Sample records for imaging systems capable

  1. Toshiba TDF-500 High Resolution Viewing And Analysis System

    NASA Astrophysics Data System (ADS)

    Roberts, Barry; Kakegawa, M.; Nishikawa, M.; Oikawa, D.

    1988-06-01

    A high resolution, operator interactive, medical viewing and analysis system has been developed by Toshiba and Bio-Imaging Research. This system provides many advanced features including high resolution displays, a very large image memory and advanced image processing capability. In particular, the system provides CRT frame buffers capable of update in one frame period, an array processor capable of image processing at operator interactive speeds, and a memory system capable of updating multiple frame buffers at frame rates whilst supporting multiple array processors. The display system provides 1024 x 1536 display resolution at 40Hz frame and 80Hz field rates. In particular, the ability to provide whole or partial update of the screen at the scanning rate is a key feature. This allows multiple viewports or windows in the display buffer with both fixed and cine capability. To support image processing features such as windowing, pan, zoom, minification, filtering, ROI analysis, multiplanar and 3D reconstruction, a high performance CPU is integrated into the system. This CPU is an array processor capable of up to 400 million instructions per second. To support the multiple viewer and array processors' instantaneous high memory bandwidth requirement, an ultra fast memory system is used. This memory system has a bandwidth capability of 400MB/sec and a total capacity of 256MB. This bandwidth is more than adequate to support several high resolution CRT's and also the fast processing unit. This fully integrated approach allows effective real time image processing. The integrated design of viewing system, memory system and array processor are key to the imaging system. It is the intention to describe the architecture of the image system in this paper.

  2. A Workstation for Interactive Display and Quantitative Analysis of 3-D and 4-D Biomedical Images

    PubMed Central

    Robb, R.A.; Heffeman, P.B.; Camp, J.J.; Hanson, D.P.

    1986-01-01

    The capability to extract objective and quantitatively accurate information from 3-D radiographic biomedical images has not kept pace with the capabilities to produce the images themselves. This is rather an ironic paradox, since on the one hand the new 3-D and 4-D imaging capabilities promise significant potential for providing greater specificity and sensitivity (i.e., precise objective discrimination and accurate quantitative measurement of body tissue characteristics and function) in clinical diagnostic and basic investigative imaging procedures than ever possible before, but on the other hand, the momentous advances in computer and associated electronic imaging technology which have made these 3-D imaging capabilities possible have not been concomitantly developed for full exploitation of these capabilities. Therefore, we have developed a powerful new microcomputer-based system which permits detailed investigations and evaluation of 3-D and 4-D (dynamic 3-D) biomedical images. The system comprises a special workstation to which all the information in a large 3-D image data base is accessible for rapid display, manipulation, and measurement. The system provides important capabilities for simultaneously representing and analyzing both structural and functional data and their relationships in various organs of the body. This paper provides a detailed description of this system, as well as some of the rationale, background, theoretical concepts, and practical considerations related to system implementation. ImagesFigure 5Figure 7Figure 8Figure 9Figure 10Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16

  3. A bidirectional ACR-NEMA interface between the VA's DHCP Integrated Imaging System and the Siemens-Loral PACS.

    PubMed Central

    Kuzmak, P. M.; Dayhoff, R. E.

    1992-01-01

    There is a wide range of requirements for digital hospital imaging systems. Radiology needs very high resolution black and white images. Other diagnostic disciplines need high resolution color imaging capabilities. Images need to be displayed in many locations throughout the hospital. Different imaging systems within a hospital need to cooperate in order to show the whole picture. At the Baltimore VA Medical Center, the DHCP Integrated Imaging System and a commercial Picture Archiving and Communication System (PACS) work in concert to provide a wide-range of departmental and hospital-wide imaging capabilities. An interface between the DHCP and the Siemens-Loral PACS systems enables patient text and image data to be passed between the two systems. The interface uses ACR-NEMA 2.0 Standard messages extended with shadow groups based on draft ACR-NEMA 3.0 prototypes. A Novell file server, accessible to both systems via Ethernet, is used to communicate all the messages. Patient identification information, orders, ADT, procedure status, changes, patient reports, and images are sent between the two systems across the interface. The systems together provide an extensive set of imaging capabilities for both the specialist and the general practitioner. PMID:1482906

  4. A bidirectional ACR-NEMA interface between the VA's DHCP Integrated Imaging System and the Siemens-Loral PACS.

    PubMed

    Kuzmak, P M; Dayhoff, R E

    1992-01-01

    There is a wide range of requirements for digital hospital imaging systems. Radiology needs very high resolution black and white images. Other diagnostic disciplines need high resolution color imaging capabilities. Images need to be displayed in many locations throughout the hospital. Different imaging systems within a hospital need to cooperate in order to show the whole picture. At the Baltimore VA Medical Center, the DHCP Integrated Imaging System and a commercial Picture Archiving and Communication System (PACS) work in concert to provide a wide-range of departmental and hospital-wide imaging capabilities. An interface between the DHCP and the Siemens-Loral PACS systems enables patient text and image data to be passed between the two systems. The interface uses ACR-NEMA 2.0 Standard messages extended with shadow groups based on draft ACR-NEMA 3.0 prototypes. A Novell file server, accessible to both systems via Ethernet, is used to communicate all the messages. Patient identification information, orders, ADT, procedure status, changes, patient reports, and images are sent between the two systems across the interface. The systems together provide an extensive set of imaging capabilities for both the specialist and the general practitioner.

  5. High resolution imaging and wavefront aberration correction in plenoptic systems.

    PubMed

    Trujillo-Sevilla, J M; Rodríguez-Ramos, L F; Montilla, I; Rodríguez-Ramos, J M

    2014-09-01

    Plenoptic imaging systems are becoming more common since they provide capabilities unattainable in conventional imaging systems, but one of their main limitations is the poor bidimensional resolution. Combining the wavefront phase measurement and the plenoptic image deconvolution, we propose a system capable of improving the resolution when a wavefront aberration is present and the image is blurred. In this work, a plenoptic system is simulated using Fourier optics, and the results show that an improved resolution is achieved, even in the presence of strong wavefront aberrations.

  6. Real-time in vivo imaging of human lymphatic system using an LED-based photoacoustic/ultrasound imaging system

    NASA Astrophysics Data System (ADS)

    Kuniyil Ajith Singh, Mithun; Agano, Toshitaka; Sato, Naoto; Shigeta, Yusuke; Uemura, Tetsuji

    2018-02-01

    Non-invasive in vivo imaging of lymphatic system is of paramount importance for analyzing the functions of lymphatic vessels, and for investigating their contribution to metastasis. Recently, we introduced a multi-wavelength real-time LED-based photoacoustic/ultrasound system (AcousticX). In this work, for the first time, we demonstrate that AcousticX is capable of real-time imaging of human lymphatic system. Results demonstrate the capability of this system to image vascular and lymphatic vessels simultaneously. This could potentially provide detailed information regarding the interconnected roles of lymphatic and vascular systems in various diseases, therefore fostering the growth of therapeutic interventions.

  7. Imaging characteristics of photogrammetric camera systems

    USGS Publications Warehouse

    Welch, R.; Halliday, J.

    1973-01-01

    In view of the current interest in high-altitude and space photographic systems for photogrammetric mapping, the United States Geological Survey (U.S.G.S.) undertook a comprehensive research project designed to explore the practical aspects of applying the latest image quality evaluation techniques to the analysis of such systems. The project had two direct objectives: (1) to evaluate the imaging characteristics of current U.S.G.S. photogrammetric camera systems; and (2) to develop methodologies for predicting the imaging capabilities of photogrammetric camera systems, comparing conventional systems with new or different types of systems, and analyzing the image quality of photographs. Image quality was judged in terms of a number of evaluation factors including response functions, resolving power, and the detectability and measurability of small detail. The limiting capabilities of the U.S.G.S. 6-inch and 12-inch focal length camera systems were established by analyzing laboratory and aerial photographs in terms of these evaluation factors. In the process, the contributing effects of relevant parameters such as lens aberrations, lens aperture, shutter function, image motion, film type, and target contrast procedures for analyzing image quality and predicting and comparing performance capabilities. ?? 1973.

  8. Background: Preflight Screening, In-flight Capabilities, and Postflight Testing

    NASA Technical Reports Server (NTRS)

    Gibson, Charles Robert; Duncan, James

    2009-01-01

    Recommendations for minimal in-flight capabilities: Retinal Imaging - provide in-flight capability for the visual monitoring of ocular health (specifically, imaging of the retina and optic nerve head) with the capability of downlinking video/still images. Tonometry - provide more accurate and reliable in-flight capability for measuring intraocular pressure. Ultrasound - explore capabilities of current on-board system for monitoring ocular health. We currently have limited in-flight capabilities on board the International Space Station for performing an internal ocular health assessment. Visual Acuity, Direct Ophthalmoscope, Ultrasound, Tonometry(Tonopen):

  9. Interactive degraded document enhancement and ground truth generation

    NASA Astrophysics Data System (ADS)

    Bal, G.; Agam, G.; Frieder, O.; Frieder, G.

    2008-01-01

    Degraded documents are frequently obtained in various situations. Examples of degraded document collections include historical document depositories, document obtained in legal and security investigations, and legal and medical archives. Degraded document images are hard to to read and are hard to analyze using computerized techniques. There is hence a need for systems that are capable of enhancing such images. We describe a language-independent semi-automated system for enhancing degraded document images that is capable of exploiting inter- and intra-document coherence. The system is capable of processing document images with high levels of degradations and can be used for ground truthing of degraded document images. Ground truthing of degraded document images is extremely important in several aspects: it enables quantitative performance measurements of enhancement systems and facilitates model estimation that can be used to improve performance. Performance evaluation is provided using the historical Frieder diaries collection.1

  10. Plenoptic Imaging of a Three Dimensional Cold Atom Cloud

    NASA Astrophysics Data System (ADS)

    Lott, Gordon

    2017-04-01

    A plenoptic imaging system is capable of sampling the rays of light in a volume, both spatially and angularly, providing information about the three dimensional (3D) volume being imaged. The extraction of the 3D structure of a cold atom cloud is demonstrated, using a single plenoptic camera and a single image. The reconstruction is tested against a reference image and the results discussed along with the capabilities and limitations of the imaging system. This capability is useful when the 3D distribution of the atoms is desired, such as determining the shape of an atom trap, particularly when there is limited optical access. Gratefully acknowledge support from AFRL.

  11. PDSS/IMC requirements and functional specifications

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The system (software and hardware) requirements for the Payload Development Support System (PDSS)/Image Motion Compensator (IMC) are provided. The PDSS/IMC system provides the capability for performing Image Motion Compensator Electronics (IMCE) flight software test, checkout, and verification and provides the capability for monitoring the IMC flight computer system during qualification testing for fault detection and fault isolation.

  12. Imaging of blood cells based on snapshot Hyper-Spectral Imaging systems

    NASA Astrophysics Data System (ADS)

    Robison, Christopher J.; Kolanko, Christopher; Bourlai, Thirimachos; Dawson, Jeremy M.

    2015-05-01

    Snapshot Hyper-Spectral imaging systems are capable of capturing several spectral bands simultaneously, offering coregistered images of a target. With appropriate optics, these systems are potentially able to image blood cells in vivo as they flow through a vessel, eliminating the need for a blood draw and sample staining. Our group has evaluated the capability of a commercial Snapshot Hyper-Spectral imaging system, the Arrow system from Rebellion Photonics, in differentiating between white and red blood cells on unstained blood smear slides. We evaluated the imaging capabilities of this hyperspectral camera; attached to a microscope at varying objective powers and illumination intensity. Hyperspectral data consisting of 25, 443x313 hyperspectral bands with ~3nm spacing were captured over the range of 419 to 494nm. Open-source hyper-spectral data cube analysis tools, used primarily in Geographic Information Systems (GIS) applications, indicate that white blood cells features are most prominent in the 428-442nm band for blood samples viewed under 20x and 50x magnification over a varying range of illumination intensities. These images could potentially be used in subsequent automated white blood cell segmentation and counting algorithms for performing in vivo white blood cell counting.

  13. X-Ray and near-infrared imaging: similarities, differences and combinations

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.

    2010-02-01

    The integration of x-ray imaging with optical imaging is becoming routine at the pre-clinical level, as both projection and tomography systems are now commercially integrated as packaged systems. Yet, the differences between their capabilities are wide, and there is still perhaps a lack of appreciation about how difference pre-clinical x-ray systems are from clinical x-ray systems. In this survey, the key advantages of each approach, x-ray and optical, are described, and the potential synergies and deficiencies are discussed. In simple terms, the major benefit of optical imaging is in the spectroscopic capabilities, which allow the potential for imaging fluorescent agents in vivo, and the future potential for imaging multiple species at a time with spectral discrimination or spectral fitting of the data. In comparison, multienergy x-ray systems are being realized in clinical use, or automated discrimination of soft versus hard tissues, and the combination of optical imaging with this type of dual-energy x-ray imaging will significantly enhance the capabilities of the hybrid systems. Unfortunately, the power of dual energy imaging is not as possible at the pre-clinical stage, because of the limitations of contrast-resolution and x-ray dose. This is discussed and future human systems outlined.

  14. FIZICS: fluorescent imaging zone identification system, a novel macro imaging system.

    PubMed

    Skwish, Stephen; Asensio, Francisco; King, Greg; Clarke, Glenn; Kath, Gary; Salvatore, Michael J; Dufresne, Claude

    2004-12-01

    Constantly improving biological assay development continues to drive technological requirements. Recently, a specification was defined for capturing white light and fluorescent images of agar plates ranging in size from the NUNC Omni tray (96-well footprint, 128 x 85 mm) to the NUNC Bio Assay Dish (245 x 245 mm). An evaluation of commercially available products failed to identify any system capable of fluorescent macroimaging with discrete wavelength selection. To address the lack of a commercially available system, a custom imaging system was designed and constructed. This system provides the same capabilities of many commercially available systems with the added ability to fluorescently image up to a 245 x 245 mm area using wavelengths in the visible light spectrum.

  15. Advanced sensor-simulation capability

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Kalman, Linda S.; Keller, Robert A.

    1990-09-01

    This paper provides an overview of an advanced simulation capability currently in use for analyzing visible and infrared sensor systems. The software system, called VISTAS (VISIBLE/INFRARED SENSOR TRADES, ANALYSES, AND SIMULATIONS) combines classical image processing techniques with detailed sensor models to produce static and time dependent simulations of a variety of sensor systems including imaging, tracking, and point target detection systems. Systems modelled to date include space-based scanning line-array sensors as well as staring 2-dimensional array sensors which can be used for either imaging or point source detection.

  16. Development of an imaging system for the detection of alumina on turbine blades

    NASA Astrophysics Data System (ADS)

    Greenwell, S. J.; Kell, J.; Day, J. C. C.

    2014-03-01

    An imaging system capable of detecting alumina on turbine blades by acquiring LED-induced fluorescence images has been developed. Acquiring fluorescence images at adjacent spectral bands allows the system to distinguish alumina from fluorescent surface contaminants. Repair and overhaul processes require that alumina is entirely removed from the blades by grit blasting and chemical stripping. The capability of the system to detect alumina has been investigated with two series of turbine blades provided by Rolls-Royce plc. The results illustrate that the system provides a superior inspection method to visual assessment when ascertaining whether alumina is present on turbine blades during repair and overhaul processes.

  17. Validation Test Report for the Automated Optical Processing System (AOPS) Version 4.12

    DTIC Science & Technology

    2015-09-03

    the Geostationary Ocean Color Imager (GOCI) sensor, aboard the Communication Ocean and Meteorological Satellite (COMS) satellite. Additionally, this...this capability works in conjunction with AOPS • Improvements to the AOPS mosaicking capability • Prepare the NRT Geostationary Ocean Color Imager...Warfare (EXW) Geostationary Ocean Color Imager (GOCI) Gulf of Mexico (GOM) Hierarchical Data Format (HDF) Integrated Data Processing System (IDPS

  18. Image based performance analysis of thermal imagers

    NASA Astrophysics Data System (ADS)

    Wegner, D.; Repasi, E.

    2016-05-01

    Due to advances in technology, modern thermal imagers resemble sophisticated image processing systems in functionality. Advanced signal and image processing tools enclosed into the camera body extend the basic image capturing capability of thermal cameras. This happens in order to enhance the display presentation of the captured scene or specific scene details. Usually, the implemented methods are proprietary company expertise, distributed without extensive documentation. This makes the comparison of thermal imagers especially from different companies a difficult task (or at least a very time consuming/expensive task - e.g. requiring the execution of a field trial and/or an observer trial). For example, a thermal camera equipped with turbulence mitigation capability stands for such a closed system. The Fraunhofer IOSB has started to build up a system for testing thermal imagers by image based methods in the lab environment. This will extend our capability of measuring the classical IR-system parameters (e.g. MTF, MTDP, etc.) in the lab. The system is set up around the IR- scene projector, which is necessary for the thermal display (projection) of an image sequence for the IR-camera under test. The same set of thermal test sequences might be presented to every unit under test. For turbulence mitigation tests, this could be e.g. the same turbulence sequence. During system tests, gradual variation of input parameters (e. g. thermal contrast) can be applied. First ideas of test scenes selection and how to assembly an imaging suite (a set of image sequences) for the analysis of imaging thermal systems containing such black boxes in the image forming path is discussed.

  19. Multimodal quantitative phase and fluorescence imaging of cell apoptosis

    NASA Astrophysics Data System (ADS)

    Fu, Xinye; Zuo, Chao; Yan, Hao

    2017-06-01

    Fluorescence microscopy, utilizing fluorescence labeling, has the capability to observe intercellular changes which transmitted and reflected light microscopy techniques cannot resolve. However, the parts without fluorescence labeling are not imaged. Hence, the processes simultaneously happen in these parts cannot be revealed. Meanwhile, fluorescence imaging is 2D imaging where information in the depth is missing. Therefore the information in labeling parts is also not complete. On the other hand, quantitative phase imaging is capable to image cells in 3D in real time through phase calculation. However, its resolution is limited by the optical diffraction and cannot observe intercellular changes below 200 nanometers. In this work, fluorescence imaging and quantitative phase imaging are combined to build a multimodal imaging system. Such system has the capability to simultaneously observe the detailed intercellular phenomenon and 3D cell morphology. In this study the proposed multimodal imaging system is used to observe the cell behavior in the cell apoptosis. The aim is to highlight the limitations of fluorescence microscopy and to point out the advantages of multimodal quantitative phase and fluorescence imaging. The proposed multimodal quantitative phase imaging could be further applied in cell related biomedical research, such as tumor.

  20. Capability of long distance 100  GHz FMCW using a single GDD lamp sensor.

    PubMed

    Levanon, Assaf; Rozban, Daniel; Aharon Akram, Avihai; Kopeika, Natan S; Yitzhaky, Yitzhak; Abramovich, Amir

    2014-12-20

    Millimeter wave (MMW)-based imaging systems are required for applications in medicine, homeland security, concealed weapon detection, and space technology. The lack of inexpensive room temperature imaging sensors makes it difficult to provide a suitable MMW system for many of the above applications. A 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The radar system requires that the millimeter wave detector will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the 2D image. New experiments show the capability of long distance FMCW detection by using a large scale Cassegrain projection system, described first (to our knowledge) in this paper. The system presents the capability to employ a long distance of at least 20 m with a low-cost plasma-based glow discharge detector (GDD) focal plane array (FPA). Each point on the object corresponds to a point in the image and includes the distance information. This will enable relatively inexpensive 3D MMW imaging.

  1. Terahertz Tools Advance Imaging for Security, Industry

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  2. [Mobile phone-computer wireless interactive graphics transmission technology and its medical application].

    PubMed

    Huang, Shuo; Liu, Jing

    2010-05-01

    Application of clinical digital medical imaging has raised many tough issues to tackle, such as data storage, management, and information sharing. Here we investigated a mobile phone based medical image management system which is capable of achieving personal medical imaging information storage, management and comprehensive health information analysis. The technologies related to the management system spanning the wireless transmission technology, the technical capabilities of phone in mobile health care and management of mobile medical database were discussed. Taking medical infrared images transmission between phone and computer as an example, the working principle of the present system was demonstrated.

  3. Depth-resolved ballistic imaging in a low-depth-of-field optical Kerr gated imaging system

    NASA Astrophysics Data System (ADS)

    Zheng, Yipeng; Tan, Wenjiang; Si, Jinhai; Ren, YuHu; Xu, Shichao; Tong, Junyi; Hou, Xun

    2016-09-01

    We demonstrate depth-resolved imaging in a ballistic imaging system, in which a heterodyned femtosecond optical Kerr gate is introduced to extract useful imaging photons for detecting an object hidden in turbid media and a compound lens is proposed to ensure both the depth-resolved imaging capability and the long working distance. Two objects of about 15-μm widths hidden in a polystyrene-sphere suspension have been successfully imaged with approximately 600-μm depth resolution. Modulation-transfer-function curves with the object in and away from the object plane have also been measured to confirm the depth-resolved imaging capability of the low-depth-of-field (low-DOF) ballistic imaging system. This imaging approach shows potential for application in research of the internal structure of highly scattering fuel spray.

  4. Depth-resolved ballistic imaging in a low-depth-of-field optical Kerr gated imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yipeng; Tan, Wenjiang, E-mail: tanwenjiang@mail.xjtu.edu.cn; Si, Jinhai

    2016-09-07

    We demonstrate depth-resolved imaging in a ballistic imaging system, in which a heterodyned femtosecond optical Kerr gate is introduced to extract useful imaging photons for detecting an object hidden in turbid media and a compound lens is proposed to ensure both the depth-resolved imaging capability and the long working distance. Two objects of about 15-μm widths hidden in a polystyrene-sphere suspension have been successfully imaged with approximately 600-μm depth resolution. Modulation-transfer-function curves with the object in and away from the object plane have also been measured to confirm the depth-resolved imaging capability of the low-depth-of-field (low-DOF) ballistic imaging system. Thismore » imaging approach shows potential for application in research of the internal structure of highly scattering fuel spray.« less

  5. Real-time quantitative fluorescence imaging using a single snapshot optical properties technique for neurosurgical guidance

    NASA Astrophysics Data System (ADS)

    Valdes, Pablo A.; Angelo, Joseph; Gioux, Sylvain

    2015-03-01

    Fluorescence imaging has shown promise as an adjunct to improve the extent of resection in neurosurgery and oncologic surgery. Nevertheless, current fluorescence imaging techniques do not account for the heterogeneous attenuation effects of tissue optical properties. In this work, we present a novel imaging system that performs real time quantitative fluorescence imaging using Single Snapshot Optical Properties (SSOP) imaging. We developed the technique and performed initial phantom studies to validate the quantitative capabilities of the system for intraoperative feasibility. Overall, this work introduces a novel real-time quantitative fluorescence imaging method capable of being used intraoperatively for neurosurgical guidance.

  6. A novel dual-color bifocal imaging system for single-molecule studies.

    PubMed

    Jiang, Chang; Kaul, Neha; Campbell, Jenna; Meyhofer, Edgar

    2017-05-01

    In this paper, we report the design and implementation of a dual-color bifocal imaging (DBI) system that is capable of acquiring two spectrally distinct, spatially registered images of objects located in either same or two distinct focal planes. We achieve this by separating an image into two channels with distinct chromatic properties and independently focusing both images onto a single CCD camera. The two channels in our device are registered with subpixel accuracy, and long-term stability of the registered images with nanometer-precision was accomplished by reducing the drift of the images to ∼5 nm. We demonstrate the capabilities of our DBI system by imaging biomolecules labeled with spectrally distinct dyes and micro- and nano-sized spheres located in different focal planes.

  7. Bayesian superresolution

    NASA Astrophysics Data System (ADS)

    Isakson, Steve Wesley

    2001-12-01

    Well-known principles of physics explain why resolution restrictions occur in images produced by optical diffraction-limited systems. The limitations involved are present in all diffraction-limited imaging systems, including acoustical and microwave. In most circumstances, however, prior knowledge about the object and the imaging system can lead to resolution improvements. In this dissertation I outline a method to incorporate prior information into the process of reconstructing images to superresolve the object beyond the above limitations. This dissertation research develops the details of this methodology. The approach can provide the most-probable global solution employing a finite number of steps in both far-field and near-field images. In addition, in order to overcome the effects of noise present in any imaging system, this technique provides a weighted image that quantifies the likelihood of various imaging solutions. By utilizing Bayesian probability, the procedure is capable of incorporating prior information about both the object and the noise to overcome the resolution limitation present in many imaging systems. Finally I will present an imaging system capable of detecting the evanescent waves missing from far-field systems, thus improving the resolution further.

  8. Digital image processing of bone - Problems and potentials

    NASA Technical Reports Server (NTRS)

    Morey, E. R.; Wronski, T. J.

    1980-01-01

    The development of a digital image processing system for bone histomorphometry and fluorescent marker monitoring is discussed. The system in question is capable of making measurements of UV or light microscope features on a video screen with either video or computer-generated images, and comprises a microscope, low-light-level video camera, video digitizer and display terminal, color monitor, and PDP 11/34 computer. Capabilities demonstrated in the analysis of an undecalcified rat tibia include the measurement of perimeter and total bone area, and the generation of microscope images, false color images, digitized images and contoured images for further analysis. Software development will be based on an existing software library, specifically the mini-VICAR system developed at JPL. It is noted that the potentials of the system in terms of speed and reliability far exceed any problems associated with hardware and software development.

  9. Low-cost, high-speed back-end processing system for high-frequency ultrasound B-mode imaging.

    PubMed

    Chang, Jin Ho; Sun, Lei; Yen, Jesse T; Shung, K Kirk

    2009-07-01

    For real-time visualization of the mouse heart (6 to 13 beats per second), a back-end processing system involving high-speed signal processing functions to form and display images has been developed. This back-end system was designed with new signal processing algorithms to achieve a frame rate of more than 400 images per second. These algorithms were implemented in a simple and cost-effective manner with a single field-programmable gate array (FPGA) and software programs written in C++. The operating speed of the back-end system was investigated by recording the time required for transferring an image to a personal computer. Experimental results showed that the back-end system is capable of producing 433 images per second. To evaluate the imaging performance of the back-end system, a complete imaging system was built. This imaging system, which consisted of a recently reported high-speed mechanical sector scanner assembled with the back-end system, was tested by imaging a wire phantom, a pig eye (in vitro), and a mouse heart (in vivo). It was shown that this system is capable of providing high spatial resolution images with fast temporal resolution.

  10. Low-Cost, High-Speed Back-End Processing System for High-Frequency Ultrasound B-Mode Imaging

    PubMed Central

    Chang, Jin Ho; Sun, Lei; Yen, Jesse T.; Shung, K. Kirk

    2009-01-01

    For real-time visualization of the mouse heart (6 to 13 beats per second), a back-end processing system involving high-speed signal processing functions to form and display images has been developed. This back-end system was designed with new signal processing algorithms to achieve a frame rate of more than 400 images per second. These algorithms were implemented in a simple and cost-effective manner with a single field-programmable gate array (FPGA) and software programs written in C++. The operating speed of the back-end system was investigated by recording the time required for transferring an image to a personal computer. Experimental results showed that the back-end system is capable of producing 433 images per second. To evaluate the imaging performance of the back-end system, a complete imaging system was built. This imaging system, which consisted of a recently reported high-speed mechanical sector scanner assembled with the back-end system, was tested by imaging a wire phantom, a pig eye (in vitro), and a mouse heart (in vivo). It was shown that this system is capable of providing high spatial resolution images with fast temporal resolution. PMID:19574160

  11. Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner

    NASA Astrophysics Data System (ADS)

    Liang, Shanshan; Saidi, Arya; Jing, Joe; Liu, Gangjun; Li, Jiawen; Zhang, Jun; Sun, Changsen; Narula, Jagat; Chen, Zhongping

    2012-07-01

    We developed a multimodality fluorescence and optical coherence tomography probe based on a double-clad fiber (DCF) combiner. The probe is composed of a DCF combiner, grin lens, and micromotor in the distal end. An integrated swept-source optical coherence tomography and fluorescence intensity imaging system was developed based on the combined probe for the early diagnoses of atherosclerosis. This system is capable of real-time data acquisition and processing as well as image display. For fluorescence imaging, the inflammation of atherosclerosis and necrotic core formed with the annexin V-conjugated Cy5.5 were imaged. Ex vivo imaging of New Zealand white rabbit arteries demonstrated the capability of the combined system.

  12. 4-mm-diameter three-dimensional imaging endoscope with steerable camera for minimally invasive surgery (3-D-MARVEL).

    PubMed

    Bae, Sam Y; Korniski, Ronald J; Shearn, Michael; Manohara, Harish M; Shahinian, Hrayr

    2017-01-01

    High-resolution three-dimensional (3-D) imaging (stereo imaging) by endoscopes in minimally invasive surgery, especially in space-constrained applications such as brain surgery, is one of the most desired capabilities. Such capability exists at larger than 4-mm overall diameters. We report the development of a stereo imaging endoscope of 4-mm maximum diameter, called Multiangle, Rear-Viewing Endoscopic Tool (MARVEL) that uses a single-lens system with complementary multibandpass filter (CMBF) technology to achieve 3-D imaging. In addition, the system is endowed with the capability to pan from side-to-side over an angle of [Formula: see text], which is another unique aspect of MARVEL for such a class of endoscopes. The design and construction of a single-lens, CMBF aperture camera with integrated illumination to generate 3-D images, and the actuation mechanism built into it is summarized.

  13. An ultra-wideband microwave tomography system: preliminary results.

    PubMed

    Gilmore, Colin; Mojabi, Puyan; Zakaria, Amer; Ostadrahimi, Majid; Kaye, Cam; Noghanian, Sima; Shafai, Lotfollah; Pistorius, Stephen; LoVetri, Joe

    2009-01-01

    We describe a 2D wide-band multi-frequency microwave imaging system intended for biomedical imaging. The system is capable of collecting data from 2-10 GHz, with 24 antenna elements connected to a vector network analyzer via a 2 x 24 port matrix switch. Through the use of two different nonlinear reconstruction schemes: the Multiplicative-Regularized Contrast Source Inversion method and an enhanced version of the Distorted Born Iterative Method, we show preliminary imaging results from dielectric phantoms where data were collected from 3-6 GHz. The early inversion results show that the system is capable of quantitatively reconstructing dielectric objects.

  14. Semiconductor Laser Multi-Spectral Sensing and Imaging

    PubMed Central

    Le, Han Q.; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers. PMID:22315555

  15. Semiconductor laser multi-spectral sensing and imaging.

    PubMed

    Le, Han Q; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  16. PScan 1.0: flexible software framework for polygon based multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Li, Yongxiao; Lee, Woei Ming

    2016-12-01

    Multiphoton laser scanning microscopes exhibit highly localized nonlinear optical excitation and are powerful instruments for in-vivo deep tissue imaging. Customized multiphoton microscopy has a significantly superior performance for in-vivo imaging because of precise control over the scanning and detection system. To date, there have been several flexible software platforms catered to custom built microscopy systems i.e. ScanImage, HelioScan, MicroManager, that perform at imaging speeds of 30-100fps. In this paper, we describe a flexible software framework for high speed imaging systems capable of operating from 5 fps to 1600 fps. The software is based on the MATLAB image processing toolbox. It has the capability to communicate directly with a high performing imaging card (Matrox Solios eA/XA), thus retaining high speed acquisition. The program is also designed to communicate with LabVIEW and Fiji for instrument control and image processing. Pscan 1.0 can handle high imaging rates and contains sufficient flexibility for users to adapt to their high speed imaging systems.

  17. Interactive Image Analysis System Design,

    DTIC Science & Technology

    1982-12-01

    This report describes a design for an interactive image analysis system (IIAS), which implements terrain data extraction techniques. The design... analysis system. Additionally, the system is fully capable of supporting many generic types of image analysis and data processing, and is modularly...employs commercially available, state of the art minicomputers and image display devices with proven software to achieve a cost effective, reliable image

  18. The history of MR imaging as seen through the pages of radiology.

    PubMed

    Edelman, Robert R

    2014-11-01

    The first reports in Radiology pertaining to magnetic resonance (MR) imaging were published in 1980, 7 years after Paul Lauterbur pioneered the first MR images and 9 years after the first human computed tomographic images were obtained. Historical advances in the research and clinical applications of MR imaging very much parallel the remarkable advances in MR imaging technology. These advances can be roughly classified into hardware (eg, magnets, gradients, radiofrequency [RF] coils, RF transmitter and receiver, MR imaging-compatible biopsy devices) and imaging techniques (eg, pulse sequences, parallel imaging, and so forth). Image quality has been dramatically improved with the introduction of high-field-strength superconducting magnets, digital RF systems, and phased-array coils. Hybrid systems, such as MR/positron emission tomography (PET), combine the superb anatomic and functional imaging capabilities of MR imaging with the unsurpassed capability of PET to demonstrate tissue metabolism. Supported by the improvements in hardware, advances in pulse sequence design and image reconstruction techniques have spurred dramatic improvements in imaging speed and the capability for studying tissue function. In this historical review, the history of MR imaging technology and developing research and clinical applications, as seen through the pages of Radiology, will be considered.

  19. Interactive Digital Image Manipulation System (IDIMS)

    NASA Technical Reports Server (NTRS)

    Fleming, M. D.

    1981-01-01

    The implementation of an interactive digital image manipulation system (IDIMS) is described. The system is run on an HP-3000 Series 3 minicomputer. The IDIMS system provides a complete image geoprocessing capability for raster formatted data in a self-contained system. It is easily installed, documentation is provided, and vendor support is available.

  20. Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas.

    PubMed

    Boyarsky, Michael; Sleasman, Timothy; Pulido-Mancera, Laura; Diebold, Aaron V; Imani, Mohammadreza F; Smith, David R

    2018-05-20

    Through aperture synthesis, an electrically small antenna can be used to form a high-resolution imaging system capable of reconstructing three-dimensional (3D) scenes. However, the large spectral bandwidth typically required in synthetic aperture radar systems to resolve objects in range often requires costly and complex RF components. We present here an alternative approach based on a hybrid imaging system that combines a dynamically reconfigurable aperture with synthetic aperture techniques, demonstrating the capability to resolve objects in three dimensions (3D), with measurements taken at a single frequency. At the core of our imaging system are two metasurface apertures, both of which consist of a linear array of metamaterial irises that couple to a common waveguide feed. Each metamaterial iris has integrated within it a diode that can be biased so as to switch the element on (radiating) or off (non-radiating), such that the metasurface antenna can produce distinct radiation profiles corresponding to different on/off patterns of the metamaterial element array. The electrically large size of the metasurface apertures enables resolution in range and one cross-range dimension, while aperture synthesis provides resolution in the other cross-range dimension. The demonstrated imaging capabilities of this system represent a step forward in the development of low-cost, high-performance 3D microwave imaging systems.

  1. Quantitative luminescence imaging system

    DOEpatents

    Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

    1990-08-14

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

  2. Quantitative luminescence imaging system

    DOEpatents

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  3. Systems for increasing the sensitivity of gamma-ray imagers

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.; Chivers, Daniel H.

    2012-12-11

    Systems that increase the position resolution and granularity of double sided segmented semiconductor detectors are provided. These systems increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  4. Implementation and assessment of an animal management system for small-animal micro-CT / micro-SPECT imaging

    NASA Astrophysics Data System (ADS)

    Holdsworth, David W.; Detombe, Sarah A.; Chiodo, Chris; Fricke, Stanley T.; Drangova, Maria

    2011-03-01

    Advances in laboratory imaging systems for CT, SPECT, MRI, and PET facilitate routine micro-imaging during pre-clinical investigations. Challenges still arise when dealing with immune-compromised animals, biohazardous agents, and multi-modality imaging. These challenges can be overcome with an appropriate animal management system (AMS), with the capability for supporting and monitoring a rat or mouse during micro-imaging. We report the implementation and assessment of a new AMS system for mice (PRA-3000 / AHS-2750, ASI Instruments, Warren MI), designed to be compatible with a commercial micro-CT / micro-SPECT imaging system (eXplore speCZT, GE Healthcare, London ON). The AMS was assessed under the following criteria: 1) compatibility with the imaging system (i.e. artifact generation, geometric dimensions); 2) compatibility with live animals (i.e. positioning, temperature regulation, anesthetic supply); 3) monitoring capabilities (i.e. rectal temperature, respiratory and cardiac monitoring); 4) stability of co-registration; and 5) containment. Micro-CT scans performed using a standardized live-animal protocol (90 kVp, 40 mA, 900 views, 16 ms per view) exhibited low noise (+/-19 HU) and acceptable artifact from high-density components within the AMS (e.g. ECG pad contacts). Live mice were imaged repeatedly (with removal and replacement of the AMS) and spatial registration was found to be stable to within +/-0.07 mm. All animals tolerated enclosure within the AMS for extended periods (i.e. > one hour) without distress, based on continuous recordings of rectal temperature, ECG waveform and respiratory rate. A sealed AMS system extends the capability of a conventional micro-imaging system to include immune-compromised and biosafety level 2 mouse-imaging protocols.

  5. A multimodal imaging platform with integrated simultaneous photoacoustic microscopy, optical coherence tomography, optical Doppler tomography and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dadkhah, Arash; Zhou, Jun; Yeasmin, Nusrat; Jiao, Shuliang

    2018-02-01

    Various optical imaging modalities with different optical contrast mechanisms have been developed over the past years. Although most of these imaging techniques are being used in many biomedical applications and researches, integration of these techniques will allow researchers to reach the full potential of these technologies. Nevertheless, combining different imaging techniques is always challenging due to the difference in optical and hardware requirements for different imaging systems. Here, we developed a multimodal optical imaging system with the capability of providing comprehensive structural, functional and molecular information of living tissue in micrometer scale. This imaging system integrates photoacoustic microscopy (PAM), optical coherence tomography (OCT), optical Doppler tomography (ODT) and fluorescence microscopy in one platform. Optical-resolution PAM (OR-PAM) provides absorption-based imaging of biological tissues. Spectral domain OCT is able to provide structural information based on the scattering property of biological sample with no need for exogenous contrast agents. In addition, ODT is a functional extension of OCT with the capability of measurement and visualization of blood flow based on the Doppler effect. Fluorescence microscopy allows to reveal molecular information of biological tissue using autofluoresce or exogenous fluorophores. In-vivo as well as ex-vivo imaging studies demonstrated the capability of our multimodal imaging system to provide comprehensive microscopic information on biological tissues. Integrating all the aforementioned imaging modalities for simultaneous multimodal imaging has promising potential for preclinical research and clinical practice in the near future.

  6. Data Visualization and Animation Lab (DVAL) overview

    NASA Technical Reports Server (NTRS)

    Stacy, Kathy; Vonofenheim, Bill

    1994-01-01

    The general capabilities of the Langley Research Center Data Visualization and Animation Laboratory is described. These capabilities include digital image processing, 3-D interactive computer graphics, data visualization and analysis, video-rate acquisition and processing of video images, photo-realistic modeling and animation, video report generation, and color hardcopies. A specialized video image processing system is also discussed.

  7. ECAT: A New Computerized Tomographic Imaging System for Position-Emitting Radiopharmaceuticals

    DOE R&D Accomplishments Database

    Phelps, M. E.; Hoffman, E. J.; Huang, S. C.; Kuhl, D. E.

    1977-01-01

    The ECAT was designed and developed as a complete computerized positron radionuclide imaging system capable of providing high contrast, high resolution, quantitative images in 2 dimensional and tomographic formats. Flexibility, in its various image mode options, allows it to be used for a wide variety of imaging problems.

  8. Large image microscope array for the compilation of multimodality whole organ image databases.

    PubMed

    Namati, Eman; De Ryk, Jessica; Thiesse, Jacqueline; Towfic, Zaid; Hoffman, Eric; Mclennan, Geoffrey

    2007-11-01

    Three-dimensional, structural and functional digital image databases have many applications in education, research, and clinical medicine. However, to date, apart from cryosectioning, there have been no reliable means to obtain whole-organ, spatially conserving histology. Our aim was to generate a system capable of acquiring high-resolution images, featuring microscopic detail that could still be spatially correlated to the whole organ. To fulfill these objectives required the construction of a system physically capable of creating very fine whole-organ sections and collecting high-magnification and resolution digital images. We therefore designed a large image microscope array (LIMA) to serially section and image entire unembedded organs while maintaining the structural integrity of the tissue. The LIMA consists of several integrated components: a novel large-blade vibrating microtome, a 1.3 megapixel peltier cooled charge-coupled device camera, a high-magnification microscope, and a three axis gantry above the microtome. A custom control program was developed to automate the entire sectioning and automated raster-scan imaging sequence. The system is capable of sectioning unembedded soft tissue down to a thickness of 40 microm at specimen dimensions of 200 x 300 mm to a total depth of 350 mm. The LIMA system has been tested on fixed lung from sheep and mice, resulting in large high-quality image data sets, with minimal distinguishable disturbance in the delicate alveolar structures. Copyright 2007 Wiley-Liss, Inc.

  9. High-Energy Neutron Imaging Development at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, J M; Rusnak, B; Shen, S

    2005-02-16

    We are proceeding with the development of a high-energy (10 MeV) neutron imaging system for use as an inspection tool in nuclear stockpile stewardship applications. Our goal is to develop and deploy an imaging system capable of detecting cubic-mm-scale voids, cracks or other significant structural defects in heavily-shielded low-Z materials within nuclear device components. The final production-line system will be relatively compact (suitable for use in existing facilities within the DOE complex) and capable of acquiring both radiographic and tomographic (CT) images. In this report, we will review our recent programmatic accomplishments, focusing primarily on progress made in FY04. Themore » design status of the high-intensity, accelerator-driven neutron source and large-format imaging detector associated with the system will be discussed and results from a recent high-energy neutron imaging experiment conducted at the Ohio University Accelerator Laboratory (OUAL) will also be presented.« less

  10. Online Multitasking Line-Scan Imaging Techniques for Simultaneous Safety and Quality Evaluation of Apples

    NASA Astrophysics Data System (ADS)

    Kim, Moon Sung; Lee, Kangjin; Chao, Kaunglin; Lefcourt, Alan; Cho, Byung-Kwan; Jun, Won

    We developed a push-broom, line-scan imaging system capable of simultaneous measurements of reflectance and fluorescence. The system allows multitasking inspections for quality and safety attributes of apples due to its dynamic capabilities in simultaneously capturing fluorescence and reflectance, and selectivity in multispectral bands. A multitasking image-based inspection system for online applications has been suggested in that a single imaging device that could perform a multitude of both safety and quality inspection needs. The presented multitask inspection approach in online applications may provide an economically viable means for a number of food processing industries being able to adapt to operate and meet the dynamic and specific inspection and sorting needs.

  11. Sensing Super-position: Visual Instrument Sensor Replacement

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Schipper, John F.

    2006-01-01

    The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This project addresses the technical feasibility of augmenting human vision through Sensing Super-position using a Visual Instrument Sensory Organ Replacement (VISOR). The current implementation of the VISOR device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of the human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system.

  12. Imaging of murine embryonic cardiovascular development using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yongyang; Degenhardt, Karl R.; Astrof, Sophie; Zhou, Chao

    2016-03-01

    We have demonstrated the capability of spectral domain optical coherence tomography (SDOCT) system to image full development of mouse embryonic cardiovascular system. Monitoring morphological changes of mouse embryonic heart occurred in different embryonic stages helps identify structural or functional cardiac anomalies and understand how these anomalies lead to congenital heart diseases (CHD) present at birth. In this study, mouse embryo hearts ranging from E9.5 to E15.5 were prepared and imaged in vitro. A customized spectral domain OCT system was used for imaging, with a central wavelength of 1310nm, spectral bandwidth of ~100nm and imaging speed of 47kHz A-scans/s. Axial resolution of this system was 8.3µm in air, and transverse resolution was 6.2 µm with 5X objective. Key features of mouse embryonic cardiovascular development such as vasculature remodeling into circulatory system, separation of atria and ventricles and emergence of valves could be clearly seen in three-dimensional OCT images. Optical clearing was applied to overcome the penetration limit of OCT system. With high resolution, fast imaging speed, 3D imaging capability, OCT proves to be a promising biomedical imaging modality for developmental biology studies, rivaling histology and micro-CT.

  13. Autonomous GN and C for Spacecraft Exploration of Comets and Asteroids

    NASA Technical Reports Server (NTRS)

    Carson, John M.; Mastrodemos, Nickolaos; Myers, David M.; Acikmese, Behcet; Blackmore, James C.; Moussalis, Dhemetrio; Riedel, Joseph E.; Nolet, Simon; Chang, Johnny T.; Mandic, Milan; hide

    2010-01-01

    A spacecraft guidance, navigation, and control (GN&C) system is needed to enable a spacecraft to descend to a surface, take a sample using a touch-and-go (TAG) sampling approach, and then safely ascend. At the time of this reporting, a flyable GN&C system that can accomplish these goals is beyond state of the art. This article describes AutoGNC, which is a GN&C system capable of addressing these goals, which has recently been developed and demonstrated to a maturity TRL-5-plus. The AutoGNC solution matures and integrates two previously existing JPL capabilities into a single unified GN&C system. The two capabilities are AutoNAV and GREX. AutoNAV is JPL s current flight navigation system, and is fairly mature with respect to flybys and rendezvous with small bodies, but is lacking capability for close surface proximity operations, sampling, and contact. G-REX is a suite of low-TRL algorithms and capabilities that enables spacecraft operations in close surface proximity and for performing sampling/contact. The development and integration of AutoNAV and G-REX components into AutoGNC provides a single, unified GN&C capability for addressing the autonomy, close-proximity, and sampling/contact aspects of small-body sample return missions. AutoGNC is an integrated capability comprising elements that were developed separately. The main algorithms and component capabilities that have been matured and integrated are autonomy for near-surface operations, terrain-relative navigation (TRN), real-time image-based feedback guidance and control, and six degrees of freedom (6DOF) control of the TAG sampling event. Autonomy is achieved based on an AutoGNC Executive written in Virtual Machine Language (VML) incorporating high-level control, data management, and fault protection. In descending to the surface, the AutoGNC system uses camera images to determine its position and velocity relative to the terrain. This capability for TRN leverages native capabilities of the original AutoNAV system, but required advancements that integrate the separate capabilities for shape modeling, state estimation, image rendering, defining a database of onboard maps, and performing real-time landmark recognition against the stored maps. The ability to use images to guide the spacecraft requires the capability for image-based feedback control. In Auto- GNC, navigation estimates are fed into an onboard guidance and control system that keeps the spacecraft guided along a desired path, as it descends towards its targeted landing or sampling site. Once near the site, AutoGNC achieves a prescribed guidance condition for TAG sampling (position/orientation, velocity), and a prescribed force profile on the sampling end-effector. A dedicated 6DOF TAG control then implements the ascent burn while recovering from sampling disturbances and induced attitude rates. The control also minimizes structural interactions with flexible solar panels and disallows any part of the spacecraft from making contact with the ground (other than the intended end-effector).

  14. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    PubMed Central

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-01-01

    Abstract. There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here. PMID:27533438

  15. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    NASA Astrophysics Data System (ADS)

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-08-01

    There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here.

  16. Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Kishore, Sandeep; Nasenbeny, Jordan; McLean, David L.; Kozorovitskiy, Yevgenia

    2018-05-01

    Versatile, sterically accessible imaging systems capable of in vivo rapid volumetric functional and structural imaging deep in the brain continue to be a limiting factor in neuroscience research. Towards overcoming this obstacle, we present integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy which uses a single front-facing microscope objective to provide light-sheet scanning based rapid volumetric imaging capability at subcellular resolution. Our planar scan-mirror based optimized light-sheet architecture allows for non-distorted scanning of volume samples, simplifying accurate reconstruction of the imaged volume. Integration of both one-photon (1P) and two-photon (2P) light-sheet microscopy in the same system allows for easy selection between rapid volumetric imaging and higher resolution imaging in scattering media. Using SOPi, we demonstrate deep, large volume imaging capability inside scattering mouse brain sections and rapid imaging speeds up to 10 volumes per second in zebrafish larvae expressing genetically encoded fluorescent proteins GFP or GCaMP6s. SOPi flexibility and steric access makes it adaptable for numerous imaging applications and broadly compatible with orthogonal techniques for actuating or interrogating neuronal structure and activity.

  17. Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging.

    PubMed

    Kumar, Manish; Kishore, Sandeep; Nasenbeny, Jordan; McLean, David L; Kozorovitskiy, Yevgenia

    2018-05-14

    Versatile, sterically accessible imaging systems capable of in vivo rapid volumetric functional and structural imaging deep in the brain continue to be a limiting factor in neuroscience research. Towards overcoming this obstacle, we present integrated one- and two-photon scanned oblique plane illumination (SOPi, /sōpī/) microscopy which uses a single front-facing microscope objective to provide light-sheet scanning based rapid volumetric imaging capability at subcellular resolution. Our planar scan-mirror based optimized light-sheet architecture allows for non-distorted scanning of volume samples, simplifying accurate reconstruction of the imaged volume. Integration of both one-photon (1P) and two-photon (2P) light-sheet microscopy in the same system allows for easy selection between rapid volumetric imaging and higher resolution imaging in scattering media. Using SOPi, we demonstrate deep, large volume imaging capability inside scattering mouse brain sections and rapid imaging speeds up to 10 volumes per second in zebrafish larvae expressing genetically encoded fluorescent proteins GFP or GCaMP6s. SOPi's flexibility and steric access makes it adaptable for numerous imaging applications and broadly compatible with orthogonal techniques for actuating or interrogating neuronal structure and activity.

  18. Extending the imaging volume for biometric iris recognition.

    PubMed

    Narayanswamy, Ramkumar; Johnson, Gregory E; Silveira, Paulo E X; Wach, Hans B

    2005-02-10

    The use of the human iris as a biometric has recently attracted significant interest in the area of security applications. The need to capture an iris without active user cooperation places demands on the optical system. Unlike a traditional optical design, in which a large imaging volume is traded off for diminished imaging resolution and capacity for collecting light, Wavefront Coded imaging is a computational imaging technology capable of expanding the imaging volume while maintaining an accurate and robust iris identification capability. We apply Wavefront Coded imaging to extend the imaging volume of the iris recognition application.

  19. Lens based adaptive optics scanning laser ophthalmoscope.

    PubMed

    Felberer, Franz; Kroisamer, Julia-Sophie; Hitzenberger, Christoph K; Pircher, Michael

    2012-07-30

    We present an alternative approach for an adaptive optics scanning laser ophthalmoscope (AO-SLO). In contrast to other commonly used AO-SLO instruments, the imaging optics consist of lenses. Images of the fovea region of 5 healthy volunteers are recorded. The system is capable to resolve human foveal cones in 3 out of 5 healthy volunteers. Additionally, we investigated the capability of the system to support larger scanning angles (up to 5°) on the retina. Finally, in order to demonstrate the performance of the instrument images of rod photoreceptors are presented.

  20. Ultrahigh-speed X-ray imaging of hypervelocity projectiles

    NASA Astrophysics Data System (ADS)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.

    2011-08-01

    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  1. An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems.

    PubMed

    Glover, Jack L; Hudson, Lawrence T

    2016-06-01

    The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in a US national aviation security standard.

  2. An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems

    PubMed Central

    Glover, Jack L.; Hudson, Lawrence T.

    2016-01-01

    The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in a US national aviation security standard. PMID:27499586

  3. An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Glover, Jack L.; Hudson, Lawrence T.

    2016-06-01

    The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in an international aviation security standard.

  4. Towards establishing compact imaging spectrometer standards

    USGS Publications Warehouse

    Slonecker, E. Terrence; Allen, David W.; Resmini, Ronald G.

    2016-01-01

    Remote sensing science is currently undergoing a tremendous expansion in the area of hyperspectral imaging (HSI) technology. Spurred largely by the explosive growth of Unmanned Aerial Vehicles (UAV), sometimes called Unmanned Aircraft Systems (UAS), or drones, HSI capabilities that once required access to one of only a handful of very specialized and expensive sensor systems are now miniaturized and widely available commercially. Small compact imaging spectrometers (CIS) now on the market offer a number of hyperspectral imaging capabilities in terms of spectral range and sampling. The potential uses of HSI/CIS on UAVs/UASs seem limitless. However, the rapid expansion of unmanned aircraft and small hyperspectral sensor capabilities has created a number of questions related to technological, legal, and operational capabilities. Lightweight sensor systems suitable for UAV platforms are being advertised in the trade literature at an ever-expanding rate with no standardization of system performance specifications or terms of reference. To address this issue, both the U.S. Geological Survey and the National Institute of Standards and Technology are eveloping draft standards to meet these issues. This paper presents the outline of a combined USGS/NIST cooperative strategy to develop and test a characterization methodology to meet the needs of a new and expanding UAV/CIS/HSI user community.

  5. True color blood flow imaging using a high-speed laser photography system

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Sheng; Lin, Cheng-Hsien; Sun, Yung-Nien; Ho, Chung-Liang; Hsu, Chung-Chi

    2012-10-01

    Physiological changes in the retinal vasculature are commonly indicative of such disorders as diabetic retinopathy, glaucoma, and age-related macular degeneration. Thus, various methods have been developed for noninvasive clinical evaluation of ocular hemodynamics. However, to the best of our knowledge, current ophthalmic instruments do not provide a true color blood flow imaging capability. Accordingly, we propose a new method for the true color imaging of blood flow using a high-speed pulsed laser photography system. In the proposed approach, monochromatic images of the blood flow are acquired using a system of three cameras and three color lasers (red, green, and blue). A high-quality true color image of the blood flow is obtained by assembling the monochromatic images by means of image realignment and color calibration processes. The effectiveness of the proposed approach is demonstrated by imaging the flow of mouse blood within a microfluidic channel device. The experimental results confirm the proposed system provides a high-quality true color blood flow imaging capability, and therefore has potential for noninvasive clinical evaluation of ocular hemodynamics.

  6. Health IT and inappropriate utilization of outpatient imaging: A cross-sectional study of U.S. hospitals.

    PubMed

    Appari, Ajit; Johnson, M Eric; Anthony, Denise L

    2018-01-01

    To determine whether the use of information technology (IT), measured by Meaningful Use capability, is associated with lower rates of inappropriate utilization of imaging services in hospital outpatient settings. A retrospective cross-sectional analysis of 3332 nonfederal U.S. hospitals using data from: Hospital Compare (2011 outpatient imaging efficiency measures), HIMSS Analytics (2009 health IT), and Health Indicator Warehouse (market characteristics). Hospitals were categorized for their health IT infrastructure including EHR Stage-1 capability, and three advanced imaging functionalities/systems including integrated picture archiving and communication system, Web-based image distribution, and clinical decision support (CDS) with physician pathways. Three imaging efficiency measures suggesting inappropriate utilization during 2011 included: percentage of "combined" (with and without contrast) computed tomography (CT) studies out of all CT studies for abdomen and chest respectively, and percentage of magnetic resonance imaging (MRI) studies of lumbar spine without antecedent conservative therapy within 60days. For each measure, three separate regression models (GLM with gamma-log link function, and denominator of imaging measure as exposure) were estimated adjusting for hospital characteristics, market characteristics, and state fixed effects. Additionally, Heckman's Inverse Mills Ratio and propensity for Stage-1 EHR capability were used to account for selection bias. We find support for association of each of the four health IT capabilities with inappropriate utilization rates of one or more imaging modality. Stage-1 EHR capability is associated with lower inappropriate utilization rates for chest CT (incidence rate ratio IRR=0.72, p-value <0.01) and lumbar MRI (IRR=0.87, p-value <0.05). Integrated PACS is associated with lower inappropriate utilization rate of abdomen CT (IRR=0.84, p-value <0.05). Imaging distribution over Web capability is associated with lower inappropriate utilization rates for chest CT (IRR=0.66, p-value <0.05) and lumbar MRI (IRR=0.86, p-value <0.05). CDS with physician pathways is associated with lower inappropriate utilization rates for abdomen CT (IRR=0.87, p-value <0.01) and lumbar MRI (IRR=0.90, p-value <0.05). All other cases showed no association. The study offers mixed results. Taken together, the results suggest that the use of Stage-1 Meaningful Use capable EHR systems along with advanced imaging related functionalities could have a beneficial impact on reducing some of the inappropriate utilization of outpatient imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Non-Contact Optical Ultrasound Concept for Biomedical Imaging

    DTIC Science & Technology

    2016-11-03

    Non -Contact Optical Ultrasound Concept for Biomedical Imaging Robert Haupt1, Charles Wynn1, Jonathan Fincke2, Shawn Zhang2, Brian Anthony2...results. Lastly, we present imaging capabilities using a non -contact laser ultrasound proof-of-concept system. Two and three dimensional time... non -contact, standoff optical ultrasound has the potential to provide a fixed reference measurement capability that minimizes operator variability as

  8. Improved Interactive Medical-Imaging System

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  9. A portable microscopy system for fluorescence, polarized, and brightfield imaging

    NASA Astrophysics Data System (ADS)

    Gordon, Paul; Wattinger, Rolla; Lewis, Cody; Venancio, Vinicius Paula; Mertens-Talcott, Susanne U.; Coté, Gerard

    2018-02-01

    The use of mobile phones to conduct diagnostic microscopy at the point-of-care presents intriguing possibilities for the advancement of high-quality medical care in remote settings. However, it is challenging to create a single device that can adapt to the ever-varying camera technologies in phones or that can image with the customization that multiple modalities require for applications such as malaria diagnosis. A portable multi-modal microscope system is presented that utilizes a Raspberry Pi to collect and transmit data wirelessly to a myriad of electronic devices for image analysis. The microscopy system is capable of providing to the user correlated brightfield, polarized, and fluorescent images of samples fixed on traditional microscopy slides. The multimodal diagnostic capabilities of the microscope were assessed by measuring parasitemia of Plasmodium falciparum-infected thin blood smears. The device is capable of detecting fluorescently-labeled DNA using FITC excitation (490 nm) and emission (525 nm), the birefringent P. falciparum byproduct hemozoin, and detecting brightfield absorption with a resolution of 0.78 micrometers (element 9-3 of a 1951 Air Force Target). This microscopy system is a novel portable imaging tool that may be a viable candidate for field implementation if challenges of system durability, cost considerations, and full automation can be overcome.

  10. The quantitative control and matching of an optical false color composite imaging system

    NASA Astrophysics Data System (ADS)

    Zhou, Chengxian; Dai, Zixin; Pan, Xizhe; Li, Yinxi

    1993-10-01

    Design of an imaging system for optical false color composite (OFCC) capable of high-precision density-exposure time control and color balance is presented. The system provides high quality FCC image data that can be analyzed using a quantitative calculation method. The quality requirement to each part of the image generation system is defined, and the distribution of satellite remote sensing image information is analyzed. The proposed technology makes it possible to present the remote sensing image data more effectively and accurately.

  11. Knowledge-based machine vision systems for space station automation

    NASA Technical Reports Server (NTRS)

    Ranganath, Heggere S.; Chipman, Laure J.

    1989-01-01

    Computer vision techniques which have the potential for use on the space station and related applications are assessed. A knowledge-based vision system (expert vision system) and the development of a demonstration system for it are described. This system implements some of the capabilities that would be necessary in a machine vision system for the robot arm of the laboratory module in the space station. A Perceptics 9200e image processor, on a host VAXstation, was used to develop the demonstration system. In order to use realistic test images, photographs of actual space shuttle simulator panels were used. The system's capabilities of scene identification and scene matching are discussed.

  12. Confidence range estimate of extended source imagery acquisition algorithms via computer simulations. [in optical communication systems

    NASA Technical Reports Server (NTRS)

    Chen, CHIEN-C.; Hui, Elliot; Okamoto, Garret

    1992-01-01

    Spatial acquisition using the sun-lit Earth as a beacon source provides several advantages over active beacon-based systems for deep-space optical communication systems. However, since the angular extend of the Earth image is large compared to the laser beam divergence, the acquisition subsystem must be capable of resolving the image to derive the proper pointing orientation. The algorithms used must be capable of deducing the receiver location given the blurring introduced by the imaging optics and the large Earth albedo fluctuation. Furthermore, because of the complexity of modelling the Earth and the tracking algorithms, an accurate estimate of the algorithm accuracy can only be made via simulation using realistic Earth images. An image simulator was constructed for this purpose, and the results of the simulation runs are reported.

  13. Space Shuttle Columbia views the world with imaging radar: The SIR-A experiment

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Cimino, J. B.; Elachi, C.

    1983-01-01

    Images acquired by the Shuttle Imaging Radar (SIR-A) in November 1981, demonstrate the capability of this microwave remote sensor system to perceive and map a wide range of different surface features around the Earth. A selection of 60 scenes displays this capability with respect to Earth resources - geology, hydrology, agriculture, forest cover, ocean surface features, and prominent man-made structures. The combined area covered by the scenes presented amounts to about 3% of the total acquired. Most of the SIR-A images are accompanied by a LANDSAT multispectral scanner (MSS) or SEASAT synthetic-aperture radar (SAR) image of the same scene for comparison. Differences between the SIR-A image and its companion LANDSAT or SEASAT image at each scene are related to the characteristics of the respective imaging systems, and to seasonal or other changes that occurred in the time interval between acquisition of the images.

  14. MRI-guided fluorescence tomography of the breast: a phantom study

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Pogue, Brian W.; Dehghani, Hamid; Paulsen, Keith D.

    2009-02-01

    Tissue phantoms simulating the human breast were used to demonstrate the imaging capabilities of an MRI-coupled fluorescence molecular tomography (FMT) imaging system. Specifically, phantoms with low tumor-to-normal drug contrast and complex internal structure were imaged with the MR-coupled FMT system. Images of indocyanine green (ICG) fluorescence yield were recovered using a diffusion model-based approach capable of estimating the distribution of fluorescence activity in a tissue volume from tissue-boundary measurements of transmitted light. Tissue structural information, which can be determined from standard T1 and T2 MR images, was used to guide the recovery of fluorescence activity. The study revealed that this spatial guidance is critical for recovering images of fluorescence yield in tissue with low tumor-to-normal drug contrast.

  15. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  16. High performance thermal imaging for the 21st century

    NASA Astrophysics Data System (ADS)

    Clarke, David J.; Knowles, Peter

    2003-01-01

    In recent years IR detector technology has developed from early short linear arrays. Such devices require high performance signal processing electronics to meet today's thermal imaging requirements for military and para-military applications. This paper describes BAE SYSTEMS Avionics Group's Sensor Integrated Modular Architecture thermal imager which has been developed alongside the group's Eagle 640×512 arrays to provide high performance imaging capability. The electronics architecture also supprots High Definition TV format 2D arrays for future growth capability.

  17. TheHiveDB image data management and analysis framework.

    PubMed

    Muehlboeck, J-Sebastian; Westman, Eric; Simmons, Andrew

    2014-01-06

    The hive database system (theHiveDB) is a web-based brain imaging database, collaboration, and activity system which has been designed as an imaging workflow management system capable of handling cross-sectional and longitudinal multi-center studies. It can be used to organize and integrate existing data from heterogeneous projects as well as data from ongoing studies. It has been conceived to guide and assist the researcher throughout the entire research process, integrating all relevant types of data across modalities (e.g., brain imaging, clinical, and genetic data). TheHiveDB is a modern activity and resource management system capable of scheduling image processing on both private compute resources and the cloud. The activity component supports common image archival and management tasks as well as established pipeline processing (e.g., Freesurfer for extraction of scalar measures from magnetic resonance images). Furthermore, via theHiveDB activity system algorithm developers may grant access to virtual machines hosting versioned releases of their tools to collaborators and the imaging community. The application of theHiveDB is illustrated with a brief use case based on organizing, processing, and analyzing data from the publically available Alzheimer Disease Neuroimaging Initiative.

  18. TheHiveDB image data management and analysis framework

    PubMed Central

    Muehlboeck, J-Sebastian; Westman, Eric; Simmons, Andrew

    2014-01-01

    The hive database system (theHiveDB) is a web-based brain imaging database, collaboration, and activity system which has been designed as an imaging workflow management system capable of handling cross-sectional and longitudinal multi-center studies. It can be used to organize and integrate existing data from heterogeneous projects as well as data from ongoing studies. It has been conceived to guide and assist the researcher throughout the entire research process, integrating all relevant types of data across modalities (e.g., brain imaging, clinical, and genetic data). TheHiveDB is a modern activity and resource management system capable of scheduling image processing on both private compute resources and the cloud. The activity component supports common image archival and management tasks as well as established pipeline processing (e.g., Freesurfer for extraction of scalar measures from magnetic resonance images). Furthermore, via theHiveDB activity system algorithm developers may grant access to virtual machines hosting versioned releases of their tools to collaborators and the imaging community. The application of theHiveDB is illustrated with a brief use case based on organizing, processing, and analyzing data from the publically available Alzheimer Disease Neuroimaging Initiative. PMID:24432000

  19. Proof-of-concept demonstration of a miniaturized three-channel multiresolution imaging system

    NASA Astrophysics Data System (ADS)

    Belay, Gebirie Y.; Ottevaere, Heidi; Meuret, Youri; Vervaeke, Michael; Van Erps, Jürgen; Thienpont, Hugo

    2014-05-01

    Multichannel imaging systems have several potential applications such as multimedia, surveillance, medical imaging and machine vision, and have therefore been a hot research topic in recent years. Such imaging systems, inspired by natural compound eyes, have many channels, each covering only a portion of the total field-of-view of the system. As a result, these systems provide a wide field-of-view (FOV) while having a small volume and a low weight. Different approaches have been employed to realize a multichannel imaging system. We demonstrated that the different channels of the imaging system can be designed in such a way that they can have each different imaging properties (angular resolution, FOV, focal length). Using optical ray-tracing software (CODE V), we have designed a miniaturized multiresolution imaging system that contains three channels each consisting of four aspherical lens surfaces fabricated from PMMA material through ultra-precision diamond tooling. The first channel possesses the largest angular resolution (0.0096°) and narrowest FOV (7°), whereas the third channel has the widest FOV (80°) and the smallest angular resolution (0.078°). The second channel has intermediate properties. Such a multiresolution capability allows different image processing algorithms to be implemented on the different segments of an image sensor. This paper presents the experimental proof-of-concept demonstration of the imaging system using a commercial CMOS sensor and gives an in-depth analysis of the obtained results. Experimental images captured with the three channels are compared with the corresponding simulated images. The experimental MTF of the channels have also been calculated from the captured images of a slanted edge target test. This multichannel multiresolution approach opens the opportunity for low-cost compact imaging systems that can be equipped with smart imaging capabilities.

  20. Angularly-selective transmission imaging in a scanning electron microscope.

    PubMed

    Holm, Jason; Keller, Robert R

    2016-08-01

    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.

  1. Low-cost Volumetric Ultrasound by Augmentation of 2D Systems: Design and Prototype.

    PubMed

    Herickhoff, Carl D; Morgan, Matthew R; Broder, Joshua S; Dahl, Jeremy J

    2018-01-01

    Conventional two-dimensional (2D) ultrasound imaging is a powerful diagnostic tool in the hands of an experienced user, yet 2D ultrasound remains clinically underutilized and inherently incomplete, with output being very operator dependent. Volumetric ultrasound systems can more fully capture a three-dimensional (3D) region of interest, but current 3D systems require specialized transducers, are prohibitively expensive for many clinical departments, and do not register image orientation with respect to the patient; these systems are designed to provide improved workflow rather than operator independence. This work investigates whether it is possible to add volumetric 3D imaging capability to existing 2D ultrasound systems at minimal cost, providing a practical means of reducing operator dependence in ultrasound. In this paper, we present a low-cost method to make 2D ultrasound systems capable of quality volumetric image acquisition: we present the general system design and image acquisition method, including the use of a probe-mounted orientation sensor, a simple probe fixture prototype, and an offline volume reconstruction technique. We demonstrate initial results of the method, implemented using a Verasonics Vantage research scanner.

  2. Hybrid cryptosystem for image file using elgamal and double playfair cipher algorithm

    NASA Astrophysics Data System (ADS)

    Hardi, S. M.; Tarigan, J. T.; Safrina, N.

    2018-03-01

    In this paper, we present an implementation of an image file encryption using hybrid cryptography. We chose ElGamal algorithm to perform asymmetric encryption and Double Playfair for the symmetric encryption. Our objective is to show that these algorithms are capable to encrypt an image file with an acceptable running time and encrypted file size while maintaining the level of security. The application was built using C# programming language and ran as a stand alone desktop application under Windows Operating System. Our test shows that the system is capable to encrypt an image with a resolution of 500×500 to a size of 976 kilobytes with an acceptable running time.

  3. Intelligent robotic tracker

    NASA Technical Reports Server (NTRS)

    Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.

    1987-01-01

    An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.

  4. Performance Evaluation of the Geostationary Synthetic Thinned Array Radiometer (GeoSTAR) Demonstrator Instrument

    NASA Technical Reports Server (NTRS)

    Tanner, Alan B.; Wilson, William J.; Lambrigsten, Bjorn H.; Dinardo, Steven J.; Brown, Shannon T.; Kangaslahti, Pekka P.; Gaier, Todd C.; Ruf, C. S.; Gross, S. M.; Lim, B. H.; hide

    2006-01-01

    The design, error budget, and preliminary test results of a 50-56 GHz synthetic aperture radiometer demonstration system are presented. The instrument consists of a fixed 24-element array of correlation interferometers, and is capable of producing calibrated images with 0.8 degree spatial resolution within a 17 degree wide field of view. This system has been built to demonstrate performance and a design which can be scaled to a much larger geostationary earth imager. As a baseline, such a system would consist of about 300 elements, and would be capable of providing contiguous, full hemispheric images of the earth with 1 Kelvin of radiometric precision and 50 km spatial resolution.

  5. The applicability of frame imaging from a spinning spacecraft. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Botticelli, R. A.; Johnson, R. O.; Wallmark, G. N.

    1973-01-01

    A detailed study was made of frame-type imaging systems for use on board a spin stabilized spacecraft for outer planets applications. All types of frame imagers capable of performing this mission were considered, regardless of the current state of the art. Detailed sensor models of these systems were developed at the component level and used in the subsequent analyses. An overall assessment was then made of the various systems based upon results of a worst-case performance analysis, foreseeable technology problems, and the relative reliability and radiation tolerance of the systems. Special attention was directed at restraints imposed by image motion and the limited data transmission and storage capability of the spacecraft. Based upon this overall assessment, the most promising systems were selected and then examined in detail for a specified Jupiter orbiter mission. The relative merits of each selected system were then analyzed, and the system design characteristics were demonstrated using preliminary configurations, block diagrams, and tables of estimated weights, volumes and power consumption.

  6. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    NASA Astrophysics Data System (ADS)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin, Vibin

    2008-09-01

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  7. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin

    2008-09-26

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CTmore » image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.« less

  8. Intraoperative optical coherence tomography of the cerebral cortex using a 7 degree-of freedom robotic arm

    NASA Astrophysics Data System (ADS)

    Reyes Perez, Robnier; Jivraj, Jamil; Yang, Victor X. D.

    2017-02-01

    Optical Coherence Tomography (OCT) provides a high-resolution imaging technique with limited depth penetration. The current use of OCT is limited to relatively small areas of tissue for anatomical structure diagnosis or minimally invasive guided surgery. In this study, we propose to image a large area of the surface of the cerebral cortex. This experiment aims to evaluate the potential difficulties encountered when applying OCT imaging to large and irregular surface areas. The current state-of-the-art OCT imaging technology uses scanning systems with at most 3 degrees-of-freedom (DOF) to obtain a 3D image representation of the sample tissue. We propose the use of a 7 DOF industrial robotic arm to increase the scanning capabilities of our OCT. Such system will be capable of acquiring data from large samples of tissue that are too irregular for conventional methods. Advantages and disadvantages of our system are discussed.

  9. Improved Cloud Detection Utilizing Defense Meteorological Satellite Program near Infrared Measurements

    DTIC Science & Technology

    1982-01-27

    Visible 3. 3 Ea r th Location, Colocation, and Normalization 4. IMAGE ANALYSIS 4. 1 Interactive Capabilities 4.2 Examples 5. AUTOMATED CLOUD...computer Interactive Data Access System (McIDAS) before image analysis and algorithm development were done. Earth-location is an automated procedure to...the factor l / s in (SSE) toward the gain settings given in Table 5. 4. IMAGE ANALYSIS 4.1 Interactive Capabilities The development of automated

  10. An Overview of Future NASA Missions, Concepts, and Technologies Related to Imaging of the World's Land Areas

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    1999-01-01

    In the near term NASA is entering into the peak activity period of the Earth Observing System (EOS). The EOS AM-1 /"Terra" spacecraft is nearing launch and operation to be followed soon by the New Millennium Program (NMP) Earth Observing (EO-1) mission. Other missions related to land imaging and studies include EOS PM-1 mission, the Earth System Sciences Program (ESSP) Vegetation Canopy Lidar (VCL) mission, the EOS/IceSat mission. These missions involve clear advances in technologies and observational capability including improvements in multispectral imaging and other observing strategies, for example, "formation flying". Plans are underway to define the next era of EOS missions, commonly called "EOS Follow-on" or EOS II. The programmatic planning includes concepts that represent advances over the present Landsat-7 mission that concomitantly recognize the advances being made in land imaging within the private sector. The National Polar Orbiting Environmental Satellite Series (NPOESS) Preparatory Project (NPP) is an effort that will help to transition EOS medium resolution (herein meaning spatial resolutions near 500 meters), multispectral measurement capabilities such as represented by the EOS Moderate Resolution Imaging Spectroradiometer (MODIS) into the NPOESS operational series of satellites. Developments in Synthetic Aperture Radar (SAR) and passive microwave land observing capabilities are also proceeding. Beyond these efforts the Earth Science Enterprise Technology Strategy is embarking efforts to advance technologies in several basic areas: instruments, flight systems and operational capability, and information systems. In the case of instruments architectures will be examined that offer significant reductions in mass, volume, power and observational flexibility. For flight systems and operational capability, formation flying including calibration and data fusion, systems operation autonomy, and mechanical and electronic innovations that can reduce spacecraft and subsystem resource requirements. The efforts in information systems will include better approaches for linking multiple data sets, extracting and visualizing information, and improvements in collecting, compressing, transmitting, processing, distributing and archiving data from multiple platforms. Overall concepts such as sensor webs, constellations of observing systems, and rapid and tailored data availability and delivery to multiple users comprise and notions Earth Science Vision for the future.

  11. Robust algebraic image enhancement for intelligent control systems

    NASA Technical Reports Server (NTRS)

    Lerner, Bao-Ting; Morrelli, Michael

    1993-01-01

    Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.

  12. An earth imaging camera simulation using wide-scale construction of reflectance surfaces

    NASA Astrophysics Data System (ADS)

    Murthy, Kiran; Chau, Alexandra H.; Amin, Minesh B.; Robinson, M. Dirk

    2013-10-01

    Developing and testing advanced ground-based image processing systems for earth-observing remote sensing applications presents a unique challenge that requires advanced imagery simulation capabilities. This paper presents an earth-imaging multispectral framing camera simulation system called PayloadSim (PaySim) capable of generating terabytes of photorealistic simulated imagery. PaySim leverages previous work in 3-D scene-based image simulation, adding a novel method for automatically and efficiently constructing 3-D reflectance scenes by draping tiled orthorectified imagery over a geo-registered Digital Elevation Map (DEM). PaySim's modeling chain is presented in detail, with emphasis given to the techniques used to achieve computational efficiency. These techniques as well as cluster deployment of the simulator have enabled tuning and robust testing of image processing algorithms, and production of realistic sample data for customer-driven image product development. Examples of simulated imagery of Skybox's first imaging satellite are shown.

  13. A fast atlas-guided high density diffuse optical tomography system for brain imaging

    NASA Astrophysics Data System (ADS)

    Dai, Xianjin; Zhang, Tao; Yang, Hao; Jiang, Huabei

    2017-02-01

    Near infrared spectroscopy (NIRS) is an emerging functional brain imaging tool capable of assessing cerebral concentrations of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) during brain activation noninvasively. As an extension of NIRS, diffuse optical tomography (DOT) not only shares the merits of providing continuous readings of cerebral oxygenation, but also has the ability to provide spatial resolution in the millimeter scale. Based on the scattering and absorption properties of nonionizing near-infrared light in biological tissue, DOT has been successfully applied in the imaging of breast tumors, osteoarthritis and cortex activations. Here, we present a state-of-art fast high density DOT system suitable for brain imaging. It can achieve up to a 21 Hz sampling rate for a full set of two-wavelength data for 3-D DOT brain image reconstruction. The system was validated using tissue-mimicking brain-model phantom. Then, experiments on healthy subjects were conducted to demonstrate the capability of the system.

  14. apART: system for the acquisition, processing, archiving, and retrieval of digital images in an open, distributed imaging environment

    NASA Astrophysics Data System (ADS)

    Schneider, Uwe; Strack, Ruediger

    1992-04-01

    apART reflects the structure of an open, distributed environment. According to the general trend in the area of imaging, network-capable, general purpose workstations with capabilities of open system image communication and image input are used. Several heterogeneous components like CCD cameras, slide scanners, and image archives can be accessed. The system is driven by an object-oriented user interface where devices (image sources and destinations), operators (derived from a commercial image processing library), and images (of different data types) are managed and presented uniformly to the user. Browsing mechanisms are used to traverse devices, operators, and images. An audit trail mechanism is offered to record interactive operations on low-resolution image derivatives. These operations are processed off-line on the original image. Thus, the processing of extremely high-resolution raster images is possible, and the performance of resolution dependent operations is enhanced significantly during interaction. An object-oriented database system (APRIL), which can be browsed, is integrated into the system. Attribute retrieval is supported by the user interface. Other essential features of the system include: implementation on top of the X Window System (X11R4) and the OSF/Motif widget set; a SUN4 general purpose workstation, inclusive ethernet, magneto optical disc, etc., as the hardware platform for the user interface; complete graphical-interactive parametrization of all operators; support of different image interchange formats (GIF, TIFF, IIF, etc.); consideration of current IPI standard activities within ISO/IEC for further refinement and extensions.

  15. Biological Imaging Capability in the ABRS Facility on ISS

    NASA Technical Reports Server (NTRS)

    Cox, David R.; Murdoch, T.; Regan, M. F.; Meshlberger, R. J.; Mortenson, T. E.; Albino, S. A.; Paul, A. L.; Ferl, R. J.

    2010-01-01

    This slide presentation reviews the Advanced Biological Research System (ABRS) on the International Space Station (ISS) and its biological imaging capability. The ABRS is an environmental control chamber. It has two indpendently controlled Experiment Research Chambers (ERCs) with temperature, relative humidity and carbon dioxide controls. ABRS is a third generation plant growth system. Several experiments are reviewed, with particular interest in the use of Green Fluorescent Protein (GFP) a non-destructive plant stress reporting mechanism, naturally found in jellyfish.

  16. Conceptual design of the CZMIL data processing system (DPS): algorithms and software for fusing lidar, hyperspectral data, and digital images

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong; Tuell, Grady

    2010-04-01

    The Data Processing System (DPS) of the Coastal Zone Mapping and Imaging Lidar (CZMIL) has been designed to automatically produce a number of novel environmental products through the fusion of Lidar, spectrometer, and camera data in a single software package. These new products significantly transcend use of the system as a bathymeter, and support use of CZMIL as a complete coastal and benthic mapping tool. The DPS provides a spinning globe capability for accessing data files; automated generation of combined topographic and bathymetric point clouds; a fully-integrated manual editor and data analysis tool; automated generation of orthophoto mosaics; automated generation of reflectance data cubes from the imaging spectrometer; a coupled air-ocean spectral optimization model producing images of chlorophyll and CDOM concentrations; and a fusion based capability to produce images and classifications of the shallow water seafloor. Adopting a multitasking approach, we expect to achieve computation of the point clouds, DEMs, and reflectance images at a 1:1 processing to acquisition ratio.

  17. MIRIADS: miniature infrared imaging applications development system description and operation

    NASA Astrophysics Data System (ADS)

    Baxter, Christopher R.; Massie, Mark A.; McCarley, Paul L.; Couture, Michael E.

    2001-10-01

    A cooperative effort between the U.S. Air Force Research Laboratory, Nova Research, Inc., the Raytheon Infrared Operations (RIO) and Optics 1, Inc. has successfully produced a miniature infrared camera system that offers significant real-time signal and image processing capabilities by virtue of its modular design. This paper will present an operational overview of the system as well as results from initial testing of the 'Modular Infrared Imaging Applications Development System' (MIRIADS) configured as a missile early-warning detection system. The MIRIADS device can operate virtually any infrared focal plane array (FPA) that currently exists. Programmable on-board logic applies user-defined processing functions to the real-time digital image data for a variety of functions. Daughterboards may be plugged onto the system to expand the digital and analog processing capabilities of the system. A unique full hemispherical infrared fisheye optical system designed and produced by Optics 1, Inc. is utilized by the MIRIADS in a missile warning application to demonstrate the flexibility of the overall system to be applied to a variety of current and future AFRL missions.

  18. Multi-modality endoscopic imaging for the detection of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Wall, Richard Andrew

    Optical coherence tomography (OCT) is an imaging method that is considered the optical analog to ultrasound, using the technique of optical interferometry to construct two-dimensional depth-resolved images of tissue microstructure. With a resolution on the order of 10 um and a penetration depth of 1-2 mm in highly scattering tissue, fiber optics-coupled OCT is an ideal modality for the inspection of the mouse colon with its miniaturization capabilities. In the present study, the complementary modalities laser-induced fluorescence (LIF), which offers information on the biochemical makeup of the tissue, and surface magnifying chromoendoscopy, which offers high contrast surface visualization, are combined with OCT in endoscopic imaging systems for the greater specificity and sensitivity in the differentiation between normal and neoplastic tissue, and for the visualization of biomarkers which are indicative of early events in colorectal carcinogenesis. Oblique incidence reflectometry (OIR) also offers advantages, allowing the calculation of bulk tissue optical properties for use as a diagnostic tool. The study was broken up into three specific sections. First, a dual-modality OCTLIF imaging system was designed, capable of focusing light over 325-1300 nm using a reflective distal optics design. A dual-modality fluorescence-based SMC-OCT system was then designed and constructed, capable of resolving the stained mucosal crypt structure of the in vivo mouse colon. The SMC-OCT instrument's OIR capabilities were then modeled, as a modified version of the probe was used measure tissue scattering and absorption coefficients.

  19. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  20. Oval gradient coils for an open magnetic resonance imaging system with a vertical magnetic field.

    PubMed

    Matsuzawa, Koki; Abe, Mitsushi; Kose, Katsumi; Terada, Yasuhiko

    2017-05-01

    Existing open magnetic resonance imaging (MRI) systems use biplanar gradient coils for the spatial encoding of signals. We propose using novel oval gradient coils for an open vertical-field MRI. We designed oval gradients for a 0.3T open MRI system and showed that such a system could outperform a traditional biplanar gradient system while maintaining adequate gradient homogeneity and subject accessibility. Such oval gradient coils would exhibit high efficiency, low inductance and resistance, and high switching capability. Although the designed oval Y and Z coils showed more heat dissipation and less cooling capability than biplanar coils with the same gap, they showed an efficient heat-dissipation path to the surrounding air, which would alleviate the heat problem. The performance of the designed oval-coil system was demonstrated experimentally by imaging a human hand. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. An enhanced MMW and SMMW/THz imaging system performance prediction and analysis tool for concealed weapon detection and pilotage obstacle avoidance

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Jacobs, Eddie L.; Franck, Charmaine C.; Petkie, Douglas T.; De Lucia, Frank C.

    2015-10-01

    The U.S. Army Research Laboratory (ARL) has continued to develop and enhance a millimeter-wave (MMW) and submillimeter- wave (SMMW)/terahertz (THz)-band imaging system performance prediction and analysis tool for both the detection and identification of concealed weaponry, and for pilotage obstacle avoidance. The details of the MATLAB-based model which accounts for the effects of all critical sensor and display components, for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security and Defence Symposium (Brugge). An advanced version of the base model that accounts for both the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system, and for the impact of target and background thermal emission, was reported on at the 2007 SPIE Defense and Security Symposium (Orlando). Further development of this tool that includes a MODTRAN-based atmospheric attenuation calculator and advanced system architecture configuration inputs that allow for straightforward performance analysis of active or passive systems based on scanning (single- or line-array detector element(s)) or staring (focal-plane-array detector elements) imaging architectures was reported on at the 2011 SPIE Europe Security and Defence Symposium (Prague). This paper provides a comprehensive review of a newly enhanced MMW and SMMW/THz imaging system analysis and design tool that now includes an improved noise sub-model for more accurate and reliable performance predictions, the capability to account for postcapture image contrast enhancement, and the capability to account for concealment material backscatter with active-illumination- based systems. Present plans for additional expansion of the model's predictive capabilities are also outlined.

  2. Hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhenyue; Deán-Ben, Xosé Luís.; Gottschalk, Sven; Razansky, Daniel

    2018-02-01

    Fluorescence imaging is widely employed in all fields of cell and molecular biology due to its high sensitivity, high contrast and ease of implementation. However, the low spatial resolution and lack of depth information, especially in strongly-scattering samples, restrict its applicability for deep-tissue imaging applications. On the other hand, optoacoustic imaging is known to deliver a unique set of capabilities such as high spatial and temporal resolution in three dimensions, deep penetration and spectrally-enriched imaging contrast. Since fluorescent substances can generate contrast in both modalities, simultaneous fluorescence and optoacoustic readings can provide new capabilities for functional and molecular imaging of living organisms. Optoacoustic images can further serve as valuable anatomical references based on endogenous hemoglobin contrast. Herein, we propose a hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic tomography, both operating in reflection mode, which synergistically combines the advantages of stand-alone systems. Validation of the spatial resolution and sensitivity of the system were first carried out in tissue mimicking phantoms while in vivo imaging was further demonstrated by tracking perfusion of an optical contrast agent in a mouse brain in the hybrid imaging mode. Experimental results show that the proposed system effectively exploits the contrast mechanisms of both imaging modalities, making it especially useful for accurate monitoring of fluorescence-based signal dynamics in highly scattering samples.

  3. Success of HIS DICOM interfaces in the integration of the healthcare enterprise at the Department of Veterans Affairs

    NASA Astrophysics Data System (ADS)

    Kuzmak, Peter M.; Dayhoff, Ruth E.

    1999-07-01

    The US Department of Veterans Affairs (VA) is integrating imaging into the healthcare enterprise using the Digital Imaging and Communication in Medicine (DICOM) standard protocols. Image management is directly integrated into the VistA Hospital Information System (HIS) software and the clinical database. Radiology images are acquired via DICOM, and are stored directly in the HIS database. Images can be displayed on low-cost clinician's workstations throughout the medical center. High-resolution diagnostic quality multi-monitor VistA workstations with specialized viewing software can be used for reading radiology images. Two approaches are used to acquire and handle imags within the radiology department. Some sties have a commercial Picture Archiving and Communications System (PACS) interfaced to the VistA HIS, while other sites use the direct image acquisition and integrated diagnostic reading capabilities of VistA itself. A small set of DICOM services have been implemented by VistA to allow patient and study text data to be transmitted to image producing modalities and the commercial PACS, and to enable images and study data to be transferred back. The VistA DICOM capabilities are now used to interface seven different commercial PACS products and over twenty different radiology modalities. The communications capabilities of DICOM and the VA wide area network are begin used to support reading of radiology images form remote sites. DICOM has been the cornerstone in the ability to integrate imaging functionality into the Healthcare Enterprise. Because of its openness, it allows the integration of system component from commercial and non- commercial sources to work together to provide functional cost-effective solutions. As DICOM expands to non-radiology devices, integration must occur with the specialty information subsystems that handle orders and reports, their associated DICOM image capture systems, and the computer- based patient record. The mode and concepts of the DICOM standard can be extended to these other areas, but some adjustments may be required.

  4. Design, construction, and evaluation of new high resolution medical imaging detector/systems

    NASA Astrophysics Data System (ADS)

    Jain, Amit

    Increasing need of minimally invasive endovascular image guided interventional procedures (EIGI) for accurate and successful treatment of vascular disease has set a quest for better image quality. Current state of the art detectors are not up to the mark for these complex procedures due to their inherent limitations. Our group has been actively working on the design and construction of a high resolution, region of interest CCD-based X-ray imager for some time. As a part of that endeavor, a Micro-angiographic fluoroscope (MAF) was developed to serve as a high resolution, ROI X-ray imaging detector in conjunction with large lower resolution full field of view (FOV) state-of-the-art x-ray detectors. The newly developed MAF is an indirect x-ray imaging detector capable of providing real-time images with high resolution, high sensitivity, no lag and low instrumentation noise. It consists of a CCD camera coupled to a light image intensifier (LII) through a fiber optic taper. The CsI(Tl) phosphor serving as the front end is coupled to the LII. For this work, the MAF was designed and constructed. The linear system cascade theory was used to evaluate the performance theoretically. Linear system metrics such as MTF and DQE were used to gauge the detector performance experimentally. The capabilities of the MAF as a complete system were tested using generalized linear system metrics. With generalized linear system metrics the effects of finite size focal spot, geometric magnification and the presence of scatter are included in the analysis and study. To minimize the effect of scatter, an anti-scatter grid specially designed for the MAF was also studied. The MAF was compared with the flat panel detector using signal-to-noise ratio and the two dimensional linear system metrics. The signal-to-noise comparison was carried out to point out the effect of pixel size and Point Spread Function of the detector. The two dimensional linear system metrics were used to investigate the comparative performance of both the detectors in similar simulated clinical neuro-vascular conditions. The last part of this work presents a unique quality of the MAF: operation in single photon mode. The successful operation of the MAF was demonstrated with considerable improvement in spatial and contrast resolution over conventional energy integrating mode. The work presented shows the evolution of a high resolution, high sensitivity, and region of interest x-ray imaging detector as an attractive and capable x-ray imager for the betterment of complex EIGI procedures. The capability of single photon counting mode imaging provides the potential for additional uses of the MAF including the possibility of use in dual modality imaging with radionuclide sources as well as x-rays.

  5. An efficient approach to integrated MeV ion imaging.

    PubMed

    Nikbakht, T; Kakuee, O; Solé, V A; Vosuoghi, Y; Lamehi-Rachti, M

    2018-03-01

    An ionoluminescence (IL) spectral imaging system, besides the common MeV ion imaging facilities such as µ-PIXE and µ-RBS, is implemented at the Van de Graaff laboratory of Tehran. A versatile processing software is required to handle the large amount of data concurrently collected in µ-IL and common MeV ion imaging measurements through the respective methodologies. The open-source freeware PyMca, with image processing and multivariate analysis capabilities, is employed to simultaneously process common MeV ion imaging and µ-IL data. Herein, the program was adapted to support the OM_DAQ listmode data format. The appropriate performance of the µ-IL data acquisition system is confirmed through a case study. Moreover, the capabilities of the software for simultaneous analysis of µ-PIXE and µ-RBS experimental data are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Health care using high-bandwidth communication to overcome distance and time barriers for the Department of Defense

    NASA Astrophysics Data System (ADS)

    Mun, Seong K.; Freedman, Matthew T.; Gelish, Anthony; de Treville, Robert E.; Sheehy, Monet R.; Hansen, Mark; Hill, Mac; Zacharia, Elisabeth; Sullivan, Michael J.; Sebera, C. Wayne

    1993-01-01

    Image management and communications (IMAC) network, also known as picture archiving and communication system (PACS) consists of (1) digital image acquisition, (2) image review station (3) image storage device(s), image reading workstation, and (4) communication capability. When these subsystems are integrated over a high speed communication technology, possibilities are numerous in improving the timeliness and quality of diagnostic services within a hospital or at remote clinical sites. Teleradiology system uses basically the same hardware configuration together with a long distance communication capability. Functional characteristics of components are highlighted. Many medical imaging systems are already in digital form. These digital images constitute approximately 30% of the total volume of images produced in a radiology department. The remaining 70% of images include conventional x-ray films of the chest, skeleton, abdomen, and GI tract. Unless one develops a method of handling these conventional film images, global improvement in productivity in image management and radiology service throughout a hospital cannot be achieved. Currently, there are two method of producing digital information representing these conventional analog images for IMAC: film digitizers that scan the conventional films, and computed radiography (CR) that captures x-ray images using storage phosphor plate that is subsequently scanned by a laser beam.

  7. Evolution of Satellite Imagers and Sounders for Low Earth Orbit and Technology Directions at NASA

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; McClain, Charles R.

    2010-01-01

    Imagers and Sounders for Low Earth Orbit (LEO) provide fundamental global daily observations of the Earth System for scientists, researchers, and operational weather agencies. The imager provides the nominal 1-2 km spatial resolution images with global coverage in multiple spectral bands for a wide range of uses including ocean color, vegetation indices, aerosol, snow and cloud properties, and sea surface temperature. The sounder provides vertical profiles of atmospheric temperature, water vapor cloud properties, and trace gases including ozone, carbon monoxide, methane and carbon dioxide. Performance capabilities of these systems has evolved with the optical and sensing technologies of the decade. Individual detectors were incorporated on some of the first imagers and sounders that evolved to linear array technology in the '80's. Signal-to-noise constraints limited these systems to either broad spectral resolution as in the case of the imager, or low spatial resolution as in the case of the sounder. Today's area 2-dimensional large format array technology enables high spatial and high spectral resolution to be incorporated into a single instrument. This places new constraints on the design of these systems and enables new capabilities for scientists to examine the complex processes governing the Earth System.

  8. Evaluation of state-of-the-art imaging systems for in vivo monitoring of retinal structure in mice: current capabilities and limitations

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.

    2014-02-01

    Animal models of human diseases play an important role in studying and advancing our understanding of these conditions, allowing molecular level studies of pathogenesis as well as testing of new therapies. Recently several non-invasive imaging modalities including Fundus Camera, Scanning Laser Ophthalmoscopy (SLO) and Optical Coherence Tomography (OCT) have been successfully applied to monitor changes in the retinas of the living animals in experiments in which a single animal is followed over a portion of its lifespan. Here we evaluate the capabilities and limitations of these three imaging modalities for visualization of specific structures in the mouse eye. Example images acquired from different types of mice are presented. Future directions of development for these instruments and potential advantages of multi-modal imaging systems are discussed as well.

  9. Three-dimensional laser microvision.

    PubMed

    Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y

    2001-04-10

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum.

  10. An aviation security (AVSEC) screening demonstrator for the detection of non-metallic threats at 28-33 GHz

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.; Bowring, Nick; Hutchinson, Simon; Southgate, Matthew; O'Reilly, Dean

    2013-10-01

    The unique selling proposition of millimetre wave technology for security screening is that it provides a stand-off or portal scenario sensing capability for non-metallic threats. The capabilities to detect some non-metallic threats are investigated in this paper, whilst recommissioning the AVSEC portal screening system at the Manchester Metropolitan University. The AVSEC system is a large aperture (1.6 m) portal screening imager which uses spatially incoherent illumination at 28-33 GHz from mode scrambling cavities to illuminate the subject. The imaging capability is critically analysed in terms of this illumination. A novel technique for the measurement of reflectance, refractive index and extinction coefficient is investigated and this then use to characterise the signatures of nitromethane, hexane, methanol, bees wax and baking flour. Millimetre wave images are shown how these liquids in polycarbonate bottles and the other materials appear against the human body.

  11. Integrated photoacoustic, ultrasound and fluorescence platform for diagnostic medical imaging-proof of concept study with a tissue mimicking phantom.

    PubMed

    James, Joseph; Murukeshan, Vadakke Matham; Woh, Lye Sun

    2014-07-01

    The structural and molecular heterogeneities of biological tissues demand the interrogation of the samples with multiple energy sources and provide visualization capabilities at varying spatial resolution and depth scales for obtaining complementary diagnostic information. A novel multi-modal imaging approach that uses optical and acoustic energies to perform photoacoustic, ultrasound and fluorescence imaging at multiple resolution scales from the tissue surface and depth is proposed in this paper. The system comprises of two distinct forms of hardware level integration so as to have an integrated imaging system under a single instrumentation set-up. The experimental studies show that the system is capable of mapping high resolution fluorescence signatures from the surface, optical absorption and acoustic heterogeneities along the depth (>2cm) of the tissue at multi-scale resolution (<1µm to <0.5mm).

  12. Integrating medical imaging analyses through a high-throughput bundled resource imaging system

    NASA Astrophysics Data System (ADS)

    Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.

    2011-03-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists.

  13. Reconfigurable metasurface aperture for security screening and microwave imaging

    NASA Astrophysics Data System (ADS)

    Sleasman, Timothy; Imani, Mohammadreza F.; Boyarsky, Michael; Pulido-Mancera, Laura; Reynolds, Matthew S.; Smith, David R.

    2017-05-01

    Microwave imaging systems have seen growing interest in recent decades for applications ranging from security screening to space/earth observation. However, hardware architectures commonly used for this purpose have not seen drastic changes. With the advent of metamaterials a wealth of opportunities have emerged for honing metasurface apertures for microwave imaging systems. Recent thrusts have introduced dynamic reconfigurability directly into the aperture layer, providing powerful capabilities from a physical layer with considerable simplicity. The waveforms generated from such dynamic metasurfaces make them suitable for application in synthetic aperture radar (SAR) and, more generally, computational imaging. In this paper, we investigate a dynamic metasurface aperture capable of performing microwave imaging in the K-band (17.5-26.5 GHz). The proposed aperture is planar and promises an inexpensive fabrication process via printed circuit board techniques. These traits are further augmented by the tunability of dynamic metasurfaces, which provides the dexterity necessary to generate field patterns ranging from a sequence of steered beams to a series of uncorrelated radiation patterns. Imaging is experimentally demonstrated with a voltage-tunable metasurface aperture. We also demonstrate the aperture's utility in real-time measurements and perform volumetric SAR imaging. The capabilities of a prototype are detailed and the future prospects of general dynamic metasurface apertures are discussed.

  14. Inspection of the interior surface of cylindrical vessels using optic fiber shearography

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wei, Quan; Tu, Jun; Arola, Dwayne D.; Zhang, Dongsheng

    2017-09-01

    In this study, a shearography system integrated with a coherent fiber-optic illumination and a fiber-optic imaging bundle is presented to inspect the quality of the interior surface of a cylindrical vessel for safety purposes. The specific optical arrangement is designed for the inspection of a certain area at a small working distance. The optical arrangement of the system was assembled and an aluminum honeycomb sample was evaluated to demonstrate the capability of the system. The important relationship between the image quality and the working distance, as well as the field of view, is discussed. The system has been applied for the inspection of the interior surface of a cylindrical vessel. The experimental results suggest that the shearography system integrated with optical and image fibers can effectively minimize the size of the inspection device and be capable of evaluating the interior surface of cylindrical structures.

  15. Handheld microwave bomb-detecting imaging system

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo

    2017-05-01

    Proposed novel imaging technique will provide all weather high-resolution imaging and recognition capability for RF/Microwave signals with good penetration through highly scattered media: fog, snow, dust, smoke, even foliage, camouflage, walls and ground. Image resolution in proposed imaging system is not limited by diffraction and will be determined by processor and sampling frequency. Proposed imaging system can simultaneously cover wide field of view, detect multiple targets and can be multi-frequency, multi-function. Directional antennas in imaging system can be close positioned and installed in cell phone size handheld device, on small aircraft or distributed around protected border or object. Non-scanning monopulse system allows dramatically decrease in transmitting power and at the same time provides increased imaging range by integrating 2-3 orders more signals than regular scanning imaging systems.

  16. A network-based training environment: a medical image processing paradigm.

    PubMed

    Costaridou, L; Panayiotakis, G; Sakellaropoulos, P; Cavouras, D; Dimopoulos, J

    1998-01-01

    The capability of interactive multimedia and Internet technologies is investigated with respect to the implementation of a distance learning environment. The system is built according to a client-server architecture, based on the Internet infrastructure, composed of server nodes conceptually modelled as WWW sites. Sites are implemented by customization of available components. The environment integrates network-delivered interactive multimedia courses, network-based tutoring, SIG support, information databases of professional interest, as well as course and tutoring management. This capability has been demonstrated by means of an implemented system, validated with digital image processing content, specifically image enhancement. Image enhancement methods are theoretically described and applied to mammograms. Emphasis is given to the interactive presentation of the effects of algorithm parameters on images. The system end-user access depends on available bandwidth, so high-speed access can be achieved via LAN or local ISDN connections. Network based training offers new means of improved access and sharing of learning resources and expertise, as promising supplements in training.

  17. Electrical capacitance volume tomography with high contrast dielectrics using a cuboid sensor geometry

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.

    2007-05-01

    An electrical capacitance volume tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 × 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This paper presents a method of reconstructing images of high contrast dielectric materials using only the self-capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminium structure inserted at different positions within the sensing region. Comparisons with standard two-dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.

  18. Electrical capacitance volume tomography of high contrast dielectrics using a cuboid geometry

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.

    An Electrical Capacitance Volume Tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 x 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This dissertation presents a method of reconstructing images of high contrast dielectric materials using only the self capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. Comparisons with standard two dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.

  19. Digital PIV (DPIV) Software Analysis System

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    A software package was developed to provide a Digital PIV (DPIV) capability for NASA LaRC. The system provides an automated image capture, test correlation, and autocorrelation analysis capability for the Kodak Megaplus 1.4 digital camera system for PIV measurements. The package includes three separate programs that, when used together with the PIV data validation algorithm, constitutes a complete DPIV analysis capability. The programs are run on an IBM PC/AT host computer running either Microsoft Windows 3.1 or Windows 95 using a 'quickwin' format that allows simple user interface and output capabilities to the windows environment.

  20. Performance of a gaseous detector based energy dispersive X-ray fluorescence imaging system: Analysis of human teeth treated with dental amalgam

    NASA Astrophysics Data System (ADS)

    Silva, A. L. M.; Figueroa, R.; Jaramillo, A.; Carvalho, M. L.; Veloso, J. F. C. A.

    2013-08-01

    Energy dispersive X-ray fluorescence (EDXRF) imaging systems are of great interest in many applications of different areas, once they allow us to get images of the spatial elemental distribution in the samples. The detector system used in this study is based on a micro patterned gas detector, named Micro-Hole and Strip Plate. The full field of view system, with an active area of 28 × 28 mm2 presents some important features for EDXRF imaging applications, such as a position resolution below 125 μm, an intrinsic energy resolution of about 14% full width at half maximum for 5.9 keV X-rays, and a counting rate capability of 0.5 MHz. In this work, analysis of human teeth treated by dental amalgam was performed by using the EDXRF imaging system mentioned above. The goal of the analysis is to evaluate the system capabilities in the biomedical field by measuring the drift of the major constituents of a dental amalgam, Zn and Hg, throughout the tooth structures. The elemental distribution pattern of these elements obtained during the analysis suggests diffusion of these elements from the amalgam to teeth tissues.

  1. MO-G-17A-01: Innovative High-Performance PET Imaging System for Preclinical Imaging and Translational Researches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, X; Lou, K; Rice University, Houston, TX

    Purpose: To develop a practical and compact preclinical PET with innovative technologies for substantially improved imaging performance required for the advanced imaging applications. Methods: Several key components of detector, readout electronics and data acquisition have been developed and evaluated for achieving leapfrogged imaging performance over a prototype animal PET we had developed. The new detector module consists of an 8×8 array of 1.5×1.5×30 mm{sup 3} LYSO scintillators with each end coupled to a latest 4×4 array of 3×3 mm{sup 2} Silicon Photomultipliers (with ∼0.2 mm insensitive gap between pixels) through a 2.0 mm thick transparent light spreader. Scintillator surface andmore » reflector/coupling were designed and fabricated to reserve air-gap to achieve higher depth-of-interaction (DOI) resolution and other detector performance. Front-end readout electronics with upgraded 16-ch ASIC was newly developed and tested, so as the compact and high density FPGA based data acquisition and transfer system targeting 10M/s coincidence counting rate with low power consumption. The new detector module performance of energy, timing and DOI resolutions with the data acquisition system were evaluated. Initial Na-22 point source image was acquired with 2 rotating detectors to assess the system imaging capability. Results: No insensitive gaps at the detector edge and thus it is capable for tiling to a large-scale detector panel. All 64 crystals inside the detector were clearly separated from a flood-source image. Measured energy, timing, and DOI resolutions are around 17%, 2.7 ns and 1.96 mm (mean value). Point source image is acquired successfully without detector/electronics calibration and data correction. Conclusion: Newly developed advanced detector and readout electronics will be enable achieving targeted scalable and compact PET system in stationary configuration with >15% sensitivity, ∼1.3 mm uniform imaging resolution, and fast acquisition counting rate capability for substantially improved imaging and quantification performance for small animal imaging and image-guided radiotherapy applications. This work was supported by a research award RP120326 from Cancer Prevention and Research Institute of Texas.« less

  2. Applications of High-speed motion analysis system on Solid Rocket Motor (SRM)

    NASA Astrophysics Data System (ADS)

    Liu, Yang; He, Guo-qiang; Li, Jiang; Liu, Pei-jin; Chen, Jian

    2007-01-01

    High-speed motion analysis system could record images up to 12,000fps and analyzed with the image processing system. The system stored data and images directly in electronic memory convenient for managing and analyzing. The high-speed motion analysis system and the X-ray radiography system were established the high-speed real-time X-ray radiography system, which could diagnose and measure the dynamic and high-speed process in opaque. The image processing software was developed for improve quality of the original image for acquiring more precise information. The typical applications of high-speed motion analysis system on solid rocket motor (SRM) were introduced in the paper. The research of anomalous combustion of solid propellant grain with defects, real-time measurement experiment of insulator eroding, explosion incision process of motor, structure and wave character of plume during the process of ignition and flameout, measurement of end burning of solid propellant, measurement of flame front and compatibility between airplane and missile during the missile launching were carried out using high-speed motion analysis system. The significative results were achieved through the research. Aim at application of high-speed motion analysis system on solid rocket motor, the key problem, such as motor vibrancy, electrical source instability, geometry aberrance, and yawp disturbance, which damaged the image quality, was solved. The image processing software was developed which improved the capability of measuring the characteristic of image. The experimental results showed that the system was a powerful facility to study instantaneous and high-speed process in solid rocket motor. With the development of the image processing technique, the capability of high-speed motion analysis system was enhanced.

  3. Frequency dependence and passive drains in fish-eye lenses

    NASA Astrophysics Data System (ADS)

    Quevedo-Teruel, O.; Mitchell-Thomas, R. C.; Hao, Y.

    2012-11-01

    The Maxwell fish eye lens has previously been reported as being capable of the much sought after phenomenon of subwavelength imaging. The inclusion of a drain in this system is considered crucial to the imaging ability, although its role is the topic of much debate. This paper provides a numerical investigation into a practical implementation of a drain in such systems, and analyzes the strong frequency dependence of both the Maxwell fish eye lens and an alternative, the Miñano lens. The imaging capability of these types of lens is questioned, and it is supported by simulations involving various configurations of drain arrays. Finally, a discussion of the near-field and evanescent wave contribution is given.

  4. Apple Image Processing Educator

    NASA Technical Reports Server (NTRS)

    Gunther, F. J.

    1981-01-01

    A software system design is proposed and demonstrated with pilot-project software. The system permits the Apple II microcomputer to be used for personalized computer-assisted instruction in the digital image processing of LANDSAT images. The programs provide data input, menu selection, graphic and hard-copy displays, and both general and detailed instructions. The pilot-project results are considered to be successful indicators of the capabilities and limits of microcomputers for digital image processing education.

  5. A high-speed trapezoid image sensor design for continuous traffic monitoring at signalized intersection approaches.

    DOT National Transportation Integrated Search

    2014-10-01

    The goal of this project is to monitor traffic flow continuously with an innovative camera system composed of a custom : designed image sensor integrated circuit (IC) containing trapezoid pixel array and camera system that is capable of : intelligent...

  6. Automated simultaneous multiple feature classification of MTI data

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Theiler, James P.; Balick, Lee K.; Pope, Paul A.; Szymanski, John J.; Perkins, Simon J.; Porter, Reid B.; Brumby, Steven P.; Bloch, Jeffrey J.; David, Nancy A.; Galassi, Mark C.

    2002-08-01

    Los Alamos National Laboratory has developed and demonstrated a highly capable system, GENIE, for the two-class problem of detecting a single feature against a background of non-feature. In addition to the two-class case, however, a commonly encountered remote sensing task is the segmentation of multispectral image data into a larger number of distinct feature classes or land cover types. To this end we have extended our existing system to allow the simultaneous classification of multiple features/classes from multispectral data. The technique builds on previous work and its core continues to utilize a hybrid evolutionary-algorithm-based system capable of searching for image processing pipelines optimized for specific image feature extraction tasks. We describe the improvements made to the GENIE software to allow multiple-feature classification and describe the application of this system to the automatic simultaneous classification of multiple features from MTI image data. We show the application of the multiple-feature classification technique to the problem of classifying lava flows on Mauna Loa volcano, Hawaii, using MTI image data and compare the classification results with standard supervised multiple-feature classification techniques.

  7. Block iterative restoration of astronomical images with the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don J.

    1987-01-01

    A method is described for algebraic image restoration capable of treating astronomical images. For a typical 500 x 500 image, direct algebraic restoration would require the solution of a 250,000 x 250,000 linear system. The block iterative approach is used to reduce the problem to solving 4900 121 x 121 linear systems. The algorithm was implemented on the Goddard Massively Parallel Processor, which can solve a 121 x 121 system in approximately 0.06 seconds. Examples are shown of the results for various astronomical images.

  8. The Multispectral Imaging Science Working Group. Volume 2: Working group reports

    NASA Technical Reports Server (NTRS)

    Cox, S. C. (Editor)

    1982-01-01

    Summaries of the various multispectral imaging science working groups are presented. Current knowledge of the spectral and spatial characteristics of the Earth's surface is outlined and the present and future capabilities of multispectral imaging systems are discussed.

  9. Real-Time Intravascular Ultrasound and Photoacoustic Imaging

    PubMed Central

    VanderLaan, Donald; Karpiouk, Andrei; Yeager, Doug; Emelianov, Stanislav

    2018-01-01

    Combined intravascular ultrasound and photoacoustic imaging (IVUS/IVPA) is an emerging hybrid modality being explored as a means of improving the characterization of atherosclerotic plaque anatomical and compositional features. While initial demonstrations of the technique have been encouraging, they have been limited by catheter rotation and data acquisition, displaying and processing rates on the order of several seconds per frame as well as the use of off-line image processing. Herein, we present a complete IVUS/IVPA imaging system and method capable of real-time IVUS/IVPA imaging, with online data acquisition, image processing and display of both IVUS and IVPA images. The integrated IVUS/IVPA catheter is fully contained within a 1 mm outer diameter torque cable coupled on the proximal end to a custom-designed spindle enabling optical and electrical coupling to system hardware, including a nanosecond-pulsed laser with a controllable pulse repetition frequency capable of greater than 10kHz, motor and servo drive, an ultrasound pulser/receiver, and a 200 MHz digitizer. The system performance is characterized and demonstrated on a vessel-mimicking phantom with an embedded coronary stent intended to provide IVPA contrast within content of an IVUS image. PMID:28092507

  10. Sensing Super-Position: Human Sensing Beyond the Visual Spectrum

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Schipper, John F.

    2007-01-01

    The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This paper addresses the technical feasibility of augmenting human vision through Sensing Super-position by mixing natural Human sensing. The current implementation of the device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of Lie human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system. The human brain is superior to most existing computer systems in rapidly extracting relevant information from blurred, noisy, and redundant images. From a theoretical viewpoint, this means that the available bandwidth is not exploited in an optimal way. While image-processing techniques can manipulate, condense and focus the information (e.g., Fourier Transforms), keeping the mapping as direct and simple as possible might also reduce the risk of accidentally filtering out important clues. After all, especially a perfect non-redundant sound representation is prone to loss of relevant information in the non-perfect human hearing system. Also, a complicated non-redundant image-to-sound mapping may well be far more difficult to learn and comprehend than a straightforward mapping, while the mapping system would increase in complexity and cost. This work will demonstrate some basic information processing for optimal information capture for headmounted systems.

  11. Functional evaluation of telemedicine with super high definition images and B-ISDN.

    PubMed

    Takeda, H; Matsumura, Y; Okada, T; Kuwata, S; Komori, M; Takahashi, T; Minatom, K; Hashimoto, T; Wada, M; Fujio, Y

    1998-01-01

    In order to determine whether a super high definition (SHD) image running at a series of 2048 resolution x 2048 line x 60 frame/sec was capable of telemedicine, we established a filing system for medical images and two experiments for transmission of high quality images were performed. All images of various types, produced from one case of ischemic heart disease were digitized and registered into the filing system. Images consisted of plain chest x-ray, electrocardiogram, ultrasound cardiogram, cardiac scintigram, coronary angiogram, left ventriculogram and so on. All images were animated and totaled a number of 243. We prepared a graphic user interface (GUI) for image retrieval based on the medical events and modalities. Twenty one cardiac specialists evaluated quality of the SHD images to be somewhat poor compared to the original pictures but sufficient for making diagnoses, and effective as a tool for teaching and case study purposes. The system capability of simultaneously displaying several animated images was especially deemed effective in grasping comprehension of diagnosis. Efficient input methods and creating capacity of filing all produced images are future issue. Using B-ISDN network, the SHD file was prefetched to the servers at Kyoto University Hospital and BBCC (Bradband ISDN Business chance & Culture Creation) laboratory as an telemedicine experiment. Simultaneous video conference system, the control of image retrieval and pointing function made the teleconference successful in terms of high quality of medical images, quick response time and interactive data exchange.

  12. Detailed description of the Mayo/IBM PACS

    NASA Astrophysics Data System (ADS)

    Gehring, Dale G.; Persons, Kenneth R.; Rothman, Melvyn L.; Salutz, James R.; Morin, Richard L.

    1991-07-01

    The Mayo Clinic and IBM/Rochester have jointly developed a picture archiving system (PACS) for use with Mayo's MRI and Neuro-CT imaging modalities. The system was developed to replace the imaging system's vendor-supplied magnetic tape archiving capability. The system consists of seven MR imagers and nine CT scanners, each interfaced to the PACS via IBM Personal System/2(tm) (PS/2) computers, which act as gateways from the imaging modality to the PACS network. The PAC system operates on the token-ring component of Mayo's city-wide local area network. Also on the PACS network are four optical storage subsystems used for image archival, three optical subsystems used for image retrieval, an IBM Application System/400(tm) (AS/400) computer used for database management and multiple PS/2-based image display systems and their image servers.

  13. JSC earth resources data analysis capabilities available to EOD revision B

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A list and summary description of all Johnson Space Center electronic laboratory and photographic laboratory capabilities available to earth resources division personnel for processing earth resources data are provided. The electronic capabilities pertain to those facilities and systems that use electronic and/or photographic products as output. The photographic capabilities pertain to equipment that uses photographic images as input and electronic and/or table summarizes processing steps. A general hardware description is presented for each of the data processing systems, and the titles of computer programs are used to identify the capabilities and data flow.

  14. Imaging system for cardiac planar imaging using a dedicated dual-head gamma camera

    DOEpatents

    Majewski, Stanislaw [Morgantown, VA; Umeno, Marc M [Woodinville, WA

    2011-09-13

    A cardiac imaging system employing dual gamma imaging heads co-registered with one another to provide two dynamic simultaneous views of the heart sector of a patient torso. A first gamma imaging head is positioned in a first orientation with respect to the heart sector and a second gamma imaging head is positioned in a second orientation with respect to the heart sector. An adjustment arrangement is capable of adjusting the distance between the separate imaging heads and the angle between the heads. With the angle between the imaging heads set to 180 degrees and operating in a range of 140-159 keV and at a rate of up to 500kHz, the imaging heads are co-registered to produce simultaneous dynamic recording of two stereotactic views of the heart. The use of co-registered imaging heads maximizes the uniformity of detection sensitivity of blood flow in and around the heart over the whole heart volume and minimizes radiation absorption effects. A normalization/image fusion technique is implemented pixel-by-corresponding pixel to increase signal for any cardiac region viewed in two images obtained from the two opposed detector heads for the same time bin. The imaging system is capable of producing enhanced first pass studies, bloodpool studies including planar, gated and non-gated EKG studies, planar EKG perfusion studies, and planar hot spot imaging.

  15. Stokes image reconstruction for two-color microgrid polarization imaging systems.

    PubMed

    Lemaster, Daniel A

    2011-07-18

    The Air Force Research Laboratory has developed a new microgrid polarization imaging system capable of simultaneously reconstructing linear Stokes parameter images in two colors on a single focal plane array. In this paper, an effective method for extracting Stokes images is presented for this type of camera system. It is also shown that correlations between the color bands can be exploited to significantly increase overall spatial resolution. Test data is used to show the advantages of this approach over bilinear interpolation. The bounds (in terms of available reconstruction bandwidth) on image resolution are also provided.

  16. A Time of Flight Fast Neutron Imaging System Design Study

    NASA Astrophysics Data System (ADS)

    Canion, Bonnie; Glenn, Andrew; Sheets, Steven; Wurtz, Ron; Nakae, Les; Hausladen, Paul; McConchie, Seth; Blackston, Matthew; Fabris, Lorenzo; Newby, Jason

    2017-09-01

    LLNL and ORNL are designing an active/passive fast neutron imaging system that is flexible to non-ideal detector positioning. It is often not possible to move an inspection object in fieldable imager applications such as safeguards, arms control treaty verification, and emergency response. Particularly, we are interested in scenarios which inspectors do not have access to all sides of an inspection object, due to interfering objects or walls. This paper will present the results of a simulation-based design parameter study, that will determine the optimum system design parameters for a fieldable system to perform time-of-flight based imaging analysis. The imaging analysis is based on the use of an associated particle imaging deuterium-tritium (API DT) neutron generator to get the time-of-flight of radiation induced within an inspection object. This design study will investigate the optimum design parameters for such a system (e.g. detector size, ideal placement, etc.), as well as the upper and lower feasible design parameters that the system can expect to provide results within a reasonable amount of time (e.g. minimum/maximum detector efficiency, detector standoff, etc.). Ideally the final prototype from this project will be capable of using full-access techniques, such as transmission imaging, when the measurement circumstances allow, but with the additional capability of producing results at reduced accessibility.

  17. A Low-Power High-Speed Smart Sensor Design for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi

    1997-01-01

    A low-power high-speed smart sensor system based on a large format active pixel sensor (APS) integrated with a programmable neural processor for space exploration missions is presented. The concept of building an advanced smart sensing system is demonstrated by a system-level microchip design that is composed with an APS sensor, a programmable neural processor, and an embedded microprocessor in a SOI CMOS technology. This ultra-fast smart sensor system-on-a-chip design mimics what is inherent in biological vision systems. Moreover, it is programmable and capable of performing ultra-fast machine vision processing in all levels such as image acquisition, image fusion, image analysis, scene interpretation, and control functions. The system provides about one tera-operation-per-second computing power which is a two order-of-magnitude increase over that of state-of-the-art microcomputers. Its high performance is due to massively parallel computing structures, high data throughput rates, fast learning capabilities, and advanced VLSI system-on-a-chip implementation.

  18. Interstitial ablation and imaging of soft tissue using miniaturized ultrasound arrays

    NASA Astrophysics Data System (ADS)

    Makin, Inder R. S.; Gallagher, Laura A.; Mast, T. Douglas; Runk, Megan M.; Faidi, Waseem; Barthe, Peter G.; Slayton, Michael H.

    2004-05-01

    A potential alternative to extracorporeal, noninvasive HIFU therapy is minimally invasive, interstitial ultrasound ablation that can be performed laparoscopically or percutaneously. Research in this area at Guided Therapy Systems and Ethicon Endo-Surgery has included development of miniaturized (~3 mm diameter) linear ultrasound arrays capable of high power for bulk tissue ablation as well as broad bandwidth for imaging. An integrated control system allows therapy planning and automated treatment guided by real-time interstitial B-scan imaging. Image quality, challenging because of limited probe dimensions and channel count, is aided by signal processing techniques that improve image definition and contrast. Simulations of ultrasonic heat deposition, bio-heat transfer, and tissue modification provide understanding and guidance for development of treatment strategies. Results from in vitro and in vivo ablation experiments, together with corresponding simulations, will be described. Using methods of rotational scanning, this approach is shown to be capable of clinically relevant ablation rates and volumes.

  19. Web-based document and content management with off-the-shelf software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, J

    1999-03-18

    This, then, is the current status of the project: Since we made the switch to Intradoc, we are now treating the project as a document and image management system. In reality, it could be considered a document and content management system since we can manage almost any file input to the system such as video or audio. At present, however, we are concentrating on images. As mentioned above, my CRADA funding was only targeted at including thumbnails of images in Intradoc. We still had to modify Intradoc so that it would compress images submitted to the system. All processing ofmore » files submitted to Intradoc is handled in what is called the Document Refinery. Even though MrSID created thumbnails in the process of compressing an image, work needed to be done to somehow build this capability into the Document Refinery. Therefore we made the decision to contract the Intradoc Engineering Team to perform this custom development work. To make Intradoc even more capable of handling images, we have also contracted for customization of the Document Refinery to accept Adobe PhotoShop and Illustrator file in their native format.« less

  20. Advanced imaging microscope tools applied to microgravity research investigations

    NASA Astrophysics Data System (ADS)

    Peterson, L.; Samson, J.; Conrad, D.; Clark, K.

    1998-01-01

    The inability to observe and interact with experiments on orbit has been an impediment for both basic research and commercial ventures using the shuttle. In order to open the frontiers of space, the Center for Microgravity Automation Technology has developed a unique and innovative system for conducting experiments at a distance, the ``Remote Scientist.'' The Remote Scientist extends laboratory automation capability to the microgravity environment. While the Remote Scientist conceptually encompasses a broad spectrum of elements and functionalities, the development approach taken is to: • establish a baseline capability that is both flexible and versatile • incrementally augment the baseline with additional functions over time. Since last year, the application of the Remote Scientist has changed from protein crystal growth to tissue culture, specifically, the development of skeletal muscle under varying levels of tension. This system includes a series of bioreactor chambers that allow for three-dimensional growth of muscle tissue on a membrane suspended between the two ends of a programmable force transducer that can provide automated or investigator-initiated tension on the developing tissue. A microscope objective mounted on a translation carriage allows for high-resolution microscopy along a large area of the tissue. These images will be mosaiced on orbit to detect features and structures that span multiple images. The use of fluorescence and pseudo-confocal microscopy will maximize the observational capabilities of this system. A series of ground-based experiments have been performed to validate the bioreactor, the force transducer, the translation carriage and the image acquisition capabilities of the Remote Scientist. • The bioreactor is capable of sustaining three dimensional tissue culture growth over time. • The force transducer can be programmed to provide static tension on cells or to simulate either slow or fast growth of underlying tissues in vivo, ranging from 0.2 mm per day to 32 mm per day. • The two-axis translation carriage is capable of scanning the camera along the bioreactor and adjusting the focus with 25 μm resolution. • Time-lapse sequences of images have been acquired, stored and transmitted to a remote computer system. Although the current application of the Remote Scientist technology is the observation and manipulation of a tissue culture growth system, the hardware has been designed to be easily reconfigured to accommodate a multitude of experiments, including animal observation, combustion studies, protein crystal growth, plant growth and aquatic research.

  1. Active State Model for Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Park, Han; Chien, Steve; Zak, Michail; James, Mark; Mackey, Ryan; Fisher, Forest

    2003-01-01

    The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection-and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall health of the system. The ASM concept begins with definitions borrowed from psychology, wherein a system is regarded as active when it possesses self-image, self-awareness, and an ability to make decisions itself, such that it is able to perform purposeful motions and other transitions with some degree of autonomy from the environment. For an engineering system, self-image would manifest itself as the ability to determine nominal values of sensor data by use of a mathematical model of itself, and selfawareness would manifest itself as the ability to relate sensor data to their nominal values. The ASM for such a system may start with the closed-loop control dynamics that describe the evolution of state variables. As soon as this model was supplemented with nominal values of sensor data, it would possess self-image. The ability to process the current sensor data and compare them with the nominal values would represent self-awareness. On the basis of self-image and self-awareness, the ASM provides the capability for self-identification, detection of abnormalities, and self-diagnosis.

  2. Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS): Imaging and Tracking Capability

    NASA Technical Reports Server (NTRS)

    Zhou, D. K.; Larar, A. M.; Liu, Xu; Reisse, R. A.; Smith, W. L.; Revercomb, H. E.; Bingham, G. E.; Zollinger, L. J.; Tansock, J. J.; Huppi, Ronald J.

    2007-01-01

    The geosynchronous-imaging Fourier transform spectrometer (GIFTS) engineering demonstration unit (EDU) is an imaging infrared spectrometer designed for atmospheric soundings. It measures the infrared spectrum in two spectral bands (14.6 to 8.8 microns, 6.0 to 4.4 microns) using two 128 128 detector arrays with a spectral resolution of 0.57/cm with a scan duration of approx. 11 seconds. From a geosynchronous orbit, the instrument will have the capability of taking successive measurements of such data to scan desired regions of the globe, from which atmospheric status, cloud parameters, wind field profiles, and other derived products can be retrieved. The GIFTS EDU provides a flexible and accurate testbed for the new challenges of the emerging hyperspectral era. The EDU ground-based measurement experiment, held in Logan, Utah during September 2006, demonstrated its extensive capabilities and potential for geosynchronous and other applications (e.g., Earth observing environmental measurements). This paper addresses the experiment objectives and overall performance of the sensor system with a focus on the GIFTS EDU imaging capability and proof of the GIFTS measurement concept.

  3. Method and Apparatus for Computed Imaging Backscatter Radiography

    NASA Technical Reports Server (NTRS)

    Shedlock, Daniel (Inventor); Sabri, Nissia (Inventor); Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor); Meng, Christopher (Inventor)

    2013-01-01

    Systems and methods of x-ray backscatter radiography are provided. A single-sided, non-destructive imaging technique utilizing x-ray radiation to image subsurface features is disclosed, capable of scanning a region using a fan beam aperture and gathering data using rotational motion.

  4. Performance characteristics of UV imaging instrumentation for diffusion, dissolution and release testing studies.

    PubMed

    Jensen, Sabrine S; Jensen, Henrik; Goodall, David M; Østergaard, Jesper

    2016-11-30

    UV imaging is capable of providing spatially and temporally resolved absorbance measurements, which is highly beneficial in drug diffusion, dissolution and release testing studies. For optimal planning and design of experiments, knowledge about the capabilities and limitations of the imaging system is required. The aim of this study was to characterize the performance of two commercially available UV imaging systems, the D100 and SDI. Lidocaine crystals, lidocaine containing solutions, and gels were applied in the practical assessment of the UV imaging systems. Dissolution of lidocaine from single crystals into phosphate buffer and 0.5% (w/v) agarose hydrogel at pH 7.4 was investigated to shed light on the importance of density gradients under dissolution conditions in the absence of convective flow. In addition, the resolution of the UV imaging systems was assessed by the use of grids. Resolution was found to be better in the vertical direction than the horizontal direction, consistent with the illumination geometry. The collimating lens in the SDI imaging system was shown to provide more uniform light intensity across the UV imaging area and resulted in better resolution as compared to the D100 imaging system (a system without a lens). Under optimal conditions, the resolution was determined to be 12.5 and 16.7 line pairs per mm (lp/mm) corresponding to line widths of 40μm and 30μm in the horizontal and vertical direction, respectively. Overall, the performance of the UV imaging systems was shown mainly to depend on collimation of light, the light path, the positioning of the object relative to the line of 100μm fibres which forms the light source, and the distance of the object from the sensor surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Design of a versatile clinical aberrometer

    NASA Astrophysics Data System (ADS)

    Sheehan, Matthew; Goncharov, Alexander; Dainty, Chris

    2005-09-01

    We have designed an ocular aberrometer based on the Hartmann-Shack (HS) type wavefront sensor for use in optometry clinics. The optical system has enhanced versatility compared with commercial aberrometers, yet it is compact and user-friendly. The system has the capability to sense both on-axis and off-axis aberrations in the eye within an unobstructed 20 degree field. This capability is essential to collect population data for off-axis aberrations. This data will be useful in designing future adaptive optics (AO) systems to improve image quality of eccentric retinal areas, in particular, for multi-conjugate AO systems. The ability of the examiner to control the accommodation demand is a unique feature of the design that commercial instruments are capable of only after modification. The pupil alignment channel is re-combined with the sensing channel in a parallel path and imaged on a single CCD. This makes the instrument more compact, less expensive, and it helps to synchronize the pupil center with the HS spot coordinate system. Another advantage of the optical design is telecentric re-imaging of the HS spots, increasing the robustness to small longitudinal alignment errors. The optical system has been optimized with a ray-tracing program and its prototype is being constructed. Design considerations together with a description of the optical components are presented. Difficulties and future work are outlined.

  6. Sub-arcminute pointing from a balloonborne platform

    NASA Astrophysics Data System (ADS)

    Craig, William W.; McLean, Ryan; Hailey, Charles J.

    1998-07-01

    We describe the design and performance of the pointing and aspect reconstruction system on the Gamma-Ray Arcminute Telescope Imaging System. The payload consists of a 4m long gamma-ray telescope, capable of producing images of the gamma-ray sky at an angular resolution of 2 arcminutes. The telescope is operated at an altitude of 40km in azimuth/elevation pointing mode. Using a variety of sensor, including attitude GPS, fiber optic gyroscopes, star and sun trackers, the system is capable of pointing the gamma-ray payload to within an arc-minute from the balloon borne platform. The system is designed for long-term autonomous operation and performed to specification throughout a recent 36 hour flight from Alice Springs, Australia. A star tracker and pattern recognition software developed for the mission permit aspect reconstruction to better than 10 arcseconds. The narrow field star tracker system is capable of acquiring and identifying a star field without external input. We present flight data form all sensors and the resultant gamma-ray source localizations.

  7. AOIPS - An interactive image processing system. [Atmospheric and Oceanic Information Processing System

    NASA Technical Reports Server (NTRS)

    Bracken, P. A.; Dalton, J. T.; Quann, J. J.; Billingsley, J. B.

    1978-01-01

    The Atmospheric and Oceanographic Information Processing System (AOIPS) was developed to help applications investigators perform required interactive image data analysis rapidly and to eliminate the inefficiencies and problems associated with batch operation. This paper describes the configuration and processing capabilities of AOIPS and presents unique subsystems for displaying, analyzing, storing, and manipulating digital image data. Applications of AOIPS to research investigations in meteorology and earth resources are featured.

  8. Hyperspectral Remote Sensing of Atmospheric Profiles from Satellites and Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Zhou, D. K.; Harrison, F. W.; Revercomb, H. E.; Larar, A. M.; Huang, H. L.; Huang, B.

    2001-01-01

    A future hyperspectral resolution remote imaging and sounding system, called the GIFTS (Geostationary Imaging Fourier Transform Spectrometer), is described. An airborne system, which produces the type of hyperspectral resolution sounding data to be achieved with the GIFTS, has been flown on high altitude aircraft. Results from simulations and from the airborne measurements are presented to demonstrate the revolutionary remote sounding capabilities to be realized with future satellite hyperspectral remote imaging/sounding systems.

  9. An airborne thematic thermal infrared and electro-optical imaging system

    NASA Astrophysics Data System (ADS)

    Sun, Xiuhong; Shu, Peter

    2011-08-01

    This paper describes an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS) and its potential applications. ATTIREOIS sensor payload consists of two sets of advanced Focal Plane Arrays (FPAs) - a broadband Thermal InfraRed Sensor (TIRS) and a four (4) band Multispectral Electro-Optical Sensor (MEOS) to approximate Landsat ETM+ bands 1,2,3,4, and 6, and LDCM bands 2,3,4,5, and 10+11. The airborne TIRS is 3-axis stabilized payload capable of providing 3D photogrammetric images with a 1,850 pixel swathwidth via pushbroom operation. MEOS has a total of 116 million simultaneous sensor counts capable of providing 3 cm spatial resolution multispectral orthophotos for continuous airborne mapping. ATTIREOIS is a complete standalone and easy-to-use portable imaging instrument for light aerial vehicle deployment. Its miniaturized backend data system operates all ATTIREOIS imaging sensor components, an INS/GPS, and an e-Gimbal™ Control Electronic Unit (ECU) with a data throughput of 300 Megabytes/sec. The backend provides advanced onboard processing, performing autonomous raw sensor imagery development, TIRS image track-recovery reconstruction, LWIR/VNIR multi-band co-registration, and photogrammetric image processing. With geometric optics and boresight calibrations, the ATTIREOIS data products are directly georeferenced with an accuracy of approximately one meter. A prototype ATTIREOIS has been configured. Its sample LWIR/EO image data will be presented. Potential applications of ATTIREOIS include: 1) Providing timely and cost-effective, precisely and directly georeferenced surface emissive and solar reflective LWIR/VNIR multispectral images via a private Google Earth Globe to enhance NASA's Earth science research capabilities; and 2) Underflight satellites to support satellite measurement calibration and validation observations.

  10. Modeling and performance assessment in QinetiQ of EO and IR airborne reconnaissance systems

    NASA Astrophysics Data System (ADS)

    Williams, John W.; Potter, Gary E.

    2002-11-01

    QinetiQ are the technical authority responsible for specifying the performance requirements for the procurement of airborne reconnaissance systems, on behalf of the UK MoD. They are also responsible for acceptance of delivered systems, overseeing and verifying the installed system performance as predicted and then assessed by the contractor. Measures of functional capability are central to these activities. The conduct of these activities utilises the broad technical insight and wide range of analysis tools and models available within QinetiQ. This paper focuses on the tools, methods and models that are applicable to systems based on EO and IR sensors. The tools, methods and models are described, and representative output for systems that QinetiQ has been responsible for is presented. The principle capability applicable to EO and IR airborne reconnaissance systems is the STAR (Simulation Tools for Airborne Reconnaissance) suite of models. STAR generates predictions of performance measures such as GRD (Ground Resolved Distance) and GIQE (General Image Quality) NIIRS (National Imagery Interpretation Rating Scales). It also generates images representing sensor output, using the scene generation software CAMEO-SIM and the imaging sensor model EMERALD. The simulated image 'quality' is fully correlated with the predicted non-imaging performance measures. STAR also generates image and table data that is compliant with STANAG 7023, which may be used to test ground station functionality.

  11. A Novel 24 Ghz One-Shot Rapid and Portable Microwave Imaging System (Camera)

    NASA Technical Reports Server (NTRS)

    Ghasr, M.T.; Abou-Khousa, M.A.; Kharkovsky, S.; Zoughi, R.; Pommerenke, D.

    2008-01-01

    A novel 2D microwave imaging system at 24 GHz based on MST techniques. Enhanced sensitivity and SNR by utilizing PIN diode-loaded resonant slots. Specific slot and array design to increase transmission and reduce cross -coupling. Real-time imaging at a rate in excess of 30 images per second. Reflection as well transmission mode capabilities. Utility and application for electric field distribution mapping related to: Nondestructive Testing (NDT), imaging applications (SAR, Holography), and antenna pattern measurements.

  12. System and method for ultrasonic tomography

    DOEpatents

    Haddad, Waleed Sami

    2002-01-01

    A system and method for doing both transmission mode and reflection mode three-dimensional ultrasonic imagining. The multimode imaging capability may be used to provide enhanced detectability of cancer tumors within human breast, however, similar imaging systems are applicable to a number of other medical problems as well as a variety of non-medical problems in non-destructive evaluation (NDE).

  13. An image based vibration sensor for soft tissue modal analysis in a Digital Image Elasto Tomography (DIET) system.

    PubMed

    Feng, Sheng; Lotz, Thomas; Chase, J Geoffrey; Hann, Christopher E

    2010-01-01

    Digital Image Elasto Tomography (DIET) is a non-invasive elastographic breast cancer screening technology, based on image-based measurement of surface vibrations induced on a breast by mechanical actuation. Knowledge of frequency response characteristics of a breast prior to imaging is critical to maximize the imaging signal and diagnostic capability of the system. A feasibility analysis for a non-invasive image based modal analysis system is presented that is able to robustly and rapidly identify resonant frequencies in soft tissue. Three images per oscillation cycle are enough to capture the behavior at a given frequency. Thus, a sweep over critical frequency ranges can be performed prior to imaging to determine critical imaging settings of the DIET system to optimize its tumor detection performance.

  14. Using digital colour to increase the realistic appearance of SEM micrographs of bloodstains.

    PubMed

    Hortolà, Policarp

    2010-10-01

    Although in the scientific-research literature the micrographs from scanning electron microscopes (SEMs) are usually displayed in greyscale, the potential of colour resources provided by the SEM-coupled image-acquiring systems and, subsidiarily, by image-manipulation free softwares deserves be explored as a tool for colouring SEM micrographs of bloodstains. After acquiring greyscale SEM micrographs of a (dark red to the naked eye) human blood smear on grey chert, they were manually obtained in red tone using both the SEM-coupled image-acquiring system and an image-manipulation free software, as well as they were automatically generated in thermal tone using the SEM-coupled system. Red images obtained by the SEM-coupled system demonstrated lower visual-discrimination capability than the other coloured images, whereas those in red generated by the free software rendered better magnitude of scopic information than the red images generated by the SEM-coupled system. Thermal-tone images, although were further from the real sample colour than the red ones, not only increased their realistic appearance over the greyscale images, but also yielded the best visual-discrimination capability among all the coloured SEM micrographs, and fairly enhanced the relief effect of the SEM micrographs over both the greyscale and the red images. The application of digital colour by means of the facilities provided by an SEM-coupled image-acquiring system or, when required, by an image-manipulation free software provides a user-friendly, quick and inexpensive way of obtaining coloured SEM micrographs of bloodstains, avoiding to do sophisticated, time-consuming colouring procedures. Although this work was focused on bloodstains, well probably other monochromatic or quasi-monochromatic samples are also susceptible of increasing their realistic appearance by colouring them using the simple methods utilized in this study.

  15. Low-Speed Fingerprint Image Capture System User`s Guide, June 1, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitus, B.R.; Goddard, J.S.; Jatko, W.B.

    1993-06-01

    The Low-Speed Fingerprint Image Capture System (LS-FICS) uses a Sun workstation controlling a Lenzar ElectroOptics Opacity 1000 imaging system to digitize fingerprint card images to support the Federal Bureau of Investigation`s (FBI`s) Automated Fingerprint Identification System (AFIS) program. The system also supports the operations performed by the Oak Ridge National Laboratory- (ORNL-) developed Image Transmission Network (ITN) prototype card scanning system. The input to the system is a single FBI fingerprint card of the agreed-upon standard format and a user-specified identification number. The output is a file formatted to be compatible with the National Institute of Standards and Technology (NIST)more » draft standard for fingerprint data exchange dated June 10, 1992. These NIST compatible files contain the required print and text images. The LS-FICS is designed to provide the FBI with the capability of scanning fingerprint cards into a digital format. The FBI will replicate the system to generate a data base of test images. The Host Workstation contains the image data paths and the compression algorithm. A local area network interface, disk storage, and tape drive are used for the image storage and retrieval, and the Lenzar Opacity 1000 scanner is used to acquire the image. The scanner is capable of resolving 500 pixels/in. in both x and y directions. The print images are maintained in full 8-bit gray scale and compressed with an FBI-approved wavelet-based compression algorithm. The text fields are downsampled to 250 pixels/in. and 2-bit gray scale. The text images are then compressed using a lossless Huffman coding scheme. The text fields retrieved from the output files are easily interpreted when displayed on the screen. Detailed procedures are provided for system calibration and operation. Software tools are provided to verify proper system operation.« less

  16. Performance evaluation of the Trans-PET® BioCaliburn® LH system: a large FOV small-animal PET system

    NASA Astrophysics Data System (ADS)

    Wang, Luyao; Zhu, Jun; Liang, Xiao; Niu, Ming; Wu, Xiaoke; Kao, Chien-Min; Kim, Heejong; Xie, Qingguo

    2015-01-01

    The Trans-PET® BioCaliburn® LH is a commercial positron emission tomography (PET) system for animal imaging. The system offers a large transaxial field-of-view (FOV) of 13.0 cm to allow imaging of multiple rodents or larger animals. This paper evaluates and reports the performance characteristics of this system. Methods: in this paper, the system was evaluated for its spatial resolutions, sensitivity, scatter fraction, count rate performance and image quality in accordance with the National Electrical Manufacturers Association (NEMA) NU-4 2008 specification with modifications. Phantoms and animals not specified in the NEMA specification were also scanned to provide further demonstration of its imaging capability. Results: the spatial resolution is 1.0 mm at the center. When using a 350-650 keV energy window and a 5 ns coincidence time window, the sensitivity at the center is 2.04%. The noise equivalent count-rate curve reaches a peak value of 62 kcps at 28 MBq for the mouse-sized phantom and a peak value of 25 kcps at 31 MBq for the rat-sized phantom. The scatter fractions are 8.4% and 17.7% for the mouse- and rat-sized phantoms, respectively. The uniformity and recovery coefficients measured by using the NEMA image-quality phantom both indicate good imaging performance, even though the reconstruction algorithm provided by the vendor does not implement all desired corrections. The Derenzo-phantom images show that the system can resolve 1.0 mm diameter rods. Animal studies demonstrate the capabilities of the system in dynamic imaging and to image multiple rodents. Conclusion: the Trans-PET® BioCaliburn® LH system offers high spatial resolution, a large transaixal FOV and adequate sensitivity. It produces animal images of good quality and supports dynamic imaging. The system is an attractive imaging technology for preclinical research.

  17. Automated cart with VIS/NIR hyperspectral reflectance and fluorescence imaging capabilities

    USDA-ARS?s Scientific Manuscript database

    A system to take high-resolution VIS/NIR hyperspectral reflectance and fluorescence images in outdoor fields using ambient lighting or a pulsed laser (355 nm), respectively, for illumination was designed, built, and tested. Components of the system include a semi-autonomous cart, a gated-intensified...

  18. Hard copies for digital medical images: an overview

    NASA Astrophysics Data System (ADS)

    Blume, Hartwig R.; Muka, Edward

    1995-04-01

    This paper is a condensed version of an invited overview on the technology of film hard-copies used in radiology. Because the overview was given to an essentially nonmedical audience, the reliance on film hard-copies in radiology is outlined in greater detail. The overview is concerned with laser image recorders generating monochrome prints on silver-halide films. The basic components of laser image recorders are sketched. The paper concentrates on the physical parameters - characteristic function, dynamic range, digitization resolution, modulation transfer function, and noise power spectrum - which define image quality and information transfer capability of the printed image. A preliminary approach is presented to compare the printed image quality with noise in the acquired image as well as with the noise of state-of- the-art cathode-ray-tube display systems. High-performance laser-image- recorder/silver-halide-film/light-box systems are well capable of reproducing acquired radiologic information. Most recently development was begun toward a display function standard for soft-copy display systems to facilitate similarity of image presentation between different soft-copy displays as well as between soft- and hard-copy displays. The standard display function is based on perceptional linearization. The standard is briefly reviewed to encourage the printer industry to adopt it, too.

  19. CMOS active pixel sensor type imaging system on a chip

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Nixon, Robert (Inventor)

    2011-01-01

    A single chip camera which includes an .[.intergrated.]. .Iadd.integrated .Iaddend.image acquisition portion and control portion and which has double sampling/noise reduction capabilities thereon. Part of the .[.intergrated.]. .Iadd.integrated .Iaddend.structure reduces the noise that is picked up during imaging.

  20. AstroImageJ: Image Processing and Photometric Extraction for Ultra-precise Astronomical Light Curves

    NASA Astrophysics Data System (ADS)

    Collins, Karen A.; Kielkopf, John F.; Stassun, Keivan G.; Hessman, Frederic V.

    2017-02-01

    ImageJ is a graphical user interface (GUI) driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields. The image processing capabilities of ImageJ are useful and extendable to other scientific fields. Here we present AstroImageJ (AIJ), which provides an astronomy specific image display environment and tools for astronomy specific image calibration and data reduction. Although AIJ maintains the general purpose image processing capabilities of ImageJ, AIJ is streamlined for time-series differential photometry, light curve detrending and fitting, and light curve plotting, especially for applications requiring ultra-precise light curves (e.g., exoplanet transits). AIJ reads and writes standard Flexible Image Transport System (FITS) files, as well as other common image formats, provides FITS header viewing and editing, and is World Coordinate System aware, including an automated interface to the astrometry.net web portal for plate solving images. AIJ provides research grade image calibration and analysis tools with a GUI driven approach, and easily installed cross-platform compatibility. It enables new users, even at the level of undergraduate student, high school student, or amateur astronomer, to quickly start processing, modeling, and plotting astronomical image data with one tightly integrated software package.

  1. New space sensor and mesoscale data analysis

    NASA Technical Reports Server (NTRS)

    Hickey, John S.

    1987-01-01

    The developed Earth Science and Application Division (ESAD) system/software provides the research scientist with the following capabilities: an extensive data base management capibility to convert various experiment data types into a standard format; and interactive analysis and display package (AVE80); an interactive imaging/color graphics capability utilizing the Apple III and IBM PC workstations integrated into the ESAD computer system; and local and remote smart-terminal capability which provides color video, graphics, and Laserjet output. Recommendations for updating and enhancing the performance of the ESAD computer system are listed.

  2. Comprehensive quality assurance phantom for cardiovascular imaging systems

    NASA Astrophysics Data System (ADS)

    Lin, Pei-Jan P.

    1998-07-01

    With the advent of high heat loading capacity x-ray tubes, high frequency inverter type generators, and the use of spectral shaping filters, the automatic brightness/exposure control (ABC) circuit logic employed in the new generation of angiographic imaging equipment has been significantly reprogrammed. These new angiographic imaging systems are designed to take advantage of the power train capabilities to yield higher contrast images while maintaining, or lower, the patient exposure. Since the emphasis of the imaging system design has been significantly altered, the system performance parameters one is interested and the phantoms employed for the quality assurance must also change in order to properly evaluate the imaging capability of the cardiovascular imaging systems. A quality assurance (QA) phantom has been under development in this institution and was submitted to various interested organizations such as American Association of Physicists in Medicine (AAPM), Society for Cardiac Angiography & Interventions (SCA&I), and National Electrical Manufacturers Association (NEMA) for their review and input. At the same time, in an effort to establish a unified standard phantom design for the cardiac catheterization laboratories (CCL), SCA&I and NEMA have formed a joint work group in early 1997 to develop a suitable phantom. The initial QA phantom design has since been accepted to serve as the base phantom by the SCA&I- NEMA Joint Work Group (JWG) from which a comprehensive QA Phantom is being developed.

  3. Onion cell imaging by using Talbot/self-imaging effect

    NASA Astrophysics Data System (ADS)

    Agarwal, Shilpi; Kumar, Varun; Shakher, Chandra

    2017-08-01

    This paper presents the amplitude and phase imaging of onion epidermis cell using the self-imaging capabilities of a grating (Talbot effect) in visible light region. In proposed method, the Fresnel diffraction pattern from the first grating and object is recorded at self-image plane. Fast Fourier Transform (FFT) is used for extracting the 3D amplitude and phase image of onion epidermis cell. The stability of the proposed system, from environmental perturbation as well as its compactness and portability give the proposed system a high potential for several clinical applications.

  4. Digital image profilers for detecting faint sources which have bright companions, phase 2

    NASA Technical Reports Server (NTRS)

    Morris, Elena; Flint, Graham

    1991-01-01

    A breadboard image profiling system developed for the first phase of this project demonstrated the potential for detecting extremely faint optical sources in the presence of light companions. Experimental data derived from laboratory testing of the device supports the theory that image profilers of this type may approach the theoretical limit imposed by photon statistics. The objective of Phase 2 of this program is the development of a ground-based multichannel image profiling system capable of detecting faint stellar objects slightly displaced from brighter stars. We have finalized the multichannel image profiling system and attempted three field tests.

  5. High resolution image processing on low-cost microcomputers

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1993-01-01

    Recent advances in microcomputer technology have resulted in systems that rival the speed, storage, and display capabilities of traditionally larger machines. Low-cost microcomputers can provide a powerful environment for image processing. A new software program which offers sophisticated image display and analysis on IBM-based systems is presented. Designed specifically for a microcomputer, this program provides a wide-range of functions normally found only on dedicated graphics systems, and therefore can provide most students, universities and research groups with an affordable computer platform for processing digital images. The processing of AVHRR images within this environment is presented as an example.

  6. Conceptual design of a monitoring system for the Charters of Freedom

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.

    1984-01-01

    A conceptual design of a monitoring system for the Charters of Freedom was developed for the National Archives and Records Service. The monitoring system would be installed at the National Archives and used to document the condition of the Charters as part of a regular inspection program. The results of an experimental measurements program that led to the definition of analysis system requirements are presented, a conceptual design of the monitoring system is described and the alternative approaches to implementing this design were discussed. The monitoring system is required to optically detect and measure deterioration in documents that are permanently encapsulated in glass cases. An electronic imaging system with the capability for precise photometric measurements of the contrast of the script on the documents can perform this task. Two general types of imaging systems are considered (line and area array), and their suitability for performing these required measurements are compared. A digital processing capability for analyzing the electronic imaging data is also required, and several optional levels of complexity for this digital analysis system are evaluated.

  7. HALO: a reconfigurable image enhancement and multisensor fusion system

    NASA Astrophysics Data System (ADS)

    Wu, F.; Hickman, D. L.; Parker, Steve J.

    2014-06-01

    Contemporary high definition (HD) cameras and affordable infrared (IR) imagers are set to dramatically improve the effectiveness of security, surveillance and military vision systems. However, the quality of imagery is often compromised by camera shake, or poor scene visibility due to inadequate illumination or bad atmospheric conditions. A versatile vision processing system called HALO™ is presented that can address these issues, by providing flexible image processing functionality on a low size, weight and power (SWaP) platform. Example processing functions include video distortion correction, stabilisation, multi-sensor fusion and image contrast enhancement (ICE). The system is based around an all-programmable system-on-a-chip (SoC), which combines the computational power of a field-programmable gate array (FPGA) with the flexibility of a CPU. The FPGA accelerates computationally intensive real-time processes, whereas the CPU provides management and decision making functions that can automatically reconfigure the platform based on user input and scene content. These capabilities enable a HALO™ equipped reconnaissance or surveillance system to operate in poor visibility, providing potentially critical operational advantages in visually complex and challenging usage scenarios. The choice of an FPGA based SoC is discussed, and the HALO™ architecture and its implementation are described. The capabilities of image distortion correction, stabilisation, fusion and ICE are illustrated using laboratory and trials data.

  8. Towards in vivo laser coagulation and concurrent optical coherence tomography through double-clad fiber devices

    NASA Astrophysics Data System (ADS)

    Beaudette, Kathy; Lo, William; Villiger, Martin; Shishkov, Milen; Godbout, Nicolas; Bouma, Brett E.; Boudoux, Caroline

    2016-03-01

    There is a strong clinical need for an optical coherence tomography (OCT) system capable of delivering concurrent coagulation light enabling image-guided dynamic laser marking for targeted collection of biopsies, as opposed to a random sampling, to reduce false-negative findings. Here, we present a system based on double-clad fiber (DCF) capable of delivering pulsed laser light through the inner cladding while performing OCT through the core. A previously clinically validated commercial OCT system (NVisionVLE, Ninepoint Medical) was adapted to enable in vivo esophageal image-guided dynamic laser marking. An optimized DCF coupler was implemented into the system to couple both modalities into the DCF. A DCF-based rotary joint was used to couple light to the spinning DCF-based catheter for helical scanning. DCF-based OCT catheters, providing a beam waist diameter of 62μm at a working distance of 9.3mm, for use with a 17-mm diameter balloon sheath, were used for ex vivo imaging of a swine esophagus. Imaging results using the DCF-based clinical system show an image quality comparable with a conventional system with minimal crosstalk-induced artifacts. To further optimize DCF catheter optical design in order to achieve single-pulse marking, a Zemax model of the DCF output and its validation are presented.

  9. A new omni-directional multi-camera system for high resolution surveillance

    NASA Astrophysics Data System (ADS)

    Cogal, Omer; Akin, Abdulkadir; Seyid, Kerem; Popovic, Vladan; Schmid, Alexandre; Ott, Beat; Wellig, Peter; Leblebici, Yusuf

    2014-05-01

    Omni-directional high resolution surveillance has a wide application range in defense and security fields. Early systems used for this purpose are based on parabolic mirror or fisheye lens where distortion due to the nature of the optical elements cannot be avoided. Moreover, in such systems, the image resolution is limited to a single image sensor's image resolution. Recently, the Panoptic camera approach that mimics the eyes of flying insects using multiple imagers has been presented. This approach features a novel solution for constructing a spherically arranged wide FOV plenoptic imaging system where the omni-directional image quality is limited by low-end sensors. In this paper, an overview of current Panoptic camera designs is provided. New results for a very-high resolution visible spectrum imaging and recording system inspired from the Panoptic approach are presented. The GigaEye-1 system, with 44 single cameras and 22 FPGAs, is capable of recording omni-directional video in a 360°×100° FOV at 9.5 fps with a resolution over (17,700×4,650) pixels (82.3MP). Real-time video capturing capability is also verified at 30 fps for a resolution over (9,000×2,400) pixels (21.6MP). The next generation system with significantly higher resolution and real-time processing capacity, called GigaEye-2, is currently under development. The important capacity of GigaEye-1 opens the door to various post-processing techniques in surveillance domain such as large perimeter object tracking, very-high resolution depth map estimation and high dynamicrange imaging which are beyond standard stitching and panorama generation methods.

  10. A knowledge-based system for patient image pre-fetching in heterogeneous database environments--modeling, design, and evaluation.

    PubMed

    Wei, C P; Hu, P J; Sheng, O R

    2001-03-01

    When performing primary reading on a newly taken radiological examination, a radiologist often needs to reference relevant prior images of the same patient for confirmation or comparison purposes. Support of such image references is of clinical importance and may have significant effects on radiologists' examination reading efficiency, service quality, and work satisfaction. To effectively support such image reference needs, we proposed and developed a knowledge-based patient image pre-fetching system, addressing several challenging requirements of the application that include representation and learning of image reference heuristics and management of data-intensive knowledge inferencing. Moreover, the system demands an extensible and maintainable architecture design capable of effectively adapting to a dynamic environment characterized by heterogeneous and autonomous data source systems. In this paper, we developed a synthesized object-oriented entity- relationship model, a conceptual model appropriate for representing radiologists' prior image reference heuristics that are heuristic oriented and data intensive. We detailed the system architecture and design of the knowledge-based patient image pre-fetching system. Our architecture design is based on a client-mediator-server framework, capable of coping with a dynamic environment characterized by distributed, heterogeneous, and highly autonomous data source systems. To adapt to changes in radiologists' patient prior image reference heuristics, ID3-based multidecision-tree induction and CN2-based multidecision induction learning techniques were developed and evaluated. Experimentally, we examined effects of the pre-fetching system we created on radiologists' examination readings. Preliminary results show that the knowledge-based patient image pre-fetching system more accurately supports radiologists' patient prior image reference needs than the current practice adopted at the study site and that radiologists may become more efficient, consultatively effective, and better satisfied when supported by the pre-fetching system than when relying on the study site's pre-fetching practice.

  11. Grayscale image segmentation for real-time traffic sign recognition: the hardware point of view

    NASA Astrophysics Data System (ADS)

    Cao, Tam P.; Deng, Guang; Elton, Darrell

    2009-02-01

    In this paper, we study several grayscale-based image segmentation methods for real-time road sign recognition applications on an FPGA hardware platform. The performance of different image segmentation algorithms in different lighting conditions are initially compared using PC simulation. Based on these results and analysis, suitable algorithms are implemented and tested on a real-time FPGA speed sign detection system. Experimental results show that the system using segmented images uses significantly less hardware resources on an FPGA while maintaining comparable system's performance. The system is capable of processing 60 live video frames per second.

  12. Laser applications and system considerations in ocular imaging

    PubMed Central

    Elsner, Ann E.; Muller, Matthew S.

    2009-01-01

    We review laser applications for primarily in vivo ocular imaging techniques, describing their constraints based on biological tissue properties, safety, and the performance of the imaging system. We discuss the need for cost effective sources with practical wavelength tuning capabilities for spectral studies. Techniques to probe the pathological changes of layers beneath the highly scattering retina and diagnose the onset of various eye diseases are described. The recent development of several optical coherence tomography based systems for functional ocular imaging is reviewed, as well as linear and nonlinear ocular imaging techniques performed with ultrafast lasers, emphasizing recent source developments and methods to enhance imaging contrast. PMID:21052482

  13. Post-focus Instrumentation Of The NST

    NASA Astrophysics Data System (ADS)

    Cao, Wenda; Gorceix, N.; Andic, A.; Ahn, K.; Coulter, R.; Goode, P.

    2009-05-01

    The NST (New Solar Telescope), 1.6 m clear aperture, off-axis telescope, is in its commissioning phase at Big Bear Solar Observatory (BBSO). It will be the most capable, largest aperture solar telescope in the US until the 4 m ATST (Advanced Technology Solar Telescope) comes on-line in the middle of the next decade. The NST will be outfitted with state-of-the-art post-focus instrumentation, which currently include Adaptive Optics system (AO), InfraRed Imaging Magnetograph (IRIM), Visible Imaging Magnetograph (VIM), Real-time Image Reconstruction System (RIRS), and Fast Imaging Solar Spectrograph (FISS). A 308 sub-aperture (349-actuator Deformable Mirror) AO system will enable diffraction limited observations over the NST's principal operating wavelengths from 0.4 µm through 1.7 µm. IRIM and VIM are Fabry-Perot based narrow-band tunable filter, which provide high resolution two-dimensional spectroscopic and polarimetric imaging in the near infrared and visible respectively. Using a 32-node parallel computing system, RIRS is capable of performing real-time image reconstruction with one image every minute. FISS is a collaboration between NJIT and Seoul National University to focus on chromosphere dynamics. This instruments would be installed this Summer as a part of the NST commissioning and the implementation of Nysmyth focus instrumentation. Key tasks including optical design, hardware/software integration and subsequent setup/testing on the NST, will be presented in this poster. First light images from the NST will be shown.

  14. Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque at speed of video-rate level

    NASA Astrophysics Data System (ADS)

    Hui, Jie; Cao, Yingchun; Zhang, Yi; Kole, Ayeeshik; Wang, Pu; Yu, Guangli; Eakins, Gregory; Sturek, Michael; Chen, Weibiao; Cheng, Ji-Xin

    2017-03-01

    Intravascular photoacoustic-ultrasound (IVPA-US) imaging is an emerging hybrid modality for the detection of lipidladen plaques by providing simultaneous morphological and lipid-specific chemical information of an artery wall. The clinical utility of IVPA-US technology requires real-time imaging and display at speed of video-rate level. Here, we demonstrate a compact and portable IVPA-US system capable of imaging at up to 25 frames per second in real-time display mode. This unprecedented imaging speed was achieved by concurrent innovations in excitation laser source, rotary joint assembly, 1 mm IVPA-US catheter, differentiated A-line strategy, and real-time image processing and display algorithms. By imaging pulsatile motion at different imaging speeds, 16 frames per second was deemed to be adequate to suppress motion artifacts from cardiac pulsation for in vivo applications. Our lateral resolution results further verified the number of A-lines used for a cross-sectional IVPA image reconstruction. The translational capability of this system for the detection of lipid-laden plaques was validated by ex vivo imaging of an atherosclerotic human coronary artery at 16 frames per second, which showed strong correlation to gold-standard histopathology.

  15. A Geant4 model of backscatter security imaging systems

    NASA Astrophysics Data System (ADS)

    Leboffe, Eric Matthew

    The operating characteristics of x ray security scanner systems that utilize backscatter signal in order to distinguish person borne threats have never been made fully available to the general public. By designing a model using Geant4, studies can be performed which will shed light on systems such as security scanners and allow for analysis of the performance and safety of the system without access to any system data. Despite the fact that the systems are no longer in use at airports in the United States, the ability to design and validate detector models and phenomena is an important capability that can be applied to many current real world applications. The model presented provides estimates for absorbed dose, effective dose and dose depth distribution that are comparable to previously published work and explores imaging capabilities for the system embodiment modeled.

  16. Image acquisition system for traffic monitoring applications

    NASA Astrophysics Data System (ADS)

    Auty, Glen; Corke, Peter I.; Dunn, Paul; Jensen, Murray; Macintyre, Ian B.; Mills, Dennis C.; Nguyen, Hao; Simons, Ben

    1995-03-01

    An imaging system for monitoring traffic on multilane highways is discussed. The system, named Safe-T-Cam, is capable of operating 24 hours per day in all but extreme weather conditions and can capture still images of vehicles traveling up to 160 km/hr. Systems operating at different remote locations are networked to allow transmission of images and data to a control center. A remote site facility comprises a vehicle detection and classification module (VCDM), an image acquisition module (IAM) and a license plate recognition module (LPRM). The remote site is connected to the central site by an ISDN communications network. The remote site system is discussed in this paper. The VCDM consists of a video camera, a specialized exposure control unit to maintain consistent image characteristics, and a 'real-time' image processing system that processes 50 images per second. The VCDM can detect and classify vehicles (e.g. cars from trucks). The vehicle class is used to determine what data should be recorded. The VCDM uses a vehicle tracking technique to allow optimum triggering of the high resolution camera of the IAM. The IAM camera combines the features necessary to operate consistently in the harsh environment encountered when imaging a vehicle 'head-on' in both day and night conditions. The image clarity obtained is ideally suited for automatic location and recognition of the vehicle license plate. This paper discusses the camera geometry, sensor characteristics and the image processing methods which permit consistent vehicle segmentation from a cluttered background allowing object oriented pattern recognition to be used for vehicle classification. The image capture of high resolution images and the image characteristics required for the LPRMs automatic reading of vehicle license plates, is also discussed. The results of field tests presented demonstrate that the vision based Safe-T-Cam system, currently installed on open highways, is capable of producing automatic classification of vehicle class and recording of vehicle numberplates with a success rate around 90 percent in a period of 24 hours.

  17. Image quality assessment of a pre-clinical flat-panel volumetric micro-CT scanner

    NASA Astrophysics Data System (ADS)

    Du, Louise Y.; Lee, Ting-Yim; Holdsworth, David W.

    2006-03-01

    Small animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. Current micro-CT systems are capable of achieving spatial resolution on the order of 10 μm, giving highly detailed anatomical information. However, the speed of data acquisition of these systems is relatively slow, when compared with clinical CT systems. Dynamic CT perfusion imaging has proven to be a powerful tool clinically in detecting and diagnosing cancer, stroke, pulmonary and ischemic heart diseases. In order to perform this technique in mice and rats, quantitative CT images must be acquired at a rate of at least 1 Hz. Recently, a research pre-clinical CT scanner (eXplore Ultra, GE Healthcare) has been designed specifically for dynamic perfusion imaging in small animals. Using an amorphous silicon flat-panel detector and a clinical slip-ring gantry, this system is capable of acquiring volumetric image data at a rate of 1 Hz, with in-plane resolution of 150 μm, while covering the entire thoracic region of a mouse or whole organs of a rat. The purpose of this study was to evaluate the principal imaging performance of the micro-CT system, in terms of spatial resolution, image uniformity, linearity, dose and voxel noise for the feasibility of imaging mice and rats. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.7 line pairs per mm and noise of 42 HU, using an acquisition interval of 8 seconds at an entrance dose of 6.4 cGy.

  18. Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects.

    PubMed

    Yang, Huizhen; Soloviev, Oleg; Verhaegen, Michel

    2015-09-21

    A model-based wavefront sensorless (WFSless) adaptive optics (AO) system with a 61-element deformable mirror is simulated to correct the imaging of a turbulence-degraded extended object. A fast closed-loop control algorithm, which is based on the linear relation between the mean square of the aberration gradients and the second moment of the image intensity distribution, is used to generate the control signals for the actuators of the deformable mirror (DM). The restoration capability and the convergence rate of the AO system are investigated with different turbulence strength wave-front aberrations. Simulation results show the model-based WFSless AO system can restore those images degraded by different turbulence strengths successfully and obtain the correction very close to the achievable capability of the given DM. Compared with the ideal correction of 61-element DM, the averaged relative error of RMS value is 6%. The convergence rate of AO system is independent of the turbulence strength and only depends on the number of actuators of DM.

  19. Evaluation of a high framerate multi-exposure laser speckle contrast imaging setup

    NASA Astrophysics Data System (ADS)

    Hultman, Martin; Fredriksson, Ingemar; Strömberg, Tomas; Larsson, Marcus

    2018-02-01

    We present a first evaluation of a new multi-exposure laser speckle contrast imaging (MELSCI) system for assessing spatial variations in the microcirculatory perfusion. The MELSCI system is based on a 1000 frames per second 1-megapixel camera connected to a field programmable gate arrays (FPGA) capable of producing MELSCI data in realtime. The imaging system is evaluated against a single point laser Doppler flowmetry (LDF) system during occlusionrelease provocations of the arm in five subjects. Perfusion is calculated from MELSCI data using current state-of-the-art inverse models. The analysis displayed a good agreement between measured and modeled data, with an average error below 6%. This strongly indicates that the applied model is capable of accurately describing the MELSCI data and that the acquired data is of high quality. Comparing readings from the occlusion-release provocation showed that the MELSCI perfusion was significantly correlated (R=0.83) to the single point LDF perfusion, clearly outperforming perfusion estimations based on a single exposure time. We conclude that the MELSCI system provides blood flow images of enhanced quality, taking us one step closer to a system that accurately can monitor dynamic changes in skin perfusion over a large area in real-time.

  20. Real-time embedded atmospheric compensation for long-range imaging using the average bispectrum speckle method

    NASA Astrophysics Data System (ADS)

    Curt, Petersen F.; Bodnar, Michael R.; Ortiz, Fernando E.; Carrano, Carmen J.; Kelmelis, Eric J.

    2009-02-01

    While imaging over long distances is critical to a number of security and defense applications, such as homeland security and launch tracking, current optical systems are limited in resolving power. This is largely a result of the turbulent atmosphere in the path between the region under observation and the imaging system, which can severely degrade captured imagery. There are a variety of post-processing techniques capable of recovering this obscured image information; however, the computational complexity of such approaches has prohibited real-time deployment and hampers the usability of these technologies in many scenarios. To overcome this limitation, we have designed and manufactured an embedded image processing system based on commodity hardware which can compensate for these atmospheric disturbances in real-time. Our system consists of a reformulation of the average bispectrum speckle method coupled with a high-end FPGA processing board, and employs modular I/O capable of interfacing with most common digital and analog video transport methods (composite, component, VGA, DVI, SDI, HD-SDI, etc.). By leveraging the custom, reconfigurable nature of the FPGA, we have achieved performance twenty times faster than a modern desktop PC, in a form-factor that is compact, low-power, and field-deployable.

  1. Miniaturized unified imaging system using bio-inspired fluidic lens

    NASA Astrophysics Data System (ADS)

    Tsai, Frank S.; Cho, Sung Hwan; Qiao, Wen; Kim, Nam-Hyong; Lo, Yu-Hwa

    2008-08-01

    Miniaturized imaging systems have become ubiquitous as they are found in an ever-increasing number of devices, such as cellular phones, personal digital assistants, and web cameras. Until now, the design and fabrication methodology of such systems have not been significantly different from conventional cameras. The only established method to achieve focusing is by varying the lens distance. On the other hand, the variable-shape crystalline lens found in animal eyes offers inspiration for a more natural way of achieving an optical system with high functionality. Learning from the working concepts of the optics in the animal kingdom, we developed bio-inspired fluidic lenses for a miniature universal imager with auto-focusing, macro, and super-macro capabilities. Because of the enormous dynamic range of fluidic lenses, the miniature camera can even function as a microscope. To compensate for the image quality difference between the central vision and peripheral vision and the shape difference between a solid-state image sensor and a curved retina, we adopted a hybrid design consisting of fluidic lenses for tunability and fixed lenses for aberration and color dispersion correction. A design of the world's smallest surgical camera with 3X optical zoom capabilities is also demonstrated using the approach of hybrid lenses.

  2. IRLooK: an advanced mobile infrared signature measurement, data reduction, and analysis system

    NASA Astrophysics Data System (ADS)

    Cukur, Tamer; Altug, Yelda; Uzunoglu, Cihan; Kilic, Kayhan; Emir, Erdem

    2007-04-01

    Infrared signature measurement capability has a key role in the electronic warfare (EW) self protection systems' development activities. In this article, the IRLooK System and its capabilities will be introduced. IRLooK is a truly innovative mobile infrared signature measurement system with all its design, manufacturing and integration accomplished by an engineering philosophy peculiar to ASELSAN. IRLooK measures the infrared signatures of military and civil platforms such as fixed/rotary wing aircrafts, tracked/wheeled vehicles and navy vessels. IRLooK has the capabilities of data acquisition, pre-processing, post-processing, analysis, storing and archiving over shortwave, mid-wave and long wave infrared spectrum by means of its high resolution radiometric sensors and highly sophisticated software analysis tools. The sensor suite of IRLooK System includes imaging and non-imaging radiometers and a spectroradiometer. Single or simultaneous multiple in-band measurements as well as high radiant intensity measurements can be performed. The system provides detailed information on the spectral, spatial and temporal infrared signature characteristics of the targets. It also determines IR Decoy characteristics. The system is equipped with a high quality field proven two-axes tracking mount to facilitate target tracking. Manual or automatic tracking is achieved by using a passive imaging tracker. The system also includes a high quality weather station and field-calibration equipment including cavity and extended area blackbodies. The units composing the system are mounted on flat-bed trailers and the complete system is designed to be transportable by large body aircraft.

  3. Fluorescence Imaging Topography Scanning System for intraoperative multimodal imaging

    PubMed Central

    Quang, Tri T.; Kim, Hye-Yeong; Bao, Forrest Sheng; Papay, Francis A.; Edwards, W. Barry; Liu, Yang

    2017-01-01

    Fluorescence imaging is a powerful technique with diverse applications in intraoperative settings. Visualization of three dimensional (3D) structures and depth assessment of lesions, however, are oftentimes limited in planar fluorescence imaging systems. In this study, a novel Fluorescence Imaging Topography Scanning (FITS) system has been developed, which offers color reflectance imaging, fluorescence imaging and surface topography scanning capabilities. The system is compact and portable, and thus suitable for deployment in the operating room without disturbing the surgical flow. For system performance, parameters including near infrared fluorescence detection limit, contrast transfer functions and topography depth resolution were characterized. The developed system was tested in chicken tissues ex vivo with simulated tumors for intraoperative imaging. We subsequently conducted in vivo multimodal imaging of sentinel lymph nodes in mice using FITS and PET/CT. The PET/CT/optical multimodal images were co-registered and conveniently presented to users to guide surgeries. Our results show that the developed system can facilitate multimodal intraoperative imaging. PMID:28437441

  4. Imaging Exoplanets with the Exo-S Starshade Mission: Baseline Design

    NASA Astrophysics Data System (ADS)

    Cady, Eric; Lisman, Doug; Martin, Stefan; Scharf, Daniel; Shaklan, Stuart; Trabert, Rachel; Webb, David; Exo-S Science; Technology Definition Team, Exoplanet Program Probe Study Design Team

    2015-01-01

    Starshades suppress on-axis starlight to enable the direct imaging of exoplanets with non-specialized space telescopes of variable size. Even relatively small, commercially available telescopes are capable of imaging Earth-like planets in the habitable zone, and larger telescopes provide the capability to characterize planet atmospheres with increasing spectral resolution. We detail two options developed by the STDT for probe-class starshade missions (Exo-S): a co-launch of a starshade with a dedicated 1.1m telescope, and a standalone starshade to augment an existing large telescope such as WFIRST-AFTA. For these concepts, we describe the optical and mechanical design, the formation flying system, and the augmentations required to make a telescope 'starshade-ready'. We also lay out typical design reference missions for each and their scientific yield, and show both concepts have the capability to image terrestrial exoplanets orbiting nearby stars.

  5. Workshop on the Use of Future Multispectral Imaging Capabilities for Lithologic Mapping: Workshop summary

    NASA Technical Reports Server (NTRS)

    Settle, M.; Adams, J.

    1982-01-01

    Improved orbital imaging capabilities from the standpoint of different scientific disciplines, such as geology, botany, hydrology, and geography were evaluated. A discussion on how geologists might exploit the anticipated measurement capabilities of future orbital imaging systems to discriminate and characterize different types of geologic materials exposed at the Earth's surface is presented. Principle objectives are to summarize past accomplishments in the use of multispectral imaging techniques for lithologic mapping; to identify critical gaps in earlier research efforts that currently limit the ability to extract useful information about the physical and chemical characteristics of geological materials from orbital multispectral surveys; and to define major thresholds, resolution and sensitivity within the visible and infrared portions of the electromagnetic spectrum which, if achieved would result in significant improvement in our ability to discriminate and characterize different geological materials exposed at the Earth's surface.

  6. Clinical challenges associated with incorporation of nonradiology images into the electronic medical record

    NASA Astrophysics Data System (ADS)

    Siegel, Eliot L.; Reiner, Bruce I.

    2001-08-01

    To date, the majority of Picture Archival and Communication Systems (PACS) have been utilized only for capture, storage, and display of radiology and in some cases, nuclear medicine images. Medical images for other subspecialty areas are currently stored in local, independent systems, which typically are not accessible throughout the healthcare enterprise and do not communicate with other hospital information or image management systems. It is likely that during the next few years, healthcare centers will expand PAC system capability to incorporate these multimedia data or alternatively, hospital-wide electronic patient record systems will be able to provide this function.

  7. IMAGES: A digital computer program for interactive modal analysis and gain estimation for eigensystem synthesis

    NASA Technical Reports Server (NTRS)

    Jones, R. L.

    1984-01-01

    An interactive digital computer program for modal analysis and gain estimation for eigensystem synthesis was written. Both mathematical and operation considerations are described; however, the mathematical presentation is limited to those concepts essential to the operational capability of the program. The program is capable of both modal and spectral synthesis of multi-input control systems. It is user friendly, has scratchpad capability and dynamic memory, and can be used to design either state or output feedback systems.

  8. Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems.

    PubMed

    Wang, E; Babbey, C M; Dunn, K W

    2005-05-01

    Fluorescence microscopy of the dynamics of living cells presents a special challenge to a microscope imaging system, simultaneously requiring both high spatial resolution and high temporal resolution, but with illumination levels low enough to prevent fluorophore damage and cytotoxicity. We have compared the high-speed Yokogawa CSU10 spinning disc confocal system with several conventional single-point scanning confocal (SPSC) microscopes, using the relationship between image signal-to-noise ratio and fluorophore photobleaching as an index of system efficiency. These studies demonstrate that the efficiency of the CSU10 consistently exceeds that of the SPSC systems. The high efficiency of the CSU10 means that quality images can be collected with much lower levels of illumination; the CSU10 was capable of achieving the maximum signal-to-noise of an SPSC system at illumination levels that incur only at 1/15th of the rate of the photobleaching of the SPSC system. Although some of the relative efficiency of the CSU10 system may be attributed to the use of a CCD rather than a photomultiplier detector system, our analyses indicate that high-speed imaging with the SPSC system is limited by fluorescence saturation at the high levels of illumination frequently needed to collect images at high frame rates. The high speed, high efficiency and freedom from fluorescence saturation combine to make the CSU10 effective for extended imaging of living cells at rates capable of capturing the three-dimensional motion of endosomes moving up to several micrometres per second.

  9. Image Analysis via Fuzzy-Reasoning Approach: Prototype Applications at NASA

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steven J.

    2004-01-01

    A set of imaging techniques based on Fuzzy Reasoning (FR) approach was built for NASA at Kennedy Space Center (KSC) to perform complex real-time visual-related safety prototype tasks, such as detection and tracking of moving Foreign Objects Debris (FOD) during the NASA Space Shuttle liftoff and visual anomaly detection on slidewires used in the emergency egress system for Space Shuttle at the launch pad. The system has also proved its prospective in enhancing X-ray images used to screen hard-covered items leading to a better visualization. The system capability was used as well during the imaging analysis of the Space Shuttle Columbia accident. These FR-based imaging techniques include novel proprietary adaptive image segmentation, image edge extraction, and image enhancement. Probabilistic Neural Network (PNN) scheme available from NeuroShell(TM) Classifier and optimized via Genetic Algorithm (GA) was also used along with this set of novel imaging techniques to add powerful learning and image classification capabilities. Prototype applications built using these techniques have received NASA Space Awards, including a Board Action Award, and are currently being filed for patents by NASA; they are being offered for commercialization through the Research Triangle Institute (RTI), an internationally recognized corporation in scientific research and technology development. Companies from different fields, including security, medical, text digitalization, and aerospace, are currently in the process of licensing these technologies from NASA.

  10. Feasibility studies on explosive detection and homeland security applications using a neutron and x-ray combined computed tomography system

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Srivastava, A.; Lee, H. K.; Liu, X.

    2013-05-01

    The successful creation and operation of a neutron and X-ray combined computed tomography (NXCT) system has been demonstrated by researchers at the Missouri University of Science and Technology. The NXCT system has numerous applications in the field of material characterization and object identification in materials with a mixture of atomic numbers represented. Presently, the feasibility studies have been performed for explosive detection and homeland security applications, particularly in concealed material detection and determination of the light atomic number materials. These materials cannot be detected using traditional X-ray imaging. The new system has the capability to provide complete structural and compositional information due to the complementary nature of X-ray and neutron interactions with materials. The design of the NXCT system facilitates simultaneous and instantaneous imaging operation, promising enhanced detection capabilities of explosive materials, low atomic number materials and illicit materials for homeland security applications. In addition, a sample positioning system allowing the user to remotely and automatically manipulate the sample makes the system viable for commercial applications. Several explosives and weapon simulants have been imaged and the results are provided. The fusion algorithms which combine the data from the neutron and X-ray imaging produce superior images. This paper is a compete overview of the NXCT system for feasibility studies of explosive detection and homeland security applications. The design of the system, operation, algorithm development, and detection schemes are provided. This is the first combined neutron and X-ray computed tomography system in operation. Furthermore, the method of fusing neutron and X-ray images together is a new approach which provides high contrast images of the desired object. The system could serve as a standardized tool in nondestructive testing of many applications, especially in explosives detection and homeland security research.

  11. Single-shot dimension measurements of the mouse eye using SD-OCT.

    PubMed

    Jiang, Minshan; Wu, Pei-Chang; Fini, M Elizabeth; Tsai, Chia-Ling; Itakura, Tatsuo; Zhang, Xiangyang; Jiao, Shuliang

    2012-01-01

    The authors demonstrate the feasibility and advantage of spectral-domain optical coherence tomography (SD-OCT) for single-shot ocular biometric measurement during the development of the mouse eye. A high-resolution SD-OCT system was built for single-shot imaging of the whole mouse eye in vivo. The axial resolution and imaging depth of the system are 4.5 μm (in tissue) and 5.2 mm, respectively. The system is capable of acquiring a cross-sectional OCT image consisting of 2,048 depth scans in 85 ms. The imaging capability of the SD-OCT system was validated by imaging the normal ocular growth and experimental myopia model using C57BL/6J mice. The biometric dimensions of the mouse eye can be calculated directly from one snapshot of the SD-OCT image. The biometric parameters of the mouse eye including axial length, corneal thickness, anterior chamber depth, lens thickness, vitreous chamber depth, and retinal thickness were successfully measured by the SD-OCT. In the normal ocular growth group, the axial length increased significantly from 28 to 82 days of age (P < .001). The lens thickness increased and the vitreous chamber depth decreased significantly during this period (P < .001 and P = .001, respectively). In the experimental myopia group, there were significant increases in vitreous chamber depth and axial length in comparison to the control eyes (P = .040 and P < .001, respectively). SD-OCT is capable of providing single-shot direct, fast, and high-resolution measurements of the dimensions of young and adult mouse eyes. As a result, SD-OCT is a potentially powerful tool that can be easily applied to research in eye development and myopia using small animal models. Copyright 2012, SLACK Incorporated.

  12. Theory on data processing and instrumentation. [remote sensing

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1978-01-01

    A selection of NASA Earth observations programs are reviewed, emphasizing hardware capabilities. Sampling theory, noise and detection considerations, and image evaluation are discussed for remote sensor imagery. Vision and perception are considered, leading to numerical image processing. The use of multispectral scanners and of multispectral data processing systems, including digital image processing, is depicted. Multispectral sensing and analysis in application with land use and geographical data systems are also covered.

  13. Numerical image manipulation and display in solar astronomy

    NASA Technical Reports Server (NTRS)

    Levine, R. H.; Flagg, J. C.

    1977-01-01

    The paper describes the system configuration and data manipulation capabilities of a solar image display system which allows interactive analysis of visual images and on-line manipulation of digital data. Image processing features include smoothing or filtering of images stored in the display, contrast enhancement, and blinking or flickering images. A computer with a core memory of 28,672 words provides the capacity to perform complex calculations based on stored images, including computing histograms, selecting subsets of images for further analysis, combining portions of images to produce images with physical meaning, and constructing mathematical models of features in an image. Some of the processing modes are illustrated by some image sequences from solar observations.

  14. Radiology on handheld devices: image display, manipulation, and PACS integration issues.

    PubMed

    Raman, Bhargav; Raman, Raghav; Raman, Lalithakala; Beaulieu, Christopher F

    2004-01-01

    Handheld personal digital assistants (PDAs) have undergone continuous and substantial improvements in hardware and graphics capabilities, making them a compelling platform for novel developments in teleradiology. The latest PDAs have processor speeds of up to 400 MHz and storage capacities of up to 80 Gbytes with memory expansion methods. A Digital Imaging and Communications in Medicine (DICOM)-compliant, vendor-independent handheld image access system was developed in which a PDA server acts as the gateway between a picture archiving and communication system (PACS) and PDAs. The system is compatible with most currently available PDA models. It is capable of both wired and wireless transfer of images and includes custom PDA software and World Wide Web interfaces that implement a variety of basic image manipulation functions. Implementation of this system, which is currently undergoing debugging and beta testing, required optimization of the user interface to efficiently display images on smaller PDA screens. The PDA server manages user work lists and implements compression and security features to accelerate transfer speeds, protect patient information, and regulate access. Although some limitations remain, PDA-based teleradiology has the potential to increase the efficiency of the radiologic work flow, increasing productivity and improving communication with referring physicians and patients. Copyright RSNA, 2004

  15. Big capabilities in small packages: hyperspectral imaging from a compact platform

    NASA Astrophysics Data System (ADS)

    Beasley, Matthew; Goldberg, Hannah; Voorhees, Christopher; Illsley, Peter

    2016-09-01

    We present the Compact Holographic Aberration-corrected Platform (CHAP) instrument, designed and developed at Planetary Resources Development Corporation. By combining a dispersive element with the secondary of a telescope, we are able to produce a relatively long focal length with moderate dispersion at the focal plane. This design enables us to build a capable hyperspectral imaging instrument within the size constraints of the Cubesat form-factor. The advantages of our design revolves around its simplicity: there are only two optical elements, producing both a white light and diffracted image. With the use of a replicated grating, we can produce a long focal length hyperspectral imager at a price point far below other spaceflight instruments. The design is scalable for larger platforms and since it has no transmitting optics and only two reflective surfaces could be designed to function at any desired wavelength. Our system will be capable of spectral imaging across the 400 to 900 nm spectral range for use in small body surveys.

  16. Application of a digital high-speed camera and image processing system for investigations of short-term hypersonic fluids

    NASA Astrophysics Data System (ADS)

    Renken, Hartmut; Oelze, Holger W.; Rath, Hans J.

    1998-04-01

    The design and application of a digital high sped image data capturing system with a following image processing system applied to the Bremer Hochschul Hyperschallkanal BHHK is the content of this presentation. It is also the result of the cooperation between the departments aerodynamic and image processing at the ZARM-institute at the Drop Tower of Brennen. Similar systems are used by the combustion working group at ZARM and other external project partners. The BHHK, camera- and image storage system as well as the personal computer based image processing software are described next. Some examples of images taken at the BHHK are shown to illustrate the application. The new and very user-friendly Windows 32-bit system is capable to capture all camera data with a maximum pixel clock of 43 MHz and to process complete sequences of images in one step by using only one comfortable program.

  17. The Fresnel Zone Light Field Spectral Imager

    DTIC Science & Technology

    2017-03-23

    Marciniak Member AFIT-ENP-MS-17-M-095 Abstract This thesis provides a computational model and the first experimental demonstration of a Fresnel zone...Fresnel propagation. It was validated experimentally and provides excellent demonstration of system capabilities. The experimentally demonstrated system...in the measured light fields, they did not degrade the system’s performance. Experimental demonstration also showed the capability to resolve between

  18. Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo

    NASA Astrophysics Data System (ADS)

    Zhao, Huangxuan; Wang, Guangsong; Lin, Riqiang; Gong, Xiaojing; Song, Liang; Li, Tan; Wang, Wenjia; Zhang, Kunya; Qian, Xiuqing; Zhang, Haixia; Li, Lin; Liu, Zhicheng; Liu, Chengbo

    2018-04-01

    For the diagnosis and evaluation of ophthalmic diseases, imaging and quantitative characterization of vasculature in the iris are very important. The recently developed photoacoustic imaging, which is ultrasensitive in imaging endogenous hemoglobin molecules, provides a highly efficient label-free method for imaging blood vasculature in the iris. However, the development of advanced vascular quantification algorithms is still needed to enable accurate characterization of the underlying vasculature. We have developed a vascular information quantification algorithm by adopting a three-dimensional (3-D) Hessian matrix and applied for processing iris vasculature images obtained with a custom-built optical-resolution photoacoustic imaging system (OR-PAM). For the first time, we demonstrate in vivo 3-D vascular structures of a rat iris with a the label-free imaging method and also accurately extract quantitative vascular information, such as vessel diameter, vascular density, and vascular tortuosity. Our results indicate that the developed algorithm is capable of quantifying the vasculature in the 3-D photoacoustic images of the iris in-vivo, thus enhancing the diagnostic capability of the OR-PAM system for vascular-related ophthalmic diseases in vivo.

  19. Review of terahertz technology development at INO

    NASA Astrophysics Data System (ADS)

    Dufour, Denis; Marchese, Linda; Terroux, Marc; Oulachgar, Hassane; Généreux, Francis; Doucet, Michel; Mercier, Luc; Tremblay, Bruno; Alain, Christine; Beaupré, Patrick; Blanchard, Nathalie; Bolduc, Martin; Chevalier, Claude; D'Amato, Dominic; Desroches, Yan; Duchesne, François; Gagnon, Lucie; Ilias, Samir; Jerominek, Hubert; Lagacé, François; Lambert, Julie; Lamontagne, Frédéric; Le Noc, Loïc; Martel, Anne; Pancrati, Ovidiu; Paultre, Jacques-Edmond; Pope, Tim; Provençal, Francis; Topart, Patrice; Vachon, Carl; Verreault, Sonia; Bergeron, Alain

    2015-10-01

    Over the past decade, INO has leveraged its expertise in the development of uncooled microbolometer detectors for infrared imaging to produce terahertz (THz) imaging systems. By modifying its microbolometer-based focal plane arrays to enhance absorption in the THz bands and by developing custom THz imaging lenses, INO has developed a leading-edge THz imaging system, the IRXCAM-THz-384 camera, capable of exploring novel applications in the emerging field of terahertz imaging and sensing. Using appropriate THz sources, results show that the IRXCAM-THz-384 camera is able to image a variety of concealed objects of interest for applications such as non-destructive testing and weapons detections. By using a longer wavelength (94 GHz) source, it is also capable of sensing the signatures of various objects hidden behind a drywall panel. This article, written as a review of THz research at INO over the past decade, describes the technical components that form the IRXCAM-THz-384 camera and the experimental setup used for active THz imaging. Image results for concealed weapons detection experiments, an exploration of wavelength choice on image quality, and the detection of hidden objects behind drywall are also presented.

  20. Practical vision based degraded text recognition system

    NASA Astrophysics Data System (ADS)

    Mohammad, Khader; Agaian, Sos; Saleh, Hani

    2011-02-01

    Rapid growth and progress in the medical, industrial, security and technology fields means more and more consideration for the use of camera based optical character recognition (OCR) Applying OCR to scanned documents is quite mature, and there are many commercial and research products available on this topic. These products achieve acceptable recognition accuracy and reasonable processing times especially with trained software, and constrained text characteristics. Even though the application space for OCR is huge, it is quite challenging to design a single system that is capable of performing automatic OCR for text embedded in an image irrespective of the application. Challenges for OCR systems include; images are taken under natural real world conditions, Surface curvature, text orientation, font, size, lighting conditions, and noise. These and many other conditions make it extremely difficult to achieve reasonable character recognition. Performance for conventional OCR systems drops dramatically as the degradation level of the text image quality increases. In this paper, a new recognition method is proposed to recognize solid or dotted line degraded characters. The degraded text string is localized and segmented using a new algorithm. The new method was implemented and tested using a development framework system that is capable of performing OCR on camera captured images. The framework allows parameter tuning of the image-processing algorithm based on a training set of camera-captured text images. Novel methods were used for enhancement, text localization and the segmentation algorithm which enables building a custom system that is capable of performing automatic OCR which can be used for different applications. The developed framework system includes: new image enhancement, filtering, and segmentation techniques which enabled higher recognition accuracies, faster processing time, and lower energy consumption, compared with the best state of the art published techniques. The system successfully produced impressive OCR accuracies (90% -to- 93%) using customized systems generated by our development framework in two industrial OCR applications: water bottle label text recognition and concrete slab plate text recognition. The system was also trained for the Arabic language alphabet, and demonstrated extremely high recognition accuracy (99%) for Arabic license name plate text recognition with processing times of 10 seconds. The accuracy and run times of the system were compared to conventional and many states of art methods, the proposed system shows excellent results.

  1. High-power fused assemblies enabled by advances in fiber-processing technologies

    NASA Astrophysics Data System (ADS)

    Wiley, Robert; Clark, Brett

    2011-02-01

    The power handling capabilities of fiber lasers are limited by the technologies available to fabricate and assemble the key optical system components. Previous tools for the assembly, tapering, and fusion of fiber laser elements have had drawbacks with regard to temperature range, alignment capability, assembly flexibility and surface contamination. To provide expanded capabilities for fiber laser assembly, a wide-area electrical plasma heat source was used in conjunction with an optimized image analysis method and a flexible alignment system, integrated according to mechatronic principles. High-resolution imaging and vision-based measurement provided feedback to adjust assembly, fusion, and tapering process parameters. The system was used to perform assembly steps including dissimilar-fiber splicing, tapering, bundling, capillary bundling, and fusion of fibers to bulk optic devices up to several mm in diameter. A wide range of fiber types and diameters were tested, including extremely large diameters and photonic crystal fibers. The assemblies were evaluated for conformation to optical and mechanical design criteria, such as taper geometry and splice loss. The completed assemblies met the performance targets and exhibited reduced surface contamination compared to assemblies prepared on previously existing equipment. The imaging system and image analysis algorithms provided in situ fiber geometry measurement data that agreed well with external measurement. The ability to adjust operating parameters dynamically based on imaging was shown to provide substantial performance benefits, particularly in the tapering of fibers and bundles. The integrated design approach was shown to provide sufficient flexibility to perform all required operations with a minimum of reconfiguration.

  2. Small-Animal Imaging Using Diffuse Fluorescence Tomography.

    PubMed

    Davis, Scott C; Tichauer, Kenneth M

    2016-01-01

    Diffuse fluorescence tomography (DFT) has been developed to image the spatial distribution of fluorescence-tagged tracers in living tissue. This capability facilitates the recovery of any number of functional parameters, including enzymatic activity, receptor density, blood flow, and gene expression. However, deploying DFT effectively is complex and often requires years of know-how, especially for newer mutlimodal systems that combine DFT with conventional imaging systems. In this chapter, we step through the process of using MRI-DFT imaging of a receptor-targeted tracer in small animals.

  3. Multi-aperture microoptical system for close-up imaging

    NASA Astrophysics Data System (ADS)

    Berlich, René; Brückner, Andreas; Leitel, Robert; Oberdörster, Alexander; Wippermann, Frank; Bräuer, Andreas

    2014-09-01

    Modern applications in biomedical imaging, machine vision and security engineering require close-up optical systems with high resolution. Combined with the need for miniaturization and fast image acquisition of extended object fields, the design and fabrication of respective devices is extremely challenging. Standard commercial imaging solutions rely on bulky setups or depend on scanning techniques in order to meet the stringent requirements. Recently, our group has proposed a novel, multi-aperture approach based on parallel image transfer in order to overcome these constraints. It exploits state of the art microoptical manufacturing techniques on wafer level in order to create a compact, cost-effective system with a large field of view. However, initial prototypes have so far been subject to various limitations regarding their manufacturing, reliability and applicability. In this work, we demonstrate the optical design and fabrication of an advanced system, which overcomes these restrictions. In particular, a revised optical design facilitates a more efficient and economical fabrication process and inherently improves system reliability. An additional customized front side illumination module provides homogeneous white light illumination over the entire field of view while maintaining a high degree of compactness. Moreover, the complete imaging assembly is mounted on a positioning system. In combination with an extended working range, this allows for adjustment of the system's focus location. The final optical design is capable of capturing an object field of 36x24 mm2 with a resolution of 150 cycles/mm. Finally, we present experimental results of the respective prototype that demonstrate its enhanced capabilities.

  4. Metasurface optics for full-color computational imaging.

    PubMed

    Colburn, Shane; Zhan, Alan; Majumdar, Arka

    2018-02-01

    Conventional imaging systems comprise large and expensive optical components that successively mitigate aberrations. Metasurface optics offers a route to miniaturize imaging systems by replacing bulky components with flat and compact implementations. The diffractive nature of these devices, however, induces severe chromatic aberrations, and current multiwavelength and narrowband achromatic metasurfaces cannot support full visible spectrum imaging (400 to 700 nm). We combine principles of both computational imaging and metasurface optics to build a system with a single metalens of numerical aperture ~0.45, which generates in-focus images under white light illumination. Our metalens exhibits a spectrally invariant point spread function that enables computational reconstruction of captured images with a single digital filter. This work connects computational imaging and metasurface optics and demonstrates the capabilities of combining these disciplines by simultaneously reducing aberrations and downsizing imaging systems using simpler optics.

  5. Smart image sensors: an emerging key technology for advanced optical measurement and microsystems

    NASA Astrophysics Data System (ADS)

    Seitz, Peter

    1996-08-01

    Optical microsystems typically include photosensitive devices, analog preprocessing circuitry and digital signal processing electronics. The advances in semiconductor technology have made it possible today to integrate all photosensitive and electronical devices on one 'smart image sensor' or photo-ASIC (application-specific integrated circuits containing photosensitive elements). It is even possible to provide each 'smart pixel' with additional photoelectronic functionality, without compromising the fill factor substantially. This technological capability is the basis for advanced cameras and optical microsystems showing novel on-chip functionality: Single-chip cameras with on- chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable offset and sensitivity of the pixels leading to image sensors with a dynamic range exceeding 150 dB. Smart image sensors have been demonstrated offering synchronous detection and demodulation capabilities in each pixel (lock-in CCD), and conventional image sensors are combined with an on-chip digital processor for complete, single-chip image acquisition and processing systems. Technological problems of the monolithic integration of smart image sensors include offset non-uniformities, temperature variations of electronic properties, imperfect matching of circuit parameters, etc. These problems can often be overcome either by designing additional compensation circuitry or by providing digital correction routines. Where necessary for technological or economic reasons, smart image sensors can also be combined with or realized as hybrids, making use of commercially available electronic components. It is concluded that the possibilities offered by custom smart image sensors will influence the design and the performance of future electronic imaging systems in many disciplines, reaching from optical metrology to machine vision on the factory floor and in robotics applications.

  6. SU-E-I-43: Pediatric CT Dose and Image Quality Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, G; Singh, R

    2014-06-01

    Purpose: To design an approach to optimize radiation dose and image quality for pediatric CT imaging, and to evaluate expected performance. Methods: A methodology was designed to quantify relative image quality as a function of CT image acquisition parameters. Image contrast and image noise were used to indicate expected conspicuity of objects, and a wide-cone system was used to minimize scan time for motion avoidance. A decision framework was designed to select acquisition parameters as a weighted combination of image quality and dose. Phantom tests were used to acquire images at multiple techniques to demonstrate expected contrast, noise and dose.more » Anthropomorphic phantoms with contrast inserts were imaged on a 160mm CT system with tube voltage capabilities as low as 70kVp. Previously acquired clinical images were used in conjunction with simulation tools to emulate images at different tube voltages and currents to assess human observer preferences. Results: Examination of image contrast, noise, dose and tube/generator capabilities indicates a clinical task and object-size dependent optimization. Phantom experiments confirm that system modeling can be used to achieve the desired image quality and noise performance. Observer studies indicate that clinical utilization of this optimization requires a modified approach to achieve the desired performance. Conclusion: This work indicates the potential to optimize radiation dose and image quality for pediatric CT imaging. In addition, the methodology can be used in an automated parameter selection feature that can suggest techniques given a limited number of user inputs. G Stevens and R Singh are employees of GE Healthcare.« less

  7. Enhanced visualization of the bile duct via parallel white light and indocyanine green fluorescence laparoscopic imaging

    NASA Astrophysics Data System (ADS)

    Demos, Stavros G.; Urayama, Shiro

    2014-03-01

    Despite best efforts, bile duct injury during laparoscopic cholecystectomy is a major potential complication. Precise detection method of extrahepatic bile duct during laparoscopic procedures would minimize the risk of injury. Towards this goal, we have developed a compact imaging instrumentation designed to enable simultaneous acquisition of conventional white color and NIR fluorescence endoscopic/laparoscopic imaging using ICG as contrast agent. The capabilities of this system, which offers optimized sensitivity and functionality, are demonstrated for the detection of the bile duct in an animal model. This design could also provide a low-cost real-time surgical navigation capability to enhance the efficacy of a variety of other image-guided minimally invasive procedures.

  8. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomanowski, B. A., E-mail: b.a.lomanowski@durham.ac.uk; Sharples, R. M.; Meigs, A. G.

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  9. Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo

    NASA Astrophysics Data System (ADS)

    McVeigh, Patrick Z.; Mallia, Rupananda J.; Veilleux, Israel; Wilson, Brian C.

    2013-04-01

    In recent years numerous studies have shown the potential advantages of molecular imaging in vitro and in vivo using contrast agents based on surface enhanced Raman scattering (SERS), however the low throughput of traditional point-scanned imaging methodologies have limited their use in biological imaging. In this work we demonstrate that direct widefield Raman imaging based on a tunable filter is capable of quantitative multiplex SERS imaging in vivo, and that this imaging is possible with acquisition times which are orders of magnitude lower than achievable with comparable point-scanned methodologies. The system, designed for small animal imaging, has a linear response from (0.01 to 100 pM), acquires typical in vivo images in <10 s, and with suitable SERS reporter molecules is capable of multiplex imaging without compensation for spectral overlap. To demonstrate the utility of widefield Raman imaging in biological applications, we show quantitative imaging of four simultaneous SERS reporter molecules in vivo with resulting probe quantification that is in excellent agreement with known quantities (R2>0.98).

  10. Smartphone-Based Endoscope System for Advanced Point-of-Care Diagnostics: Feasibility Study

    PubMed Central

    Bae, Jung Kweon; Vavilin, Andrey; You, Joon S; Kim, Hyeongeun; Ryu, Seon Young; Jang, Jeong Hun

    2017-01-01

    Background Endoscopic technique is often applied for the diagnosis of diseases affecting internal organs and image-guidance of surgical procedures. Although the endoscope has become an indispensable tool in the clinic, its utility has been limited to medical offices or operating rooms because of the large size of its ancillary devices. In addition, the basic design and imaging capability of the system have remained relatively unchanged for decades. Objective The objective of this study was to develop a smartphone-based endoscope system capable of advanced endoscopic functionalities in a compact size and at an affordable cost and to demonstrate its feasibility of point-of-care through human subject imaging. Methods We developed and designed to set up a smartphone-based endoscope system, incorporating a portable light source, relay-lens, custom adapter, and homebuilt Android app. We attached three different types of existing rigid or flexible endoscopic probes to our system and captured the endoscopic images using the homebuilt app. Both smartphone-based endoscope system and commercialized clinical endoscope system were utilized to compare the imaging quality and performance. Connecting the head-mounted display (HMD) wirelessly, the smartphone-based endoscope system could superimpose an endoscopic image to real-world view. Results A total of 15 volunteers who were accepted into our study were captured using our smartphone-based endoscope system, as well as the commercialized clinical endoscope system. It was found that the imaging performance of our device had acceptable quality compared with that of the conventional endoscope system in the clinical setting. In addition, images captured from the HMD used in the smartphone-based endoscope system improved eye-hand coordination between the manipulating site and the smartphone screen, which in turn reduced spatial disorientation. Conclusions The performance of our endoscope system was evaluated against a commercial system in routine otolaryngology examinations. We also demonstrated and evaluated the feasibility of conducting endoscopic procedures through a custom HMD. PMID:28751302

  11. Volumetric 3D display using a DLP projection engine

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Timothy D; Hollenbach, Daniel F; Shedlock, Daniel

    Radiography by Selective Detection (RSD), was investigated for its ability to determine the presence and types of defects in a UO{sub 2} fuel rod surrounded by zirconium cladding. Images created using a Monte Carlo model compared favorably with actual X-ray backscatter images from mock fuel rods. A fuel rod was modeled as a rectangular parallelepiped with zirconium cladding, and pencil beam X-ray sources of 160 kVp (79 keV avg) and 480 kVp (218 keV avg) were generated using the Monte Carlo N-Particle Transport Code to attempt to image void and palladium (Pd) defects in the interior and on the surfacemore » of the fuel pellet. It was found that the 160 kVp spectrum was unable to detect the presence of interior defects, whereas the 480 kVp spectrum detected them with both the standard and the RSD backscatter methods, though the RSD method was very inefficient. It was also found that both energy spectra were able to detect void and Pd defects on the surface using both imaging methods. Additionally, two mock fuel rods were imaged using a backscatter X-ray imaging system, one consisting of hafnium pellets in a Zircaloy-4 cladding and the other consisting of steel pellets in a Zircalloy-4 cladding which was then encased in a steel cladding (a double encapsulation configuration employed in irradiation and experiments). It was found that the system was capable of detecting individual HfO{sub 2} pellets in a Zircaloy-4 cladding and may be capable of detecting individual steel pellets in the double-encapsulated sample. It is expected that the system would also be capable of detecting individual UO{sub 2} pellets in a Zircaloy-4 cladding, though no UO{sub 2} fuel rod was available for imaging.« less

  13. Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism

    PubMed Central

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Gorczynska, Iwona; Fujimoto, James G.; Boas, David A.; Sakadžić, Sava

    2015-01-01

    Improving our understanding of brain function requires novel tools to observe multiple physiological parameters with high resolution in vivo. We have developed a multimodal imaging system for investigating multiple facets of cerebral blood flow and metabolism in small animals. The system was custom designed and features multiple optical imaging capabilities, including 2-photon and confocal lifetime microscopy, optical coherence tomography, laser speckle imaging, and optical intrinsic signal imaging. Here, we provide details of the system’s design and present in vivo observations of multiple metrics of cerebral oxygen delivery and energy metabolism, including oxygen partial pressure, microvascular blood flow, and NADH autofluorescence. PMID:26713212

  14. Real-time implementation of a dual-mode ultrasound array system: in vivo results.

    PubMed

    Casper, Andrew J; Liu, Dalong; Ballard, John R; Ebbini, Emad S

    2013-10-01

    A real-time dual-mode ultrasound array (DMUA) system for imaging and therapy is described. The system utilizes a concave (40-mm radius of curvature) 3.5 MHz, 32 element array, and modular multichannel transmitter/receiver. The system is capable of operating in a variety of imaging and therapy modes (on transmit) and continuous receive on all array elements even during high-power operation. A signal chain consisting of field-programmable gate arrays and graphical processing units is used to enable real time, software-defined beamforming and image formation. Imaging data, from quality assurance phantoms as well as in vivo small- and large-animal models, are presented and discussed. Corresponding images obtained using a temporally-synchronized and spatially-aligned diagnostic probe confirm the DMUA's ability to form anatomically-correct images with sufficient contrast in an extended field of view around its geometric center. In addition, high-frame rate DMUA data also demonstrate the feasibility of detection and localization of echo changes indicative of cavitation and/or tissue boiling during high-intensity focused ultrasound exposures with 45-50 dB dynamic range. The results also show that the axial and lateral resolution of the DMUA are consistent with its f(number) and bandwidth with well-behaved speckle cell characteristics. These results point the way to a theranostic DMUA system capable of quantitative imaging of tissue property changes with high specificity to lesion formation using focused ultrasound.

  15. Label-Free, High Resolution, Multi-Modal Light Microscopy for Discrimination of Live Stem Cell Differentiation Status.

    PubMed

    Zhang, Jing; Moradi, Emilia; Somekh, Michael G; Mather, Melissa L

    2018-01-15

    A label-free microscopy method for assessing the differentiation status of stem cells is presented with potential application for characterization of therapeutic stem cell populations. The microscopy system is capable of characterizing live cells based on the use of evanescent wave microscopy and quantitative phase contrast (QPC) microscopy. The capability of the microscopy system is demonstrated by studying the differentiation of live immortalised neonatal mouse neural stem cells over a 15 day time course. Metrics extracted from microscope images are assessed and images compared with results from endpoint immuno-staining studies to illustrate the system's performance. Results demonstrate the potential of the microscopy system as a valuable tool for cell biologists to readily identify the differentiation status of unlabelled live cells.

  16. Coincidence ion imaging with a fast frame camera

    NASA Astrophysics Data System (ADS)

    Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander H.; Fan, Lin; Li, Wen

    2014-12-01

    A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.

  17. An Efficient Image Recovery Algorithm for Diffraction Tomography Systems

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1993-01-01

    A diffraction tomography system has potential application in ultrasonic medical imaging area. It is capable of achieving imagery with the ultimate resolution of one quarter the wavelength by collecting ultrasonic backscattering data from a circular array of sensors and reconstructing the object reflectivity using a digital image recovery algorithm performed by a computer. One advantage of such a system is that is allows a relatively lower frequency wave to penetrate more deeply into the object and still achieve imagery with a reasonable resolution. An efficient image recovery algorithm for the diffraction tomography system was originally developed for processing a wide beam spaceborne SAR data...

  18. Dynamic Assessment of the Endothelialization of Tissue-Engineered Blood Vessels Using an Optical Coherence Tomography Catheter-Based Fluorescence Imaging System.

    PubMed

    Gurjarpadhye, Abhijit Achyut; DeWitt, Matthew R; Xu, Yong; Wang, Ge; Rylander, Marissa Nichole; Rylander, Christopher G

    2015-07-01

    Lumen endothelialization of bioengineered vascular scaffolds is essential to maintain small-diameter graft patency and prevent thrombosis postimplantation. Unfortunately, nondestructive imaging methods to visualize this dynamic process are lacking, thus slowing development and clinical translation of these potential tissue-engineering approaches. To meet this need, a fluorescence imaging system utilizing a commercial optical coherence tomography (OCT) catheter was designed to visualize graft endothelialization. C7 DragonFly™ intravascular OCT catheter was used as a channel for delivery and collection of excitation and emission spectra. Poly-dl-lactide (PDLLA) electrospun scaffolds were seeded with endothelial cells (ECs). Seeded cells were exposed to Calcein AM before imaging, causing the living cells to emit green fluorescence in response to blue laser. By positioning the catheter tip precisely over a specimen using high-fidelity electromechanical components, small regions of the specimen were excited selectively. The resulting fluorescence intensities were mapped on a two-dimensional digital grid to generate spatial distribution of fluorophores at single-cell-level resolution. Fluorescence imaging of endothelialization on glass and PDLLA scaffolds was performed using the OCT catheter-based imaging system as well as with a commercial fluorescence microscope. Cell coverage area was calculated for both image sets for quantitative comparison of imaging techniques. Tubular PDLLA scaffolds were maintained in a bioreactor on seeding with ECs, and endothelialization was monitored over 5 days using the OCT catheter-based imaging system. No significant difference was observed in images obtained using our imaging system to those acquired with the fluorescence microscope. Cell area coverage calculated using the images yielded similar values. Nondestructive imaging of endothelialization on tubular scaffolds showed cell proliferation with cell coverage area increasing from 15 ± 4% to 89 ± 6% over 5 days. In this study, we showed the capability of an OCT catheter-based imaging system to obtain single-cell resolution and to quantify endothelialization in tubular electrospun scaffolds. We also compared the resulting images with traditional microscopy, showing high fidelity in image capability. This imaging system, used in conjunction with OCT, could potentially be a powerful tool for in vitro optimization of scaffold cellularization, ensuring long-term graft patency postimplantation.

  19. Display system for imaging scientific telemetric information

    NASA Technical Reports Server (NTRS)

    Zabiyakin, G. I.; Rykovanov, S. N.

    1979-01-01

    A system for imaging scientific telemetric information, based on the M-6000 minicomputer and the SIGD graphic display, is described. Two dimensional graphic display of telemetric information and interaction with the computer, in analysis and processing of telemetric parameters displayed on the screen is provided. The running parameter information output method is presented. User capabilities in the analysis and processing of telemetric information imaged on the display screen and the user language are discussed and illustrated.

  20. Resourcesat-1: A global multi-observation mission for resources monitoring

    NASA Astrophysics Data System (ADS)

    Seshadri, K. S. V.; Rao, Mukund; Jayaraman, V.; Thyagarajan, K.; Sridhara Murthi, K. R.

    2005-07-01

    With an array of Indian Remote Sensing Satellites (IRS), a wide variety of national applications have been developed as an inter-agency effort over the past 20 years. Now, the capacity of the programme has been extended into the global arena and IRS is providing operational data services to the global user community. The recently launched IRS satellite, Resourcesat-1, was placed into perfect orbit by India's PSLV and is providing valuable imaging services. Resourcesat-1 is actually like 3 satellites "rolled" into one, imaging a wide field of 710 km area at ˜55 m resolution in multispectral bands from the AWiFS, 23 m resolution in a systematic 142 km swath from four bands of the LISS-3 and the 5.8 m multi-spectral images from the most advanced sensor—LISS-4. Yet another aspect of Resourcesat-1 is it that it marks a "watershed" in terms of a quantum jump in technological capability that India has achieved compared to past missions. The mission has many newer features—the advanced imaging sensors, the more precise attitude and orbit determination systems, the satellite positioning system onboard, the mass storage devices and many other features. This mission has led IRS into a new technological era, and when combined with the technological capability of the forthcoming Cartosat missions, India would have developed technologies that will take us into the new generation of EO satellites for the coming years. This paper provides a detailed description of the Resourcesat-1 mission. From the applications point of view, Resourcesat-1 will open up new avenues for environmental monitoring and resources management—especially for vegetation assessment and disaster management support. The monitoring capability of this mission is also extremely important for a number of applications. The mission has global imaging and servicing capabilities and could be received through the Antrix-Space Imaging network, which markets Resourcesat-1 data worldwide. This paper also describes the applications potentials and global capabilities of the mission. Resourcesat-1 will have continuity and after that a new generation system will provide enhanced and more unique imaging services. Actually, India has a 25 years strategy for EO and a perspective of the same is also described in this paper.

  1. Enhanced optical design by distortion control

    NASA Astrophysics Data System (ADS)

    Thibault, Simon; Gauvin, Jonny; Doucet, Michel; Wang, Min

    2005-09-01

    The control of optical distortion is useful for the design of a variety of optical system. The most popular is the F-theta lens used in laser scanning system to produce a constant scan velocity across the image plane. Many authors have designed during the last 20 years distortion control corrector. Today, many challenging digital imaging system can use distortion the enhanced their imaging capability. A well know example is a reversed telephoto type, if the barrel distortion is increased instead of being corrected; the result is a so-called Fish-eye lens. However, if we control the barrel distortion instead of only increasing it, the resulting system can have enhanced imaging capability. This paper will present some lens design and real system examples that clearly demonstrate how the distortion control can improve the system performances such as resolution. We present innovative optical system which increases the resolution in the field of view of interest to meet the needs of specific applications. One critical issue when we designed using distortion is the optimization management. Like most challenging lens design, the automatic optimization is less reliable. Proper management keeps the lens design within the correct range, which is critical for optimal performance (size, cost, manufacturability). Many lens design presented tailor a custom merit function and approach.

  2. Hyperspectral Systems Increase Imaging Capabilities

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In 1983, NASA started developing hyperspectral systems to image in the ultraviolet and infrared wavelengths. In 2001, the first on-orbit hyperspectral imager, Hyperion, was launched aboard the Earth Observing-1 spacecraft. Based on the hyperspectral imaging sensors used in Earth observation satellites, Stennis Space Center engineers and Institute for Technology Development researchers collaborated on a new design that was smaller and used an improved scanner. Featured in Spinoff 2007, the technology is now exclusively licensed by Themis Vision Systems LLC, of Richmond, Virginia, and is widely used in medical and life sciences, defense and security, forensics, and microscopy.

  3. Low Voltage Low Light Imager and Photodetector

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Martin, Chris (Inventor); Hoenk, Michael E. (Inventor)

    2013-01-01

    Highly efficient, low energy, low light level imagers and photodetectors are provided. In particular, a novel class of Della-Doped Electron Bombarded Array (DDEBA) photodetectors that will reduce the size, mass, power, complexity, and cost of conventional imaging systems while improving performance by using a thinned imager that is capable of detecting low-energy electrons, has high gain, and is of low noise.

  4. Content-based image retrieval on mobile devices

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Abdullah, Shafaq; Kiranyaz, Serkan; Gabbouj, Moncef

    2005-03-01

    Content-based image retrieval area possesses a tremendous potential for exploration and utilization equally for researchers and people in industry due to its promising results. Expeditious retrieval of desired images requires indexing of the content in large-scale databases along with extraction of low-level features based on the content of these images. With the recent advances in wireless communication technology and availability of multimedia capable phones it has become vital to enable query operation in image databases and retrieve results based on the image content. In this paper we present a content-based image retrieval system for mobile platforms, providing the capability of content-based query to any mobile device that supports Java platform. The system consists of light-weight client application running on a Java enabled device and a server containing a servlet running inside a Java enabled web server. The server responds to image query using efficient native code from selected image database. The client application, running on a mobile phone, is able to initiate a query request, which is handled by a servlet in the server for finding closest match to the queried image. The retrieved results are transmitted over mobile network and images are displayed on the mobile phone. We conclude that such system serves as a basis of content-based information retrieval on wireless devices and needs to cope up with factors such as constraints on hand-held devices and reduced network bandwidth available in mobile environments.

  5. Enhanced tactical radar correlator (ETRAC): true interoperability of the 1990s

    NASA Astrophysics Data System (ADS)

    Guillen, Frank J.

    1994-10-01

    The enhanced tactical radar correlator (ETRAC) system is under development at Westinghouse Electric Corporation for the Army Space Program Office (ASPO). ETRAC is a real-time synthetic aperture radar (SAR) processing system that provides tactical IMINT to the corps commander. It features an open architecture comprised of ruggedized commercial-off-the-shelf (COTS), UNIX based workstations and processors. The architecture features the DoD common SAR processor (CSP), a multisensor computing platform to accommodate a variety of current and future imaging needs. ETRAC's principal functions include: (1) Mission planning and control -- ETRAC provides mission planning and control for the U-2R and ASARS-2 sensor, including capability for auto replanning, retasking, and immediate spot. (2) Image formation -- the image formation processor (IFP) provides the CPU intensive processing capability to produce real-time imagery for all ASARS imaging modes of operation. (3) Image exploitation -- two exploitation workstations are provided for first-phase image exploitation, manipulation, and annotation. Products include INTEL reports, annotated NITF SID imagery, high resolution hard copy prints and targeting data. ETRAC is transportable via two C-130 aircraft, with autonomous drive on/off capability for high mobility. Other autonomous capabilities include rapid setup/tear down, extended stand-alone support, internal environmental control units (ECUs) and power generation. ETRAC's mission is to provide the Army field commander with accurate, reliable, and timely imagery intelligence derived from collections made by the ASARS-2 sensor, located on-board the U-2R aircraft. To accomplish this mission, ETRAC receives video phase history (VPH) directly from the U-2R aircraft and converts it in real time into soft copy imagery for immediate exploitation and dissemination to the tactical users.

  6. Low-dose megavoltage cone-beam computed tomography for lung tumors using a high-efficiency image receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sillanpaa, Jussi; Chang Jenghwa; Mageras, Gikas

    2006-09-15

    We report on the capabilities of a low-dose megavoltage cone-beam computed tomography (MV CBCT) system. The high-efficiency image receptor consists of a photodiode array coupled to a scintillator composed of individual CsI crystals. The CBCT system uses the 6 MV beam from a linear accelerator. A synchronization circuit allows us to limit the exposure to one beam pulse [0.028 monitor units (MU)] per projection image. 150-500 images (4.2-13.9 MU total) are collected during a one-minute scan and reconstructed using a filtered backprojection algorithm. Anthropomorphic and contrast phantoms are imaged and the contrast-to-noise ratio of the reconstruction is studied as amore » function of the number of projections and the error in the projection angles. The detector dose response is linear (R{sup 2} value 0.9989). A 2% electron density difference is discernible using 460 projection images and a total exposure of 13 MU (corresponding to a maximum absorbed dose of about 12 cGy in a patient). We present first patient images acquired with this system. Tumors in lung are clearly visible and skeletal anatomy is observed in sufficient detail to allow reproducible registration with the planning kV CT images. The MV CBCT system is shown to be capable of obtaining good quality three-dimensional reconstructions at relatively low dose and to be clinically usable for improving the accuracy of radiotherapy patient positioning.« less

  7. A Guide to Structured Illumination TIRF Microscopy at High Speed with Multiple Colors

    PubMed Central

    Young, Laurence J.; Ströhl, Florian; Kaminski, Clemens F.

    2016-01-01

    Optical super-resolution imaging with structured illumination microscopy (SIM) is a key technology for the visualization of processes at the molecular level in the chemical and biomedical sciences. Although commercial SIM systems are available, systems that are custom designed in the laboratory can outperform commercial systems, the latter typically designed for ease of use and general purpose applications, both in terms of imaging fidelity and speed. This article presents an in-depth guide to building a SIM system that uses total internal reflection (TIR) illumination and is capable of imaging at up to 10 Hz in three colors at a resolution reaching 100 nm. Due to the combination of SIM and TIRF, the system provides better image contrast than rival technologies. To achieve these specifications, several optical elements are used to enable automated control over the polarization state and spatial structure of the illumination light for all available excitation wavelengths. Full details on hardware implementation and control are given to achieve synchronization between excitation light pattern generation, wavelength, polarization state, and camera control with an emphasis on achieving maximum acquisition frame rate. A step-by-step protocol for system alignment and calibration is presented and the achievable resolution improvement is validated on ideal test samples. The capability for video-rate super-resolution imaging is demonstrated with living cells. PMID:27285848

  8. Toroidal sensor arrays for real-time photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Bychkov, Anton S.; Cherepetskaya, Elena B.; Karabutov, Alexander A.; Makarov, Vladimir A.

    2017-07-01

    This article addresses theoretical and numerical investigation of image formation in photoacoustic (PA) imaging with complex-shaped concave sensor arrays. The spatial resolution and the size of sensitivity region of PA and laser ultrasonic (LU) imaging systems are assessed using sensitivity maps and spatial resolution maps in the image plane. This paper also discusses the relationship between the size of high-sensitivity regions and the spatial resolution of real-time imaging systems utilizing toroidal arrays. It is shown that the use of arrays with toroidal geometry significantly improves the diagnostic capabilities of PA and LU imaging to investigate biological objects, rocks, and composite materials.

  9. High-contrast imaging in the cloud with klipReduce and Findr

    NASA Astrophysics Data System (ADS)

    Haug-Baltzell, Asher; Males, Jared R.; Morzinski, Katie M.; Wu, Ya-Lin; Merchant, Nirav; Lyons, Eric; Close, Laird M.

    2016-08-01

    Astronomical data sets are growing ever larger, and the area of high contrast imaging of exoplanets is no exception. With the advent of fast, low-noise detectors operating at 10 to 1000 Hz, huge numbers of images can be taken during a single hours-long observation. High frame rates offer several advantages, such as improved registration, frame selection, and improved speckle calibration. However, advanced image processing algorithms are computationally challenging to apply. Here we describe a parallelized, cloud-based data reduction system developed for the Magellan Adaptive Optics VisAO camera, which is capable of rapidly exploring tens of thousands of parameter sets affecting the Karhunen-Loève image processing (KLIP) algorithm to produce high-quality direct images of exoplanets. We demonstrate these capabilities with a visible wavelength high contrast data set of a hydrogen-accreting brown dwarf companion.

  10. Characterizing Density and Complexity of Imported Cargos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birrer, Nathaniel; Divin, Charles; Glenn, Steven

    X-ray inspection systems are used to detect radiological and nuclear threats in imported cargo. In order to better understand performance of these systems, system imaging capabilities and the characteristics of imported cargo need to be determined. This project involved calculation of the modulation transfer function as a metric of system imaging performance and a study of the density and inhomogeneity of imported cargos, which have been shown to correlate with human analysts, threat detection performance.

  11. Tomorrow's Online in Today's CD-ROM: Interfaces and Images.

    ERIC Educational Resources Information Center

    Jacso, Peter

    1994-01-01

    Considers the appropriateness of using CD-ROM versus online systems. Topics discussed include cost effectiveness; how current the information is; full-text capabilities; a variety of interfaces; graphical user interfaces on CD-ROM; and possibilities for image representations. (LRW)

  12. Imaging of Keratoconic and normal human cornea with a Brillouin imaging system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Besner, Sebastien; Shao, Peng; Scarcelli, Giuliano; Pineda, Roberto; Yun, Seok-Hyun (Andy)

    2016-03-01

    Keratoconus is a degenerative disorder of the eye characterized by human cornea thinning and morphological change to a more conical shape. Current diagnosis of this disease relies on topographic imaging of the cornea. Early and differential diagnosis is difficult. In keratoconus, mechanical properties are found to be compromised. A clinically available invasive technique capable of measuring the mechanical properties of the cornea is of significant importance for understanding the mechanism of keratoconus development and improve detection and intervention in keratoconus. The capability of Brillouin imaging to detect local longitudinal modulus in human cornea has been demonstrated previously. We report our non-contact, non-invasive, clinically viable Brillouin imaging system engineered to evaluate mechanical properties human cornea in vivo. The system takes advantage of a highly dispersive 2-stage virtually imaged phased array (VIPA) to detect weak Brillouin scattering signal from biological samples. With a 1.5-mW light beam from a 780-nm single-wavelength laser source, the system is able to detect Brillouin frequency shift of a single point in human cornea less than 0.3 second, at a 5μm/30μm lateral/axial resolution. Sensitivity of the system was quantified to be ~ 10 MHz. A-scans at different sample locations on a human cornea with a motorized human interface. We imaged both normal and keratoconic human corneas with this system. Whereas no significantly difference were observed outside keratocnic cones compared with normal cornea, a highly statistically significantly decrease was found in the cone regions.

  13. An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability.

    PubMed

    Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U

    2015-03-06

    An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.

  14. An Ultra-Low Power CMOS Image Sensor with On-Chip Energy Harvesting and Power Management Capability

    PubMed Central

    Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U.

    2015-01-01

    An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle. PMID:25756863

  15. MR contrast media for myocardial viability, microvascular integrity and perfusion.

    PubMed

    Saeed, M; Wendland, M F; Watzinger, N; Akbari, H; Higgins, C B

    2000-06-01

    Cardiovascular imaging requires an appreciation of rapidly evolving MR imaging sequences as well as careful utilization of intravascular, extracellular and intracellular MR contrast media. At the present time, clinical studies are restricted to the use of extracellular MR contrast media. MR imaging has the potential to noninvasively measure multiple parameters of the cardiovascular system in a single imaging session. Recent advances in fast and ultrafast MR imaging have considerably enhanced the capability of this technique, beyond the assessment of left ventricular wall motion and morphology into visualization of the coronary arteries and measurement of blood flow. During the course of the last several years, multiple strategies for imaging viable myocardium have been developed and validated using MR contrast media. Contrast enhanced dynamic MR imaging provides information regarding microvascular integrity and perfusion. Because these information can be provided noninvasively by MR imaging, repeated measurements can be performed in longitudinal studies to monitor the progression or regression of myocardial injury. Similar studies are needed to examine the effects of newly developed cardioprotective therapeutics. Development of suitable intravascular MR contrast medium may be essential for visualization of the coronary arteries and interventional therapies. MR imaging may emerge as one-stop-shop for evaluating the heart and coronary system. This capability will make MR imaging cost-effective in the first decade of this millennium.

  16. Compact and portable X-ray imager system using Medipix3RX

    NASA Astrophysics Data System (ADS)

    Garcia-Nathan, T. B.; Kachatkou, A.; Jiang, C.; Omar, D.; Marchal, J.; Changani, H.; Tartoni, N.; van Silfhout, R. G.

    2017-10-01

    In this paper the design and implementation of a novel portable X-ray imager system is presented. The design features a direct X-ray detection scheme by making use of a hybrid detector (Medipix3RX). Taking advantages of the capabilities of the Medipix3RX, like a high resolution, zero dead-time, single photon detection and charge-sharing mode, the imager has a better resolution and higher sensitivity compared to using traditional indirect detection schemes. A detailed description of the system is presented, which consists of a vacuum chamber containing the sensor, an electronic board for temperature management, conditioning and readout of the sensor and a data processing unit which also handles network connection and allow communication with clients by acting as a server. A field programmable gate array (FPGA) device is used to implement the readout protocol for the Medipix3RX, apart from the readout the FPGA can perform complex image processing functions such as feature extraction, histogram, profiling and image compression at high speeds. The temperature of the sensor is monitored and controlled through a PID algorithm making use of a Peltier cooler, improving the energy resolution and response stability of the sensor. Without implementing data compression techniques, the system is capable of transferring 680 profiles/s or 240 images/s in a continuous mode. Implementation of equalization procedures and tests on colour mode are presented in this paper. For the experimental measurements the Medipix3RX sensor was used with a Silicon layer. One of the tested applications of the system is as an X-ray beam position monitor (XBPM) device for synchrotron applications. The XBPM allows a non-destructive real time measurement of the beam position, size and intensity. A Kapton foil is placed in the beam path scattering radiation towards a pinhole camera setup that allows the sensor to obtain an image of the beam. By using profiles of the synchrotron X-ray beam, high frequency movement of the beam position can be studied, up to 340 Hz. The system is capable of realizing an independent energy measure of the beam by using the Medipix3RX variable energy threshold feature.

  17. A Real-Time Ultraviolet Radiation Imaging System Using an Organic Photoconductive Image Sensor†

    PubMed Central

    Okino, Toru; Yamahira, Seiji; Yamada, Shota; Hirose, Yutaka; Odagawa, Akihiro; Kato, Yoshihisa; Tanaka, Tsuyoshi

    2018-01-01

    We have developed a real time ultraviolet (UV) imaging system that can visualize both invisible UV light and a visible (VIS) background scene in an outdoor environment. As a UV/VIS image sensor, an organic photoconductive film (OPF) imager is employed. The OPF has an intrinsically higher sensitivity in the UV wavelength region than those of conventional consumer Complementary Metal Oxide Semiconductor (CMOS) image sensors (CIS) or Charge Coupled Devices (CCD). As particular examples, imaging of hydrogen flame and of corona discharge is demonstrated. UV images overlapped on background scenes are simply made by on-board background subtraction. The system is capable of imaging weaker UV signals by four orders of magnitude than that of VIS background. It is applicable not only to future hydrogen supply stations but also to other UV/VIS monitor systems requiring UV sensitivity under strong visible radiation environment such as power supply substations. PMID:29361742

  18. Multispectral imaging with vertical silicon nanowires

    PubMed Central

    Park, Hyunsung; Crozier, Kenneth B.

    2013-01-01

    Multispectral imaging is a powerful tool that extends the capabilities of the human eye. However, multispectral imaging systems generally are expensive and bulky, and multiple exposures are needed. Here, we report the demonstration of a compact multispectral imaging system that uses vertical silicon nanowires to realize a filter array. Multiple filter functions covering visible to near-infrared (NIR) wavelengths are simultaneously defined in a single lithography step using a single material (silicon). Nanowires are then etched and embedded into polydimethylsiloxane (PDMS), thereby realizing a device with eight filter functions. By attaching it to a monochrome silicon image sensor, we successfully realize an all-silicon multispectral imaging system. We demonstrate visible and NIR imaging. We show that the latter is highly sensitive to vegetation and furthermore enables imaging through objects opaque to the eye. PMID:23955156

  19. Information processing of earth resources data

    NASA Technical Reports Server (NTRS)

    Zobrist, A. L.; Bryant, N. A.

    1982-01-01

    Current trends in the use of remotely sensed data include integration of multiple data sources of various formats and use of complex models. These trends have placed a strain on information processing systems because an enormous number of capabilities are needed to perform a single application. A solution to this problem is to create a general set of capabilities which can perform a wide variety of applications. General capabilities for the Image-Based Information System (IBIS) are outlined in this report. They are then cross-referenced for a set of applications performed at JPL.

  20. Adaptive guidance and control for future remote sensing systems

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Myers, J. E.

    1980-01-01

    A unique approach to onboard processing was developed that is capable of acquiring high quality image data for users in near real time. The approach is divided into two steps: the development of an onboard cloud detection system; and the development of a landmark tracker. The results of these two developments are outlined and the requirements of an operational guidance and control system capable of providing continuous estimation of the sensor boresight position are summarized.

  1. Large field of view, fast and low dose multimodal phase-contrast imaging at high x-ray energy.

    PubMed

    Astolfo, Alberto; Endrizzi, Marco; Vittoria, Fabio A; Diemoz, Paul C; Price, Benjamin; Haig, Ian; Olivo, Alessandro

    2017-05-19

    X-ray phase contrast imaging (XPCI) is an innovative imaging technique which extends the contrast capabilities of 'conventional' absorption based x-ray systems. However, so far all XPCI implementations have suffered from one or more of the following limitations: low x-ray energies, small field of view (FOV) and long acquisition times. Those limitations relegated XPCI to a 'research-only' technique with an uncertain future in terms of large scale, high impact applications. We recently succeeded in designing, realizing and testing an XPCI system, which achieves significant steps toward simultaneously overcoming these limitations. Our system combines, for the first time, large FOV, high energy and fast scanning. Importantly, it is capable of providing high image quality at low x-ray doses, compatible with or even below those currently used in medical imaging. This extends the use of XPCI to areas which were unpractical or even inaccessible to previous XPCI solutions. We expect this will enable a long overdue translation into application fields such as security screening, industrial inspections and large FOV medical radiography - all with the inherent advantages of the XPCI multimodality.

  2. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers.

    PubMed

    López, Yuri Álvarez; Lorenzo, José Ángel Martínez

    2017-01-15

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated.

  3. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers

    PubMed Central

    Álvarez López, Yuri; Martínez Lorenzo, José Ángel

    2017-01-01

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated. PMID:28098841

  4. A PC-based multispectral scanner data evaluation workstation: Application to Daedalus scanners

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; James, Mark W.; Smith, Matthew R.; Atkinson, Robert J.

    1991-01-01

    In late 1989, a personal computer (PC)-based data evaluation workstation was developed to support post flight processing of Multispectral Atmospheric Mapping Sensor (MAMS) data. The MAMS Quick View System (QVS) is an image analysis and display system designed to provide the capability to evaluate Daedalus scanner data immediately after an aircraft flight. Even in its original form, the QVS offered the portability of a personal computer with the advanced analysis and display features of a mainframe image analysis system. It was recognized, however, that the original QVS had its limitations, both in speed and processing of MAMS data. Recent efforts are presented that focus on overcoming earlier limitations and adapting the system to a new data tape structure. In doing so, the enhanced Quick View System (QVS2) will accommodate data from any of the four spectrometers used with the Daedalus scanner on the NASA ER2 platform. The QVS2 is designed around the AST 486/33 MHz CPU personal computer and comes with 10 EISA expansion slots, keyboard, and 4.0 mbytes of memory. Specialized PC-McIDAS software provides the main image analysis and display capability for the system. Image analysis and display of the digital scanner data is accomplished with PC-McIDAS software.

  5. Algorithms for High-Speed Noninvasive Eye-Tracking System

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Morookian, John-Michael; Lambert, James

    2010-01-01

    Two image-data-processing algorithms are essential to the successful operation of a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. The system was described in High-Speed Noninvasive Eye-Tracking System (NPO-30700) NASA Tech Briefs, Vol. 31, No. 8 (August 2007), page 51. To recapitulate from the cited article: Like prior commercial noninvasive eyetracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Most of the prior commercial noninvasive eyetracking systems rely on standard video cameras, which operate at frame rates of about 30 Hz. Such systems are limited to slow, full-frame operation. The video camera in the present system includes a charge-coupled-device (CCD) image detector plus electronic circuitry capable of implementing an advanced control scheme that effects readout from a small region of interest (ROI), or subwindow, of the full image. Inasmuch as the image features of interest (the cornea and pupil) typically occupy a small part of the camera frame, this ROI capability can be exploited to determine the direction of gaze at a high frame rate by reading out from the ROI that contains the cornea and pupil (but not from the rest of the image) repeatedly. One of the present algorithms exploits the ROI capability. The algorithm takes horizontal row slices and takes advantage of the symmetry of the pupil and cornea circles and of the gray-scale contrasts of the pupil and cornea with respect to other parts of the eye. The algorithm determines which horizontal image slices contain the pupil and cornea, and, on each valid slice, the end coordinates of the pupil and cornea. Information from multiple slices is then combined to robustly locate the centroids of the pupil and cornea images. The other of the two present algorithms is a modified version of an older algorithm for estimating the direction of gaze from the centroids of the pupil and cornea. The modification lies in the use of the coordinates of the centroids, rather than differences between the coordinates of the centroids, in a gaze-mapping equation. The equation locates a gaze point, defined as the intersection of the gaze axis with a surface of interest, which is typically a computer display screen (see figure). The expected advantage of the modification is to make the gaze computation less dependent on some simplifying assumptions that are sometimes not accurate

  6. High-fidelity video and still-image communication based on spectral information: natural vision system and its applications

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masahiro; Haneishi, Hideaki; Fukuda, Hiroyuki; Kishimoto, Junko; Kanazawa, Hiroshi; Tsuchida, Masaru; Iwama, Ryo; Ohyama, Nagaaki

    2006-01-01

    In addition to the great advancement of high-resolution and large-screen imaging technology, the issue of color is now receiving considerable attention as another aspect than the image resolution. It is difficult to reproduce the original color of subject in conventional imaging systems, and that obstructs the applications of visual communication systems in telemedicine, electronic commerce, and digital museum. To breakthrough the limitation of conventional RGB 3-primary systems, "Natural Vision" project aims at an innovative video and still-image communication technology with high-fidelity color reproduction capability, based on spectral information. This paper summarizes the results of NV project including the development of multispectral and multiprimary imaging technologies and the experimental investigations on the applications to medicine, digital archives, electronic commerce, and computer graphics.

  7. Ultrashort electron pulses as a four-dimensional diagnosis of plasma dynamics.

    PubMed

    Zhu, P F; Zhang, Z C; Chen, L; Li, R Z; Li, J J; Wang, X; Cao, J M; Sheng, Z M; Zhang, J

    2010-10-01

    We report an ultrafast electron imaging system for real-time examination of ultrafast plasma dynamics in four dimensions. It consists of a femtosecond pulsed electron gun and a two-dimensional single electron detector. The device has an unprecedented capability of acquiring a high-quality shadowgraph image with a single ultrashort electron pulse, thus permitting the measurement of irreversible processes using a single-shot scheme. In a prototype experiment of laser-induced plasma of a metal target under moderate pump intensity, we demonstrated its unique capability of acquiring high-quality shadowgraph images on a micron scale with a-few-picosecond time resolution.

  8. A cost-efficient frequency-domain photoacoustic imaging system

    PubMed Central

    LeBoulluec, Peter; Liu, Hanli; Yuan, Baohong

    2013-01-01

    Photoacoustic (PA) imaging techniques have recently attracted much attention and can be used for noninvasive imaging of biological tissues. Most PA imaging systems in research laboratories use the time domain method with expensive nanosecond pulsed lasers that are not affordable for most educational laboratories. Using an intensity modulated light source to excite PA signals is an alternative technique, known as the frequency domain method, with a much lower cost. In this paper, we describe a simple frequency domain PA system and demonstrate its imaging capability. The system provides opportunities not only to observe PA signals in tissue phantoms, but also to acquire hands-on skills in PA signal detection. It also provides opportunities to explore the underlying mechanisms of the PA effect. PMID:24659823

  9. A cost-efficient frequency-domain photoacoustic imaging system.

    PubMed

    Leboulluec, Peter; Liu, Hanli; Yuan, Baohong

    2013-09-01

    Photoacoustic (PA) imaging techniques have recently attracted much attention and can be used for noninvasive imaging of biological tissues. Most PA imaging systems in research laboratories use the time domain method with expensive nanosecond pulsed lasers that are not affordable for most educational laboratories. Using an intensity modulated light source to excite PA signals is an alternative technique, known as the frequency domain method, with a much lower cost. In this paper, we describe a simple frequency domain PA system and demonstrate its imaging capability. The system provides opportunities not only to observe PA signals in tissue phantoms, but also to acquire hands-on skills in PA signal detection. It also provides opportunities to explore the underlying mechanisms of the PA effect.

  10. Intelligent web image retrieval system

    NASA Astrophysics Data System (ADS)

    Hong, Sungyong; Lee, Chungwoo; Nah, Yunmook

    2001-07-01

    Recently, the web sites such as e-business sites and shopping mall sites deal with lots of image information. To find a specific image from these image sources, we usually use web search engines or image database engines which rely on keyword only retrievals or color based retrievals with limited search capabilities. This paper presents an intelligent web image retrieval system. We propose the system architecture, the texture and color based image classification and indexing techniques, and representation schemes of user usage patterns. The query can be given by providing keywords, by selecting one or more sample texture patterns, by assigning color values within positional color blocks, or by combining some or all of these factors. The system keeps track of user's preferences by generating user query logs and automatically add more search information to subsequent user queries. To show the usefulness of the proposed system, some experimental results showing recall and precision are also explained.

  11. Performance of the SIR-B digital image processing subsystem

    NASA Technical Reports Server (NTRS)

    Curlander, J. C.

    1986-01-01

    A ground-based system to generate digital SAR image products has been developed and implemented in support of the SIR-B mission. This system is designed to achieve the maximum throughput while meeting strict image fidelity criteria. Its capabilities include: automated radiometric and geometric correction of the output imagery; high-precision absolute location without tiepoint registration; filtering of the raw data to remove spurious signals from alien radars; and automated catologing to maintain a full set of radar and image production facility in support of the SIR-B science investigators routinely produces over 80 image frames per week.

  12. BATSE imaging survey of the Galactic plane

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Barret, D.; Bloser, P. F.; Zhang, S. N.; Robinson, C.; Harmon, B. A.

    1997-01-01

    The burst and transient source experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO) provides all sky monitoring capability, occultation analysis and occultation imaging which enables new and fainter sources to be searched for in relatively crowded fields. The occultation imaging technique is used in combination with an automated BATSE image scanner, allowing an analysis of large data sets of occultation images for detections of candidate sources and for the construction of source catalogs and data bases. This automated image scanner system is being tested on archival data in order to optimize the search and detection thresholds. The image search system, its calibration results and preliminary survey results on archival data are reported on. The aim of the survey is to identify a complete sample of black hole candidates in the galaxy and constrain the number of black hole systems and neutron star systems.

  13. Eliminating chromatic aberration of lens and recognition of thermal images with artificial intelligence applications

    NASA Astrophysics Data System (ADS)

    Fang, Yi-Chin; Wu, Bo-Wen; Lin, Wei-Tang; Jon, Jen-Liung

    2007-11-01

    Resolution and color are two main directions for measuring optical digital image, but it will be a hard work to integral improve the image quality of optical system, because there are many limits such as size, materials and environment of optical system design. Therefore, it is important to let blurred images as aberrations and noises or due to the characteristics of human vision as far distance and small targets to raise the capability of image recognition with artificial intelligence such as genetic algorithm and neural network in the condition that decreasing color aberration of optical system and not to increase complex calculation in the image processes. This study could achieve the goal of integral, economically and effectively to improve recognition and classification in low quality image from optical system and environment.

  14. Method and apparatus for eliminating coherent noise in a coherent energy imaging system without destroying spatial coherence

    NASA Technical Reports Server (NTRS)

    Shulman, A. R. (Inventor)

    1971-01-01

    A method and apparatus for substantially eliminating noise in a coherent energy imaging system, and specifically in a light imaging system of the type having a coherent light source and at least one image lens disposed between an input signal plane and an output image plane are, discussed. The input signal plane is illuminated with the light source by rotating the lens about its optical axis. In this manner, the energy density of coherent noise diffraction patterns as produced by imperfections such as dust and/or bubbles on and/or in the lens is distributed over a ring-shaped area of the output image plane and reduced to a point wherein it can be ignored. The spatial filtering capability of the coherent imaging system is not affected by this noise elimination technique.

  15. A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.

    PubMed

    Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H

    2016-06-01

    Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.

  16. Radiography by selective detection of scatter field velocity components

    NASA Technical Reports Server (NTRS)

    Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor); Shedlock, Daniel (Inventor)

    2007-01-01

    A reconfigurable collimated radiation detector, system and related method includes at least one collimated radiation detector. The detector has an adjustable collimator assembly including at least one feature, such as a fin, optically coupled thereto. Adjustments to the adjustable collimator selects particular directions of travel of scattered radiation emitted from an irradiated object which reach the detector. The collimated detector is preferably a collimated detector array, where the collimators are independently adjustable. The independent motion capability provides the capability to focus the image by selection of the desired scatter field components. When an array of reconfigurable collimated detectors is provided, separate image data can be obtained from each of the detectors and the respective images cross-correlated and combined to form an enhanced image.

  17. Quantum dot tailored to single wall carbon nanotubes: a multifunctional hybrid nanoconstruct for cellular imaging and targeted photothermal therapy.

    PubMed

    Nair, Lakshmi V; Nagaoka, Yutaka; Maekawa, Toru; Sakthikumar, D; Jayasree, Ramapurath S

    2014-07-23

    Hybrid nanomaterial based on quantum dots and SWCNTs is used for cellular imaging and photothermal therapy. Furthermore, the ligand conjugated hybrid system (FaQd@CNT) enables selective targeting in cancer cells. The imaging capability of quantum dots and the therapeutic potential of SWCNT are available in a single system with cancer targeting property. Heat generated by the system is found to be high enough to destroy cancer cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Design and calibration of a vacuum compatible scanning tunneling microscope

    NASA Technical Reports Server (NTRS)

    Abel, Phillip B.

    1990-01-01

    A vacuum compatible scanning tunneling microscope was designed and built, capable of imaging solid surfaces with atomic resolution. The single piezoelectric tube design is compact, and makes use of sample mounting stubs standard to a commercially available surface analysis system. Image collection and display is computer controlled, allowing storage of images for further analysis. Calibration results from atomic scale images are presented.

  19. Adaptive optics ophthalmoscopy.

    PubMed

    Roorda, Austin; Duncan, Jacque L

    2015-11-01

    This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and an extensive review of the literature on where AO is being used clinically. The review concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye.

  20. Polarimetric Hyperspectral Imaging Systems and Applications

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Mahoney, Colin; Reyes, George; Baw, Clayton La; Li, G. P.

    1996-01-01

    This paper reports activities in the development of AOTF Polarimetric Hyperspectral Imaging (PHI) Systems at JPL along with field observation results for illustrating the technology capabilities and advantages in remote sensing. In addition, the technology was also used to measure thickness distribution and structural imperfections of silicon-on-silicon wafers using white light interference phenomenon for demonstrating the potential in scientific and industrial applications.

  1. Tagged Neutron Source for API Inspection Systems with Greatly Enhanced Spatial Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-06-04

    We recently developed induced fission and transmission imaging methods with time- and directionally-tagged neutrons offer new capabilities for characterization of fissile material configurations and enhanced detection of special nuclear materials (SNM). An Advanced Associated Particle Imaging (API) generator with higher angular resolution and neutron yield than existing systems is needed to fully exploit these methods.

  2. Passive millimeter-wave imaging polarimeter system

    NASA Astrophysics Data System (ADS)

    Persons, Christopher M.; Martin, Christopher A.; Jones, Michael W.; Kolinko, Vladimir; Lovberg, John A.

    2009-05-01

    The Army has identified a need to rapidly identify, map, and classify natural and manmade features to aid situational awareness as well as mission and tactical planning. To address these needs, Digital Fusion and Trex Enterprises have designed a full Stokes, passive MMW imaging polarimeter that is capable of being deployed on an unmanned aerial vehicle. Results of a detailed trade study are presented, where an architecture, waveband and target platform are selected. The selected architecture is a pushbroom phased-array system, which allows the system to collect a wide fieldof- view image with minimal components and weight. W band is chosen as a trade-off between spatial resolution, weather penetration, and component availability. The trade study considers several unmanned aerial system (UAS) platforms that are capable of low-level flight and that can support the MMW antenna. The utility of the passive Stokes imager is demonstrated through W band phenomenology data collections at horizontal and vertical polarization using a variety of natural and manmade materials. The concept design is detailed, along with hardware and procedures for both radiometric and polarimetric calibration. Finally, a scaled version of the concept design is presented, which is being fabricated for an upcoming demonstration on a small, manned aircraft.

  3. Burn depth determination using high-speed polarization-sensitive Mueller optical coherence tomography with continuous polarization modulation

    NASA Astrophysics Data System (ADS)

    Todorović, Miloš; Ai, Jun; Pereda Cubian, David; Stoica, George; Wang, Lihong

    2006-02-01

    National Health Interview Survey (NHIS) estimates more than 1.1 million burn injuries per year in the United States, with nearly 15,000 fatalities from wounds and related complications. An imaging modality capable of evaluating burn depths non-invasively is the polarization-sensitive optical coherence tomography. We report on the use of a high-speed, fiber-based Mueller-matrix OCT system with continuous source-polarization modulation for burn depth evaluation. The new system is capable of imaging at near video-quality frame rates (8 frames per second) with resolution of 10 μm in biological tissue (index of refraction: 1.4) and sensitivity of 78 dB. The sample arm optics is integrated in a hand-held probe simplifying the in vivo experiments. The applicability of the system for burn depth determination is demonstrated using biological samples of porcine tendon and porcine skin. The results show an improved imaging depth (1 mm in tendon) and a clear localization of the thermally damaged region. The burnt area determined from OCT images compares well with the histology, thus proving the system's potential for burn depth determination.

  4. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    NASA Technical Reports Server (NTRS)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and aquatic organics.

  5. NASA's Solar System Treks Image Mosaic Pipeline

    NASA Astrophysics Data System (ADS)

    Trautman, M. R.; Malhotra, S.; Nainan, C.; Kim, R. M.; Bui, B. X.; Sadaqathullah, S.; Sharma, P.; Gallegos, N.; Law, E. S.; Day, B. H.

    2018-06-01

    This study details the efforts of the NASA Solar System Treks project to design a framework for automated systems capable of producing quality mosaics from high resolution orbital imagery. The primary focus is on NAC, CTX, and HiRISE imagery.

  6. Cell phones as imaging sensors

    NASA Astrophysics Data System (ADS)

    Bhatti, Nina; Baker, Harlyn; Marguier, Joanna; Berclaz, Jérôme; Süsstrunk, Sabine

    2010-04-01

    Camera phones are ubiquitous, and consumers have been adopting them faster than any other technology in modern history. When connected to a network, though, they are capable of more than just picture taking: Suddenly, they gain access to the power of the cloud. We exploit this capability by providing a series of image-based personal advisory services. These are designed to work with any handset over any cellular carrier using commonly available Multimedia Messaging Service (MMS) and Short Message Service (SMS) features. Targeted at the unsophisticated consumer, these applications must be quick and easy to use, not requiring download capabilities or preplanning. Thus, all application processing occurs in the back-end system (i.e., as a cloud service) and not on the handset itself. Presenting an image to an advisory service in the cloud, a user receives information that can be acted upon immediately. Two of our examples involve color assessment - selecting cosmetics and home décor paint palettes; the third provides the ability to extract text from a scene. In the case of the color imaging applications, we have shown that our service rivals the advice quality of experts. The result of this capability is a new paradigm for mobile interactions - image-based information services exploiting the ubiquity of camera phones.

  7. Development of high definition OCT system for clinical therapy of skin diseases

    NASA Astrophysics Data System (ADS)

    Baek, Daeyul; Seo, Young-Seok; Kim, Jung-Hyun

    2018-02-01

    OCT is a non-invasive imaging technique that can be applied to diagnose various skin disease. Since its introduction in 1997, dermatology has used OCT technology to obtain high quality images of human skin. Recently, in order to accurately diagnose skin diseases, it is essential to develop OCT equipment that can obtain high quality images. Therefore, we developed the system that can obtain a high quality image by using a 1300 nm light source with a wide bandwidth and deep penetration depth, high-resolution image, and a camera capable of high sensitivity and high speed processing. We introduce the performance of the developed system and the clinical application data.

  8. Biomedical imaging with THz waves

    NASA Astrophysics Data System (ADS)

    Nguyen, Andrew

    2010-03-01

    We discuss biomedical imaging using radio waves operating in the terahertz (THz) range between 300 GHz to 3 THz. Particularly, we present the concept for two THz imaging systems. One system employs single antenna, transmitter and receiver operating over multi-THz-frequency simultaneously for sensing and imaging small areas of the human body or biological samples. Another system consists of multiple antennas, a transmitter, and multiple receivers operating over multi-THz-frequency capable of sensing and imaging simultaneously the whole body or large biological samples. Using THz waves for biomedical imaging promises unique and substantial medical benefits including extremely small medical devices, extraordinarily fine spatial resolution, and excellent contrast between images of diseased and healthy tissues. THz imaging is extremely attractive for detection of cancer in the early stages, sensing and imaging of tissues near the skin, and study of disease and its growth versus time.

  9. pyBSM: A Python package for modeling imaging systems

    NASA Astrophysics Data System (ADS)

    LeMaster, Daniel A.; Eismann, Michael T.

    2017-05-01

    There are components that are common to all electro-optical and infrared imaging system performance models. The purpose of the Python Based Sensor Model (pyBSM) is to provide open source access to these functions for other researchers to build upon. Specifically, pyBSM implements much of the capability found in the ERIM Image Based Sensor Model (IBSM) V2.0 along with some improvements. The paper also includes two use-case examples. First, performance of an airborne imaging system is modeled using the General Image Quality Equation (GIQE). The results are then decomposed into factors affecting noise and resolution. Second, pyBSM is paired with openCV to evaluate performance of an algorithm used to detect objects in an image.

  10. Compact Microscope Imaging System with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    The figure presents selected views of a compact microscope imaging system (CMIS) that includes a miniature video microscope, a Cartesian robot (a computer- controlled three-dimensional translation stage), and machine-vision and control subsystems. The CMIS was built from commercial off-the-shelf instrumentation, computer hardware and software, and custom machine-vision software. The machine-vision and control subsystems include adaptive neural networks that afford a measure of artificial intelligence. The CMIS can perform several automated tasks with accuracy and repeatability . tasks that, heretofore, have required the full attention of human technicians using relatively bulky conventional microscopes. In addition, the automation and control capabilities of the system inherently include a capability for remote control. Unlike human technicians, the CMIS is not at risk of becoming fatigued or distracted: theoretically, it can perform continuously at the level of the best human technicians. In its capabilities for remote control and for relieving human technicians of tedious routine tasks, the CMIS is expected to be especially useful in biomedical research, materials science, inspection of parts on industrial production lines, and space science. The CMIS can automatically focus on and scan a microscope sample, find areas of interest, record the resulting images, and analyze images from multiple samples simultaneously. Automatic focusing is an iterative process: The translation stage is used to move the microscope along its optical axis in a succession of coarse, medium, and fine steps. A fast Fourier transform (FFT) of the image is computed at each step, and the FFT is analyzed for its spatial-frequency content. The microscope position that results in the greatest dispersal of FFT content toward high spatial frequencies (indicating that the image shows the greatest amount of detail) is deemed to be the focal position.

  11. Image selection system. [computerized data storage and retrieval system

    NASA Technical Reports Server (NTRS)

    Knutson, M. A.; Hurd, D.; Hubble, L.; Kroeck, R. M.

    1974-01-01

    An image selection (ISS) was developed for the NASA-Ames Research Center Earth Resources Aircraft Project. The ISS is an interactive, graphics oriented, computer retrieval system for aerial imagery. An analysis of user coverage requests and retrieval strategies is presented, followed by a complete system description. Data base structure, retrieval processors, command language, interactive display options, file structures, and the system's capability to manage sets of selected imagery are described. A detailed example of an area coverage request is graphically presented.

  12. Surgical guidance system using hand-held probe with accompanying positron coincidence detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Stanislaw; Weisenberger, Andrew G.

    A surgical guidance system offering different levels of imaging capability while maintaining the same hand-held convenient small size of light-weight intra-operative probes. The surgical guidance system includes a second detector, typically an imager, located behind the area of surgical interest to form a coincidence guidance system with the hand-held probe. This approach is focused on the detection of positron emitting biomarkers with gamma rays accompanying positron emissions from the radiolabeled nuclei.

  13. PACS and teleradiology for on-call support of abdominal imaging

    NASA Astrophysics Data System (ADS)

    Horii, Steven C.; Garra, Brian S.; Mun, Seong K.; Zeman, Robert K.; Levine, Betty A.; Fielding, Robert

    1991-07-01

    One aspect of the Georgetown image management and communications system (IMACS or PACS) is a built-in capability to support teleradiology. Unlike many dedicated teleradiology systems, the support of this capability as a part of PACS means that any acquired images are remotely accessible, not just those specifically input for transmission. Over the past one and one-half years, two radiologists (SCH, BSG) in the abdominal imaging division of the department of radiology have been accumulating experience with teleradiology for on-call support of emergency abdominal imaging, chiefly in ultrasound. As of the time of this writing, use of the system during on-call (one of these attending radiologists primarily responsible) or back-up call (the attending responsible for the Fellow on primary call) has resulted in a marked reduction in the number of times one of them has to drive to the hospital at night or over the weekend. Approximately 80% of the time, use of the teleradiology system obviates having to go in to review a case. The remainder of the time, the radiologist has to perform a procedure (e.g., abscess drainage) or a scan (e.g., complex Doppler study) himself. This paper reviews the system used for teleradiology, how it is electronically and operationally integrated with the PACS, the clinical benefits and disadvantages of this use, and radiologist and referring physician acceptance.

  14. Compact Microscope Imaging System Developed

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2001-01-01

    The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.

  15. Human perception testing methodology for evaluating EO/IR imaging systems

    NASA Astrophysics Data System (ADS)

    Graybeal, John J.; Monfort, Samuel S.; Du Bosq, Todd W.; Familoni, Babajide O.

    2018-04-01

    The U.S. Army's RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) Perception Lab is tasked with supporting the development of sensor systems for the U.S. Army by evaluating human performance of emerging technologies. Typical research questions involve detection, recognition and identification as a function of range, blur, noise, spectral band, image processing techniques, image characteristics, and human factors. NVESD's Perception Lab provides an essential bridge between the physics of the imaging systems and the performance of the human operator. In addition to quantifying sensor performance, perception test results can also be used to generate models of human performance and to drive future sensor requirements. The Perception Lab seeks to develop and employ scientifically valid and efficient perception testing procedures within the practical constraints of Army research, including rapid development timelines for critical technologies, unique guidelines for ethical testing of Army personnel, and limited resources. The purpose of this paper is to describe NVESD Perception Lab capabilities, recent methodological improvements designed to align our methodology more closely with scientific best practice, and to discuss goals for future improvements and expanded capabilities. Specifically, we discuss modifying our methodology to improve training, to account for human fatigue, to improve assessments of human performance, and to increase experimental design consultation provided by research psychologists. Ultimately, this paper outlines a template for assessing human perception and overall system performance related to EO/IR imaging systems.

  16. Development of Dynamic Spatial Video Camera (DSVC) for 4D observation, analysis and modeling of human body locomotion.

    PubMed

    Suzuki, Naoki; Hattori, Asaki; Hayashibe, Mitsuhiro; Suzuki, Shigeyuki; Otake, Yoshito

    2003-01-01

    We have developed an imaging system for free and quantitative observation of human locomotion in a time-spatial domain by way of real time imaging. The system is equipped with 60 computer controlled video cameras to film human locomotion from all angles simultaneously. Images are installed into the main graphic workstation and translated into a 2D image matrix. Observation of the subject from optional directions is able to be performed by selecting the view point from the optimum image sequence in this image matrix. This system also possesses a function to reconstruct 4D models of the subject's moving human body by using 60 images taken from all directions at one particular time. And this system also has the capability to visualize inner structures such as the skeletal or muscular systems of the subject by compositing computer graphics reconstructed from the MRI data set. We are planning to apply this imaging system to clinical observation in the area of orthopedics, rehabilitation and sports science.

  17. Real-time Implementation of a Dual-Mode Ultrasound Array System: In Vivo Results

    PubMed Central

    Casper, Andrew J.; Liu, Dalong; Ballard, John R.; Ebbini, Emad S.

    2013-01-01

    A real-time dual-mode ultrasound array (DMUA) system for imaging and therapy is described. The system utilizes a concave (40-mm radius of curvature) 3.5 MHz, 32 element array and modular multi-channel transmitter/receiver. It is capable of operating in a variety of imaging and therapy modes (on transmit) and continuous receive on all array elements even during high-power operation. A signal chain consisting of field-programmable gate arrays (FPGA) and graphical processing units (GPU) is used to enable real-time, software-defined beamforming and image formation. Imaging data, from quality assurance phantoms as well as in vivo small and large animal models, are presented and discussed. Corresponding images obtained using a temporally-synchronized and spatially-aligned diagnostic probe confirm the DMUA’s ability to form anatomically-correct images with sufficient contrast in an extended field of view (FOV) around its geometric center. In addition, high frame rate DMUA data also demonstrate the feasibility of detection and localization of echo changes indicative of cavitation and/or tissue boiling during HIFU exposures with 45 – 50 dB dynamic range. The results also show that the axial and lateral resolution of the DMUA are consistent with its fnumber and bandwidth with well behaved speckle cell characteristics. These results point the way to a theranostic DMUA system capable of quantitative imaging of tissue property changes with high specificity to lesion formation using focused ultrasound. PMID:23708766

  18. Implementation of image transmission server system using embedded Linux

    NASA Astrophysics Data System (ADS)

    Park, Jong-Hyun; Jung, Yeon Sung; Nam, Boo Hee

    2005-12-01

    In this paper, we performed the implementation of image transmission server system using embedded system that is for the specified object and easy to install and move. Since the embedded system has lower capability than the PC, we have to reduce the quantity of calculation of the baseline JPEG image compression and transmission. We used the Redhat Linux 9.0 OS at the host PC and the target board based on embedded Linux. The image sequences are obtained from the camera attached to the FPGA (Field Programmable Gate Array) board with ALTERA cooperation chip. For effectiveness and avoiding some constraints from the vendor's own, we made the device driver using kernel module.

  19. Muon trackers for imaging a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  20. Semi-Automated Identification of Rocks in Images

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin; Castano, Andres; Anderson, Robert

    2006-01-01

    Rock Identification Toolkit Suite is a computer program that assists users in identifying and characterizing rocks shown in images returned by the Mars Explorer Rover mission. Included in the program are components for automated finding of rocks, interactive adjustments of outlines of rocks, active contouring of rocks, and automated analysis of shapes in two dimensions. The program assists users in evaluating the surface properties of rocks and soil and reports basic properties of rocks. The program requires either the Mac OS X operating system running on a G4 (or more capable) processor or a Linux operating system running on a Pentium (or more capable) processor, plus at least 128MB of random-access memory.

  1. Applications of virtual reality technology in pathology.

    PubMed

    Grimes, G J; McClellan, S A; Goldman, J; Vaughn, G L; Conner, D A; Kujawski, E; McDonald, J; Winokur, T; Fleming, W

    1997-01-01

    TelePath(SM) a telerobotic system utilizing virtual microscope concepts based on high quality still digital imaging and aimed at real-time support for surgery by remote diagnosis of frozen sections. Many hospitals and clinics have an application for the remote practice of pathology, particularly in the area of reading frozen sections in support of surgery, commonly called anatomic pathology. The goal is to project the expertise of the pathologist into the remote setting by giving the pathologist access to the microscope slides with an image quality and human interface comparable to what the pathologist would experience at a real rather than a virtual microscope. A working prototype of a virtual microscope has been defined and constructed which has the needed performance in both the image quality and human interface areas for a pathologist to work remotely. This is accomplished through the use of telerobotics and an image quality which provides the virtual microscope the same diagnostic capabilities as a real microscope. The examination of frozen sections is performed a two-dimensional world. The remote pathologist is in a virtual world with the same capabilities as a "real" microscope, but response times may be slower depending on the specific computing and telecommunication environments. The TelePath system has capabilities far beyond a normal biological microscope, such as the ability to create a low power image of the entire sample using multiple images digitally matched together; the ability to digitally retrace a viewing trajectory; and the ability to archive images using CD ROM and other mass storage devices.

  2. Real-Time Interactive Facilities Associated With A 3-D Medical Workstation

    NASA Astrophysics Data System (ADS)

    Goldwasser, S. M.; Reynolds, R. A.; Talton, D.; Walsh, E.

    1986-06-01

    Biomedical workstations of the future will incorporate three-dimensional interactive capabilities which provide real-time response to most common operator requests. Such systems will find application in many areas of medicine including clinical diagnosis, surgical and radiation therapy planning, biomedical research based on functional imaging, and medical education. This paper considers the requirements of these future systems in terms of image quality, performance, and the interactive environment, and examines the relationship of workstation capabilities to specific medical applications. We describe a prototype physician's workstation that we have designed and built to meet many of these requirements (using conventional graphics technology in conjunction with a custom real-time 3-D processor), and give an account of the remaining issues and challenges that future designers of such systems will have to address.

  3. Terahertz imaging with compressed sensing and phase retrieval.

    PubMed

    Chan, Wai Lam; Moravec, Matthew L; Baraniuk, Richard G; Mittleman, Daniel M

    2008-05-01

    We describe a novel, high-speed pulsed terahertz (THz) Fourier imaging system based on compressed sensing (CS), a new signal processing theory, which allows image reconstruction with fewer samples than traditionally required. Using CS, we successfully reconstruct a 64 x 64 image of an object with pixel size 1.4 mm using a randomly chosen subset of the 4096 pixels, which defines the image in the Fourier plane, and observe improved reconstruction quality when we apply phase correction. For our chosen image, only about 12% of the pixels are required for reassembling the image. In combination with phase retrieval, our system has the capability to reconstruct images with only a small subset of Fourier amplitude measurements and thus has potential application in THz imaging with cw sources.

  4. Note: An improved 3D imaging system for electron-electron coincidence measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip

    We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.

  5. A low-cost photoacoustic microscopy system with a laser diode excitation

    PubMed Central

    Wang, Tianheng; Nandy, Sreyankar; Salehi, Hassan S.; Kumavor, Patrick D.; Zhu, Quing

    2014-01-01

    Photoacoustic microscopy (PAM) is capable of mapping microvasculature networks in biological tissue and has demonstrated great potential for biomedical applications. However, the clinical application of the PAM system is limited due to the use of bulky and expensive pulsed laser sources. In this paper, a low-cost optical-resolution PAM system with a pulsed laser diode excitation has been introduced. The lateral resolution of this PAM system was estimated to be 7 µm by imaging a carbon fiber. The phantoms made of polyethylene tubes filled with blood and a mouse ear were imaged to demonstrate the feasibility of this PAM system for imaging biological tissues. PMID:25401019

  6. Note: An improved 3D imaging system for electron-electron coincidence measurements

    NASA Astrophysics Data System (ADS)

    Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Herath, Thushani; Lingenfelter, Steven; Winney, Alexander H.; Li, Wen

    2015-09-01

    We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.

  7. Portable Fluorescence Imaging System for Hypersonic Flow Facilities

    NASA Technical Reports Server (NTRS)

    Wilkes, J. A.; Alderfer, D. W.; Jones, S. B.; Danehy, P. M.

    2003-01-01

    A portable fluorescence imaging system has been developed for use in NASA Langley s hypersonic wind tunnels. The system has been applied to a small-scale free jet flow. Two-dimensional images were taken of the flow out of a nozzle into a low-pressure test section using the portable planar laser-induced fluorescence system. Images were taken from the center of the jet at various test section pressures, showing the formation of a barrel shock at low pressures, transitioning to a turbulent jet at high pressures. A spanwise scan through the jet at constant pressure reveals the three-dimensional structure of the flow. Future capabilities of the system for making measurements in large-scale hypersonic wind tunnel facilities are discussed.

  8. Imaging live cells at high spatiotemporal resolution for lab-on-a-chip applications.

    PubMed

    Chin, Lip Ket; Lee, Chau-Hwang; Chen, Bi-Chang

    2016-05-24

    Conventional optical imaging techniques are limited by the diffraction limit and difficult-to-image biomolecular and sub-cellular processes in living specimens. Novel optical imaging techniques are constantly evolving with the desire to innovate an imaging tool that is capable of seeing sub-cellular processes in a biological system, especially in three dimensions (3D) over time, i.e. 4D imaging. For fluorescence imaging on live cells, the trade-offs among imaging depth, spatial resolution, temporal resolution and photo-damage are constrained based on the limited photons of the emitters. The fundamental solution to solve this dilemma is to enlarge the photon bank such as the development of photostable and bright fluorophores, leading to the innovation in optical imaging techniques such as super-resolution microscopy and light sheet microscopy. With the synergy of microfluidic technology that is capable of manipulating biological cells and controlling their microenvironments to mimic in vivo physiological environments, studies of sub-cellular processes in various biological systems can be simplified and investigated systematically. In this review, we provide an overview of current state-of-the-art super-resolution and 3D live cell imaging techniques and their lab-on-a-chip applications, and finally discuss future research trends in new and breakthrough research areas of live specimen 4D imaging in controlled 3D microenvironments.

  9. A Vision of Quantitative Imaging Technology for Validation of Advanced Flight Technologies

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Kerns, Robert V.; Jones, Kenneth M.; Grinstead, Jay H.; Schwartz, Richard J.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Dantowitz, Ronald F.

    2011-01-01

    Flight-testing is traditionally an expensive but critical element in the development and ultimate validation and certification of technologies destined for future operational capabilities. Measurements obtained in relevant flight environments also provide unique opportunities to observe flow phenomenon that are often beyond the capabilities of ground testing facilities and computational tools to simulate or duplicate. However, the challenges of minimizing vehicle weight and internal complexity as well as instrumentation bandwidth limitations often restrict the ability to make high-density, in-situ measurements with discrete sensors. Remote imaging offers a potential opportunity to noninvasively obtain such flight data in a complementary fashion. The NASA Hypersonic Thermodynamic Infrared Measurements Project has demonstrated such a capability to obtain calibrated thermal imagery on a hypersonic vehicle in flight. Through the application of existing and accessible technologies, the acreage surface temperature of the Shuttle lower surface was measured during reentry. Future hypersonic cruise vehicles, launcher configurations and reentry vehicles will, however, challenge current remote imaging capability. As NASA embarks on the design and deployment of a new Space Launch System architecture for access beyond earth orbit (and the commercial sector focused on low earth orbit), an opportunity exists to implement an imagery system and its supporting infrastructure that provides sufficient flexibility to incorporate changing technology to address the future needs of the flight test community. A long term vision is offered that supports the application of advanced multi-waveband sensing technology to aid in the development of future aerospace systems and critical technologies to enable highly responsive vehicle operations across the aerospace continuum, spanning launch, reusable space access and global reach. Motivations for development of an Agency level imagery-based measurement capability to support cross cutting applications that span the Agency mission directorates as well as meeting potential needs of the commercial sector and national interests of the Intelligence, Surveillance and Reconnaissance community are explored. A recommendation is made for an assessment study to baseline current imaging technology including the identification of future mission requirements. Development of requirements fostered by the applications suggested in this paper would be used to identify technology gaps and direct roadmapping for implementation of an affordable and sustainable next generation sensor/platform system.

  10. Video Guidance, Landing, and Imaging system (VGLIS) for space missions

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Knickerbocker, R. L.; Tietz, J. C.; Grant, C.; Flemming, J. C.

    1975-01-01

    The feasibility of an autonomous video guidance system that is capable of observing a planetary surface during terminal descent and selecting the most acceptable landing site was demonstrated. The system was breadboarded and "flown" on a physical simulator consisting of a control panel and monitor, a dynamic simulator, and a PDP-9 computer. The breadboard VGLIS consisted of an image dissector camera and the appropriate processing logic. Results are reported.

  11. Analysis of the development of missile-borne IR imaging detecting technologies

    NASA Astrophysics Data System (ADS)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key technologies and its development trends of missiles' IR imaging detecting technologies are analyzed.

  12. Interpreting forest and grassland biome productivity utilizing nested scales of image resolution and biogeographical analysis

    NASA Technical Reports Server (NTRS)

    Iverson, L. R.; Olson, J. S.; Risser, P. G.; Treworgy, C.; Frank, T.; Cook, E.; Ke, Y.

    1986-01-01

    Data acquisition, initial site characterization, image and geographic information methods available, and brief evaluations of first-year for NASA's Thematic Mapper (TM) working group are presented. The TM and other spectral data are examined in order to relate local, intensive ecosystem research findings to estimates of carbon cycling rates over wide geographic regions. The effort is to span environments ranging from dry to moist climates and from good to poor site quality using the TM capability, with and without the inclusion of geographic information system (GIS) data, and thus to interpret the local spatial pattern of factors conditioning biomass or productivity. Twenty-eight TM data sets were acquired, archived, and evaluated. The ERDAS image processing and GIS system were installed on the microcomputer (PC-AT) and its capabilities are being investigated. The TM coverage of seven study areas were exported via ELAS software on the Prime to the ERDAS system. Statistical analysis procedures to be used on the spectral data are being identified.

  13. EMAN2: an extensible image processing suite for electron microscopy.

    PubMed

    Tang, Guang; Peng, Liwei; Baldwin, Philip R; Mann, Deepinder S; Jiang, Wen; Rees, Ian; Ludtke, Steven J

    2007-01-01

    EMAN is a scientific image processing package with a particular focus on single particle reconstruction from transmission electron microscopy (TEM) images. It was first released in 1999, and new versions have been released typically 2-3 times each year since that time. EMAN2 has been under development for the last two years, with a completely refactored image processing library, and a wide range of features to make it much more flexible and extensible than EMAN1. The user-level programs are better documented, more straightforward to use, and written in the Python scripting language, so advanced users can modify the programs' behavior without any recompilation. A completely rewritten 3D transformation class simplifies translation between Euler angle standards and symmetry conventions. The core C++ library has over 500 functions for image processing and associated tasks, and it is modular with introspection capabilities, so programmers can add new algorithms with minimal effort and programs can incorporate new capabilities automatically. Finally, a flexible new parallelism system has been designed to address the shortcomings in the rigid system in EMAN1.

  14. Pulmonary (cardio) diagnostic system for combat casualty care capable of extracting embedded characteristics of obstructive or restrictive flow

    NASA Astrophysics Data System (ADS)

    Allgood, Glenn O.; Treece, Dale A.; Pearce, Fred J.; Bentley, Timothy B.

    2000-08-01

    Walter Reed Army Institute of Research and Oak Ridge National Laboratory have developed a prototype pulmonary diagnostic system capable of extracting signatures from adventitious lung sounds that characterize obstructive and/or restrictive flow. Examples of disorders that have been detailed include emphysema, asthma, pulmonary fibrosis, and pneumothorax. The system is based on the premise that acoustic signals associated with pulmonary disorders can be characterized by a set of embedded signatures unique to the disease. The concept is being extended to include cardio signals correlated with pulmonary data to provide an accurate and timely diagnoses of pulmonary function and distress in critically injured soldiers that will allow medical personnel to anticipate the need for accurate therapeutic intervention as well as monitor soldiers whose injuries may lead to pulmonary compromise later. The basic operation of the diagnostic system is as follows: (1) create an image from the acoustic signature based on higher order statistics, (2) deconstruct the image based on a predefined map, (3) compare the deconstructed image with stored images of pulmonary symptoms, and (4) classify the disorder based on a clustering of known symptoms and provide a statistical measure of confidence. The system has produced conformity between adults and infants and provided effective measures of physiology in the presence of noise.

  15. Green Propellant Test Capabilities of the Altitude Combustion Stand at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kubiak, Jonathan M.; Arnett, Lori A.

    2016-01-01

    The NASA Glenn Research Center (GRC) is committed to providing simulated altitude rocket test capabilities to NASA programs, other government agencies, private industry partners, and academic partners. A primary facility to support those needs is the Altitude Combustion Stand (ACS). ACS provides the capability to test combustion components at a simulated altitude up to 100,000 ft. (approx.0.2 psia/10 Torr) through a nitrogen-driven ejector system. The facility is equipped with an axial thrust stand, gaseous and cryogenic liquid propellant feed systems, data acquisition system with up to 1000 Hz recording, and automated facility control system. Propellant capabilities include gaseous and liquid hydrogen, gaseous and liquid oxygen, and liquid methane. A water-cooled diffuser, exhaust spray cooling chamber, and multi-stage ejector systems can enable run times up to 180 seconds to 16 minutes. The system can accommodate engines up to 2000-lbf thrust, liquid propellant supply pressures up to 1800 psia, and test at the component level. Engines can also be fired at sea level if needed. The NASA GRC is in the process of modifying ACS capabilities to enable the testing of green propellant (GP) thrusters and components. Green propellants are actively being explored throughout government and industry as a non-toxic replacement to hydrazine monopropellants for applications such as reaction control systems or small spacecraft main propulsion systems. These propellants offer increased performance and cost savings over hydrazine. The modification of ACS is intended to enable testing of a wide range of green propellant engines for research and qualification-like testing applications. Once complete, ACS will have the capability to test green propellant engines up to 880 N in thrust, thermally condition the green propellants, provide test durations up to 60 minutes depending on thrust class, provide high speed control and data acquisition, as well as provide advanced imaging and diagnostics such as infrared (IR) imaging.

  16. The Design of Optical Sensor for the Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Greene, Michael E.

    1990-01-01

    Three optical sight sensor systems were designed, built and tested. Two optical lines of sight sensor system are capable of measuring the absolute pointing angle to the sun. The system is for use with the Pinhole/Occulter Facility (P/OF), a solar hard x ray experiment to be flown from Space Shuttle or Space Station. The sensor consists of a pinhole camera with two pairs of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the pinhole, track and hold circuitry for data reduction, an analog to digital converter, and a microcomputer. The deflection of the image center is calculated from these data using an approximation for the solar image. A second system consists of a pinhole camera with a pair of perpendicularly mounted linear photodiode arrays, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed. A third optical sensor system is capable of measuring the internal vibration of the P/OF between the mask and base. The system consists of a white light source, a mirror and a pair of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the mirror, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image and hence the vibration of the structure is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed.

  17. Development of ultra-high temperature material characterization capabilities using digital image correlation analysis

    NASA Astrophysics Data System (ADS)

    Cline, Julia Elaine

    2011-12-01

    Ultra-high temperature deformation measurements are required to characterize the thermo-mechanical response of material systems for thermal protection systems for aerospace applications. The use of conventional surface-contacting strain measurement techniques is not practical in elevated temperature conditions. Technological advancements in digital imaging provide impetus to measure full-field displacement and determine strain fields with sub-pixel accuracy by image processing. In this work, an Instron electromechanical axial testing machine with a custom-designed high temperature gripping mechanism is used to apply quasi-static tensile loads to graphite specimens heated to 2000°F (1093°C). Specimen heating via Joule effect is achieved and maintained with a custom-designed temperature control system. Images are captured at monotonically increasing load levels throughout the test duration using an 18 megapixel Canon EOS Rebel T2i digital camera with a modified Schneider Kreutznach telecentric lens and a combination of blue light illumination and narrow band-pass filter system. Images are processed using an open-source Matlab-based digital image correlation (DIC) code. Validation of source code is performed using Mathematica generated images with specified known displacement fields in order to gain confidence in accurate software tracking capabilities. Room temperature results are compared with extensometer readings. Ultra-high temperature strain measurements for graphite are obtained at low load levels, demonstrating the potential for non-contacting digital image correlation techniques to accurately determine full-field strain measurements at ultra-high temperature. Recommendations are given to improve the experimental set-up to achieve displacement field measurements accurate to 1/10 pixel and strain field accuracy of less than 2%.

  18. Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz; Simpson, John; Hall, George

    2009-03-01

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  19. Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John; Hall, George

    2008-01-01

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  20. LabVIEW Graphical User Interface for a New High Sensitivity, High Resolution Micro-Angio-Fluoroscopic and ROI-CBCT System

    PubMed Central

    Keleshis, C; Ionita, CN; Yadava, G; Patel, V; Bednarek, DR; Hoffmann, KR; Verevkin, A; Rudin, S

    2008-01-01

    A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873) PMID:18836570

  1. LabVIEW Graphical User Interface for a New High Sensitivity, High Resolution Micro-Angio-Fluoroscopic and ROI-CBCT System.

    PubMed

    Keleshis, C; Ionita, Cn; Yadava, G; Patel, V; Bednarek, Dr; Hoffmann, Kr; Verevkin, A; Rudin, S

    2008-01-01

    A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873).

  2. Subband/Transform MATLAB Functions For Processing Images

    NASA Technical Reports Server (NTRS)

    Glover, D.

    1995-01-01

    SUBTRANS software is package of routines implementing image-data-processing functions for use with MATLAB*(TM) software. Provides capability to transform image data with block transforms and to produce spatial-frequency subbands of transformed data. Functions cascaded to provide further decomposition into more subbands. Also used in image-data-compression systems. For example, transforms used to prepare data for lossy compression. Written for use in MATLAB mathematical-analysis environment.

  3. Ex vivo catheter-based imaging of coronary atherosclerosis using multimodality OCT and NIRAF excited at 633 nm

    PubMed Central

    Wang, Hao; Gardecki, Joseph A.; Ughi, Giovanni J.; Jacques, Paulino Vacas; Hamidi, Ehsan; Tearney, Guillermo J.

    2015-01-01

    While optical coherence tomography (OCT) has been shown to be capable of imaging coronary plaque microstructure, additional chemical/molecular information may be needed in order to determine which lesions are at risk of causing an acute coronary event. In this study, we used a recently developed imaging system and double-clad fiber (DCF) catheter capable of simultaneously acquiring both OCT and red excited near-infrared autofluorescence (NIRAF) images (excitation: 633 nm, emission: 680nm to 900nm). We found that NIRAF is elevated in lesions that contain necrotic core – a feature that is critical for vulnerable plaque diagnosis and that is not readily discriminated by OCT alone. We first utilized a DCF ball lens probe and a bench top setup to acquire en face NIRAF images of aortic plaques ex vivo (n = 20). In addition, we used the OCT-NIRAF system and fully assembled catheters to acquire multimodality images from human coronary arteries (n = 15) prosected from human cadaver hearts (n = 5). Comparison of these images with corresponding histology demonstrated that necrotic core plaques exhibited significantly higher NIRAF intensity than other plaque types. These results suggest that multimodality intracoronary OCT-NIRAF imaging technology may be used in the future to provide improved characterization of coronary artery disease in human patients. PMID:25909020

  4. Towards low cost photoacoustic Microscopy system for evaluation of skin health

    NASA Astrophysics Data System (ADS)

    Hariri, Ali; Fatima, Afreen; Mohammadian, Nafiseh; Bely, Nicholas; Nasiriavanaki, Mohammadreza

    2016-09-01

    Photoacoustic imaging (PAI) involves both optical and ultrasound imaging, owing to this combination the system is capable of generating high resolution images with good penetration depth. With the growing applications of PAI in neurology, vascular biology, dermatology, ophthalmology, tissue engineering, angiogenesis etc., there is a need to make the system more compact, cheap and effective. Therefore we designed an economical and compact version of PAI systems by replacing expensive and sophisticated lasers with a robust pulsed laser diode of 905 nm wavelength. In this study, we determine the feasibility of the Photoacoustic imaging with a very low excitation energy of 0.1uJ in Photoacoustic microscopy. We developed a low cost portable Photoacoustic Imaging including microscopy (both reflection) Phantom study was performed in this configuration and also ex-vivo image was obtained from mouse skin.

  5. Digital image compression for a 2f multiplexing optical setup

    NASA Astrophysics Data System (ADS)

    Vargas, J.; Amaya, D.; Rueda, E.

    2016-07-01

    In this work a virtual 2f multiplexing system was implemented in combination with digital image compression techniques and redundant information elimination. Depending on the image type to be multiplexed, a memory-usage saving of as much as 99% was obtained. The feasibility of the system was tested using three types of images, binary characters, QR codes, and grey level images. A multiplexing step was implemented digitally, while a demultiplexing step was implemented in a virtual 2f optical setup following real experimental parameters. To avoid cross-talk noise, each image was codified with a specially designed phase diffraction carrier that would allow the separation and relocation of the multiplexed images on the observation plane by simple light propagation. A description of the system is presented together with simulations that corroborate the method. The present work may allow future experimental implementations that will make use of all the parallel processing capabilities of optical systems.

  6. Plenoptic Imager for Automated Surface Navigation

    NASA Technical Reports Server (NTRS)

    Zollar, Byron; Milder, Andrew; Milder, Andrew; Mayo, Michael

    2010-01-01

    An electro-optical imaging device is capable of autonomously determining the range to objects in a scene without the use of active emitters or multiple apertures. The novel, automated, low-power imaging system is based on a plenoptic camera design that was constructed as a breadboard system. Nanohmics proved feasibility of the concept by designing an optical system for a prototype plenoptic camera, developing simulated plenoptic images and range-calculation algorithms, constructing a breadboard prototype plenoptic camera, and processing images (including range calculations) from the prototype system. The breadboard demonstration included an optical subsystem comprised of a main aperture lens, a mechanical structure that holds an array of micro lenses at the focal distance from the main lens, and a structure that mates a CMOS imaging sensor the correct distance from the micro lenses. The demonstrator also featured embedded electronics for camera readout, and a post-processor executing image-processing algorithms to provide ranging information.

  7. High resolution propagation-based imaging system for in vivo dynamic computed tomography of lungs in small animals

    NASA Astrophysics Data System (ADS)

    Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.

    2018-04-01

    We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.

  8. Raster Scan Computer Image Generation (CIG) System Based On Refresh Memory

    NASA Astrophysics Data System (ADS)

    Dichter, W.; Doris, K.; Conkling, C.

    1982-06-01

    A full color, Computer Image Generation (CIG) raster visual system has been developed which provides a high level of training sophistication by utilizing advanced semiconductor technology and innovative hardware and firmware techniques. Double buffered refresh memory and efficient algorithms eliminate the problem of conventional raster line ordering by allowing the generated image to be stored in a random fashion. Modular design techniques and simplified architecture provide significant advantages in reduced system cost, standardization of parts, and high reliability. The major system components are a general purpose computer to perform interfacing and data base functions; a geometric processor to define the instantaneous scene image; a display generator to convert the image to a video signal; an illumination control unit which provides final image processing; and a CRT monitor for display of the completed image. Additional optional enhancements include texture generators, increased edge and occultation capability, curved surface shading, and data base extensions.

  9. Detection systems for mass spectrometry imaging: a perspective on novel developments with a focus on active pixel detectors.

    PubMed

    Jungmann, Julia H; Heeren, Ron M A

    2013-01-15

    Instrumental developments for imaging and individual particle detection for biomolecular mass spectrometry (imaging) and fundamental atomic and molecular physics studies are reviewed. Ion-counting detectors, array detection systems and high mass detectors for mass spectrometry (imaging) are treated. State-of-the-art detection systems for multi-dimensional ion, electron and photon detection are highlighted. Their application and performance in three different imaging modes--integrated, selected and spectral image detection--are described. Electro-optical and microchannel-plate-based systems are contrasted. The analytical capabilities of solid-state pixel detectors--both charge coupled device (CCD) and complementary metal oxide semiconductor (CMOS) chips--are introduced. The Medipix/Timepix detector family is described as an example of a CMOS hybrid active pixel sensor. Alternative imaging methods for particle detection and their potential for future applications are investigated. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Adaptive optics ophthalmoscopy

    PubMed Central

    Roorda, Austin; Duncan, Jacque L.

    2016-01-01

    This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and an extensive review of the literature on where AO is being used clinically. The review concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye. PMID:26973867

  11. A High Performance Micro Channel Interface for Real-Time Industrial Image Processing

    Treesearch

    Thomas H. Drayer; Joseph G. Tront; Richard W. Conners

    1995-01-01

    Data collection and transfer devices are critical to the performance of any machine vision system. The interface described in this paper collects image data from a color line scan camera and transfers the data obtained into the system memory of a Micro Channel-based host computer. A maximum data transfer rate of 20 Mbytes/sec can be achieved using the DMA capabilities...

  12. Regional Sediment Management Experiment Using the Visible/Infrared Imager/Radiometer Suite and the Landsat Data Continuity Mission Sensor

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    The central aim of this RPC (Rapid Prototyping Capability) experiment is to demonstrate the use of VIIRS (Visible/Infrared Imager/ Radiometer Suite and LDCM (Landsat Data Continuity Mission) sensors as key input to the RSM (Regional Sediment Management) GIS (geographic information system) DSS (Decision Support System). The project affects the Coastal Management National Application.

  13. The Precision Formation Flying Integrated Analysis Tool (PFFIAT)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor

    2004-01-01

    Several space missions presently in the concept phase (e.g. Stellar Imager, Submillimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation Flying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.

  14. The Precision Formation Flying Integrated Analysis Tool (PFFIAT)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor

    2004-01-01

    Several space missions presently in the concept phase (e.g. Stellar Imager, Sub- millimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation J?lying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.

  15. Concept of electro-optical sensor module for sniper detection system

    NASA Astrophysics Data System (ADS)

    Trzaskawka, Piotr; Dulski, Rafal; Kastek, Mariusz

    2010-10-01

    The paper presents an initial concept of the electro-optical sensor unit for sniper detection purposes. This unit, comprising of thermal and daylight cameras, can operate as a standalone device but its primary application is a multi-sensor sniper and shot detection system. Being a part of a larger system it should contribute to greater overall system efficiency and lower false alarm rate thanks to data and sensor fusion techniques. Additionally, it is expected to provide some pre-shot detection capabilities. Generally acoustic (or radar) systems used for shot detection offer only "after-the-shot" information and they cannot prevent enemy attack, which in case of a skilled sniper opponent usually means trouble. The passive imaging sensors presented in this paper, together with active systems detecting pointed optics, are capable of detecting specific shooter signatures or at least the presence of suspected objects in the vicinity. The proposed sensor unit use thermal camera as a primary sniper and shot detection tool. The basic camera parameters such as focal plane array size and type, focal length and aperture were chosen on the basis of assumed tactical characteristics of the system (mainly detection range) and current technology level. In order to provide costeffective solution the commercially available daylight camera modules and infrared focal plane arrays were tested, including fast cooled infrared array modules capable of 1000 fps image acquisition rate. The daylight camera operates as a support, providing corresponding visual image, easier to comprehend for a human operator. The initial assumptions concerning sensor operation were verified during laboratory and field test and some example shot recording sequences are presented.

  16. Multispectral Image Processing for Plants

    NASA Technical Reports Server (NTRS)

    Miles, Gaines E.

    1991-01-01

    The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status.

  17. Development and optimization of hardware for delta relaxation enhanced MRI.

    PubMed

    Harris, Chad T; Handler, William B; Araya, Yonathan; Martínez-Santiesteban, Francisco; Alford, Jamu K; Dalrymple, Brian; Van Sas, Frank; Chronik, Blaine A; Scholl, Timothy J

    2014-10-01

    Delta relaxation enhanced magnetic resonance (dreMR) imaging requires an auxiliary B0 electromagnet capable of shifting the main magnetic field within a clinical 1.5 Tesla (T) MR system. In this work, the main causes of interaction between an actively shielded, insertable resistive B0 electromagnet and a 1.5T superconducting system are systematically identified and mitigated. The effects of nonideal fabrication of the field-shifting magnet are taken into consideration through careful measurement during winding and improved accuracy in the design of the associated active shield. The shielding performance of the resultant electromagnet is compared against a previously built system in which the shield design was based on an ideal primary coil model. Hardware and software approaches implemented to eliminate residual image artifacts are presented in detail. The eddy currents produced by the newly constructed dreMR system are shown to have a significantly smaller "long-time-constant" component, consistent with the hypothesis that less energy is deposited into the cryostat of the MR system. With active compensation, the dreMR imaging system is capable of 0.22T field shifts within a clinical 1.5T MRI with no significant residual eddy-current fields. Copyright © 2013 Wiley Periodicals, Inc.

  18. Technology Tips

    ERIC Educational Resources Information Center

    Mathematics Teacher, 2004

    2004-01-01

    Some inexpensive or free ways that enable to capture and use images in work are mentioned. The first tip demonstrates the methods of using some of the built-in capabilities of the Macintosh and Windows-based PC operating systems, and the second tip describes methods to capture and create images using SnagIt.

  19. Capabilities of software "Vector-M" for a diagnostics of the ionosphere state from auroral emissions images and plasma characteristics from the different orbits as a part of the system of control of space weather

    NASA Astrophysics Data System (ADS)

    Avdyushev, V.; Banshchikova, M.; Chuvashov, I.; Kuzmin, A.

    2017-09-01

    In the paper are presented capabilities of software "Vector-M" for a diagnostics of the ionosphere state from auroral emissions images and plasma characteristics from the different orbits as a part of the system of control of space weather. The software "Vector-M" is developed by the celestial mechanics and astrometry department of Tomsk State University in collaboration with Space Research Institute (Moscow) and Central Aerological Observatory of Russian Federal Service for Hydrometeorology and Environmental Monitoring. The software "Vector-M" is intended for calculation of attendant geophysical and astronomical information for the centre of mass of the spacecraft and the space of observations in the experiment with auroral imager Aurovisor-VIS/MP in the orbit of the perspective Meteor-MP spacecraft.

  20. The capability of fluoroscopic systems to determine differential Roentgen-ray absorption

    NASA Technical Reports Server (NTRS)

    Baily, N. A.; Crepeau, R. L.

    1975-01-01

    A clinical fluoroscopic unit used in conjunction with a TV image digitization system was investigated to determine its capability to evaluate differential absorption between two areas in the same field. Fractional contrasts and minimum detectability for air, several concentrations of Renografin-60, and aluminum were studied using phantoms of various thicknesses. Results showed that the videometric response, when treated as contrast, shows a linear response with absorber thickness up to considerable thicknesses.

  1. Development of a prototype sensor system for ultra-high-speed LDA-PIV

    NASA Astrophysics Data System (ADS)

    Griffiths, Jennifer A.; Royle, Gary J.; Bohndiek, Sarah E.; Turchetta, Renato; Chen, Daoyi

    2008-04-01

    Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV) are commonly used in the analysis of particulates in fluid flows. Despite the successes of these techniques, current instrumentation has placed limitations on the size and shape of the particles undergoing measurement, thus restricting the available data for the many industrial processes now utilising nano/micro particles. Data for spherical and irregularly shaped particles down to the order of 0.1 µm is now urgently required. Therefore, an ultra-fast LDA-PIV system is being constructed for the acquisition of this data. A key component of this instrument is the PIV optical detection system. Both the size and speed of the particles under investigation place challenging constraints on the system specifications: magnification is required within the system in order to visualise particles of the size of interest, but this restricts the corresponding field of view in a linearly inverse manner. Thus, for several images of a single particle in a fast fluid flow to be obtained, the image capture rate and sensitivity of the system must be sufficiently high. In order to fulfil the instrumentation criteria, the optical detection system chosen is a high-speed, lensed, digital imaging system based on state-of-the-art CMOS technology - the 'Vanilla' sensor developed by the UK based MI3 consortium. This novel Active Pixel Sensor is capable of high frame rates and sparse readout. When coupled with an image intensifier, it will have single photon detection capabilities. An FPGA based DAQ will allow real-time operation with minimal data transfer.

  2. Dynamic Assessment of the Endothelialization of Tissue-Engineered Blood Vessels Using an Optical Coherence Tomography Catheter-Based Fluorescence Imaging System

    PubMed Central

    Gurjarpadhye, Abhijit Achyut; DeWitt, Matthew R.; Xu, Yong; Wang, Ge; Rylander, Marissa Nichole

    2015-01-01

    Background: Lumen endothelialization of bioengineered vascular scaffolds is essential to maintain small-diameter graft patency and prevent thrombosis postimplantation. Unfortunately, nondestructive imaging methods to visualize this dynamic process are lacking, thus slowing development and clinical translation of these potential tissue-engineering approaches. To meet this need, a fluorescence imaging system utilizing a commercial optical coherence tomography (OCT) catheter was designed to visualize graft endothelialization. Methods: C7 DragonFly™ intravascular OCT catheter was used as a channel for delivery and collection of excitation and emission spectra. Poly-dl-lactide (PDLLA) electrospun scaffolds were seeded with endothelial cells (ECs). Seeded cells were exposed to Calcein AM before imaging, causing the living cells to emit green fluorescence in response to blue laser. By positioning the catheter tip precisely over a specimen using high-fidelity electromechanical components, small regions of the specimen were excited selectively. The resulting fluorescence intensities were mapped on a two-dimensional digital grid to generate spatial distribution of fluorophores at single-cell-level resolution. Fluorescence imaging of endothelialization on glass and PDLLA scaffolds was performed using the OCT catheter-based imaging system as well as with a commercial fluorescence microscope. Cell coverage area was calculated for both image sets for quantitative comparison of imaging techniques. Tubular PDLLA scaffolds were maintained in a bioreactor on seeding with ECs, and endothelialization was monitored over 5 days using the OCT catheter-based imaging system. Results: No significant difference was observed in images obtained using our imaging system to those acquired with the fluorescence microscope. Cell area coverage calculated using the images yielded similar values. Nondestructive imaging of endothelialization on tubular scaffolds showed cell proliferation with cell coverage area increasing from 15±4% to 89±6% over 5 days. Conclusion: In this study, we showed the capability of an OCT catheter-based imaging system to obtain single-cell resolution and to quantify endothelialization in tubular electrospun scaffolds. We also compared the resulting images with traditional microscopy, showing high fidelity in image capability. This imaging system, used in conjunction with OCT, could potentially be a powerful tool for in vitro optimization of scaffold cellularization, ensuring long-term graft patency postimplantation. PMID:25539889

  3. High-resolution imaging of living mammalian cells bound by nanobeads-connected antibodies in a medium using scanning electron-assisted dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Okada, Tomoko; Ogura, Toshihiko

    2017-02-01

    Nanometre-scale-resolution imaging technologies for liquid-phase specimens are indispensable tools in various scientific fields. In biology, observing untreated living cells in a medium is essential for analysing cellular functions. However, nanoparticles that bind living cells in a medium are hard to detect directly using traditional optical or electron microscopy. Therefore, we previously developed a novel scanning electron-assisted dielectric microscope (SE-ADM) capable of nanoscale observations. This method enables observation of intact cells in aqueous conditions. Here, we use this SE-ADM system to clearly observe antibody-binding nanobeads in liquid-phase. We also report the successful direct detection of streptavidin-conjugated nanobeads binding to untreated cells in a medium via a biotin-conjugated anti-CD44 antibody. Our system is capable of obtaining clear images of cellular organelles and beads on the cells at the same time. The direct observation of living cells with nanoparticles in a medium allowed by our system may contribute the development of carriers for drug delivery systems (DDS).

  4. Coincidence ion imaging with a fast frame camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei

    2014-12-15

    A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots onmore » each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.« less

  5. Image Formation in High Contrast Optical Systems: The Role of Polarization

    NASA Technical Reports Server (NTRS)

    Breckinridge, James B.

    2004-01-01

    To find evidence of life in the Universe outside our solar system is one of the most compelling and visionary adventures of the 21st century. The technologies to create the telescopes and instruments that will enable this discovery are now within the grasp of mankind. Direct imaging of a very faint planet around a neighboring bright star requires high contrast or a hypercontrast optical imaging system capable of controlling unwanted radiation within the system to one part in ten to the 11th. This paper identifies several physical phenomena that affect image quality in high contrast imaging systems. Polarization induced at curved metallic surfaces and by anisotropy in the deposition process (Smith-Purcell effect) along with beam shifts introduced by the Goos-Hachen effect are discussed. A typical configuration is analyzed, and technical risk mitigation concepts are discussed.

  6. Imaged Document Optical Correlation and Conversion System (IDOCCS)

    NASA Astrophysics Data System (ADS)

    Stalcup, Bruce W.; Dennis, Phillip W.; Dydyk, Robert B.

    1999-03-01

    Today, the paper document is fast becoming a thing of the past. With the rapid development of fast, inexpensive computing and storage devices, many government and private organizations are archiving their documents in electronic form (e.g., personnel records, medical records, patents, etc.). In addition, many organizations are converting their paper archives to electronic images, which are stored in a computer database. Because of this, there is a need to efficiently organize this data into comprehensive and accessible information resources. The Imaged Document Optical Correlation and Conversion System (IDOCCS) provides a total solution to the problem of managing and retrieving textual and graphic information from imaged document archives. At the heart of IDOCCS, optical correlation technology provides the search and retrieval capability of document images. The IDOCCS can be used to rapidly search for key words or phrases within the imaged document archives and can even determine the types of languages contained within a document. In addition, IDOCCS can automatically compare an input document with the archived database to determine if it is a duplicate, thereby reducing the overall resources required to maintain and access the document database. Embedded graphics on imaged pages can also be exploited, e.g., imaged documents containing an agency's seal or logo, or documents with a particular individual's signature block, can be singled out. With this dual capability, IDOCCS outperforms systems that rely on optical character recognition as a basis for indexing and storing only the textual content of documents for later retrieval.

  7. REPORT ON AN ORBITAL MAPPING SYSTEM.

    USGS Publications Warehouse

    Colvocoresses, Alden P.; ,

    1984-01-01

    During June 1984, the International Society for Photogrammetry and Remote Sensing accepted a committee report that defines an Orbital Mapping System (OMS) to follow Landsat and other Earth-sensing systems. The OMS involves the same orbital parameters of Landsats 1, 2, and 3, three wave bands (two in the visible and one in the near infrared) and continuous stereoscopic capability. The sensors involve solid-state linear arrays and data acquisition (including stereo) designed for one-dimensional data processing. It has a resolution capability of 10-m pixels and is capable of producing 1:50,000-scale image maps with 20-m contours. In addition to mapping, the system is designed to monitor the works of man as well as nature and in a cost-effective manner.

  8. An Analytical Framework for Assessing the Efficacy of Small Satellites in Performing Novel Imaging Missions

    NASA Astrophysics Data System (ADS)

    Weaver, Oesa A.

    In the last two decades, small satellites have opened up the use of space to groups other than governments and large corporations, allowing for increased participation and experimentation. This democratization of space was primarily enabled by two factors: improved technology and reduced launch costs. Improved technology allowed the miniaturization of components and reduced overall cost meaning many of the capabilities of larger satellites could be replicated at a fraction of the cost. In addition, new launcher systems that could host many small satellites as ride-shares on manifested vehicles lowered launch costs and simplified the process of getting a satellite into orbit. The potential of these smaller satellites to replace or augment existing systems has led to a flood of potential satellite and mission concepts, often with little rigorous study of whether the proposed satellite or mission is achievable or necessary. This work proposes an analytical framework to aid system designers in evaluating the ability of an existing concept or small satellite to perform a particular imaging mission, either replacing or augmenting existing capabilities. This framework was developed and then refined by application to the problem of using small satellites to perform a wide area search mission -- a mission not possible with existing imaging satellites, but one that would add to current capabilities. Requirements for a wide area search mission were developed, along with a list of factors that would affect image quality and system performance. Two existing small satellite concepts were evaluated for use by examining image quality from the systems, selecting an algorithm to perform the search function automatically, and then assessing mission feasibility by applying the algorithm to simulated imagery. Finally, a notional constellation design was developed to assess the number of satellites required to perform the mission. It was found that a constellation of 480 CubeSats producing 4 m spatial resolution panchromatic imagery and employing an on-board processing algorithm would be sufficient to perform a wide area search mission.

  9. High-speed pre-clinical brain imaging using pulsed laser diode based photoacoustic tomography (PLD-PAT) system

    NASA Astrophysics Data System (ADS)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2016-03-01

    Photoacoustic tomography (PAT) is a promising biomedical imaging modality for small animal imaging, breast cancer imaging, monitoring of vascularisation, tumor angiogenesis, blood oxygenation, total haemoglobin concentration etc. The existing PAT systems that uses Q-switched Nd:YAG and OPO nanosecond lasers have limitations in clinical applications because they are expensive, non-potable and not suitable for real-time imaging due to their low pulse repetition rate. Low-energy pulsed near-infrared diode laser which are low-cost, compact, and light-weight (<200 grams), can be used as an alternate. In this work, we present a photoacoustic tomography system with a pulsed laser diode (PLD) that can nanosecond pulses with pulse energy 1.3 mJ/pulse at ~803 nm wavelength and 7000 Hz repetition rate. The PLD is integrated inside a single-detector circular scanning geometric system. To verify the high speed imaging capabilities of the PLD-PAT system, we performed in vivo experimental results on small animal brain imaging using this system. The proposed system is portable, low-cost and can provide real-time imaging.

  10. IDIMS/GEOPAK: Users manual for a geophysical data display and analysis system

    NASA Technical Reports Server (NTRS)

    Libert, J. M.

    1982-01-01

    The application of an existing image analysis system to the display and analysis of geophysical data is described, the potential for expanding the capabilities of such a system toward more advanced computer analytic and modeling functions is investigated. The major features of the IDIMS (Interactive Display and Image Manipulation System) and its applicability for image type analysis of geophysical data are described. Development of a basic geophysical data processing system to permit the image representation, coloring, interdisplay and comparison of geophysical data sets using existing IDIMS functions and to provide for the production of hard copies of processed images was described. An instruction manual and documentation for the GEOPAK subsystem was produced. A training course for personnel in the use of the IDIMS/GEOPAK was conducted. The effectiveness of the current IDIMS/GEOPAK system for geophysical data analysis was evaluated.

  11. TRIIG - Time-lapse reproduction of images through interactive graphics. [digital processing of quality hard copy

    NASA Technical Reports Server (NTRS)

    Buckner, J. D.; Council, H. W.; Edwards, T. R.

    1974-01-01

    Description of the hardware and software implementing the system of time-lapse reproduction of images through interactive graphics (TRIIG). The system produces a quality hard copy of processed images in a fast and inexpensive manner. This capability allows for optimal development of processing software through the rapid viewing of many image frames in an interactive mode. Three critical optical devices are used to reproduce an image: an Optronics photo reader/writer, the Adage Graphics Terminal, and Polaroid Type 57 high speed film. Typical sources of digitized images are observation satellites, such as ERTS or Mariner, computer coupled electron microscopes for high-magnification studies, or computer coupled X-ray devices for medical research.

  12. Desktop publishing and medical imaging: paper as hardcopy medium for digital images.

    PubMed

    Denslow, S

    1994-08-01

    Desktop-publishing software and hardware has progressed to the point that many widely used word-processing programs are capable of printing high-quality digital images with many shades of gray from black to white. Accordingly, it should be relatively easy to print digital medical images on paper for reports, instructional materials, and in research notes. Components were assembled that were necessary for extracting image data from medical imaging devices and converting the data to a form usable by word-processing software. A system incorporating these components was implemented in a medical setting and has been operating for 18 months. The use of this system by medical staff has been monitored.

  13. Tunable electro-optic filter stack

    DOEpatents

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  14. Lamb wave tomographic imaging system for aircraft structural health assessment

    NASA Astrophysics Data System (ADS)

    Schwarz, Willi G.; Read, Michael E.; Kremer, Matthew J.; Hinders, Mark K.; Smith, Barry T.

    1999-01-01

    A tomographic imaging system using ultrasonic Lamb waves for the nondestructive inspection of aircraft components such as wings and fuselage is being developed. The computer-based system provides large-area inspection capability by electronically scanning an array of transducers that can be easily attached to flat and curved surface without moving parts. Images of the inspected area are produced in near real time employing a tomographic reconstruction method adapted from seismological applications. Changes in material properties caused by structural flaws such as disbonds, corrosion, and fatigue cracks can be effectively detected and characterized utilizing this fast NDE technique.

  15. Technical Facilities and Capabilities Assessment Report

    DTIC Science & Technology

    1990-06-01

    ARMAMENT LABORATORY Air Force Systems Command I United States Air Force I Eglin Air Force Base , Florida Best Available Copy 90 0 8 20 026 NOTICE When...The Air Force Armament Laboratory (AFATL) provides the technology base for future armament systems and supports the other elements of the deputy...color and filter digital images once an image is on the system . The IPL and the RSPL are accessible over the base Ethernet. This allows users to logon to

  16. Active multispectral imaging system for photodiagnosis and personalized phototherapies

    NASA Astrophysics Data System (ADS)

    Ugarte, M. F.; Chávarri, L.; Briz, S.; Padrón, V. M.; García-Cuesta, E.

    2014-10-01

    The proposed system has been designed to identify dermatopathologies or to apply personalized phototherapy treatments. The system emits electromagnetic waves in different spectral bands in the range of visible and near infrared to irradiate the target (skin or any other object) to be spectrally characterized. Then, an imaging sensor measures the target response to the stimulus at each spectral band and, after processing, the system displays in real time two images. In one of them the value of each pixel corresponds to the more reflected wavenumber whereas in the other image the pixel value represents the energy absorbed at each band. The diagnosis capability of this system lies in its multispectral design, and the phototherapy treatments are adapted to the patient and his lesion by measuring his absorption capability. This "in situ" absorption measurement allows us to determine the more appropriate duration of the treatment according to the wavelength and recommended dose. The main advantages of this system are its low cost, it does not have moving parts or complex mechanisms, it works in real time, and it is easy to handle. For these reasons its widespread use in dermatologist consultation would facilitate the work of the dermatologist and would improve the efficiency of diagnosis and treatment. In fact the prototype has already been successfully applied to pathologies such as carcinomas, melanomas, keratosis, and nevi.

  17. Active multispectral imaging system for photodiagnosis and personalized phototherapies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ugarte, M. F., E-mail: marta.ugarte@uem.es, E-mail: sbriz@fis.uc3m.es; Chávarri, L.; Padrón, V. M.

    2014-10-15

    The proposed system has been designed to identify dermatopathologies or to apply personalized phototherapy treatments. The system emits electromagnetic waves in different spectral bands in the range of visible and near infrared to irradiate the target (skin or any other object) to be spectrally characterized. Then, an imaging sensor measures the target response to the stimulus at each spectral band and, after processing, the system displays in real time two images. In one of them the value of each pixel corresponds to the more reflected wavenumber whereas in the other image the pixel value represents the energy absorbed at eachmore » band. The diagnosis capability of this system lies in its multispectral design, and the phototherapy treatments are adapted to the patient and his lesion by measuring his absorption capability. This “in situ” absorption measurement allows us to determine the more appropriate duration of the treatment according to the wavelength and recommended dose. The main advantages of this system are its low cost, it does not have moving parts or complex mechanisms, it works in real time, and it is easy to handle. For these reasons its widespread use in dermatologist consultation would facilitate the work of the dermatologist and would improve the efficiency of diagnosis and treatment. In fact the prototype has already been successfully applied to pathologies such as carcinomas, melanomas, keratosis, and nevi.« less

  18. Microcomputer-based artificial vision support system for real-time image processing for camera-driven visual prostheses

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang; You, Cindy X.; Tarbell, Mark A.

    2010-01-01

    It is difficult to predict exactly what blind subjects with camera-driven visual prostheses (e.g., retinal implants) can perceive. Thus, it is prudent to offer them a wide variety of image processing filters and the capability to engage these filters repeatedly in any user-defined order to enhance their visual perception. To attain true portability, we employ a commercial off-the-shelf battery-powered general purpose Linux microprocessor platform to create the microcomputer-based artificial vision support system (μAVS2) for real-time image processing. Truly standalone, μAVS2 is smaller than a deck of playing cards, lightweight, fast, and equipped with USB, RS-232 and Ethernet interfaces. Image processing filters on μAVS2 operate in a user-defined linear sequential-loop fashion, resulting in vastly reduced memory and CPU requirements during execution. μAVS2 imports raw video frames from a USB or IP camera, performs image processing, and issues the processed data over an outbound Internet TCP/IP or RS-232 connection to the visual prosthesis system. Hence, μAVS2 affords users of current and future visual prostheses independent mobility and the capability to customize the visual perception generated. Additionally, μAVS2 can easily be reconfigured for other prosthetic systems. Testing of μAVS2 with actual retinal implant carriers is envisioned in the near future.

  19. Microcomputer-based artificial vision support system for real-time image processing for camera-driven visual prostheses.

    PubMed

    Fink, Wolfgang; You, Cindy X; Tarbell, Mark A

    2010-01-01

    It is difficult to predict exactly what blind subjects with camera-driven visual prostheses (e.g., retinal implants) can perceive. Thus, it is prudent to offer them a wide variety of image processing filters and the capability to engage these filters repeatedly in any user-defined order to enhance their visual perception. To attain true portability, we employ a commercial off-the-shelf battery-powered general purpose Linux microprocessor platform to create the microcomputer-based artificial vision support system (microAVS(2)) for real-time image processing. Truly standalone, microAVS(2) is smaller than a deck of playing cards, lightweight, fast, and equipped with USB, RS-232 and Ethernet interfaces. Image processing filters on microAVS(2) operate in a user-defined linear sequential-loop fashion, resulting in vastly reduced memory and CPU requirements during execution. MiccroAVS(2) imports raw video frames from a USB or IP camera, performs image processing, and issues the processed data over an outbound Internet TCP/IP or RS-232 connection to the visual prosthesis system. Hence, microAVS(2) affords users of current and future visual prostheses independent mobility and the capability to customize the visual perception generated. Additionally, microAVS(2) can easily be reconfigured for other prosthetic systems. Testing of microAVS(2) with actual retinal implant carriers is envisioned in the near future.

  20. Operation and Performance of the Mars Exploration Rover Imaging System on the Martian Surface

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Litwin, Todd; Herkenhoff, Ken

    2005-01-01

    This slide presentation details the Mars Exploration Rover (MER) imaging system. Over 144,000 images have been gathered from all Mars Missions, with 83.5% of them being gathered by MER. Each Rover has 9 cameras (Navcam, front and rear Hazcam, Pancam, Microscopic Image, Descent Camera, Engineering Camera, Science Camera) and produces 1024 x 1024 (1 Megapixel) images in the same format. All onboard image processing code is implemented in flight software and includes extensive processing capabilities such as autoexposure, flat field correction, image orientation, thumbnail generation, subframing, and image compression. Ground image processing is done at the Jet Propulsion Laboratory's Multimission Image Processing Laboratory using Video Image Communication and Retrieval (VICAR) while stereo processing (left/right pairs) is provided for raw image, radiometric correction; solar energy maps,triangulation (Cartesian 3-spaces) and slope maps.

  1. Characterization and evaluation of ionizing and non-ionizing imaging systems used in state of the art image-guided radiation therapy techniques

    NASA Astrophysics Data System (ADS)

    Stanley, Dennis Nichols

    With the growing incidence of cancer worldwide, the need for effective cancer treatment is paramount. Currently, radiation therapy exists as one of the few effective, non-invasive methods of reducing tumor size and has the capability for the elimination of localized tumors. Radiation therapy utilizes non-invasive external radiation to treat localized cancers but to be effective, physicians must be able to visualize and monitor the internal anatomy and target displacements. Image-Guided Radiation Therapy frequently utilizes planar and volumetric imaging during a course of radiation therapy to improve the precision and accuracy of the delivered treatment to the internal anatomy. Clinically, visualization of the internal anatomy allows physicians to refine the treatment to include as little healthy tissue as possible. This not only increases the effectiveness of treatment by damaging only the tumor but also increases the quality of life for the patient by decreasing the amount of healthy tissue damaged. Image-Guided Radiation Therapy is commonly used to treat tumors in areas of the body that are prone to movement, such as the lungs, liver, and prostate, as well as tumors located close to critical organs and tissues such as the tumors in the brain and spinal cord. Image-Guided Radiation Therapy can utilize both ionizing modalities, like x-ray based planar radiography and cone-beam CT, and nonionizing modalities like MRI, ultrasound and video-based optical scanning systems. Currently ionizing modalities are most commonly utilized for their ability to visualize and monitor internal anatomy but cause an increase to the total dose to the patient. Nonionizing imaging modalities allow frequent/continuous imaging without the increase in dose; however, they are just beginning to be clinically implemented in radiation oncology. With the growing prevalence and variety of Image-Guided Radiation Therapy imaging modalities the ability to evaluate the overall image quality, monitor the stability of the imaging systems and characterize each system are important to ensuring the consistency and effectiveness of the overall treatment. Image-Guided Radiation Therapy quality assurance allows a method of quantifying the accuracy and stability of the imaging systems. Understanding how the ionizing imaging systems operate and change over time allows for a more effective overall treatment and will be the focus of the first step of this project. In each of the first three aims, different ionizing imaging modalities will be evaluated for their temporal stability and a record of the determined tolerance level will be reported. The Second step of this project will be a characterization of the accuracy and performance of the new C-Rad CatalystHD a video-based, surface-imaging guided patient localization system. The catalyst will be analyzed for it accuracy of setup and patient positing, intra- and inter- fraction motion detection as well as its respiratory gating capabilities. The final step of this project will be to use the well-established accuracy of the XVI volumetric imaging system as a benchmark to assess the accuracy of the C-Rad CatalystHD system for use in pretreatment patient position verification for cranial stereotactic procedures. The treatment of brain lesions generally requires a very high degree of precision due to relatively small target sizes, close proximity to eloquent areas of the brain, and large, ablative doses being delivered. Stringent accuracy in imaging is needed to verify and monitor the correct spatial delivery of radiation throughout treatment. In order to investigate if the CatalystHD system is a capable imaging system for such deliveries, the system will need to be assessed and benchmarked against the XVI in a phantom geometry. By doing so, the currently unproven utility of the CatalystHD system for cranial stereotactic delivery may be established. (Abstract shortened by ProQuest.).

  2. A methodology for evaluation of an interactive multispectral image processing system

    NASA Technical Reports Server (NTRS)

    Kovalick, William M.; Newcomer, Jeffrey A.; Wharton, Stephen W.

    1987-01-01

    Because of the considerable cost of an interactive multispectral image processing system, an evaluation of a prospective system should be performed to ascertain if it will be acceptable to the anticipated users. Evaluation of a developmental system indicated that the important system elements include documentation, user friendliness, image processing capabilities, and system services. The criteria and evaluation procedures for these elements are described herein. The following factors contributed to the success of the evaluation of the developmental system: (1) careful review of documentation prior to program development, (2) construction and testing of macromodules representing typical processing scenarios, (3) availability of other image processing systems for referral and verification, and (4) use of testing personnel with an applications perspective and experience with other systems. This evaluation was done in addition to and independently of program testing by the software developers of the system.

  3. A Complete Image Management and Communications Network for the Neuroradiology Service at Georgetown University Hospital

    NASA Astrophysics Data System (ADS)

    Horii, Steven C.; Muraki, Alan; Mallon-Ingeholm, Mary L.; Mun, Seong K.; Clark, Letitia; Schellinger, Dieter

    1989-05-01

    A complete image management and communications system has been installed at Georgetown University Hospital (GUH). The network is based on the A T & T CommView System. In the Neuroradiology Division, this comprehensive network supports a multiscreen workstation with access to multiple imaging modalities such as CT and MRI from both the hospital and a remote imaging center. In addition, the radiologist can access these images from various workstations located throughout the hospital as well as from remote sites such as the home. Among the radiology services supported by the network, neuroradiology has the greatest need for such a system with extensive daily requirements involving the remote imaging center and on-line consultation around the clock. By providing neuroradiology with all available communication links, the radiologist can monitor, diagnose, and consult. The remote site has a subsystem capable of acquiring images and transmitting them over a high speed T1 data circuit. The GUH neuroradiologist can view these images on the neuro workstation or any of the workstations available in the Hospital. Fast and easy access to the images allows a radiologist to monitor multiple examinations as well as to utilize the workstation for diagnosis. To provide the neuroradiologist quick access to images at all times, a PC-based Results Viewing Station (RVS) has been placed in a doctor's home. Images may be sent to the RVS, or the user may request images from the central database at the hospital. Images can be viewed at home either as they are transmitted, or following transfer of a whole study. The efficiency and effectiveness of the system's capabilities with special regard to remote and teleradiology (RVS) operations have been studied for the neuroradiology service. This paper will discuss the current clinical acceptance and use, problems in implementation, and ways these difficulties are being surmounted.

  4. Concurrent Image Processing Executive (CIPE). Volume 1: Design overview

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Groom, Steven L.; Mazer, Alan S.; Williams, Winifred I.

    1990-01-01

    The design and implementation of a Concurrent Image Processing Executive (CIPE), which is intended to become the support system software for a prototype high performance science analysis workstation are described. The target machine for this software is a JPL/Caltech Mark 3fp Hypercube hosted by either a MASSCOMP 5600 or a Sun-3, Sun-4 workstation; however, the design will accommodate other concurrent machines of similar architecture, i.e., local memory, multiple-instruction-multiple-data (MIMD) machines. The CIPE system provides both a multimode user interface and an applications programmer interface, and has been designed around four loosely coupled modules: user interface, host-resident executive, hypercube-resident executive, and application functions. The loose coupling between modules allows modification of a particular module without significantly affecting the other modules in the system. In order to enhance hypercube memory utilization and to allow expansion of image processing capabilities, a specialized program management method, incremental loading, was devised. To minimize data transfer between host and hypercube, a data management method which distributes, redistributes, and tracks data set information was implemented. The data management also allows data sharing among application programs. The CIPE software architecture provides a flexible environment for scientific analysis of complex remote sensing image data, such as planetary data and imaging spectrometry, utilizing state-of-the-art concurrent computation capabilities.

  5. Extreme ultraviolet patterned mask inspection performance of advanced projection electron microscope system for 11nm half-pitch generation

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Suematsu, Kenichi; Terao, Kenji

    2016-03-01

    Novel projection electron microscope optics have been developed and integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code) , and the resulting system shows promise for application to half-pitch (hp) 16-nm node extreme ultraviolet lithography (EUVL) patterned mask inspection. To improve the system's inspection throughput for 11-nm hp generation defect detection, a new electron-sensitive area image sensor with a high-speed data processing unit, a bright and stable electron source, and an image capture area deflector that operates simultaneously with the mask scanning motion have been developed. A learning system has been used for the mask inspection tool to meet the requirements of hp 11-nm node EUV patterned mask inspection. Defects are identified by the projection electron microscope system using the "defectivity" from the characteristics of the acquired image. The learning system has been developed to reduce the labor and costs associated with adjustment of the detection capability to cope with newly-defined mask defects. We describe the integration of the developed elements into the inspection tool and the verification of the designed specification. We have also verified the effectiveness of the learning system, which shows enhanced detection capability for the hp 11-nm node.

  6. Muon trackers for imaging a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kume, N.; Miyadera, H.; Morris, C. L.

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. Furthermore, the system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m 2 area. In each muon tracker there consists 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when themore » core is imaged from outside the reactor building.« less

  7. Muon trackers for imaging a nuclear reactor

    DOE PAGES

    Kume, N.; Miyadera, H.; Morris, C. L.; ...

    2016-09-21

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. Furthermore, the system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m 2 area. In each muon tracker there consists 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when themore » core is imaged from outside the reactor building.« less

  8. Studying the Sky/Planets Can Drown You in Images: Machine Learning Solutions at JPL/Caltech

    NASA Technical Reports Server (NTRS)

    Fayyad, U. M.

    1995-01-01

    JPL is working to develop a domain-independent system capable of small-scale object recognition in large image databases for science analysis. Two applications discussed are the cataloging of three billion sky objects in the Sky Image Cataloging and Analysis Tool (SKICAT) and the detection of possibly one million small volcanoes visible in the Magellan synthetic aperture radar images of Venus (JPL Adaptive Recognition Tool, JARTool).

  9. Improvements and Additions to NASA Near Real-Time Earth Imagery

    NASA Technical Reports Server (NTRS)

    Cechini, Matthew; Boller, Ryan; Baynes, Kathleen; Schmaltz, Jeffrey; DeLuca, Alexandar; King, Jerome; Thompson, Charles; Roberts, Joe; Rodriguez, Joshua; Gunnoe, Taylor; hide

    2016-01-01

    For many years, the NASA Global Imagery Browse Services (GIBS) has worked closely with the Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) system to provide near real-time imagery visualizations of AIRS (Atmospheric Infrared Sounder), MLS (Microwave Limb Sounder), MODIS (Moderate Resolution Imaging Spectrometer), OMI (Ozone Monitoring Instrument), and recently VIIRS (Visible Infrared Imaging Radiometer Suite) science parameters. These visualizations are readily available through standard web services and the NASA Worldview client. Access to near real-time imagery provides a critical capability to GIBS and Worldview users. GIBS continues to focus on improving its commitment to providing near real-time imagery for end-user applications. The focus of this presentation will be the following completed or planned GIBS system and imagery enhancements relating to near real-time imagery visualization.

  10. Adaptive Computerized Instruction.

    ERIC Educational Resources Information Center

    Ray, Roger D.; And Others

    1995-01-01

    Describes an artificially intelligent multimedia computerized instruction system capable of developing a conceptual image of what a student is learning while the student is learning it. It focuses on principles of learning and adaptive behavioral control systems theory upon which the system is designed and demonstrates multiple user modes.…

  11. Remote sensor digital image data analysis using the General Electric Image 100 analysis system (a study of analysis speed, cost, and performance)

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. It was found that the high speed man machine interaction capability is a distinct advantage of the image 100; however, the small size of the digital computer in the system is a definite limitation. The system can be highly useful in an analysis mode in which it complements a large general purpose computer. The image 100 was found to be extremely valuable in the analysis of aircraft MSS data where the spatial resolution begins to approach photographic quality and the analyst can exercise interpretation judgements and readily interact with the machine.

  12. Label-free imaging of cellular malformation using high resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Zhongjiang; Li, Bingbing; Yang, Sihua

    2014-09-01

    A label-free high resolution photoacoustic microscopy (PAM) system for imaging cellular malformation is presented. The carbon fibers were used to testify the lateral resolution of the PAM. Currently, the lateral resolution is better than 2.7 μm. The human normal red blood cells (RBCs) were used to prove the imaging capability of the system, and a single red blood cell was mapped with high contrast. Moreover, the iron deficiency anemia RBCs were clearly distinguished from the cell morphology by using the PAM. The experimental results demonstrate that the photoacoustic microscopy system can accomplish label-free photoacoustic imaging and that it has clinical potential for use in the detection of erythrocytes and blood vessels malformation.

  13. Fast synchronized dual-wavelength laser speckle imaging system for monitoring hemodynamic changes in a stroke mouse model

    PubMed Central

    Qin, Jia; Shi, Lei; Dziennis, Suzan; Reif, Roberto; Wang, Ruikang K.

    2014-01-01

    In this paper, we describe a newly developed synchronized dual-wavelength laser speckle contrast imaging (SDW-LSCI) system, which contains two cameras that are synchronously triggered to acquire data. The system can acquire data at a high spatiotemporal resolution (up to 500Hz for ~1000×1000 pixels). A mouse model of stroke is used to demonstrate the capability for imaging the fast changes (within tens of milliseconds) in oxygenated and deoxygenated hemoglobin concentration, and the relative changes in blood flow in the mouse brain, through an intact cranium. This novel imaging technology will enable the study of fast hemodynamics and metabolic changes in vascular diseases. PMID:23027260

  14. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts

    NASA Astrophysics Data System (ADS)

    Yang, Victor X. D.; Gordon, Maggie L.; Tang, Shou-Jiang; Marcon, Norman E.; Gardiner, Geoffrey; Qi, Bing; Bisland, Stuart; Seng-Yue, Emily; Lo, Stewart; Pekar, Julius; Wilson, Brian C.; Vitkin, I. Alex

    2003-09-01

    We previously described a fiber based Doppler optical coherence tomography system [1] capable of imaging embryo cardiac blood flow at 4~16 frames per second with wide velocity dynamic range [2]. Coupling this system to a linear scanning fiber optical catheter design that minimizes friction and vibrations, we report here the initial results of in vivo endoscopic Doppler optical coherence tomography (EDOCT) imaging in normal rat and human esophagus. Microvascular flow in blood vessels less than 100 µm diameter was detected using a combination of color-Doppler and velocity variance imaging modes, during clinical endoscopy using a mobile EDOCT system.

  15. Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch

    PubMed Central

    Ruggeri, Marco; Uhlhorn, Stephen R.; De Freitas, Carolina; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie

    2012-01-01

    Abstract: An optical switch was implemented in the reference arm of an extended depth SD-OCT system to sequentially acquire OCT images at different depths into the eye ranging from the cornea to the retina. A custom-made accommodation module was coupled with the delivery of the OCT system to provide controlled step stimuli of accommodation and disaccommodation that preserve ocular alignment. The changes in the lens shape were imaged and ocular distances were dynamically measured during accommodation and disaccommodation. The system is capable of dynamic in vivo imaging of the entire anterior segment and eye-length measurement during accommodation in real-time. PMID:22808424

  16. Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch.

    PubMed

    Ruggeri, Marco; Uhlhorn, Stephen R; De Freitas, Carolina; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie

    2012-07-01

    An optical switch was implemented in the reference arm of an extended depth SD-OCT system to sequentially acquire OCT images at different depths into the eye ranging from the cornea to the retina. A custom-made accommodation module was coupled with the delivery of the OCT system to provide controlled step stimuli of accommodation and disaccommodation that preserve ocular alignment. The changes in the lens shape were imaged and ocular distances were dynamically measured during accommodation and disaccommodation. The system is capable of dynamic in vivo imaging of the entire anterior segment and eye-length measurement during accommodation in real-time.

  17. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    PubMed

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  18. A 3D camera for improved facial recognition

    NASA Astrophysics Data System (ADS)

    Lewin, Andrew; Orchard, David A.; Scott, Andrew M.; Walton, Nicholas A.; Austin, Jim

    2004-12-01

    We describe a camera capable of recording 3D images of objects. It does this by projecting thousands of spots onto an object and then measuring the range to each spot by determining the parallax from a single frame. A second frame can be captured to record a conventional image, which can then be projected onto the surface mesh to form a rendered skin. The camera is able of locating the images of the spots to a precision of better than one tenth of a pixel, and from this it can determine range to an accuracy of less than 1 mm at 1 meter. The data can be recorded as a set of two images, and is reconstructed by forming a 'wire mesh' of range points and morphing the 2 D image over this structure. The camera can be used to record the images of faces and reconstruct the shape of the face, which allows viewing of the face from various angles. This allows images to be more critically inspected for the purpose of identifying individuals. Multiple images can be stitched together to create full panoramic images of head sized objects that can be viewed from any direction. The system is being tested with a graph matching system capable of fast and accurate shape comparisons for facial recognition. It can also be used with "models" of heads and faces to provide a means of obtaining biometric data.

  19. Pulsation Detection from Noisy Ultrasound-Echo Moving Images of Newborn Baby Head Using Fourier Transform

    NASA Astrophysics Data System (ADS)

    Yamada, Masayoshi; Fukuzawa, Masayuki; Kitsunezuka, Yoshiki; Kishida, Jun; Nakamori, Nobuyuki; Kanamori, Hitoshi; Sakurai, Takashi; Kodama, Souichi

    1995-05-01

    In order to detect pulsation from a series of noisy ultrasound-echo moving images of a newborn baby's head for pediatric diagnosis, a digital image processing system capable of recording at the video rate and processing the recorded series of images was constructed. The time-sequence variations of each pixel value in a series of moving images were analyzed and then an algorithm based on Fourier transform was developed for the pulsation detection, noting that the pulsation associated with blood flow was periodically changed by heartbeat. Pulsation detection for pediatric diagnosis was successfully made from a series of noisy ultrasound-echo moving images of newborn baby's head by using the image processing system and the pulsation detection algorithm developed here.

  20. Automatically measuring brain ventricular volume within PACS using artificial intelligence.

    PubMed

    Yepes-Calderon, Fernando; Nelson, Marvin D; McComb, J Gordon

    2018-01-01

    The picture archiving and communications system (PACS) is currently the standard platform to manage medical images but lacks analytical capabilities. Staying within PACS, the authors have developed an automatic method to retrieve the medical data and access it at a voxel level, decrypted and uncompressed that allows analytical capabilities while not perturbing the system's daily operation. Additionally, the strategy is secure and vendor independent. Cerebral ventricular volume is important for the diagnosis and treatment of many neurological disorders. A significant change in ventricular volume is readily recognized, but subtle changes, especially over longer periods of time, may be difficult to discern. Clinical imaging protocols and parameters are often varied making it difficult to use a general solution with standard segmentation techniques. Presented is a segmentation strategy based on an algorithm that uses four features extracted from the medical images to create a statistical estimator capable of determining ventricular volume. When compared with manual segmentations, the correlation was 94% and holds promise for even better accuracy by incorporating the unlimited data available. The volume of any segmentable structure can be accurately determined utilizing the machine learning strategy presented and runs fully automatically within the PACS.

  1. A Monte Carlo simulation study for the gamma-ray/neutron dual-particle imager using rotational modulation collimator (RMC).

    PubMed

    Kim, Hyun Suk; Choi, Hong Yeop; Lee, Gyemin; Ye, Sung-Joon; Smith, Martin B; Kim, Geehyun

    2018-03-01

    The aim of this work is to develop a gamma-ray/neutron dual-particle imager, based on rotational modulation collimators (RMCs) and pulse shape discrimination (PSD)-capable scintillators, for possible applications for radioactivity monitoring as well as nuclear security and safeguards. A Monte Carlo simulation study was performed to design an RMC system for the dual-particle imaging, and modulation patterns were obtained for gamma-ray and neutron sources in various configurations. We applied an image reconstruction algorithm utilizing the maximum-likelihood expectation-maximization method based on the analytical modeling of source-detector configurations, to the Monte Carlo simulation results. Both gamma-ray and neutron source distributions were reconstructed and evaluated in terms of signal-to-noise ratio, showing the viability of developing an RMC-based gamma-ray/neutron dual-particle imager using PSD-capable scintillators.

  2. Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging

    NASA Astrophysics Data System (ADS)

    Micó, Vicente; Zalevsky, Zeev

    2010-07-01

    Digital in-line holographic microscopy (DIHM) is a modern approach capable of achieving micron-range lateral and depth resolutions in three-dimensional imaging. DIHM in combination with numerical imaging reconstruction uses an extremely simplified setup while retaining the advantages provided by holography with enhanced capabilities derived from algorithmic digital processing. We introduce superresolved DIHM incoming from time and angular multiplexing of the sample spatial frequency information and yielding in the generation of a synthetic aperture (SA). The SA expands the cutoff frequency of the imaging system, allowing submicron resolutions in both transversal and axial directions. The proposed approach can be applied when imaging essentially transparent (low-concentration dilutions) and static (slow dynamics) samples. Validation of the method for both a synthetic object (U.S. Air Force resolution test) to quantify the resolution improvement and a biological specimen (sperm cells biosample) are reported showing the generation of high synthetic numerical aperture values working without lenses.

  3. Continuous-wave terahertz digital holography by use of a pyroelectric array camera.

    PubMed

    Ding, Sheng-Hui; Li, Qi; Li, Yun-Da; Wang, Qi

    2011-06-01

    Terahertz (THz) digital holography is realized based on a 2.52 THz far-IR gas laser and a commercial 124 × 124 pyroelectric array camera. Off-axis THz holograms are obtained by recording interference patterns between light passing through the sample and the reference wave. A numerical reconstruction process is performed to obtain the field distribution at the object surface. Different targets were imaged to test the system's imaging capability. Compared with THz focal plane images, the image quality of the reconstructed images are improved a lot. The results show that the system's imaging resolution can reach at least 0.4 mm. The system also has the potential for real-time imaging application. This study confirms that digital holography is a promising technique for real-time, high-resolution THz imaging, which has extensive application prospects. © 2011 Optical Society of America

  4. Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system.

    PubMed

    Hahn, Paul; Migacz, Justin; O'Connell, Rachelle; Izatt, Joseph A; Toth, Cynthia A

    2013-01-01

    We have recently developed a microscope-integrated spectral-domain optical coherence tomography (MIOCT) device towards intrasurgical cross-sectional imaging of surgical maneuvers. In this report, we explore the capability of MIOCT to acquire real-time video imaging of vitreoretinal surgical maneuvers without post-processing modifications. Standard 3-port vitrectomy was performed in human during scheduled surgery as well as in cadaveric porcine eyes. MIOCT imaging of human subjects was performed in healthy normal volunteers and intraoperatively at a normal pause immediately following surgical manipulations, under an Institutional Review Board-approved protocol, with informed consent from all subjects. Video MIOCT imaging of live surgical manipulations was performed in cadaveric porcine eyes by carefully aligning B-scans with instrument orientation and movement. Inverted imaging was performed by lengthening of the reference arm to a position beyond the choroid. Unprocessed MIOCT imaging was successfully obtained in healthy human volunteers and in human patients undergoing surgery, with visualization of post-surgical changes in unprocessed single B-scans. Real-time, unprocessed MIOCT video imaging was successfully obtained in cadaveric porcine eyes during brushing of the retina with the Tano scraper, peeling of superficial retinal tissue with intraocular forceps, and separation of the posterior hyaloid face. Real-time inverted imaging enabled imaging without complex conjugate artifacts. MIOCT is capable of unprocessed imaging of the macula in human patients undergoing surgery and of unprocessed, real-time, video imaging of surgical maneuvers in model eyes. These capabilities represent an important step towards development of MIOCT for efficient, real-time imaging of manipulations during human surgery.

  5. Parallel-multiplexed excitation light-sheet microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Laser scanning light-sheet imaging allows fast 3D image of live samples with minimal bleach and photo-toxicity. Existing light-sheet techniques have very limited capability in multi-label imaging. Hyper-spectral imaging is needed to unmix commonly used fluorescent proteins with large spectral overlaps. However, the challenge is how to perform hyper-spectral imaging without sacrificing the image speed, so that dynamic and complex events can be captured live. We report wavelength-encoded structured illumination light sheet imaging (λ-SIM light-sheet), a novel light-sheet technique that is capable of parallel multiplexing in multiple excitation-emission spectral channels. λ-SIM light-sheet captures images of all possible excitation-emission channels in true parallel. It does not require compromising the imaging speed and is capable of distinguish labels by both excitation and emission spectral properties, which facilitates unmixing fluorescent labels with overlapping spectral peaks and will allow more labels being used together. We build a hyper-spectral light-sheet microscope that combined λ-SIM with an extended field of view through Bessel beam illumination. The system has a 250-micron-wide field of view and confocal level resolution. The microscope, equipped with multiple laser lines and an unlimited number of spectral channels, can potentially image up to 6 commonly used fluorescent proteins from blue to red. Results from in vivo imaging of live zebrafish embryos expressing various genetic markers and sensors will be shown. Hyper-spectral images from λ-SIM light-sheet will allow multiplexed and dynamic functional imaging in live tissue and animals.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeckl, C., E-mail: csto@lle.rochester.edu; Bedzyk, M.; Brent, G.

    A high-performance cryogenic DT inertial confinement fusion implosion experiment is an especially challenging backlighting configuration because of the high self-emission of the core at stagnation and the low opacity of the DT shell. High-energy petawatt lasers such as OMEGA EP promise significantly improved backlighting capabilities by generating high x-ray intensities and short emission times. A narrowband x-ray imager with an astigmatism-corrected bent quartz crystal for the Si He{sub α} line at ∼1.86 keV was developed to record backlit images of cryogenic direct-drive implosions. A time-gated recording system minimized the self-emission of the imploding target. A fast target-insertion system capable ofmore » moving the backlighter target ∼7 cm in ∼100 ms was developed to avoid interference with the cryogenic shroud system. With backlighter laser energies of ∼1.25 kJ at a 10-ps pulse duration, the radiographic images show a high signal-to-background ratio of >100:1 and a spatial resolution of the order of 10 μm. The backlit images can be used to assess the symmetry of the implosions close to stagnation and the mix of ablator material into the dense shell.« less

  7. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes weremore » used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.« less

  8. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    DOE PAGES

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2015-10-22

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes weremore » used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.« less

  9. Coincidence electron/ion imaging with a fast frame camera

    NASA Astrophysics Data System (ADS)

    Li, Wen; Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander; Fan, Lin

    2015-05-01

    A new time- and position- sensitive particle detection system based on a fast frame CMOS camera is developed for coincidence electron/ion imaging. The system is composed of three major components: a conventional microchannel plate (MCP)/phosphor screen electron/ion imager, a fast frame CMOS camera and a high-speed digitizer. The system collects the positional information of ions/electrons from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of MCPs processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of electron/ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide. We further show that a time resolution of 30 ps can be achieved when measuring electron TOF spectrum and this enables the new system to achieve a good energy resolution along the TOF axis.

  10. Multilocation teleradiology system for emergency triage consultation

    NASA Astrophysics Data System (ADS)

    Herron, John M.; Yonas, Howard

    1996-05-01

    A remote consultation system is available at the University of Pittsburgh Medical Center (UPMC) which links four outlying hospitals in Western Pennsylvania and Eastern Ohio. This system has the potential to improve short and long term clinical outcomes and to reduce overall medical care cost by establishing improved emergency triage capability. An EMED, Inc. teleradiology system permits rapid, high-quality transfer of digitized film and CT images from the remote sites to the tertiary care center (UPMC). The images are sent over dial-on- demand ISDN and SW56 lines from the remote hospitals to a central server where they are transmitted to a dual 2K monitor workstation in the Emergency Department, thirteen Eastman Kodak PDS workstations within UPMC, and to three physician homes. Transmission to a workstation at each of the physician homes over ISDN lines enables `after hours' consultation. The radiographic images along with voice and fax communications provide a technique where physicians in outlying hospitals will be able to consult with specialists at any time. A study is in progress to evaluate the effectiveness of this system in terms of perception of utility and its potential to improve emergency triage capability, as well as selection of the appropriate transportation mode (helicopter versus ambulance).

  11. Some performance tests of a microarea AES. [Auger Electron Spectroscopy

    NASA Technical Reports Server (NTRS)

    Todd, G.; Poppa, H.

    1978-01-01

    An Auger electron spectroscopy (AES) system which has a submicron analysis capability is described. The system provides secondary electron imaging, as well as micro- and macro-area AES. The resolution of the secondary electron image of an oxidized Al contact pad on a charge-coupled device chip indicates a primary beam size of about 1000 A. For Auger mapping, a useful resolution of about 4000 A is reported

  12. Architectures for single-chip image computing

    NASA Astrophysics Data System (ADS)

    Gove, Robert J.

    1992-04-01

    This paper will focus on the architectures of VLSI programmable processing components for image computing applications. TI, the maker of industry-leading RISC, DSP, and graphics components, has developed an architecture for a new-generation of image processors capable of implementing a plurality of image, graphics, video, and audio computing functions. We will show that the use of a single-chip heterogeneous MIMD parallel architecture best suits this class of processors--those which will dominate the desktop multimedia, document imaging, computer graphics, and visualization systems of this decade.

  13. Optimization of illumination schemes in a head-mounted display integrated with eye tracking capabilities

    NASA Astrophysics Data System (ADS)

    Pansing, Craig W.; Hua, Hong; Rolland, Jannick P.

    2005-08-01

    Head-mounted display (HMD) technologies find a variety of applications in the field of 3D virtual and augmented environments, 3D scientific visualization, as well as wearable displays. While most of the current HMDs use head pose to approximate line of sight, we propose to investigate approaches and designs for integrating eye tracking capability into HMDs from a low-level system design perspective and to explore schemes for optimizing system performance. In this paper, we particularly propose to optimize the illumination scheme, which is a critical component in designing an eye tracking-HMD (ET-HMD) integrated system. An optimal design can improve not only eye tracking accuracy, but also robustness. Using LightTools, we present the simulation of a complete eye illumination and imaging system using an eye model along with multiple near infrared LED (IRLED) illuminators and imaging optics, showing the irradiance variation of the different eye structures. The simulation of dark pupil effects along with multiple 1st-order Purkinje images will be presented. A parametric analysis is performed to investigate the relationships between the IRLED configurations and the irradiance distribution at the eye, and a set of optimal configuration parameters is recommended. The analysis will be further refined by actual eye image acquisition and processing.

  14. Synthetic aperture ultrasound imaging with a ring transducer array: preliminary ex vivo results.

    PubMed

    Qu, Xiaolei; Azuma, Takashi; Yogi, Takeshi; Azuma, Shiho; Takeuchi, Hideki; Tamano, Satoshi; Takagi, Shu

    2016-10-01

    The conventional medical ultrasound imaging has a low lateral spatial resolution, and the image quality depends on the depth of the imaging location. To overcome these problems, this study presents a synthetic aperture (SA) ultrasound imaging method using a ring transducer array. An experimental ring transducer array imaging system was constructed. The array was composed of 2048 transducer elements, and had a diameter of 200 mm and an inter-element pitch of 0.325 mm. The imaging object was placed in the center of the ring transducer array, which was immersed in water. SA ultrasound imaging was then employed to scan the object and reconstruct the reflection image. Both wire phantom and ex vivo experiments were conducted. The proposed method was found to be capable of producing isotropic high-resolution images of the wire phantom. In addition, preliminary ex vivo experiments using porcine organs demonstrated the ability of the method to reconstruct high-quality images without any depth dependence. The proposed ring transducer array and SA ultrasound imaging method were shown to be capable of producing isotropic high-resolution images whose quality was independent of depth.

  15. Pc-Based Floating Point Imaging Workstation

    NASA Astrophysics Data System (ADS)

    Guzak, Chris J.; Pier, Richard M.; Chinn, Patty; Kim, Yongmin

    1989-07-01

    The medical, military, scientific and industrial communities have come to rely on imaging and computer graphics for solutions to many types of problems. Systems based on imaging technology are used to acquire and process images, and analyze and extract data from images that would otherwise be of little use. Images can be transformed and enhanced to reveal detail and meaning that would go undetected without imaging techniques. The success of imaging has increased the demand for faster and less expensive imaging systems and as these systems become available, more and more applications are discovered and more demands are made. From the designer's perspective the challenge to meet these demands forces him to attack the problem of imaging from a different perspective. The computing demands of imaging algorithms must be balanced against the desire for affordability and flexibility. Systems must be flexible and easy to use, ready for current applications but at the same time anticipating new, unthought of uses. Here at the University of Washington Image Processing Systems Lab (IPSL) we are focusing our attention on imaging and graphics systems that implement imaging algorithms for use in an interactive environment. We have developed a PC-based imaging workstation with the goal to provide powerful and flexible, floating point processing capabilities, along with graphics functions in an affordable package suitable for diverse environments and many applications.

  16. Kodak's New Photo CD Portfolio: Multimedia for the Rest of Us.

    ERIC Educational Resources Information Center

    Bonime, Andrew

    1994-01-01

    Describes Photo CD Portfolio, an Eastman Kodak product that provides interactive multimedia CD-ROM production capability. The article focuses on the capabilities of the tool's simplest authoring system, Create It, which allows users to work with Photo CD, PICT, or TIFF images, add graphics, text and audio, and create menus with branching. (KRN)

  17. Validation Test Report for the Automated Optical Processing System (AOPS) Version 4.12

    DTIC Science & Technology

    2015-09-03

    NPP) with the VIIRS sensor package as well as data from the Geostationary Ocean Color Imager (GOCI) sensor, aboard the Communication Ocean and...capability • Prepare the NRT Geostationary Ocean Color Imager (GOCI) data stream for integration into operations. • Improvements in sensor...Navy (DON) Environmental Data Records (EDRs) Expeditionary Warfare (EXW) Geostationary Ocean Color Imager (GOCI) Gulf of Mexico (GOM) Hierarchical

  18. Multi-scale spectrally resolved quantitative fluorescence imaging system: towards neurosurgical guidance in glioma resection

    NASA Astrophysics Data System (ADS)

    Xie, Yijing; Thom, Maria; Miserocchi, Anna; McEvoy, Andrew W.; Desjardins, Adrien; Ourselin, Sebastien; Vercauteren, Tom

    2017-02-01

    In glioma resection surgery, the detection of tumour is often guided by using intraoperative fluorescence imaging notably with 5-ALA-PpIX, providing fluorescent contrast between normal brain tissue and the gliomas tissue to achieve improved tumour delineation and prolonged patient survival compared with the conventional white-light guided resection. However, the commercially available fluorescence imaging system relies on surgeon's eyes to visualise and distinguish the fluorescence signals, which unfortunately makes the resection subjective. In this study, we developed a novel multi-scale spectrally-resolved fluorescence imaging system and a computational model for quantification of PpIX concentration. The system consisted of a wide-field spectrally-resolved quantitative imaging device and a fluorescence endomicroscopic imaging system enabling optical biopsy. Ex vivo animal tissue experiments as well as human tumour sample studies demonstrated that the system was capable of specifically detecting the PpIX fluorescent signal and estimate the true concentration of PpIX in brain specimen.

  19. Implementation of total focusing method for phased array ultrasonic imaging on FPGA

    NASA Astrophysics Data System (ADS)

    Guo, JianQiang; Li, Xi; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke

    2015-02-01

    This paper describes a multi-FPGA imaging system dedicated for the real-time imaging using the Total Focusing Method (TFM) and Full Matrix Capture (FMC). The system was entirely described using Verilog HDL language and implemented on Altera Stratix IV GX FPGA development board. The whole algorithm process is to: establish a coordinate system of image and divide it into grids; calculate the complete acoustic distance of array element between transmitting array element and receiving array element, and transform it into index value; then index the sound pressure values from ROM and superimpose sound pressure values to get pixel value of one focus point; and calculate the pixel values of all focus points to get the final imaging. The imaging result shows that this algorithm has high SNR of defect imaging. And FPGA with parallel processing capability can provide high speed performance, so this system can provide the imaging interface, with complete function and good performance.

  20. Application and Miniaturization of Linear and Nonlinear Raman Microscopy for Biomedical Imaging

    NASA Astrophysics Data System (ADS)

    Mittal, Richa

    Current diagnostics for several disorders rely on surgical biopsy or evaluation of ex vivo bodily fluids, which have numerous drawbacks. We evaluated the potential for vibrational techniques (both linear and nonlinear Raman) as a reliable and noninvasive diagnostic tool. Raman spectroscopy is an optical technique for molecular analysis that has been used extensively in various biomedical applications. Based on demonstrated capabilities of Raman spectroscopy we evaluated the potential of the technique for providing a noninvasive diagnosis of mucopolysaccharidosis (MPS). These studies show that Raman spectroscopy can detect subtle changes in tissue biochemistry. In applications where sub-micrometer visualization of tissue compositional change is required, a transition from spectroscopy to high quality imaging is necessary. Nonlinear vibrational microscopy is sensitive to the same molecular vibrations as linear Raman, but features fast imaging capabilities. Coherent Raman scattering when combined with other nonlinear optical (NLO) techniques (like two-photon excited fluorescence and second harmonic generation) forms a collection of advanced optical techniques that provide noninvasive chemical contrast at submicron resolution. This capability to examine tissues without external molecular agents is driving the NLO approach towards clinical applications. However, the unique imaging capabilities of NLO microscopy are accompanied by complex instrument requirements. Clinical examination requires portable imaging systems for rapid inspection of tissues. Optical components utilized in NLO microscopy would then need substantial miniaturization and optimization to enable in vivo use. The challenges in designing compact microscope objective lenses and laser beam scanning mechanisms are discussed. The development of multimodal NLO probes for imaging oral cavity tissue is presented. Our prototype has been examined for ex vivo tissue imaging based on intrinsic fluorescence and SHG contrast. These studies show a potential for multiphoton compact probes to be used for real time imaging in the clinic.

  1. High-Speed Noninvasive Eye-Tracking System

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; LaBaw, Clayton; Michael-Morookian, John; Monacos, Steve; Serviss, Orin

    2007-01-01

    The figure schematically depicts a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. Like prior commercial noninvasive eye-tracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Relative to the prior commercial systems, the present system operates at much higher speed and thereby offers enhanced capability for applications that involve human-computer interactions, including typing and computer command and control by handicapped individuals,and eye-based diagnosis of physiological disorders that affect gaze responses.

  2. Extending the multimedia patient record across the wide area network.

    PubMed Central

    Dayhoff, R. E.; Kuzmak, P. M.; Frank, S. A.; Kirin, G.; Saddler, C.

    1996-01-01

    The Dept. of Veterans Affairs is developing and testing a wide area medical network with multimedia capabilities for coordination and consolidation of medical services across locations. The system is composed of multimedia information systems at individual medical centers connected by a high speed wide area network. The DHCP Imaging System, which has been in clinical use for six years, provides storage management and workstation acquisition and display of the multimedia data. Teleconsulting capability using a variety of mechanisms' is being prototyped and tested to meet medical staffing and consultation needs. PMID:8947747

  3. Extending the multimedia patient record across the wide area network.

    PubMed

    Dayhoff, R E; Kuzmak, P M; Frank, S A; Kirin, G; Saddler, C

    1996-01-01

    The Dept. of Veterans Affairs is developing and testing a wide area medical network with multimedia capabilities for coordination and consolidation of medical services across locations. The system is composed of multimedia information systems at individual medical centers connected by a high speed wide area network. The DHCP Imaging System, which has been in clinical use for six years, provides storage management and workstation acquisition and display of the multimedia data. Teleconsulting capability using a variety of mechanisms' is being prototyped and tested to meet medical staffing and consultation needs.

  4. Application of analyzer based X-ray imaging technique for detection of ultrasound induced cavitation bubbles from a physical therapy unit.

    PubMed

    Izadifar, Zahra; Belev, George; Babyn, Paul; Chapman, Dean

    2015-10-19

    The observation of ultrasound generated cavitation bubbles deep in tissue is very difficult. The development of an imaging method capable of investigating cavitation bubbles in tissue would improve the efficiency and application of ultrasound in the clinic. Among the previous imaging modalities capable of detecting cavitation bubbles in vivo, the acoustic detection technique has the positive aspect of in vivo application. However the size of the initial cavitation bubble and the amplitude of the ultrasound that produced the cavitation bubbles, affect the timing and amplitude of the cavitation bubbles' emissions. The spatial distribution of cavitation bubbles, driven by 0.8835 MHz therapeutic ultrasound system at output power of 14 Watt, was studied in water using a synchrotron X-ray imaging technique, Analyzer Based Imaging (ABI). The cavitation bubble distribution was investigated by repeated application of the ultrasound and imaging the water tank. The spatial frequency of the cavitation bubble pattern was evaluated by Fourier analysis. Acoustic cavitation was imaged at four different locations through the acoustic beam in water at a fixed power level. The pattern of cavitation bubbles in water was detected by synchrotron X-ray ABI. The spatial distribution of cavitation bubbles driven by the therapeutic ultrasound system was observed using ABI X-ray imaging technique. It was observed that the cavitation bubbles appeared in a periodic pattern. The calculated distance between intervals revealed that the distance of frequent cavitation lines (intervals) is one-half of the acoustic wave length consistent with standing waves. This set of experiments demonstrates the utility of synchrotron ABI for visualizing cavitation bubbles formed in water by clinical ultrasound systems working at high frequency and output powers as low as a therapeutic system.

  5. An explosives detection system for airline security using coherent x-ray scattering technology

    NASA Astrophysics Data System (ADS)

    Madden, Robert W.; Mahdavieh, Jacob; Smith, Richard C.; Subramanian, Ravi

    2008-08-01

    L-3 Communications Security and Detection Systems (SDS) has developed a new system for automated alarm resolution in airline baggage Explosive Detection Systems (EDS) based on coherent x-ray scattering spectroscopy. The capabilities of the system were demonstrated in tests with concealed explosives at the Transportation Security Laboratory and airline passenger baggage at Orlando International Airport. The system uses x-ray image information to identify suspicious objects and performs targeted diffraction measurements to classify them. This extra layer of detection capability affords a significant reduction in the rate of false alarm objects that must presently be resolved by opening passenger bags for hand inspection.

  6. Digital Image Display Control System, DIDCS. [for astronomical analysis

    NASA Technical Reports Server (NTRS)

    Fischel, D.; Klinglesmith, D. A., III

    1979-01-01

    DIDCS is an interactive image display and manipulation system that is used for a variety of astronomical image reduction and analysis operations. The hardware system consists of a PDP 11/40 main frame with 32K of 16-bit core memory; 96K of 16-bit MOS memory; two 9 track 800 BPI tape drives; eight 2.5 million byte RKO5 type disk packs, three user terminals, and a COMTAL 8000-S display system which has sufficient memory to store and display three 512 x 512 x 8 bit images along with an overlay plane and function table for each image, a pseudo color table and the capability for displaying true color. The software system is based around the language FORTH, which will permit an open ended dictionary of user level words for image analyses and display. A description of the hardware and software systems will be presented along with examples of the types of astronomical research that are being performed. Also a short discussion of the commonality and exchange of this type of image analysis system will be given.

  7. Ground-Based Measurement Experiment and First Results with Geosynchronous-Imaging Fourier Transform Spectrometer Engineering Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Bingham, Gail E.; Huppi, Ronald J.; Revercomb, Henry E.; Zollinger, Lori J.; Larar, Allen M.; Liu, Xu; Tansock, Joseph J.; Reisse, Robert A.; hide

    2007-01-01

    The geosynchronous-imaging Fourier transform spectrometer (GIFTS) engineering demonstration unit (EDU) is an imaging infrared spectrometer designed for atmospheric soundings. It measures the infrared spectrum in two spectral bands (14.6 to 8.8 microns, 6.0 to 4.4 microns) using two 128 x 128 detector arrays with a spectral resolution of 0.57 cm(exp -1) with a scan duration of approximately 11 seconds. From a geosynchronous orbit, the instrument will have the capability of taking successive measurements of such data to scan desired regions of the globe, from which atmospheric status, cloud parameters, wind field profiles, and other derived products can be retrieved. The GIFTS EDU provides a flexible and accurate testbed for the new challenges of the emerging hyperspectral era. The EDU ground-based measurement experiment, held in Logan, Utah during September 2006, demonstrated its extensive capabilities and potential for geosynchronous and other applications (e.g., Earth observing environmental measurements). This paper addresses the experiment objectives and overall performance of the sensor system with a focus on the GIFTS EDU imaging capability and proof of the GIFTS measurement concept.

  8. Computer systems for annotation of single molecule fragments

    DOEpatents

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  9. An Ibm PC/AT-Based Image Acquisition And Processing System For Quantitative Image Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Yongmin; Alexander, Thomas

    1986-06-01

    In recent years, a large number of applications have been developed for image processing systems in the area of biological imaging. We have already finished the development of a dedicated microcomputer-based image processing and analysis system for quantitative microscopy. The system's primary function has been to facilitate and ultimately automate quantitative image analysis tasks such as the measurement of cellular DNA contents. We have recognized from this development experience, and interaction with system users, biologists and technicians, that the increasingly widespread use of image processing systems, and the development and application of new techniques for utilizing the capabilities of such systems, would generate a need for some kind of inexpensive general purpose image acquisition and processing system specially tailored for the needs of the medical community. We are currently engaged in the development and testing of hardware and software for a fairly high-performance image processing computer system based on a popular personal computer. In this paper, we describe the design and development of this system. Biological image processing computer systems have now reached a level of hardware and software refinement where they could become convenient image analysis tools for biologists. The development of a general purpose image processing system for quantitative image analysis that is inexpensive, flexible, and easy-to-use represents a significant step towards making the microscopic digital image processing techniques more widely applicable not only in a research environment as a biologist's workstation, but also in clinical environments as a diagnostic tool.

  10. In vivo integrated photoacoustic ophthalmoscopy, optical coherence tomography, and scanning laser ophthalmoscopy for retinal imaging

    NASA Astrophysics Data System (ADS)

    Song, Wei; Zhang, Rui; Zhang, Hao F.; Wei, Qing; Cao, Wenwu

    2012-12-01

    The physiological and pathological properties of retina are closely associated with various optical contrasts. Hence, integrating different ophthalmic imaging technologies is more beneficial in both fundamental investigation and clinical diagnosis of several blinding diseases. Recently, photoacoustic ophthalmoscopy (PAOM) was developed for in vivo retinal imaging in small animals, which demonstrated the capability of imaging retinal vascular networks and retinal pigment epithelium (RPE) at high sensitivity. We combined PAOM with traditional imaging modalities, such as fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), and auto-fluorescence scanning laser ophthalmoscopy (AF-SLO), for imaging rats and mice. The multimodal imaging system provided more comprehensive evaluation of the retina based on the complementary imaging contrast mechanisms. The high-quality retinal images show that the integrated ophthalmic imaging system has great potential in the investigation of blinding disorders.

  11. Continuous-wave terahertz imaging of nonmelanoma skin cancers

    NASA Astrophysics Data System (ADS)

    Joseph, Cecil Sudhir

    Continuous wave terahertz imaging has the potential to offer a safe, non-invasive medical imaging modality for detecting different types of human skin cancers. Terahertz pulse imaging (TPI) has already shown that there is contrast between basal cell carcinoma and normal skin. Continuous-wave imaging offers a simpler, lower cost alternative to terahertz pulse imaging. This project aims to isolate the optimal contrast frequency for a continuous wave terahertz imaging system and demonstrate transmission based, in-vitro , imaging of thin sections of non-melanoma skin cancers and correlate the images to sample histology. The aim of this project is to conduct a proof-of-principle experiment that establishes whether continuous-wave terahertz imaging can detect differences between cancerous and normal tissue while outlining the basic requirements for building a system capable of performing in vivo tests.

  12. Airborne Electro-Optical Sensor Simulation System. Final Report.

    ERIC Educational Resources Information Center

    Hayworth, Don

    The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…

  13. Shuttle Entry Imaging Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas; Berry, Scott; Alter, Stephen; Blanchard, Robert; Schwartz, Richard; Ross, Martin; Tack, Steve

    2007-01-01

    During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne imaging platforms used within DoD along with agency assets developed and optimized for use during Shuttle ascent to demonstrate capability (i.e., tracking, acquisition of multispectral data, spatial resolution) and identify system limitations (i.e., radiance modeling, saturation) using state-of-the-art imaging instrumentation and communication systems. Global infrared intensity data have been transformed to temperature by comparison to Shuttle flight thermocouple data. Reasonable agreement is found between the flight thermography images and numerical prediction. A discussion of lessons learned and potential application to a potential Shuttle boundary layer transition flight test is presented.

  14. Viking image processing. [digital stereo imagery and computer mosaicking

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1977-01-01

    The paper discusses the camera systems capable of recording black and white and color imagery developed for the Viking Lander imaging experiment. Each Viking Lander image consisted of a matrix of numbers with 512 rows and an arbitrary number of columns up to a maximum of about 9,000. Various techniques were used in the processing of the Viking Lander images, including: (1) digital geometric transformation, (2) the processing of stereo imagery to produce three-dimensional terrain maps, and (3) computer mosaicking of distinct processed images. A series of Viking Lander images is included.

  15. SU-E-J-134: An Augmented-Reality Optical Imaging System for Accurate Breast Positioning During Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazareth, D; Malhotra, H; French, S

    Purpose: Breast radiotherapy, particularly electronic compensation, may involve large dose gradients and difficult patient positioning problems. We have developed a simple self-calibrating augmented-reality system, which assists in accurately and reproducibly positioning the patient, by displaying her live image from a single camera superimposed on the correct perspective projection of her 3D CT data. Our method requires only a standard digital camera capable of live-view mode, installed in the treatment suite at an approximately-known orientation and position (rotation R; translation T). Methods: A 10-sphere calibration jig was constructed and CT imaged to provide a 3D model. The (R,T) relating the cameramore » to the CT coordinate system were determined by acquiring a photograph of the jig and optimizing an objective function, which compares the true image points to points calculated with a given candidate R and T geometry. Using this geometric information, 3D CT patient data, viewed from the camera's perspective, is plotted using a Matlab routine. This image data is superimposed onto the real-time patient image, acquired by the camera, and displayed using standard live-view software. This enables the therapists to view both the patient's current and desired positions, and guide the patient into assuming the correct position. The method was evaluated using an in-house developed bolus-like breast phantom, mounted on a supporting platform, which could be tilted at various angles to simulate treatment-like geometries. Results: Our system allowed breast phantom alignment, with an accuracy of about 0.5 cm and 1 ± 0.5 degree. Better resolution could be possible using a camera with higher-zoom capabilities. Conclusion: We have developed an augmented-reality system, which combines a perspective projection of a CT image with a patient's real-time optical image. This system has the potential to improve patient setup accuracy during breast radiotherapy, and could possibly be used for other disease sites as well.« less

  16. Computer-aided screening system for cervical precancerous cells based on field emission scanning electron microscopy and energy dispersive x-ray images and spectra

    NASA Astrophysics Data System (ADS)

    Jusman, Yessi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Kurnia, Rahmadi; Osman, Noor Azuan Bin Abu; Teoh, Kean Hooi

    2016-10-01

    The capability of field emission scanning electron microscopy and energy dispersive x-ray spectroscopy (FE-SEM/EDX) to scan material structures at the microlevel and characterize the material with its elemental properties has inspired this research, which has developed an FE-SEM/EDX-based cervical cancer screening system. The developed computer-aided screening system consisted of two parts, which were the automatic features of extraction and classification. For the automatic features extraction algorithm, the image and spectra of cervical cells features extraction algorithm for extracting the discriminant features of FE-SEM/EDX data was introduced. The system automatically extracted two types of features based on FE-SEM/EDX images and FE-SEM/EDX spectra. Textural features were extracted from the FE-SEM/EDX image using a gray level co-occurrence matrix technique, while the FE-SEM/EDX spectra features were calculated based on peak heights and corrected area under the peaks using an algorithm. A discriminant analysis technique was employed to predict the cervical precancerous stage into three classes: normal, low-grade intraepithelial squamous lesion (LSIL), and high-grade intraepithelial squamous lesion (HSIL). The capability of the developed screening system was tested using 700 FE-SEM/EDX spectra (300 normal, 200 LSIL, and 200 HSIL cases). The accuracy, sensitivity, and specificity performances were 98.2%, 99.0%, and 98.0%, respectively.

  17. A Review on Potential Issues and Challenges in MR Imaging

    PubMed Central

    Kanakaraj, Jagannathan

    2013-01-01

    Magnetic resonance imaging is a noninvasive technique that has been developed for its excellent depiction of soft tissue contrasts. Instruments capable of ultra-high field strengths, ≥7 Tesla, were recently engineered and have resulted in higher signal-to-noise and higher resolution images. This paper presents various subsystems of the MR imaging systems like the magnet subsystem, gradient subsystem, and also various issues which arise due to the magnet. Further, it also portrays finer details about the RF coils and transceiver and also various limitations of the RF coils and transceiver. Moreover, the concept behind the data processing system and the challenges related to it were also depicted. Finally, the various artifacts associated with the MR imaging were clearly pointed out. It also presents a brief overview about all the challenges related to MR imaging systems. PMID:24381523

  18. Doppler Imaging and Chemical Abundance Analysis of EK Dra: Capabilities of Small Telescopes

    NASA Astrophysics Data System (ADS)

    Kilicoglu, Tolgahan; Senavci, H. V.; Bahar, E.; Isik, E.; Montes, D.; Hussain, G. A. J.

    2018-04-01

    We investigate the chromospheric and spot activity behaviour of the young Solar-like star EK Dra via Doppler imaging and spectral synthesis methods, using mid-resolution time series spectra of the system. We also present the atmospheric parameters and detailed elemental photospheric abundances of the star. The chemical abundance pattern of EK Dra do not suggest any remarkable peculiarities except few elements. The Titanium Oxide (TiO) bandheads at 7000 - 7100 A region also give clues about the spot temperature that may be cooler than 4000 K. In addition, we also discuss the capabilities of small telescopes (40 cm in our case) and medium resolution spectrographs in terms of Doppler imaging and chemical abundance analysis.

  19. Asymmetric masks for laboratory-based X-ray phase-contrast imaging with edge illumination.

    PubMed

    Endrizzi, Marco; Astolfo, Alberto; Vittoria, Fabio A; Millard, Thomas P; Olivo, Alessandro

    2016-05-05

    We report on an asymmetric mask concept that enables X-ray phase-contrast imaging without requiring any movement in the system during data acquisition. The method is compatible with laboratory equipment, namely a commercial detector and a rotating anode tube. The only motion required is that of the object under investigation which is scanned through the imaging system. Two proof-of-principle optical elements were designed, fabricated and experimentally tested. Quantitative measurements on samples of known shape and composition were compared to theory with good agreement. The method is capable of measuring the attenuation, refraction and (ultra-small-angle) X-ray scattering, does not have coherence requirements and naturally adapts to all those situations in which the X-ray image is obtained by scanning a sample through the imaging system.

  20. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device.

    PubMed

    Samant, Sanjiv S; Gopal, Arun

    2006-08-01

    Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (<2% for Eastman Kodak Lanex Fast-B). Flat-panel EPIDs that utilize the same luminescent screen along with an a-Si:H photodiode array provide improved image quality compared to VEPIDs, but they are expensive and can be susceptible to radiation damage to the peripheral electronics. In this article, we present a prototype VEPID system for high quality portal imaging at sub-monitor-unit (subMU) exposures based on a thick scintillation crystal (TSC) that acts as a high QE luminescent screen. The prototype TSC system utilizes a 12 mm thick transparent CsI(Tl) (thallium-activated cesium iodide) scintillator for QE=0.24, resulting in significantly higher light production compared to commercial phosphor screens. The 25 X 25 cm2 CsI(Tl) screen is coupled to a high spatial and contrast resolution Video-Optics plumbicon-tube camera system (1240 X 1024 pixels, 250 microm pixel width at isocenter, 12-bit ADC). As a proof-of-principle prototype, the TSC system with user-controlled camera target integration was adapted for use in an existing clinical gantry (Siemens BEAMVIEW(PLUS)) with the capability for online intratreatment fluoroscopy. Measurements of modulation transfer function (MTF) were conducted to characterize the TSC spatial resolution. The measured MTF along with measurements of the TSC noise power spectrum (NPS) were used to determine the system detective quantum efficiency (DQE). A theoretical expression of DQE(0) was developed to be used as a predictive model to propose improvements in the optics associated with the light detection. The prototype TSC provides DQE(0)=0.02 with its current imaging geometry, which is an order of magnitude greater than that for commercial VEPID systems and comparable to flat-panel imaging systems. Following optimization in the imaging geometry and the use of a high-end, cooled charge-coupled-device (CCD) camera system, the performance of the TSC is expected to improve even further. Based on our theoretical model, the expected DQE(0)=0.12 for the TSC system with the proposed improvements, which exceeds the performance of current flat-panel EPIDs. The prototype TSC provides high quality imaging even at subMU exposures (typical imaging dose is 0.2 MU per image), which offers the potential for daily patient localization imaging without increasing the weekly dose to the patient. Currently, the TSC is capable of limited frame-rate fluoroscopy for intratreatment visualization of patient motion at approximately 3 frames/second, since the achievable frame rate is significantly reduced by the limitations of the camera-control processor. With optimized processor control, the TSC is expected to be capable of intratreatment imaging exceeding 10 frames/second to monitor patient motion.

  1. Terahertz multistatic reflection imaging.

    PubMed

    Dorney, Timothy D; Symes, William W; Baraniuk, Richard G; Mittleman, Daniel M

    2002-07-01

    We describe a new imaging method using single-cycle pulses of terahertz (THz) radiation. This technique emulates the data collection and image processing procedures developed for geophysical prospecting and is made possible by the availability of fiber-coupled THz receiver antennas. We use a migration procedure to solve the inverse problem; this permits us to reconstruct the location, the shape, and the refractive index of targets. We show examples for both metallic and dielectric model targets, and we perform velocity analysis on dielectric targets to estimate the refractive indices of imaged components. These results broaden the capabilities of THz imaging systems and also demonstrate the viability of the THz system as a test bed for the exploration of new seismic processing methods.

  2. On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system.

    PubMed

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2015-07-01

    In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling.

  3. User's manual for flight Simulator Display System (FSDS)

    NASA Technical Reports Server (NTRS)

    Egerdahl, C. C.

    1979-01-01

    The capabilities of the flight simulator display system (FSDS) are described. FSDS is a color raster scan display generator designed to meet the special needs of Flight Simulation Laboratories. The FSDS can update (revise) the images it generates every 16.6 mS, with limited support from a host processor. This corresponds to the standard TV vertical rate of 60 Hertz, and allows the system to carry out display functions in a time critical environment. Rotation of a complex image in the television raster with minimal hardware is possible with the system.

  4. Photonics and bioinspiration

    NASA Astrophysics Data System (ADS)

    Lewis, Keith

    2014-10-01

    Biological systems exploiting light have benefitted from thousands of years of genetic evolution and can provide insight to support the development of new approaches for imaging, image processing and communication. For example, biological vision systems can provide significant diversity, yet are able to function with only a minimal degree of neural processing. Examples will be described underlying the processes used to support the development of new concepts for photonic systems, ranging from uncooled bolometers and tunable filters, to asymmetric free-space optical communication systems and new forms of camera capable of simultaneously providing spectral and polarimetric diversity.

  5. Passive millimeter wave simulation in blender

    NASA Astrophysics Data System (ADS)

    Murakowski, Maciej

    Imaging in the millimeter wave (mmW) frequency range is being explored for applications where visible or infrared (IR) imaging fails, such as through atmospheric obscurants. However, mmW imaging is still in its infancy and imager systems are still bulky, expensive, and fragile, so experiments on imaging in real-world scenarios are difficult or impossible to perform. Therefore, a simulation system capable of predicting mmW phenomenology would be valuable in determining the requirements (e.g. resolution or noise floor) of an imaging system for a particular scenario and aid in the design of such an imager. Producing simulation software for this purpose is the objective of the work described in this thesis. The 3D software package Blender was modified to simulate the images produced by a passive mmW imager, based on a Geometrical Optics approach. Simulated imagery was validated against experimental data and the software was applied to novel imaging scenarios. Additionally, a database of material properties for use in the simulation was collected.

  6. The Convergence of Information Technology, Data, and Management in a Library Imaging Program

    ERIC Educational Resources Information Center

    France, Fenella G.; Emery, Doug; Toth, Michael B.

    2010-01-01

    Integrating advanced imaging and processing capabilities in libraries, archives, and museums requires effective systems and information management to ensure that the large amounts of digital data about cultural artifacts can be readily acquired, stored, archived, accessed, processed, and linked to other data. The Library of Congress is developing…

  7. Architectures for Device Aware Network

    DTIC Science & Technology

    2005-03-01

    68 b. PDA in DAN Mode ............................................................. 69 c. Cell Phone in DAN Mode...68 Figure 15. PDA in DAN Mode - Reduced Resolution Image ..................................... 69 Figure 16. Cell Phone in DAN Mode -No Image...computer, notebook computer, cell phone and a host of networked embedded systems) may have extremely differing capabilities and resources to retrieve and

  8. Fundamentals of cone beam computed tomography for a prosthodontist

    PubMed Central

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R. B.

    2015-01-01

    Cone beam computed tomography (CBCT, also referred to as C-arm computed tomography [CT], cone beam volume CT, or flat panel CT) is a medical imaging technique of X-ray CT where the X-rays are divergent, forming a cone.[1] CBCT systems have been designed for imaging hard tissues of the maxillofacial region. CBCT is capable of providing sub-millimeter resolution in images of high diagnostic quality, with short scanning times (10–70 s) and radiation dosages reportedly up to 15–100 times lower than those of conventional CT scans. Increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. The aim of this article is to sensitize the Prosthodontist to CBCT technology, provide an overview of currently available maxillofacial CBCT systems and review the specific application of various CBCT display modes to clinical Prosthodontic practice. A MEDLINE search for relevant articles in this specific area of interest was conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:26929479

  9. NeuroSeek dual-color image processing infrared focal plane array

    NASA Astrophysics Data System (ADS)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  10. Computer-aided light sheet flow visualization using photogrammetry

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1994-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.

  11. Computer-Aided Light Sheet Flow Visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  12. Computer-aided light sheet flow visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  13. Computer-assisted sperm analysis (CASA): capabilities and potential developments.

    PubMed

    Amann, Rupert P; Waberski, Dagmar

    2014-01-01

    Computer-assisted sperm analysis (CASA) systems have evolved over approximately 40 years, through advances in devices to capture the image from a microscope, huge increases in computational power concurrent with amazing reduction in size of computers, new computer languages, and updated/expanded software algorithms. Remarkably, basic concepts for identifying sperm and their motion patterns are little changed. Older and slower systems remain in use. Most major spermatology laboratories and semen processing facilities have a CASA system, but the extent of reliance thereon ranges widely. This review describes capabilities and limitations of present CASA technology used with boar, bull, and stallion sperm, followed by possible future developments. Each marketed system is different. Modern CASA systems can automatically view multiple fields in a shallow specimen chamber to capture strobe-like images of 500 to >2000 sperm, at 50 or 60 frames per second, in clear or complex extenders, and in <2 minutes, store information for ≥ 30 frames and provide summary data for each spermatozoon and the population. A few systems evaluate sperm morphology concurrent with motion. CASA cannot accurately predict 'fertility' that will be obtained with a semen sample or subject. However, when carefully validated, current CASA systems provide information important for quality assurance of semen planned for marketing, and for the understanding of the diversity of sperm responses to changes in the microenvironment in research. The four take-home messages from this review are: (1) animal species, extender or medium, specimen chamber, intensity of illumination, imaging hardware and software, instrument settings, technician, etc., all affect accuracy and precision of output values; (2) semen production facilities probably do not need a substantially different CASA system whereas biology laboratories would benefit from systems capable of imaging and tracking sperm in deep chambers for a flexible period of time; (3) software should enable grouping of individual sperm based on one or more attributes so outputs reflect subpopulations or clusters of similar sperm with unique properties; means or medians for the total population are insufficient; and (4) a field-use, portable CASA system for measuring one motion and two or three morphology attributes of individual sperm is needed for field theriogenologists or andrologists working with human sperm outside urban centers; appropriate hardware to capture images and process data apparently are available. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Laptop Computer - Based Facial Recognition System Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. A. Cain; G. B. Singleton

    2001-03-01

    The objective of this project was to assess the performance of the leading commercial-off-the-shelf (COTS) facial recognition software package when used as a laptop application. We performed the assessment to determine the system's usefulness for enrolling facial images in a database from remote locations and conducting real-time searches against a database of previously enrolled images. The assessment involved creating a database of 40 images and conducting 2 series of tests to determine the product's ability to recognize and match subject faces under varying conditions. This report describes the test results and includes a description of the factors affecting the results.more » After an extensive market survey, we selected Visionics' FaceIt{reg_sign} software package for evaluation and a review of the Facial Recognition Vendor Test 2000 (FRVT 2000). This test was co-sponsored by the US Department of Defense (DOD) Counterdrug Technology Development Program Office, the National Institute of Justice, and the Defense Advanced Research Projects Agency (DARPA). Administered in May-June 2000, the FRVT 2000 assessed the capabilities of facial recognition systems that were currently available for purchase on the US market. Our selection of this Visionics product does not indicate that it is the ''best'' facial recognition software package for all uses. It was the most appropriate package based on the specific applications and requirements for this specific application. In this assessment, the system configuration was evaluated for effectiveness in identifying individuals by searching for facial images captured from video displays against those stored in a facial image database. An additional criterion was that the system be capable of operating discretely. For this application, an operational facial recognition system would consist of one central computer hosting the master image database with multiple standalone systems configured with duplicates of the master operating in remote locations. Remote users could perform real-time searches where network connectivity is not available. As images are enrolled at the remote locations, periodic database synchronization is necessary.« less

  15. Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images

    PubMed Central

    Levenson, Richard M.; Krupinski, Elizabeth A.; Navarro, Victor M.; Wasserman, Edward A.

    2015-01-01

    Pathologists and radiologists spend years acquiring and refining their medically essential visual skills, so it is of considerable interest to understand how this process actually unfolds and what image features and properties are critical for accurate diagnostic performance. Key insights into human behavioral tasks can often be obtained by using appropriate animal models. We report here that pigeons (Columba livia)—which share many visual system properties with humans—can serve as promising surrogate observers of medical images, a capability not previously documented. The birds proved to have a remarkable ability to distinguish benign from malignant human breast histopathology after training with differential food reinforcement; even more importantly, the pigeons were able to generalize what they had learned when confronted with novel image sets. The birds’ histological accuracy, like that of humans, was modestly affected by the presence or absence of color as well as by degrees of image compression, but these impacts could be ameliorated with further training. Turning to radiology, the birds proved to be similarly capable of detecting cancer-relevant microcalcifications on mammogram images. However, when given a different (and for humans quite difficult) task—namely, classification of suspicious mammographic densities (masses)—the pigeons proved to be capable only of image memorization and were unable to successfully generalize when shown novel examples. The birds’ successes and difficulties suggest that pigeons are well-suited to help us better understand human medical image perception, and may also prove useful in performance assessment and development of medical imaging hardware, image processing, and image analysis tools. PMID:26581091

  16. Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images.

    PubMed

    Levenson, Richard M; Krupinski, Elizabeth A; Navarro, Victor M; Wasserman, Edward A

    2015-01-01

    Pathologists and radiologists spend years acquiring and refining their medically essential visual skills, so it is of considerable interest to understand how this process actually unfolds and what image features and properties are critical for accurate diagnostic performance. Key insights into human behavioral tasks can often be obtained by using appropriate animal models. We report here that pigeons (Columba livia)-which share many visual system properties with humans-can serve as promising surrogate observers of medical images, a capability not previously documented. The birds proved to have a remarkable ability to distinguish benign from malignant human breast histopathology after training with differential food reinforcement; even more importantly, the pigeons were able to generalize what they had learned when confronted with novel image sets. The birds' histological accuracy, like that of humans, was modestly affected by the presence or absence of color as well as by degrees of image compression, but these impacts could be ameliorated with further training. Turning to radiology, the birds proved to be similarly capable of detecting cancer-relevant microcalcifications on mammogram images. However, when given a different (and for humans quite difficult) task-namely, classification of suspicious mammographic densities (masses)-the pigeons proved to be capable only of image memorization and were unable to successfully generalize when shown novel examples. The birds' successes and difficulties suggest that pigeons are well-suited to help us better understand human medical image perception, and may also prove useful in performance assessment and development of medical imaging hardware, image processing, and image analysis tools.

  17. Adaptive tight frame based medical image reconstruction: a proof-of-concept study for computed tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Weifeng; Cai, Jian-Feng; Gao, Hao

    2013-12-01

    A popular approach for medical image reconstruction has been through the sparsity regularization, assuming the targeted image can be well approximated by sparse coefficients under some properly designed system. The wavelet tight frame is such a widely used system due to its capability for sparsely approximating piecewise-smooth functions, such as medical images. However, using a fixed system may not always be optimal for reconstructing a variety of diversified images. Recently, the method based on the adaptive over-complete dictionary that is specific to structures of the targeted images has demonstrated its superiority for image processing. This work is to develop the adaptive wavelet tight frame method image reconstruction. The proposed scheme first constructs the adaptive wavelet tight frame that is task specific, and then reconstructs the image of interest by solving an l1-regularized minimization problem using the constructed adaptive tight frame system. The proof-of-concept study is performed for computed tomography (CT), and the simulation results suggest that the adaptive tight frame method improves the reconstructed CT image quality from the traditional tight frame method.

  18. Configuration of electro-optic fire source detection system

    NASA Astrophysics Data System (ADS)

    Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir

    2007-04-01

    The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.

  19. Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer.

    PubMed

    Zemp, Roger J; Song, Liang; Bitton, Rachel; Shung, K Kirk; Wang, Lihong V

    2008-05-26

    We present a novel high-frequency photoacoustic microscopy system capable of imaging the microvasculature of living subjects in realtime to depths of a few mm. The system consists of a high-repetition-rate Q-switched pump laser, a tunable dye laser, a 30-MHz linear ultrasound array transducer, a multichannel high-frequency data acquisition system, and a shared-RAM multi-core-processor computer. Data acquisition, beamforming, scan conversion, and display are implemented in realtime at 50 frames per second. Clearly resolvable images of 6-microm-diameter carbon fibers are experimentally demonstrated at 80 microm separation distances. Realtime imaging performance is demonstrated on phantoms and in vivo with absorbing structures identified to depths of 2.5-3 mm. This work represents the first high-frequency realtime photoacoustic imaging system to our knowledge.

  20. Identification Of Cells With A Compact Microscope Imaging System With Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking mic?oscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  1. Tracking of Cells with a Compact Microscope Imaging System with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously

  2. Tracking of cells with a compact microscope imaging system with intelligent controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to auto-focus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  3. A GUI visualization system for airborne lidar image data to reconstruct 3D city model

    NASA Astrophysics Data System (ADS)

    Kawata, Yoshiyuki; Koizumi, Kohei

    2015-10-01

    A visualization toolbox system with graphical user interfaces (GUIs) was developed for the analysis of LiDAR point cloud data, as a compound object oriented widget application in IDL (Interractive Data Language). The main features in our system include file input and output abilities, data conversion capability from ascii formatted LiDAR point cloud data to LiDAR image data whose pixel value corresponds the altitude measured by LiDAR, visualization of 2D/3D images in various processing steps and automatic reconstruction ability of 3D city model. The performance and advantages of our graphical user interface (GUI) visualization system for LiDAR data are demonstrated.

  4. The Hico Image Processing System: A Web-Accessible Hyperspectral Remote Sensing Toolbox

    NASA Astrophysics Data System (ADS)

    Harris, A. T., III; Goodman, J.; Justice, B.

    2014-12-01

    As the quantity of Earth-observation data increases, the use-case for hosting analytical tools in geospatial data centers becomes increasingly attractive. To address this need, HySpeed Computing and Exelis VIS have developed the HICO Image Processing System, a prototype cloud computing system that provides online, on-demand, scalable remote sensing image processing capabilities. The system provides a mechanism for delivering sophisticated image processing analytics and data visualization tools into the hands of a global user community, who will only need a browser and internet connection to perform analysis. Functionality of the HICO Image Processing System is demonstrated using imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), an imaging spectrometer located on the International Space Station (ISS) that is optimized for acquisition of aquatic targets. Example applications include a collection of coastal remote sensing algorithms that are directed at deriving critical information on water and habitat characteristics of our vulnerable coastal environment. The project leverages the ENVI Services Engine as the framework for all image processing tasks, and can readily accommodate the rapid integration of new algorithms, datasets and processing tools.

  5. Photoacoustic imaging of lymphatic pumping

    NASA Astrophysics Data System (ADS)

    Forbrich, Alex; Heinmiller, Andrew; Zemp, Roger J.

    2017-10-01

    The lymphatic system is responsible for fluid homeostasis and immune cell trafficking and has been implicated in several diseases, including obesity, diabetes, and cancer metastasis. Despite its importance, the lack of suitable in vivo imaging techniques has hampered our understanding of the lymphatic system. This is, in part, due to the limited contrast of lymphatic fluids and structures. Photoacoustic imaging, in combination with optically absorbing dyes or nanoparticles, has great potential for noninvasively visualizing the lymphatic vessels deep in tissues. Multispectral photoacoustic imaging is capable of separating the components; however, the slow wavelength switching speed of most laser systems is inadequate for imaging lymphatic pumping without motion artifacts being introduced into the processed images. We investigate two approaches for visualizing lymphatic processes in vivo. First, single-wavelength differential photoacoustic imaging is used to visualize lymphatic pumping in the hindlimb of a mouse in real time. Second, a fast-switching multiwavelength photoacoustic imaging system was used to assess the propulsion profile of dyes through the lymphatics in real time. These approaches may have profound impacts in noninvasively characterizing and investigating the lymphatic system.

  6. The Goodrich 3rd generation DB-110 system: operational on tactical and unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Iyengar, Mrinal; Lange, Davis

    2006-05-01

    Goodrich's DB-110 Reconnaissance Airborne Pod for TORnado (RAPTOR) and Data Link Ground Station (DLGS) have been used operationally for several years by the Royal Air Force (RAF). A variant of the RAPTOR DB-110 Sensor System is currently being used by the Japan Maritime Self Defense Force (JMSDF). Recently, the DB-110 system was flown on the Predator B Unmanned Aerial Vehicle (UAV), demonstrating the DB-110 system's utility on unmanned reconnaissance aircraft. The DB-110 is a dual-band EO and IR imaging capability for long, medium, and short standoff ranges, including oblique and over-flight imaging, in a single sensor package. The DB-110 system has also proven performance for real-time high bandwidth data link imagery transmission. Goodrich has leveraged this operational experience in building a 3rd Generation DB-110 system including new Reconnaissance Airborne Pod and Ground System, to be first used by the Polish Air Force. This 3rd Generation system maintains all the capability of the current 2nd Generation DB-110 system and adds several new features. The 3rd Generation system upgrades include an increase in resolution via new focal planes, addition of a third ("super-wide") field of view, and new avionics. This paper summarizes the Goodrich DB-110 3rd Generation System in terms of its basic design and capabilities. Recent demonstration of the DB-110 on the Predator B UAV is overviewed including sample imagery.

  7. Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Min Lee, Alan W. (Inventor)

    2010-01-01

    The present invention generally provides a terahertz (THz) imaging system that includes a source for generating radiation (e.g., a quantum cascade laser) having one or more frequencies in a range of about 0.1 THz to about 10 THz, and a two-dimensional detector array comprising a plurality of radiation detecting elements that are capable of detecting radiation in that frequency range. An optical system directs radiation from the source to an object to be imaged. The detector array detects at least a portion of the radiation transmitted through the object (or reflected by the object) so as to form a THz image of that object.

  8. The Advanced Gamma-ray Imaging System (AGIS): A Nanosecond Time Scale Stereoscopic Array Trigger System.

    NASA Astrophysics Data System (ADS)

    Krennrich, Frank; Buckley, J.; Byrum, K.; Dawson, J.; Drake, G.; Horan, D.; Krawzcynski, H.; Schroedter, M.

    2008-04-01

    Imaging atmospheric Cherenkov telescope arrays (VERITAS, HESS) have shown unprecedented background suppression capabilities for reducing cosmic-ray induced air showers, muons and night sky background fluctuations. Next-generation arrays with on the order of 100 telescopes offer larger collection areas, provide the possibility to see the air shower from more view points on the ground, have the potential to improve the sensitivity and give additional background suppression. Here we discuss the design of a fast array trigger system that has the potential to perform a real time image analysis allowing substantially improved background rate suppression at the trigger level.

  9. Identification and Imaging of Special Nuclear Materials and Contraband using Active x-ray Interrogation

    NASA Astrophysics Data System (ADS)

    Van Liew, Seth; Bertozzi, William; D'Olympia, Nathan; Franklin, Wilbur A.; Korbly, Stephen E.; Ledoux, Robert J.; Wilson, Cody M.

    A x-ray inspection system utilizing a continuous-wave 9 MeV rhodotron x-ray source for scanning cargo containers is presented. This system scans for contraband, anomalies, stowaway passengers, and nuclear threats for trucks and towed cargo containers. A transmission image is generated concurrently with a 3D image of the cargo, the latter presenting material information in the form of atomic number and density. Neutrons from photofission are also detected during each scan. In addition, nuclear resonance fluorescence detectors are capable of identifying specific isotopes. This system has recently been deployed at the Port of Boston.

  10. Terrain Commander: a next-generation remote surveillance system

    NASA Astrophysics Data System (ADS)

    Finneral, Henry J.

    2003-09-01

    Terrain Commander is a fully automated forward observation post that provides the most advanced capability in surveillance and remote situational awareness. The Terrain Commander system was selected by the Australian Government for its NINOX Phase IIB Unattended Ground Sensor Program with the first systems delivered in August of 2002. Terrain Commander offers next generation target detection using multi-spectral peripheral sensors coupled with autonomous day/night image capture and processing. Subsequent intelligence is sent back through satellite communications with unlimited range to a highly sophisticated central monitoring station. The system can "stakeout" remote locations clandestinely for 24 hours a day for months at a time. With its fully integrated SATCOM system, almost any site in the world can be monitored from virtually any other location in the world. Terrain Commander automatically detects and discriminates intruders by precisely cueing its advanced EO subsystem. The system provides target detection capabilities with minimal nuisance alarms combined with the positive visual identification that authorities demand before committing a response. Terrain Commander uses an advanced beamforming acoustic sensor and a distributed array of seismic, magnetic and passive infrared sensors to detect, capture images and accurately track vehicles and personnel. Terrain Commander has a number of emerging military and non-military applications including border control, physical security, homeland defense, force protection and intelligence gathering. This paper reviews the development, capabilities and mission applications of the Terrain Commander system.

  11. Image pattern recognition supporting interactive analysis and graphical visualization

    NASA Technical Reports Server (NTRS)

    Coggins, James M.

    1992-01-01

    Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.

  12. Microwave-excited ultrasound and thermoacoustic dual imaging

    NASA Astrophysics Data System (ADS)

    Ding, Wenzheng; Ji, Zhong; Xing, Da

    2017-05-01

    We designed a microwave-excited ultrasound (MUI) and thermoacoustic dual imaging system. Under the pulsed microwave excitation, the piezoelectric transducer used for thermoacoustic signal detection will also emit a highly directional ultrasonic beam based on the inverse piezoelectric effect. With this beam, the ultrasonic transmitter circuitry of the traditional ultrasound imaging (TUI) system can be replaced by a microwave source. In other words, TUI can be fully integrated into the thermoacoustic imaging system by sharing the microwave excitation source and the transducer. Moreover, the signals of the two imaging modalities do not interfere with each other due to the existence of the sound path difference, so that MUI can be performed simultaneously with microwave-induced thermoacoustic imaging. In the study, the performance characteristics and imaging capabilities of this hybrid system are demonstrated. The results indicate that our design provides one easy method for low-cost platform integration and has the potential to offer a clinically useful dual-modality tool for the detection of accurate diseases.

  13. Laser Imaging Video Camera Sees Through Fire, Fog, Smoke

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Under a series of SBIR contracts with Langley Research Center, inventor Richard Billmers refined a prototype for a laser imaging camera capable of seeing through fire, fog, smoke, and other obscurants. Now, Canton, Ohio-based Laser Imaging through Obscurants (LITO) Technologies Inc. is demonstrating the technology as a perimeter security system at Glenn Research Center and planning its future use in aviation, shipping, emergency response, and other fields.

  14. Fiber laser-microscope system for femtosecond photodisruption of biological samples

    PubMed Central

    Yavaş, Seydi; Erdogan, Mutlu; Gürel, Kutan; Ilday, F. Ömer; Eldeniz, Y. Burak; Tazebay, Uygar H.

    2012-01-01

    We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells. PMID:22435105

  15. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    NASA Astrophysics Data System (ADS)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  16. Data relay system specifications for ERTS image interpretation

    NASA Technical Reports Server (NTRS)

    Daniel, J. F.

    1970-01-01

    Experiments with the Data Collection System (DCS) of the Earth Resources Technology Satellites (ERTS) have been developed to stress ERTS applications in the Earth Resources Observation Systems (EROS) Program. Active pursuit of this policy has resulted in the design of eight specific experiments requiring a total of 98 DCS ground-data platforms. Of these eight experiments, six are intended to make use of DCS data as an aid in image interpretation, while two make use of the capability to relay data from remote locations. Preliminary discussions regarding additional experiments indicate a need for at least 150 DCS platforms within the EROS Program for ERTS experimentation. Results from the experiments will be used to assess the DCS suitability for satellites providing on-line, real-time, data relay capability. The rationale of the total DCS network of ground platforms and the relationship of each experiment to that rationale are discussed.

  17. Real-time simulation of thermal shadows with EMIT

    NASA Astrophysics Data System (ADS)

    Klein, Andreas; Oberhofer, Stefan; Schätz, Peter; Nischwitz, Alfred; Obermeier, Paul

    2016-05-01

    Modern missile systems use infrared imaging for tracking or target detection algorithms. The development and validation processes of these missile systems need high fidelity simulations capable of stimulating the sensors in real-time with infrared image sequences from a synthetic 3D environment. The Extensible Multispectral Image Generation Toolset (EMIT) is a modular software library developed at MBDA Germany for the generation of physics-based infrared images in real-time. EMIT is able to render radiance images in full 32-bit floating point precision using state of the art computer graphics cards and advanced shader programs. An important functionality of an infrared image generation toolset is the simulation of thermal shadows as these may cause matching errors in tracking algorithms. However, for real-time simulations, such as hardware in the loop simulations (HWIL) of infrared seekers, thermal shadows are often neglected or precomputed as they require a thermal balance calculation in four-dimensions (3D geometry in one-dimensional time up to several hours in the past). In this paper we will show the novel real-time thermal simulation of EMIT. Our thermal simulation is capable of simulating thermal effects in real-time environments, such as thermal shadows resulting from the occlusion of direct and indirect irradiance. We conclude our paper with the practical use of EMIT in a missile HWIL simulation.

  18. Event-based Sensing for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Cohen, G.; Afshar, S.; van Schaik, A.; Wabnitz, A.; Bessell, T.; Rutten, M.; Morreale, B.

    A revolutionary type of imaging device, known as a silicon retina or event-based sensor, has recently been developed and is gaining in popularity in the field of artificial vision systems. These devices are inspired by a biological retina and operate in a significantly different way to traditional CCD-based imaging sensors. While a CCD produces frames of pixel intensities, an event-based sensor produces a continuous stream of events, each of which is generated when a pixel detects a change in log light intensity. These pixels operate asynchronously and independently, producing an event-based output with high temporal resolution. There are also no fixed exposure times, allowing these devices to offer a very high dynamic range independently for each pixel. Additionally, these devices offer high-speed, low power operation and a sparse spatiotemporal output. As a consequence, the data from these sensors must be interpreted in a significantly different way to traditional imaging sensors and this paper explores the advantages this technology provides for space imaging. The applicability and capabilities of event-based sensors for SSA applications are demonstrated through telescope field trials. Trial results have confirmed that the devices are capable of observing resident space objects from LEO through to GEO orbital regimes. Significantly, observations of RSOs were made during both day-time and nighttime (terminator) conditions without modification to the camera or optics. The event based sensor’s ability to image stars and satellites during day-time hours offers a dramatic capability increase for terrestrial optical sensors. This paper shows the field testing and validation of two different architectures of event-based imaging sensors. An eventbased sensor’s asynchronous output has an intrinsically low data-rate. In addition to low-bandwidth communications requirements, the low weight, low-power and high-speed make them ideally suitable to meeting the demanding challenges required by space-based SSA systems. Results from these experiments and the systems developed highlight the applicability of event-based sensors to ground and space-based SSA tasks.

  19. A Forest Fire Sensor Web Concept with UAVSAR

    NASA Astrophysics Data System (ADS)

    Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.

    2008-12-01

    We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.

  20. Millimeter wave imaging: a historical review

    NASA Astrophysics Data System (ADS)

    Appleby, Roger; Robertson, Duncan A.; Wikner, David

    2017-05-01

    The SPIE Passive and Active Millimeter Wave Imaging conference has provided an annual focus and forum for practitioners in the field of millimeter wave imaging for the past two decades. To celebrate the conference's twentieth anniversary we present a historical review of the evolution of millimeter wave imaging over the past twenty years. Advances in device technology play a fundamental role in imaging capability whilst system architectures have also evolved. Imaging phenomenology continues to be a crucial topic underpinning the deployment of millimeter wave imaging in diverse applications such as security, remote sensing, non-destructive testing and synthetic vision.

  1. Distant touch hydrodynamic imaging with an artificial lateral line.

    PubMed

    Yang, Yingchen; Chen, Jack; Engel, Jonathan; Pandya, Saunvit; Chen, Nannan; Tucker, Craig; Coombs, Sheryl; Jones, Douglas L; Liu, Chang

    2006-12-12

    Nearly all underwater vehicles and surface ships today use sonar and vision for imaging and navigation. However, sonar and vision systems face various limitations, e.g., sonar blind zones, dark or murky environments, etc. Evolved over millions of years, fish use the lateral line, a distributed linear array of flow sensing organs, for underwater hydrodynamic imaging and information extraction. We demonstrate here a proof-of-concept artificial lateral line system. It enables a distant touch hydrodynamic imaging capability to critically augment sonar and vision systems. We show that the artificial lateral line can successfully perform dipole source localization and hydrodynamic wake detection. The development of the artificial lateral line is aimed at fundamentally enhancing human ability to detect, navigate, and survive in the underwater environment.

  2. Impact of assimilating GOES imager clear-sky radiance with a rapid refresh assimilation system for convection-permitting forecast over Mexico

    NASA Astrophysics Data System (ADS)

    Yang, Chun; Liu, Zhiquan; Gao, Feng; Childs, Peter P.; Min, Jinzhong

    2017-05-01

    The Geostationary Operational Environmental Satellite (GOES) imager data could provide a continuous image of the evolutionary pattern of severe weather phenomena with its high spatial and temporal resolution. The capability to assimilate the GOES imager radiances has been developed within the Weather Research and Forecasting model's data assimilation system. Compared to the benchmark experiment with no GOES imager data, the impact of assimilating GOES imager radiances on the analysis and forecast of convective process over Mexico in 7-10 March 2016 was assessed through analysis/forecast cycling experiments using rapid refresh assimilation system with hybrid-3DEnVar scheme. With GOES imager radiance assimilation, better analyses were obtained in terms of the humidity, temperature, and simulated water vapor channel brightness temperature distribution. Positive forecast impacts from assimilating GOES imager radiance were seen when verified against the Tropospheric Airborne Meteorological Data Reporting observation, GOES imager observation, and Mexico station precipitation data.

  3. Ultrahigh resolution optical coherence elastography combined with a rigid micro-endoscope (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fang, Qi; Curatolo, Andrea; Wijesinghe, Philip; Hamzah, Juliana; Ganss, Ruth; Noble, Peter B.; Karnowski, Karol; Sampson, David D.; Kim, Jun Ki; Lee, Wei M.; Kennedy, Brendan F.

    2017-02-01

    The mechanical forces that living cells experience represent an important framework in the determination of a range of intricate cellular functions and processes. Current insight into cell mechanics is typically provided by in vitro measurement systems; for example, atomic force microscopy (AFM) measurements are performed on cells in culture or, at best, on freshly excised tissue. Optical techniques, such as Brillouin microscopy and optical elastography, have been used for ex vivo and in situ imaging, recently achieving cellular-scale resolution. The utility of these techniques in cell mechanics lies in quick, three-dimensional and label-free mechanical imaging. Translation of these techniques toward minimally invasive in vivo imaging would provide unprecedented capabilities in tissue characterization. Here, we take the first steps along this path by incorporating a gradient-index micro-endoscope into an ultrahigh resolution optical elastography system. Using this endoscope, a lateral resolution of 2 µm is preserved over an extended depth-of-field of 80 µm, achieved by Bessel beam illumination. We demonstrate this combined system by imaging stiffness of a silicone phantom containing stiff inclusions and a freshly excised murine liver tissue. Additionally, we test this system on murine ribs in situ. We show that our approach can provide high quality extended depth-of-field images through an endoscope and has the potential to measure cell mechanics deep in tissue. Eventually, we believe this tool will be capable of studying biological processes and disease progression in vivo.

  4. Implementation of the Land, Atmosphere Near Real-Time Capability for EOS (LANCE)

    NASA Technical Reports Server (NTRS)

    Michael, Karen; Murphy, Kevin; Lowe, Dawn; Masuoka, Edward; Vollmer, Bruce; Tilmes, Curt; Teague, Michael; Ye, Gang; Maiden, Martha; Goodman, H. Michael; hide

    2010-01-01

    The past decade has seen a rapid increase in availability and usage of near real-time data from satellite sensors. Applications have demonstrated the utility of timely data in a number of areas ranging from numerical weather prediction and forecasting, to monitoring of natural hazards, disaster relief, agriculture and homeland security. As applications mature, the need to transition from prototypes to operational capabilities presents an opportunity to improve current near real-time systems and inform future capabilities. This paper presents NASA s effort to implement a near real-time capability for land and atmosphere data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), Atmospheric Infrared Sounder (AIRS), Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) instruments on the Terra, Aqua, and Aura satellites. Index Terms- Real time systems, Satellite applications

  5. Computer graphics for management: An abstract of capabilities and applications of the EIS system

    NASA Technical Reports Server (NTRS)

    Solem, B. J.

    1975-01-01

    The Executive Information Services (EIS) system, developed as a computer-based, time-sharing tool for making and implementing management decisions, and including computer graphics capabilities, was described. The following resources are available through the EIS languages: centralized corporate/gov't data base, customized and working data bases, report writing, general computational capability, specialized routines, modeling/programming capability, and graphics. Nearly all EIS graphs can be created by a single, on-line instruction. A large number of options are available, such as selection of graphic form, line control, shading, placement on the page, multiple images on a page, control of scaling and labeling, plotting of cum data sets, optical grid lines, and stack charts. The following are examples of areas in which the EIS system may be used: research, estimating services, planning, budgeting, and performance measurement, national computer hook-up negotiations.

  6. Comparison of existing digital image analysis systems for the analysis of Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Likens, W. C.; Wrigley, R. C.

    1984-01-01

    Most existing image analysis systems were designed with the Landsat Multi-Spectral Scanner in mind, leaving open the question of whether or not these systems could adequately process Thematic Mapper data. In this report, both hardware and software systems have been evaluated for compatibility with TM data. Lack of spectral analysis capability was not found to be a problem, though techniques for spatial filtering and texture varied. Computer processing speed and data storage of currently existing mini-computer based systems may be less than adequate. Upgrading to more powerful hardware may be required for many TM applications.

  7. PCI bus content-addressable-memory (CAM) implementation on FPGA for pattern recognition/image retrieval in a distributed environment

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.

    2004-11-01

    Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.

  8. Satellite on-board real-time SAR processor prototype

    NASA Astrophysics Data System (ADS)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and size are reviewed.

  9. Image texture segmentation using a neural network

    NASA Astrophysics Data System (ADS)

    Sayeh, Mohammed R.; Athinarayanan, Ragu; Dhali, Pushpuak

    1992-09-01

    In this paper we use a neural network called the Lyapunov associative memory (LYAM) system to segment image texture into different categories or clusters. The LYAM system is constructed by a set of ordinary differential equations which are simulated on a digital computer. The clustering can be achieved by using a single tuning parameter in the simplest model. Pattern classes are represented by the stable equilibrium states of the system. Design of the system is based on synthesizing two local energy functions, namely, the learning and recall energy functions. Before the implementation of the segmentation process, a Gauss-Markov random field (GMRF) model is applied to the raw image. This application suitably reduces the image data and prepares the texture information for the neural network process. We give a simple image example illustrating the capability of the technique. The GMRF-generated features are also used for a clustering, based on the Euclidean distance.

  10. Towards combined optical coherence tomography and hyper-spectral imaging for gastrointestinal endoscopy

    NASA Astrophysics Data System (ADS)

    Attendu, Xavier; Crunelle, Camille; de Sivry-Houle, Martin Poinsinet; Maubois, Billie; Urbain, Joanie; Turrell, Chloe; Strupler, Mathias; Godbout, Nicolas; Boudoux, Caroline

    2018-04-01

    Previous works have demonstrated feasibility of combining optical coherence tomography (OCT) and hyper-spectral imaging (HSI) through a single double-clad fiber (DCF). In this proceeding we present the continued development of a system combining both modalities and capable of rapid imaging. We discuss the development of a rapidly scanning, dual-band, polygonal swept-source system which combines NIR (1260-1340 nm) and visible (450-800 nm) wavelengths. The NIR band is used for OCT imaging while visible light allows HSI. Scanning rates up to 24 kHz are reported. Furthermore, we present and discuss the fiber system used for light transport, delivery and collection, and the custom signal acquisition software. Key points include the use of a double-clad fiber coupler as well as important alignments and back-reflection management. Simultaneous and co-registered imaging with both modalities is presented in a bench-top system

  11. Aircraft engine-mounted camera system for long wavelength infrared imaging of in-service thermal barrier coated turbine blades

    NASA Astrophysics Data System (ADS)

    Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian

    2014-12-01

    This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.

  12. Aircraft engine-mounted camera system for long wavelength infrared imaging of in-service thermal barrier coated turbine blades.

    PubMed

    Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian

    2014-12-01

    This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.

  13. Image motion compensation on the Spacelab 2 Solar Optical Universal Polarimeter /SL2 SOUP/

    NASA Technical Reports Server (NTRS)

    Tarbell, T. D.; Duncan, D. W.; Finch, M. L.; Spence, G.

    1981-01-01

    The SOUP experiment on Spacelab 2 includes a 30 cm visible light telescope and focal plane package mounted on the Instrument Pointing System (IPS). Scientific goals of the experiment dictate pointing stability requirements of less than 0.05 arcsecond jitter over periods of 5-20 seconds. Quantitative derivations of these requirements from two different aspects are presented: (1) avoidance of motion blurring of diffraction-limited images; (2) precise coalignment of consecutive frames to allow measurement of small image differences. To achieve this stability, a fine guider system capable of removing residual jitter of the IPS and image motions generated on the IPS cruciform instrument support structure has been constructed. This system uses solar limb detectors in the prime focal plane to derive an error signal. Image motion due to pointing errors is compensated by the agile secondary mirror mounted on piezoelectric transducers, controlled by a closed-loop servo system.

  14. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems II. Extension to the thermal infrared: equations and methods

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Lomheim, Terrence S.; Florio, Christopher J.; Harbold, Jeffrey M.; Muto, B. Michael; Schoolar, Richard B.; Wintz, Daniel T.; Keller, Robert A.

    2011-10-01

    In a previous paper in this series, we described how The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) tool may be used to model space and airborne imaging systems operating in the visible to near-infrared (VISNIR). PICASSO is a systems-level tool, representative of a class of such tools used throughout the remote sensing community. It is capable of modeling systems over a wide range of fidelity, anywhere from conceptual design level (where it can serve as an integral part of the systems engineering process) to as-built hardware (where it can serve as part of the verification process). In the present paper, we extend the discussion of PICASSO to the modeling of Thermal Infrared (TIR) remote sensing systems, presenting the equations and methods necessary to modeling in that regime.

  15. Interactive MR image guidance for neurosurgical and minimally invasive procedures

    NASA Astrophysics Data System (ADS)

    Wong, Terence Z.; Schwartz, Richard B.; Pergolizzi, Richard S., Jr.; Black, Peter M.; Kacher, Daniel F.; Morrison, Paul R.; Jolesz, Ferenc A.

    1999-05-01

    Advantages of MR imaging for guidance of minimally invasive procedures include exceptional soft tissue contrast, intrinsic multiplanar imaging capability, and absence of exposure to ionizing radiation. Specialized imaging sequences are available and under development which can further enhance diagnosis and therapy. Flow-sensitive imaging techniques can be used to identify vascular structures. Temperature-sensitive imaging is possible which can provide interactive feedback prior to, during, and following the delivery of thermal energy. Functional MR imaging and dynamic contrast-enhanced MRI sequences can provide additional information for guidance in neurosurgical applications. Functional MR allows mapping of eloquent areas in the brain, so that these areas may be avoided during therapy. Dynamic contrast enhancement techniques can be useful for distinguishing active tumor from tumor necrosis caused by previous radiation therapy. An open-configuration 0.5T MRI system (GE Signa SP) developed at Brigham and Women's Hospital in collaboration with General Electric Medical Systems is described. Interactive navigation systems have been integrated into the MRI system. The imaging system is sited in an operating room environment, and used for image guided neurosurgical procedures (biopsies and tumor excision), as well as minimally invasive thermal therapies. Examples of MR imaging guidance, navigational techniques, and clinical applications are presented.

  16. Development of first ever scanning probe microscopy capabilities for plutonium

    NASA Astrophysics Data System (ADS)

    Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; Vodnik, Douglas R.; Ramos, Michael; Richmond, Scott; Moore, David P.; Venhaus, Thomas J.; Joyce, Stephen A.; Usov, Igor O.

    2017-04-01

    Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. These first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.

  17. Development of first ever scanning probe microscopy capabilities for plutonium

    DOE PAGES

    Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; ...

    2017-04-01

    Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. In conclusion, these first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.

  18. Overview of High Speed Close-Up Imaging in an Icing Environment

    NASA Technical Reports Server (NTRS)

    Miller, Dean R.; Lynch, Christopher J.; Tate, Peter A.

    2004-01-01

    The Icing Branch and Imaging Technology Center at NASA Glenn Research Center have recently been involved in several projects where high speed close-up imaging was used to investigate water droplet impact/splash, and also ice particle impact/bounce in an icing wind tunnel. The combination of close-up and high speed imaging capabilities were required because the particles being studied were relatively small (d < 1 mm in diameter), and the impact process occurred in a very short time period (t(sub impact) << 1 sec). High speed close-up imaging was utilized to study the dynamics of droplet impact and splash in simulated Supercooled Large Droplet (SLD) icing conditions. The objective of this test was to evaluate the capability of a ultra high speed camera system to acquire quantitative information about the impact process (e.g., droplet size, velocity). Imaging data were obtained in an icing wind tunnel for spray cloud MVD > 50 m. High speed close-up imaging was also utilized to characterize the impact of ice particles on an airfoil with a thermally protected leading edge. The objective of this investigation was to determine whether ice particles tend to "stick" or "bounce" after impact. Imaging data were obtained for cases where the airfoil surface was heated and unheated. Based on the results from this test, follow on tests were conducted to investigate ice particle impact on the sensing elements of water content measurement devices. This paper will describe the use of the imaging systems to support these experimental investigations, present some representative results, and summarize what was learned about the use of these systems in an icing environment.

  19. Image/text automatic indexing and retrieval system using context vector approach

    NASA Astrophysics Data System (ADS)

    Qing, Kent P.; Caid, William R.; Ren, Clara Z.; McCabe, Patrick

    1995-11-01

    Thousands of documents and images are generated daily both on and off line on the information superhighway and other media. Storage technology has improved rapidly to handle these data but indexing this information is becoming very costly. HNC Software Inc. has developed a technology for automatic indexing and retrieval of free text and images. This technique is demonstrated and is based on the concept of `context vectors' which encode a succinct representation of the associated text and features of sub-image. In this paper, we will describe the Automated Librarian System which was designed for free text indexing and the Image Content Addressable Retrieval System (ICARS) which extends the technique from the text domain into the image domain. Both systems have the ability to automatically assign indices for a new document and/or image based on the content similarities in the database. ICARS also has the capability to retrieve images based on similarity of content using index terms, text description, and user-generated images as a query without performing segmentation or object recognition.

  20. Photoacoustic characterization of ovarian tissue

    NASA Astrophysics Data System (ADS)

    Aguirre, Andres; Gamelin, John; Guo, Puyun; Yan, Shikui; Sanders, Mary; Brewer, Molly; Zhu, Quing

    2009-02-01

    Ovarian cancer has the highest mortality of all gynecologic cancers with a five-year survival rate of only 30%. Because current imaging techniques (ultrasound, CT, MRI, PET) are not capable of detecting ovarian cancer early, most diagnoses occur in later stages (III/IV). Thus many women are not correctly diagnosed until the cancer becomes widely metastatic. On the other hand, while the majority of women with a detectable ultrasound abnormality do not harbor a cancer, they all undergo unnecessary oophorectomy. Hence, new imaging techniques that can provide functional and molecular contrasts are needed for improving the specificity of ovarian cancer detection and characterization. One such technique is photoacoustic imaging, which has great potential to reveal early tumor angiogenesis through intrinsic optical absorption contrast from hemoglobin or extrinsic contrast from conjugated agents binding to appropriate molecular receptors. To better understand the cancer disease process of ovarian tissue using photoacoustic imaging, it is necessary to first characterize the properties of normal ovarian tissue. We have imaged ex-vivo ovarian tissue using a 3D co-registered ultrasound and photoacoustic imaging system. The system is capable of volumetric imaging by means of electronic focusing. Detecting and visualizing small features from multiple viewing angles is possible without the need for any mechanical movement. The results show strong optical absorption from vasculature, especially highly vascularized corpora lutea, and low absorption from follicles. We will present correlation of photoacoustic images from animals with histology. Potential application of this technology would be the noninvasive imaging of the ovaries for screening or diagnostic purposes.

  1. Facility Name | Research Site Name | NREL

    Science.gov Websites

    ex ea commodo consequat. Images should have a width of 1746px - height can vary Capabilities Capability 1 Capability 2 Capability 3 Testing Facilities and Laboratories Laboratory Name Images should have a width of 768px - height can vary Download fact sheet Laboratory Name Images should have a width of

  2. Sensor-based architecture for medical imaging workflow analysis.

    PubMed

    Silva, Luís A Bastião; Campos, Samuel; Costa, Carlos; Oliveira, José Luis

    2014-08-01

    The growing use of computer systems in medical institutions has been generating a tremendous quantity of data. While these data have a critical role in assisting physicians in the clinical practice, the information that can be extracted goes far beyond this utilization. This article proposes a platform capable of assembling multiple data sources within a medical imaging laboratory, through a network of intelligent sensors. The proposed integration framework follows a SOA hybrid architecture based on an information sensor network, capable of collecting information from several sources in medical imaging laboratories. Currently, the system supports three types of sensors: DICOM repository meta-data, network workflows and examination reports. Each sensor is responsible for converting unstructured information from data sources into a common format that will then be semantically indexed in the framework engine. The platform was deployed in the Cardiology department of a central hospital, allowing identification of processes' characteristics and users' behaviours that were unknown before the utilization of this solution.

  3. Pleiades image quality: from users' needs to products definition

    NASA Astrophysics Data System (ADS)

    Kubik, Philippe; Pascal, Véronique; Latry, Christophe; Baillarin, Simon

    2005-10-01

    Pleiades is the highest resolution civilian earth observing system ever developed in Europe. This imagery programme is conducted by the French National Space Agency, CNES. It will operate in 2008-2009 two agile satellites designed to provide optical images to civilian and defence users. Images will be simultaneously acquired in Panchromatic (PA) and multispectral (XS) mode, which allows, in Nadir acquisition condition, to deliver 20 km wide, false or natural colored scenes with a 70 cm ground sampling distance after PA+XS fusion. Imaging capabilities have been highly optimized in order to acquire along-track mosaics, stereo pairs and triplets, and multi-targets. To fulfill the operational requirements and ensure quick access to information, ground processing has to automatically perform the radiometrical and geometrical corrections. Since ground processing capabilities have been taken into account very early in the programme development, it has been possible to relax some costly on-board components requirements, in order to achieve a cost effective on-board/ground compromise. Starting from an overview of the system characteristics, this paper deals with the image products definition (raw level, perfect sensor, orthoimage and along-track orthomosaics), and the main processing steps. It shows how each system performance is a result of the satellite performance followed by an appropriate ground processing. Finally, it focuses on the radiometrical performances of final products which are intimately linked to the following processing steps : radiometrical corrections, PA restoration, image resampling and PAN-sharpening.

  4. A small animal time-resolved optical tomography platform using wide-field excitation

    NASA Astrophysics Data System (ADS)

    Venugopal, Vivek

    Small animal imaging plays a critical role in present day biomedical research by filling an important gap in the translation of research from the bench to the bedside. Optical techniques constitute an emerging imaging modality which have tremendous potential in preclinical applications. Optical imaging methods are capable of non-invasive assessment of the functional and molecular characteristics of biological tissue. The three-dimensional optical imaging technique, referred to as diffuse optical tomography, provides an approach for the whole-body imaging of small animal models and can provide volumetric maps of tissue functional parameters (e.g. blood volume, oxygen saturation etc.) and/or provide 3D localization and quantification of fluorescence-based molecular markers in vivo. However, the complex mathematical reconstruction problem associated with optical tomography and the cumbersome instrumental designs limits its adoption as a high-throughput quantitative whole-body imaging modality in current biomedical research. The development of new optical imaging paradigms is thus necessary for a wide-acceptance of this new technology. In this thesis, the design, development, characterization and optimization of a small animal optical tomography system is discussed. Specifically, the platform combines a highly sensitive time-resolved imaging paradigm with multi-spectral excitation capability and CCD-based detection to provide a system capable of generating spatially, spectrally and temporally dense measurement datasets. The acquisition of such data sets however can take long and translate to often unrealistic acquisition times when using the classical point source based excitation scheme. The novel approach in the design of this platform is the adoption of a wide-field excitation scheme which employs extended excitation sources and in the process allows an estimated ten-fold reduction in the acquisition time. The work described herein details the design of the imaging platform employing DLP-based excitation and time-gated intensified CCD detection and the optimal system operation parameters are determined. The feasibility this imaging approach and accuracy of the system in reconstructing functional parameters and fluorescence markers based on lifetime contrast is established through phantom studies. As a part of the system characterization, the effect of noise in time-resolved optical tomography is investigated and propagation of system noise in optical reconstructions is established. Furthermore, data processing and measurement calibration techniques aimed at reducing the effect of noise in reconstructions are defined. The optimization of excitation pattern selection is established through a novel measurement-guided iterative pattern correction scheme. This technique referred to as Adaptive Full-Field Optical Tomography was shown to improve reconstruction performances in murine models by reducing the dynamic range in photon flux measurements on the surface. Lastly, the application of the unique attributes of this platform to a biologically relevant imaging application, referred to as Forster Resonance Energy Transfer is described. The tomographic imaging of FRET interaction in vivo on a whole-body scale is achieved using the wide-field imaging approach based on lifetime contrast. This technique represents the first demonstration of tomographic FRET imaging in small animals and has significant potential in the development of optical imaging techniques in varied applications ranging from drug discovery to in vivo study of protein-protein interaction.

  5. Dual-Particle Imaging System with Neutron Spectroscopy for Safeguard Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamel, Michael C.; Weber, Thomas M.

    2017-11-01

    A dual-particle imager (DPI) has been designed that is capable of detecting gamma-ray and neutron signatures from shielded SNM. The system combines liquid organic and NaI(Tl) scintillators to form a combined Compton and neutron scatter camera. Effective image reconstruction of detected particles is a crucial component for maximizing the performance of the system; however, a key deficiency exists in the widely used iterative list-mode maximum-likelihood estimation-maximization (MLEM) image reconstruction technique. For MLEM a stopping condition is required to achieve a good quality solution but these conditions fail to achieve maximum image quality. Stochastic origin ensembles (SOE) imaging is a goodmore » candidate to address this problem as it uses Markov chain Monte Carlo to reach a stochastic steady-state solution. The application of SOE to the DPI is presented in this work.« less

  6. 3D Imaging of Density Gradients Using Plenoptic BOS

    NASA Astrophysics Data System (ADS)

    Klemkowsky, Jenna; Clifford, Chris; Fahringer, Timothy; Thurow, Brian

    2016-11-01

    The combination of background oriented schlieren (BOS) and a plenoptic camera, termed Plenoptic BOS, is explored through two proof-of-concept experiments. The motivation of this work is to provide a 3D technique capable of observing density disturbances. BOS uses the relationship between density and refractive index gradients to observe an apparent shift in a patterned background through image comparison. Conventional BOS systems acquire a single line-of-sight measurement, and require complex configurations to obtain 3D measurements, which are not always conducive to experimental facilities. Plenoptic BOS exploits the plenoptic camera's ability to generate multiple perspective views and refocused images from a single raw plenoptic image during post processing. Using such capabilities, with regards to BOS, provides multiple line-of-sight measurements of density disturbances, which can be collectively used to generate refocused BOS images. Such refocused images allow the position of density disturbances to be qualitatively and quantitatively determined. The image that provides the sharpest density gradient signature corresponds to a specific depth. These results offer motivation to advance Plenoptic BOS with an ultimate goal of reconstructing a 3D density field.

  7. Hyperspectral imaging for simultaneous measurements of two FRET biosensors in pancreatic β-cells.

    PubMed

    Elliott, Amicia D; Bedard, Noah; Ustione, Alessandro; Baird, Michelle A; Davidson, Michael W; Tkaczyk, Tomasz; Piston, David W

    2017-01-01

    Fluorescent protein (FP) biosensors based on Förster resonance energy transfer (FRET) are commonly used to study molecular processes in living cells. There are FP-FRET biosensors for many cellular molecules, but it remains difficult to perform simultaneous measurements of multiple biosensors. The overlapping emission spectra of the commonly used FPs, including CFP/YFP and GFP/RFP make dual FRET measurements challenging. In addition, a snapshot imaging modality is required for simultaneous imaging. The Image Mapping Spectrometer (IMS) is a snapshot hyperspectral imaging system that collects high resolution spectral data and can be used to overcome these challenges. We have previously demonstrated the IMS's capabilities for simultaneously imaging GFP and CFP/YFP-based biosensors in pancreatic β-cells. Here, we demonstrate a further capability of the IMS to image simultaneously two FRET biosensors with a single excitation band, one for cAMP and the other for Caspase-3. We use these measurements to measure simultaneously cAMP signaling and Caspase-3 activation in pancreatic β-cells during oxidative stress and hyperglycemia, which are essential components in the pathology of diabetes.

  8. Synchrotron radiation microimaging in rabbit models of cancer for preclinical testing

    NASA Astrophysics Data System (ADS)

    Umetani, Keiji; Uesugi, Kentaro; Kobatake, Makito; Yamamoto, Akira; Yamashita, Takenori; Imai, Shigeki

    2009-10-01

    Preclinical laboratory animal imaging modalities such as microangiography and micro-computed tomography (micro-CT) have been developed at the SPring-8 BL20B2 bending magnet beamline. The objective of this paper is to demonstrate the usefulness of microangiography systems for physiological examinations of live animals and micro-CT systems for postmortem morphological examinations. Synchrotron radiation microangiography and micro-CT with contrast agents present the main advantageous capability of depicting the anatomy of small blood vessels with tens of micrometers' diameter. This paper reports two imaging instrument types and their respective applications to preclinical imaging of tumor angiogenic blood vessels in tumor-bearing rabbits, where tumor angiogenesis is characterized morphologically by an increased number of blood vessels. A microangiography system with spatial resolution around 10 μm has been used for therapeutically evaluating angiogenic vessels in a rabbit model of cancer for evaluating embolization materials in transcatheter arterial embolization and for radiation therapy. After an iodine contrast agent was injected into an artery, in vivo imaging was carried out using a high-resolution real-time detector incorporating an X-ray direct-conversion-type SATICON pickup tube. On the other hand, a micro-CT system capably performed three-dimensional visualization of tumor angiogenic blood vessels using tumor-transplanted rabbit specimens with a barium sulfate contrast agent injected into the blood vessels. For specimen imaging, a large-field high-resolution micro-CT system based on a 10-megapixel CCD camera was developed to study tumor-associated alterations in angioarchitecture. Evidence of increased vascularity by tumor angiogenesis and decreased vascularity by tumor treatments was achieved by physiological evaluation of angiogenic small blood vessels in microangiographic imaging and by morphological assessment in micro-CT imaging. These results demonstrate the accuracy and usefulness of microangiography and micro-CT systems for quantitative examination of animals' angioarchitecture, respectively, during live and postmortem examinations.

  9. The Cyborg Astrobiologist: testing a novelty detection algorithm on two mobile exploration systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Gross, C.; Wendt, L.; Bonnici, A.; Souza-Egipsy, V.; Ormö, J.; Díaz-Martínez, E.; Foing, B. H.; Bose, R.; Walter, S.; Oesker, M.; Ontrup, J.; Haschke, R.; Ritter, H.

    2010-01-01

    In previous work, a platform was developed for testing computer-vision algorithms for robotic planetary exploration. This platform consisted of a digital video camera connected to a wearable computer for real-time processing of images at geological and astrobiological field sites. The real-time processing included image segmentation and the generation of interest points based upon uncommonness in the segmentation maps. Also in previous work, this platform for testing computer-vision algorithms has been ported to a more ergonomic alternative platform, consisting of a phone camera connected via the Global System for Mobile Communications (GSM) network to a remote-server computer. The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon colour, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colours to test this algorithm. The algorithm robustly recognized previously observed units by their colour, while requiring only a single image or a few images to learn colours as familiar, demonstrating its fast learning capability.

  10. Bioinspired polarization navigation sensor for autonomous munitions systems

    NASA Astrophysics Data System (ADS)

    Giakos, G. C.; Quang, T.; Farrahi, T.; Deshpande, A.; Narayan, C.; Shrestha, S.; Li, Y.; Agarwal, M.

    2013-05-01

    Small unmanned aerial vehicles UAVs (SUAVs), micro air vehicles (MAVs), Automated Target Recognition (ATR), and munitions guidance, require extreme operational agility and robustness which can be partially offset by efficient bioinspired imaging sensor designs capable to provide enhanced guidance, navigation and control capabilities (GNC). Bioinspired-based imaging technology can be proved useful either for long-distance surveillance of targets in a cluttered environment, or at close distances limited by space surroundings and obstructions. The purpose of this study is to explore the phenomenology of image formation by different insect eye architectures, which would directly benefit the areas of defense and security, on the following four distinct areas: a) fabrication of the bioinspired sensor b) optical architecture, c) topology, and d) artificial intelligence. The outcome of this study indicates that bioinspired imaging can impact the areas of defense and security significantly by dedicated designs fitting into different combat scenarios and applications.

  11. Dark Energy Camera for Blanco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images frommore » the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.« less

  12. Advances in Light Microscopy for Neuroscience

    PubMed Central

    Wilt, Brian A.; Burns, Laurie D.; Ho, Eric Tatt Wei; Ghosh, Kunal K.; Mukamel, Eran A.

    2010-01-01

    Since the work of Golgi and Cajal, light microscopy has remained a key tool for neuroscientists to observe cellular properties. Ongoing advances have enabled new experimental capabilities using light to inspect the nervous system across multiple spatial scales, including ultrastructural scales finer than the optical diffraction limit. Other progress permits functional imaging at faster speeds, at greater depths in brain tissue, and over larger tissue volumes than previously possible. Portable, miniaturized fluorescence microscopes now allow brain imaging in freely behaving mice. Complementary progress on animal preparations has enabled imaging in head-restrained behaving animals, as well as time-lapse microscopy studies in the brains of live subjects. Mouse genetic approaches permit mosaic and inducible fluorescence-labeling strategies, whereas intrinsic contrast mechanisms allow in vivo imaging of animals and humans without use of exogenous markers. This review surveys such advances and highlights emerging capabilities of particular interest to neuroscientists. PMID:19555292

  13. Three-dimensional imaging technology offers promise in medicine.

    PubMed

    Karako, Kenji; Wu, Qiong; Gao, Jianjun

    2014-04-01

    Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.

  14. [Principles of MR-guided interventions, surgery, navigation, and robotics].

    PubMed

    Melzer, A

    2010-08-01

    The application of magnetic resonance imaging (MRI) as an imaging technique in interventional and surgical techniques provides a new dimension of soft tissue-oriented precise procedures without exposure to ionizing radiation and nephrotoxic allergenic, iodine-containing contrast agents. The technical capabilities of MRI in combination with interventional devices and systems, navigation, and robotics are discussed.

  15. A joint encryption/watermarking system for verifying the reliability of medical images.

    PubMed

    Bouslimi, Dalel; Coatrieux, Gouenou; Cozic, Michel; Roux, Christian

    2012-09-01

    In this paper, we propose a joint encryption/water-marking system for the purpose of protecting medical images. This system is based on an approach which combines a substitutive watermarking algorithm, the quantization index modulation, with an encryption algorithm: a stream cipher algorithm (e.g., the RC4) or a block cipher algorithm (e.g., the AES in cipher block chaining (CBC) mode of operation). Our objective is to give access to the outcomes of the image integrity and of its origin even though the image is stored encrypted. If watermarking and encryption are conducted jointly at the protection stage, watermark extraction and decryption can be applied independently. The security analysis of our scheme and experimental results achieved on 8-bit depth ultrasound images as well as on 16-bit encoded positron emission tomography images demonstrate the capability of our system to securely make available security attributes in both spatial and encrypted domains while minimizing image distortion. Furthermore, by making use of the AES block cipher in CBC mode, the proposed system is compliant with or transparent to the DICOM standard.

  16. Spectrally-encoded color imaging

    PubMed Central

    Kang, DongKyun; Yelin, Dvir; Bouma, Brett E.; Tearney, Guillermo J.

    2010-01-01

    Spectrally-encoded endoscopy (SEE) is a technique for ultraminiature endoscopy that encodes each spatial location on the sample with a different wavelength. One limitation of previous incarnations of SEE is that it inherently creates monochromatic images, since the spectral bandwidth is expended in the spatial encoding process. Here we present a spectrally-encoded imaging system that has color imaging capability. The new imaging system utilizes three distinct red, green, and blue spectral bands that are configured to illuminate the grating at different incident angles. By careful selection of the incident angles, the three spectral bands can be made to overlap on the sample. To demonstrate the method, a bench-top system was built, comprising a 2400-lpmm grating illuminated by three 525-μm-diameter beams with three different spectral bands. Each spectral band had a bandwidth of 75 nm, producing 189 resolvable points. A resolution target, color phantoms, and excised swine small intestine were imaged to validate the system's performance. The color SEE system showed qualitatively and quantitatively similar color imaging performance to that of a conventional digital camera. PMID:19688002

  17. Label-free optical imaging of lymphatic vessels within tissue beds in vivo

    PubMed Central

    Yousefi, Siavash; Zhi, Zhongwei; Wang, Ruikang K.

    2015-01-01

    Lymphatic vessels are a part of circulatory system in vertebrates that maintain tissue fluid homeostasis and drain excess fluid and large cells that cannot easily find their way back into venous system. Due to the lack of non-invasive monitoring tools, lymphatic vessels are known as forgotten circulation. However, lymphatic system plays an important role in diseases such as cancer and inflammatory conditions. In this paper, we start to briefly review the current existing methods for imaging lymphatic vessels, mostly involving dye/targeting cell injection. We then show the capability of optical coherence tomography (OCT) for label-free non-invasive in vivo imaging of lymph vessels and nodes. One of the advantages of using OCT over other imaging modalities is its ability to assess label-free blood flow perfusion that can be simultaneously observed along with lymphatic vessels for imaging the microcirculatory system within tissue beds. Imaging the microcirculatory system including blood and lymphatic vessels can be utilized for imaging and better understanding pathologic mechanisms and treatment technique development in some critical diseases such as inflammation, malignant cancer angiogenesis and metastasis. PMID:25642129

  18. Real-time Imaging Orientation Determination System to Verify Imaging Polarization Navigation Algorithm

    PubMed Central

    Lu, Hao; Zhao, Kaichun; Wang, Xiaochu; You, Zheng; Huang, Kaoli

    2016-01-01

    Bio-inspired imaging polarization navigation which can provide navigation information and is capable of sensing polarization information has advantages of high-precision and anti-interference over polarization navigation sensors that use photodiodes. Although all types of imaging polarimeters exist, they may not qualify for the research on the imaging polarization navigation algorithm. To verify the algorithm, a real-time imaging orientation determination system was designed and implemented. Essential calibration procedures for the type of system that contained camera parameter calibration and the inconsistency of complementary metal oxide semiconductor calibration were discussed, designed, and implemented. Calibration results were used to undistort and rectify the multi-camera system. An orientation determination experiment was conducted. The results indicated that the system could acquire and compute the polarized skylight images throughout the calibrations and resolve orientation by the algorithm to verify in real-time. An orientation determination algorithm based on image processing was tested on the system. The performance and properties of the algorithm were evaluated. The rate of the algorithm was over 1 Hz, the error was over 0.313°, and the population standard deviation was 0.148° without any data filter. PMID:26805851

  19. Finding the Needles in the Haystacks: High-Fidelity Models of the Modern and Archean Solar System for Simulating Exoplanet Observations

    NASA Technical Reports Server (NTRS)

    Roberge, Aki; Rizzo, Maxime J.; Lincowski, Andrew P.; Arney, Giada N.; Stark, Christopher C.; Robinson, Tyler D.; Snyder, Gregory F.; Pueyo, Laurent; Zimmerman, Neil T.; Jansen, Tiffany; hide

    2017-01-01

    We present two state-of-the-art models of the solar system, one corresponding to the present day and one to the Archean Eon 3.5 billion years ago. Each model contains spatial and spectral information for the star, the planets, and the interplanetary dust, extending to 50 au from the Sun and covering the wavelength range 0.3-2.5 micron. In addition, we created a spectral image cube representative of the astronomical backgrounds that will be seen behind deep observations of extrasolar planetary systems, including galaxies and Milky Way stars. These models are intended as inputs to high-fidelity simulations of direct observations of exoplanetary systems using telescopes equipped with high-contrast capability. They will help improve the realism of observation and instrument parameters that are required inputs to statistical observatory yield calculations, as well as guide development of post-processing algorithms for telescopes capable of directly imaging Earth-like planets.

  20. X-ray imaging with amorphous silicon active matrix flat-panel imagers (AMFPIs)

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Jee, Kyung-Wook; Maolinbay, Manat; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Verma, Manav; Zhao, Qihua

    1997-07-01

    Recent advances in thin-film electronics technology have opened the way for the use of flat-panel imagers in a number of medical imaging applications. These novel imagers offer real time digital readout capabilities (˜30 frames per second), radiation hardness (>106cGy), large area (30×40 cm2) and compactness (˜1 cm). Such qualities make them strong candidates for the replacement of conventional x-ray imaging technologies such as film-screen and image intensifier systems. In this report, qualities and potential of amorphous silicon based active matrix flat-panel imagers are outlined for various applications such as radiation therapy, radiography, fluoroscopy and mammography.

  1. An Integrated System for Superharmonic Contrast-Enhanced Ultrasound Imaging: Design and Intravascular Phantom Imaging Study.

    PubMed

    Li, Yang; Ma, Jianguo; Martin, K Heath; Yu, Mingyue; Ma, Teng; Dayton, Paul A; Jiang, Xiaoning; Shung, K Kirk; Zhou, Qifa

    2016-09-01

    Superharmonic contrast-enhanced ultrasound imaging, also called acoustic angiography, has previously been used for the imaging of microvasculature. This approach excites microbubble contrast agents near their resonance frequency and receives echoes at nonoverlapping superharmonic bandwidths. No integrated system currently exists could fully support this application. To fulfill this need, an integrated dual-channel transmit/receive system for superharmonic imaging was designed, built, and characterized experimentally. The system was uniquely designed for superharmonic imaging and high-resolution B-mode imaging. A complete ultrasound system including a pulse generator, a data acquisition unit, and a signal processing unit were integrated into a single package. The system was controlled by a field-programmable gate array, on which multiple user-defined modes were implemented. A 6-, 35-MHz dual-frequency dual-element intravascular ultrasound transducer was designed and used for imaging. The system successfully obtained high-resolution B-mode images of coronary artery ex vivo with 45-dB dynamic range. The system was capable of acquiring in vitro superharmonic images of a vasa vasorum mimicking phantom with 30-dB contrast. It could detect a contrast agent filled tissue mimicking tube of 200 μm diameter. For the first time, high-resolution B-mode images and superharmonic images were obtained in an intravascular phantom, made possible by the dedicated integrated system proposed. The system greatly reduced the cost and complexity of the superharmonic imaging intended for preclinical study. Significant: The system showed promise for high-contrast intravascular microvascular imaging, which may have significant importance in assessment of the vasa vasorum associated with atherosclerotic plaques.

  2. Backscatter X-Ray Development for Space Vehicle Thermal Protection Systems

    NASA Astrophysics Data System (ADS)

    Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony

    2011-06-01

    The Backscatter X-Ray (BSX) imaging technique is used for various single sided inspection purposes. Previously developed BSX techniques for spray-on-foam insulation (SOFI) have been used for detecting defects in Space Shuttle External Tank foam insulation. The developed BSX hardware and techniques are currently being enhanced to advance Non-Destructive Evaluation (NDE) methods for future space vehicle applications. Various Thermal Protection System (TPS) materials were inspected using the enhanced BSX imaging techniques, investigating the capability of the method to detect voids and other discontinuities at various locations within each material. Calibration standards were developed for the TPS materials in order to characterize and develop enhanced BSX inspection capabilities. The ability of the BSX technique to detect both manufactured and natural defects was also studied and compared to through-transmission x-ray techniques. The energy of the x-ray, source to object distance, angle of x-ray, focal spot size and x-ray detector configurations were parameters playing a significant role in the sensitivity of the BSX technique to image various materials and defects. The image processing of the results also showed significant increase in the sensitivity of the technique. The experimental results showed BSX to be a viable inspection technique for space vehicle TPS systems.

  3. Real-time monitoring of thermal and mechanical tissue response to modulated phased-array HIFU beams in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Dalong; Ballard, John R.; Haritonova, Alyona; Choi, Jeungwan; Bischof, John; Ebbini, Emad S.

    2012-10-01

    An integrated system employing real-time ultrasound thermography and strain imaging in monitoring tissue response to phased-array heating patterns has been developed. The imaging system is implemented on a commercially available scanner (SonixRP) at frame rates > 500 fps with limited frame sizes covering the vicinity of the HIFU focal spot. These frame rates are sufficient to capture tissue motion and deformation even in the vicinity of large arteries. With the high temporal and spatial resolution of our strain imaging system, we are able to capture and separate tissue strains due to natural motion (breathing and pulsation) from HIFU induced strains (thermal and mechanical). We have collected in vivo strain imaging during sub-therapeutic and therapeutic HIFU exposure in swine and rat model. A 3.5-MHz phased array was used to generate sinusoidally-modulated pHIFU beams at different intensity levels and durations near blood vessels of different sizes (e.g. femoral in the swine and rat models). The results show that our approach is capable of characterizing the thermal and mechanical tissue response to sub-therapeutic pHIFU beam. For therapeutic pHIFU beams, the approach is still capable of localizing the therapeutic beam, but the results at the focal spot are complicated by bubble generation.

  4. Using Object Storage Technology vs Vendor Neutral Archives for an Image Data Repository Infrastructure.

    PubMed

    Bialecki, Brian; Park, James; Tilkin, Mike

    2016-08-01

    The intent of this project was to use object storage and its database, which has the ability to add custom extensible metadata to an imaging object being stored within the system, to harness the power of its search capabilities, and to close the technology gap that healthcare faces. This creates a non-disruptive tool that can be used natively by both legacy systems and the healthcare systems of today which leverage more advanced storage technologies. The base infrastructure can be populated alongside current workflows without any interruption to the delivery of services. In certain use cases, this technology can be seen as a true alternative to the VNA (Vendor Neutral Archive) systems implemented by healthcare today. The scalability, security, and ability to process complex objects makes this more than just storage for image data and a commodity to be consumed by PACS (Picture Archiving and Communication System) and workstations. Object storage is a smart technology that can be leveraged to create vendor independence, standards compliance, and a data repository that can be mined for truly relevant content by adding additional context to search capabilities. This functionality can lead to efficiencies in workflow and a wealth of minable data to improve outcomes into the future.

  5. Imaging multi-scale dynamics in vivo with spiral volumetric optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Fehm, Thomas F.; Ford, Steven J.; Gottschalk, Sven; Razansky, Daniel

    2017-03-01

    Imaging dynamics in living organisms is essential for the understanding of biological complexity. While multiple imaging modalities are often required to cover both microscopic and macroscopic spatial scales, dynamic phenomena may also extend over different temporal scales, necessitating the use of different imaging technologies based on the trade-off between temporal resolution and effective field of view. Optoacoustic (photoacoustic) imaging has been shown to offer the exclusive capability to link multiple spatial scales ranging from organelles to entire organs of small animals. Yet, efficient visualization of multi-scale dynamics remained difficult with state-of-the-art systems due to inefficient trade-offs between image acquisition and effective field of view. Herein, we introduce a spiral volumetric optoacoustic tomography (SVOT) technique that provides spectrally-enriched high-resolution optical absorption contrast across multiple spatio-temporal scales. We demonstrate that SVOT can be used to monitor various in vivo dynamics, from video-rate volumetric visualization of cardiac-associated motion in whole organs to high-resolution imaging of pharmacokinetics in larger regions. The multi-scale dynamic imaging capability thus emerges as a powerful and unique feature of the optoacoustic technology that adds to the multiple advantages of this technology for structural, functional and molecular imaging.

  6. Laser fluorescence bronchoscope for localization of occult lung tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Profio, A.E.; Doiron, D.R.; King, E.G.

    1979-11-01

    A system for imaging occult bronchogenic carcinoma by the fluorescence of previously-injected, tumor-specific compound hematoporphyrin-derivative has been assembled and successfully used to locate a tumor l mm thick. The violet excitation source is a krypton ion laser coupled to fused quartz fiber light conductor. An electrostatic image intensifier attached to a standard flexible fiberoptic bronchoscope provides a bright image even at relatively low irradiance. A red secondary filter rejects most reflected background and autofluorescence. Sensitivity and contrast capability of the system should permit detection of a tumor less than 0.1 mm thick.

  7. The Hurricane Imaging Radiometer: Present and Future

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Biswas, S. K.; Cecil, D.; Jones, W. L.; Johnson, J.; Farrar, S.; Sahawneh, S.; Ruf, C. S.; hide

    2013-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave radiometer designed to provide high resolution, wide swath imagery of surface wind speed in tropical cyclones from a low profile planar antenna with no mechanical scanning. Wind speed and rain rate images from HIRAD's first field campaign (GRIP, 2010) are presented here followed, by a discussion on the performance of the newly installed thermal control system during the 2012 HS3 campaign. The paper ends with a discussion on the next generation dual polarization HIRAD antenna (already designed) for a future system capable of measuring wind direction as well as wind speed.

  8. Three-dimensional tracking and imaging laser scanner for space operations

    NASA Astrophysics Data System (ADS)

    Laurin, Denis G.; Beraldin, J. A.; Blais, Francois; Rioux, Marc; Cournoyer, Luc

    1999-05-01

    This paper presents the development of a laser range scanner (LARS) as a three-dimensional sensor for space applications. The scanner is a versatile system capable of doing surface imaging, target ranging and tracking. It is capable of short range (0.5 m to 20 m) and long range (20 m to 10 km) sensing using triangulation and time-of-flight (TOF) methods respectively. At short range (1 m), the resolution is sub-millimeter and drops gradually with distance (2 cm at 10 m). For long range, the TOF provides a constant resolution of plus or minus 3 cm, independent of range. The LARS could complement the existing Canadian Space Vision System (CSVS) for robotic manipulation. As an active vision system, the LARS is immune to sunlight and adverse lighting; this is a major advantage over the CSVS, as outlined in this paper. The LARS could also replace existing radar systems used for rendezvous and docking. There are clear advantages of an optical system over a microwave radar in terms of size, mass, power and precision. Equipped with two high-speed galvanometers, the laser can be steered to address any point in a 30 degree X 30 degree field of view. The scanning can be continuous (raster scan, Lissajous) or direct (random). This gives the scanner the ability to register high-resolution 3D images of range and intensity (up to 4000 X 4000 pixels) and to perform point target tracking as well as object recognition and geometrical tracking. The imaging capability of the scanner using an eye-safe laser is demonstrated. An efficient fiber laser delivers 60 mW of CW or 3 (mu) J pulses at 20 kHz for TOF operation. Implementation of search and track of multiple targets is also demonstrated. For a single target, refresh rates up to 137 Hz is possible. Considerations for space qualification of the scanner are discussed. Typical space operations, such as docking, object attitude tracking, and inspections are described.

  9. Fluorescence optical imaging in anticancer drug delivery.

    PubMed

    Etrych, Tomáš; Lucas, Henrike; Janoušková, Olga; Chytil, Petr; Mueller, Thomas; Mäder, Karsten

    2016-03-28

    In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Gray-level transformations for interactive image enhancement. M.S. Thesis. Final Technical Report

    NASA Technical Reports Server (NTRS)

    Fittes, B. A.

    1975-01-01

    A gray-level transformation method suitable for interactive image enhancement was presented. It is shown that the well-known histogram equalization approach is a special case of this method. A technique for improving the uniformity of a histogram is also developed. Experimental results which illustrate the capabilities of both algorithms are described. Two proposals for implementing gray-level transformations in a real-time interactive image enhancement system are also presented.

  11. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio)

    PubMed Central

    Shang, Chunfeng; Yang, Wenbin; Bai, Lu; Du, Jiulin

    2017-01-01

    The internal brain dynamics that link sensation and action are arguably better studied during natural animal behaviors. Here, we report on a novel volume imaging and 3D tracking technique that monitors whole brain neural activity in freely swimming larval zebrafish (Danio rerio). We demonstrated the capability of our system through functional imaging of neural activity during visually evoked and prey capture behaviors in larval zebrafish. PMID:28930070

  12. Tera-Ops Processing for ATR

    NASA Technical Reports Server (NTRS)

    Udomkesmalee, Suraphol; Padgett, Curtis; Zhu, David; Lung, Gerald; Howard, Ayanna

    2000-01-01

    A three-dimensional microelectronic device (3DANN-R) capable of performing general image convolution at the speed of 1012 operations/second (ops) in a volume of less than 1.5 cubic centimeter has been successfully built under the BMDO/JPL VIGILANTE program. 3DANN-R was developed in partnership with Irvine Sensors Corp., Costa Mesa, California. 3DANN-R is a sugar-cube-sized, low power image convolution engine that in its core computation circuitry is capable of performing 64 image convolutions with large (64x64) windows at video frame rates. This paper explores potential applications of 3DANN-R such as target recognition, SAR and hyperspectral data processing, and general machine vision using real data and discuss technical challenges for providing deployable systems for BMDO surveillance and interceptor programs.

  13. Spectromicroscopy and coherent diffraction imaging: focus on energy materials applications.

    PubMed

    Hitchcock, Adam P; Toney, Michael F

    2014-09-01

    Current and future capabilities of X-ray spectromicroscopy are discussed based on coherence-limited imaging methods which will benefit from the dramatic increase in brightness expected from a diffraction-limited storage ring (DLSR). The methods discussed include advanced coherent diffraction techniques and nanoprobe-based real-space imaging using Fresnel zone plates or other diffractive optics whose performance is affected by the degree of coherence. The capabilities of current systems, improvements which can be expected, and some of the important scientific themes which will be impacted are described, with focus on energy materials applications. Potential performance improvements of these techniques based on anticipated DLSR performance are estimated. Several examples of energy sciences research problems which are out of reach of current instrumentation, but which might be solved with the enhanced DLSR performance, are discussed.

  14. A novel lobster-eye imaging system based on Schmidt-type objective for X-ray-backscattering inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jie; Wang, Xin, E-mail: wangx@tongji.edu.cn, E-mail: mubz@tongji.edu.cn; Zhan, Qi

    This paper presents a novel lobster-eye imaging system for X-ray-backscattering inspection. The system was designed by modifying the Schmidt geometry into a treble-lens structure in order to reduce the resolution difference between the vertical and horizontal directions, as indicated by ray-tracing simulations. The lobster-eye X-ray imaging system is capable of operating over a wide range of photon energies up to 100 keV. In addition, the optics of the lobster-eye X-ray imaging system was tested to verify that they meet the requirements. X-ray-backscattering imaging experiments were performed in which T-shaped polymethyl-methacrylate objects were imaged by the lobster-eye X-ray imaging system basedmore » on both the double-lens and treble-lens Schmidt objectives. The results show similar resolution of the treble-lens Schmidt objective in both the vertical and horizontal directions. Moreover, imaging experiments were performed using a second treble-lens Schmidt objective with higher resolution. The results show that for a field of view of over 200 mm and with a 500 mm object distance, this lobster-eye X-ray imaging system based on a treble-lens Schmidt objective offers a spatial resolution of approximately 3 mm.« less

  15. A novel lobster-eye imaging system based on Schmidt-type objective for X-ray-backscattering inspection

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Wang, Xin; Zhan, Qi; Huang, Shengling; Chen, Yifan; Mu, Baozhong

    2016-07-01

    This paper presents a novel lobster-eye imaging system for X-ray-backscattering inspection. The system was designed by modifying the Schmidt geometry into a treble-lens structure in order to reduce the resolution difference between the vertical and horizontal directions, as indicated by ray-tracing simulations. The lobster-eye X-ray imaging system is capable of operating over a wide range of photon energies up to 100 keV. In addition, the optics of the lobster-eye X-ray imaging system was tested to verify that they meet the requirements. X-ray-backscattering imaging experiments were performed in which T-shaped polymethyl-methacrylate objects were imaged by the lobster-eye X-ray imaging system based on both the double-lens and treble-lens Schmidt objectives. The results show similar resolution of the treble-lens Schmidt objective in both the vertical and horizontal directions. Moreover, imaging experiments were performed using a second treble-lens Schmidt objective with higher resolution. The results show that for a field of view of over 200 mm and with a 500 mm object distance, this lobster-eye X-ray imaging system based on a treble-lens Schmidt objective offers a spatial resolution of approximately 3 mm.

  16. Anthropometric body measurements based on multi-view stereo image reconstruction.

    PubMed

    Li, Zhaoxin; Jia, Wenyan; Mao, Zhi-Hong; Li, Jie; Chen, Hsin-Chen; Zuo, Wangmeng; Wang, Kuanquan; Sun, Mingui

    2013-01-01

    Anthropometric measurements, such as the circumferences of the hip, arm, leg and waist, waist-to-hip ratio, and body mass index, are of high significance in obesity and fitness evaluation. In this paper, we present a home based imaging system capable of conducting anthropometric measurements. Body images are acquired at different angles using a home camera and a simple rotating disk. Advanced image processing algorithms are utilized for 3D body surface reconstruction. A coarse body shape model is first established from segmented body silhouettes. Then, this model is refined through an inter-image consistency maximization process based on an energy function. Our experimental results using both a mannequin surrogate and a real human body validate the feasibility of the proposed system.

  17. Anthropometric Body Measurements Based on Multi-View Stereo Image Reconstruction*

    PubMed Central

    Li, Zhaoxin; Jia, Wenyan; Mao, Zhi-Hong; Li, Jie; Chen, Hsin-Chen; Zuo, Wangmeng; Wang, Kuanquan; Sun, Mingui

    2013-01-01

    Anthropometric measurements, such as the circumferences of the hip, arm, leg and waist, waist-to-hip ratio, and body mass index, are of high significance in obesity and fitness evaluation. In this paper, we present a home based imaging system capable of conducting automatic anthropometric measurements. Body images are acquired at different angles using a home camera and a simple rotating disk. Advanced image processing algorithms are utilized for 3D body surface reconstruction. A coarse body shape model is first established from segmented body silhouettes. Then, this model is refined through an inter-image consistency maximization process based on an energy function. Our experimental results using both a mannequin surrogate and a real human body validate the feasibility of proposed system. PMID:24109700

  18. On-Chip Biomedical Imaging

    PubMed Central

    Göröcs, Zoltán; Ozcan, Aydogan

    2012-01-01

    Lab-on-a-chip systems have been rapidly emerging to pave the way toward ultra-compact, efficient, mass producible and cost-effective biomedical research and diagnostic tools. Although such microfluidic and micro electromechanical systems achieved high levels of integration, and are capable of performing various important tasks on the same chip, such as cell culturing, sorting and staining, they still rely on conventional microscopes for their imaging needs. Recently several alternative on-chip optical imaging techniques have been introduced, which have the potential to substitute conventional microscopes for various lab-on-a-chip applications. Here we present a critical review of these recently emerging on-chip biomedical imaging modalities, including contact shadow imaging, lensfree holographic microscopy, fluorescent on-chip microscopy and lensfree optical tomography. PMID:23558399

  19. Kingfisher: a system for remote sensing image database management

    NASA Astrophysics Data System (ADS)

    Bruzzo, Michele; Giordano, Ferdinando; Dellepiane, Silvana G.

    2003-04-01

    At present retrieval methods in remote sensing image database are mainly based on spatial-temporal information. The increasing amount of images to be collected by the ground station of earth observing systems emphasizes the need for database management with intelligent data retrieval capabilities. The purpose of the proposed method is to realize a new content based retrieval system for remote sensing images database with an innovative search tool based on image similarity. This methodology is quite innovative for this application, at present many systems exist for photographic images, as for example QBIC and IKONA, but they are not able to extract and describe properly remote image content. The target database is set by an archive of images originated from an X-SAR sensor (spaceborne mission, 1994). The best content descriptors, mainly texture parameters, guarantees high retrieval performances and can be extracted without losses independently of image resolution. The latter property allows DBMS (Database Management System) to process low amount of information, as in the case of quick-look images, improving time performance and memory access without reducing retrieval accuracy. The matching technique has been designed to enable image management (database population and retrieval) independently of dimensions (width and height). Local and global content descriptors are compared, during retrieval phase, with the query image and results seem to be very encouraging.

  20. GPR Imaging for Deeply Buried Objects: A Comparative Study Based on FDTD Models and Field Experiments

    NASA Technical Reports Server (NTRS)

    Tilley, roger; Dowla, Farid; Nekoogar, Faranak; Sadjadpour, Hamid

    2012-01-01

    Conventional use of Ground Penetrating Radar (GPR) is hampered by variations in background environmental conditions, such as water content in soil, resulting in poor repeatability of results over long periods of time when the radar pulse characteristics are kept the same. Target objects types might include voids, tunnels, unexploded ordinance, etc. The long-term objective of this work is to develop methods that would extend the use of GPR under various environmental and soil conditions provided an optimal set of radar parameters (such as frequency, bandwidth, and sensor configuration) are adaptively employed based on the ground conditions. Towards that objective, developing Finite Difference Time Domain (FDTD) GPR models, verified by experimental results, would allow us to develop analytical and experimental techniques to control radar parameters to obtain consistent GPR images with changing ground conditions. Reported here is an attempt at developing 20 and 3D FDTD models of buried targets verified by two different radar systems capable of operating over different soil conditions. Experimental radar data employed were from a custom designed high-frequency (200 MHz) multi-static sensor platform capable of producing 3-D images, and longer wavelength (25 MHz) COTS radar (Pulse EKKO 100) capable of producing 2-D images. Our results indicate different types of radar can produce consistent images.

Top