01
We present a novel software package for the problem "reconstruction from projections" in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing. Copyright © 2015 Elsevier B.V. All rights reserved.
SU-E-J-44: Design a Platform and Phantom Model for Photoacoustic Imaging in Combination with CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sick, J; Alsanea, F; Rancilio, N
2014-06-01
Purpose: Our (long-term) objective is to develop a US manipulator that will provide in situ radiation response and image-guided therapy for bladder cancer based on photoacoustic molecular imaging. Methods: A platform was devised to provide a reproducible positional frame of reference for targeting anatomic structure between MDCT and US scans, in lieu of CBCT, and to fuse photoacoustic molecular imaging. US and photoacoustic scans are taken of a patient while in the CT scanner and IRMT. Through co-registration, based on anatomical positions, we identified a common coordinate system to be used in Eclipse. A bladder phantom was constructed to validatemore » anatomical tracking via US and photoacoustic imaging. We tested the platform using phantom model to demonstrate validity once moved from the CT couch to the linear accelerator couch. Results: This platform interlocks with Varian exact couch index points for reproducibility of positioning. Construction from low Z material and sized appropriately to fit in CT/IMRT gantry. Error in conversion from cylindrical coordinates of the manipulator to X, Y, Z coordinates of the treatment couch was less than 1mm. We measured the bladder size in 3 different directions in both Eclipse from the CT and Acuson from US. The error was less than 2mm in all directions. CT and US images were co-registered in MATLAB. Co-registration of photoacoustic images is still being developed. Conclusion: For Linear Accelerators without on board imaging, MV portal images are not a viable option for the localization of soft tissue anatomy. We believe our manipulator provides an alternative using US imaging, which will be examined in an upcoming clinical trial. We plan to examine the value of hypoxia guided treatment through photoacoustic imaging during this trial.« less
Software packager user's guide
NASA Technical Reports Server (NTRS)
Callahan, John R.
1995-01-01
Software integration is a growing area of concern for many programmers and software managers because the need to build new programs quickly from existing components is greater than ever. This includes building versions of software products for multiple hardware platforms and operating systems, building programs from components written in different languages, and building systems from components that must execute on different machines in a distributed network. The goal of software integration is to make building new programs from existing components more seamless -- programmers should pay minimal attention to the underlying configuration issues involved. Libraries of reusable components and classes are important tools but only partial solutions to software development problems. Even though software components may have compatible interfaces, there may be other reasons, such as differences between execution environments, why they cannot be integrated. Often, components must be adapted or reimplemented to fit into another application because of implementation differences -- they are implemented in different programming languages, dependent on different operating system resources, or must execute on different physical machines. The software packager is a tool that allows programmers to deal with interfaces between software components and ignore complex integration details. The packager takes modular descriptions of the structure of a software system written in the package specification language and produces an integration program in the form of a makefile. If complex integration tools are needed to integrate a set of components, such as remote procedure call stubs, their use is implied by the packager automatically and stub generation tools are invoked in the corresponding makefile. The programmer deals only with the components themselves and not the details of how to build the system on any given platform.
A software to digital image processing to be used in the voxel phantom development.
Vieira, J W; Lima, F R A
2009-11-15
Anthropomorphic models used in computational dosimetry, also denominated phantoms, are based on digital images recorded from scanning of real people by Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). The voxel phantom construction requests computational processing for transformations of image formats, to compact two-dimensional (2-D) images forming of three-dimensional (3-D) matrices, image sampling and quantization, image enhancement, restoration and segmentation, among others. Hardly the researcher of computational dosimetry will find all these available abilities in single software, and almost always this difficulty presents as a result the decrease of the rhythm of his researches or the use, sometimes inadequate, of alternative tools. The need to integrate the several tasks mentioned above to obtain an image that can be used in an exposure computational model motivated the development of the Digital Image Processing (DIP) software, mainly to solve particular problems in Dissertations and Thesis developed by members of the Grupo de Pesquisa em Dosimetria Numérica (GDN/CNPq). Because of this particular objective, the software uses the Portuguese idiom in their implementations and interfaces. This paper presents the second version of the DIP, whose main changes are the more formal organization on menus and menu items, and menu for digital image segmentation. Currently, the DIP contains the menus Fundamentos, Visualizações, Domínio Espacial, Domínio de Frequências, Segmentações and Estudos. Each menu contains items and sub-items with functionalities that, usually, request an image as input and produce an image or an attribute in the output. The DIP reads edits and writes binary files containing the 3-D matrix corresponding to a stack of axial images from a given geometry that can be a human body or other volume of interest. It also can read any type of computational image and to make conversions. When the task involves only an output image
AstroImageJ: Image Processing and Photometric Extraction for Ultra-precise Astronomical Light Curves
NASA Astrophysics Data System (ADS)
Collins, Karen A.; Kielkopf, John F.; Stassun, Keivan G.; Hessman, Frederic V.
2017-02-01
ImageJ is a graphical user interface (GUI) driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields. The image processing capabilities of ImageJ are useful and extendable to other scientific fields. Here we present AstroImageJ (AIJ), which provides an astronomy specific image display environment and tools for astronomy specific image calibration and data reduction. Although AIJ maintains the general purpose image processing capabilities of ImageJ, AIJ is streamlined for time-series differential photometry, light curve detrending and fitting, and light curve plotting, especially for applications requiring ultra-precise light curves (e.g., exoplanet transits). AIJ reads and writes standard Flexible Image Transport System (FITS) files, as well as other common image formats, provides FITS header viewing and editing, and is World Coordinate System aware, including an automated interface to the astrometry.net web portal for plate solving images. AIJ provides research grade image calibration and analysis tools with a GUI driven approach, and easily installed cross-platform compatibility. It enables new users, even at the level of undergraduate student, high school student, or amateur astronomer, to quickly start processing, modeling, and plotting astronomical image data with one tightly integrated software package.
Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery.
Loizou, Christos P; Theofanous, Charoula; Pantziaris, Marios; Kasparis, Takis
2014-04-01
Ultrasound imaging of the common carotid artery (CCA) is a non-invasive tool used in medicine to assess the severity of atherosclerosis and monitor its progression through time. It is also used in border detection and texture characterization of the atherosclerotic carotid plaque in the CCA, the identification and measurement of the intima-media thickness (IMT) and the lumen diameter that all are very important in the assessment of cardiovascular disease (CVD). Visual perception, however, is hindered by speckle, a multiplicative noise, that degrades the quality of ultrasound B-mode imaging. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image segmentation of the IMT and the atherosclerotic carotid plaque in ultrasound images. In order to facilitate this preprocessing step, we have developed in MATLAB(®) a unified toolbox that integrates image despeckle filtering (IDF), texture analysis and image quality evaluation techniques to automate the pre-processing and complement the disease evaluation in ultrasound CCA images. The proposed software, is based on a graphical user interface (GUI) and incorporates image normalization, 10 different despeckle filtering techniques (DsFlsmv, DsFwiener, DsFlsminsc, DsFkuwahara, DsFgf, DsFmedian, DsFhmedian, DsFad, DsFnldif, DsFsrad), image intensity normalization, 65 texture features, 15 quantitative image quality metrics and objective image quality evaluation. The software is publicly available in an executable form, which can be downloaded from http://www.cs.ucy.ac.cy/medinfo/. It was validated on 100 ultrasound images of the CCA, by comparing its results with quantitative visual analysis performed by a medical expert. It was observed that the despeckle filters DsFlsmv, and DsFhmedian improved image quality perception (based on the expert's assessment and the image texture and quality metrics). It is anticipated that the
Special Software for Planetary Image Processing and Research
NASA Astrophysics Data System (ADS)
Zubarev, A. E.; Nadezhdina, I. E.; Kozlova, N. A.; Brusnikin, E. S.; Karachevtseva, I. P.
2016-06-01
The special modules of photogrammetric processing of remote sensing data that provide the opportunity to effectively organize and optimize the planetary studies were developed. As basic application the commercial software package PHOTOMOD™ is used. Special modules were created to perform various types of data processing: calculation of preliminary navigation parameters, calculation of shape parameters of celestial body, global view image orthorectification, estimation of Sun illumination and Earth visibilities from planetary surface. For photogrammetric processing the different types of data have been used, including images of the Moon, Mars, Mercury, Phobos, Galilean satellites and Enceladus obtained by frame or push-broom cameras. We used modern planetary data and images that were taken over the years, shooting from orbit flight path with various illumination and resolution as well as obtained by planetary rovers from surface. Planetary data image processing is a complex task, and as usual it can take from few months to years. We present our efficient pipeline procedure that provides the possibilities to obtain different data products and supports a long way from planetary images to celestial body maps. The obtained data - new three-dimensional control point networks, elevation models, orthomosaics - provided accurate maps production: a new Phobos atlas (Karachevtseva et al., 2015) and various thematic maps that derived from studies of planetary surface (Karachevtseva et al., 2016a).
Kudella, Patrick Wolfgang; Moll, Kirsten; Wahlgren, Mats; Wixforth, Achim; Westerhausen, Christoph
2016-04-18
Rosetting is associated with severe malaria and a primary cause of death in Plasmodium falciparum infections. Detailed understanding of this adhesive phenomenon may enable the development of new therapies interfering with rosette formation. For this, it is crucial to determine parameters such as rosetting and parasitaemia of laboratory strains or patient isolates, a bottleneck in malaria research due to the time consuming and error prone manual analysis of specimens. Here, the automated, free, stand-alone analysis software automated rosetting analyzer for micrographs (ARAM) to determine rosetting rate, rosette size distribution as well as parasitaemia with a convenient graphical user interface is presented. Automated rosetting analyzer for micrographs is an executable with two operation modes for automated identification of objects on images. The default mode detects red blood cells and fluorescently labelled parasitized red blood cells by combining an intensity-gradient with a threshold filter. The second mode determines object location and size distribution from a single contrast method. The obtained results are compared with standardized manual analysis. Automated rosetting analyzer for micrographs calculates statistical confidence probabilities for rosetting rate and parasitaemia. Automated rosetting analyzer for micrographs analyses 25 cell objects per second reliably delivering identical results compared to manual analysis. For the first time rosette size distribution is determined in a precise and quantitative manner employing ARAM in combination with established inhibition tests. Additionally ARAM measures the essential observables parasitaemia, rosetting rate and size as well as location of all detected objects and provides confidence intervals for the determined observables. No other existing software solution offers this range of function. The second, non-malaria specific, analysis mode of ARAM offers the functionality to detect arbitrary objects
HTML5 PivotViewer: high-throughput visualization and querying of image data on the web.
Taylor, Stephen; Noble, Roger
2014-09-15
Visualization and analysis of large numbers of biological images has generated a bottle neck in research. We present HTML5 PivotViewer, a novel, open source, platform-independent viewer making use of the latest web technologies that allows seamless access to images and associated metadata for each image. This provides a powerful method to allow end users to mine their data. Documentation, examples and links to the software are available from http://www.cbrg.ox.ac.uk/data/pivotviewer/. The software is licensed under GPLv2. © The Author 2014. Published by Oxford University Press.
Autonomous robot software development using simple software components
NASA Astrophysics Data System (ADS)
Burke, Thomas M.; Chung, Chan-Jin
2004-10-01
Developing software to control a sophisticated lane-following, obstacle-avoiding, autonomous robot can be demanding and beyond the capabilities of novice programmers - but it doesn"t have to be. A creative software design utilizing only basic image processing and a little algebra, has been employed to control the LTU-AISSIG autonomous robot - a contestant in the 2004 Intelligent Ground Vehicle Competition (IGVC). This paper presents a software design equivalent to that used during the IGVC, but with much of the complexity removed. The result is an autonomous robot software design, that is robust, reliable, and can be implemented by programmers with a limited understanding of image processing. This design provides a solid basis for further work in autonomous robot software, as well as an interesting and achievable robotics project for students.
George, L D; Lusty, J; Owens, D R; Ollerton, R L
1999-08-01
To determine whether software processing of digitised retinal images using a "sharpen" filter improves the ability to grade diabetic retinopathy. 150 macula centred retinal images were taken as 35 mm colour transparencies representing a spectrum of diabetic retinopathy, digitised, and graded in random order before and after the application of a sharpen filter (Adobe Photoshop). Digital enhancement of contrast and brightness was performed and a X2 digital zoom was utilised. The grades from the unenhanced and enhanced digitised images were compared with the same retinal fields viewed as slides. Overall agreement in retinopathy grade from the digitised images improved from 83.3% (125/150) to 94.0% (141/150) with sight threatening diabetic retinopathy (STDR) correctly identified in 95.5% (84/88) and 98.9% (87/88) of cases when using unenhanced and enhanced images respectively. In total, five images were overgraded and four undergraded from the enhanced images compared with 17 and eight images respectively when using unenhanced images. This study demonstrates that the already good agreement in grading performance can be further improved by software manipulation or processing of digitised retinal images.
George, L; Lusty, J; Owens, D; Ollerton, R
1999-01-01
AIMS—To determine whether software processing of digitised retinal images using a "sharpen" filter improves the ability to grade diabetic retinopathy. METHODS—150 macula centred retinal images were taken as 35 mm colour transparencies representing a spectrum of diabetic retinopathy, digitised, and graded in random order before and after the application of a sharpen filter (Adobe Photoshop). Digital enhancement of contrast and brightness was performed and a X2 digital zoom was utilised. The grades from the unenhanced and enhanced digitised images were compared with the same retinal fields viewed as slides. RESULTS—Overall agreement in retinopathy grade from the digitised images improved from 83.3% (125/150) to 94.0% (141/150) with sight threatening diabetic retinopathy (STDR) correctly identified in 95.5% (84/88) and 98.9% (87/88) of cases when using unenhanced and enhanced images respectively. In total, five images were overgraded and four undergraded from the enhanced images compared with 17 and eight images respectively when using unenhanced images. CONCLUSION—This study demonstrates that the already good agreement in grading performance can be further improved by software manipulation or processing of digitised retinal images. PMID:10413691
SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis.
Tanabata, Takanari; Shibaya, Taeko; Hori, Kiyosumi; Ebana, Kaworu; Yano, Masahiro
2012-12-01
Seed shape and size are among the most important agronomic traits because they affect yield and market price. To obtain accurate seed size data, a large number of measurements are needed because there is little difference in size among seeds from one plant. To promote genetic analysis and selection for seed shape in plant breeding, efficient, reliable, high-throughput seed phenotyping methods are required. We developed SmartGrain software for high-throughput measurement of seed shape. This software uses a new image analysis method to reduce the time taken in the preparation of seeds and in image capture. Outlines of seeds are automatically recognized from digital images, and several shape parameters, such as seed length, width, area, and perimeter length, are calculated. To validate the software, we performed a quantitative trait locus (QTL) analysis for rice (Oryza sativa) seed shape using backcrossed inbred lines derived from a cross between japonica cultivars Koshihikari and Nipponbare, which showed small differences in seed shape. SmartGrain removed areas of awns and pedicels automatically, and several QTLs were detected for six shape parameters. The allelic effect of a QTL for seed length detected on chromosome 11 was confirmed in advanced backcross progeny; the cv Nipponbare allele increased seed length and, thus, seed weight. High-throughput measurement with SmartGrain reduced sampling error and made it possible to distinguish between lines with small differences in seed shape. SmartGrain could accurately recognize seed not only of rice but also of several other species, including Arabidopsis (Arabidopsis thaliana). The software is free to researchers.