Sample records for imaging techniques demonstrate

  1. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques.

    PubMed

    Parmar, Biren J; Longsine, Whitney; Sabonghy, Eric P; Han, Arum; Tasciotti, Ennio; Weiner, Bradley K; Ferrari, Mauro; Righetti, Raffaella

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 microm to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  2. Optimising diffusion-weighted MR imaging for demonstrating pancreatic cancer: a comparison of respiratory-triggered, free-breathing and breath-hold techniques.

    PubMed

    Kartalis, Nikolaos; Loizou, Louiza; Edsborg, Nick; Segersvärd, Ralf; Albiin, Nils

    2012-10-01

    To compare respiratory-triggered, free-breathing, and breath-hold DWI techniques regarding (1) image quality, and (2) signal intensity (SI) and ADC measurements in pancreatic ductal adenocarcinoma (PDAC). Fifteen patients with histopathologically proven PDAC underwent DWI prospectively at 1.5 T (b = 0, 50, 300, 600 and 1,000 s/mm(2)) with the three techniques. Two radiologists, independently and blindly, assigned total image quality scores [sum of rating diffusion images (lesion detection, anatomy, presence of artefacts) and ADC maps (lesion characterisation, overall image quality)] per technique and ranked them. The lesion SI, signal-to-noise ratio, mean ADC and coefficient of variation (CV) were compared. Total image quality scores for respiratory-triggered, free-breathing and breath-hold techniques were 17.9, 16.5 and 17.1 respectively (respiratory-triggered was significantly higher than free-breathing but not breath-hold). The respiratory-triggered technique had a significantly higher ranking. Lesion SI on all b-values and signal-to-noise ratio on b300 and b600 were significantly higher for the respiratory-triggered technique. For respiratory-triggered, free-breathing and breath-hold techniques the mean ADCs were 1.201, 1.132 and 1.253 × 10(-3) mm(2)/s, and mean CVs were 8.9, 10.8 and 14.1 % respectively (respiratory-triggered and free-breathing techniques had a significantly lower mean CV than the breath-hold technique). In both analyses, respiratory-triggered DWI showed superiority and seems the optimal DWI technique for demonstrating PDAC. • Diffusion-weighted magnetic resonance imaging is increasingly used to detect pancreatic cancer • Images are acquired using various breathing techniques and multiple b-values • Breathing techniques used: respiratory-triggering, free-breathing and breath-hold • Respiratory-triggering seems the optimal breathing technique for demonstrating pancreatic cancer.

  3. Pulse compression favourable aperiodic infrared imaging approach for non-destructive testing and evaluation of bio-materials

    NASA Astrophysics Data System (ADS)

    Mulaveesala, Ravibabu; Dua, Geetika; Arora, Vanita; Siddiqui, Juned A.; Muniyappa, Amarnath

    2017-05-01

    In recent years, aperiodic, transient pulse compression favourable infrared imaging methodologies demonstrated as reliable, quantitative, remote characterization and evaluation techniques for testing and evaluation of various biomaterials. This present work demonstrates a pulse compression favourable aperiodic thermal wave imaging technique, frequency modulated thermal wave imaging technique for bone diagnostics, especially by considering the bone with tissue, skin and muscle over layers. In order to find the capabilities of the proposed frequency modulated thermal wave imaging technique to detect the density variations in a multi layered skin-fat-muscle-bone structure, finite element modeling and simulation studies have been carried out. Further, frequency and time domain post processing approaches have been adopted on the temporal temperature data in order to improve the detection capabilities of frequency modulated thermal wave imaging.

  4. Multishot Targeted PROPELLER Magnetic Resonance Imaging: Description of the Technique and Initial Applications

    PubMed Central

    Deng, Jie; Larson, Andrew C.

    2010-01-01

    Objectives To test the feasibility of combining inner-volume imaging (IVI) techniques with conventional multishot periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) techniques for targeted-PROPELLER magnetic resonance imaging. Materials and Methods Perpendicular section-selective gradients for spatially selective excitation and refocusing RF pulses were applied to limit the refocused field-of-view (FOV) along the phase-encoding direction for each rectangular blade image. We performed comparison studies in phantoms and normal volunteers by using targeted-PROPELLER methods for a wide range of imaging applications that commonly use turbo-spin-echo (TSE) approaches (brain, abdominal, vessel wall, cardiac). Results In these initial studies, we demonstrated the feasibility of using targeted-PROPELLER approaches to limit the imaging FOV thereby reducing the number of blades or permitting increased spatial resolution without commensurate increases in scan time. Both phantom and in vivo motion studies demonstrated the potential for more robust regional self-navigated motion correction compared with conventional full FOV PROPELLER methods. Conclusion We demonstrated that the reduced FOV targeted-PROPELLER technique offers the potential for reducing imaging time, increasing spatial resolution, and targeting specific areas for robust regional motion correction. PMID:19465860

  5. Technology for Elevated Temperature Tests of Structural Panels

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1999-01-01

    A technique for full-field measurement of surface temperature and in-plane strain using a single grid imaging technique was demonstrated on a sample subjected to thermally-induced strain. The technique is based on digital imaging of a sample marked by an alternating line array of La2O2S:Eu(+3) thermographic phosphor and chromium illuminated by a UV lamp. Digital images of this array in unstrained and strained states were processed using a modified spin filter. Normal strain distribution was determined by combining unstrained and strained grid images using a single grid digital moire technique. Temperature distribution was determined by ratioing images of phosphor intensity at two wavelengths. Combined strain and temperature measurements demonstrated on the thermally heated sample were DELTA-epsilon = +/- 250 microepsilon and DELTA-T = +/- 5 K respectively with a spatial resolution of 0.8 mm.

  6. Whole-organ atlas imaged by label-free high-resolution photoacoustic microscopy assisted by a microtome

    NASA Astrophysics Data System (ADS)

    Wong, Terence T. W.; Zhang, Ruiying; Hsu, Hsun-Chia; Maslov, Konstantin I.; Shi, Junhui; Chen, Ruimin; Shung, K. Kirk; Zhou, Qifa; Wang, Lihong V.

    2018-02-01

    In biomedical imaging, all optical techniques face a fundamental trade-off between spatial resolution and tissue penetration. Therefore, obtaining an organelle-level resolution image of a whole organ has remained a challenging and yet appealing scientific pursuit. Over the past decade, optical microscopy assisted by mechanical sectioning or chemical clearing of tissue has been demonstrated as a powerful technique to overcome this dilemma, one of particular use in imaging the neural network. However, this type of techniques needs lengthy special preparation of the tissue specimen, which hinders broad application in life sciences. Here, we propose a new label-free three-dimensional imaging technique, named microtomy-assisted photoacoustic microscopy (mPAM), for potentially imaging all biomolecules with 100% endogenous natural staining in whole organs with high fidelity. We demonstrate the first label-free mPAM, using UV light for label-free histology-like imaging, in whole organs (e.g., mouse brains), most of them formalin-fixed and paraffin- or agarose-embedded for minimal morphological deformation. Furthermore, mPAM with dual wavelength illuminations is also employed to image a mouse brain slice, demonstrating the potential for imaging of multiple biomolecules without staining. With visible light illumination, mPAM also shows its deep tissue imaging capability, which enables less slicing and hence reduces sectioning artifacts. mPAM could potentially provide a new insight for understanding complex biological organs.

  7. Real-time shear velocity imaging using sonoelastographic techniques.

    PubMed

    Hoyt, Kenneth; Parker, Kevin J; Rubens, Deborah J

    2007-07-01

    In this paper, a novel sonoelastographic technique for estimating local shear velocities from propagating shear wave interference patterns (termed crawling waves) is introduced. A relationship between the local crawling wave spatial phase derivatives and local shear wave velocity is derived with phase derivatives estimated using an autocorrelation technique. Results from homogeneous phantoms demonstrate the ability of sonoelastographic shear velocity imaging to quantify the true underlying shear velocity distributions as verified using time-of-flight measurements. Heterogeneous phantom results reveal the capacity for lesion detection and shear velocity quantification as validated from mechanical measurements on phantom samples. Experimental results obtained from a prostate specimen illustrated feasibility for shear velocity imaging in tissue. More importantly, high-contrast visualization of focal carcinomas was demonstrated introducing the clinical potential of this novel sonoelastographic imaging technique.

  8. Evaluation of the low dose cardiac CT imaging using ASIR technique

    NASA Astrophysics Data System (ADS)

    Fan, Jiahua; Hsieh, Jiang; Deubig, Amy; Sainath, Paavana; Crandall, Peter

    2010-04-01

    Today Cardiac imaging is one of the key driving forces for the research and development activities of Computed Tomography (CT) imaging. It requires high spatial and temporal resolution and is often associated with high radiation dose. The newly introduced ASIR technique presents an efficient method that offers the dose reduction benefits while maintaining image quality and providing fast reconstruction speed. This paper discusses the study of image quality of the ASIR technique for Cardiac CT imaging. Phantoms as well as clinical data have been evaluated to demonstrate the effectiveness of ASIR technique for Cardiac CT applications.

  9. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding.

    PubMed

    Ballyns, Jeffery J; Gleghorn, Jason P; Niebrzydowski, Vicki; Rawlinson, Jeremy J; Potter, Hollis G; Maher, Suzanne A; Wright, Timothy M; Bonassar, Lawrence J

    2008-07-01

    This study demonstrates for the first time the development of engineered tissues based on anatomic geometries derived from widely used medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). Computer-aided design and tissue injection molding techniques have demonstrated the ability to generate living implants of complex geometry. Due to its complex geometry, the meniscus of the knee was used as an example of this technique's capabilities. MRI and microcomputed tomography (microCT) were used to design custom-printed molds that enabled the generation of anatomically shaped constructs that retained shape throughout 8 weeks of culture. Engineered constructs showed progressive tissue formation indicated by increases in extracellular matrix content and mechanical properties. The paradigm of interfacing tissue injection molding technology can be applied to other medical imaging techniques that render 3D models of anatomy, demonstrating the potential to apply the current technique to engineering of many tissues and organs.

  10. Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals

    PubMed Central

    Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O.; Zhao, Mingrui; Daniel, Andy G. S.; Zhou, Zhiping; Bruno, Randy M.; Berwick, Jason; Schwartz, Theodore H.

    2014-01-01

    Abstract. In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required. PMID:25525611

  11. Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals.

    PubMed

    Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O; Zhao, Mingrui; Daniel, Andy G S; Zhou, Zhiping; Bruno, Randy M; Berwick, Jason; Schwartz, Theodore H

    2014-07-24

    In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required.

  12. Compressive sensing imaging through a drywall barrier at sub-THz and THz frequencies in transmission and reflection modes

    NASA Astrophysics Data System (ADS)

    Takan, Taylan; Özkan, Vedat A.; Idikut, Fırat; Yildirim, Ihsan Ozan; Şahin, Asaf B.; Altan, Hakan

    2014-10-01

    In this work sub-terahertz imaging using Compressive Sensing (CS) techniques for targets placed behind a visibly opaque barrier is demonstrated both experimentally and theoretically. Using a multiplied Schottky diode based millimeter wave source working at 118 GHz, metal cutout targets were illuminated in both reflection and transmission configurations with and without barriers which were made out of drywall. In both modes the image is spatially discretized using laser machined, 10 × 10 pixel metal apertures to demonstrate the technique of compressive sensing. The images were collected by modulating the source and measuring the transmitted flux through the apertures using a Golay cell. Experimental results were compared to simulations of the expected transmission through the metal apertures. Image quality decreases as expected when going from the non-obscured transmission case to the obscured transmission case and finally to the obscured reflection case. However, in all instances the image appears below the Nyquist rate which demonstrates that this technique is a viable option for Through the Wall Reflection Imaging (TWRI) applications.

  13. Perfluorocarbon Enhanced Glasgow Oxygen Level Dependent (GOLD) Magnetic Resonance Metabolic Imaging Identifies the Penumbra Following Acute Ischemic Stroke

    PubMed Central

    Deuchar, Graeme A; Brennan, David; Holmes, William M; Shaw, Martin; Macrae, I Mhairi; Santosh, Celestine

    2018-01-01

    The ability to identify metabolically active and potentially salvageable ischaemic penumbra is crucial for improving treatment decisions in acute stroke patients. Our solution involves two complementary novel MRI techniques (Glasgow Oxygen Level Dependant (GOLD) Metabolic Imaging), which when combined with a perfluorocarbon (PFC) based oxygen carrier and hyperoxia can identify penumbra due to dynamic changes related to continued metabolism within this tissue compartment. Our aims were (i) to investigate whether PFC offers similar enhancement of the second technique (Lactate Change) as previously demonstrated for the T2*OC technique (ii) to demonstrate both GOLD metabolic imaging techniques working concurrently to identify penumbra, following administration of Oxycyte® (O-PFC) with hyperoxia. Methods: An established rat stroke model was utilised. Part-1: Following either saline or PFC, magnetic resonance spectroscopy was applied to investigate the effect of hyperoxia on lactate change in presumed penumbra. Part-2; rats received O-PFC prior to T2*OC (technique 1) and MR spectroscopic imaging, which was used to identify regions of tissue lactate change (technique 2) in response to hyperoxia. In order to validate the techniques, imaging was followed by [14C]2-deoxyglucose autoradiography to correlate tissue metabolic status to areas identified as penumbra. Results: Part-1: PFC+hyperoxia resulted in an enhanced reduction of lactate in the penumbra when compared to saline+hyperoxia. Part-2: Regions of brain tissue identified as potential penumbra by both GOLD metabolic imaging techniques utilising O-PFC, demonstrated maintained glucose metabolism as compared to adjacent core tissue. Conclusion: For the first time in vivo, enhancement of both GOLD metabolic imaging techniques has been demonstrated following intravenous O-PFC+hyperoxia to identify ischaemic penumbra. We have also presented preliminary evidence of the potential therapeutic benefit offered by O-PFC. These unique theranostic applications would enable treatment based on metabolic status of the brain tissue, independent of time from stroke onset, leading to increased uptake and safer use of currently available treatment options. PMID:29556351

  14. Mobile phone based laser speckle contrast imager for assessment of skin blood flow

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Saknite, Inga; Krievina, Gita; Zaharans, Janis; Spigulis, Janis

    2014-10-01

    Assessment of skin blood flow is of interest for evaluation of skin viability as well as for reflection of the overall condition of the circulatory system. Laser Doppler perfusion imaging (LDPI) and laser speckle contrast imaging (LASCI) are optical techniques used for assessment of skin perfusion. However, these systems are still too expensive and bulky to be widely available. Implementation of such techniques as connection kits for mobile phones have a potential for primary diagnostics. In this work we demonstrate simple and low cost LASCI connection kit for mobile phone and its comparison to laser Doppler perfusion imager. Post-occlusive hyperemia and local thermal hyperemia tests are used to compare both techniques and to demonstrate the potential of LASCI device.

  15. Image processing on the image with pixel noise bits removed

    NASA Astrophysics Data System (ADS)

    Chuang, Keh-Shih; Wu, Christine

    1992-06-01

    Our previous studies used statistical methods to assess the noise level in digital images of various radiological modalities. We separated the pixel data into signal bits and noise bits and demonstrated visually that the removal of the noise bits does not affect the image quality. In this paper we apply image enhancement techniques on noise-bits-removed images and demonstrate that the removal of noise bits has no effect on the image property. The image processing techniques used are gray-level look up table transformation, Sobel edge detector, and 3-D surface display. Preliminary results show no noticeable difference between original image and noise bits removed image using look up table operation and Sobel edge enhancement. There is a slight enhancement of the slicing artifact in the 3-D surface display of the noise bits removed image.

  16. A novel imaging technique based on the spatial coherence of backscattered waves: demonstration in the presence of acoustical clutter

    NASA Astrophysics Data System (ADS)

    Dahl, Jeremy J.; Pinton, Gianmarco F.; Lediju, Muyinatu; Trahey, Gregg E.

    2011-03-01

    In the last 20 years, the number of suboptimal and inadequate ultrasound exams has increased. This trend has been linked to the increasing population of overweight and obese individuals. The primary causes of image degradation in these individuals are often attributed to phase aberration and clutter. Phase aberration degrades image quality by distorting the transmitted and received pressure waves, while clutter degrades image quality by introducing incoherent acoustical interference into the received pressure wavefront. Although significant research efforts have pursued the correction of image degradation due to phase aberration, few efforts have characterized or corrected image degradation due to clutter. We have developed a novel imaging technique that is capable of differentiating ultrasonic signals corrupted by acoustical interference. The technique, named short-lag spatial coherence (SLSC) imaging, is based on the spatial coherence of the received ultrasonic wavefront at small spatial distances across the transducer aperture. We demonstrate comparative B-mode and SLSC images using full-wave simulations that include the effects of clutter and show that SLSC imaging generates contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) that are significantly better than B-mode imaging under noise-free conditions. In the presence of noise, SLSC imaging significantly outperforms conventional B-mode imaging in all image quality metrics. We demonstrate the use of SLSC imaging in vivo and compare B-mode and SLSC images of human thyroid and liver.

  17. Thermal Characterization of Defects in Aircraft Structures Via Spatially Controlled Heat Application

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    1997-01-01

    Recent advances in thermal imaging technology have spawned a number of new thermal NDE techniques that provide quantitative information about flaws in aircraft structures. Thermography has a number of advantages as an inspection technique. It is a totally noncontacting, nondestructive, imaging technology capable of inspecting a large area in a matter of a few seconds. The development of fast, inexpensive image processors have aided in the attractiveness of thermography as an NDE technique. These image processors have increased the signal to noise ratio of thermography and facilitated significant advances in post-processing. The resulting digital images enable archival records for comparison with later inspections thus providing a means of monitoring the evolution of damage in a particular structure. The National Aeronautics and Space Administration's Langley Research Center has developed a thermal NDE technique designed to image a number of potential flaws in aircraft structures. The technique involves injecting a small, spatially controlled heat flux into the outer surface of an aircraft. Images of fatigue cracking, bond integrity and material loss due to corrosion are generated from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to analyze the resulting thermal images. Spatial tailoring of the heat coupled with the analysis techniques represent a significant improvement in the delectability of flaws over conventional thermal imaging. Results of laboratory experiments on fabricated crack, disbond and material loss samples will be presented to demonstrate the capabilities of the technique. An integral part of the development of this technology is the use of analytic and computational modeling. The experimental results will be compared with these models to demonstrate the utility of such an approach.

  18. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    PubMed Central

    Li, David Day-Uei; Ameer-Beg, Simon; Arlt, Jochen; Tyndall, David; Walker, Richard; Matthews, Daniel R.; Visitkul, Viput; Richardson, Justin; Henderson, Robert K.

    2012-01-01

    We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD)-based cameras for fluorescence lifetime imaging microscopy (FLIM) by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber) are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast. PMID:22778606

  19. Combined photoacoustic and magneto-acoustic imaging.

    PubMed

    Qu, Min; Mallidi, Srivalleesha; Mehrmohammadi, Mohammad; Ma, Li Leo; Johnston, Keith P; Sokolov, Konstantin; Emelianov, Stanislav

    2009-01-01

    Ultrasound is a widely used modality with excellent spatial resolution, low cost, portability, reliability and safety. In clinical practice and in the biomedical field, molecular ultrasound-based imaging techniques are desired to visualize tissue pathologies, such as cancer. In this paper, we present an advanced imaging technique - combined photoacoustic and magneto-acoustic imaging - capable of visualizing the anatomical, functional and biomechanical properties of tissues or organs. The experiments to test the combined imaging technique were performed using dual, nanoparticle-based contrast agents that exhibit the desired optical and magnetic properties. The results of our study demonstrate the feasibility of the combined photoacoustic and magneto-acoustic imaging that takes the advantages of each imaging techniques and provides high sensitivity, reliable contrast and good penetrating depth. Therefore, the developed imaging technique can be used in wide range of biomedical and clinical application.

  20. MULTIPLE IMAGING TECHNIQUES DEMONSTRATE THE MANIPULATION OF SURFACES TO REDUCE BACTERIAL CONTAMINATION

    EPA Science Inventory

    Surface imaging techniques were combined to determine appropriate manipulation of technologically important surfaces for commercial applications. Stainless steel surfaces were engineered to reduce bacterial contamination, biofilm formation, and corrosion during product processing...

  1. Attenuated total reflectance FT-IR imaging and quantitative energy dispersive-electron probe X-ray microanalysis techniques for single particle analysis of atmospheric aerosol particles.

    PubMed

    Ryu, JiYeon; Ro, Chul-Un

    2009-08-15

    This work demonstrates the practical applicability of the combined use of attenuated total reflectance (ATR) FT-IR imaging and low-Z particle electron probe X-ray microanalysis (EPMA) techniques for the characterization of individual aerosol particles. These two single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, that is, the low-Z particle EPMA for the information on the morphology and elemental concentration and the ATR-FT-IR imaging on the functional group, molecular species, and crystal structure. It was confirmed that the ATR-FT-IR imaging technique can provide sufficient FT-IR absorption signals to perform molecular speciation of individual particles of micrometer size when applied to artificially generated aerosol particles such as ascorbic acid and NaNO(3) aerosols. An exemplar indoor atmospheric aerosol sample was investigated to demonstrate the practical feasibility of the combined application of ATR-FT-IR imaging and low-Z particle EPMA techniques for the characterization of individual airborne particles.

  2. Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells.

    PubMed

    Nygate, Yoav N; Singh, Gyanendra; Barnea, Itay; Shaked, Natan T

    2018-06-01

    We present a new technique for obtaining simultaneous multimodal quantitative phase and fluorescence microscopy of biological cells, providing both quantitative phase imaging and molecular specificity using a single camera. Our system is based on an interferometric multiplexing module, externally positioned at the exit of an optical microscope. In contrast to previous approaches, the presented technique allows conventional fluorescence imaging, rather than interferometric off-axis fluorescence imaging. We demonstrate the presented technique for imaging fluorescent beads and live biological cells.

  3. Imaging of spatial distributions of the millimeter wave intensity by using the Visible Continuum Radiation from a discharge in a Cs-Xe mixture. Part II: Demonstration of application capabilities of the technique

    NASA Astrophysics Data System (ADS)

    Gitlin, M. S.; Glyavin, M. Yu.; Fedotov, A. E.; Tsvetkov, A. I.

    2017-07-01

    The paper presents the second part of the review on a high-sensitive technique for time-resolved imaging and measurements of the 2D intensity profiles of millimeter-wave radiation by means of Visible Continuum Radiation emitted by the positive column of a medium-pressure Cs-Xe DC Discharge (VCRD method). The first part of the review was focused on the operating principles and fundamentals of this new technique [Plasma Phys. Rep. 43, 253 (2017)]. The second part of the review focuses on experiments demonstrating application of this imaging technique to measure the parameters of radiation at the output of moderate-power millimeter-wave sources. In particular, the output waveguide mode of a moderate-power W-band gyrotron with a pulsed magnetic field was identified and the relative powers of some spurious modes at the outputs of this gyrotron and a pulsed D-band orotron were evaluated. The paper also reviews applications of the VCRD technique for real-time imaging and nondestructive testing with a frame rate of higher than 10 fps by using millimeter waves. Shadow projection images of objects opaque and transparent for millimeter waves have been obtained using pulsed watt-scale millimeter waves for object illumination. Near video frame rate millimeter-wave shadowgraphy has been demonstrated. It is shown that this technique can be used for single-shot screening (including detection of concealed objects) and time-resolved imaging of time-dependent processes.

  4. Real-time holographic deconvolution techniques for one-way image transmission through an aberrating medium: characterization, modeling, and measurements.

    PubMed

    Haji-Saeed, B; Sengupta, S K; Testorf, M; Goodhue, W; Khoury, J; Woods, C L; Kierstead, J

    2006-05-10

    We propose and demonstrate a new photorefractive real-time holographic deconvolution technique for adaptive one-way image transmission through aberrating media by means of four-wave mixing. In contrast with earlier methods, which typically required various codings of the exact phase or two-way image transmission for correcting phase distortion, our technique relies on one-way image transmission through the use of exact phase information. Our technique can simultaneously correct both amplitude and phase distortions. We include several forms of image degradation, various test cases, and experimental results. We characterize the performance as a function of the input beam ratios for four metrics: signal-to-noise ratio, normalized root-mean-square error, edge restoration, and peak-to-total energy ratio. In our characterization we use false-color graphic images to display the best beam-intensity ratio two-dimensional region(s) for each of these metrics. Test cases are simulated at the optimal values of the beam-intensity ratios. We demonstrate our results through both experiment and computer simulation.

  5. Hyper-spectral imaging in scanning-confocal-fluorescence microscopy using a novel broadband diffractive optic

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Ebeling, Carl G.; Gerton, Jordan; Menon, Rajesh

    In this paper, we demonstrate hyper-spectral imaging of fluorescent microspheres in a scanning-confocal-fluorescence microscope by spatially dispersing the spectra using a novel broadband diffractive optic, and applying a nonlinear optimization technique to extract the full-incident spectra. This broadband diffractive optic has a designed optical efficiency of over 90% across the entire visible spectrum. We used this technique to create two-color images of two fluorophores and also extracted their emission spectra with good fidelity. This method can be extended to image both spatially and spectrally overlapping fluorescent samples. Full control in the number of emission spectra and the feasibility of enhanced imaging speed are demonstrated as well.

  6. Helium-3 MR q-space imaging with radial acquisition and iterative highly constrained back-projection.

    PubMed

    O'Halloran, Rafael L; Holmes, James H; Wu, Yu-Chien; Alexander, Andrew; Fain, Sean B

    2010-01-01

    An undersampled diffusion-weighted stack-of-stars acquisition is combined with iterative highly constrained back-projection to perform hyperpolarized helium-3 MR q-space imaging with combined regional correction of radiofrequency- and T1-related signal loss in a single breath-held scan. The technique is tested in computer simulations and phantom experiments and demonstrated in a healthy human volunteer with whole-lung coverage in a 13-sec breath-hold. Measures of lung microstructure at three different lung volumes are evaluated using inhaled gas volumes of 500 mL, 1000 mL, and 1500 mL to demonstrate feasibility. Phantom results demonstrate that the proposed technique is in agreement with theoretical values, as well as with a fully sampled two-dimensional Cartesian acquisition. Results from the volunteer study demonstrate that the root mean squared diffusion distance increased significantly from the 500-mL volume to the 1000-mL volume. This technique represents the first demonstration of a spatially resolved hyperpolarized helium-3 q-space imaging technique and shows promise for microstructural evaluation of lung disease in three dimensions. Copyright (c) 2009 Wiley-Liss, Inc.

  7. Three-dimensional radar imaging techniques and systems for near-field applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.

    2016-05-12

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  8. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.

    PubMed

    Pandiyan, Vimal Prabhu; John, Renu

    2016-01-20

    We propose a versatile 3D phase-imaging microscope platform for real-time imaging of optomicrofluidic devices based on the principle of digital holographic microscopy (DHM). Lab-on-chip microfluidic devices fabricated on transparent polydimethylsiloxane (PDMS) and glass substrates have attained wide popularity in biological sensing applications. However, monitoring, visualization, and characterization of microfluidic devices, microfluidic flows, and the biochemical kinetics happening in these devices is difficult due to the lack of proper techniques for real-time imaging and analysis. The traditional bright-field microscopic techniques fail in imaging applications, as the microfluidic channels and the fluids carrying biological samples are transparent and not visible in bright light. Phase-based microscopy techniques that can image the phase of the microfluidic channel and changes in refractive indices due to the fluids and biological samples present in the channel are ideal for imaging the fluid flow dynamics in a microfluidic channel at high resolutions. This paper demonstrates three-dimensional imaging of a microfluidic device with nanometric depth precisions and high SNR. We demonstrate imaging of microelectrodes of nanometric thickness patterned on glass substrate and the microfluidic channel. Three-dimensional imaging of a transparent PDMS optomicrofluidic channel, fluid flow, and live yeast cell flow in this channel has been demonstrated using DHM. We also quantify the average velocity of fluid flow through the channel. In comparison to any conventional bright-field microscope, the 3D depth information in the images illustrated in this work carry much information about the biological system under observation. The results demonstrated in this paper prove the high potential of DHM in imaging optofluidic devices; detection of pathogens, cells, and bioanalytes on lab-on-chip devices; and in studying microfluidic dynamics in real time based on phase changes.

  9. Hybrid cardiac imaging with MR-CAT scan: a feasibility study.

    PubMed

    Hillenbrand, C; Sandstede, J; Pabst, T; Hahn, D; Haase, A; Jakob, P M

    2000-06-01

    We demonstrate the feasibility of a new versatile hybrid imaging concept, the combined acquisition technique (CAT), for cardiac imaging. The cardiac CAT approach, which combines new methodology with existing technology, essentially integrates fast low-angle shot (FLASH) and echoplanar imaging (EPI) modules in a sequential fashion, whereby each acquisition module is employed with independently optimized imaging parameters. One important CAT sequence optimization feature is the ability to use different bandwidths for different acquisition modules. Twelve healthy subjects were imaged using three cardiac CAT acquisition strategies: a) CAT was used to reduce breath-hold duration times while maintaining constant spatial resolution; b) CAT was used to increase spatial resolution in a given breath-hold time; and c) single-heart beat CAT imaging was performed. The results obtained demonstrate the feasibility of cardiac imaging using the CAT approach and the potential of this technique to accelerate the imaging process with almost conserved image quality. Copyright 2000 Wiley-Liss, Inc.

  10. Diffraction-limited lucky imaging with a 12" commercial telescope

    NASA Astrophysics Data System (ADS)

    Baptista, Brian J.

    2014-08-01

    Here we demonstrate a novel lucky imaging camera which is designed to produce diffraction-limited imaging using small telescopes similar to ones used by many academic institutions for outreach and/or student training. We present a design that uses a Meade 12" SCT paired with an Andor iXon fast readout EMCCD. The PSF of the telescope is matched to the pixel size of the EMCCD by adding a simple, custom-fabricated, intervening optical system. We demonstrate performance of the system by observing both astronomical and terrestrial targets. The astronomical application requires simpler data reconstruction techniques as compared to the terrestrial case. We compare different lucky imaging registration and reconstruction algorithms for use with this imager for both astronomical and terrestrial targets. We also demonstrate how this type of instrument would be useful for both undergraduate and graduate student training. As an instructional aide, the instrument can provide a hands-on approach for teaching instrument design, standard data reduction techniques, lucky imaging data processing, and high resolution imaging concepts.

  11. Snapshot imaging polarimeters using spatial modulation

    NASA Astrophysics Data System (ADS)

    Luo, Haitao

    The recent demonstration of a novel snapshot imaging polarimeter using the fringe modulation technique shows a promise in building a compact and moving-parts-free device. As just demonstrated in principle, this technique has not been adequately studied. In the effort of advancing this technique, we build a complete theory framework that can address the key issues regarding the polarization aberrations caused by using the functional elements. With this model, we can have the necessary knowledge in designing, analyzing and optimizing the systems. Also, we propose a broader technique that uses arbitrary modulation instead of sinusoidal fringes, which can give us more engineering freedom and can be the solution of achromatizing the system. In the hardware aspect, several important progresses are made. We extend the polarimeter technique from visible to middle wavelength infrared by using the yttrium vanadate crystals. Also, we incorporate a Savart Plate polarimter into a fundus camera to measure the human eye's retinal retardance, useful information for glaucoma diagnosis. Thirdly, a world-smallest imaging polarimeter is proposed and demonstrated, which may open many applications in security, remote sensing and bioscience.

  12. Fine-resolution imaging of solar features using Phase-Diverse Speckle

    NASA Technical Reports Server (NTRS)

    Paxman, Richard G.

    1995-01-01

    Phase-diverse speckle (PDS) is a novel imaging technique intended to overcome the degrading effects of atmospheric turbulence on fine-resolution imaging. As its name suggests, PDS is a blend of phase-diversity and speckle-imaging concepts. PDS reconstructions on solar data were validated by simulation, by demonstrating internal consistency of PDS estimates, and by comparing PDS reconstructions with those produced from well accepted speckle-imaging processing. Several sources of error in data collected with the Swedish Vacuum Solar Telescope (SVST) were simulated: CCD noise, quantization error, image misalignment, and defocus error, as well as atmospheric turbulence model error. The simulations demonstrate that fine-resolution information can be reliably recovered out to at least 70% of the diffraction limit without significant introduction of image artifacts. Additional confidence in the SVST restoration is obtained by comparing its spatial power spectrum with previously-published power spectra derived from both space-based images and earth-based images corrected with traditional speckle-imaging techniques; the shape of the spectrum is found to match well the previous measurements. In addition, the imagery is found to be consistent with, but slightly sharper than, imagery reconstructed with accepted speckle-imaging techniques.

  13. A comparison of line enhancement techniques: applications to guide-wire detection and respiratory motion tracking

    NASA Astrophysics Data System (ADS)

    Bismuth, Vincent; Vancamberg, Laurence; Gorges, Sébastien

    2009-02-01

    During interventional radiology procedures, guide-wires are usually inserted into the patients vascular tree for diagnosis or healing purpose. These procedures are monitored with an Xray interventional system providing images of the interventional devices navigating through the patient's body. The automatic detection of such tools by image processing means has gained maturity over the past years and enables applications ranging from image enhancement to multimodal image fusion. Sophisticated detection methods are emerging, which rely on a variety of device enhancement techniques. In this article we reviewed and classified these techniques into three families. We chose a state of the art approach in each of them and built a rigorous framework to compare their detection capability and their computational complexity. Through simulations and the intensive use of ROC curves we demonstrated that the Hessian based methods are the most robust to strong curvature of the devices and that the family of rotated filters technique is the most suited for detecting low CNR and low curvature devices. The steerable filter approach demonstrated less interesting detection capabilities and appears to be the most expensive one to compute. Finally we demonstrated the interest of automatic guide-wire detection on a clinical topic: the compensation of respiratory motion in multimodal image fusion.

  14. Critical Review of Noninvasive Optical Technologies for Wound Imaging

    PubMed Central

    Jayachandran, Maanasa; Rodriguez, Suset; Solis, Elizabeth; Lei, Jiali; Godavarty, Anuradha

    2016-01-01

    Significance: Noninvasive imaging approaches can provide greater information about a wound than visual inspection during the wound healing and treatment process. This review article focuses on various optical imaging techniques developed to image different wound types (more specifically ulcers). Recent Advances: The noninvasive optical imaging approaches in this review include hyperspectral imaging, multispectral imaging, near-infrared spectroscopy (NIRS), diffuse reflectance spectroscopy, optical coherence tomography, laser Doppler imaging, laser speckle imaging, spatial frequency domain imaging, and fluorescence imaging. The various wounds imaged using these techniques include open wounds, chronic wounds, diabetic foot ulcers, decubitus ulcers, venous leg ulcers, and burns. Preliminary work in the development and implementation of a near-infrared optical scanner for wound imaging as a noncontact hand-held device is briefly described. The technology is based on NIRS and has demonstrated its potential to differentiate a healing from nonhealing wound region. Critical Issues: While most of the optical imaging techniques can penetrate few hundred microns to a 1–2 mm from the wound surface, NIRS has the potential to penetrate deeper, demonstrating the potential to image internal wounds. Future Directions: All the technologies are currently at various stages of translational efforts to the clinic, with NIRS holding a greater promise for physiological assessment of the wounds internal, beyond the gold-standard visual assessment. PMID:27602254

  15. Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color THG imaging.

    PubMed

    Du, Yu; Zhuang, Ziwei; He, Jiexing; Liu, Hongji; Qiu, Ping; Wang, Ke

    2018-05-16

    With tunable excitation light, multiphoton microscopy (MPM) is widely used for imaging biological structures at subcellular resolution. Axial chromatic dispersion, present in virtually every transmissive optical system including the multiphoton microscope, leads to focal (and the resultant image) plane separation. Here we demonstrate experimentally a technique to measure the axial chromatic dispersion in a multiphoton microscope, using simultaneous 2-color third-harmonic generation (THG) imaging excited by a 2-color soliton source with tunable wavelength separation. Our technique is self-referenced, eliminating potential measurement error when 1-color tunable excitation light is used which necessitates reciprocating motion of the mechanical translation stage. Using this technique, we demonstrate measured axial chromatic dispersion with 2 different objective lenses in a multiphoton microscope. Further measurement in a biological sample also indicates that this axial chromatic dispersion, in combination with 2-color imaging, may open up opportunity for simultaneous imaging of two different axial planes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Dental caries imaging using hyperspectral stimulated Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Zi; Zheng, Wei; Jian, Lin; Huang, Zhiwei

    2016-03-01

    We report the development of a polarization-resolved hyperspectral stimulated Raman scattering (SRS) imaging technique based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of dental caries. In our imaging system, hyperspectral SRS images (512×512 pixels) in both fingerprint region (800-1800 cm-1) and high-wavenumber region (2800-3600 cm-1) are acquired in minutes by scanning the wavelength of OPO output, which is a thousand times faster than conventional confocal micro Raman imaging. SRS spectra variations from normal enamel to caries obtained from the hyperspectral SRS images show the loss of phosphate and carbonate in the carious region. While polarization-resolved SRS images at 959 cm-1 demonstrate that the caries has higher depolarization ratio. Our results demonstrate that the polarization resolved-hyperspectral SRS imaging technique developed allows for rapid identification of the biochemical and structural changes of dental caries.

  17. Image resolution enhancement via image restoration using neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Shuangteng; Lu, Yihong

    2011-04-01

    Image super-resolution aims to obtain a high-quality image at a resolution that is higher than that of the original coarse one. This paper presents a new neural network-based method for image super-resolution. In this technique, the super-resolution is considered as an inverse problem. An observation model that closely follows the physical image acquisition process is established to solve the problem. Based on this model, a cost function is created and minimized by a Hopfield neural network to produce high-resolution images from the corresponding low-resolution ones. Not like some other single frame super-resolution techniques, this technique takes into consideration point spread function blurring as well as additive noise and therefore generates high-resolution images with more preserved or restored image details. Experimental results demonstrate that the high-resolution images obtained by this technique have a very high quality in terms of PSNR and visually look more pleasant.

  18. A laboratory demonstration of high-resolution hard X-ray and gamma-ray imaging using Fourier-transform techniques

    NASA Technical Reports Server (NTRS)

    Palmer, David; Prince, Thomas A.

    1987-01-01

    A laboratory imaging system has been developed to study the use of Fourier-transform techniques in high-resolution hard X-ray and gamma-ray imaging, with particular emphasis on possible applications to high-energy astronomy. Considerations for the design of a Fourier-transform imager and the instrumentation used in the laboratory studies is described. Several analysis methods for image reconstruction are discussed including the CLEAN algorithm and maximum entropy methods. Images obtained using these methods are presented.

  19. Integrating dynamic and distributed compressive sensing techniques to enhance image quality of the compressive line sensing system for unmanned aerial vehicles application

    NASA Astrophysics Data System (ADS)

    Ouyang, Bing; Hou, Weilin; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.; Gong, Cuiling

    2017-07-01

    The compressive line sensing imaging system adopts distributed compressive sensing (CS) to acquire data and reconstruct images. Dynamic CS uses Bayesian inference to capture the correlated nature of the adjacent lines. An image reconstruction technique that incorporates dynamic CS in the distributed CS framework was developed to improve the quality of reconstructed images. The effectiveness of the technique was validated using experimental data acquired in an underwater imaging test facility. Results that demonstrate contrast and resolution improvements will be presented. The improved efficiency is desirable for unmanned aerial vehicles conducting long-duration missions.

  20. Calibration and validation of projection lithography in chemically amplified resist systems using fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Mason, Michael D.; Ray, Krishanu; Feke, Gilbert D.; Grober, Robert D.; Pohlers, Gerd; Cameron, James F.

    2003-05-01

    Coumarin 6 (C6), a pH sensitive fluorescent molecule were doped into commercial resist systems to demonstrate a cost-effective fluorescence microscopy technique for detecting latent photoacid images in exposed chemically amplified resist films. The fluorescenec image contrast is optimized by carefully selecting optical filters to match the spectroscopic properties of C6 in the resist matrices. We demonstrate the potential of this technique for two sepcific non-invasive applications. First, a fast, conventient, fluorescence technique is demonstrated for determination of quantum yeidsl of photo-acid generation. Since the Ka of C6 in the 193nm resist system lies wihtin the range of acid concentrations that can be photogenerated, we have used this technique to evaluate the acid generation efficiency of various photo-acid generators (PAGs). The technique is based on doping the resist formulations containing the candidate PAGs with C6, coating one wafer per PAG, patterning the wafer with a dose ramp and spectroscopically imaging the wafers. The fluorescence of each pattern in the dose ramp is measured as a single image and analyzed with the optical titration model. Second, a nondestructive in-line diagnostic technique is developed for the focus calibration and validation of a projection lithography system. Our experimental results show excellent correlation between the fluorescence images and scanning electron microscope analysis of developed features. This technique has successfully been applied in both deep UV resists e.g., Shipley UVIIHS resist and 193 nm resists e.g., Shipley Vema-type resist. This method of focus calibration has also been extended to samples with feature sizes below the diffraction limit where the pitch between adjacent features is on the order of 300 nm. Image capture, data analysis, and focus latitude verification are all computer controlled from a single hardware/software platform. Typical focus calibration curves can be obtained within several minutes.

  1. Technical Note: Synchrotron-based high-energy x-ray phase sensitive microtomography for biomedical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Huiqiang; Wu, Xizeng, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn; Xiao, Tiqiao, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn

    Purpose: Propagation-based phase-contrast CT (PPCT) utilizes highly sensitive phase-contrast technology applied to x-ray microtomography. Performing phase retrieval on the acquired angular projections can enhance image contrast and enable quantitative imaging. In this work, the authors demonstrate the validity and advantages of a novel technique for high-resolution PPCT by using the generalized phase-attenuation duality (PAD) method of phase retrieval. Methods: A high-resolution angular projection data set of a fish head specimen was acquired with a monochromatic 60-keV x-ray beam. In one approach, the projection data were directly used for tomographic reconstruction. In two other approaches, the projection data were preprocessed bymore » phase retrieval based on either the linearized PAD method or the generalized PAD method. The reconstructed images from all three approaches were then compared in terms of tissue contrast-to-noise ratio and spatial resolution. Results: The authors’ experimental results demonstrated the validity of the PPCT technique based on the generalized PAD-based method. In addition, the results show that the authors’ technique is superior to the direct PPCT technique as well as the linearized PAD-based PPCT technique in terms of their relative capabilities for tissue discrimination and characterization. Conclusions: This novel PPCT technique demonstrates great potential for biomedical imaging, especially for applications that require high spatial resolution and limited radiation exposure.« less

  2. Multispectral image sharpening using wavelet transform techniques and spatial correlation of edges

    USGS Publications Warehouse

    Lemeshewsky, George P.; Schowengerdt, Robert A.

    2000-01-01

    Several reported image fusion or sharpening techniques are based on the discrete wavelet transform (DWT). The technique described here uses a pixel-based maximum selection rule to combine respective transform coefficients of lower spatial resolution near-infrared (NIR) and higher spatial resolution panchromatic (pan) imagery to produce a sharpened NIR image. Sharpening assumes a radiometric correlation between the spectral band images. However, there can be poor correlation, including edge contrast reversals (e.g., at soil-vegetation boundaries), between the fused images and, consequently, degraded performance. To improve sharpening, a local area-based correlation technique originally reported for edge comparison with image pyramid fusion is modified for application with the DWT process. Further improvements are obtained by using redundant, shift-invariant implementation of the DWT. Example images demonstrate the improvements in NIR image sharpening with higher resolution pan imagery.

  3. Computer assisted analysis of auroral images obtained from high altitude polar satellites

    NASA Technical Reports Server (NTRS)

    Samadani, Ramin; Flynn, Michael

    1993-01-01

    Automatic techniques that allow the extraction of physically significant parameters from auroral images were developed. This allows the processing of a much larger number of images than is currently possible with manual techniques. Our techniques were applied to diverse auroral image datasets. These results were made available to geophysicists at NASA and at universities in the form of a software system that performs the analysis. After some feedback from users, an upgraded system was transferred to NASA and to two universities. The feasibility of user-trained search and retrieval of large amounts of data using our automatically derived parameter indices was demonstrated. Techniques based on classification and regression trees (CART) were developed and applied to broaden the types of images to which the automated search and retrieval may be applied. Our techniques were tested with DE-1 auroral images.

  4. Imaging and identification of waterborne parasites using a chip-scale microscope.

    PubMed

    Lee, Seung Ah; Erath, Jessey; Zheng, Guoan; Ou, Xiaoze; Willems, Phil; Eichinger, Daniel; Rodriguez, Ana; Yang, Changhuei

    2014-01-01

    We demonstrate a compact portable imaging system for the detection of waterborne parasites in resource-limited settings. The previously demonstrated sub-pixel sweeping microscopy (SPSM) technique is a lens-less imaging scheme that can achieve high-resolution (<1 µm) bright-field imaging over a large field-of-view (5.7 mm×4.3 mm). A chip-scale microscope system, based on the SPSM technique, can be used for automated and high-throughput imaging of protozoan parasite cysts for the effective diagnosis of waterborne enteric parasite infection. We successfully imaged and identified three major types of enteric parasite cysts, Giardia, Cryptosporidium, and Entamoeba, which can be found in fecal samples from infected patients. We believe that this compact imaging system can serve well as a diagnostic device in challenging environments, such as rural settings or emergency outbreaks.

  5. A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging

    PubMed Central

    Poland, Simon P.; Krstajić, Nikola; Monypenny, James; Coelho, Simao; Tyndall, David; Walker, Richard J.; Devauges, Viviane; Richardson, Justin; Dutton, Neale; Barber, Paul; Li, David Day-Uei; Suhling, Klaus; Ng, Tony; Henderson, Robert K.; Ameer-Beg, Simon M.

    2015-01-01

    We demonstrate diffraction limited multiphoton imaging in a massively parallel, fully addressable time-resolved multi-beam multiphoton microscope capable of producing fluorescence lifetime images with sub-50ps temporal resolution. This imaging platform offers a significant improvement in acquisition speed over single-beam laser scanning FLIM by a factor of 64 without compromising in either the temporal or spatial resolutions of the system. We demonstrate FLIM acquisition at 500 ms with live cells expressing green fluorescent protein. The applicability of the technique to imaging protein-protein interactions in live cells is exemplified by observation of time-dependent FRET between the epidermal growth factor receptor (EGFR) and the adapter protein Grb2 following stimulation with the receptor ligand. Furthermore, ligand-dependent association of HER2-HER3 receptor tyrosine kinases was observed on a similar timescale and involved the internalisation and accumulation or receptor heterodimers within endosomes. These data demonstrate the broad applicability of this novel FLIM technique to the spatio-temporal dynamics of protein-protein interaction. PMID:25780724

  6. Co-registration of ultrasound and frequency-domain photoacoustic radar images and image improvement for tumor detection

    NASA Astrophysics Data System (ADS)

    Dovlo, Edem; Lashkari, Bahman; Choi, Sung soo Sean; Mandelis, Andreas

    2015-03-01

    This paper demonstrates the co-registration of ultrasound (US) and frequency domain photoacoustic radar (FD-PAR) images with significant image improvement from applying image normalization, filtering and amplification techniques. Achieving PA imaging functionality on a commercial Ultrasound instrument could accelerate clinical acceptance and use. Experimental results presented demonstrate live animal testing and show enhancements in signal-to-noise ratio (SNR), contrast and spatial resolution. The co-registered image produced from the US and phase PA images, provides more information than both images independently.

  7. Speciation of individual mineral particles of micrometer size by the combined use of attenuated total reflectance-Fourier transform-infrared imaging and quantitative energy-dispersive electron probe X-ray microanalysis techniques.

    PubMed

    Jung, Hae-Jin; Malek, Md Abdul; Ryu, JiYeon; Kim, BoWha; Song, Young-Chul; Kim, HyeKyeong; Ro, Chul-Un

    2010-07-15

    Our previous work demonstrated for the first time the potential of the combined use of two techniques, attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis, low-Z particle EPMA, for the characterization of individual aerosol particles. In this work, the speciation of mineral particles was performed on a single particle level for 24 mineral samples, including kaolinite, montmorillonite, vermiculite, talc, quartz, feldspar, calcite, gypsum, and apatite, by the combined use of ATR-FT-IR imaging and low-Z particle EPMA techniques. These two single particle analytical techniques provide complementary information, the ATR-FT-IR imaging on mineral types and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles. This work demonstrates that the combined use of the two single particle analytical techniques can powerfully characterize externally heterogeneous mineral particle samples in detail and has great potential for the characterization of airborne mineral dust particles.

  8. Turboprop IDEAL: a motion-resistant fat-water separation technique.

    PubMed

    Huo, Donglai; Li, Zhiqiang; Aboussouan, Eric; Karis, John P; Pipe, James G

    2009-01-01

    Suppression of the fat signal in MRI is very important for many clinical applications. Multi-point water-fat separation methods, such as IDEAL (Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares estimation), can robustly separate water and fat signal, but inevitably increase scan time, making separated images more easily affected by patient motions. PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) and Turboprop techniques offer an effective approach to correct for motion artifacts. By combining these techniques together, we demonstrate that the new TP-IDEAL method can provide reliable water-fat separation with robust motion correction. The Turboprop sequence was modified to acquire source images, and motion correction algorithms were adjusted to assure the registration between different echo images. Theoretical calculations were performed to predict the optimal shift and spacing of the gradient echoes. Phantom images were acquired, and results were compared with regular FSE-IDEAL. Both T1- and T2-weighted images of the human brain were used to demonstrate the effectiveness of motion correction. TP-IDEAL images were also acquired for pelvis, knee, and foot, showing great potential of this technique for general clinical applications.

  9. Instantaneous velocity field imaging instrument for supersonic reacting flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Legner, H. H.; Mcmanus, K. R.; Mulhall, P. A.; Parker, T. E.; Sonnenfroh, D. M.

    1993-01-01

    The technical tasks conducted to develop and demonstrate a new gas velocity measurement technique for high enthalpy reacting flows is described. The technique is based on Doppler-shifted Planar Laser-induced Fluorescence (PLIF) imaging of the OH radical. The imaging approach permits, in principle, single-shot measurements of the 2-D distribution of a single velocity component in the measurement plane, and is thus a technique of choice for applications in high enthalpy transient flow facilities. In contrast to previous work in this area, the present program demonstrated an approach which modified the diagnostic technique to function under the constraints of practical flow conditions of engineering interest, rather than vice-versa. In order to accomplish the experimental demonstrations, the state-of-the-art in PLIF diagnostic techniques was advanced in several ways. Each of these tasks is described in detail and is intended to serve as a reference in supporting the transition of this new capability to the fielded PLIF instruments now installed at several national test facilities. Among the new results of general interest in LlF-based flow diagnostics, a detailed set of the first measurements of the collisional broadening and shifting behavior of OH (1,0) band transitions in H7-air combustion environments is included. Such measurements are critical in the design of a successful strategy for PLIF velocity imaging; they also relate to accurate concentration and temperature measurements, particularly in compressible flow regimes. Furthermore, the results shed new light on the fundamental relationship between broadening and energy transfer collisions in OH A(sup 2)Sigma(+)v(sup ') = 1. The first single-pulse, spectrally-resolved measurements of the output of common pulsed dye lasers were also produced during the course of this effort. As with the OH broadening measurements, these data are a significant aspect of a successful velocity imaging strategy, and also have potential implications for many other LIF measurement techniques. Our results indicated the need to modify the commercially available laser cavity in order to accommodate the constraints imposed by typical SCRAMJET combustion characteristics as well as to increase the instrument's velocity dynamic range to span an intra-image range in excess of 2 km/s. The various technical efforts were brought together in a series of experiments demonstrating the applicability of the technique in a high pressure, high temperature H2-air combustion system. The resultant images were compared with 2-D flow simulations in order to determine the accuracy of the instrument. Mean velocity imaging in flows with an axis of symmetry was demonstrated with an accuracy of +/- 50 m/s out of an intra-image dynamic range of 1600 m/s, including reversed flow. A more complex configuration amenable to single-shot imaging in flows without an axis of symmetry was also demonstrated. Limitations imposed by available equipment resulted in an accuracy of about +/- 200 m/s out of 1750 m/s in these demonstrations. Minor modifications to the present configuration were suggested to improve this performance. Each technical task is described in detail, along with significance of the results for the overall imaging velocimeter configuration. This report should allow the user community to integrate this new measurement capability in their existing instrumentation platforms.

  10. Automatic motion correction of clinical shoulder MR images

    NASA Astrophysics Data System (ADS)

    Manduca, Armando; McGee, Kiaran P.; Welch, Edward B.; Felmlee, Joel P.; Ehman, Richard L.

    1999-05-01

    A technique for the automatic correction of motion artifacts in MR images was developed. The algorithm uses only the raw (complex) data from the MR scanner, and requires no knowledge of the patient motion during the acquisition. It operates by searching over the space of possible patient motions and determining the motion which, when used to correct the image, optimizes the image quality. The performance of this algorithm was tested in coronal images of the rotator cuff in a series of 144 patients. A four observer comparison of the autocorrelated images with the uncorrected images demonstrated that motion artifacts were significantly reduced in 48% of the cases. The improvements in image quality were similar to those achieved with a previously reported navigator echo-based adaptive motion correction. The results demonstrate that autocorrelation is a practical technique for retrospectively reducing motion artifacts in a demanding clinical MRI application. It achieves performance comparable to a navigator based correction technique, which is significant because autocorrection does not require an imaging sequence that has been modified to explicitly track motion during acquisition. The approach is flexible and should be readily extensible to other types of MR acquisitions that are corrupted by global motion.

  11. Visible near-diffraction-limited lucky imaging with full-sky laser-assisted adaptive optics

    NASA Astrophysics Data System (ADS)

    Basden, A. G.

    2014-08-01

    Both lucky imaging techniques and adaptive optics require natural guide stars, limiting sky-coverage, even when laser guide stars are used. Lucky imaging techniques become less successful on larger telescopes unless adaptive optics is used, as the fraction of images obtained with well-behaved turbulence across the whole telescope pupil becomes vanishingly small. Here, we introduce a technique combining lucky imaging techniques with tomographic laser guide star adaptive optics systems on large telescopes. This technique does not require any natural guide star for the adaptive optics, and hence offers full sky-coverage adaptive optics correction. In addition, we introduce a new method for lucky image selection based on residual wavefront phase measurements from the adaptive optics wavefront sensors. We perform Monte Carlo modelling of this technique, and demonstrate I-band Strehl ratios of up to 35 per cent in 0.7 arcsec mean seeing conditions with 0.5 m deformable mirror pitch and full adaptive optics sky-coverage. We show that this technique is suitable for use with lucky imaging reference stars as faint as magnitude 18, and fainter if more advanced image selection and centring techniques are used.

  12. High Resolution Imaging of the Sun with CORONAS-1

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita

    1998-01-01

    We applied several image restoration and enhancement techniques, to CORONAS-I images. We carried out the characterization of the Point Spread Function (PSF) using the unique capability of the Blind Iterative Deconvolution (BID) technique, which recovers the real PSF at a given location and time of observation, when limited a priori information is available on its characteristics. We also applied image enhancement technique to extract the small scale structure imbeded in bright large scale structures on the disk and on the limb. The results demonstrate the capability of the image post-processing to substantially increase the yield from the space observations by improving the resolution and reducing noise in the images.

  13. Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique.

    PubMed

    Phing, Sze Ho; Mazhorova, Anna; Shalaby, Mostafa; Peccianti, Marco; Clerici, Matteo; Pasquazi, Alessia; Ozturk, Yavuz; Ali, Jalil; Morandotti, Roberto

    2015-02-25

    Terahertz technologies recently emerged as outstanding candidates for a variety of applications in such sectors as security, biomedical, pharmaceutical, aero spatial, etc. Imaging the terahertz field, however, still remains a challenge, particularly when sub-wavelength resolutions are involved. Here we demonstrate an all-optical technique for the terahertz near-field imaging directly at the source plane. A thin layer (<100 nm-thickness) of photo carriers is induced on the surface of the terahertz generation crystal, which acts as an all-optical, virtual blade for terahertz near-field imaging via a knife-edge technique. Remarkably, and in spite of the fact that the proposed approach does not require any mechanical probe, such as tips or apertures, we are able to demonstrate the imaging of a terahertz source with deeply sub-wavelength features (<30 μm) directly in its emission plane.

  14. Concentric Rings K-Space Trajectory for Hyperpolarized 13C MR Spectroscopic Imaging

    PubMed Central

    Jiang, Wenwen; Lustig, Michael; Larson, Peder E.Z.

    2014-01-01

    Purpose To develop a robust and rapid imaging technique for hyperpolarized 13C MR Spectroscopic Imaging (MRSI) and investigate its performance. Methods A concentric rings readout trajectory with constant angular velocity is proposed for hyperpolarized 13C spectroscopic imaging and its properties are analyzed. Quantitative analyses of design tradeoffs are presented for several imaging scenarios. The first application of concentric rings on 13C phantoms and in vivo animal hyperpolarized 13C MRSI studies were performed to demonstrate the feasibility of the proposed method. Finally, a parallel imaging accelerated concentric rings study is presented. Results The concentric rings MRSI trajectory has the advantages of acquisition timesaving compared to echo-planar spectroscopic imaging (EPSI). It provides sufficient spectral bandwidth with relatively high SNR efficiency compared to EPSI and spiral techniques. Phantom and in vivo animal studies showed good image quality with half the scan time and reduced pulsatile flow artifacts compared to EPSI. Parallel imaging accelerated concentric rings showed advantages over Cartesian sampling in g-factor simulations and demonstrated aliasing-free image quality in a hyperpolarized 13C in vivo study. Conclusion The concentric rings trajectory is a robust and rapid imaging technique that fits very well with the speed, bandwidth, and resolution requirements of hyperpolarized 13C MRSI. PMID:25533653

  15. Validating a Geographical Image Retrieval System.

    ERIC Educational Resources Information Center

    Zhu, Bin; Chen, Hsinchun

    2000-01-01

    Summarizes a prototype geographical image retrieval system that demonstrates how to integrate image processing and information analysis techniques to support large-scale content-based image retrieval. Describes an experiment to validate the performance of this image retrieval system against that of human subjects by examining similarity analysis…

  16. A facile synthesis of novel self-assembled gold nanorods designed for near-infrared imaging.

    PubMed

    Pan, Dipanjan; Pramanik, Manojit; Senpan, Angana; Wickline, Samuel A; Wang, Lihong V; Lanza, Gregory M

    2010-12-01

    Molecular imaging techniques now allow recognition of early biochemical, physiological, and anatomical changes before manifestation of gross pathological changes. Photoacoustic imaging represents a novel non-ionizing detection technique that combines the advantages of optical and ultrasound imaging. Noninvasive photoacoustic tomography (PAT) imaging in combination with nanoparticle-based contrast agents show promise in improved detection and diagnosis of cardiovascular and cancer related diseases. In this report, a novel strategy is introduced to achieve self-assembled colloidal gold nanorods, which are constrained to the vasculature. Gold nanorods (2-4 nm) were incorporated into the core of self-assembled lipid-encapsulated nanoparticles (sGNR) (approximately 130 nm), providing more than hundreds of gold atoms per nanoparticle of 20% colloid suspension. The physico-chemical characterization in solution and anhydrous state with analytical techniques demonstrated that the particles were spherical and highly mono dispersed. In addition to the synthesis and characterization, sensitive near-infrared photoacoustic detection was impressively demonstrated in vitro.

  17. A Facile Synthesis of Novel Self-Assembled Gold Nanorods Designed for Near-Infrared Imaging

    PubMed Central

    Pramanik, Manojit; Senpan, Angana; Wickline, Samuel A.; Lanza, Gregory M.

    2011-01-01

    Molecular imaging techniques now allow recognition of early biochemical, physiological, and anatomical Changes before manifestation of gross pathological changes. Photoacoustic imaging represents a novel non-ionizing detection technique that combines the advantages of optical and ultrasound imaging Noninvasive photoacoustic tomography (PAT) imaging in combination with nanoparticle-based contrast agents show promise in improved detection and diagnosis of cardio-vascular and cancer related diseases. In this report, a novel strategy is introduced to achieve self-assembled colloidal gold nanorods, which are constrained to the vasculature. Gold nanorods (2–4 nm) were incorporated into the core of self-assembled lipid-encapsulated nanoparticles (sGNR)(~130 nm), providing more than hundreds of gold atoms per nanoparticle of 20% colloid suspension. The physico-chemical characterization in solution and anhydrous state with analytical techniques demonstrated that the particles were spherical and highly mono dispersed. In addition to the synthesis and characterization, sensitive near-infrared photoacoustic detection was impressively demonstrated in vitro. PMID:21121304

  18. Development of technique for three-dimensional visualization of grain boundaries by white X-ray microbeam

    NASA Astrophysics Data System (ADS)

    Kajiwara, K.; Shobu, T.; Toyokawa, H.; Sato, M.

    2014-04-01

    A technique for three-dimensional visualization of grain boundaries was developed at BL28B2 at SPring-8. The technique uses white X-ray microbeam diffraction and a rotating slit. Three-dimensional images of small silicon single crystals filled in a plastic tube were successfully obtained using this technique for demonstration purposes. The images were consistent with those obtained by X-ray computed tomography.

  19. Generalization of the Lyot filter and its application to snapshot spectral imaging.

    PubMed

    Gorman, Alistair; Fletcher-Holmes, David William; Harvey, Andrew Robert

    2010-03-15

    A snapshot multi-spectral imaging technique is described which employs multiple cascaded birefringent interferometers to simultaneously spectrally filter and demultiplex multiple spectral images onto a single detector array. Spectral images are recorded directly without the need for inversion and without rejection of light and so the technique offers the potential for high signal-to-noise ratio. An example of an eight-band multi-spectral movie sequence is presented; we believe this is the first such demonstration of a technique able to record multi-spectral movie sequences without the need for computer reconstruction.

  20. Optical smart packaging to reduce transmitted information.

    PubMed

    Cabezas, Luisa; Tebaldi, Myrian; Barrera, John Fredy; Bolognini, Néstor; Torroba, Roberto

    2012-01-02

    We demonstrate a smart image-packaging optical technique that uses what we believe is a new concept to save byte space when transmitting data. The technique supports a large set of images mapped into modulated speckle patterns. Then, they are multiplexed into a single package. This operation results in a substantial decreasing of the final amount of bytes of the package with respect to the amount resulting from the addition of the images without using the method. Besides, there are no requirements on the type of images to be processed. We present results that proof the potentiality of the technique.

  1. A correlative imaging based methodology for accurate quantitative assessment of bone formation in additive manufactured implants.

    PubMed

    Geng, Hua; Todd, Naomi M; Devlin-Mullin, Aine; Poologasundarampillai, Gowsihan; Kim, Taek Bo; Madi, Kamel; Cartmell, Sarah; Mitchell, Christopher A; Jones, Julian R; Lee, Peter D

    2016-06-01

    A correlative imaging methodology was developed to accurately quantify bone formation in the complex lattice structure of additive manufactured implants. Micro computed tomography (μCT) and histomorphometry were combined, integrating the best features from both, while demonstrating the limitations of each imaging modality. This semi-automatic methodology registered each modality using a coarse graining technique to speed the registration of 2D histology sections to high resolution 3D μCT datasets. Once registered, histomorphometric qualitative and quantitative bone descriptors were directly correlated to 3D quantitative bone descriptors, such as bone ingrowth and bone contact. The correlative imaging allowed the significant volumetric shrinkage of histology sections to be quantified for the first time (~15 %). This technique demonstrated the importance of location of the histological section, demonstrating that up to a 30 % offset can be introduced. The results were used to quantitatively demonstrate the effectiveness of 3D printed titanium lattice implants.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shcheslavskiy, V. I.; Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny Novgorod 603005; Neubauer, A.

    We present a lifetime imaging technique that simultaneously records the fluorescence and phosphorescence lifetime images in confocal laser scanning systems. It is based on modulating a high-frequency pulsed laser synchronously with the pixel clock of the scanner, and recording the fluorescence and phosphorescence signals by multidimensional time-correlated single photon counting board. We demonstrate our technique on the recording of the fluorescence/phosphorescence lifetime images of human embryonic kidney cells at different environmental conditions.

  3. Comparison study of noise reduction algorithms in dual energy chest digital tomosynthesis

    NASA Astrophysics Data System (ADS)

    Lee, D.; Kim, Y.-S.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2018-04-01

    Dual energy chest digital tomosynthesis (CDT) is a recently developed medical technique that takes advantage of both tomosynthesis and dual energy X-ray images. However, quantum noise, which occurs in dual energy X-ray images, strongly interferes with diagnosis in various clinical situations. Therefore, noise reduction is necessary in dual energy CDT. In this study, noise-compensating algorithms, including a simple smoothing of high-energy images (SSH) and anti-correlated noise reduction (ACNR), were evaluated in a CDT system. We used a newly developed prototype CDT system and anthropomorphic chest phantom for experimental studies. The resulting images demonstrated that dual energy CDT can selectively image anatomical structures, such as bone and soft tissue. Among the resulting images, those acquired with ACNR showed the best image quality. Both coefficient of variation and contrast to noise ratio (CNR) were the highest in ACNR among the three different dual energy techniques, and the CNR of bone was significantly improved compared to the reconstructed images acquired at a single energy. This study demonstrated the clinical value of dual energy CDT and quantitatively showed that ACNR is the most suitable among the three developed dual energy techniques, including standard log subtraction, SSH, and ACNR.

  4. Image Alignment for Multiple Camera High Dynamic Range Microscopy.

    PubMed

    Eastwood, Brian S; Childs, Elisabeth C

    2012-01-09

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera.

  5. Image Alignment for Multiple Camera High Dynamic Range Microscopy

    PubMed Central

    Eastwood, Brian S.; Childs, Elisabeth C.

    2012-01-01

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera. PMID:22545028

  6. Robust Global Image Registration Based on a Hybrid Algorithm Combining Fourier and Spatial Domain Techniques

    DTIC Science & Technology

    2012-09-01

    Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain techniques Peter N. Crabtree, Collin Seanor...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain...demonstrate performance of a hybrid algorithm . These results are from analysis of a set of images of an ISO 12233 [12] resolution chart captured in the

  7. Iterative optimization method for design of quantitative magnetization transfer imaging experiments.

    PubMed

    Levesque, Ives R; Sled, John G; Pike, G Bruce

    2011-09-01

    Quantitative magnetization transfer imaging (QMTI) using spoiled gradient echo sequences with pulsed off-resonance saturation can be a time-consuming technique. A method is presented for selection of an optimum experimental design for quantitative magnetization transfer imaging based on the iterative reduction of a discrete sampling of the Z-spectrum. The applicability of the technique is demonstrated for human brain white matter imaging at 1.5 T and 3 T, and optimal designs are produced to target specific model parameters. The optimal number of measurements and the signal-to-noise ratio required for stable parameter estimation are also investigated. In vivo imaging results demonstrate that this optimal design approach substantially improves parameter map quality. The iterative method presented here provides an advantage over free form optimal design methods, in that pragmatic design constraints are readily incorporated. In particular, the presented method avoids clustering and repeated measures in the final experimental design, an attractive feature for the purpose of magnetization transfer model validation. The iterative optimal design technique is general and can be applied to any method of quantitative magnetization transfer imaging. Copyright © 2011 Wiley-Liss, Inc.

  8. Shadow-free single-pixel imaging

    NASA Astrophysics Data System (ADS)

    Li, Shunhua; Zhang, Zibang; Ma, Xiao; Zhong, Jingang

    2017-11-01

    Single-pixel imaging is an innovative imaging scheme and receives increasing attention in recent years, for it is applicable for imaging at non-visible wavelengths and imaging under weak light conditions. However, as in conventional imaging, shadows would likely occur in single-pixel imaging and sometimes bring negative effects in practical uses. In this paper, the principle of shadows occurrence in single-pixel imaging is analyzed, following which a technique for shadows removal is proposed. In the proposed technique, several single-pixel detectors are used to detect the backscattered light at different locations so that the shadows in the reconstructed images corresponding to each detector shadows are complementary. Shadow-free reconstruction can be derived by fusing the shadow-complementary images using maximum selection rule. To deal with the problem of intensity mismatch in image fusion, we put forward a simple calibration. As experimentally demonstrated, the technique is able to reconstruct monochromatic and full-color shadow-free images.

  9. MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update

    PubMed Central

    Wu, Xin; Kirov, Ivan I.; Gonen, Oded; Ge, Yulin; Grossman, Robert I.

    2016-01-01

    Mild traumatic brain injury (mTBI), also commonly referred to as concussion, affects millions of Americans annually. Although computed tomography is the first-line imaging technique for all traumatic brain injury, it is incapable of providing long-term prognostic information in mTBI. In the past decade, the amount of research related to magnetic resonance (MR) imaging of mTBI has grown exponentially, partly due to development of novel analytical methods, which are applied to a variety of MR techniques. Here, evidence of subtle brain changes in mTBI as revealed by these techniques, which are not demonstrable by conventional imaging, will be reviewed. These changes can be considered in three main categories of brain structure, function, and metabolism. Macrostructural and microstructural changes have been revealed with three-dimensional MR imaging, susceptibility-weighted imaging, diffusion-weighted imaging, and higher order diffusion imaging. Functional abnormalities have been described with both task-mediated and resting-state blood oxygen level–dependent functional MR imaging. Metabolic changes suggesting neuronal injury have been demonstrated with MR spectroscopy. These findings improve understanding of the true impact of mTBI and its pathogenesis. Further investigation may eventually lead to improved diagnosis, prognosis, and management of this common and costly condition. © RSNA, 2016 PMID:27183405

  10. Anti-forensics of chromatic aberration

    NASA Astrophysics Data System (ADS)

    Mayer, Owen; Stamm, Matthew C.

    2015-03-01

    Over the past decade, a number of information forensic techniques have been developed to identify digital image manipulation and falsification. Recent research has shown, however, that an intelligent forger can use anti-forensic countermeasures to disguise their forgeries. In this paper, an anti-forensic technique is proposed to falsify the lateral chromatic aberration present in a digital image. Lateral chromatic aberration corresponds to the relative contraction or expansion between an image's color channels that occurs due to a lens's inability to focus all wavelengths of light on the same point. Previous work has used localized inconsistencies in an image's chromatic aberration to expose cut-and-paste image forgeries. The anti-forensic technique presented in this paper operates by estimating the expected lateral chromatic aberration at an image location, then removing deviations from this estimate caused by tampering or falsification. Experimental results are presented that demonstrate that our anti-forensic technique can be used to effectively disguise evidence of an image forgery.

  11. Face Hallucination with Linear Regression Model in Semi-Orthogonal Multilinear PCA Method

    NASA Astrophysics Data System (ADS)

    Asavaskulkiet, Krissada

    2018-04-01

    In this paper, we propose a new face hallucination technique, face images reconstruction in HSV color space with a semi-orthogonal multilinear principal component analysis method. This novel hallucination technique can perform directly from tensors via tensor-to-vector projection by imposing the orthogonality constraint in only one mode. In our experiments, we use facial images from FERET database to test our hallucination approach which is demonstrated by extensive experiments with high-quality hallucinated color faces. The experimental results assure clearly demonstrated that we can generate photorealistic color face images by using the SO-MPCA subspace with a linear regression model.

  12. Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing

    PubMed Central

    Berke, Ian M.; Miola, Joseph P.; David, Michael A.; Smith, Melanie K.; Price, Christopher

    2016-01-01

    In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues. PMID:26930293

  13. Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing.

    PubMed

    Berke, Ian M; Miola, Joseph P; David, Michael A; Smith, Melanie K; Price, Christopher

    2016-01-01

    In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues.

  14. Optimisation of radiation dose and image quality in mobile neonatal chest radiography.

    PubMed

    Hinojos-Armendáriz, V I; Mejía-Rosales, S J; Franco-Cabrera, M C

    2018-05-01

    To optimise the radiation dose and image quality for chest radiography in the neonatal intensive care unit (NICU) by increasing the mean beam energy. Two techniques for the acquisition of NICU AP chest X-ray images were compared for image quality and radiation dose. 73 images were acquired using a standard technique (56 kV, 3.2 mAs and no additional filtration) and 90 images with a new technique (62 kV, 2 mAs and 2 mm Al filtration). The entrance surface air kerma (ESAK) was measured using a phantom and compared between the techniques and against established diagnostic reference levels (DRL). Images were evaluated using seven image quality criteria independently by three radiologists. Images quality and radiation dose were compared statistically between the standard and new techniques. The maximum ESAK for the new technique was 40.20 μGy, 43.7% of the ESAK of the standard technique. Statistical evaluation demonstrated no significant differences in image quality between the two acquisition techniques. Based on the techniques and acquisition factors investigated within this study, it is possible to lower the radiation dose without any significant effects on image quality by adding filtration (2 mm Al) and increasing the tube potential. Such steps are relatively simple to undertake and as such, other departments should consider testing and implementing this dose reduction strategy within clinical practice where appropriate. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  15. Non-contact single shot elastography using line field low coherence holography

    PubMed Central

    Liu, Chih-Hao; Schill, Alexander; Wu, Chen; Singh, Manmohan; Larin, Kirill V.

    2016-01-01

    Optical elastic wave imaging is a powerful technique that can quantify local biomechanical properties of tissues. However, typically long acquisition times make this technique unfeasible for clinical use. Here, we demonstrate non-contact single shot elastographic holography using a line-field interferometer integrated with an air-pulse delivery system. The propagation of the air-pulse induced elastic wave was imaged in real time, and required a single excitation for a line-scan measurement. Results on tissue-mimicking phantoms and chicken breast muscle demonstrated the feasibility of this technique for accurate assessment of tissue biomechanical properties with an acquisition time of a few milliseconds using parallel acquisition. PMID:27570694

  16. Hexagonal undersampling for faster MRI near metallic implants.

    PubMed

    Sveinsson, Bragi; Worters, Pauline W; Gold, Garry E; Hargreaves, Brian A

    2015-02-01

    Slice encoding for metal artifact correction acquires a three-dimensional image of each excited slice with view-angle tilting to reduce slice and readout direction artifacts respectively, but requires additional imaging time. The purpose of this study was to provide a technique for faster imaging around metallic implants by undersampling k-space. Assuming that areas of slice distortion are localized, hexagonal sampling can reduce imaging time by 50% compared with conventional scans. This work demonstrates this technique by comparisons of fully sampled images with undersampled images, either from simulations from fully acquired data or from data actually undersampled during acquisition, in patients and phantoms. Hexagonal sampling is also shown to be compatible with parallel imaging and partial Fourier acquisitions. Image quality was evaluated using a structural similarity (SSIM) index. Images acquired with hexagonal undersampling had no visible difference in artifact suppression from fully sampled images. The SSIM index indicated high similarity to fully sampled images in all cases. The study demonstrates the ability to reduce scan time by undersampling without compromising image quality. © 2014 Wiley Periodicals, Inc.

  17. 3D quantitative phase imaging of neural networks using WDT

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  18. MEMS scanning micromirror for optical coherence tomography.

    PubMed

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y

    2015-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique.

  19. MEMS scanning micromirror for optical coherence tomography

    PubMed Central

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G.; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y.

    2014-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique. PMID:25657887

  20. Real-time broadband terahertz spectroscopic imaging by using a high-sensitivity terahertz camera

    NASA Astrophysics Data System (ADS)

    Kanda, Natsuki; Konishi, Kuniaki; Nemoto, Natsuki; Midorikawa, Katsumi; Kuwata-Gonokami, Makoto

    2017-02-01

    Terahertz (THz) imaging has a strong potential for applications because many molecules have fingerprint spectra in this frequency region. Spectroscopic imaging in the THz region is a promising technique to fully exploit this characteristic. However, the performance of conventional techniques is restricted by the requirement of multidimensional scanning, which implies an image data acquisition time of several minutes. In this study, we propose and demonstrate a novel broadband THz spectroscopic imaging method that enables real-time image acquisition using a high-sensitivity THz camera. By exploiting the two-dimensionality of the detector, a broadband multi-channel spectrometer near 1 THz was constructed with a reflection type diffraction grating and a high-power THz source. To demonstrate the advantages of the developed technique, we performed molecule-specific imaging and high-speed acquisition of two-dimensional (2D) images. Two different sugar molecules (lactose and D-fructose) were identified with fingerprint spectra, and their distributions in one-dimensional space were obtained at a fast video rate (15 frames per second). Combined with the one-dimensional (1D) mechanical scanning of the sample, two-dimensional molecule-specific images can be obtained only in a few seconds. Our method can be applied in various important fields such as security and biomedicine.

  1. A sensitive infrared imaging up converter and spatial coherence of atmospheric propagation

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.; Townes, C. H.

    1977-01-01

    An infrared imaging technique based on the nonlinear interaction known as upconversion was used to obtain images of several astronomical objects in the 10 micrometer spectral region, and to demonstrate quantitatively the sharper images allowed for wavelengths beyond the visible region. The deleterious effects of atmospheric inhomogeneities on telescope resolution were studied in the infrared region using the technique developed. The low quantum efficiency of the device employed severely limited its usefulness as an astronomical detector.

  2. Architecture for one-shot compressive imaging using computer-generated holograms.

    PubMed

    Macfaden, Alexander J; Kindness, Stephen J; Wilkinson, Timothy D

    2016-09-10

    We propose a synchronous implementation of compressive imaging. This method is mathematically equivalent to prevailing sequential methods, but uses a static holographic optical element to create a spatially distributed spot array from which the image can be reconstructed with an instantaneous measurement. We present the holographic design requirements and demonstrate experimentally that the linear algebra of compressed imaging can be implemented with this technique. We believe this technique can be integrated with optical metasurfaces, which will allow the development of new compressive sensing methods.

  3. A dual-view digital tomosynthesis imaging technique for improved chest imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng

    Purpose: Digital tomosynthesis (DTS) has been shown to be useful for reducing the overlapping of abnormalities with anatomical structures at various depth levels along the posterior–anterior (PA) direction in chest radiography. However, DTS provides crude three-dimensional (3D) images that have poor resolution in the lateral view and can only be displayed with reasonable quality in the PA view. Furthermore, the spillover of high-contrast objects from off-fulcrum planes generates artifacts that may impede the diagnostic use of the DTS images. In this paper, the authors describe and demonstrate the use of a dual-view DTS technique to improve the accuracy of themore » reconstructed volume image data for more accurate rendition of the anatomy and slice images with improved resolution and reduced artifacts, thus allowing the 3D image data to be viewed in views other than the PA view. Methods: With the dual-view DTS technique, limited angle scans are performed and projection images are acquired in two orthogonal views: PA and lateral. The dual-view projection data are used together to reconstruct 3D images using the maximum likelihood expectation maximization iterative algorithm. In this study, projection images were simulated or experimentally acquired over 360° using the scanning geometry for cone beam computed tomography (CBCT). While all projections were used to reconstruct CBCT images, selected projections were extracted and used to reconstruct single- and dual-view DTS images for comparison with the CBCT images. For realistic demonstration and comparison, a digital chest phantom derived from clinical CT images was used for the simulation study. An anthropomorphic chest phantom was imaged for the experimental study. The resultant dual-view DTS images were visually compared with the single-view DTS images and CBCT images for the presence of image artifacts and accuracy of CT numbers and anatomy and quantitatively compared with root-mean-square-deviation (RMSD) values computed using the digital chest phantom or the CBCT images as the reference in the simulation and experimental study, respectively. High-contrast wires with vertical, oblique, and horizontal orientations in a PA view plane were also imaged to investigate the spatial resolutions and how the wire signals spread in the PA view and lateral view slice images. Results: Both the digital phantom images (simulated) and the anthropomorphic phantom images (experimentally generated) demonstrated that the dual-view DTS technique resulted in improved spatial resolution in the depth (PA) direction, more accurate representation of the anatomy, and significantly reduced artifacts. The RMSD values corroborate well with visual observations with substantially lower RMSD values measured for the dual-view DTS images as compared to those measured for the single-view DTS images. The imaging experiment with the high-contrast wires shows that while the vertical and oblique wires could be resolved in the lateral view in both single- and dual-view DTS images, the horizontal wire could only be resolved in the dual-view DTS images. This indicates that with single-view DTS, the wire signals spread liberally to off-fulcrum planes and generated wire shadow there. Conclusions: The authors have demonstrated both visually and quantitatively that the dual-view DTS technique can be used to achieve more accurate rendition of the anatomy and to obtain slice images with improved resolution and reduced artifacts as compared to the single-view DTS technique, thus allowing the 3D image data to be viewed in views other than the PA view. These advantages could make the dual-view DTS technique useful in situations where better separation of the objects-of-interest from the off-fulcrum structures or more accurate 3D rendition of the anatomy are required while a regular CT examination is undesirable due to radiation dose considerations.« less

  4. Solid-state 27Al MRI and NMR thermometry for catalytic applications with conventional (liquids) MRI instrumentation and techniques.

    PubMed

    Koptyug, Igor V; Sagdeev, Dmitry R; Gerkema, Edo; Van As, Henk; Sagdeev, Renad Z

    2005-07-01

    Multidimensional images of Al2O3 pellets, cordierite monolith, glass tube, polycrystalline V2O5 and other materials have been detected by 27Al, 51V, and 23Na NMR imaging using techniques and instrumentation conventionally employed for imaging of liquids. These results demonstrate that, contrary to the widely accepted opinion, imaging of "rigid" solids does not necessarily require utilization of solid state NMR imaging approaches, pulse sequences and hardware even for quadrupolar nuclei which exhibit line widths in excess of 100 kHz, such as 51V in polycrystalline V2O5. It is further demonstrated that both 27Al NMR signal intensity and spin-lattice relaxation time decrease with increasing temperature and thus can potentially serve as temperature sensitive parameters for spatially resolved NMR thermometry.

  5. Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform

    NASA Astrophysics Data System (ADS)

    Liu, Bao-Lei; Yang, Zhao-Hua; Liu, Xia; Wu, Ling-An

    2017-02-01

    We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-colour image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily cancelled to give excellent image quality. Moreover, the experimental set-up is very simple.

  6. Optical eigenmodes for illumination & imaging

    NASA Astrophysics Data System (ADS)

    Kosmeier, Sebastian

    Gravitational Microlensing, as a technique for detecting Extrasolar Planets, is recognised for its potential in discovering small-mass planets similar to Earth, at a distance of a few Astronomical Units from their host stars. However, analysing the data from microlensing events (which statistically rarely reveal planets) is complex and requires continued and intensive use of various networks of telescopes working together in order to observe the phenomenon. As such the techniques are constantly being developed and refined; this project outlines some steps of the careful analysis required to model an event and ensure the best quality data is used in the fitting. A quantitative investigation into increasing the quality of the original photometric data available from any microlensing event demonstrates that 'lucky imaging' can lead to a marked improvement in the signal to noise ratio of images over standard imaging techniques, which could result in more accurate models and thus the calculation of more accurate planetary parameters. In addition, a simulation illustrating the effects of atmospheric turbulence on exposures was created, and expanded upon to give an approximation of the lucky imaging technique. This further demonstrated the advantages of lucky images which are shown to potentially approach the quality of those expected from diffraction limited photometry. The simulation may be further developed for potential future use as a 'theoretical lucky imager' in our research group, capable of producing and analysing synthetic exposures through customisable conditions.

  7. Recovering the fine structures in solar images

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita; Habbal, S. R.; Golub, L.; Deluca, E.; Hudson, Hugh S.

    1994-01-01

    Several examples of the capability of the blind iterative deconvolution (BID) technique to recover the real point spread function, when limited a priori information is available about its characteristics. To demonstrate the potential of image post-processing for probing the fine scale and temporal variability of the solar atmosphere, the BID technique is applied to different samples of solar observations from space. The BID technique was originally proposed for correction of the effects of atmospheric turbulence on optical images. The processed images provide a detailed view of the spatial structure of the solar atmosphere at different heights in regions with different large-scale magnetic field structures.

  8. Advantage of spatial map ion imaging in the study of large molecule photodissociation

    NASA Astrophysics Data System (ADS)

    Lee, Chin; Lin, Yen-Cheng; Lee, Shih-Huang; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung

    2017-07-01

    The original ion imaging technique has low velocity resolution, and currently, photodissociation is mostly investigated using velocity map ion imaging. However, separating signals from the background (resulting from undissociated excited parent molecules) is difficult when velocity map ion imaging is used for the photodissociation of large molecules (number of atoms ≥ 10). In this study, we used the photodissociation of phenol at the S1 band origin as an example to demonstrate how our multimass ion imaging technique, based on modified spatial map ion imaging, can overcome this difficulty. The photofragment translational energy distribution obtained when multimass ion imaging was used differed considerably from that obtained when velocity map ion imaging and Rydberg atom tagging were used. We used conventional translational spectroscopy as a second method to further confirm the experimental results, and we conclude that data should be interpreted carefully when velocity map ion imaging or Rydberg atom tagging is used in the photodissociation of large molecules. Finally, we propose a modified velocity map ion imaging technique without the disadvantages of the current velocity map ion imaging technique.

  9. Web image retrieval using an effective topic and content-based technique

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Cheng; Prabhakara, Rashmi

    2005-03-01

    There has been an exponential growth in the amount of image data that is available on the World Wide Web since the early development of Internet. With such a large amount of information and image available and its usefulness, an effective image retrieval system is thus greatly needed. In this paper, we present an effective approach with both image matching and indexing techniques that improvise on existing integrated image retrieval methods. This technique follows a two-phase approach, integrating query by topic and query by example specification methods. In the first phase, The topic-based image retrieval is performed by using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. This technique consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. In the second phase, we use query by example specification to perform a low-level content-based image match in order to retrieve smaller and relatively closer results of the example image. From this, information related to the image feature is automatically extracted from the query image. The main objective of our approach is to develop a functional image search and indexing technique and to demonstrate that better retrieval results can be achieved.

  10. Chemical speciation of individual airborne particles by the combined use of quantitative energy-dispersive electron probe X-ray microanalysis and attenuated total reflection Fourier transform-infrared imaging techniques.

    PubMed

    Song, Young-Chul; Ryu, JiYeon; Malek, Md Abdul; Jung, Hae-Jin; Ro, Chul-Un

    2010-10-01

    In our previous work, it was demonstrated that the combined use of attenuated total reflectance (ATR) FT-IR imaging and quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), named low-Z particle EPMA, had the potential for characterization of individual aerosol particles. Additionally, the speciation of individual mineral particles was performed on a single particle level by the combined use of the two techniques, demonstrating that simultaneous use of the two single particle analytical techniques is powerful for the detailed characterization of externally heterogeneous mineral particle samples and has great potential for characterization of atmospheric mineral dust aerosols. These single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, such as low-Z particle EPMA on morphology and elemental concentrations and the ATR-FT-IR imaging on molecular species, crystal structures, functional groups, and physical states. In this work, this analytical methodology was applied to characterize an atmospheric aerosol sample collected in Incheon, Korea. Overall, 118 individual particles were observed to be primarily NaNO(3)-containing, Ca- and/or Mg-containing, silicate, and carbonaceous particles, although internal mixing states of the individual particles proved complicated. This work demonstrates that more detailed physiochemical properties of individual airborne particles can be obtained using this approach than when either the low-Z particle EPMA or ATR-FT-IR imaging technique is used alone.

  11. Noninvasive Reactor Imaging Using Cosmic-Ray Muons

    NASA Astrophysics Data System (ADS)

    Miyadera, H.; Fujita, K.; Karino, Y.; Kume, N.; Nakayama, K.; Sano, Y.; Sugita, T.; Yoshioka, K.; Morris, C. L.; Bacon, J. D.; Borozdin, K. N.; Perry, J. O.; Mizokami, S.; Otsuka, Y.; Yamada, D.

    2015-10-01

    Cosmic-ray-muon imaging is proposed to assess the damages to the Fukushima Daiichi reactors. Simulation studies showed capability of muon imaging to reveal the core conditions.The muon-imaging technique was demonstrated at Toshiba Nuclear Critical Assembly, where the uranium-dioxide fuel assembly was imaged with 3-cm spatial resolution after 1 month of measurement.

  12. Study of Tissue Phantoms, Tissues, and Contrast Agent with the Biophotoacoustic Radar and Comparison to Ultrasound Imaging for Deep Subsurface Imaging

    NASA Astrophysics Data System (ADS)

    Alwi, R.; Telenkov, S.; Mandelis, A.; Gu, F.

    2012-11-01

    In this study, the imaging capability of our wide-spectrum frequency-domain photoacoustic (FD-PA) imaging alias "photoacoustic radar" methodology for imaging of soft tissues is explored. A practical application of the mathematical correlation processing method with relatively long (1 ms) frequency-modulated optical excitation is demonstrated for reconstruction of the spatial location of the PA sources. Image comparison with ultrasound (US) modality was investigated to see the complementarity between the two techniques. The obtained results with a phased array probe on tissue phantoms and their comparison to US images demonstrated that the FD-PA technique has strong potential for deep subsurface imaging with excellent contrast and high signal-to-noise ratio. FD-PA images of blood vessels in a human wrist and an in vivo subcutaneous tumor in a rat model are presented. As in other imaging modalities, the employment of contrast agents is desirable to improve the capability of medical diagnostics. Therefore, this study also evaluated and characterized the use of Food and Drug Administration (FDA)-approved superparamagnetic iron oxide nanoparticles (SPION) as PA contrast agents.

  13. Nanoscale live cell imaging using hopping probe ion conductance microscopy

    PubMed Central

    Novak, Pavel; Li, Chao; Shevchuk, Andrew I.; Stepanyan, Ruben; Caldwell, Matthew; Hughes, Simon; Smart, Trevor G.; Gorelik, Julia; Ostanin, Victor P.; Lab, Max J.; Moss, Guy W. J.; Frolenkov, Gregory I.; Klenerman, David; Korchev, Yuri E.

    2009-01-01

    We describe a major advance in scanning ion conductance microscopy: a new hopping mode that allows non-contact imaging of the complex surfaces of live cells with resolution better than 20 nm. The effectiveness of this novel technique was demonstrated by imaging networks of cultured rat hippocampal neurons and mechanosensory stereocilia of mouse cochlear hair cells. The technique allows studying nanoscale phenomena on the surface of live cells under physiological conditions. PMID:19252505

  14. Fluorescence hyperspectral imaging technique for foreign substance detection on fresh-cut lettuce.

    PubMed

    Mo, Changyeun; Kim, Giyoung; Kim, Moon S; Lim, Jongguk; Cho, Hyunjeong; Barnaby, Jinyoung Yang; Cho, Byoung-Kwan

    2017-09-01

    Non-destructive methods based on fluorescence hyperspectral imaging (HSI) techniques were developed to detect worms on fresh-cut lettuce. The optimal wavebands for detecting the worms were investigated using the one-way ANOVA and correlation analyses. The worm detection imaging algorithms, RSI-I (492-626)/492 , provided a prediction accuracy of 99.0%. The fluorescence HSI techniques indicated that the spectral images with a pixel size of 1 × 1 mm had the best classification accuracy for worms. The overall results demonstrate that fluorescence HSI techniques have the potential to detect worms on fresh-cut lettuce. In the future, we will focus on developing a multi-spectral imaging system to detect foreign substances such as worms, slugs and earthworms on fresh-cut lettuce. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. a Novel Technique for Precision Geometric Correction of Jitter Distortion for the Europa Imaging System and Other Rolling-Shutter Cameras

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Shepherd, M.; Sides, S. C.

    2018-04-01

    We use simulated images to demonstrate a novel technique for mitigating geometric distortions caused by platform motion ("jitter") as two-dimensional image sensors are exposed and read out line by line ("rolling shutter"). The results indicate that the Europa Imaging System (EIS) on NASA's Europa Clipper can likely meet its scientific goals requiring 0.1-pixel precision. We are therefore adapting the software used to demonstrate and test rolling shutter jitter correction to become part of the standard processing pipeline for EIS. The correction method will also apply to other rolling-shutter cameras, provided they have the operational flexibility to read out selected "check lines" at chosen times during the systematic readout of the frame area.

  16. Comparison between non-invasive methods used on paintings by Goya and his contemporaries: hyperspectral imaging vs. point-by-point spectroscopic analysis.

    PubMed

    Daniel, Floréal; Mounier, Aurélie; Pérez-Arantegui, Josefina; Pardos, Carlos; Prieto-Taboada, Nagore; Fdez-Ortiz de Vallejuelo, Silvia; Castro, Kepa

    2017-06-01

    The development of non-invasive techniques for the characterization of pigments is crucial in order to preserve the integrity of the artwork. In this sense, the usefulness of hyperspectral imaging was demonstrated. It allows pigment characterization of the whole painting. However, it also sometimes requires the complementation of other point-by-point techniques. In the present article, the advantages of hyperspectral imaging over point-by-point spectroscopic analysis were evaluated. For that purpose, three paintings were analysed by hyperspectral imaging, handheld X-ray fluorescence and handheld Raman spectroscopy in order to determine the best non-invasive technique for pigment identifications. Thanks to this work, the main pigments used in Aragonese artworks, and especially in Goya's paintings, were identified and mapped by imaging reflection spectroscopy. All the analysed pigments corresponded to those used at the time of Goya. Regarding the techniques used, the information obtained by the hyperspectral imaging and point-by-point analysis has been, in general, different and complementary. Given this fact, selecting only one technique is not recommended, and the present work demonstrates the usefulness of the combination of all the techniques used as the best non-invasive methodology for the pigments' characterization. Moreover, the proposed methodology is a relatively quick procedure that allows a larger number of Goya's paintings in the museum to be surveyed, increasing the possibility of obtaining significant results and providing a chance for extensive comparisons, which are relevant from the point of view of art history issues.

  17. High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine

    NASA Astrophysics Data System (ADS)

    Smith, James D.; Sick, Volker

    2005-11-01

    An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.

  18. High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine.

    PubMed

    Smith, James D; Sick, Volker

    2005-11-01

    An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.

  19. Introduction to the virtual special issue on super-resolution imaging techniques

    NASA Astrophysics Data System (ADS)

    Cao, Liangcai; Liu, Zhengjun

    2017-12-01

    Until quite recently, the resolution of optical imaging instruments, including telescopes, cameras and microscopes, was considered to be limited by the diffraction of light and by image sensors. In the past few years, many exciting super-resolution approaches have emerged that demonstrate intriguing ways to bypass the classical limit in optics and detectors. More and more research groups are engaged in the study of advanced super-resolution schemes, devices, algorithms, systems, and applications [1-6]. Super-resolution techniques involve new methods in science and engineering of optics [7,8], measurements [9,10], chemistry [11,12] and information [13,14]. Promising applications, particularly in biomedical research and semiconductor industry, have been successfully demonstrated.

  20. Raman chemical imaging technology for food and agricultural applications

    USDA-ARS?s Scientific Manuscript database

    This paper presents Raman chemical imaging technology for inspecting food and agricultural products. The paper puts emphasis on introducing and demonstrating Raman imaging techniques for practical uses in food analysis. The main topics include Raman scattering principles, Raman spectroscopy measurem...

  1. On the direct acquisition of beam’s-eye-view images in MRI for integration with external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Wachowicz, K.; Murray, B.; Fallone, B. G.

    2018-06-01

    The recent interest in the integration of external beam radiotherapy with a magnetic resonance (MR) imaging unit offers the potential for real-time adaptive tumour tracking during radiation treatment. The tracking of large tumours which follow a rapid trajectory may best be served by the generation of a projection image from the perspective of the beam source, or ‘beam’s eye view’ (BEV). This type of image projection represents the path of the radiation beam, thus enabling rapid compensations for target translations, rotations and deformations, as well time-dependent critical structure avoidance. MR units have been traditionally incapable of this type of imaging except through lengthy 3D acquisitions and ray tracing procedures. This work investigates some changes to the traditional MR scanner architecture that would permit the direct acquisition of a BEV image suitable for integration with external beam radiotherapy. Based on the theory presented in this work, a phantom was imaged with nonlinear encoding-gradient field patterns to demonstrate the technique. The phantom was constructed with agarose gel tubes spaced two cm apart at their base and oriented to converge towards an imaginary beam source 100 cm away. A corresponding virtual phantom was also created and subjected to the same encoding technique as in the physical demonstration, allowing the method to be tested without hardware limitations. The experimentally acquired and simulated images indicate the feasibility of the technique, showing a substantial amount of blur reduction in a diverging phantom compared to the conventional imaging geometry, particularly with the nonlinear gradients ideally implemented. The theory is developed to demonstrate that the method can be adapted in a number of different configurations to accommodate all proposed integration schemes for MR units and radiotherapy sources. Depending on the configuration, the implementation of this technique will require between two and four additional nonlinear encoding coils.

  2. Fourier ptychographic microscopy at telecommunication wavelengths using a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Ahmed, Ishtiaque; Alotaibi, Maged; Skinner-Ramos, Sueli; Dominguez, Daniel; Bernussi, Ayrton A.; de Peralta, Luis Grave

    2017-12-01

    We report the implementation of the Fourier Ptychographic Microscopy (FPM) technique, a phase retrieval technique, at telecommunication wavelengths using a low-coherence ultrafast pulsed laser source. High quality images, near speckle-free, were obtained with the proposed approach. We demonstrate that FPM can also be used to image periodic features through a silicon wafer.

  3. Measurement of action spectra of light-activated processes

    NASA Astrophysics Data System (ADS)

    Ross, Justin; Zvyagin, Andrei V.; Heckenberg, Norman R.; Upcroft, Jacqui; Upcroft, Peter; Rubinsztein-Dunlop, Halina H.

    2006-01-01

    We report on a new experimental technique suitable for measurement of light-activated processes, such as fluorophore transport. The usefulness of this technique is derived from its capacity to decouple the imaging and activation processes, allowing fluorescent imaging of fluorophore transport at a convenient activation wavelength. We demonstrate the efficiency of this new technique in determination of the action spectrum of the light mediated transport of rhodamine 123 into the parasitic protozoan Giardia duodenalis.

  4. New calibration technique for KCD-based megavoltage imaging

    NASA Astrophysics Data System (ADS)

    Samant, Sanjiv S.; Zheng, Wei; DiBianca, Frank A.; Zeman, Herbert D.; Laughter, Joseph S.

    1999-05-01

    In megavoltage imaging, current commercial electronic portal imaging devices (EPIDs), despite having the advantage of immediate digital imaging over film, suffer from poor image contrast and spatial resolution. The feasibility of using a kinestatic charge detector (KCD) as an EPID to provide superior image contrast and spatial resolution for portal imaging has already been demonstrated in a previous paper. The KCD system had the additional advantage of requiring an extremely low dose per acquired image, allowing for superior imaging to be reconstructed form a single linac pulse per image pixel. The KCD based images utilized a dose of two orders of magnitude less that for EPIDs and film. Compared with the current commercial EPIDs and film, the prototype KCD system exhibited promising image qualities, despite being handicapped by the use of a relatively simple image calibration technique, and the performance limits of medical linacs on the maximum linac pulse frequency and energy flux per pulse delivered. This image calibration technique fixed relative image pixel values based on a linear interpolation of extrema provided by an air-water calibration, and accounted only for channel-to-channel variations. The counterpart of this for area detectors is the standard flat fielding method. A comprehensive calibration protocol has been developed. The new technique additionally corrects for geometric distortions due to variations in the scan velocity, and timing artifacts caused by mis-synchronization between the linear accelerator and the data acquisition system (DAS). The role of variations in energy flux (2 - 3%) on imaging is demonstrated to be not significant for the images considered. The methodology is presented, and the results are discussed for simulated images. It also allows for significant improvements in the signal-to- noise ratio (SNR) by increasing the dose using multiple images without having to increase the linac pulse frequency or energy flux per pulse. The application of this protocol to a KCD system under construction is expected shortly.

  5. Review of quantitative ultrasound: envelope statistics and backscatter coefficient imaging and contributions to diagnostic ultrasound

    PubMed Central

    Oelze, Michael L.; Mamou, Jonathan

    2017-01-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging techniques can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient, estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter and the effective acoustic concentration of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on clinical devices. Successful clinical and pre-clinical applications demonstrating the ability of QUS to improve medical diagnostics include characterization of the myocardium during the cardiac cycle, cancer detection, classification of solid tumors and lymph nodes, detection and quantification of fatty liver disease, and monitoring and assessment of therapy. PMID:26761606

  6. Non-interferometric quantitative phase imaging of yeast cells

    NASA Astrophysics Data System (ADS)

    Poola, Praveen K.; Pandiyan, Vimal Prabhu; John, Renu

    2015-12-01

    Real-time imaging of live cells is quite difficult without the addition of external contrast agents. Various methods for quantitative phase imaging of living cells have been proposed like digital holographic microscopy and diffraction phase microscopy. In this paper, we report theoretical and experimental results of quantitative phase imaging of live yeast cells with nanometric precision using transport of intensity equations (TIE). We demonstrate nanometric depth sensitivity in imaging live yeast cells using this technique. This technique being noninterferometric, does not need any coherent light sources and images can be captured through a regular bright-field microscope. This real-time imaging technique would deliver the depth or 3-D volume information of cells and is highly promising in real-time digital pathology applications, screening of pathogens and staging of diseases like malaria as it does not need any preprocessing of samples.

  7. Nonlinear interferometric vibrational imaging of biological tissue

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi; Marks, Daniel L.; Geddes, Joseph B., III; Boppart, Stephen A.

    2008-02-01

    We demonstrate imaging with the technique of nonlinear interferometric vibrational imaging (NIVI). Experimental images using this instrumentation and method have been acquired from both phantom and biological tissues. In our system, coherent anti-Stokes Raman scattering (CARS) signals are detected by spectral interferometry, which is able to fully restore high resolution Raman spectrum on each focal spot of a sample covering multiple Raman bands using broadband pump and Stokes laser beams. Spectral-domain detection has been demonstrated and allows for a significant increase in image acquiring speed, in signal-to-noise, and in interferometric signal stability.

  8. Application of AIS Technology to Forest Mapping

    NASA Technical Reports Server (NTRS)

    Yool, S. R.; Star, J. L.

    1985-01-01

    Concerns about environmental effects of large scale deforestation have prompted efforts to map forests over large areas using various remote sensing data and image processing techniques. Basic research on the spectral characteristics of forest vegetation are required to form a basis for development of new techniques, and for image interpretation. Examination of LANDSAT data and image processing algorithms over a portion of boreal forest have demonstrated the complexity of relations between the various expressions of forest canopies, environmental variability, and the relative capacities of different image processing algorithms to achieve high classification accuracies under these conditions. Airborne Imaging Spectrometer (AIS) data may in part provide the means to interpret the responses of standard data and techniques to the vegetation based on its relatively high spectral resolution.

  9. Diffusion MRI: literature review in salivary gland tumors.

    PubMed

    Attyé, A; Troprès, I; Rouchy, R-C; Righini, C; Espinoza, S; Kastler, A; Krainik, A

    2017-07-01

    Surgical resection is currently the best treatment for salivary gland tumors. A reliable magnetic resonance imaging mapping, encompassing tumor grade, location, and extension may assist safe and effective tumor resection and provide better information for patients regarding potential risks and morbidity after surgical intervention. However, direct examination of the tumor grade and extension using conventional morphological MRI remains difficult, often requiring contrast media injection and complex algorithms on perfusion imaging to estimate the degree of malignancy. In addition, contrast-enhanced MRI technique may be problematic due to the recently demonstrated gadolinium accumulation in the dentate nucleus of the cerebellum. Significant developments in magnetic resonance diffusion imaging, involving voxel-based quantitative analysis through the measurement of the apparent diffusion coefficient, have enhanced our knowledge on the different histopathological salivary tumor grades. Other diffusion imaging-derived techniques, including high-order tractography models, have recently demonstrated their usefulness in assessing the facial nerve location in parotid tumor context. All of these imaging techniques do not require contrast media injection. Our review starts by outlining the physical basis of diffusion imaging, before discussing findings from diagnostic studies testing its usefulness in assessing salivary glands tumors with diffusion MRI. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Multimodality optical imaging of embryonic heart microstructure

    PubMed Central

    Yelin, Ronit; Yelin, Dvir; Oh, Wang-Yuhl; Yun, Seok H.; Boudoux, Caroline; Vakoc, Benjamin J.; Bouma, Brett E.; Tearney, Guillermo J.

    2009-01-01

    Study of developmental heart defects requires the visualization of the microstructure and function of the embryonic myocardium, ideally with minimal alterations to the specimen. We demonstrate multiple endogenous contrast optical techniques for imaging the Xenopus laevis tadpole heart. Each technique provides distinct and complementary imaging capabilities, including: 1. 3-D coherence microscopy with subcellular (1 to 2 µm) resolution in fixed embryos, 2. real-time reflectance confocal microscopy with large penetration depth in vivo, and 3. ultra-high speed (up to 900 frames per second) that enables real-time 4-D high resolution imaging in vivo. These imaging modalities can provide a comprehensive picture of the morphologic and dynamic phenotype of the embryonic heart. The potential of endogenous-contrast optical microscopy is demonstrated for investigation of the teratogenic effects of ethanol. Microstructural abnormalities associated with high levels of ethanol exposure are observed, including compromised heart looping and loss of ventricular trabecular mass. PMID:18163837

  11. Multimodality optical imaging of embryonic heart microstructure.

    PubMed

    Yelin, Ronit; Yelin, Dvir; Oh, Wang-Yuhl; Yun, Seok H; Boudoux, Caroline; Vakoc, Benjamin J; Bouma, Brett E; Tearney, Guillermo J

    2007-01-01

    Study of developmental heart defects requires the visualization of the microstructure and function of the embryonic myocardium, ideally with minimal alterations to the specimen. We demonstrate multiple endogenous contrast optical techniques for imaging the Xenopus laevis tadpole heart. Each technique provides distinct and complementary imaging capabilities, including: 1. 3-D coherence microscopy with subcellular (1 to 2 microm) resolution in fixed embryos, 2. real-time reflectance confocal microscopy with large penetration depth in vivo, and 3. ultra-high speed (up to 900 frames per second) that enables real-time 4-D high resolution imaging in vivo. These imaging modalities can provide a comprehensive picture of the morphologic and dynamic phenotype of the embryonic heart. The potential of endogenous-contrast optical microscopy is demonstrated for investigation of the teratogenic effects of ethanol. Microstructural abnormalities associated with high levels of ethanol exposure are observed, including compromised heart looping and loss of ventricular trabecular mass.

  12. Fast optically sectioned fluorescence HiLo endomicroscopy.

    PubMed

    Ford, Tim N; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  13. Fast optically sectioned fluorescence HiLo endomicroscopy

    NASA Astrophysics Data System (ADS)

    Ford, Tim N.; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  14. Towards Automatic Image Segmentation Using Optimised Region Growing Technique

    NASA Astrophysics Data System (ADS)

    Alazab, Mamoun; Islam, Mofakharul; Venkatraman, Sitalakshmi

    Image analysis is being adopted extensively in many applications such as digital forensics, medical treatment, industrial inspection, etc. primarily for diagnostic purposes. Hence, there is a growing interest among researches in developing new segmentation techniques to aid the diagnosis process. Manual segmentation of images is labour intensive, extremely time consuming and prone to human errors and hence an automated real-time technique is warranted in such applications. There is no universally applicable automated segmentation technique that will work for all images as the image segmentation is quite complex and unique depending upon the domain application. Hence, to fill the gap, this paper presents an efficient segmentation algorithm that can segment a digital image of interest into a more meaningful arrangement of regions and objects. Our algorithm combines region growing approach with optimised elimination of false boundaries to arrive at more meaningful segments automatically. We demonstrate this using X-ray teeth images that were taken for real-life dental diagnosis.

  15. Minimally Invasive Spinal Surgery with Intraoperative Image-Guided Navigation

    PubMed Central

    Kim, Terrence T.; Johnson, J. Patrick; Pashman, Robert; Drazin, Doniel

    2016-01-01

    We present our perioperative minimally invasive spine surgery technique using intraoperative computed tomography image-guided navigation for the treatment of various lumbar spine pathologies. We present an illustrative case of a patient undergoing minimally invasive percutaneous posterior spinal fusion assisted by the O-arm system with navigation. We discuss the literature and the advantages of the technique over fluoroscopic imaging methods: lower occupational radiation exposure for operative room personnel, reduced need for postoperative imaging, and decreased revision rates. Most importantly, we demonstrate that use of intraoperative cone beam CT image-guided navigation has been reported to increase accuracy. PMID:27213152

  16. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    DOE PAGES

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; ...

    2016-02-29

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, makingmore » it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Ultimately, simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.« less

  17. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry.

    PubMed

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R; Chess, Jordan; McMorran, Benjamin J; Czarnik, Cory; Rose, Harald H; Ercius, Peter

    2016-02-29

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.

  18. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    PubMed Central

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-01-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. PMID:26923483

  19. Structured illumination microscopy for dual-modality 3D sub-diffraction resolution fluorescence and refractive-index reconstruction

    PubMed Central

    Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.

    2017-01-01

    Though structured illumination (SI) microscopy is a popular imaging technique conventionally associated with fluorescent super-resolution, recent works have suggested its applicability towards sub-diffraction resolution coherent imaging with quantitative endogenous biological contrast. Here, we demonstrate that SI can efficiently integrate together the principles of fluorescent super-resolution and coherent synthetic aperture to achieve 3D dual-modality sub-diffraction resolution, fluorescence and refractive-index (RI) visualizations of biological samples. We experimentally demonstrate this framework by introducing a SI microscope capable of 3D sub-diffraction resolution fluorescence and RI imaging, and verify its biological visualization capabilities by experimentally reconstructing 3D RI/fluorescence visualizations of fluorescent calibration microspheres as well as alveolar basal epithelial adenocarcinoma (A549) and human colorectal adenocarcinmoa (HT-29) cells, fluorescently stained for F-actin. This demonstration may suggest SI as an especially promising imaging technique to enable future biological studies that explore synergistically operating biophysical/biochemical and molecular mechanisms at sub-diffraction resolutions. PMID:29296504

  20. In situ X-ray ptychography imaging of high-temperature CO2 acceptor particle agglomerates

    NASA Astrophysics Data System (ADS)

    Høydalsvik, Kristin; Bø Fløystad, Jostein; Zhao, Tiejun; Esmaeili, Morteza; Diaz, Ana; Andreasen, Jens W.; Mathiesen, Ragnvald H.; Rønning, Magnus; Breiby, Dag W.

    2014-06-01

    Imaging nanoparticles under relevant reaction conditions of high temperature and gas pressure is difficult because conventional imaging techniques, like transmission electron microscopy, cannot be used. Here we demonstrate that the coherent diffractive imaging technique of X-ray ptychography can be used for in situ phase contrast imaging in structure studies at atmospheric pressure and elevated temperatures. Lithium zirconate, a candidate CO2 capture material, was studied at a pressure of one atmosphere in air and in CO2, at temperatures exceeding 600 °C. Images with a spatial resolution better than 200 nm were retrieved, and possibilities for improving the experiment are described.

  1. Microlensing for extrasolar planets : improving the photometry

    NASA Astrophysics Data System (ADS)

    Bajek, David J.

    2013-08-01

    Gravitational Microlensing, as a technique for detecting Extrasolar Planets, is recognised for its potential in discovering small-mass planets similar to Earth, at a distance of a few Astronomical Units from their host stars. However, analysing the data from microlensing events (which statistically rarely reveal planets) is complex and requires continued and intensive use of various networks of telescopes working together in order to observe the phenomenon. As such the techniques are constantly being developed and refined; this project outlines some steps of the careful analysis required to model an event and ensure the best quality data is used in the fitting. A quantitative investigation into increasing the quality of the original photometric data available from any microlensing event demonstrates that 'lucky imaging' can lead to a marked improvement in the signal to noise ratio of images over standard imaging techniques, which could result in more accurate models and thus the calculation of more accurate planetary parameters. In addition, a simulation illustrating the effects of atmospheric turbulence on exposures was created, and expanded upon to give an approximation of the lucky imaging technique. This further demonstrated the advantages of lucky images which are shown to potentially approach the quality of those expected from diffraction limited photometry. The simulation may be further developed for potential future use as a 'theoretical lucky imager' in our research group, capable of producing and analysing synthetic exposures through customisable conditions.

  2. Absolute calibration of Doppler coherence imaging velocity images

    NASA Astrophysics Data System (ADS)

    Samuell, C. M.; Allen, S. L.; Meyer, W. H.; Howard, J.

    2017-08-01

    A new technique has been developed for absolutely calibrating a Doppler Coherence Imaging Spectroscopy interferometer for measuring plasma ion and neutral velocities. An optical model of the interferometer is used to generate zero-velocity reference images for the plasma spectral line of interest from a calibration source some spectral distance away. Validation of this technique using a tunable diode laser demonstrated an accuracy better than 0.2 km/s over an extrapolation range of 3.5 nm; a two order of magnitude improvement over linear approaches. While a well-characterized and very stable interferometer is required, this technique opens up the possibility of calibrated velocity measurements in difficult viewing geometries and for complex spectral line-shapes.

  3. Development of Extended-Depth Swept Source Optical Coherence Tomography for Applications in Ophthalmic Imaging of the Anterior and Posterior Eye

    NASA Astrophysics Data System (ADS)

    Dhalla, Al-Hafeez Zahir

    Optical coherence tomography (OCT) is a non-invasive optical imaging modality that provides micron-scale resolution of tissue micro-structure over depth ranges of several millimeters. This imaging technique has had a profound effect on the field of ophthalmology, wherein it has become the standard of care for the diagnosis of many retinal pathologies. Applications of OCT in the anterior eye, as well as for imaging of coronary arteries and the gastro-intestinal tract, have also shown promise, but have not yet achieved widespread clinical use. The usable imaging depth of OCT systems is most often limited by one of three factors: optical attenuation, inherent imaging range, or depth-of-focus. The first of these, optical attenuation, stems from the limitation that OCT only detects singly-scattered light. Thus, beyond a certain penetration depth into turbid media, essentially all of the incident light will have been multiply scattered, and can no longer be used for OCT imaging. For many applications (especially retinal imaging), optical attenuation is the most restrictive of the three imaging depth limitations. However, for some applications, especially anterior segment, cardiovascular (catheter-based) and GI (endoscopic) imaging, the usable imaging depth is often not limited by optical attenuation, but rather by the inherent imaging depth of the OCT systems. This inherent imaging depth, which is specific to only Fourier Domain OCT, arises due to two factors: sensitivity fall-off and the complex conjugate ambiguity. Finally, due to the trade-off between lateral resolution and axial depth-of-focus inherent in diffractive optical systems, additional depth limitations sometimes arises in either high lateral resolution or extended depth OCT imaging systems. The depth-of-focus limitation is most apparent in applications such as adaptive optics (AO-) OCT imaging of the retina, and extended depth imaging of the ocular anterior segment. In this dissertation, techniques for extending the imaging range of OCT systems are developed. These techniques include the use of a high spectral purity swept source laser in a full-field OCT system, as well as the use of a peculiar phenomenon known as coherence revival to resolve the complex conjugate ambiguity in swept source OCT. In addition, a technique for extending the depth of focus of OCT systems by using a polarization-encoded, dual-focus sample arm is demonstrated. Along the way, other related advances are also presented, including the development of techniques to reduce crosstalk and speckle artifacts in full-field OCT, and the use of fast optical switches to increase the imaging speed of certain low-duty cycle swept source OCT systems. Finally, the clinical utility of these techniques is demonstrated by combining them to demonstrate high-speed, high resolution, extended-depth imaging of both the anterior and posterior eye simultaneously and in vivo.

  4. Development of ultrasound bioprobe for biological imaging

    PubMed Central

    Shekhawat, Gajendra S.; Dudek, Steven M.; Dravid, Vinayak P.

    2017-01-01

    We report the development of an ultrasound bioprobe for in vitro molecular imaging. In this method, the phase of the scattered ultrasound wave is mapped to provide in vitro and intracellular imaging with nanometer-scale resolution under physiological conditions. We demonstrated the technique by successfully imaging a magnetic core in silica core shells and the stiffness image of intracellular fibers in endothelial cells that were stimulated with thrombin. The findings demonstrate a significant advancement in high-resolution ultrasound imaging of biological systems with acoustics under physiological conditions. These will open up various applications in biomedical and molecular imaging with subsurface resolution down to the nanometer scale. PMID:29075667

  5. A Sensitive TLRH Targeted Imaging Technique for Ultrasonic Molecular Imaging

    PubMed Central

    Hu, Xiaowen; Zheng, Hairong; Kruse, Dustin E.; Sutcliffe, Patrick; Stephens, Douglas N.; Ferrara, Katherine W.

    2010-01-01

    The primary goals of ultrasound molecular imaging are the detection and imaging of ultrasound contrast agents (microbubbles), which are bound to specific vascular surface receptors. Imaging methods that can sensitively and selectively detect and distinguish bound microbubbles from freely circulating microbubbles (free microbubbles) and surrounding tissue are critically important for the practical application of ultrasound contrast molecular imaging. Microbubbles excited by low frequency acoustic pulses emit wide-band echoes with a bandwidth extending beyond 20 MHz; we refer to this technique as TLRH (transmission at a low frequency and reception at a high frequency). Using this wideband, transient echo, we have developed and implemented a targeted imaging technique incorporating a multi-frequency co-linear array and the Siemens Antares® imaging system. The multi-frequency co-linear array integrates a center 5.4 MHz array, used to receive echoes and produce radiation force, and two outer 1.5 MHz arrays used to transmit low frequency incident pulses. The targeted imaging technique makes use of an acoustic radiation force sub-sequence to enhance accumulation and a TLRH imaging sub-sequence to detect bound microbubbles. The radiofrequency (RF) data obtained from the TLRH imaging sub-sequence are processsed to separate echo signatures between tissue, free microbubbles, and bound microbubbles. By imaging biotin-coated microbubbles targeted to avidin-coated cellulose tubes, we demonstrate that the proposed method has a high contrast-to-tissue ratio (up to 34 dB) and a high sensitivity to bound microbubbles (with the ratio of echoes from bound microbubbles versus free microbubbles extending up to 23 dB). The effects of the imaging pulse acoustic pressure, the radiation force sub-sequence and the use of various slow-time filters on the targeted imaging quality are studied. The TLRH targeted imaging method is demonstrated in this study to provide sensitive and selective detection of bound microbubbles for ultrasound molecularly-targeted imaging. PMID:20178897

  6. In vivo optical elastography: stress and strain imaging of human skin lesions

    NASA Astrophysics Data System (ADS)

    Es'haghian, Shaghayegh; Gong, Peijun; Kennedy, Kelsey M.; Wijesinghe, Philip; Sampson, David D.; McLaughlin, Robert A.; Kennedy, Brendan F.

    2015-03-01

    Probing the mechanical properties of skin at high resolution could aid in the assessment of skin pathologies by, for example, detecting the extent of cancerous skin lesions and assessing pathology in burn scars. Here, we present two elastography techniques based on optical coherence tomography (OCT) to probe the local mechanical properties of skin. The first technique, optical palpation, is a high-resolution tactile imaging technique, which uses a complaint silicone layer positioned on the tissue surface to measure spatially-resolved stress imparted by compressive loading. We assess the performance of optical palpation, using a handheld imaging probe on a skin-mimicking phantom, and demonstrate its use on human skin. The second technique is a strain imaging technique, phase-sensitive compression OCE that maps depth-resolved mechanical variations within skin. We show preliminary results of in vivo phase-sensitive compression OCE on a human skin lesion.

  7. Surface profilometry using the incoherent self-imaging technique in reflection mode

    NASA Astrophysics Data System (ADS)

    Hassani, Khosrow; Nahal, Arashmid; Tirandazi, Negin

    2018-01-01

    In this paper, we introduce a highly sensitive and cost-effective surface profilometry technique based on the Lau self-imaging phenomenon in reflection mode, combined with the Moiré technique. Standard incoherent grating imaging with two Ronchi rulings is deployed to produce localized Fresnel pseudoimages, except that the light wavefront gets modulated after reflecting off the surface under test and before the final image forms. A third grating is superimposed on the pseudoimage to take advantage of the magnification property of the Moiré fringes and enhance the surface-induced modulations. A five-step phase-shifting technique is used to extract the 2D surface profile of the sample from the recorded Moiré patterns. To demonstrate our technique, we measure the profile of a 250 nm step-like metallic sample. The results show a few nanometer uncertainties, very good reproducibility, and agreement with other known optical and mechanical surface profilometry methods.

  8. Three-dimensional near-field MIMO array imaging using range migration techniques.

    PubMed

    Zhuge, Xiaodong; Yarovoy, Alexander G

    2012-06-01

    This paper presents a 3-D near-field imaging algorithm that is formulated for 2-D wideband multiple-input-multiple-output (MIMO) imaging array topology. The proposed MIMO range migration technique performs the image reconstruction procedure in the frequency-wavenumber domain. The algorithm is able to completely compensate the curvature of the wavefront in the near-field through a specifically defined interpolation process and provides extremely high computational efficiency by the application of the fast Fourier transform. The implementation aspects of the algorithm and the sampling criteria of a MIMO aperture are discussed. The image reconstruction performance and computational efficiency of the algorithm are demonstrated both with numerical simulations and measurements using 2-D MIMO arrays. Real-time 3-D near-field imaging can be achieved with a real-aperture array by applying the proposed MIMO range migration techniques.

  9. Phase sensitive optical coherence microscopy for photothermal imaging of gold nanorods

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Podoleanu, Adrian G.; Dobre, George

    2018-03-01

    We describe a swept source based phase sensitive optical coherence microscopy (OCM) system for photothermal imaging of gold nanorods (GNR). The phase sensitive OCM system employed in the study has a displacement sensitivity of 0.17 nm to vibrations at single frequencies below 250 Hz. We demonstrate the generation of phase maps and confocal phase images. By displaying the difference between successive confocal phase images, we perform the confocal photothermal imaging of accumulated GNRs behind a glass coverslip and behind the scattering media separately. Compared with two-photon luminescence (TPL) detection techniques reported in literature, the technique in this study has the advantage of a simplified experimental setup and provides a more efficient method for imaging the aggregation of GNR. However, the repeatability performance of this technique suffers due to jitter noise from the swept laser source.

  10. Imaging fast electrical activity in the brain with electrical impedance tomography

    PubMed Central

    Aristovich, Kirill Y.; Packham, Brett C.; Koo, Hwan; Santos, Gustavo Sato dos; McEvoy, Andy; Holder, David S.

    2016-01-01

    Imaging of neuronal depolarization in the brain is a major goal in neuroscience, but no technique currently exists that could image neural activity over milliseconds throughout the whole brain. Electrical impedance tomography (EIT) is an emerging medical imaging technique which can produce tomographic images of impedance changes with non-invasive surface electrodes. We report EIT imaging of impedance changes in rat somatosensory cerebral cortex with a resolution of 2 ms and < 200 μm during evoked potentials using epicortical arrays with 30 electrodes. Images were validated with local field potential recordings and current source-sink density analysis. Our results demonstrate that EIT can image neural activity in a volume 7 × 5 × 2 mm in somatosensory cerebral cortex with reduced invasiveness, greater resolution and imaging volume than other methods. Modeling indicates similar resolutions are feasible throughout the entire brain so this technique, uniquely, has the potential to image functional connectivity of cortical and subcortical structures. PMID:26348559

  11. Demosaiced pixel super-resolution in digital holography for multiplexed computational color imaging on-a-chip (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2017-03-01

    Digital holographic on-chip microscopy achieves large space-bandwidth-products (e.g., >1 billion) by making use of pixel super-resolution techniques. To synthesize a digital holographic color image, one can take three sets of holograms representing the red (R), green (G) and blue (B) parts of the spectrum and digitally combine them to synthesize a color image. The data acquisition efficiency of this sequential illumination process can be improved by 3-fold using wavelength-multiplexed R, G and B illumination that simultaneously illuminates the sample, and using a Bayer color image sensor with known or calibrated transmission spectra to digitally demultiplex these three wavelength channels. This demultiplexing step is conventionally used with interpolation-based Bayer demosaicing methods. However, because the pixels of different color channels on a Bayer image sensor chip are not at the same physical location, conventional interpolation-based demosaicing process generates strong color artifacts, especially at rapidly oscillating hologram fringes, which become even more pronounced through digital wave propagation and phase retrieval processes. Here, we demonstrate that by merging the pixel super-resolution framework into the demultiplexing process, such color artifacts can be greatly suppressed. This novel technique, termed demosaiced pixel super-resolution (D-PSR) for digital holographic imaging, achieves very similar color imaging performance compared to conventional sequential R,G,B illumination, with 3-fold improvement in image acquisition time and data-efficiency. We successfully demonstrated the color imaging performance of this approach by imaging stained Pap smears. The D-PSR technique is broadly applicable to high-throughput, high-resolution digital holographic color microscopy techniques that can be used in resource-limited-settings and point-of-care offices.

  12. Biological applications of confocal fluorescence polarization microscopy

    NASA Astrophysics Data System (ADS)

    Bigelow, Chad E.

    Fluorescence polarization microscopy is a powerful modality capable of sensing changes in the physical properties and local environment of fluorophores. In this thesis we present new applications for the technique in cancer diagnosis and treatment and explore the limits of the modality in scattering media. We describe modifications to our custom-built confocal fluorescence microscope that enable dual-color imaging, optical fiber-based confocal spectroscopy and fluorescence polarization imaging. Experiments are presented that indicate the performance of the instrument for all three modalities. The limits of confocal fluorescence polarization imaging in scattering media are explored and the microscope parameters necessary for accurate polarization images in this regime are determined. A Monte Carlo routine is developed to model the effect of scattering on images. Included in it are routines to track the polarization state of light using the Mueller-Stokes formalism and a model for fluorescence generation that includes sampling the excitation light polarization ellipse, Brownian motion of excited-state fluorophores in solution, and dipole fluorophore emission. Results from this model are compared to experiments performed on a fluorophore-embedded polymer rod in a turbid medium consisting of polystyrene microspheres in aqueous suspension. We demonstrate the utility of the fluorescence polarization imaging technique for removal of contaminating autofluorescence and for imaging photodynamic therapy drugs in cell monolayers. Images of cells expressing green fluorescent protein are extracted from contaminating fluorescein emission. The distribution of meta-tetrahydroxypheny1chlorin in an EMT6 cell monolayer is also presented. A new technique for imaging enzyme activity is presented that is based on observing changes in the anisotropy of fluorescently-labeled substrates. Proof-of-principle studies are performed in a model system consisting of fluorescently labeled bovine serum albumin attached to sepharose beads. The action of trypsin and proteinase K on the albumin is monitored to demonstrate validity of the technique. Images of the processing of the albumin in J774 murine macrophages are also presented indicating large intercellular differences in enzyme activity. Future directions for the technique are also presented, including the design of enzyme probes specific for prostate specific antigen based on fluorescently-labeled dendrimers. A technique for enzyme imaging based on extracellular autofluorescence is also proposed.

  13. Instrumentation of Molecular Imaging on Site-Specific Targeting Fluorescent Peptide for Early Detection of Breast Cancer

    NASA Astrophysics Data System (ADS)

    Yu, Ping; Ma, Lixin

    2012-02-01

    In this work we developed two biomedical imaging techniques for early detection of breast cancer. Both image modalities provide molecular imaging capability to probe site-specific targeting dyes. The first technique, heterodyne CCD fluorescence mediated tomography, is a non-invasive biomedical imaging that uses fluorescent photons from the targeted dye on the tumor cells inside human breast tissue. The technique detects a large volume of tissue (20 cm) with a moderate resolution (1 mm) and provides the high sensitivity. The second technique, dual-band spectral-domain optical coherence tomography, is a high-resolution tissue imaging modality. It uses a low coherence interferometer to detect coherent photons hidden in the incoherent background. Due to the coherence detection, a high resolution (20 microns) is possible. We have finished prototype imaging systems for the development of both image modalities and performed imaging experiments on tumor tissues. The spectroscopic/tomographic images show contrasts of dense tumor tissues and tumor necrotic regions. In order to correlate the findings from our results, a diffusion-weighted magnetic resonance imaging (MRI) of the tumors was performed using a small animal 7-Telsa MRI and demonstrated excellent agreement.

  14. Optical imaging of reporter gene expression using a positron-emission-tomography probe

    NASA Astrophysics Data System (ADS)

    Liu, Hongguang; Ren, Gang; Liu, Shuanglong; Zhang, Xiaofen; Chen, Luxi; Han, Peizhen; Cheng, Zhen

    2010-11-01

    Reporter gene/reporter probe technology is one of the most important techniques in molecular imaging. Lately, many reporter gene/reporter probe systems have been coupled to different imaging modalities such as positron emission tomography (PET) and optical imaging (OI). It has been recently found that OI techniques could be used to monitor radioactive tracers in vitro and in living subjects. In this study, we further demonstrate that a reporter gene/nuclear reporter probe system [herpes simplex virus type-1 thymidine kinase (HSV1-tk) and 9-(4-18F-fluoro-3-[hydroxymethyl] butyl) guanine ([18F]FHBG)] could be successfully imaged by OI in vitro and in vivo. OI with radioactive reporter probes will facilitate and broaden the applications of reporter gene/reporter probe techniques in medical research.

  15. The Wide-Field Imaging Interferometry Testbed: Enabling Techniques for High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.; hide

    2007-01-01

    The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.

  16. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega.

    PubMed

    Danly, C R; Day, T H; Fittinghoff, D N; Herrmann, H; Izumi, N; Kim, Y H; Martinez, J I; Merrill, F E; Schmidt, D W; Simpson, R A; Volegov, P L; Wilde, C H

    2015-04-01

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  17. Advanced imaging technologies for mapping cadaveric lymphatic anatomy: magnetic resonance and computed tomography lymphangiography.

    PubMed

    Pan, W R; Rozen, W M; Stretch, J; Thierry, B; Ashton, M W; Corlett, R J

    2008-09-01

    Lymphatic anatomy has become increasingly clinically important as surgical techniques evolve for investigating and treating cancer metastases. However, due to limited anatomical techniques available, research in this field has been insufficient. The techniques of computed tomography (CT) and magnetic resonance (MR) lymphangiography have not been described previously in the imaging of cadaveric lymphatic anatomy. This preliminary work describes the feasibility of these advanced imaging technologies for imaging lymphatic anatomy. A single, fresh cadaveric lower limb underwent lymphatic dissection and cannulation utilizing microsurgical techniques. Contrast materials for both CT and MR studies were chosen based on their suitability for subsequent clinical use, and imaging was undertaken with a view to mapping lymphatic anatomy. Microdissection studies were compared with imaging findings in each case. Both MR-based and CT-based contrast media in current clinical use were found to be suitable for demonstrating cadaveric lymphatic anatomy upon direct intralymphatic injection. MR lymphangiography and CT lymphangiography are feasible modalities for cadaveric anatomical research for lymphatic anatomy. Future studies including refinements in scanning techniques may offer these technologies to the clinical setting.

  18. Integrated light-sheet imaging and flow-based enquiry (iLIFE) system for 3D in-vivo imaging of multicellular organism

    NASA Astrophysics Data System (ADS)

    Rasmi, Chelur K.; Padmanabhan, Sreedevi; Shirlekar, Kalyanee; Rajan, Kanhirodan; Manjithaya, Ravi; Singh, Varsha; Mondal, Partha Pratim

    2017-12-01

    We propose and demonstrate a light-sheet-based 3D interrogation system on a microfluidic platform for screening biological specimens during flow. To achieve this, a diffraction-limited light-sheet (with a large field-of-view) is employed to optically section the specimens flowing through the microfluidic channel. This necessitates optimization of the parameters for the illumination sub-system (illumination intensity, light-sheet width, and thickness), microfluidic specimen platform (channel-width and flow-rate), and detection sub-system (camera exposure time and frame rate). Once optimized, these parameters facilitate cross-sectional imaging and 3D reconstruction of biological specimens. The proposed integrated light-sheet imaging and flow-based enquiry (iLIFE) imaging technique enables single-shot sectional imaging of a range of specimens of varying dimensions, ranging from a single cell (HeLa cell) to a multicellular organism (C. elegans). 3D reconstruction of the entire C. elegans is achieved in real-time and with an exposure time of few hundred micro-seconds. A maximum likelihood technique is developed and optimized for the iLIFE imaging system. We observed an intracellular resolution for mitochondria-labeled HeLa cells, which demonstrates the dynamic resolution of the iLIFE system. The proposed technique is a step towards achieving flow-based 3D imaging. We expect potential applications in diverse fields such as structural biology and biophysics.

  19. MOSAIC - A space-multiplexing technique for optical processing of large images

    NASA Technical Reports Server (NTRS)

    Athale, Ravindra A.; Astor, Michael E.; Yu, Jeffrey

    1993-01-01

    A technique for Fourier processing of images larger than the space-bandwidth products of conventional or smart spatial light modulators and two-dimensional detector arrays is described. The technique involves a spatial combination of subimages displayed on individual spatial light modulators to form a phase-coherent image, which is subsequently processed with Fourier optical techniques. Because of the technique's similarity with the mosaic technique used in art, the processor used is termed an optical MOSAIC processor. The phase accuracy requirements of this system were studied by computer simulation. It was found that phase errors of less than lambda/8 did not degrade the performance of the system and that the system was relatively insensitive to amplitude nonuniformities. Several schemes for implementing the subimage combination are described. Initial experimental results demonstrating the validity of the mosaic concept are also presented.

  20. Full-color high-definition CGH reconstructing hybrid scenes of physical and virtual objects

    NASA Astrophysics Data System (ADS)

    Tsuchiyama, Yasuhiro; Matsushima, Kyoji; Nakahara, Sumio; Yamaguchi, Masahiro; Sakamoto, Yuji

    2017-03-01

    High-definition CGHs can reconstruct high-quality 3D images that are comparable to that in conventional optical holography. However, it was difficult to exhibit full-color images reconstructed by these high-definition CGHs, because three CGHs for RGB colors and a bulky image combiner were needed to produce full-color images. Recently, we reported a novel technique for full-color reconstruction using RGB color filters, which are similar to that used for liquid-crystal panels. This technique allows us to produce full-color high-definition CGHs composed of a single plate and place them on exhibition. By using the technique, we demonstrate full-color CGHs that reconstruct hybrid scenes comprised of real-existing physical objects and CG-modeled virtual objects in this paper. Here, the wave field of the physical object are obtained from dense multi-viewpoint images by employing the ray-sampling (RS) plane technique. In addition to the technique for full-color capturing and reconstruction of real object fields, the principle and simulation technique for full- color CGHs using RGB color filters are presented.

  1. Practical issues of hyperspectral imaging analysis of solid dosage forms.

    PubMed

    Amigo, José Manuel

    2010-09-01

    Hyperspectral imaging techniques have widely demonstrated their usefulness in different areas of interest in pharmaceutical research during the last decade. In particular, middle infrared, near infrared, and Raman methods have gained special relevance. This rapid increase has been promoted by the capability of hyperspectral techniques to provide robust and reliable chemical and spatial information on the distribution of components in pharmaceutical solid dosage forms. Furthermore, the valuable combination of hyperspectral imaging devices with adequate data processing techniques offers the perfect landscape for developing new methods for scanning and analyzing surfaces. Nevertheless, the instrumentation and subsequent data analysis are not exempt from issues that must be thoughtfully considered. This paper describes and discusses the main advantages and drawbacks of the measurements and data analysis of hyperspectral imaging techniques in the development of solid dosage forms.

  2. Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization

    PubMed Central

    Aguirre, Andres; Guo, Puyun; Gamelin, John; Yan, Shikui; Sanders, Mary M.; Brewer, Molly; Zhu, Quing

    2009-01-01

    Ovarian cancer has the highest mortality of all gynecologic cancers, with a five-year survival rate of only 30% or less. Current imaging techniques are limited in sensitivity and specificity in detecting early stage ovarian cancer prior to its widespread metastasis. New imaging techniques that can provide functional and molecular contrasts are needed to reduce the high mortality of this disease. One such promising technique is photoacoustic imaging. We develop a 1280-element coregistered 3-D ultrasound and photoacoustic imaging system based on a 1.75-D acoustic array. Volumetric images over a scan range of 80 deg in azimuth and 20 deg in elevation can be achieved in minutes. The system has been used to image normal porcine ovarian tissue. This is an important step toward better understanding of ovarian cancer optical properties obtained with photoacoustic techniques. To the best of our knowledge, such data are not available in the literature. We present characterization measurements of the system and compare coregistered ultrasound and photoacoustic images of ovarian tissue to histological images. The results show excellent coregistration of ultrasound and photoacoustic images. Strong optical absorption from vasculature, especially highly vascularized corpora lutea and low absorption from follicles, is demonstrated. PMID:19895116

  3. Defogging of road images using gain coefficient-based trilateral filter

    NASA Astrophysics Data System (ADS)

    Singh, Dilbag; Kumar, Vijay

    2018-01-01

    Poor weather conditions are responsible for most of the road accidents year in and year out. Poor weather conditions, such as fog, degrade the visibility of objects. Thus, it becomes difficult for drivers to identify the vehicles in a foggy environment. The dark channel prior (DCP)-based defogging techniques have been found to be an efficient way to remove fog from road images. However, it produces poor results when image objects are inherently similar to airlight and no shadow is cast on them. To eliminate this problem, a modified restoration model-based DCP is developed to remove the fog from road images. The transmission map is also refined by developing a gain coefficient-based trilateral filter. Thus, the proposed technique has an ability to remove fog from road images in an effective manner. The proposed technique is compared with seven well-known defogging techniques on two benchmark foggy images datasets and five real-time foggy images. The experimental results demonstrate that the proposed approach is able to remove the different types of fog from roadside images as well as significantly improve the image's visibility. It also reveals that the restored image has little or no artifacts.

  4. A novel methodology for querying web images

    NASA Astrophysics Data System (ADS)

    Prabhakara, Rashmi; Lee, Ching Cheng

    2005-01-01

    Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.

  5. A novel methodology for querying web images

    NASA Astrophysics Data System (ADS)

    Prabhakara, Rashmi; Lee, Ching Cheng

    2004-12-01

    Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.

  6. In situ X-ray ptychography imaging of high-temperature CO{sub 2} acceptor particle agglomerates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Høydalsvik, Kristin; Bø Fløystad, Jostein; Esmaeili, Morteza

    2014-06-16

    Imaging nanoparticles under relevant reaction conditions of high temperature and gas pressure is difficult because conventional imaging techniques, like transmission electron microscopy, cannot be used. Here we demonstrate that the coherent diffractive imaging technique of X-ray ptychography can be used for in situ phase contrast imaging in structure studies at atmospheric pressure and elevated temperatures. Lithium zirconate, a candidate CO{sub 2} capture material, was studied at a pressure of one atmosphere in air and in CO{sub 2}, at temperatures exceeding 600 °C. Images with a spatial resolution better than 200 nm were retrieved, and possibilities for improving the experiment are described.

  7. Differential Binary Encoding Method for Calibrating Image Sensors Based on IOFBs

    PubMed Central

    Fernández, Pedro R.; Lázaro-Galilea, José Luis; Gardel, Alfredo; Espinosa, Felipe; Bravo, Ignacio; Cano, Ángel

    2012-01-01

    Image transmission using incoherent optical fiber bundles (IOFBs) requires prior calibration to obtain the spatial in-out fiber correspondence necessary to reconstruct the image captured by the pseudo-sensor. This information is recorded in a Look-Up Table called the Reconstruction Table (RT), used later for reordering the fiber positions and reconstructing the original image. This paper presents a very fast method based on image-scanning using spaces encoded by a weighted binary code to obtain the in-out correspondence. The results demonstrate that this technique yields a remarkable reduction in processing time and the image reconstruction quality is very good compared to previous techniques based on spot or line scanning, for example. PMID:22666023

  8. Pump-probe optical microscopy for imaging nonfluorescent chromophores.

    PubMed

    Wei, Lu; Min, Wei

    2012-06-01

    Many chromophores absorb light intensely but have undetectable fluorescence. Hence microscopy techniques other than fluorescence are highly desirable for imaging these chromophores inside live cells, tissues, and organisms. The recently developed pump-probe optical microscopy techniques provide fluorescence-free contrast mechanisms by employing several fundamental light-molecule interactions including excited state absorption, stimulated emission, ground state depletion, and the photothermal effect. By using the pump pulse to excite molecules and the subsequent probe pulse to interrogate the created transient states on a laser scanning microscope, pump-probe microscopy offers imaging capability with high sensitivity and specificity toward nonfluorescent chromophores. Single-molecule sensitivity has even been demonstrated. Here we review and summarize the underlying principles of this emerging class of molecular imaging techniques.

  9. Boundary-layer transition and global skin friction measurement with an oil-fringe imaging technique

    NASA Technical Reports Server (NTRS)

    Monson, Daryl J.; Mateer, George G.; Menter, Florian R.

    1993-01-01

    A new oil-fringe imaging system skin friction (FISF) technique to measure skin friction on wind tunnel models is presented. In the method used to demonstrate the technique, lines of oil are applied on surfaces that connect the intended sets of measurement points, and then a wind tunnel is run so that the oil thins and forms interference fringes that are spaced in proportion to local skin friction. After a run the fringe spacings are imaged with a CCD-array digital camera and measured on a computer. Skin friction and transition measurements on a two-dimensional wing are presented and compared with computational predictions.

  10. Error Estimation Techniques to Refine Overlapping Aerial Image Mosaic Processes via Detected Parameters

    ERIC Educational Resources Information Center

    Bond, William Glenn

    2012-01-01

    In this paper, I propose to demonstrate a means of error estimation preprocessing in the assembly of overlapping aerial image mosaics. The mosaic program automatically assembles several hundred aerial images from a data set by aligning them, via image registration using a pattern search method, onto a GIS grid. The method presented first locates…

  11. Imaging Analysis of Near-Field Recording Technique for Observation of Biological Specimens

    NASA Astrophysics Data System (ADS)

    Moriguchi, Chihiro; Ohta, Akihiro; Egami, Chikara; Kawata, Yoshimasa; Terakawa, Susumu; Tsuchimori, Masaaki; Watanabe, Osamu

    2006-07-01

    We present an analysis of the properties of an imaging based on a near-field recording technique in comparison with simulation results. In the system, the optical field distributions localized near the specimens are recorded as the surface topographic distributions of a photosensitive film. It is possible to observe both soft and moving specimens, because the system does not require a scanning probe to obtain the observed image. The imaging properties are evaluated using fine structures of paramecium, and we demonstrate that it is possible to observe minute differences of refractive indices.

  12. Three-dimensional real-time imaging of bi-phasic flow through porous media

    NASA Astrophysics Data System (ADS)

    Sharma, Prerna; Aswathi, P.; Sane, Anit; Ghosh, Shankar; Bhattacharya, S.

    2011-11-01

    We present a scanning laser-sheet video imaging technique to image bi-phasic flow in three-dimensional porous media in real time with pore-scale spatial resolution, i.e., 35 μm and 500 μm for directions parallel and perpendicular to the flow, respectively. The technique is illustrated for the case of viscous fingering. Using suitable image processing protocols, both the morphology and the movement of the two-fluid interface, were quantitatively estimated. Furthermore, a macroscopic parameter such as the displacement efficiency obtained from a microscopic (pore-scale) analysis demonstrates the versatility and usefulness of the method.

  13. Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images

    NASA Astrophysics Data System (ADS)

    Rogowska, Jadwiga; Brezinski, Mark E.

    2002-02-01

    Osteoarthritis, whose hallmark is the progressive loss of joint cartilage, is a major cause of morbidity worldwide. Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the assessment of articular cartilage. Among the most important parameters to be assessed is cartilage width. However, detection of the bone cartilage interface is critical for the assessment of cartilage width. At present, the quantitative evaluations of cartilage thickness are being done using manual tracing of cartilage-bone borders. Since data is being obtained near video rate with OCT, automated identification of the bone-cartilage interface is critical. In order to automate the process of boundary detection on OCT images, there is a need for developing new image processing techniques. In this paper we describe the image processing techniques for speckle removal, image enhancement and segmentation of cartilage OCT images. In particular, this paper focuses on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. In this study, a variety of techniques were examined. Ultimately, by combining an adaptive filtering technique with edge detection (vertical gradient, Sobel edge detection), cartilage edges can be detected. The procedure requires several steps and can be automated. Once the cartilage edges are outlined, the cartilage thickness can be measured.

  14. Error analysis of filtering operations in pixel-duplicated images of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; McLauchlan, Lifford

    2010-08-01

    In this paper, diabetic retinopathy is chosen for a sample target image to demonstrate the effectiveness of image enlargement through pixel duplication in identifying regions of interest. Pixel duplication is presented as a simpler alternative to data interpolation techniques for detecting small structures in the images. A comparative analysis is performed on different image processing schemes applied to both original and pixel-duplicated images. Structures of interest are detected and and classification parameters optimized for minimum false positive detection in the original and enlarged retinal pictures. The error analysis demonstrates the advantages as well as shortcomings of pixel duplication in image enhancement when spatial averaging operations (smoothing filters) are also applied.

  15. High Resolution Ultrasound Superharmonic Perfusion Imaging: In Vivo Feasibility and Quantification of Dynamic Contrast-Enhanced Acoustic Angiography.

    PubMed

    Lindsey, Brooks D; Shelton, Sarah E; Martin, K Heath; Ozgun, Kathryn A; Rojas, Juan D; Foster, F Stuart; Dayton, Paul A

    2017-04-01

    Mapping blood perfusion quantitatively allows localization of abnormal physiology and can improve understanding of disease progression. Dynamic contrast-enhanced ultrasound is a low-cost, real-time technique for imaging perfusion dynamics with microbubble contrast agents. Previously, we have demonstrated another contrast agent-specific ultrasound imaging technique, acoustic angiography, which forms static anatomical images of the superharmonic signal produced by microbubbles. In this work, we seek to determine whether acoustic angiography can be utilized for high resolution perfusion imaging in vivo by examining the effect of acquisition rate on superharmonic imaging at low flow rates and demonstrating the feasibility of dynamic contrast-enhanced superharmonic perfusion imaging for the first time. Results in the chorioallantoic membrane model indicate that frame rate and frame averaging do not affect the measured diameter of individual vessels observed, but that frame rate does influence the detection of vessels near and below the resolution limit. The highest number of resolvable vessels was observed at an intermediate frame rate of 3 Hz using a mechanically-steered prototype transducer. We also demonstrate the feasibility of quantitatively mapping perfusion rate in 2D in a mouse model with spatial resolution of ~100 μm. This type of imaging could provide non-invasive, high resolution quantification of microvascular function at penetration depths of several centimeters.

  16. Quantitative phase imaging of cell division in yeast cells and E.coli using digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Pandiyan, Vimal Prabhu; John, Renu

    2015-12-01

    Digital holographic microscope (DHM) is an emerging quantitative phase imaging technique with unique imaging scales and resolutions leading to multitude of applications. DHM is promising as a novel investigational and applied tool for cell imaging, studying the morphology and real time dynamics of cells and a number of related applications. The use of numerical propagation and computational digital optics offer unique flexibility to tune the depth of focus, and compensate for image aberrations. In this work, we report imaging the dynamics of cell division in E.coli and yeast cells using a DHM platform. We demonstrate 3-D and depth imaging as well as reconstruction of phase profiles of E.coli and yeast cells using the system. We record a digital hologram of E.coli and yeast cells and reconstruct the image using Fresnel propagation algorithm. We also use aberration compensation algorithms for correcting the aberrations that are introduced by the microscope objective in the object path using linear least square fitting techniques. This work demonstrates the strong potential of a DHM platform in 3-D live cell imaging, fast clinical quantifications and pathological applications.

  17. Integrated Imaging and Vision Techniques for Industrial Inspection: A Special Issue on Machine Vision and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zheng; Ukida, H.; Ramuhalli, Pradeep

    2010-06-05

    Imaging- and vision-based techniques play an important role in industrial inspection. The sophistication of the techniques assures high- quality performance of the manufacturing process through precise positioning, online monitoring, and real-time classification. Advanced systems incorporating multiple imaging and/or vision modalities provide robust solutions to complex situations and problems in industrial applications. A diverse range of industries, including aerospace, automotive, electronics, pharmaceutical, biomedical, semiconductor, and food/beverage, etc., have benefited from recent advances in multi-modal imaging, data fusion, and computer vision technologies. Many of the open problems in this context are in the general area of image analysis methodologies (preferably in anmore » automated fashion). This editorial article introduces a special issue of this journal highlighting recent advances and demonstrating the successful applications of integrated imaging and vision technologies in industrial inspection.« less

  18. Acousto-optical tunable filter for combined wideband, spectral, and optical coherence microscopy.

    PubMed

    Machikhin, Alexander S; Pozhar, Vitold E; Viskovatykh, Alexander V; Burmak, Ludmila I

    2015-09-01

    A multimodal technique for inspection of microscopic objects by means of wideband optical microscopy, spectral microscopy, and optical coherence microscopy is described, implemented, and tested. The key feature is the spectral selection of light in the output arm of an interferometer with use of the specialized imaging acousto-optical tunable filter. In this filter, two interfering optical beams are diffracted via the same ultrasound wave without destruction of interference image structure. The basic requirements for the acousto-optical tunable filter are defined, and mathematical formulas for calculation of its parameters are derived. Theoretical estimation of the achievable accuracy of the 3D image reconstruction is presented and experimental proofs are given. It is demonstrated that spectral imaging can also be accompanied by measurement of the quantitative reflectance spectra. Examples of inspection of optically transparent and nontransparent samples demonstrate the applicability of the technique.

  19. CCD-camera-based diffuse optical tomography to study ischemic stroke in preclinical rat models

    NASA Astrophysics Data System (ADS)

    Lin, Zi-Jing; Niu, Haijing; Liu, Yueming; Su, Jianzhong; Liu, Hanli

    2011-02-01

    Stroke, due to ischemia or hemorrhage, is the neurological deficit of cerebrovasculature and is the third leading cause of death in the United States. More than 80 percent of stroke patients are ischemic stroke due to blockage of artery in the brain by thrombosis or arterial embolism. Hence, development of an imaging technique to image or monitor the cerebral ischemia and effect of anti-stoke therapy is more than necessary. Near infrared (NIR) optical tomographic technique has a great potential to be utilized as a non-invasive image tool (due to its low cost and portability) to image the embedded abnormal tissue, such as a dysfunctional area caused by ischemia. Moreover, NIR tomographic techniques have been successively demonstrated in the studies of cerebro-vascular hemodynamics and brain injury. As compared to a fiberbased diffuse optical tomographic system, a CCD-camera-based system is more suitable for pre-clinical animal studies due to its simpler setup and lower cost. In this study, we have utilized the CCD-camera-based technique to image the embedded inclusions based on tissue-phantom experimental data. Then, we are able to obtain good reconstructed images by two recently developed algorithms: (1) depth compensation algorithm (DCA) and (2) globally convergent method (GCM). In this study, we will demonstrate the volumetric tomographic reconstructed results taken from tissuephantom; the latter has a great potential to determine and monitor the effect of anti-stroke therapies.

  20. Third order harmonic imaging for biological tissues using three phase-coded pulses.

    PubMed

    Ma, Qingyu; Gong, Xiufen; Zhang, Dong

    2006-12-22

    Compared to the fundamental and the second harmonic imaging, the third harmonic imaging shows significant improvements in image quality due to the better resolution, but it is degraded by the lower sound pressure and signal-to-noise ratio (SNR). In this study, a phase-coded pulse technique is proposed to selectively enhance the sound pressure of the third harmonic by 9.5 dB whereas the fundamental and the second harmonic components are efficiently suppressed and SNR is also increased by 4.7 dB. Based on the solution of the KZK nonlinear equation, the axial and lateral beam profiles of harmonics radiated from a planar piston transducer were theoretically simulated and experimentally examined. Finally, the third harmonic images using this technique were performed for several biological tissues and compared with the images obtained by the fundamental and the second harmonic imaging. Results demonstrate that the phase-coded pulse technique yields a dramatically cleaner and sharper contrast image.

  1. Application of separable parameter space techniques to multi-tracer PET compartment modeling.

    PubMed

    Zhang, Jeff L; Michael Morey, A; Kadrmas, Dan J

    2016-02-07

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.

  2. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Jeff L.; Morey, A. Michael; Kadrmas, Dan J.

    2016-02-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.

  3. Illustrated review of new imaging techniques in the diagnosis of abdominal wall hernias.

    PubMed

    Toms, A P; Dixon, A K; Murphy, J M; Jamieson, N V

    1999-10-01

    The assessment of abdominal wall hernias has long been a clinical skill that only occasionally required the supplementary radiological assistance of herniography. However, with the advent of cross-sectional imaging, a new range of diagnostic tools is now available to help the clinician in difficult cases. This review explores the ability of computed tomography and magnetic resonance imaging to demonstrate many of the hernias encountered in the anterior abdominal wall. Also discussed is the role of imaging techniques in the management of a variety of hernias. Cross-sectional imaging techniques are being employed with increasing frequency for the assessment of hernias. Although the anatomical detail can usually be delineated clearly, the accuracy of the various methods and their place in the clinical management of hernias has yet to be fully determined.

  4. Infrared and visible image fusion using discrete cosine transform and swarm intelligence for surveillance applications

    NASA Astrophysics Data System (ADS)

    Paramanandham, Nirmala; Rajendiran, Kishore

    2018-01-01

    A novel image fusion technique is presented for integrating infrared and visible images. Integration of images from the same or various sensing modalities can deliver the required information that cannot be delivered by viewing the sensor outputs individually and consecutively. In this paper, a swarm intelligence based image fusion technique using discrete cosine transform (DCT) domain is proposed for surveillance application which integrates the infrared image with the visible image for generating a single informative fused image. Particle swarm optimization (PSO) is used in the fusion process for obtaining the optimized weighting factor. These optimized weighting factors are used for fusing the DCT coefficients of visible and infrared images. Inverse DCT is applied for obtaining the initial fused image. An enhanced fused image is obtained through adaptive histogram equalization for a better visual understanding and target detection. The proposed framework is evaluated using quantitative metrics such as standard deviation, spatial frequency, entropy and mean gradient. The experimental results demonstrate the outperformance of the proposed algorithm over many other state- of- the- art techniques reported in literature.

  5. Fast optically sectioned fluorescence HiLo endomicroscopy

    PubMed Central

    Lim, Daryl; Mertz, Jerome

    2012-01-01

    Abstract. We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies. PMID:22463023

  6. Inviscid Limit for Damped and Driven Incompressible Navier-Stokes Equations in mathbb R^2

    NASA Astrophysics Data System (ADS)

    Ramanah, D.; Raghunath, S.; Mee, D. J.; Rösgen, T.; Jacobs, P. A.

    2007-08-01

    Experiments to demonstrate the use of the background-oriented schlieren (BOS) technique in hypersonic impulse facilities are reported. BOS uses a simple optical set-up consisting of a structured background pattern, an electronic camera with a high shutter speed and a high intensity light source. The visualization technique is demonstrated in a small reflected shock tunnel with a Mach 4 conical nozzle, nozzle supply pressure of 2.2 MPa and nozzle supply enthalpy of 1.8 MJ/kg. A 20° sharp circular cone and a model of the MUSES-C re-entry body were tested. Images captured were processed using PIV-style image analysis to visualize variations in the density field. The shock angle on the cone measured from the BOS images agreed with theoretical calculations to within 0.5°. Shock standoff distances could be measured from the BOS image for the re-entry body. Preliminary experiments are also reported in higher enthalpy facilities where flow luminosity can interfere with imaging of the background pattern.

  7. Simultaneous imaging of fat crystallinity and crystal polymorphic types by Raman microspectroscopy.

    PubMed

    Motoyama, Michiyo; Ando, Masahiro; Sasaki, Keisuke; Nakajima, Ikuyo; Chikuni, Koichi; Aikawa, Katsuhiro; Hamaguchi, Hiro-O

    2016-04-01

    The crystalline states of fats, i.e., the crystallinity and crystal polymorphic types, strongly influence their physical properties in fat-based foods. Imaging of fat crystalline states has thus been a subject of abiding interest, but conventional techniques cannot image crystallinity and polymorphic types all at once. This article demonstrates a new technique using Raman microspectroscopy for simultaneously imaging the crystallinity and polymorphic types of fats. The crystallinity and β' crystal polymorph, which contribute to the hardness of fat-based food products, were quantitatively visualized in a model fat (porcine adipose tissue) by analyzing several key Raman bands. The emergence of the β crystal polymorph, which generally results in food product deterioration, was successfully imaged by analyzing the whole fingerprint regions of Raman spectra using multivariate curve resolution alternating least squares analysis. The results demonstrate that the crystalline states of fats can be nondestructively visualized and analyzed at the molecular level, in situ, without laborious sample pretreatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.

    PubMed

    Oelze, Michael L; Mamou, Jonathan

    2016-02-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation, and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years, QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient (BSC), estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter (ESD) and the effective acoustic concentration (EAC) of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on clinical devices. Successful clinical and preclinical applications demonstrating the ability of QUS to improve medical diagnostics include characterization of the myocardium during the cardiac cycle, cancer detection, classification of solid tumors and lymph nodes, detection and quantification of fatty liver disease, and monitoring and assessment of therapy.

  9. Puzzle Imaging: Using Large-Scale Dimensionality Reduction Algorithms for Localization.

    PubMed

    Glaser, Joshua I; Zamft, Bradley M; Church, George M; Kording, Konrad P

    2015-01-01

    Current high-resolution imaging techniques require an intact sample that preserves spatial relationships. We here present a novel approach, "puzzle imaging," that allows imaging a spatially scrambled sample. This technique takes many spatially disordered samples, and then pieces them back together using local properties embedded within the sample. We show that puzzle imaging can efficiently produce high-resolution images using dimensionality reduction algorithms. We demonstrate the theoretical capabilities of puzzle imaging in three biological scenarios, showing that (1) relatively precise 3-dimensional brain imaging is possible; (2) the physical structure of a neural network can often be recovered based only on the neural connectivity matrix; and (3) a chemical map could be reproduced using bacteria with chemosensitive DNA and conjugative transfer. The ability to reconstruct scrambled images promises to enable imaging based on DNA sequencing of homogenized tissue samples.

  10. Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm.

    PubMed

    Jiang, Minshan; Liu, Tan; Liu, Xiaojing; Jiao, Shuliang

    2014-12-01

    We accomplished spectral domain optical coherence tomography and auto-fluorescence microscopy for imaging the retina with a single broadband light source centered at 480 nm. This technique is able to provide simultaneous structural imaging and lipofuscin molecular contrast of the retina. Since the two imaging modalities are provided by the same group of photons, their images are intrinsically registered. To test the capabilities of the technique we periodically imaged the retinas of the same rats for four weeks. The images successfully demonstrated lipofuscin accumulation in the retinal pigment epithelium with aging. The experimental results showed that the dual-modal imaging system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.

  11. Evaluating structural connectomics in relation to different Q-space sampling techniques.

    PubMed

    Rodrigues, Paulo; Prats-Galino, Alberto; Gallardo-Pujol, David; Villoslada, Pablo; Falcon, Carles; Prckovska, Vesna

    2013-01-01

    Brain networks are becoming forefront research in neuroscience. Network-based analysis on the functional and structural connectomes can lead to powerful imaging markers for brain diseases. However, constructing the structural connectome can be based upon different acquisition and reconstruction techniques whose information content and mutual differences has not yet been properly studied in a unified framework. The variations of the structural connectome if not properly understood can lead to dangerous conclusions when performing these type of studies. In this work we present evaluation of the structural connectome by analysing and comparing graph-based measures on real data acquired by the three most important Diffusion Weighted Imaging techniques: DTI, HARDI and DSI. We thus come to several important conclusions demonstrating that even though the different techniques demonstrate differences in the anatomy of the reconstructed fibers the respective connectomes show variations of 20%.

  12. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods.more » The pressure measured from neutron transmission spectra (~739 ± 98 kPa and ~751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ~758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ~ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. As a result, the ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.« less

  13. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    DOE PAGES

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.; ...

    2017-01-31

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods.more » The pressure measured from neutron transmission spectra (~739 ± 98 kPa and ~751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ~758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ~ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. As a result, the ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.« less

  14. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.; Byler, D. D.; McClellan, K. J.; Bourke, M. A. M.; Vallerga, J. V.

    2017-01-01

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (˜739 ± 98 kPa and ˜751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ˜758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ˜ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.

  15. A further study to investigate the detection and enhancement of latent fingerprints using visible absorption and luminescence chemical imaging.

    PubMed

    Payne, Gemma; Reedy, Brian; Lennard, Chris; Comber, Bruce; Exline, David; Roux, Claude

    2005-05-28

    This study investigated the application of chemical imaging to the detection of latent fingerprints using the Condor macroscopic chemical imaging system (ChemImage Corp., Pittsburgh, USA). Methods were developed and optimised for the visualisation of untreated latent fingerprints and fingerprints processed with DFO, ninhydrin, cyanoacrylate, and cyanoacrylate plus rhodamine 6G stain. The results obtained with chemical imaging were compared to the detection achieved using conventional imaging techniques. The Condor significantly improved the detection of many prints, especially those that might be considered poor quality or borderline prints. Prints on newspaper treated with ninhydrin and DFO, and prints on white and yellow paper treated with ninhydrin, benefited the most from chemical imaging detection. In many cases, fingerprints undetectable using conventional imaging techniques could be visualised with chemical imaging. Ridge detail from untreated prints on yellow paper was also detected using the Condor. When prints of high quality were examined, both detection techniques produced quality results. The results of this project demonstrate that chemical imaging offers advantages over conventional visualisation techniques when examining latent fingerprints, especially those that would be considered difficult, such as weak prints or prints on surfaces that produce highly luminescent backgrounds. Standard testing procedures for the detection and enhancement of fingerprints by chemical imaging are presented and discussed.

  16. Design and Test of Magnetic Wall Decoupling for Dipole Transmit/Receive Array for MR Imaging at the Ultrahigh Field of 7T.

    PubMed

    Yan, Xinqiang; Zhang, Xiaoliang; Wei, Long; Xue, Rong

    2015-01-01

    Radio-frequency coil arrays using dipole antenna technique have been recently applied for ultrahigh field magnetic resonance (MR) imaging to obtain the better signal-noise-ratio (SNR) gain at the deep area of human tissues. However, the unique structure of dipole antennas makes it challenging to achieve sufficient electromagnetic decoupling among the dipole antenna elements. Currently, there is no decoupling methods proposed for dipole antenna arrays in MR imaging. The recently developed magnetic wall (MW) or induced current elimination decoupling technique has demonstrated its feasibility and robustness in designing microstrip transmission line arrays, L/C loop arrays and monopole arrays. In this study, we aim to investigate the possibility and performance of MW decoupling technique in dipole arrays for MR imaging at the ultrahigh field of 7T. To achieve this goal, a two-channel MW decoupled dipole array was designed, constructed and analyzed experimentally through bench test and MR imaging. Electromagnetic isolation between the two dipole elements was improved from about -3.6 dB (without any decoupling treatments) to -16.5 dB by using the MW decoupling method. MR images acquired from a water phantom using the MW decoupled dipole array and the geometry factor maps were measured, calculated and compared with those acquired using the dipole array without decoupling treatments. The MW decoupled dipole array demonstrated well-defined image profiles from each element and had better geometry factor over the array without decoupling treatments. The experimental results indicate that the MW decoupling technique might be a promising solution to reducing the electromagnetic coupling of dipole arrays in ultrahigh field MRI, consequently improving their performance in SNR and parallel imaging.

  17. The Amusement Park Technique in the Treatment of Dually Diagnosed, Psychiatric Inpatients.

    ERIC Educational Resources Information Center

    Hrenko, Kathy D.; Willis, Robert

    1996-01-01

    Identifies common imagery created by psychiatric inpatients through the amusement park technique; demonstrates how the artwork serves to identify the psychodynamic concerns of the mentally ill substance abuser. Connections are examined relating patients choice of image, psychiatric diagnosis, and drug of choice. This technique offers promise for…

  18. Unsupervised color image segmentation using a lattice algebra clustering technique

    NASA Astrophysics Data System (ADS)

    Urcid, Gonzalo; Ritter, Gerhard X.

    2011-08-01

    In this paper we introduce a lattice algebra clustering technique for segmenting digital images in the Red-Green- Blue (RGB) color space. The proposed technique is a two step procedure. Given an input color image, the first step determines the finite set of its extreme pixel vectors within the color cube by means of the scaled min-W and max-M lattice auto-associative memory matrices, including the minimum and maximum vector bounds. In the second step, maximal rectangular boxes enclosing each extreme color pixel are found using the Chebychev distance between color pixels; afterwards, clustering is performed by assigning each image pixel to its corresponding maximal box. The two steps in our proposed method are completely unsupervised or autonomous. Illustrative examples are provided to demonstrate the color segmentation results including a brief numerical comparison with two other non-maximal variations of the same clustering technique.

  19. Ultrafast Method for the Analysis of Fluorescence Lifetime Imaging Microscopy Data Based on the Laguerre Expansion Technique

    PubMed Central

    Jo, Javier A.; Fang, Qiyin; Marcu, Laura

    2007-01-01

    We report a new deconvolution method for fluorescence lifetime imaging microscopy (FLIM) based on the Laguerre expansion technique. The performance of this method was tested on synthetic and real FLIM images. The following interesting properties of this technique were demonstrated. 1) The fluorescence intensity decay can be estimated simultaneously for all pixels, without a priori assumption of the decay functional form. 2) The computation speed is extremely fast, performing at least two orders of magnitude faster than current algorithms. 3) The estimated maps of Laguerre expansion coefficients provide a new domain for representing FLIM information. 4) The number of images required for the analysis is relatively small, allowing reduction of the acquisition time. These findings indicate that the developed Laguerre expansion technique for FLIM analysis represents a robust and extremely fast deconvolution method that enables practical applications of FLIM in medicine, biology, biochemistry, and chemistry. PMID:19444338

  20. An image warping technique for rodent brain MRI-histology registration based on thin-plate splines with landmark optimization

    NASA Astrophysics Data System (ADS)

    Liu, Yutong; Uberti, Mariano; Dou, Huanyu; Mosley, R. Lee; Gendelman, Howard E.; Boska, Michael D.

    2009-02-01

    Coregistration of in vivo magnetic resonance imaging (MRI) with histology provides validation of disease biomarker and pathobiology studies. Although thin-plate splines are widely used in such image registration, point landmark selection is error prone and often time-consuming. We present a technique to optimize landmark selection for thin-plate splines and demonstrate its usefulness in warping rodent brain MRI to histological sections. In this technique, contours are drawn on the corresponding MRI slices and images of histological sections. The landmarks are extracted from the contours by equal spacing then optimized by minimizing a cost function consisting of the landmark displacement and contour curvature. The technique was validated using simulation data and brain MRI-histology coregistration in a murine model of HIV-1 encephalitis. Registration error was quantified by calculating target registration error (TRE). The TRE of approximately 8 pixels for 20-80 landmarks without optimization was stable at different landmark numbers. The optimized results were more accurate at low landmark numbers (TRE of approximately 2 pixels for 50 landmarks), while the accuracy decreased (TRE approximately 8 pixels for larger numbers of landmarks (70- 80). The results demonstrated that registration accuracy decreases with the increasing landmark numbers offering more confidence in MRI-histology registration using thin-plate splines.

  1. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    PubMed Central

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Matthew D., E-mail: Matt.Wilson@stfc.ac.uk; Seller, Paul; Veale, Matthew C.

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission andmore » fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm{sup 2} with one of the 80×80 pixels imaging an area equivalent to 13µm{sup 2}. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.« less

  3. Computational multispectral video imaging [Invited].

    PubMed

    Wang, Peng; Menon, Rajesh

    2018-01-01

    Multispectral imagers reveal information unperceivable to humans and conventional cameras. Here, we demonstrate a compact single-shot multispectral video-imaging camera by placing a micro-structured diffractive filter in close proximity to the image sensor. The diffractive filter converts spectral information to a spatial code on the sensor pixels. Following a calibration step, this code can be inverted via regularization-based linear algebra to compute the multispectral image. We experimentally demonstrated spectral resolution of 9.6 nm within the visible band (430-718 nm). We further show that the spatial resolution is enhanced by over 30% compared with the case without the diffractive filter. We also demonstrate Vis-IR imaging with the same sensor. Because no absorptive color filters are utilized, sensitivity is preserved as well. Finally, the diffractive filters can be easily manufactured using optical lithography and replication techniques.

  4. Multi-frame image processing with panning cameras and moving subjects

    NASA Astrophysics Data System (ADS)

    Paolini, Aaron; Humphrey, John; Curt, Petersen; Kelmelis, Eric

    2014-06-01

    Imaging scenarios commonly involve erratic, unpredictable camera behavior or subjects that are prone to movement, complicating multi-frame image processing techniques. To address these issues, we developed three techniques that can be applied to multi-frame image processing algorithms in order to mitigate the adverse effects observed when cameras are panning or subjects within the scene are moving. We provide a detailed overview of the techniques and discuss the applicability of each to various movement types. In addition to this, we evaluated algorithm efficacy with demonstrated benefits using field test video, which has been processed using our commercially available surveillance product. Our results show that algorithm efficacy is significantly improved in common scenarios, expanding our software's operational scope. Our methods introduce little computational burden, enabling their use in real-time and low-power solutions, and are appropriate for long observation periods. Our test cases focus on imaging through turbulence, a common use case for multi-frame techniques. We present results of a field study designed to test the efficacy of these techniques under expanded use cases.

  5. [Progress in imaging techniques].

    PubMed

    Mishima, Kazuaki; Otsuka, Tsukasa

    2013-05-01

    Today it is common to perform real-time diagnosis and treatment via live broadcast as a method of education and to spread new technology for diagnosis and therapy in medical fields. Live medical broadcasts have developed along with broadcast technology. In the early days, live video feeds were sent from operating rooms to classrooms and lecture halls in universities and hospitals. However, the development of imaging techniques and communication networks enabled live broadcasts that bi-directionally link operating rooms and meeting halls during scientific meetings and live demonstration courses. Live broadcasts therefore became an important method for education and the dissemination of new medical technologies. The development of imaging techniques has contributed to more realistic live broadcasts through such innovative techniques as three-dimensional viewing and higher-definition 4K technology. In the future, live broadcasts will be transmitted on personal computers using regular Internet connections. In addition to the enhancement of image delivery technology, it will also be necessary to examine the entire image delivery environment carefully, including issues of security and privacy of personal information.

  6. Combined electron beam imaging and ab initio modeling of T1 precipitates in Al-Li-Cu alloys

    NASA Astrophysics Data System (ADS)

    Dwyer, C.; Weyland, M.; Chang, L. Y.; Muddle, B. C.

    2011-05-01

    Among the many considerable challenges faced in developing a rational basis for advanced alloy design, establishing accurate atomistic models is one of the most fundamental. Here we demonstrate how advanced imaging techniques in a double-aberration-corrected transmission electron microscope, combined with ab initio modeling, have been used to determine the atomic structure of embedded 1 nm thick T1 precipitates in precipitation-hardened Al-Li-Cu aerospace alloys. The results provide an accurate determination of the controversial T1 structure, and demonstrate how next-generation techniques permit the characterization of embedded nanostructures in alloys and other nanostructured materials.

  7. Product code optimization for determinate state LDPC decoding in robust image transmission.

    PubMed

    Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G

    2006-08-01

    We propose a novel scheme for error-resilient image transmission. The proposed scheme employs a product coder consisting of low-density parity check (LDPC) codes and Reed-Solomon codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the-art techniques for image transmission.

  8. Communication: X-ray coherent diffractive imaging by immersion in nanodroplets

    DOE PAGES

    Tanyag, Rico Mayro P.; Bernando, Charles; Jones, Curtis F.; ...

    2015-10-14

    Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. As a result, images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system.

  9. Geometric and shading correction for images of printed materials using boundary.

    PubMed

    Brown, Michael S; Tsoi, Yau-Chat

    2006-06-01

    A novel technique that uses boundary interpolation to correct geometric distortion and shading artifacts present in images of printed materials is presented. Unlike existing techniques, our algorithm can simultaneously correct a variety of geometric distortions, including skew, fold distortion, binder curl, and combinations of these. In addition, the same interpolation framework can be used to estimate the intrinsic illumination component of the distorted image to correct shading artifacts. We detail our algorithm for geometric and shading correction and demonstrate its usefulness on real-world and synthetic data.

  10. Portal vein territory identification using indocyanine green fluorescence imaging: Technical details and short-term outcomes.

    PubMed

    Kobayashi, Yuta; Kawaguchi, Yoshikuni; Kobayashi, Kosuke; Mori, Kazuhiro; Arita, Junichi; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Kokudo, Norihiro

    2017-12-01

    Portal vein (PV) territory identification during liver resection may be performed using indocyanine green (ICG) fluorescence imaging technique. However, the technical details of the fluorescence staining technique have not been fully elucidated. This study was performed to demonstrate the technical details of PV territory identification using fluorescence imaging and evaluates the short-term outcomes. From 2011 to 2015, 105 underwent liver resection at the University of Tokyo Hospital with one of the following fluorescence staining techniques by transhepatic PV injection or intravenous injection of ICG: single staining (n = 36), multiple staining (n = 31), counterstaining (n = 22), negative staining (n = 13), or paradoxical negative staining (n = 3). The PV territory was identified as a region with fluorescence or a defect of fluorescence using one of the five staining techniques. ICG was administered by transhepatic PV injection in all but the negative staining technique, which employed intravenous injection. No adverse events associated with the ICG administration occurred. The mortality, postoperative total morbidity, and the major complication (Clavien-Dindo grade ≥III) rates were 0.0%, 14.3%, and 7.6%. We have demonstrated the technical details of five types of fluorescence staining techniques. These techniques are safe to perform and facilitate clear visualization of the PV territory in real time, enhancing the efficacy of anatomical removal of such territories. © 2017 Wiley Periodicals, Inc.

  11. Pulsed magneto-motive ultrasound imaging to detect intracellular trafficking of magnetic nanoparticles

    PubMed Central

    Mehrmohamamdi, Mohammad; Qu, Min; Ma, Li L.; Romanovicz, Dwight K.; Johnston, Keith P.; Sokolov, Konstantin V.; Emelianov, Stanislav Y.

    2012-01-01

    As applications of nanoparticles in medical imaging and biomedicine rapidly expand, the interactions of nanoparticles with living cells have become an area of active interest. For example, intracellular trafficking of nanoparticles – an important part of cell-nanoparticle interaction, has been well studied using plasmonic nanoparticles and optical or optics-based techniques due to the change in optical properties of the nanoparticle aggregates. However, magnetic nanoparticles, despite their wide range of clinical applications, do not exhibit plasmonic-resonant properties and therefore their intracellular aggregation cannot be detected by optics-based imaging techniques. In this study, we investigated the feasibility of a novel imaging technique – pulsed magneto-motive ultrasound (pMMUS), to identify intracellular trafficking of endocytosed magnetic nanoparticles. In pulsed magneto-motive ultrasound imaging a focused, high intensity, pulsed magnetic field is used to excite the cells labeled with magnetic nanoparticles, and ultrasound imaging is then used to monitor the mechanical response of the tissue. We demonstrated previously that clusters of magnetic nanoparticles amplify the pMMUS signal in comparison to signal from individual nanoparticles. Here we further demonstrate that pMMUS imaging can identify interaction between magnetic nanoparticles and living cells, i.e. intracellular aggregation of nanoparticles within the cells. The results of our study suggest that pMMUS imaging can not only detect the presence of magnetic nanoparticles but also provides information about their intracellular trafficking non-invasively and in real-time. PMID:21926454

  12. Doppler imaging with dual-detection full-range frequency domain optical coherence tomography

    PubMed Central

    Meemon, Panomsak; Lee, Kye-Sung; Rolland, Jannick P.

    2010-01-01

    Most of full-range techniques for Frequency Domain Optical Coherence Tomography (FD-OCT) reported to date utilize the phase relation between consecutive axial lines to reconstruct a complex interference signal and hence may exhibit degradation in either mirror image suppression performance or detectable velocity dynamic range or both when monitoring a moving sample such as flow activity. We have previously reported a technique of mirror image removal by simultaneous detection of the quadrature components of a complex spectral interference called a Dual-Detection Frequency Domain OCT (DD-FD-OCT) [Opt. Lett. 35, 1058-1060 (2010)]. The technique enables full range imaging without any loss of acquisition speed and is intrinsically less sensitive to phase errors generated by involuntary movements of the subject. In this paper, we demonstrate the application of the DD-FD-OCT to a phase-resolved Doppler imaging without degradation in either mirror image suppression performance or detectable velocity dynamic range that were observed in other full-range Doppler methods. In order to accommodate for Doppler imaging, we have developed a fiber-based DD-FD-OCT that more efficiently utilizes the source power compared with the previous free-space DD-FD-OCT. In addition, the velocity sensitivity of the phase-resolved DD-FD-OCT was investigated, and the relation between the measured Doppler phase shift and set flow velocity of a flow phantom was verified. Finally, we demonstrate the Doppler imaging using the DD-FD-OCT in a biological sample. PMID:21258488

  13. Application of LANDSAT images to the study of level soils for recognizing drainage areas. Thesis Paper

    NASA Technical Reports Server (NTRS)

    Espinoza, M. U.

    1977-01-01

    Photographic images from LANDSAT 1 were applied to the study of soil in Desaguadero, Bolivia, in order to locate areas with high agricultural and livestock potential. Photointerpretation techniques were emphasized and advantages of information obtained via multispectral satellite images in various bands and combinations were demonstrated.

  14. Comprehensive MR imaging of acute gynecologic diseases.

    PubMed

    Dohke, M; Watanabe, Y; Okumura, A; Amoh, Y; Hayashi, T; Yoshizako, T; Yasui, M; Nakashita, S; Nakanishi, J; Dodo, Y

    2000-01-01

    Rapid advances in techniques of magnetic resonance (MR) imaging have enabled diagnosis of acute gynecologic conditions, which are characterized by sudden onset of lower abdominal pain, fever, genital bleeding, intraperitoneal bleeding, or symptoms of shock. The chemical-selective fat-suppression technique not only helps establish the characteristics of lesions that contain fat components but also increases the conspicuity of inflammatory lesions. When a T2-weighted image is obtained with a very long effective echo time (>250 msec), even a small amount of ascites can be easily identified and the contrast between urine and complex fluid becomes more conspicuous. T2*-weighted images are useful for identification of hemorrhagic lesions by demonstrating deoxyhemoglobin and hemosiderin. Contrast material-enhanced dynamic subtraction MR imaging performed with a three-dimensional fast field-echo sequence and a rapid bolus injection of gadopentetate dimeglumine allows evaluation of lesion vascularity and the anatomic relationship between pelvic vessels and a lesion and allows identification of the bleeding point by demonstrating extravasation of contrast material. To optimize the MR imaging examination, attention should be given to the parameters of each pulse sequence and proper combination of the sequences.

  15. Information recovery in propagation-based imaging with decoherence effects

    NASA Astrophysics Data System (ADS)

    Froese, Heinrich; Lötgering, Lars; Wilhein, Thomas

    2017-05-01

    During the past decades the optical imaging community witnessed a rapid emergence of novel imaging modalities such as coherent diffraction imaging (CDI), propagation-based imaging and ptychography. These methods have been demonstrated to recover complex-valued scalar wave fields from redundant data without the need for refractive or diffractive optical elements. This renders these techniques suitable for imaging experiments with EUV and x-ray radiation, where the use of lenses is complicated by fabrication, photon efficiency and cost. However, decoherence effects can have detrimental effects on the reconstruction quality of the numerical algorithms involved. Here we demonstrate propagation-based optical phase retrieval from multiple near-field intensities with decoherence effects such as partially coherent illumination, detector point spread, binning and position uncertainties of the detector. Methods for overcoming these systematic experimental errors - based on the decomposition of the data into mutually incoherent modes - are proposed and numerically tested. We believe that the results presented here open up novel algorithmic methods to accelerate detector readout rates and enable subpixel resolution in propagation-based phase retrieval. Further the techniques are straightforward to be extended to methods such as CDI, ptychography and holography.

  16. In-vivo Imaging of Magnetic Fields Induced by Transcranial Direct Current Stimulation (tDCS) in Human Brain using MRI

    NASA Astrophysics Data System (ADS)

    Jog, Mayank V.; Smith, Robert X.; Jann, Kay; Dunn, Walter; Lafon, Belen; Truong, Dennis; Wu, Allan; Parra, Lucas; Bikson, Marom; Wang, Danny J. J.

    2016-10-01

    Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique that applies mA currents at the scalp to modulate cortical excitability. Here, we present a novel magnetic resonance imaging (MRI) technique, which detects magnetic fields induced by tDCS currents. This technique is based on Ampere’s law and exploits the linear relationship between direct current and induced magnetic fields. Following validation on a phantom with a known path of electric current and induced magnetic field, the proposed MRI technique was applied to a human limb (to demonstrate in-vivo feasibility using simple biological tissue) and human heads (to demonstrate feasibility in standard tDCS applications). The results show that the proposed technique detects tDCS induced magnetic fields as small as a nanotesla at millimeter spatial resolution. Through measurements of magnetic fields linearly proportional to the applied tDCS current, our approach opens a new avenue for direct in-vivo visualization of tDCS target engagement.

  17. Image encryption using a synchronous permutation-diffusion technique

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Abdullah, Abdul Hanan; Isnin, Ismail Fauzi; Altameem, Ayman; Lee, Malrey

    2017-03-01

    In the past decade, the interest on digital images security has been increased among scientists. A synchronous permutation and diffusion technique is designed in order to protect gray-level image content while sending it through internet. To implement the proposed method, two-dimensional plain-image is converted to one dimension. Afterward, in order to reduce the sending process time, permutation and diffusion steps for any pixel are performed in the same time. The permutation step uses chaotic map and deoxyribonucleic acid (DNA) to permute a pixel, while diffusion employs DNA sequence and DNA operator to encrypt the pixel. Experimental results and extensive security analyses have been conducted to demonstrate the feasibility and validity of this proposed image encryption method.

  18. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution.

    PubMed

    Yücelen, Emrah; Lazić, Ivan; Bosch, Eric G T

    2018-02-08

    Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text

  19. Endometrial ablation: normal appearance and complications.

    PubMed

    Drylewicz, Monica R; Robinson, Kathryn; Siegel, Cary Lynn

    2018-03-14

    Global endometrial ablation is a commonly performed, minimally invasive technique aimed at improving/resolving abnormal uterine bleeding and menorrhagia in women. As non-resectoscopic techniques have come into existence, endometrial ablation performance continues to increase due to accessibility and decreased requirements for operating room time and advanced technical training. The increased utilization of this method translates into increased imaging of patients who have undergone the procedure. An understanding of the expected imaging appearances of endometrial ablation using different modalities is important for the abdominal radiologist. In addition, the frequent usage of the technique naturally comes with complications requiring appropriate imaging work-up. We review the expected appearance of the post-endometrial ablated uterus on multiple imaging modalities and demonstrate the more common and rare complications seen in the immediate post-procedural time period and remotely.

  20. Non-interferometric phase retrieval using refractive index manipulation.

    PubMed

    Chen, Chyong-Hua; Hsu, Hsin-Feng; Chen, Hou-Ren; Hsieh, Wen-Feng

    2017-04-07

    We present a novel, inexpensive and non-interferometric technique to retrieve phase images by using a liquid crystal phase shifter without including any physically moving parts. First, we derive a new equation of the intensity-phase relation with respect to the change of refractive index, which is similar to the transport of the intensity equation. The equation indicates that this technique is unneeded to consider the variation of magnifications between optical images. For proof of the concept, we use a liquid crystal mixture MLC 2144 to manufacture a phase shifter and to capture the optical images in a rapid succession by electrically tuning the applied voltage of the phase shifter. Experimental results demonstrate that this technique is capable of reconstructing high-resolution phase images and to realize the thickness profile of a microlens array quantitatively.

  1. Photoacoustic characterization of human ovarian tissue

    NASA Astrophysics Data System (ADS)

    Aguirre, Andres; Ardeshirpour, Yasaman; Sanders, Mary M.; Brewer, Molly; Zhu, Quing

    2010-02-01

    Ovarian cancer has a five-year survival rate of only 30%, which represents the highest mortality of all gynecologic cancers. The reason for that is that the current imaging techniques are not capable of detecting ovarian cancer early. Therefore, new imaging techniques, like photoacoustic imaging, that can provide functional and molecular contrasts are needed for improving the specificity of ovarian cancer detection and characterization. Using a coregistered photoacoustic and ultrasound imaging system we have studied thirty-one human ovaries ex vivo, including normal and diseased. In order to compare the photoacoustic imaging results from all the ovaries, a new parameter using the RF data has been derived. The preliminary results show higher optical absorption for abnormal and malignant ovaries than for normal postmenopausal ones. To estimate the quantitative optical absorption properties of the ovaries, additional ultrasound-guided diffuse optical tomography images have been acquired. Good agreement between the two techniques has been observed. These results demonstrate the potential of a co-registered photoacoustic and ultrasound imaging system for the diagnosis of ovarian cancer.

  2. Near-infrared hyperspectral imaging for quality analysis of agricultural and food products

    NASA Astrophysics Data System (ADS)

    Singh, C. B.; Jayas, D. S.; Paliwal, J.; White, N. D. G.

    2010-04-01

    Agricultural and food processing industries are always looking to implement real-time quality monitoring techniques as a part of good manufacturing practices (GMPs) to ensure high-quality and safety of their products. Near-infrared (NIR) hyperspectral imaging is gaining popularity as a powerful non-destructive tool for quality analysis of several agricultural and food products. This technique has the ability to analyse spectral data in a spatially resolved manner (i.e., each pixel in the image has its own spectrum) by applying both conventional image processing and chemometric tools used in spectral analyses. Hyperspectral imaging technique has demonstrated potential in detecting defects and contaminants in meats, fruits, cereals, and processed food products. This paper discusses the methodology of hyperspectral imaging in terms of hardware, software, calibration, data acquisition and compression, and development of prediction and classification algorithms and it presents a thorough review of the current applications of hyperspectral imaging in the analyses of agricultural and food products.

  3. Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data

    DOE PAGES

    Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M.

    2016-08-09

    In this paper, we present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional datamore » cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. Finally, we demonstrate this 'big data' approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.« less

  4. Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M.

    In this paper, we present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional datamore » cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. Finally, we demonstrate this 'big data' approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.« less

  5. Development and applications of single particle orientation and rotational tracking in dynamic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kuangcai

    The goal of this study is to help with future data analysis and experiment designs in rotational dynamics research using DIC-based SPORT technique. Most of the current studies using DIC-based SPORT techniques are technical demonstrations. Understanding the mechanisms behind the observed rotational behaviors of the imaging probes should be the focus of the future SPORT studies. More efforts are still needed in the development of new imaging probes, particle tracking methods, instrumentations, and advanced data analysis methods to further extend the potential of DIC-based SPORT technique.

  6. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    PubMed Central

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928

  7. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    PubMed

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  8. Accelerated Slice Encoding for Metal Artifact Correction

    PubMed Central

    Hargreaves, Brian A.; Chen, Weitian; Lu, Wenmiao; Alley, Marcus T.; Gold, Garry E.; Brau, Anja C. S.; Pauly, John M.; Pauly, Kim Butts

    2010-01-01

    Purpose To demonstrate accelerated imaging with artifact reduction near metallic implants and different contrast mechanisms. Materials and Methods Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The SNR effects of all reconstructions were quantified in one subject. 10 subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods. Results The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects. Conclusion SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes. PMID:20373445

  9. Accelerated slice encoding for metal artifact correction.

    PubMed

    Hargreaves, Brian A; Chen, Weitian; Lu, Wenmiao; Alley, Marcus T; Gold, Garry E; Brau, Anja C S; Pauly, John M; Pauly, Kim Butts

    2010-04-01

    To demonstrate accelerated imaging with both artifact reduction and different contrast mechanisms near metallic implants. Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The signal-to-noise ratio (SNR) effects of all reconstructions were quantified in one subject. Ten subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods. The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects. SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging, and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes. (c) 2010 Wiley-Liss, Inc.

  10. Development Of A Dynamic Radiographic Capability Using High-Speed Video

    NASA Astrophysics Data System (ADS)

    Bryant, Lawrence E.

    1985-02-01

    High-speed video equipment can be used to optically image up to 2,000 full frames per second or 12,000 partial frames per second. X-ray image intensifiers have historically been used to image radiographic images at 30 frames per second. By combining these two types of equipment, it is possible to perform dynamic x-ray imaging of up to 2,000 full frames per second. The technique has been demonstrated using conventional, industrial x-ray sources such as 150 Kv and 300 Kv constant potential x-ray generators, 2.5 MeV Van de Graaffs, and linear accelerators. A crude form of this high-speed radiographic imaging has been shown to be possible with a cobalt 60 source. Use of a maximum aperture lens makes best use of the available light output from the image intensifier. The x-ray image intensifier input and output fluors decay rapidly enough to allow the high frame rate imaging. Data are presented on the maximum possible video frame rates versus x-ray penetration of various thicknesses of aluminum and steel. Photographs illustrate typical radiographic setups using the high speed imaging method. Video recordings show several demonstrations of this technique with the played-back x-ray images slowed down up to 100 times as compared to the actual event speed. Typical applications include boiling type action of liquids in metal containers, compressor operation with visualization of crankshaft, connecting rod and piston movement and thermal battery operation. An interesting aspect of this technique combines both the optical and x-ray capabilities to observe an object or event with both external and internal details with one camera in a visual mode and the other camera in an x-ray mode. This allows both kinds of video images to appear side by side in a synchronized presentation.

  11. Mass spectral analysis and imaging of tissue by ToF-SIMS--The role of buckminsterfullerene, C60+, primary ions

    NASA Astrophysics Data System (ADS)

    Jones, Emrys A.; Lockyer, Nicholas P.; Vickerman, John C.

    2007-02-01

    Recent developments in desorption/ionisation mass spectrometry techniques have made their application to biological analysis a realistic and successful proposition. Developments in primary ion source technology, mainly through the advent of polyatomic ion beams, have meant that the technique of secondary ion mass spectrometry (SIMS) can now access the depths of information required to allow biological imaging to be a viable option. Here the role of the primary ion C60+ is assessed with regard to molecular imaging of lipids and pharmaceuticals within tissue sections. High secondary ion yields and low surface damage accumulation are demonstrated on both model and real biological samples, indicating the high secondary ion efficiency afforded to the analyst by this primary ion when compared to other cluster ion beams used in imaging. The newly developed 40 keV C60+ ion source allows the beam to be focused such that high resolution imaging is demonstrated on a tissue sample, and the greater yields allow the molecular signal from the drug raclopride to be imaged within tissue section following in vivo dosing. The localisation shown for this drug alludes to issues regarding the chemical environment affecting the ionisation probability of the molecule; the importance of this effect is demonstrated with model systems and the possibility of using laser post-ionisation as a method for reducing this consequence of bio-sample complexity is demonstrated and discussed.

  12. High resolution remote sensing of densely urbanised regions: a case study of Hong Kong.

    PubMed

    Nichol, Janet E; Wong, Man Sing

    2009-01-01

    Data on the urban environment such as climate or air quality is usually collected at a few point monitoring stations distributed over a city. However, the synoptic viewpoint of satellites where a whole city is visible on a single image permits the collection of spatially comprehensive data at city-wide scale. In spite of rapid developments in remote sensing systems, deficiencies in image resolution and algorithm development still exist for applications such as air quality monitoring and urban heat island analysis. This paper describes state-of-the-art techniques for enhancing and maximising the spatial detail available from satellite images, and demonstrates their applications to the densely urbanised environment of Hong Kong. An Emissivity Modulation technique for spatial enhancement of thermal satellite images permits modelling of urban microclimate in combination with other urban structural parameters at local scale. For air quality monitoring, a Minimum Reflectance Technique (MRT) has been developed for MODIS 500 m images. The techniques described can promote the routine utilization of remotely sensed images for environmental monitoring in cities of the 21(st) century.

  13. High Resolution Remote Sensing of Densely Urbanised Regions: a Case Study of Hong Kong

    PubMed Central

    Nichol, Janet E.; Wong, Man Sing

    2009-01-01

    Data on the urban environment such as climate or air quality is usually collected at a few point monitoring stations distributed over a city. However, the synoptic viewpoint of satellites where a whole city is visible on a single image permits the collection of spatially comprehensive data at city-wide scale. In spite of rapid developments in remote sensing systems, deficiencies in image resolution and algorithm development still exist for applications such as air quality monitoring and urban heat island analysis. This paper describes state-of-the-art techniques for enhancing and maximising the spatial detail available from satellite images, and demonstrates their applications to the densely urbanised environment of Hong Kong. An Emissivity Modulation technique for spatial enhancement of thermal satellite images permits modelling of urban microclimate in combination with other urban structural parameters at local scale. For air quality monitoring, a Minimum Reflectance Technique (MRT) has been developed for MODIS 500 m images. The techniques described can promote the routine utilization of remotely sensed images for environmental monitoring in cities of the 21st century. PMID:22408549

  14. [Non-contrast time-resolved magnetic resonance angiography combining high resolution multiple phase echo planar imaging based signal targeting and alternating radiofrequency contrast inherent inflow enhanced multi phase angiography combining spatial resolution echo planar imaging based signal targeting and alternating radiofrequency in intracranial arteries].

    PubMed

    Nakamura, Masanobu; Yoneyama, Masami; Tabuchi, Takashi; Takemura, Atsushi; Obara, Makoto; Sawano, Seishi

    2012-01-01

    Detailed information on anatomy and hemodynamics in cerebrovascular disorders such as AVM and Moyamoya disease is mandatory for defined diagnosis and treatment planning. Arterial spin labeling technique has come to be applied to magnetic resonance angiography (MRA) and perfusion imaging in recent years. However, those non-contrast techniques are mostly limited to single frame images. Recently we have proposed a non-contrast time-resolved MRA technique termed contrast inherent inflow enhanced multi phase angiography combining spatial resolution echo planar imaging based signal targeting and alternating radiofrequency (CINEMA-STAR). CINEMA-STAR can extract the blood flow in the major intracranial arteries at an interval of 70 ms and thus permits us to observe vascular construction in full by preparing MIP images of axial acquisitions with high spatial resolution. This preliminary study demonstrates the usefulness of the CINEMA-STAR technique in evaluating the cerebral vasculature.

  15. SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography

    PubMed Central

    Holloway, Jason; Wu, Yicheng; Sharma, Manoj K.; Cossairt, Oliver; Veeraraghavan, Ashok

    2017-01-01

    Synthetic aperture radar is a well-known technique for improving resolution in radio imaging. Extending these synthetic aperture techniques to the visible light domain is not straightforward because optical receivers cannot measure phase information. We propose to use macroscopic Fourier ptychography (FP) as a practical means of creating a synthetic aperture for visible imaging to achieve subdiffraction-limited resolution. We demonstrate the first working prototype for macroscopic FP in a reflection imaging geometry that is capable of imaging optically rough objects. In addition, a novel image space denoising regularization is introduced during phase retrieval to reduce the effects of speckle and improve perceptual quality of the recovered high-resolution image. Our approach is validated experimentally where the resolution of various diffuse objects is improved sixfold. PMID:28439550

  16. Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts.

    PubMed

    Alali, Sanaz; Gribble, Adam; Vitkin, I Alex

    2016-03-01

    A new polarimetry method is demonstrated to image the entire Mueller matrix of a turbid sample using four photoelastic modulators (PEMs) and a charge coupled device (CCD) camera, with no moving parts. Accurate wide-field imaging is enabled with a field-programmable gate array (FPGA) optical gating technique and an evolutionary algorithm (EA) that optimizes imaging times. This technique accurately and rapidly measured the Mueller matrices of air, polarization elements, and turbid phantoms. The system should prove advantageous for Mueller matrix analysis of turbid samples (e.g., biological tissues) over large fields of view, in less than a second.

  17. Rapid calibrated high-resolution hyperspectral imaging using tunable laser source

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam K.; Margalith, Eli

    2009-05-01

    We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.

  18. Label-free imaging of metabolism and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes

    PubMed Central

    Datta, Rupsa; Heylman, Christopher; George, Steven C.; Gratton, Enrico

    2016-01-01

    In this work we demonstrate a label-free optical imaging technique to assess metabolic status and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes by two-photon fluorescence lifetime imaging of endogenous fluorophores. Our results show the sensitivity of this method to detect shifts in metabolism and oxidative stress in the cardiomyocytes upon pathological stimuli of hypoxia and cardiotoxic drugs. This non-invasive imaging technique could prove beneficial for drug development and screening, especially for in vitro cardiac models created from stem cell-derived cardiomyocytes and to study the pathogenesis of cardiac diseases and therapy. PMID:27231614

  19. Evaluation of the influence of acquisition parameters of microtomography in image quality applied by carbonate rocks

    NASA Astrophysics Data System (ADS)

    Santos, T. M. P.; Machado, A. S.; Araújo, O. M. O.; Ferreira, C. G.; Lopes, R. T.

    2018-03-01

    X-ray computed microtomography is a powerful nondestructive technique for 2D and 3D structure analysis. However, parameters used in acquisition promote directs influence in qualitative and quantitative results in characterization of samples, due image resolution. The aim of this study is value the influence of theses parameters in results through of tests changing these parameters in different situations and system characterization. Results demonstrate those pixel size and detector matrixes are the main parameters that influence in resolution and image quality. Microtomography was considered an excellent technique for characterization using the best image resolution possible.

  20. Novel, in-situ Raman and fluorescence measurement techniques: Imaging using optical waveguides

    NASA Astrophysics Data System (ADS)

    Carter, Jerry Chance

    The following dissertation describes the development of methods for performing standoff and in- situ Raman and fluorescence spectroscopy for chemical imaging and non-imaging analytical applications. The use of Raman spectroscopy for the in- situ identification of crack cocaine and cocaine.HCl using a fiberoptic Raman probe and a portable Raman spectrograph has been demonstrated. We show that the Raman spectra of both forms of cocaine are easily distinguishable from common cutting agents and impurities such as benzocaine and lidocaine. We have also demonstrated the use of Raman spectroscopy for in-situ identification of drugs separated by thin layer chromatography. We have investigated the use of small, transportable, Raman systems for standoff Raman spectroscopy (e.g. <20 m). For this work, acousto-optical (AOTF) and liquid crystal tunable filters (LCTF) are being used both with, and in place of dispersive spectrographs and fixed filtering devices. In addition, we improved the flexibility of the system by the use of a modified holographic fiber-optic probe for light and image collection. A comparison of tunable filter technologies for standoff Raman imaging is discussed along with the merits of image transfer devices using small diameter image guides. A standoff Raman imaging system has been developed that utilizes a unique polymer collection mirror. The techniques used to produce these mirrors make it easy to design low f/# polymer mirrors. The performance of a low f/# polymer mirror system for standoff Raman chemical imaging has been demonstrated and evaluated. We have also demonstrated remote Raman hyperspectral imaging using a dimension-reduction, 2-dimensional (2-D) to 1-dimensional (1-D), fiber optic array. In these studies, a modified holographic fiber-optic probe was combined with the dimension-reduction fiber array for remote Raman imaging. The utility of this setup for standoff Raman imaging is demonstrated by monitoring the polymerization of dibromostyrene. To further demonstrate the utility of in- situ spectral imaging, we have shown that small diameter (350 μm) image guides can be used for in-situ measurements of analyte transport in thin membranes. This has been applied to the measurement of H2O diffusion in Nafion™ membranes using the luminescent compound, [Ru(phen)2dppz] 2+, which is a H2O indicator.

  1. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    PubMed Central

    Herrmann, Kelsey; Johansen, Mette L.; Craig, Sonya E.; Vincent, Jason; Howell, Michael; Gao, Ying; Lu, Lan; Erokwu, Bernadette; Agnes, Richard S.; Lu, Zheng-Rong; Pokorski, Jonathan K.; Basilion, James; Gulani, Vikas; Griswold, Mark; Flask, Chris; Brady-Kalnay, Susann M.

    2015-01-01

    Magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM) with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA)3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA)3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA)3 agent, a scrambled-Tris-(Gd-DOTA)3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA)3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA)3 agent over time compared to the non-specific contrast agent currently in clinical use. PMID:26435847

  2. Combined spectral-domain optical coherence tomography and hyperspectral imaging applied for tissue analysis: Preliminary results

    NASA Astrophysics Data System (ADS)

    Dontu, S.; Miclos, S.; Savastru, D.; Tautan, M.

    2017-09-01

    In recent years many optoelectronic techniques have been developed for improvement and the development of devices for tissue analysis. Spectral-Domain Optical Coherence Tomography (SD-OCT) is a new medical interferometric imaging modality that provides depth resolved tissue structure information with resolution in the μm range. However, SD-OCT has its own limitations and cannot offer the biochemical information of the tissue. These data can be obtained with hyperspectral imaging, a non-invasive, sensitive and real time technique. In the present study we have combined Spectral-Domain Optical Coherence Tomography (SD-OCT) with Hyperspectral imaging (HSI) for tissue analysis. The Spectral-Domain Optical Coherence Tomography (SD-OCT) and Hyperspectral imaging (HSI) are two methods that have demonstrated significant potential in this context. Preliminary results using different tissue have highlighted the capabilities of this technique of combinations.

  3. On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system.

    PubMed

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2015-07-01

    In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling.

  4. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    PubMed Central

    Jungmann, Pia M.; Baum, Thomas; Bauer, Jan S.; Karampinos, Dimitrios C.; Link, Thomas M.; Li, Xiaojuan; Trattnig, Siegfried; Rummeny, Ernst J.; Woertler, Klaus; Welsch, Goetz H.

    2014-01-01

    Background. New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair. PMID:24877139

  5. Demonstration of the Wide-Field Imaging Interferometer Testbed Using a Calibrated Hyperspectral Image Projector

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Leisawitz, David; Maher, Steve; Rinehart, Stephen

    2012-01-01

    The Wide-field Imaging Interferometer testbed (WIIT) at NASA's Goddard Space Flight Center uses a dual-Michelson interferometric technique. The WIIT combines stellar interferometry with Fourier-transform interferometry to produce high-resolution spatial-spectral data over a large field-of-view. This combined technique could be employed on future NASA missions such as the Space Infrared Interferometric Telescope (SPIRIT) and the Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS). While both SPIRIT and SPECS would operate at far-infrared wavelengths, the WIIT demonstrates the dual-interferometry technique at visible wavelengths. The WIIT will produce hyperspectral image data, so a true hyperspectral object is necessary. A calibrated hyperspectral image projector (CHIP) has been constructed to provide such an object. The CHIP uses Digital Light Processing (DLP) technology to produce customized, spectrally-diverse scenes. CHIP scenes will have approximately 1.6-micron spatial resolution and the capability of . producing arbitrary spectra in the band between 380 nm and 1.6 microns, with approximately 5-nm spectral resolution. Each pixel in the scene can take on a unique spectrum. Spectral calibration is achieved with an onboard fiber-coupled spectrometer. In this paper we describe the operation of the CHIP. Results from the WIIT observations of CHIP scenes will also be presented.

  6. Puzzle Imaging: Using Large-Scale Dimensionality Reduction Algorithms for Localization

    PubMed Central

    Glaser, Joshua I.; Zamft, Bradley M.; Church, George M.; Kording, Konrad P.

    2015-01-01

    Current high-resolution imaging techniques require an intact sample that preserves spatial relationships. We here present a novel approach, “puzzle imaging,” that allows imaging a spatially scrambled sample. This technique takes many spatially disordered samples, and then pieces them back together using local properties embedded within the sample. We show that puzzle imaging can efficiently produce high-resolution images using dimensionality reduction algorithms. We demonstrate the theoretical capabilities of puzzle imaging in three biological scenarios, showing that (1) relatively precise 3-dimensional brain imaging is possible; (2) the physical structure of a neural network can often be recovered based only on the neural connectivity matrix; and (3) a chemical map could be reproduced using bacteria with chemosensitive DNA and conjugative transfer. The ability to reconstruct scrambled images promises to enable imaging based on DNA sequencing of homogenized tissue samples. PMID:26192446

  7. Lunar surface chemistry: A new imaging technique

    USGS Publications Warehouse

    Andre, C.G.; Bielefeld, M.J.; Eliason, E.; Soderblom, L.A.; Adler, I.; Philpotts, J.A.

    1977-01-01

    Detailed chemical maps of the lunar surface have been constructed by applying a new weighted-filter imaging technique to Apollo 15 and Apollo 16 x-ray fluorescence data. The data quality improvement is amply demonstrated by (i) modes in the frequency distribution, representing highland and mare soil suites, which are not evident before data filtering and (ii) numerous examples of chemical variations which are correlated with small-scale (about 15 kilometer) lunar topographic features.

  8. Lunar surface chemistry - A new imaging technique

    NASA Technical Reports Server (NTRS)

    Andre, C. G.; Adler, I.; Bielefeld, M. J.; Eliason, E.; Soderblom, L. A.; Philpotts, J. A.

    1977-01-01

    Detailed chemical maps of the lunar surface have been constructed by applying a new weighted-filter imaging technique to Apollo 15 and Apollo 16 X-ray fluorescence data. The data quality improvement is amply demonstrated by (1) modes in the frequency distribution, representing highland and mare soil suites, which are not evident before data filtering, and (2) numerous examples of chemical variations which are correlated with small-scale (about 15 kilometer) lunar topographic features.

  9. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urs, Necdet Onur; Mozooni, Babak; Kustov, Mikhail

    2016-05-15

    Recent developments in the observation of magnetic domains and domain walls by wide-field optical microscopy based on the magneto-optical Kerr, Faraday, Voigt, and Gradient effect are reviewed. Emphasis is given to the existence of higher order magneto-optical effects for advanced magnetic imaging. Fundamental concepts and advances in methodology are discussed that allow for imaging of magnetic domains on various length and time scales. Time-resolved imaging of electric field induced domain wall rotation is shown. Visualization of magnetization dynamics down to picosecond temporal resolution for the imaging of spin-waves and magneto-optical multi-effect domain imaging techniques for obtaining vectorial information are demonstrated.more » Beyond conventional domain imaging, the use of a magneto-optical indicator technique for local temperature sensing is shown.« less

  10. Accuracy assessment of fluoroscopy-transesophageal echocardiography registration

    NASA Astrophysics Data System (ADS)

    Lang, Pencilla; Seslija, Petar; Bainbridge, Daniel; Guiraudon, Gerard M.; Jones, Doug L.; Chu, Michael W.; Holdsworth, David W.; Peters, Terry M.

    2011-03-01

    This study assesses the accuracy of a new transesophageal (TEE) ultrasound (US) fluoroscopy registration technique designed to guide percutaneous aortic valve replacement. In this minimally invasive procedure, a valve is inserted into the aortic annulus via a catheter. Navigation and positioning of the valve is guided primarily by intra-operative fluoroscopy. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to heart valve embolization, obstruction of the coronary ostia and acute kidney injury. The use of TEE US images to augment intra-operative fluoroscopy provides significant improvements to image-guidance. Registration is achieved using an image-based TEE probe tracking technique and US calibration. TEE probe tracking is accomplished using a single-perspective pose estimation algorithm. Pose estimation from a single image allows registration to be achieved using only images collected in standard OR workflow. Accuracy of this registration technique is assessed using three models: a point target phantom, a cadaveric porcine heart with implanted fiducials, and in-vivo porcine images. Results demonstrate that registration can be achieved with an RMS error of less than 1.5mm, which is within the clinical accuracy requirements of 5mm. US-fluoroscopy registration based on single-perspective pose estimation demonstrates promise as a method for providing guidance to percutaneous aortic valve replacement procedures. Future work will focus on real-time implementation and a visualization system that can be used in the operating room.

  11. Electromechanical wave imaging for noninvasive mapping of the 3D electrical activation sequence in canines and humans in vivo

    PubMed Central

    Konofagou, Elisa E.; Provost, Jean

    2014-01-01

    Cardiovascular diseases rank as America’s primary killer, claiming the lives of over 41% of more than 2.4 million Americans. One of the main reasons for this high death toll is the severe lack of effective imaging techniques for screening, early detection and localization of an abnormality detected on the electrocardiogram (ECG). The two most widely used imaging techniques in the clinic are CT angiography and echocardiography with limitations in speed of application and reliability, respectively. It has been established that the mechanical and electrical properties of the myocardium change dramatically as a result of ischemia, infarction or arrhythmia; both at their onset and after survival. Despite these findings, no imaging technique currently exists that is routinely used in the clinic and can provide reliable, non-invasive, quantitative mapping of the regional, mechanical and electrical function of the myocardium. Electromechanical Wave Imaging (EWI) is an ultrasound-based technique that utilizes the electromechanical coupling and its associated resulting strain to infer to the underlying electrical function of the myocardium. The methodology of EWI is first described and its fundamental performance is presented. Subsequent in vivo canine and human applications are provided that demonstrate the applicability of Electromechanical Wave Imaging in differentiating between sinus rhythm and induced pacing schemes as well as mapping arrhythmias. Preliminary validation with catheter mapping is also provided and transthoracic electromechanical mapping in all four chambers of the human heart is also presented demonstrating the potential of this novel methodology to noninvasively infer to both the normal and pathological electrical conduction of the heart. PMID:22284425

  12. Nano-Computed Tomography: Technique and Applications.

    PubMed

    Kampschulte, M; Langheinirch, A C; Sender, J; Litzlbauer, H D; Althöhn, U; Schwab, J D; Alejandre-Lafont, E; Martels, G; Krombach, G A

    2016-02-01

    Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE (-/-)/LDLR(-/-) double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques. Nano-computed tomography is a high resolution CT-technology for 3D imaging at sub-micrometer resolution. The technical concept bases on a further development of the established ex-vivo-micro-CT technology. By improvement of the spatial resolution, structures at a cellular level become visible (e.g. osteocyte lacunae). © Georg Thieme Verlag KG Stuttgart · New York.

  13. Thermal neutron detector based on COTS CMOS imagers and a conversion layer containing Gadolinium

    NASA Astrophysics Data System (ADS)

    Pérez, Martín; Blostein, Juan Jerónimo; Bessia, Fabricio Alcalde; Tartaglione, Aureliano; Sidelnik, Iván; Haro, Miguel Sofo; Suárez, Sergio; Gimenez, Melisa Lucía; Berisso, Mariano Gómez; Lipovetzky, Jose

    2018-06-01

    In this work we will introduce a novel low cost position sensitive thermal neutron detection technique, based on a Commercial Off The Shelf CMOS image sensor covered with a Gadolinium containing conversion layer. The feasibility of the neutron detection technique implemented in this work has been experimentally demonstrated. A thermal neutron detection efficiency of 11.3% has been experimentally obtained with a conversion layer of 11.6 μm. It was experimentally verified that the thermal neutron detection efficiency of this technique is independent on the intensity of the incident thermal neutron flux, which was confirmed for conversion layers of different thicknesses. Based on the experimental results, a spatial resolution better than 25 μm is expected. This spatial resolution makes the proposed technique specially useful for neutron beam characterization, neutron beam dosimetry, high resolution neutron imaging, and several neutron scattering techniques.

  14. Image coding of SAR imagery

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Kwok, R.; Curlander, J. C.

    1987-01-01

    Five coding techniques in the spatial and transform domains have been evaluated for SAR image compression: linear three-point predictor (LTPP), block truncation coding (BTC), microadaptive picture sequencing (MAPS), adaptive discrete cosine transform (ADCT), and adaptive Hadamard transform (AHT). These techniques have been tested with Seasat data. Both LTPP and BTC spatial domain coding techniques provide very good performance at rates of 1-2 bits/pixel. The two transform techniques, ADCT and AHT, demonstrate the capability to compress the SAR imagery to less than 0.5 bits/pixel without visible artifacts. Tradeoffs such as the rate distortion performance, the computational complexity, the algorithm flexibility, and the controllability of compression ratios are also discussed.

  15. 3-D Ultrafast Doppler Imaging Applied to the Noninvasive and Quantitative Imaging of Blood Vessels in Vivo

    PubMed Central

    Provost, J.; Papadacci, C.; Demene, C.; Gennisson, J-L.; Tanter, M.; Pernot, M.

    2016-01-01

    Ultrafast Doppler Imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D Ultrafast Ultrasound Imaging, a technique that can produce thousands of ultrasound volumes per second, based on three-dimensional plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that non-invasive 3-D Ultrafast Power Doppler, Pulsed Doppler, and Color Doppler Imaging can be used to perform quantitative imaging of blood vessels in humans when using coherent compounding of three-dimensional tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D Ultrafast Imaging. Using a 32X32, 3-MHz matrix phased array (Vermon, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. 3-D Ultrafast Power Doppler Imaging was first validated by imaging Tygon tubes of varying diameter and its in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D Color and Pulsed Doppler Imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  16. Resolution enhancement in deep-tissue nanoparticle imaging based on plasmonic saturated excitation microscopy

    NASA Astrophysics Data System (ADS)

    Deka, Gitanjal; Nishida, Kentaro; Mochizuki, Kentaro; Ding, Hou-Xian; Fujita, Katsumasa; Chu, Shi-Wei

    2018-03-01

    Recently, many resolution enhancing techniques are demonstrated, but most of them are severely limited for deep tissue applications. For example, wide-field based localization techniques lack the ability of optical sectioning, and structured light based techniques are susceptible to beam distortion due to scattering/aberration. Saturated excitation (SAX) microscopy, which relies on temporal modulation that is less affected when penetrating into tissues, should be the best candidate for deep-tissue resolution enhancement. Nevertheless, although fluorescence saturation has been successfully adopted in SAX, it is limited by photobleaching, and its practical resolution enhancement is less than two-fold. Recently, we demonstrated plasmonic SAX which provides bleaching-free imaging with three-fold resolution enhancement. Here we show that the three-fold resolution enhancement is sustained throughout the whole working distance of an objective, i.e., 200 μm, which is the deepest super-resolution record to our knowledge, and is expected to extend into deeper tissues. In addition, SAX offers the advantage of background-free imaging by rejecting unwanted scattering background from biological tissues. This study provides an inspirational direction toward deep-tissue super-resolution imaging and has the potential in tumor monitoring and beyond.

  17. Cardiovascular cine imaging and flow evaluation using Fast Interrupted Steady-State (FISS) magnetic resonance.

    PubMed

    Edelman, Robert R; Serhal, Ali; Pursnani, Amit; Pang, Jianing; Koktzoglou, Ioannis

    2018-02-19

    Existing cine imaging techniques rely on balanced steady-state free precession (bSSFP) or spoiled gradient-echo readouts, each of which has limitations. For instance, with bSSFP, artifacts occur from rapid through-plane flow and off-resonance effects. We hypothesized that a prototype cine technique, radial fast interrupted steady-state (FISS), could overcome these limitations. The technique was compared with standard cine bSSFP for cardiac function, coronary artery conspicuity, and aortic valve morphology. Given its advantageous properties, we further hypothesized that the cine FISS technique, in combination with arterial spin labeling (ASL), could provide an alternative to phase contrast for visualizing in-plane flow patterns within the aorta and branch vessels. The study was IRB-approved and subjects provided consent. Breath-hold cine FISS and bSSFP were acquired using similar imaging parameters. There was no significant difference in biplane left ventricular ejection fraction or cardiac image quality between the two techniques. Compared with cine bSSFP, cine FISS demonstrated a marked decrease in fat signal which improved conspicuity of the coronary arteries, while suppression of through-plane flow artifact on thin-slice cine FISS images improved visualization of the aortic valve. Banding artifacts in the subcutaneous tissues were reduced. In healthy subjects, dynamic flow patterns were well visualized in the aorta, coronary and renal arteries using cine FISS ASL, even when the slice was substantially thicker than the vessel diameter. Cine FISS demonstrates several benefits for cardiovascular imaging compared with cine bSSFP, including better suppression of fat signal and reduced artifacts from through-plane flow and off-resonance effects. The main drawback is a slight (~ 20%) decrease in temporal resolution. In addition, preliminary results suggest that cine FISS ASL provides a potential alternative to phase contrast techniques for in-plane flow quantification, while enabling an efficient, visually-appealing, semi-projective display of blood flow patterns throughout the course of an artery and its branches.

  18. High spatial resolution diffusion weighted imaging on clinical 3 T MRI scanners using multislab spiral acquisitions

    PubMed Central

    Holtrop, Joseph L.; Sutton, Bradley P.

    2016-01-01

    Abstract. A diffusion weighted imaging (DWI) approach that is signal-to-noise ratio (SNR) efficient and can be applied to achieve sub-mm resolutions on clinical 3 T systems was developed. The sequence combined a multislab, multishot pulsed gradient spin echo diffusion scheme with spiral readouts for imaging data and navigators. Long data readouts were used to keep the number of shots, and hence total imaging time, for the three-dimensional acquisition short. Image quality was maintained by incorporating a field-inhomogeneity-corrected image reconstruction to remove distortions associated with long data readouts. Additionally, multiple shots were required for the high-resolution images, necessitating motion induced phase correction through the use of efficiently integrated navigator data. The proposed approach is compared with two-dimensional (2-D) acquisitions that use either a spiral or a typical echo-planar imaging (EPI) acquisition to demonstrate the improved SNR efficiency. The proposed technique provided 71% higher SNR efficiency than the standard 2-D EPI approach. The adaptability of the technique to achieve high spatial resolutions is demonstrated by acquiring diffusion tensor imaging data sets with isotropic resolutions of 1.25 and 0.8 mm. The proposed approach allows for SNR-efficient sub-mm acquisitions of DWI data on clinical 3 T systems. PMID:27088107

  19. Generation of chemical movies: FT-IR spectroscopic imaging of segmented flows.

    PubMed

    Chan, K L Andrew; Niu, X; deMello, A J; Kazarian, S G

    2011-05-01

    We have previously demonstrated that FT-IR spectroscopic imaging can be used as a powerful, label-free detection method for studying laminar flows. However, to date, the speed of image acquisition has been too slow for the efficient detection of moving droplets within segmented flow systems. In this paper, we demonstrate the extraction of fast FT-IR images with acquisition times of 50 ms. This approach allows efficient interrogation of segmented flow systems where aqueous droplets move at a speed of 2.5 mm/s. Consecutive FT-IR images separated by 120 ms intervals allow the generation of chemical movies at eight frames per second. The technique has been applied to the study of microfluidic systems containing moving droplets of water in oil and droplets of protein solution in oil. The presented work demonstrates the feasibility of the use of FT-IR imaging to study dynamic systems with subsecond temporal resolution.

  20. MEMS-Based Handheld Fourier Domain Doppler Optical Coherence Tomography for Intraoperative Microvascular Anastomosis Imaging

    PubMed Central

    Huang, Yong; Furtmüller, Georg J.; Tong, Dedi; Zhu, Shan; Lee, W. P. Andrew; Brandacher, Gerald; Kang, Jin U.

    2014-01-01

    Purpose To demonstrate the feasibility of a miniature handheld optical coherence tomography (OCT) imager for real time intraoperative vascular patency evaluation in the setting of super-microsurgical vessel anastomosis. Methods A novel handheld imager Fourier domain Doppler optical coherence tomography based on a 1.3-µm central wavelength swept source for extravascular imaging was developed. The imager was minimized through the adoption of a 2.4-mm diameter microelectromechanical systems (MEMS) scanning mirror, additionally a 12.7-mm diameter lens system was designed and combined with the MEMS mirror to achieve a small form factor that optimize functionality as a handheld extravascular OCT imager. To evaluate in-vivo applicability, super-microsurgical vessel anastomosis was performed in a mouse femoral vessel cut and repair model employing conventional interrupted suture technique as well as a novel non-suture cuff technique. Vascular anastomosis patency after clinically successful repair was evaluated using the novel handheld OCT imager. Results With an adjustable lateral image field of view up to 1.5 mm by 1.5 mm, high-resolution simultaneous structural and flow imaging of the blood vessels were successfully acquired for BALB/C mouse after orthotopic hind limb transplantation using a non-suture cuff technique and BALB/C mouse after femoral artery anastomosis using a suture technique. We experimentally quantify the axial and lateral resolution of the OCT to be 12.6 µm in air and 17.5 µm respectively. The OCT has a sensitivity of 84 dB and sensitivity roll-off of 5.7 dB/mm over an imaging range of 5 mm. Imaging with a frame rate of 36 Hz for an image size of 1000(lateral)×512(axial) pixels using a 50,000 A-lines per second swept source was achieved. Quantitative vessel lumen patency, lumen narrowing and thrombosis analysis were performed based on acquired structure and Doppler images. Conclusions A miniature handheld OCT imager that can be used for intraoperative evaluation of microvascular anastomosis was successfully demonstrated. PMID:25474742

  1. Benefits of utilizing CellProfiler as a characterization tool for U–10Mo nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collette, R.; Douglas, J.; Patterson, L.

    2015-07-15

    Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium–molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellularmore » measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries. - Graphical abstract: Display Omitted - Highlights: • A technique is developed to score U–10Mo FIB-SEM image quality using CellProfiler. • The pass/fail metric is based on image illumination, focus, and area scratched. • Automated image analysis is performed in pipeline fashion to characterize images. • Fission gas void, interaction layer, and grain boundary coverage data is extracted. • Preliminary characterization results demonstrate consistency of the algorithm.« less

  2. Dynamical Imaging with Interferometry

    NASA Astrophysics Data System (ADS)

    Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy; Chael, Andrew A.; Rosen, Julian; Shiokawa, Hotaka; Roelofs, Freek; Akiyama, Kazunori; Fish, Vincent L.; Doeleman, Sheperd S.

    2017-12-01

    By linking widely separated radio dishes, the technique of very long baseline interferometry (VLBI) can greatly enhance angular resolution in radio astronomy. However, at any given moment, a VLBI array only sparsely samples the information necessary to form an image. Conventional imaging techniques partially overcome this limitation by making the assumption that the observed cosmic source structure does not evolve over the duration of an observation, which enables VLBI networks to accumulate information as Earth rotates and changes the projected array geometry. Although this assumption is appropriate for nearly all VLBI, it is almost certainly violated for submillimeter observations of the Galactic center supermassive black hole, Sagittarius A* (Sgr A*), which has a gravitational timescale of only ∼ 20 s and exhibits intrahour variability. To address this challenge, we develop several techniques to reconstruct dynamical images (“movies”) from interferometric data. Our techniques are applicable to both single-epoch and multiepoch variability studies, and they are suitable for exploring many different physical processes including flaring regions, stable images with small time-dependent perturbations, steady accretion dynamics, or kinematics of relativistic jets. Moreover, dynamical imaging can be used to estimate time-averaged images from time-variable data, eliminating many spurious image artifacts that arise when using standard imaging methods. We demonstrate the effectiveness of our techniques using synthetic observations of simulated black hole systems and 7 mm Very Long Baseline Array observations of M87, and we show that dynamical imaging is feasible for Event Horizon Telescope observations of Sgr A*.

  3. Terahertz wide aperture reflection tomography.

    PubMed

    Pearce, Jeremy; Choi, Hyeokho; Mittleman, Daniel M; White, Jeff; Zimdars, David

    2005-07-01

    We describe a powerful imaging modality for terahertz (THz) radiation, THz wide aperture reflection tomography (WART). Edge maps of an object's cross section are reconstructed from a series of time-domain reflection measurements at different viewing angles. Each measurement corresponds to a parallel line projection of the object's cross section. The filtered backprojection algorithm is applied to recover the image from the projection data. To our knowledge, this is the first demonstration of a reflection computed tomography technique using electromagnetic waves. We demonstrate the capabilities of THz WART by imaging the cross sections of two test objects.

  4. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    PubMed Central

    Zhang, Jeff L; Morey, A Michael; Kadrmas, Dan J

    2016-01-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg–Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models. PMID:26788888

  5. Automated selection of the most epithelium-rich areas in gynecologic tumor sections.

    PubMed

    Schipper, N W; Baak, J P; Smeulders, A W

    1991-12-01

    The paper describes an image analysis technique for automated selection of the epithelium-rich areas in standard paraffin tissue sections of ovarian and endometrial premalignancies and malignancies. Two staining procedures were evaluated, Feulgen (pararosanilin) and CAM 5.2, demonstrating the presence of cytokeratin 8 and 18; both were counterstained with naphthol yellow. The technique is based on the corresponding image processing method of automated estimation of the percentage of epithelium in interactively selected microscope fields. With the technique, one image is recorded with a filter to demonstrate where epithelium and stroma lie. This filter is chosen according to the type of staining: it is yellow (lambda = 552 nm) for Feulgen and blue (lambda = 470 nm) for anticytokeratin CAM 5.2. When stroma cannot be distinguished from lumina with the green filter or from epithelium with the blue filter, a second image is recorded from the same microscope field, with a blue filter (lambda = 420 nm) for Feulgen and a yellow filter (lambda = 576 nm) for anticytokeratin CAM 5.2. Discrimination between epithelium and stroma is based on the image contrast range and the packing of nuclei in the yellow image and on the automated classification of the gray value histogram peaks in the blue image. For Feulgen stain the method was evaluated on 30 ovarian tumors of the common epithelial types (8 borderline tumors and 22 carcinomas with various degrees of differentiation) and 30 endometrial carcinomas of different grades.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT)

    PubMed Central

    Mohebbi, Saleh; Andrade, José; Nolte, Lena; Meyer, Heiko; Heisterkamp, Alexander; Majdani, Omid

    2017-01-01

    The present study focuses on the application of scanning laser optical tomography (SLOT) for visualization of anatomical structures inside the human cochlea ex vivo. SLOT is a laser-based highly efficient microscopy technique which allows for tomographic imaging of the internal structure of transparent specimens. Thus, in the field of otology this technique is best convenient for an ex vivo study of the inner ear anatomy. For this purpose, the preparation before imaging comprises decalcification, dehydration as well as optical clearing of the cochlea samples in toto. Here, we demonstrate results of SLOT imaging visualizing hard and soft tissue structures with an optical resolution of down to 15 μm using extinction and autofluorescence as contrast mechanisms. Furthermore, the internal structure can be analyzed nondestructively and quantitatively in detail by sectioning of the three-dimensional datasets. The method of X-ray Micro Computed Tomography (μCT) has been previously applied to explanted cochlea and is solely based on absorption contrast. An advantage of SLOT is that it uses visible light for image formation and thus provides a variety of contrast mechanisms known from other light microscopy techniques, such as fluorescence or scattering. We show that SLOT data is consistent with μCT anatomical data and provides additional information by using fluorescence. We demonstrate that SLOT is applicable for cochlea with metallic cochlear implants (CI) that would lead to significant artifacts in μCT imaging. In conclusion, the present study demonstrates the capability of SLOT for resolution visualization of cleared human cochleae ex vivo using multiple contrast mechanisms and lays the foundation for a broad variety of additional studies. PMID:28873437

  7. Raman Gas Species Measurements in Hydrocarbon-Fueled Rocket Engine Injector Flows

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph; Hartfield, Roy J., Jr.; Trinh, Huu P.; Dobson, Chris C.; Eskridge, Richard H.

    2000-01-01

    Rocket engine propellent injector development at NASA-Marshall includes experimental analysis using optical techniques, such as Raman, fluorescence, or Mie scattering. For the application of spontaneous Raman scattering to hydrocarbon-fueled flows a technique needs to be developed to remove the interfering polycyclic aromatic hydrocarbon fluorescence from the relatively weak Raman signals. A current application of such a technique is to the analysis of the mixing and combustion performance of multijet, impinging-jet candidate fuel injectors for the baseline Mars ascent engine, which will burn methane and liquid oxygen produced in-situ on Mars to reduce the propellent mass transported to Mars for future manned Mars missions. The Raman technique takes advantage of the strongly polarized nature of Raman scattering. It is shown to be discernable from unpolarized fluorescence interference by subtracting one polarized image from another. Both of these polarized images are obtained from a single laser pulse by using a polarization-separating calcite rhomb mounted in the imaging spectrograph. A demonstration in a propane-air flame is presented, as well as a high pressure demonstration in the NASA-Marshall Modular Combustion Test Artice, using the liquid methane-liquid oxygen propellant system

  8. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media

    NASA Astrophysics Data System (ADS)

    Edrei, Eitan; Scarcelli, Giuliano

    2016-09-01

    High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.

  9. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media.

    PubMed

    Edrei, Eitan; Scarcelli, Giuliano

    2016-09-16

    High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.

  10. Photothermal strain imaging

    NASA Astrophysics Data System (ADS)

    Choi, Changhoon; Ahn, Joongho; Jeon, Seungwan; Kim, Chulhong

    2017-07-01

    Vulnerable plaques are the major cause of cardiovascular disease, but they are difficult to detect with conventional intravascular imaging techniques. Techniques are needed to identify plaque vulnerability based on the presence of lipids in plaque. Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed, which varies with the medium temperature. In TSI, the strain that occurs during tissue temperature change can be used for lipid detection because it has a different tendency depending on the type of tissue. Here, we demonstrate photothermal strain imaging (pTSI) using an intravascular ultrasound catheter. pTSI is performed by slightly and selectively heating lipid using a relatively inexpensive continuous laser source. We applied a speckle-tracking algorithm to US B-mode images for strain calculations. As a result, the strain produced in porcine fat was different from the strain produced in water-bearing gelatin phantom, which made it possible to distinguish the two. This suggests that pTSI could potentially be a way of differentiating lipids in coronary artery.

  11. Wireless fluorescence capsule for endoscopy using single photon-based detection

    NASA Astrophysics Data System (ADS)

    Al-Rawhani, Mohammed A.; Beeley, James; Cumming, David R. S.

    2015-12-01

    Fluorescence Imaging (FI) is a powerful technique in biological science and clinical medicine. Current FI devices that are used either for in-vivo or in-vitro studies are expensive, bulky and consume substantial power, confining the technique to laboratories and hospital examination rooms. Here we present a miniaturised wireless fluorescence endoscope capsule with low power consumption that will pave the way for future FI systems and applications. With enhanced sensitivity compared to existing technology we have demonstrated that the capsule can be successfully used to image tissue autofluorescence and targeted fluorescence via fluorophore labelling of tissues. The capsule incorporates a state-of-the-art complementary metal oxide semiconductor single photon avalanche detector imaging array, miniaturised optical isolation, wireless technology and low power design. When in use the capsule consumes only 30.9 mW, and deploys very low-level 468 nm illumination. The device has the potential to replace highly power-hungry intrusive optical fibre based endoscopes and to extend the range of clinical examination below the duodenum. To demonstrate the performance of our capsule, we imaged fluorescence phantoms incorporating principal tissue fluorophores (flavins) and absorbers (haemoglobin). We also demonstrated the utility of marker identification by imaging a 20 μM fluorescein isothiocyanate (FITC) labelling solution on mammalian tissue.

  12. Non-interferometric phase retrieval using refractive index manipulation

    PubMed Central

    Chen, Chyong-Hua; Hsu, Hsin-Feng; Chen, Hou-Ren; Hsieh, Wen-Feng

    2017-01-01

    We present a novel, inexpensive and non-interferometric technique to retrieve phase images by using a liquid crystal phase shifter without including any physically moving parts. First, we derive a new equation of the intensity-phase relation with respect to the change of refractive index, which is similar to the transport of the intensity equation. The equation indicates that this technique is unneeded to consider the variation of magnifications between optical images. For proof of the concept, we use a liquid crystal mixture MLC 2144 to manufacture a phase shifter and to capture the optical images in a rapid succession by electrically tuning the applied voltage of the phase shifter. Experimental results demonstrate that this technique is capable of reconstructing high-resolution phase images and to realize the thickness profile of a microlens array quantitatively. PMID:28387382

  13. Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds

    PubMed Central

    An, Lin; Qin, Jia; Wang, Ruikang K

    2010-01-01

    In this paper, we demonstrate for the first time that the detailed cutaneous blood flow at capillary level within dermis of human skin can be imaged by optical micro-angiography (OMAG) technique. A novel scanning protocol, i.e. fast B scan mode is used to achieve the capillary flow imaging. We employ a 1310nm system to scan the skin tissue at an imaging rate of 300 frames per second, which requires only ∼5 sec to complete one 3D imaging of capillary blood flow within skin. The technique is sensitive enough to image the very slow blood flows at ∼4 μm/sec. The promising results show a great potential of OMAG's role in the diagnosis, treatment and management of human skin diseases. PMID:20588668

  14. Three-Dimensional Photoactivated Localization Microscopy with Genetically Expressed Probes

    PubMed Central

    Temprine, Kelsey; York, Andrew G.; Shroff, Hari

    2017-01-01

    Photoactivated localization microscopy (PALM) and related single-molecule imaging techniques enable biological image acquisition at ~20 nm lateral and ~50–100 nm axial resolution. Although such techniques were originally demonstrated on single imaging planes close to the coverslip surface, recent technical developments now enable the 3D imaging of whole fixed cells. We describe methods for converting a 2D PALM into a system capable of acquiring such 3D images, with a particular emphasis on instrumentation that is compatible with choosing relatively dim, genetically expressed photoactivatable fluorescent proteins (PA-FPs) as PALM probes. After reviewing the basics of 2D PALM, we detail astigmatic and multiphoton imaging approaches well suited to working with PA-FPs. We also discuss the use of open-source localization software appropriate for 3D PALM. PMID:25391803

  15. Quantitative photothermal phase imaging of red blood cells using digital holographic photothermal microscope.

    PubMed

    Vasudevan, Srivathsan; Chen, George C K; Lin, Zhiping; Ng, Beng Koon

    2015-05-10

    Photothermal microscopy (PTM), a noninvasive pump-probe high-resolution microscopy, has been applied as a bioimaging tool in many biomedical studies. PTM utilizes a conventional phase contrast microscope to obtain highly resolved photothermal images. However, phase information cannot be extracted from these photothermal images, as they are not quantitative. Moreover, the problem of halos inherent in conventional phase contrast microscopy needs to be tackled. Hence, a digital holographic photothermal microscopy technique is proposed as a solution to obtain quantitative phase images. The proposed technique is demonstrated by extracting phase values of red blood cells from their photothermal images. These phase values can potentially be used to determine the temperature distribution of the photothermal images, which is an important study in live cell monitoring applications.

  16. A cost-efficient frequency-domain photoacoustic imaging system

    PubMed Central

    LeBoulluec, Peter; Liu, Hanli; Yuan, Baohong

    2013-01-01

    Photoacoustic (PA) imaging techniques have recently attracted much attention and can be used for noninvasive imaging of biological tissues. Most PA imaging systems in research laboratories use the time domain method with expensive nanosecond pulsed lasers that are not affordable for most educational laboratories. Using an intensity modulated light source to excite PA signals is an alternative technique, known as the frequency domain method, with a much lower cost. In this paper, we describe a simple frequency domain PA system and demonstrate its imaging capability. The system provides opportunities not only to observe PA signals in tissue phantoms, but also to acquire hands-on skills in PA signal detection. It also provides opportunities to explore the underlying mechanisms of the PA effect. PMID:24659823

  17. Fast iterative censoring CFAR algorithm for ship detection from SAR images

    NASA Astrophysics Data System (ADS)

    Gu, Dandan; Yue, Hui; Zhang, Yuan; Gao, Pengcheng

    2017-11-01

    Ship detection is one of the essential techniques for ship recognition from synthetic aperture radar (SAR) images. This paper presents a fast iterative detection procedure to eliminate the influence of target returns on the estimation of local sea clutter distributions for constant false alarm rate (CFAR) detectors. A fast block detector is first employed to extract potential target sub-images; and then, an iterative censoring CFAR algorithm is used to detect ship candidates from each target blocks adaptively and efficiently, where parallel detection is available, and statistical parameters of G0 distribution fitting local sea clutter well can be quickly estimated based on an integral image operator. Experimental results of TerraSAR-X images demonstrate the effectiveness of the proposed technique.

  18. A cost-efficient frequency-domain photoacoustic imaging system.

    PubMed

    Leboulluec, Peter; Liu, Hanli; Yuan, Baohong

    2013-09-01

    Photoacoustic (PA) imaging techniques have recently attracted much attention and can be used for noninvasive imaging of biological tissues. Most PA imaging systems in research laboratories use the time domain method with expensive nanosecond pulsed lasers that are not affordable for most educational laboratories. Using an intensity modulated light source to excite PA signals is an alternative technique, known as the frequency domain method, with a much lower cost. In this paper, we describe a simple frequency domain PA system and demonstrate its imaging capability. The system provides opportunities not only to observe PA signals in tissue phantoms, but also to acquire hands-on skills in PA signal detection. It also provides opportunities to explore the underlying mechanisms of the PA effect.

  19. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer.

  20. Three-dimensional volume rendering of the ankle based on magnetic resonance images enables the generation of images comparable to real anatomy.

    PubMed

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio

    2009-11-01

    We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon-bone-muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18-30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data.

  1. Three-dimensional volume rendering of the ankle based on magnetic resonance images enables the generation of images comparable to real anatomy

    PubMed Central

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio

    2009-01-01

    We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon–bone–muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18–30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data. PMID:19678857

  2. Nakagami-m parametric imaging for characterization of thermal coagulation and cavitation erosion induced by HIFU.

    PubMed

    Han, Meng; Wang, Na; Guo, Shifang; Chang, Nan; Lu, Shukuan; Wan, Mingxi

    2018-07-01

    Nowadays, both thermal and mechanical ablation techniques of HIFU associated with cavitation have been developed for noninvasive treatment. A specific challenge for the successful clinical implementation of HIFU is to achieve real-time imaging for the evaluation and determination of therapy outcomes such as necrosis or homogenization. Ultrasound Nakagami-m parametric imaging highlights the degrading shadowing effects of bubbles and can be used for tissue characterization. The aim of this study is to investigate the performance of Nakagami-m parametric imaging for evaluating and differentiating thermal coagulation and cavitation erosion induced by HIFU. Lesions were induced in basic bovine serum albumin (BSA) phantoms and ex vivo porcine livers using a 1.6 MHz single-element transducer. Thermal and mechanical lesions induced by two types of HIFU sequences respectively were evaluated using Nakagami-m parametric imaging and ultrasound B-mode imaging. The lesion sizes estimated using Nakagami-m parametric imaging technique were all closer to the actual sizes than those of B-mode imaging. The p-value obtained from the t-test between the mean m values of thermal coagulation and cavitation erosion was smaller than 0.05, demonstrating that the m values of thermal lesions were significantly different from that of mechanical lesions, which was confirmed by ex vivo experiments and histologic examination showed that different changes result from HIFU exposure, one of tissue dehydration resulting from the thermal effect, and the other of tissue homogenate resulting from mechanical effect. This study demonstrated that Nakagami-m parametric imaging is a potential real-time imaging technique for evaluating and differentiating thermal coagulation and cavitation erosion. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Cardiac Light-Sheet Fluorescent Microscopy for Multi-Scale and Rapid Imaging of Architecture and Function

    NASA Astrophysics Data System (ADS)

    Fei, Peng; Lee, Juhyun; Packard, René R. Sevag; Sereti, Konstantina-Ioanna; Xu, Hao; Ma, Jianguo; Ding, Yichen; Kang, Hanul; Chen, Harrison; Sung, Kevin; Kulkarni, Rajan; Ardehali, Reza; Kuo, C.-C. Jay; Xu, Xiaolei; Ho, Chih-Ming; Hsiai, Tzung K.

    2016-03-01

    Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases.

  4. Wavelength-encoded tomography based on optical temporal Fourier transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chi; Wong, Kenneth K. Y., E-mail: kywong@eee.hku.hk

    We propose and demonstrate a technique called wavelength-encoded tomography (WET) for non-invasive optical cross-sectional imaging, particularly beneficial in biological system. The WET utilizes time-lens to perform the optical Fourier transform, and the time-to-wavelength conversion generates a wavelength-encoded image of optical scattering from internal microstructures, analogous to the interferometery-based imaging such as optical coherence tomography. Optical Fourier transform, in principle, comes with twice as good axial resolution over the electrical Fourier transform, and will greatly simplify the digital signal processing after the data acquisition. As a proof-of-principle demonstration, a 150 -μm (ideally 36 μm) resolution is achieved based on a 7.5-nm bandwidth swept-pump,more » using a conventional optical spectrum analyzer. This approach can potentially achieve up to 100-MHz or even higher frame rate with some proven ultrafast spectrum analyzer. We believe that this technique is innovative towards the next-generation ultrafast optical tomographic imaging application.« less

  5. An x-ray fluorescence imaging system for gold nanoparticle detection.

    PubMed

    Ricketts, K; Guazzoni, C; Castoldi, A; Gibson, A P; Royle, G J

    2013-11-07

    Gold nanoparticles (GNPs) may be used as a contrast agent to identify tumour location and can be modified to target and image specific tumour biological parameters. There are currently no imaging systems in the literature that have sufficient sensitivity to GNP concentration and distribution measurement at sufficient tissue depth for use in in vivo and in vitro studies. We have demonstrated that high detecting sensitivity of GNPs can be achieved using x-ray fluorescence; furthermore this technique enables greater depth imaging in comparison to optical modalities. Two x-ray fluorescence systems were developed and used to image a range of GNP imaging phantoms. The first system consisted of a 10 mm(2) silicon drift detector coupled to a slightly focusing polycapillary optic which allowed 2D energy resolved imaging in step and scan mode. The system has sensitivity to GNP concentrations as low as 1 ppm. GNP concentrations different by a factor of 5 could be resolved, offering potential to distinguish tumour from non-tumour. The second system was designed to avoid slow step and scan image acquisition; the feasibility of excitation of the whole specimen with a wide beam and detection of the fluorescent x-rays with a pixellated controlled drift energy resolving detector without scanning was investigated. A parallel polycapillary optic coupled to the detector was successfully used to ascertain the position where fluorescence was emitted. The tissue penetration of the technique was demonstrated to be sufficient for near-surface small-animal studies, and for imaging 3D in vitro cellular constructs. Previous work demonstrates strong potential for both imaging systems to form quantitative images of GNP concentration.

  6. Combined application of imaging techniques for the characterization and authentication of ancient weapons

    NASA Astrophysics Data System (ADS)

    Salvemini, Filomena; Grazzi, Francesco; Kardjilov, Nikolay; Wieder, Frank; Manke, Ingo; Edge, David; Williams, Alan; Zoppi, Marco

    2017-05-01

    Non-invasive experimental methods play an important role in the field of cultural heritage. Benefiting from the technical progress in recent years, neutron imaging has been demonstrated to complement effectively studies based on surface analysis, allowing for a non-invasive characterization of the whole three-dimensional volume. This study focuses on a kris and a kanjar, two weapons from ancient Asia, to show the potential of the combined use of X-ray and neutron imaging techniques for the characterisation of the manufacturing methods and the authentication of objects of cultural and historical interest.

  7. Photoacoustic imaging of fluorophores using pump-probe excitation

    PubMed Central

    Märk, Julia; Schmitt, Franz-Josef; Theiss, Christoph; Dortay, Hakan; Friedrich, Thomas; Laufer, Jan

    2015-01-01

    A pump-probe technique for the detection of fluorophores in tomographic PA images is introduced. It is based on inducing stimulated emission in fluorescent molecules, which in turn modulates the amount of thermalized energy, and hence the PA signal amplitude. A theoretical model of the PA signal generation in fluorophores is presented and experimentally validated on cuvette measurements made in solutions of Rhodamine 6G, a fluorophore of known optical and molecular properties. The application of this technique to deep tissue tomographic PA imaging is demonstrated by determining the spatial distribution of a near-infrared fluorophore in a tissue phantom. PMID:26203378

  8. Volumetric imaging of supersonic boundary layers using filtered Rayleigh scattering background suppression

    NASA Technical Reports Server (NTRS)

    Forkey, Joseph N.; Lempert, Walter R.; Bogdonoff, Seymour M.; Miles, Richard B.; Russell, G.

    1995-01-01

    We demonstrate the use of Filtererd Rayleigh Scattering and a 3D reconstruction technique to interrogate the highly three dimensional flow field inside of a supersonic inlet model. A 3 inch by 3 inch by 2.5 inch volume is reconstructed yielding 3D visualizations of the crossing shock waves and of the boundary layer. In this paper we discuss the details of the techniques used, and present the reconstructured 3D images.

  9. Near Field Imaging of Gallium Nitride Nanowires for Characterization of Minority Carrier Diffusion

    DTIC Science & Technology

    2009-12-01

    diffusion length in nanowires is critical to potential applications in solar cells , spectroscopic sensing, and/or lasers and light emitting diodes (LED...technique has been successfully demonstrated with thin film solar cell materials [4, 5]. In these experiments, the diffusion length was measured using a...minority carrier diffusion length . This technique has been used in the near-field collection mode to image the diffusion of holes in n-type GaN

  10. Real-time high-velocity resolution color Doppler OCT

    NASA Astrophysics Data System (ADS)

    Westphal, Volker; Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    2001-05-01

    Color Doppler optical coherence tomography (CDOCT), also called Optical Doppler Tomography) is a noninvasive optical imaging technique, which allows for micron-scale physiological flow mapping simultaneous with morphological OCT imaging. Current systems for real-time endoscopic optical coherence tomography (EOCT) would be enhanced by the capability to visualize sub-surface blood flow for applications in early cancer diagnosis and the management of bleeding ulcers. Unfortunately, previous implementations of CDOCT have either been sufficiently computationally expensive (employing Fourier or Hilbert transform techniques) to rule out real-time imaging of flow, or have been restricted to imaging of excessively high flow velocities when used in real time. We have developed a novel Doppler OCT signal-processing strategy capable of imaging physiological flow rates in real time. This strategy employs cross-correlation processing of sequential A-scans in an EOCT image, as opposed to autocorrelation processing as described previously. To measure Doppler shifts in the kHz range using this technique, it was necessary to stabilize the EOCT interferometer center frequency, eliminate parasitic phase noise, and to construct a digital cross correlation unit able to correlate signals of megahertz bandwidth by a fixed lag of up to a few ms. The performance of the color Doppler OCT system was demonstrated in a flow phantom, demonstrating a minimum detectable flow velocity of ~0.8 mm/s at a data acquisition rate of 8 images/second (with 480 A-scans/image) using a handheld probe. Dynamic flow as well as using it freehanded was shown. Flow was also detectable in a phantom in combination with a clinical usable endoscopic probe.

  11. Scaling dimensions in spectroscopy of soil and vegetation

    NASA Astrophysics Data System (ADS)

    Malenovský, Zbyněk; Bartholomeus, Harm M.; Acerbi-Junior, Fausto W.; Schopfer, Jürg T.; Painter, Thomas H.; Epema, Gerrit F.; Bregt, Arnold K.

    2007-05-01

    The paper revises and clarifies definitions of the term scale and scaling conversions for imaging spectroscopy of soil and vegetation. We demonstrate a new four-dimensional scale concept that includes not only spatial but also the spectral, directional and temporal components. Three scaling remote sensing techniques are reviewed: (1) radiative transfer, (2) spectral (un)mixing, and (3) data fusion. Relevant case studies are given in the context of their up- and/or down-scaling abilities over the soil/vegetation surfaces and a multi-source approach is proposed for their integration. Radiative transfer (RT) models are described to show their capacity for spatial, spectral up-scaling, and directional down-scaling within a heterogeneous environment. Spectral information and spectral derivatives, like vegetation indices (e.g. TCARI/OSAVI), can be scaled and even tested by their means. Radiative transfer of an experimental Norway spruce ( Picea abies (L.) Karst.) research plot in the Czech Republic was simulated by the Discrete Anisotropic Radiative Transfer (DART) model to prove relevance of the correct object optical properties scaled up to image data at two different spatial resolutions. Interconnection of the successive modelling levels in vegetation is shown. A future development in measurement and simulation of the leaf directional spectral properties is discussed. We describe linear and/or non-linear spectral mixing techniques and unmixing methods that demonstrate spatial down-scaling. Relevance of proper selection or acquisition of the spectral endmembers using spectral libraries, field measurements, and pure pixels of the hyperspectral image is highlighted. An extensive list of advanced unmixing techniques, a particular example of unmixing a reflective optics system imaging spectrometer (ROSIS) image from Spain, and examples of other mixture applications give insight into the present status of scaling capabilities. Simultaneous spatial and temporal down-scaling by means of a data fusion technique is described. A demonstrative example is given for the moderate resolution imaging spectroradiometer (MODIS) and LANDSAT Thematic Mapper (TM) data from Brazil. Corresponding spectral bands of both sensors were fused via a pyramidal wavelet transform in Fourier space. New spectral and temporal information of the resultant image can be used for thematic classification or qualitative mapping. All three described scaling techniques can be integrated as the relevant methodological steps within a complex multi-source approach. We present this concept of combining numerous optical remote sensing data and methods to generate inputs for ecosystem process models.

  12. Multiview hyperspectral topography of tissue structural and functional characteristics

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Huang, Jiwei; Zhang, Shiwu; Xu, Ronald X.

    2016-01-01

    Accurate and in vivo characterization of structural, functional, and molecular characteristics of biological tissue will facilitate quantitative diagnosis, therapeutic guidance, and outcome assessment in many clinical applications, such as wound healing, cancer surgery, and organ transplantation. We introduced and tested a multiview hyperspectral imaging technique for noninvasive topographic imaging of cutaneous wound oxygenation. The technique integrated a multiview module and a hyperspectral module in a single portable unit. Four plane mirrors were cohered to form a multiview reflective mirror set with a rectangular cross section. The mirror set was placed between a hyperspectral camera and the target biological tissue. For a single image acquisition task, a hyperspectral data cube with five views was obtained. The five-view hyperspectral image consisted of a main objective image and four reflective images. Three-dimensional (3-D) topography of the scene was achieved by correlating the matching pixels between the objective image and the reflective images. 3-D mapping of tissue oxygenation was achieved using a hyperspectral oxygenation algorithm. The multiview hyperspectral imaging technique was validated in a wound model, a tissue-simulating blood phantom, and in vivo biological tissue. The experimental results demonstrated the technical feasibility of using multiview hyperspectral imaging for 3-D topography of tissue functional properties.

  13. Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy (IGRT)

    NASA Astrophysics Data System (ADS)

    Tanaka, Rie; Sanada, Shigeru; Sakuta, Keita; Kawashima, Hiroki

    2015-05-01

    The bone suppression technique based on advanced image processing can suppress the conspicuity of bones on chest radiographs, creating soft tissue images obtained by the dual-energy subtraction technique. This study was performed to evaluate the usefulness of bone suppression image processing in image-guided radiation therapy. We demonstrated the improved accuracy of markerless motion tracking on bone suppression images. Chest fluoroscopic images of nine patients with lung nodules during respiration were obtained using a flat-panel detector system (120 kV, 0.1 mAs/pulse, 5 fps). Commercial bone suppression image processing software was applied to the fluoroscopic images to create corresponding bone suppression images. Regions of interest were manually located on lung nodules and automatic target tracking was conducted based on the template matching technique. To evaluate the accuracy of target tracking, the maximum tracking error in the resulting images was compared with that of conventional fluoroscopic images. The tracking errors were decreased by half in eight of nine cases. The average maximum tracking errors in bone suppression and conventional fluoroscopic images were 1.3   ±   1.0 and 3.3   ±   3.3 mm, respectively. The bone suppression technique was especially effective in the lower lung area where pulmonary vessels, bronchi, and ribs showed complex movements. The bone suppression technique improved tracking accuracy without special equipment and implantation of fiducial markers, and with only additional small dose to the patient. Bone suppression fluoroscopy is a potential measure for respiratory displacement of the target. This paper was presented at RSNA 2013 and was carried out at Kanazawa University, JAPAN.

  14. Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography.

    PubMed

    Packham, B; Barnes, G; Dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D

    2016-06-01

    Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have  >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p  <  0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity.

  15. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.

    2012-11-01

    To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.

  16. Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography

    PubMed Central

    Packham, B; Barnes, G; dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D

    2016-01-01

    Abstract Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have  >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p  <  0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity. PMID:27203477

  17. Ballistic Imaging and Scattering Measurements for Diesel Spray Combustion: Optical Development and Phenomenological Studies

    DTIC Science & Technology

    2016-04-01

    polystyrene spheres in a water suspension. The impact of spatial filtering , temporal filtering , and scattering path length on image resolution are...The impact of spatial filtering , temporal filtering , and scattering path length on image resolution are reported. The technique is demonstrated...cell filled with polystyrene spheres in a water suspension. The impact of spatial filtering , temporal filtering , and scattering path length on image

  18. SU-E-T-497: Semi-Automated in Vivo Radiochromic Film Dosimetry Using a Novel Image Processing Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyhan, M; Yue, N

    Purpose: To validate an automated image processing algorithm designed to detect the center of radiochromic film used for in vivo film dosimetry against the current gold standard of manual selection. Methods: An image processing algorithm was developed to automatically select the region of interest (ROI) in *.tiff images that contain multiple pieces of radiochromic film (0.5x1.3cm{sup 2}). After a user has linked a calibration file to the processing algorithm and selected a *.tiff file for processing, an ROI is automatically detected for all films by a combination of thresholding and erosion, which removes edges and any additional markings for orientation.more » Calibration is applied to the mean pixel values from the ROIs and a *.tiff image is output displaying the original image with an overlay of the ROIs and the measured doses. Validation of the algorithm was determined by comparing in vivo dose determined using the current gold standard (manually drawn ROIs) versus automated ROIs for n=420 scanned films. Bland-Altman analysis, paired t-test, and linear regression were performed to demonstrate agreement between the processes. Results: The measured doses ranged from 0.2-886.6cGy. Bland-Altman analysis of the two techniques (automatic minus manual) revealed a bias of -0.28cGy and a 95% confidence interval of (5.5cGy,-6.1cGy). These values demonstrate excellent agreement between the two techniques. Paired t-test results showed no statistical differences between the two techniques, p=0.98. Linear regression with a forced zero intercept demonstrated that Automatic=0.997*Manual, with a Pearson correlation coefficient of 0.999. The minimal differences between the two techniques may be explained by the fact that the hand drawn ROIs were not identical to the automatically selected ones. The average processing time was 6.7seconds in Matlab on an IntelCore2Duo processor. Conclusion: An automated image processing algorithm has been developed and validated, which will help minimize user interaction and processing time of radiochromic film used for in vivo dosimetry.« less

  19. Applications of photoacoustic techniques to the study of jet fuel residue

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.

    1983-01-01

    It has been known for many years that fuels for jet aircraft engines demonstrate thermal instability. One manifestation of this thermal instability is the formation of deleterious fuel-derived thermally-induced deposits on surfaces of the aircraft's fuel-handling system. The results of an investigation of the feasibility of applying photoacoustic techniques to the study of the physical properties of these thermal deposits are presented. Both phase imaging and magnitude imaging and spectroscopy were investigated. It is concluded that the use of photoacoustic techniques in the study of films of the type encountered in this investigation is not practical.

  20. Note: Progress on the use of MgB2 superconducting joint technique for the development of MgB2 magnets for magnetic resonance imaging (MRI).

    PubMed

    Kim, Y G; Song, J B; Kim, J C; Kim, J M; Yoo, B H; Yun, S B; Hwang, D Y; Lee, H G

    2017-08-01

    This note presents a superconducting joint technique for the development of MgB 2 magnetic resonance imaging (MRI) magnets. The MgB 2 superconducting joint was fabricated by a powder processing method using Mg and B powders to establish a wire-bulk-wire connection. The joint resistance measured using a field-decay method was <10 -14 Ω, demonstrating that the proposed joint technique could be employed for developing "next-generation" MgB 2 MRI magnets operating in the persistent current mode.

  1. A motion-compensated image filter for low-dose fluoroscopy in a real-time tumor-tracking radiotherapy system

    PubMed Central

    Miyamoto, Naoki; Ishikawa, Masayori; Sutherland, Kenneth; Suzuki, Ryusuke; Matsuura, Taeko; Toramatsu, Chie; Takao, Seishin; Nihongi, Hideaki; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki

    2015-01-01

    In the real-time tumor-tracking radiotherapy system, a surrogate fiducial marker inserted in or near the tumor is detected by fluoroscopy to realize respiratory-gated radiotherapy. The imaging dose caused by fluoroscopy should be minimized. In this work, an image processing technique is proposed for tracing a moving marker in low-dose imaging. The proposed tracking technique is a combination of a motion-compensated recursive filter and template pattern matching. The proposed image filter can reduce motion artifacts resulting from the recursive process based on the determination of the region of interest for the next frame according to the current marker position in the fluoroscopic images. The effectiveness of the proposed technique and the expected clinical benefit were examined by phantom experimental studies with actual tumor trajectories generated from clinical patient data. It was demonstrated that the marker motion could be traced in low-dose imaging by applying the proposed algorithm with acceptable registration error and high pattern recognition score in all trajectories, although some trajectories were not able to be tracked with the conventional spatial filters or without image filters. The positional accuracy is expected to be kept within ±2 mm. The total computation time required to determine the marker position is a few milliseconds. The proposed image processing technique is applicable for imaging dose reduction. PMID:25129556

  2. Gray matter segmentation of the spinal cord with active contours in MR images.

    PubMed

    Datta, Esha; Papinutto, Nico; Schlaeger, Regina; Zhu, Alyssa; Carballido-Gamio, Julio; Henry, Roland G

    2017-02-15

    Fully or partially automated spinal cord gray matter segmentation techniques for spinal cord gray matter segmentation will allow for pivotal spinal cord gray matter measurements in the study of various neurological disorders. The objective of this work was multi-fold: (1) to develop a gray matter segmentation technique that uses registration methods with an existing delineation of the cord edge along with Morphological Geodesic Active Contour (MGAC) models; (2) to assess the accuracy and reproducibility of the newly developed technique on 2D PSIR T1 weighted images; (3) to test how the algorithm performs on different resolutions and other contrasts; (4) to demonstrate how the algorithm can be extended to 3D scans; and (5) to show the clinical potential for multiple sclerosis patients. The MGAC algorithm was developed using a publicly available implementation of a morphological geodesic active contour model and the spinal cord segmentation tool of the software Jim (Xinapse Systems) for initial estimate of the cord boundary. The MGAC algorithm was demonstrated on 2D PSIR images of the C2/C3 level with two different resolutions, 2D T2* weighted images of the C2/C3 level, and a 3D PSIR image. These images were acquired from 45 healthy controls and 58 multiple sclerosis patients selected for the absence of evident lesions at the C2/C3 level. Accuracy was assessed though visual assessment, Hausdorff distances, and Dice similarity coefficients. Reproducibility was assessed through interclass correlation coefficients. Validity was assessed through comparison of segmented gray matter areas in images with different resolution for both manual and MGAC segmentations. Between MGAC and manual segmentations in healthy controls, the mean Dice similarity coefficient was 0.88 (0.82-0.93) and the mean Hausdorff distance was 0.61 (0.46-0.76) mm. The interclass correlation coefficient from test and retest scans of healthy controls was 0.88. The percent change between the manual segmentations from high and low-resolution images was 25%, while the percent change between the MGAC segmentations from high and low resolution images was 13%. Between MGAC and manual segmentations in MS patients, the average Dice similarity coefficient was 0.86 (0.8-0.92) and the average Hausdorff distance was 0.83 (0.29-1.37) mm. We demonstrate that an automatic segmentation technique, based on a morphometric geodesic active contours algorithm, can provide accurate and precise spinal cord gray matter segmentations on 2D PSIR images. We have also shown how this automated technique can potentially be extended to other imaging protocols. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Dictionary-based image reconstruction for superresolution in integrated circuit imaging.

    PubMed

    Cilingiroglu, T Berkin; Uyar, Aydan; Tuysuzoglu, Ahmet; Karl, W Clem; Konrad, Janusz; Goldberg, Bennett B; Ünlü, M Selim

    2015-06-01

    Resolution improvement through signal processing techniques for integrated circuit imaging is becoming more crucial as the rapid decrease in integrated circuit dimensions continues. Although there is a significant effort to push the limits of optical resolution for backside fault analysis through the use of solid immersion lenses, higher order laser beams, and beam apodization, signal processing techniques are required for additional improvement. In this work, we propose a sparse image reconstruction framework which couples overcomplete dictionary-based representation with a physics-based forward model to improve resolution and localization accuracy in high numerical aperture confocal microscopy systems for backside optical integrated circuit analysis. The effectiveness of the framework is demonstrated on experimental data.

  4. Single-shot turbo spin echo acquisition for in vivo cardiac diffusion MRI.

    PubMed

    Edalati, Masoud; Lee, Gregory R; Hui Wang; Taylor, Michael D; Li, Yu Y

    2016-08-01

    Diffusion MRI offers the ability to noninvasively characterize the microstructure of myocardium tissue and detect disease related pathology in cardiovascular examination. This study investigates the feasibility of in vivo cardiac diffusion MRI under free-breathing condition. A high-speed imaging technique, correlation imaging, is used to enable single-shot turbo spin echo for free-breathing cardiac data acquisition. The obtained in vivo cardiac diffusion-weighted images illustrate robust image quality and minor geometry distortions. The resultant diffusion scalar maps show reliable quantitative values consistent with those previously published in the literature. It is demonstrated that this technique has the potential for in vivo free-breathing cardiac diffusion MRI.

  5. Novel approach to multispectral image compression on the Internet

    NASA Astrophysics Data System (ADS)

    Zhu, Yanqiu; Jin, Jesse S.

    2000-10-01

    Still image coding techniques such as JPEG have been always applied onto intra-plane images. Coding fidelity is always utilized in measuring the performance of intra-plane coding methods. In many imaging applications, it is more and more necessary to deal with multi-spectral images, such as the color images. In this paper, a novel approach to multi-spectral image compression is proposed by using transformations among planes for further compression of spectral planes. Moreover, a mechanism of introducing human visual system to the transformation is provided for exploiting the psycho visual redundancy. The new technique for multi-spectral image compression, which is designed to be compatible with the JPEG standard, is demonstrated on extracting correlation among planes based on human visual system. A high measure of compactness in the data representation and compression can be seen with the power of the scheme taken into account.

  6. Perspective: Advanced particle imaging

    DOE PAGES

    Chandler, David W.; Houston, Paul L.; Parker, David H.

    2017-05-26

    This study discuss, the first ion imaging experiment demonstrating the capability of collecting an image of the photofragments from a unimolecular dissociation event and analyzing that image to obtain the three-dimensional velocity distribution of the fragments, the efficacy and breadth of application of the ion imaging technique have continued to improve and grow. With the addition of velocity mapping, ion/electron centroiding, and slice imaging techniques, the versatility and velocity resolution have been unmatched. Recent improvements in molecular beam, laser, sensor, and computer technology are allowing even more advanced particle imaging experiments, and eventually we can expect multi-mass imaging with co-variancemore » and full coincidence capability on a single shot basis with repetition rates in the kilohertz range. This progress should further enable “complete” experiments—the holy grail of molecular dynamics—where all quantum numbers of reactants and products of a bimolecular scattering event are fully determined and even under our control.« less

  7. Lensless Photoluminescence Hyperspectral Camera Employing Random Speckle Patterns.

    PubMed

    Žídek, Karel; Denk, Ondřej; Hlubuček, Jiří

    2017-11-10

    We propose and demonstrate a spectrally-resolved photoluminescence imaging setup based on the so-called single pixel camera - a technique of compressive sensing, which enables imaging by using a single-pixel photodetector. The method relies on encoding an image by a series of random patterns. In our approach, the image encoding was maintained via laser speckle patterns generated by an excitation laser beam scattered on a diffusor. By using a spectrometer as the single-pixel detector we attained a realization of a spectrally-resolved photoluminescence camera with unmatched simplicity. We present reconstructed hyperspectral images of several model scenes. We also discuss parameters affecting the imaging quality, such as the correlation degree of speckle patterns, pattern fineness, and number of datapoints. Finally, we compare the presented technique to hyperspectral imaging using sample scanning. The presented method enables photoluminescence imaging for a broad range of coherent excitation sources and detection spectral areas.

  8. TH-CD-202-04: Evaluation of Virtual Non-Contrast Images From a Novel Split-Filter Dual-Energy CT Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J; Szczykutowicz, T; Bayouth, J

    Purpose: To compare the ability of two dual-energy CT techniques, a novel split-filter single-source technique of superior temporal resolution against an established sequential-scan technique, to remove iodine contrast from images with minimal impact on CT number accuracy. Methods: A phantom containing 8 tissue substitute materials and vials of varying iodine concentrations (1.7–20.1 mg I /mL) was imaged using a Siemens Edge CT scanner. Dual-energy virtual non-contrast (VNC) images were generated using the novel split-filter technique, in which a 120kVp spectrum is filtered by tin and gold to create high- and low-energy spectra with < 1 second temporal separation between themore » acquisition of low- and high-energy data. Additionally, VNC images were generated with the sequential-scan technique (80 and 140kVp) for comparison. CT number accuracy was evaluated for all materials at 15, 25, and 35mGy CTDIvol. Results: The spectral separation was greater for the sequential-scan technique than the split-filter technique with dual-energy ratios of 2.18 and 1.26, respectively. Both techniques successfully removed iodine contrast, resulting in mean CT numbers within 60HU of 0HU (split-filter) and 40HU of 0HU (sequential-scan) for all iodine concentrations. Additionally, for iodine vials of varying diameter (2–20 mm) with the same concentration (9.9 mg I /mL), the system accurately detected iodine for all sizes investigated. Both dual-energy techniques resulted in reduced CT numbers for bone materials (by >400HU for the densest bone). Increasing the imaging dose did not improve the CT number accuracy for bone in VNC images. Conclusion: VNC images from the split-filter technique successfully removed iodine contrast. These results demonstrate a potential for improving dose calculation accuracy and reducing patient imaging dose, while achieving superior temporal resolution in comparison sequential scans. For both techniques, inaccuracies in CT numbers for bone materials necessitate consideration for radiation therapy treatment planning.« less

  9. Social process and the assessment of a new imaging technique.

    PubMed

    Blume, S S

    1993-01-01

    Each group involved in the development of a new medical technology constantly assesses the value of the emergent technique in terms of the group's own specific goals and conventions. The history of infrared thermography demonstrates the social nature of this assessment process.

  10. Three-dimensional image display system using stereogram and holographic optical memory techniques

    NASA Astrophysics Data System (ADS)

    Kim, Cheol S.; Kim, Jung G.; Shin, Chang-Mok; Kim, Soo-Joong

    2001-09-01

    In this paper, we implemented a three dimensional image display system using stereogram and holographic optical memory techniques which can store many images and reconstruct them automatically. In this system, to store and reconstruct stereo images, incident angle of reference beam must be controlled in real time, so we used BPH (binary phase hologram) and LCD (liquid crystal display) for controlling reference beam. And input images are represented on the LCD without polarizer/analyzer for maintaining uniform beam intensities regardless of the brightness of input images. The input images and BPHs are edited using application software with having the same recording scheduled time interval in storing. The reconstructed stereo images are acquired by capturing the output images with CCD camera at the behind of the analyzer which transforms phase information into brightness information of images. The reference beams are acquired by Fourier transform of BPH which designed with SA (simulated annealing) algorithm, and represented on the LCD with the 0.05 seconds time interval using application software for reconstructing the stereo images. In output plane, we used a LCD shutter that is synchronized to a monitor that displays alternate left and right eye images for depth perception. We demonstrated optical experiment which store and reconstruct four stereo images in BaTiO3 repeatedly using holographic optical memory techniques.

  11. Enhanced in vivo visualization of the microcirculation by topical application of fructose solution confirmed with correlation mapping optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Enfield, Joey; McGrath, James; Daly, Susan M.; Leahy, Martin

    2016-08-01

    Changes within the microcirculation can provide an early indication of the onset of a plethora of ailments. Various techniques have thus been developed that enable the study of microcirculatory irregularities. Correlation mapping optical coherence tomography (cmOCT) is a recently proposed technique, which enables mapping of vasculature networks at the capillary level in a noninvasive and noncontact manner. This technique is an extension of conventional optical coherence tomography (OCT) and is therefore likewise limited in the penetration depth of ballistic photons in biological media. Optical clearing has previously been demonstrated to enhance the penetration depth and the imaging capabilities of OCT. In order to enhance the achievable maximum imaging depth, we propose the use of optical clearing in conjunction with the cmOCT technique. We demonstrate in vivo a 13% increase in OCT penetration depth by topical application of a high-concentration fructose solution, thereby enabling the visualization of vessel features at deeper depths within the tissue.

  12. Information loss and reconstruction in diffuse fluorescence tomography

    PubMed Central

    Bonfert-Taylor, Petra; Leblond, Frederic; Holt, Robert W.; Tichauer, Kenneth; Pogue, Brian W.; Taylor, Edward C.

    2012-01-01

    This paper is a theoretical exploration of spatial resolution in diffuse fluorescence tomography. It is demonstrated that, given a fixed imaging geometry, one cannot—relative to standard techniques such as Tikhonov regularization and truncated singular value decomposition—improve the spatial resolution of the optical reconstructions via increasing the node density of the mesh considered for modeling light transport. Using techniques from linear algebra, it is shown that, as one increases the number of nodes beyond the number of measurements, information is lost by the forward model. It is demonstrated that this information cannot be recovered using various common reconstruction techniques. Evidence is provided showing that this phenomenon is related to the smoothing properties of the elliptic forward model that is used in the diffusion approximation to light transport in tissue. This argues for reconstruction techniques that are sensitive to boundaries, such as L1-reconstruction and the use of priors, as well as the natural approach of building a measurement geometry that reflects the desired image resolution. PMID:22472763

  13. Partial fourier and parallel MR image reconstruction with integrated gradient nonlinearity correction.

    PubMed

    Tao, Shengzhen; Trzasko, Joshua D; Shu, Yunhong; Weavers, Paul T; Huston, John; Gray, Erin M; Bernstein, Matt A

    2016-06-01

    To describe how integrated gradient nonlinearity (GNL) correction can be used within noniterative partial Fourier (homodyne) and parallel (SENSE and GRAPPA) MR image reconstruction strategies, and demonstrate that performing GNL correction during, rather than after, these routines mitigates the image blurring and resolution loss caused by postreconstruction image domain based GNL correction. Starting from partial Fourier and parallel magnetic resonance imaging signal models that explicitly account for GNL, noniterative image reconstruction strategies for each accelerated acquisition technique are derived under the same core mathematical assumptions as their standard counterparts. A series of phantom and in vivo experiments on retrospectively undersampled data were performed to investigate the spatial resolution benefit of integrated GNL correction over conventional postreconstruction correction. Phantom and in vivo results demonstrate that the integrated GNL correction reduces the image blurring introduced by the conventional GNL correction, while still correcting GNL-induced coarse-scale geometrical distortion. Images generated from undersampled data using the proposed integrated GNL strategies offer superior depiction of fine image detail, for example, phantom resolution inserts and anatomical tissue boundaries. Noniterative partial Fourier and parallel imaging reconstruction methods with integrated GNL correction reduce the resolution loss that occurs during conventional postreconstruction GNL correction while preserving the computational efficiency of standard reconstruction techniques. Magn Reson Med 75:2534-2544, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. Improved image guidance technique for minimally invasive mitral valve repair using real-time tracked 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Rankin, Adam; Moore, John; Bainbridge, Daniel; Peters, Terry

    2016-03-01

    In the past ten years, numerous new surgical and interventional techniques have been developed for treating heart valve disease without the need for cardiopulmonary bypass. Heart valve repair is now being performed in a blood-filled environment, reinforcing the need for accurate and intuitive imaging techniques. Previous work has demonstrated how augmenting ultrasound with virtual representations of specific anatomical landmarks can greatly simplify interventional navigation challenges and increase patient safety. These techniques often complicate interventions by requiring additional steps taken to manually define and initialize virtual models. Furthermore, overlaying virtual elements into real-time image data can also obstruct the view of salient image information. To address these limitations, a system was developed that uses real-time volumetric ultrasound alongside magnetically tracked tools presented in an augmented virtuality environment to provide a streamlined navigation guidance platform. In phantom studies simulating a beating-heart navigation task, procedure duration and tool path metrics have achieved comparable performance to previous work in augmented virtuality techniques, and considerable improvement over standard of care ultrasound guidance.

  15. Site-resolved imaging of a bosonic Mott insulator using ytterbium atoms

    NASA Astrophysics Data System (ADS)

    Miranda, Martin; Inoue, Ryotaro; Tambo, Naoki; Kozuma, Mikio

    2017-10-01

    We demonstrate site-resolved imaging of a strongly correlated quantum system without relying on laser cooling techniques during fluorescence imaging. We observe the formation of Mott shells in the insulating regime and realize thermometry in an atomic cloud. This work proves the feasibility of the noncooled approach and opens the door to extending the detection technology to new atomic species.

  16. Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications

    PubMed Central

    Hwang, Jae Youn; Wachsmann-Hogiu, Sebastian; Ramanujan, V Krishnan; Nowatzyk, Andreas G.; Koronyo, Yosef; Medina-Kauwe, Lali K.; Gross, Zeev; Gray, Harry B.; Farkas, Daniel L.

    2011-01-01

    We report fast, non-scanning, wide-field two-photon fluorescence excitation with spectral and lifetime detection for in vivo biomedical applications. We determined the optical characteristics of the technique, developed a Gaussian flat-field correction method to reduce artifacts resulting from non-uniform excitation such that contrast is enhanced, and showed that it can be used for ex vivo and in vivo cellular-level imaging. Two applications were demonstrated: (i) ex vivo measurements of beta-amyloid plaques in retinas of transgenic mice, and (ii) in vivo imaging of sulfonated gallium(III) corroles injected into tumors. We demonstrate that wide-field two photon fluorescence excitation with flat-field correction provides more penetration depth as well as better contrast and axial resolution than the corresponding one-photon wide field excitation for the same dye. Importantly, when this technique is used together with spectral and fluorescence lifetime detection modules, it offers improved discrimination between fluorescence from molecules of interest and autofluorescence, with higher sensitivity and specificity for in vivo applications. PMID:21339880

  17. Factors influencing real time internal structural visualization and dynamic process monitoring in plants using synchrotron-based phase contrast X-ray imaging

    PubMed Central

    Karunakaran, Chithra; Lahlali, Rachid; Zhu, Ning; Webb, Adam M.; Schmidt, Marina; Fransishyn, Kyle; Belev, George; Wysokinski, Tomasz; Olson, Jeremy; Cooper, David M. L.; Hallin, Emil

    2015-01-01

    Minimally invasive investigation of plant parts (root, stem, leaves, and flower) has good potential to elucidate the dynamics of plant growth, morphology, physiology, and root-rhizosphere interactions. Laboratory based absorption X-ray imaging and computed tomography (CT) systems are extensively used for in situ feasibility studies of plants grown in natural and artificial soil. These techniques have challenges such as low contrast between soil pore space and roots, long X-ray imaging time, and low spatial resolution. In this study, the use of synchrotron (SR) based phase contrast X-ray imaging (PCI) has been demonstrated as a minimally invasive technique for imaging plants. Above ground plant parts and roots of 10 day old canola and wheat seedlings grown in sandy clay loam soil were successfully scanned and reconstructed. Results confirmed that SR-PCI can deliver good quality images to study dynamic and real time processes such as cavitation and water-refilling in plants. The advantages of SR-PCI, effect of X-ray energy, and effective pixel size to study plant samples have been demonstrated. The use of contrast agents to monitor physiological processes in plants was also investigated and discussed. PMID:26183486

  18. High resolution near on-axis digital holography using constrained optimization approach with faster convergence

    NASA Astrophysics Data System (ADS)

    Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu

    2017-09-01

    A constrained optimization approach with faster convergence is proposed to recover the complex object field from a near on-axis digital holography (DH). We subtract the DC from the hologram after recording the object beam and reference beam intensities separately. The DC-subtracted hologram is used to recover the complex object information using a constrained optimization approach with faster convergence. The recovered complex object field is back propagated to the image plane using the Fresnel back-propagation method. The results reported in this approach provide high-resolution images compared with the conventional Fourier filtering approach and is 25% faster than the previously reported constrained optimization approach due to the subtraction of two DC terms in the cost function. We report this approach in DH and digital holographic microscopy using the U.S. Air Force resolution target as the object to retrieve the high-resolution image without DC and twin image interference. We also demonstrate the high potential of this technique in transparent microelectrode patterned on indium tin oxide-coated glass, by reconstructing a high-resolution quantitative phase microscope image. We also demonstrate this technique by imaging yeast cells.

  19. Veselago lensing with ultracold atoms in an optical lattice.

    PubMed

    Leder, Martin; Grossert, Christopher; Weitz, Martin

    2014-01-01

    Veselago pointed out that electromagnetic wave theory allows for materials with a negative index of refraction, in which most known optical phenomena would be reversed. A slab of such a material can focus light by negative refraction, an imaging technique strikingly different from conventional positive refractive index optics, where curved surfaces bend the rays to form an image of an object. Here we demonstrate Veselago lensing for matter waves, using ultracold atoms in an optical lattice. A relativistic, that is, photon-like, dispersion relation for rubidium atoms is realized with a bichromatic optical lattice potential. We rely on a Raman π-pulse technique to transfer atoms between two different branches of the dispersion relation, resulting in a focusing that is completely analogous to the effect described by Veselago for light waves. Future prospects of the demonstrated effects include novel sub-de Broglie wavelength imaging applications.

  20. Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy.

    PubMed

    Yao, Atsushi; Kobayashi, Kei; Nosaka, Shunta; Kimura, Kuniko; Yamada, Hirofumi

    2017-02-17

    Several researchers have recently demonstrated visualization of subsurface features with a nanometer-scale resolution using various imaging schemes based on atomic force microscopy. Since all these subsurface imaging techniques require excitation of the oscillation of the cantilever and/or sample surface, it has been difficult to identify a key imaging mechanism. Here we demonstrate visualization of Au nanoparticles buried 300 nm into a polymer matrix by measurement of the thermal noise spectrum of a microcantilever with a tip in contact to the polymer surface. We show that the subsurface Au nanoparticles are detected as the variation in the contact stiffness and damping reflecting the viscoelastic properties of the polymer surface. The variation in the contact stiffness well agrees with the effective stiffness of a simple one-dimensional model, which is consistent with the fact that the maximum depth range of the technique is far beyond the extent of the contact stress field.

  1. Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow

    PubMed Central

    Richards, Lisa M.; Towle, Erica L.; Fox, Douglas J.; Dunn, Andrew K.

    2014-01-01

    Abstract. Although multiple intraoperative cerebral blood flow (CBF) monitoring techniques are currently available, a quantitative method that allows for continuous monitoring and that can be easily integrated into the surgical workflow is still needed. Laser speckle contrast imaging (LSCI) is an optical imaging technique with a high spatiotemporal resolution that has been recently demonstrated as feasible and effective for intraoperative monitoring of CBF during neurosurgical procedures. This study demonstrates the impact of retrospective motion correction on the quantitative analysis of intraoperatively acquired LSCI images. LSCI images were acquired through a surgical microscope during brain tumor resection procedures from 10 patients under baseline conditions and after a cortical stimulation in three of those patients. The patient’s electrocardiogram (ECG) was recorded during acquisition for postprocess correction of pulsatile artifacts. Automatic image registration was retrospectively performed to correct for tissue motion artifacts, and the performance of rigid and nonrigid transformations was compared. In baseline cases, the original images had 25%±27% noise across 16 regions of interest (ROIs). ECG filtering moderately reduced the noise to 20%±21%, while image registration resulted in a further noise reduction of 15%±4%. Combined ECG filtering and image registration significantly reduced the noise to 6.2%±2.6% (p<0.05). Using the combined motion correction, accuracy and sensitivity to small changes in CBF were improved in cortical stimulation cases. There was also excellent agreement between rigid and nonrigid registration methods (15/16 ROIs with <3% difference). Results from this study demonstrate the importance of motion correction for improved visualization of CBF changes in clinical LSCI images. PMID:26157974

  2. Virtual environments from panoramic images

    NASA Astrophysics Data System (ADS)

    Chapman, David P.; Deacon, Andrew

    1998-12-01

    A number of recent projects have demonstrated the utility of Internet-enabled image databases for the documentation of complex, inaccessible and potentially hazardous environments typically encountered in the petrochemical and nuclear industries. Unfortunately machine vision and image processing techniques have not, to date, enabled the automatic extraction geometrical data from such images and thus 3D CAD modeling remains an expensive and laborious manual activity. Recent developments in panoramic image capture and presentation offer an alternative intermediate deliverable which, in turn, offers some of the benefits of a 3D model at a fraction of the cost. Panoramic image display tools such as Apple's QuickTime VR (QTVR) and Live Spaces RealVR provide compelling and accessible digital representations of the real world and justifiably claim to 'put the reality in Virtual Reality.' This paper will demonstrate how such technologies can be customized, extended and linked to facility management systems delivered over a corporate intra-net to enable end users to become familiar with remote sites and extract simple dimensional data. In addition strategies for the integration of such images with documents gathered from 2D or 3D CAD and Process and Instrumentation Diagrams (P&IDs) will be described as will techniques for precise 'As-Built' modeling using the calibrated images from which panoramas have been derived and the use of textures from these images to increase the realism of rendered scenes. A number of case studies relating to both nuclear and process engineering will demonstrate the extent to which such solution are scaleable in order to deal with the very large volumes of image data required to fully document the large, complex facilities typical of these industry sectors.

  3. Mechanism of Chronic Pain in Rodent Brain Imaging

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Ching

    Chronic pain is a significant health problem that greatly impacts the quality of life of individuals and imparts high costs to society. Despite intense research effort in understanding of the mechanism of pain, chronic pain remains a clinical problem that has few effective therapies. The advent of human brain imaging research in recent years has changed the way that chronic pain is viewed. To further extend the use of human brain imaging techniques for better therapies, the adoption of imaging technique onto the animal pain models is essential, in which underlying brain mechanisms can be systematically studied using various combination of imaging and invasive techniques. The general goal of this thesis is to addresses how brain develops and maintains chronic pain in an animal model using fMRI. We demonstrate that nucleus accumbens, the central component of mesolimbic circuitry, is essential in development of chronic pain. To advance our imaging technique, we develop an innovative methodology to carry out fMRI in awake, conscious rat. Using this cutting-edge technique, we show that allodynia is assoicated with shift brain response toward neural circuits associated nucleus accumbens and prefrontal cortex that regulate affective and cognitive component of pain. Taken together, this thesis provides a deeper understanding of how brain mediates pain. It builds on the existing body of knowledge through maximizing the depth of insight into brain imaging of chronic pain.

  4. Feasibility of Small Animal Anatomical and Functional Imaging with Neutrons: A Monte Carlo Simulation Study

    NASA Astrophysics Data System (ADS)

    Medich, David C.; Currier, Blake H.; Karellas, Andrew

    2014-10-01

    A novel technique is presented for obtaining a single in-vivo image containing both functional and anatomical information in a small animal model such as a mouse. This technique, which incorporates appropriate image neutron-scatter rejection and uses a neutron opaque contrast agent, is based on neutron radiographic technology and was demonstrated through a series of Monte Carlo simulations. With respect to functional imaging, this technique can be useful in biomedical and biological research because it could achieve a spatial resolution orders of magnitude better than what presently can be achieved with current functional imaging technologies such as nuclear medicine (PET, SPECT) and fMRI. For these studies, Monte Carlo simulations were performed with thermal (0.025 eV) neutrons in a 3 cm thick phantom using the MCNP5 simulations software. The goals of these studies were to determine: 1) the extent that scattered neutrons degrade image contrast; 2) the contrasts of various normal and diseased tissues under conditions of complete scatter rejection; 3) the concentrations of Boron-10 and Gadolinium-157 required for contrast differentiation in functional imaging; and 4) the efficacy of collimation for neutron scatter image rejection. Results demonstrate that with proper neutron-scatter rejection, a neutron fluence of 2 ×107 n/cm2 will provide a signal to noise ratio of at least one ( S/N ≥ 1) when attempting to image various 300 μm thick tissues placed in a 3 cm thick phantom. Similarly, a neutron fluence of only 1 ×107 n/cm2 is required to differentiate a 300 μm thick diseased tissue relative to its normal tissue counterpart. The utility of a B-10 contrast agent was demonstrated at a concentration of 50 μg/g to achieve S/N ≥ 1 in 0.3 mm thick tissues while Gd-157 requires only slightly more than 10 μg/g to achieve the same level of differentiation. Lastly, neutron collimator with an L/D ratio from 50 to 200 were calculated to provide appropriate scatter rejection for thick tissue biological imaging with neutrons.

  5. Fission gas bubble identification using MATLAB's image processing toolbox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collette, R.; King, J.; Keiser, Jr., D.

    Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. In addition, this study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding provedmore » to be the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods.« less

  6. Laser Ablation-Aerosol Mass Spectrometry-Chemical Ionization Mass Spectrometry for Ambient Surface Imaging

    DOE PAGES

    Berry, Jennifer L.; Day, Douglas A.; Elseberg, Tim; ...

    2018-02-20

    Mass spectrometry imaging is becoming an increasingly common analytical technique due to its ability to provide spatially resolved chemical information. In this paper, we report a novel imaging approach combining laser ablation with two mass spectrometric techniques, aerosol mass spectrometry and chemical ionization mass spectrometry, separately and in parallel. Both mass spectrometric methods provide the fast response, rapid data acquisition, low detection limits, and high-resolution peak separation desirable for imaging complex samples. Additionally, the two techniques provide complementary information with aerosol mass spectrometry providing near universal detection of all aerosol molecules and chemical ionization mass spectrometry with a heated inletmore » providing molecular-level detail of both gases and aerosols. The two techniques operate with atmospheric pressure interfaces and require no matrix addition for ionization, allowing for samples to be investigated in their native state under ambient pressure conditions. We demonstrate the ability of laser ablation-aerosol mass spectrometry-chemical ionization mass spectrometry (LA-AMS-CIMS) to create 2D images of both standard compounds and complex mixtures. Finally, the results suggest that LA-AMS-CIMS, particularly when combined with advanced data analysis methods, could have broad applications in mass spectrometry imaging applications.« less

  7. Laser Ablation-Aerosol Mass Spectrometry-Chemical Ionization Mass Spectrometry for Ambient Surface Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Jennifer L.; Day, Douglas A.; Elseberg, Tim

    Mass spectrometry imaging is becoming an increasingly common analytical technique due to its ability to provide spatially resolved chemical information. In this paper, we report a novel imaging approach combining laser ablation with two mass spectrometric techniques, aerosol mass spectrometry and chemical ionization mass spectrometry, separately and in parallel. Both mass spectrometric methods provide the fast response, rapid data acquisition, low detection limits, and high-resolution peak separation desirable for imaging complex samples. Additionally, the two techniques provide complementary information with aerosol mass spectrometry providing near universal detection of all aerosol molecules and chemical ionization mass spectrometry with a heated inletmore » providing molecular-level detail of both gases and aerosols. The two techniques operate with atmospheric pressure interfaces and require no matrix addition for ionization, allowing for samples to be investigated in their native state under ambient pressure conditions. We demonstrate the ability of laser ablation-aerosol mass spectrometry-chemical ionization mass spectrometry (LA-AMS-CIMS) to create 2D images of both standard compounds and complex mixtures. Finally, the results suggest that LA-AMS-CIMS, particularly when combined with advanced data analysis methods, could have broad applications in mass spectrometry imaging applications.« less

  8. Lens-free shadow image based high-throughput continuous cell monitoring technique.

    PubMed

    Jin, Geonsoo; Yoo, In-Hwa; Pack, Seung Pil; Yang, Ji-Woon; Ha, Un-Hwan; Paek, Se-Hwan; Seo, Sungkyu

    2012-01-01

    A high-throughput continuous cell monitoring technique which does not require any labeling reagents or destruction of the specimen is demonstrated. More than 6000 human alveolar epithelial A549 cells are monitored for up to 72 h simultaneously and continuously with a single digital image within a cost and space effective lens-free shadow imaging platform. In an experiment performed within a custom built incubator integrated with the lens-free shadow imaging platform, the cell nucleus division process could be successfully characterized by calculating the signal-to-noise ratios (SNRs) and the shadow diameters (SDs) of the cell shadow patterns. The versatile nature of this platform also enabled a single cell viability test followed by live cell counting. This study firstly shows that the lens-free shadow imaging technique can provide a continuous cell monitoring without any staining/labeling reagent and destruction of the specimen. This high-throughput continuous cell monitoring technique based on lens-free shadow imaging may be widely utilized as a compact, low-cost, and high-throughput cell monitoring tool in the fields of drug and food screening or cell proliferation and viability testing. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Fission gas bubble identification using MATLAB's image processing toolbox

    DOE PAGES

    Collette, R.; King, J.; Keiser, Jr., D.; ...

    2016-06-08

    Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. In addition, this study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding provedmore » to be the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods.« less

  10. A novel high-frequency encoding algorithm for image compression

    NASA Astrophysics Data System (ADS)

    Siddeq, Mohammed M.; Rodrigues, Marcos A.

    2017-12-01

    In this paper, a new method for image compression is proposed whose quality is demonstrated through accurate 3D reconstruction from 2D images. The method is based on the discrete cosine transform (DCT) together with a high-frequency minimization encoding algorithm at compression stage and a new concurrent binary search algorithm at decompression stage. The proposed compression method consists of five main steps: (1) divide the image into blocks and apply DCT to each block; (2) apply a high-frequency minimization method to the AC-coefficients reducing each block by 2/3 resulting in a minimized array; (3) build a look up table of probability data to enable the recovery of the original high frequencies at decompression stage; (4) apply a delta or differential operator to the list of DC-components; and (5) apply arithmetic encoding to the outputs of steps (2) and (4). At decompression stage, the look up table and the concurrent binary search algorithm are used to reconstruct all high-frequency AC-coefficients while the DC-components are decoded by reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested the technique by compressing and decompressing 2D images including images with structured light patterns for 3D reconstruction. The technique is compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D surface reconstruction from images, it is demonstrated that the proposed method is superior to both JPEG and JPEG2000.

  11. High-resolution label-free vascular imaging using a commercial, clinically approved dermatological OCT scanner

    NASA Astrophysics Data System (ADS)

    Byers, R. A.; Tozer, G.; Brown, N. J.; Matcher, S. J.

    2016-02-01

    Background and Aim: Recently developed decorrelative techniques such as speckle-variance optical coherence tomography (svOCT) have demonstrated non-invasive depth-resolved imaging of the microcirculation in-vivo. However, bulk tissue motion (BTM) originating from the subject's breathing or heartbeat remains problematic at low imaging speeds, often resulting in full frame decorrelation and a loss of vascular contrast. The aim of this study was to build upon existing svOCT techniques through utilisation of a commercially available, probe-based VivoSight OCT system running at 20 kHz Axial-scan rate. Methods and results: Custom four-dimensional scanning strategies were developed and utilised in order to maximise the interframe correlation during image acquisition. Volumes of structural OCT data were collected from various anatomical regions and processed using the aforementioned svOCT algorithm to reveal angiographic information. Following data collection, three dimensional image registration and novel filtering algorithms were applied to each volume in order to ensure that BTM artefacts were sufficiently suppressed. This enabled accurate visualisation of the microcirculation within the papillary dermis, to a depth of approximately 2mm. Applications of this technique, including quantitative capillary loop density measurement and visualisation of wound healing are demonstrated and enhanced through widefield mosaicing of the svOCT data. Conclusions: Non-invasive microcirculation imaging using an FDA 510(k) approved OCT scanner such as the VivoSight allows direct clinical utilisation of these techniques, in particular for the pathological analysis of skin diseases. This research was supported by BBSRC Doctoral Training Grant: BB/F016840/1. The authors also gratefully acknowledge the use of equipment funded by MRC grant: MR/L012669/1.

  12. Segmentation of deformable organs from medical images using particle swarm optimization and nonlinear shape priors

    NASA Astrophysics Data System (ADS)

    Afifi, Ahmed; Nakaguchi, Toshiya; Tsumura, Norimichi

    2010-03-01

    In many medical applications, the automatic segmentation of deformable organs from medical images is indispensable and its accuracy is of a special interest. However, the automatic segmentation of these organs is a challenging task according to its complex shape. Moreover, the medical images usually have noise, clutter, or occlusion and considering the image information only often leads to meager image segmentation. In this paper, we propose a fully automated technique for the segmentation of deformable organs from medical images. In this technique, the segmentation is performed by fitting a nonlinear shape model with pre-segmented images. The kernel principle component analysis (KPCA) is utilized to capture the complex organs deformation and to construct the nonlinear shape model. The presegmentation is carried out by labeling each pixel according to its high level texture features extracted using the overcomplete wavelet packet decomposition. Furthermore, to guarantee an accurate fitting between the nonlinear model and the pre-segmented images, the particle swarm optimization (PSO) algorithm is employed to adapt the model parameters for the novel images. In this paper, we demonstrate the competence of proposed technique by implementing it to the liver segmentation from computed tomography (CT) scans of different patients.

  13. Ex vivo detection of macrophages in atherosclerotic plaques using intravascular ultrasonic-photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Quang Bui, Nhat; Hlaing, Kyu Kyu; Lee, Yong Wook; Kang, Hyun Wook; Oh, Junghwan

    2017-01-01

    Macrophages are excellent imaging targets for detecting atherosclerotic plaques as they are involved in all the developmental stages of atherosclerosis. However, no imaging technique is currently capable of visualizing macrophages inside blood vessel walls. The current study develops an intravascular ultrasonic-photoacoustic (IVUP) imaging system combined with indocyanine green (ICG) as a contrast agent to provide morphological and compositional information about the targeted samples. Both tissue-mimicking vessel phantoms and atherosclerotic plaque-mimicking porcine arterial tissues are used to demonstrate the feasibility of mapping macrophages labeled with ICG by endoscopically applying the proposed hybrid technique. A delay pulse triggering technique is able to sequentially acquire photoacoustic (PA) and ultrasound (US) signals from a single scan without using any external devices. The acquired PA and US signals are used to reconstruct 2D cross-sectional and 3D volumetric images of the entire tissue with the ICG-loaded macrophages injected. Due to high imaging contrast and sensitivity, the IVUP imaging vividly reveals structural information and detects the spatial distribution of the ICG-labeled macrophages inside the samples. ICG-assisted IVUP imaging can be a feasible imaging modality for the endoscopic detection of atherosclerotic plaques.

  14. Thermal Nondestructive Characterization of Corrosion in Boiler Tubes by Application fo a Moving Line Heat Source

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    2000-01-01

    Wall thinning in utility boiler waterwall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used lor inspection of these tubes. This technique has proved to be very labor intensive and slow. This has resulted in a "spot check" approach to inspections, making thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source, coupled with this analysis technique, represents a significant improvement in the inspection speed for large structures such as boiler waterwalls while still providing high-resolution thickness measurements. A theoretical basis for the technique will be presented thus demonstrating the quantitative nature of the technique. Further, results of laboratory experiments on flat Panel specimens with fabricated material loss regions will be presented.

  15. Fundamentals of functional imaging I: current clinical techniques.

    PubMed

    Luna, A; Martín Noguerol, T; Mata, L Alcalá

    2018-05-01

    Imaging techniques can establish a structural, physiological, and molecular phenotype for cancer, which helps enable accurate diagnosis and personalized treatment. In recent years, various imaging techniques that make it possible to study the functional characteristics of tumors quantitatively and reproducibly have been introduced and have become established in routine clinical practice. Perfusion studies enable us to estimate the microcirculation as well as tumor angiogenesis and permeability using ultrafast dynamic acquisitions with ultrasound, computed tomography, or magnetic resonance (MR) imaging. Diffusion-weighted sequences now form part of state-of-the-art MR imaging protocols to evaluate oncologic lesions in any anatomic location. Diffusion-weighted imaging provides information about the occupation of the extracellular and extravascular space and indirectly estimates the cellularity and apoptosis of tumors, having demonstrated its relation with biologic aggressiveness in various tumor lines and its usefulness in the evaluation of the early response to systemic and local targeted therapies. Another tool is hydrogen proton MR spectroscopy, which is used mainly in the study of the metabolic characteristics of brain tumors. However, the complexity of the technique and its lack of reproducibility have limited its clinical use in other anatomic areas, although much experience with the use of this technique in the assessment of prostate and breast cancers as well as liver lesions has also accumulated. This review analyzes the imaging techniques that make it possible to evaluate the physiological and molecular characteristics of cancer that have already been introduced into clinical practice, such as techniques that evaluate angiogenesis through dynamic acquisitions after the administration of contrast material, diffusion-weighted imaging, or hydrogen proton MR spectroscopy, as well as their principal applications in oncology. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Magnetic resonance imaging for the study of mummies.

    PubMed

    Giovannetti, Giulio; Guerrini, Andrea; Carnieri, Emiliano; Salvadori, Piero A

    2016-07-01

    Nondestructive diagnostic imaging for mummies study has a long tradition and high-resolution images of the samples morphology have been extensively acquired by using computed tomography (CT). However, although in early reports no signal or image was obtained because of the low water content, mummy magnetic resonance imaging (MRI) was demonstrated able to generate images of such ancient specimens by using fast imaging techniques. Literature demonstrated the general feasibility of nonclinical MRI for visualizing historic human tissues, which is particularly interesting for archeology. More recently, multinuclear magnetic resonance spectroscopy (MRS) was demonstrated able to detect numerous organic biochemicals from such remains. Although the quality of these images is not yet comparable to that of clinical magnetic resonance (MR) images, and further research will be needed for determining the full capacity of MR in this topic, the information obtained with MR can be viewed as complementary to the one provided by CT and useful for paleoradiological studies of mummies. This work contains an overview of the state of art of the emerging uses of MRI in paleoradiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Extreme AO coronagraphy laboratory demonstration in the context of SPHERE

    NASA Astrophysics Data System (ADS)

    Martinez, P.; Aller Carpentier, E.; Kasper, M.

    2010-10-01

    The exoplanetary science through direct imaging and spectroscopy will largely expand with the very soon raise of new instruments at the VLT (SPHERE), Gemini (GPI), and Subaru (HiCIAO) observatories. All these ground-based adaptive optics instruments include extremely high performance adaptive optics (XAO) system, advanced starlight cancellation techniques (e.g. coronagraphy), and speckle calibration techniques (e.g. spectral, angular, or polarimetry). In this context we report laboratory results obtained with the High-Order Test bench (HOT), the adaptive optics facility at the European Southern Observatory headquarters. Under 0.5 arcsec dynamical seeing, efficiently corrected by an XAO system delivering H-band Strehl ratio above 90%, we discuss contrast levels obtained with an apodized pupil Lyot coronagraph using differential imaging techniques (spectral and polarimetric). Accounting for system differences (e.g. deformable mirror actuator number), we demonstrate a good agreement between experimental results and expectations for SPHERE, or GPI, while we already met HiCIAO contrast goals.

  18. Mesoscopic in vivo 3-D tracking of sparse cell populations using angular multiplexed optical projection tomography

    PubMed Central

    Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J.; French, Paul M. W.; McGinty, James

    2015-01-01

    We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound. PMID:25909009

  19. Implementation of laser speckle contrast analysis as connection kit for mobile phone for assessment of skin blood flow

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Saknite, Inga; Spigulis, Janis

    2014-05-01

    Laser speckle contrast analysis (LASCA) offers a non-contact, full-field, and real-time mapping of capillary blood flow and can be considered as an alternative method to Laser Doppler perfusion imaging. LASCA technique has been implemented in several commercial instruments. However, these systems are still too expensive and bulky to be widely available. Several optical techniques have found new implementations as connection kits for mobile phones thus offering low cost screening devices. In this work we demonstrate simple implementation of LASCA imaging technique as connection kit for mobile phone for primary low-cost assessment of skin blood flow. Stabilized 650 nm and 532 nm laser diode modules were used for LASCA illumination. Dual wavelength illumination could provide additional information about skin hemoglobin and oxygenation level. The proposed approach was tested for arterial occlusion and heat test. Besides, blood flow maps of injured and provoked skin were demonstrated.

  20. Mesoscopic in vivo 3-D tracking of sparse cell populations using angular multiplexed optical projection tomography.

    PubMed

    Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J; French, Paul M W; McGinty, James

    2015-04-01

    We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound.

  1. Lossless Astronomical Image Compression and the Effects of Random Noise

    NASA Technical Reports Server (NTRS)

    Pence, William

    2009-01-01

    In this paper we compare a variety of modern image compression methods on a large sample of astronomical images. We begin by demonstrating from first principles how the amount of noise in the image pixel values sets a theoretical upper limit on the lossless compression ratio of the image. We derive simple procedures for measuring the amount of noise in an image and for quantitatively predicting how much compression will be possible. We then compare the traditional technique of using the GZIP utility to externally compress the image, with a newer technique of dividing the image into tiles, and then compressing and storing each tile in a FITS binary table structure. This tiled-image compression technique offers a choice of other compression algorithms besides GZIP, some of which are much better suited to compressing astronomical images. Our tests on a large sample of images show that the Rice algorithm provides the best combination of speed and compression efficiency. In particular, Rice typically produces 1.5 times greater compression and provides much faster compression speed than GZIP. Floating point images generally contain too much noise to be effectively compressed with any lossless algorithm. We have developed a compression technique which discards some of the useless noise bits by quantizing the pixel values as scaled integers. The integer images can then be compressed by a factor of 4 or more. Our image compression and uncompression utilities (called fpack and funpack) that were used in this study are publicly available from the HEASARC web site.Users may run these stand-alone programs to compress and uncompress their own images.

  2. Image processing methods used to simulate flight over remotely sensed data

    NASA Technical Reports Server (NTRS)

    Mortensen, H. B.; Hussey, K. J.; Mortensen, R. A.

    1988-01-01

    It has been demonstrated that image processing techniques can provide an effective means of simulating flight over remotely sensed data (Hussey et al. 1986). This paper explains the methods used to simulate and animate three-dimensional surfaces from two-dimensional imagery. The preprocessing techniques used on the input data, the selection of the animation sequence, the generation of the animation frames, and the recording of the animation is covered. The software used for all steps is discussed.

  3. Leakage radiation interference microscopy.

    PubMed

    Descrovi, Emiliano; Barakat, Elsie; Angelini, Angelo; Munzert, Peter; De Leo, Natascia; Boarino, Luca; Giorgis, Fabrizio; Herzig, Hans Peter

    2013-09-01

    We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.

  4. Ultrasonic imaging of textured alumina

    NASA Technical Reports Server (NTRS)

    Stang, David B.; Salem, Jonathan A.; Generazio, Edward R.

    1989-01-01

    Ultrasonic images representing the bulk attenuation and velocity of a set of alumina samples were obtained by a pulse-echo contact scanning technique. The samples were taken from larger bodies that were chemically similar but were processed by extrusion or isostatic processing. The crack growth resistance and fracture toughness of the larger bodies were found to vary with processing method and test orientation. The results presented here demonstrate that differences in texture that contribute to variations in structural performance can be revealed by analytic ultrasonic techniques.

  5. Whole mouse cryo-imaging

    NASA Astrophysics Data System (ADS)

    Wilson, David; Roy, Debashish; Steyer, Grant; Gargesha, Madhusudhana; Stone, Meredith; McKinley, Eliot

    2008-03-01

    The Case cryo-imaging system is a section and image system which allows one to acquire micron-scale, information rich, whole mouse color bright field and molecular fluorescence images of an entire mouse. Cryo-imaging is used in a variety of applications, including mouse and embryo anatomical phenotyping, drug delivery, imaging agents, metastastic cancer, stem cells, and very high resolution vascular imaging, among many. Cryo-imaging fills the gap between whole animal in vivo imaging and histology, allowing one to image a mouse along the continuum from the mouse -> organ -> tissue structure -> cell -> sub-cellular domains. In this overview, we describe the technology and a variety of exciting applications. Enhancements to the system now enable tiled acquisition of high resolution images to cover an entire mouse. High resolution fluorescence imaging, aided by a novel subtraction processing algorithm to remove sub-surface fluorescence, makes it possible to detect fluorescently-labeled single cells. Multi-modality experiments in Magnetic Resonance Imaging and Cryo-imaging of a whole mouse demonstrate superior resolution of cryo-images and efficiency of registration techniques. The 3D results demonstrate the novel true-color volume visualization tools we have developed and the inherent advantage of cryo-imaging in providing unlimited depth of field and spatial resolution. The recent results continue to demonstrate the value cryo-imaging provides in the field of small animal imaging research.

  6. Persistence Mapping Using EUV Solar Imager Data

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Young, C. A.

    2016-01-01

    We describe a simple image processing technique that is useful for the visualization and depiction of gradually evolving or intermittent structures in solar physics extreme-ultraviolet imagery. The technique is an application of image segmentation, which we call "Persistence Mapping," to isolate extreme values in a data set, and is particularly useful for the problem of capturing phenomena that are evolving in both space and time. While integration or "time-lapse" imaging uses the full sample (of size N ), Persistence Mapping rejects (N - 1)/N of the data set and identifies the most relevant 1/N values using the following rule: if a pixel reaches an extreme value, it retains that value until that value is exceeded. The simplest examples isolate minima and maxima, but any quantile or statistic can be used. This paper demonstrates how the technique has been used to extract the dynamics in long-term evolution of comet tails, erupting material, and EUV dimming regions.

  7. Autonomous facial recognition system inspired by human visual system based logarithmical image visualization technique

    NASA Astrophysics Data System (ADS)

    Wan, Qianwen; Panetta, Karen; Agaian, Sos

    2017-05-01

    Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.

  8. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    DOE PAGES

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; ...

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less

  9. Combining atomic force and fluorescence microscopy for analysis of quantum-dot labeled protein–DNA complexes

    PubMed Central

    Ebenstein, Yuval; Gassman, Natalie; Kim, Soohong; Weiss, Shimon

    2011-01-01

    Atomic force microscopy (AFM) and fluorescence microscopy are widely used for the study of protein-DNA interactions. While AFM excels in its ability to elucidate structural detail and spatial arrangement, it lacks the ability to distinguish between similarly sized objects in a complex system. This information is readily accessible to optical imaging techniques via site-specific fluorescent labels, which enable the direct detection and identification of multiple components simultaneously. Here, we show how the utilization of semiconductor quantum dots (QDs), serving as contrast agents for both AFM topography and fluorescence imaging, facilitates the combination of both imaging techniques, and with the addition of a flow based DNA extension method for sample deposition, results in a powerful tool for the study of protein-DNA complexes. We demonstrate the inherent advantages of this novel combination of techniques by imaging individual RNA polymerases (RNAP) on T7 genomic DNA. PMID:19452448

  10. Measurement of absolute regional lung air volumes from near-field x-ray speckles.

    PubMed

    Leong, Andrew F T; Paganin, David M; Hooper, Stuart B; Siew, Melissa L; Kitchen, Marcus J

    2013-11-18

    Propagation-based phase contrast x-ray (PBX) imaging yields high contrast images of the lung where airways that overlap in projection coherently scatter the x-rays, giving rise to a speckled intensity due to interference effects. Our previous works have shown that total and regional changes in lung air volumes can be accurately measured from two-dimensional (2D) absorption or phase contrast images when the subject is immersed in a water-filled container. In this paper we demonstrate how the phase contrast speckle patterns can be used to directly measure absolute regional lung air volumes from 2D PBX images without the need for a water-filled container. We justify this technique analytically and via simulation using the transport-of-intensity equation and calibrate the technique using our existing methods for measuring lung air volume. Finally, we show the full capabilities of this technique for measuring regional differences in lung aeration.

  11. In vivo multiphoton imaging of bile duct ligation

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Li, Feng-Chieh; Chen, Hsiao-Chin; Chang, Po-shou; Yang, Shu-Mei; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2008-02-01

    Bile is the exocrine secretion of liver and synthesized by hepatocytes. It is drained into duodenum for the function of digestion or drained into gallbladder for of storage. Bile duct obstruction is a blockage in the tubes that carry bile to the gallbladder and small intestine. However, Bile duct ligation results in the changes of bile acids in serum, liver, urine, and feces1, 2. In this work, we demonstrate a novel technique to image this pathological condition by using a newly developed in vivo imaging system, which includes multiphoton microscopy and intravital hepatic imaging chamber. The images we acquired demonstrate the uptake, processing of 6-CFDA in hepatocytes and excretion of CF in the bile canaliculi. In addition to imaging, we can also measure kinetics of the green fluorescence intensity.

  12. Real-time high dynamic range laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  13. Optically Sectioned Imaging of Microvasculature of In-Vivo and Ex-Vivo Thick Tissue Models with Speckle-illumination HiLo Microscopy and HiLo Image Processing Implementation in MATLAB Architecture

    NASA Astrophysics Data System (ADS)

    Suen, Ricky Wai

    The work described in this thesis covers the conversion of HiLo image processing into MATLAB architecture and the use of speckle-illumination HiLo microscopy for use of ex-vivo and in-vivo imaging of thick tissue models. HiLo microscopy is a wide-field fluorescence imaging technique and has been demonstrated to produce optically sectioned images comparable to confocal in thin samples. The imaging technique was developed by Jerome Mertz and the Boston University Biomicroscopy Lab and has been implemented in our lab as a stand-alone optical setup and a modification to a conventional fluorescence microscope. Speckle-illumination HiLo microscopy combines two images taken under speckle-illumination and standard uniform-illumination to generate an optically sectioned image that reject out-of-focus fluorescence. The evaluated speckle contrast in the images is used as a weighting function where elements that move out-of-focus have a speckle contrast that decays to zero. The experiments shown here demonstrate the capability of our HiLo microscopes to produce optically-sectioned images of the microvasculature of ex-vivo and in-vivo thick tissue models. The HiLo microscope were used to image the microvasculature of ex-vivo mouse heart sections prepared for optical histology and the microvasculature of in-vivo rodent dorsal window chamber models. Studies in label-free surface profiling with HiLo microscopy is also presented.

  14. Infrared laser transillumination CT imaging system using parallel fiber arrays and optical switches for finger joint imaging

    NASA Astrophysics Data System (ADS)

    Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao

    2004-05-01

    The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.

  15. A similarity-based data warehousing environment for medical images.

    PubMed

    Teixeira, Jefferson William; Annibal, Luana Peixoto; Felipe, Joaquim Cezar; Ciferri, Ricardo Rodrigues; Ciferri, Cristina Dutra de Aguiar

    2015-11-01

    A core issue of the decision-making process in the medical field is to support the execution of analytical (OLAP) similarity queries over images in data warehousing environments. In this paper, we focus on this issue. We propose imageDWE, a non-conventional data warehousing environment that enables the storage of intrinsic features taken from medical images in a data warehouse and supports OLAP similarity queries over them. To comply with this goal, we introduce the concept of perceptual layer, which is an abstraction used to represent an image dataset according to a given feature descriptor in order to enable similarity search. Based on this concept, we propose the imageDW, an extended data warehouse with dimension tables specifically designed to support one or more perceptual layers. We also detail how to build an imageDW and how to load image data into it. Furthermore, we show how to process OLAP similarity queries composed of a conventional predicate and a similarity search predicate that encompasses the specification of one or more perceptual layers. Moreover, we introduce an index technique to improve the OLAP query processing over images. We carried out performance tests over a data warehouse environment that consolidated medical images from exams of several modalities. The results demonstrated the feasibility and efficiency of our proposed imageDWE to manage images and to process OLAP similarity queries. The results also demonstrated that the use of the proposed index technique guaranteed a great improvement in query processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A dual-modal retinal imaging system with adaptive optics.

    PubMed

    Meadway, Alexander; Girkin, Christopher A; Zhang, Yuhua

    2013-12-02

    An adaptive optics scanning laser ophthalmoscope (AO-SLO) is adapted to provide optical coherence tomography (OCT) imaging. The AO-SLO function is unchanged. The system uses the same light source, scanning optics, and adaptive optics in both imaging modes. The result is a dual-modal system that can acquire retinal images in both en face and cross-section planes at the single cell level. A new spectral shaping method is developed to reduce the large sidelobes in the coherence profile of the OCT imaging when a non-ideal source is used with a minimal introduction of noise. The technique uses a combination of two existing digital techniques. The thickness and position of the traditionally named inner segment/outer segment junction are measured from individual photoreceptors. In-vivo images of healthy and diseased human retinas are demonstrated.

  17. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    NASA Technical Reports Server (NTRS)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  18. Planar quadrature RF transceiver design using common-mode differential-mode (CMDM) transmission line method for 7T MR imaging.

    PubMed

    Li, Ye; Yu, Baiying; Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang

    2013-01-01

    The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.

  19. Demonstration of a single-wavelength spectral-imaging-based Thai jasmine rice identification

    NASA Astrophysics Data System (ADS)

    Suwansukho, Kajpanya; Sumriddetchkajorn, Sarun; Buranasiri, Prathan

    2011-07-01

    A single-wavelength spectral-imaging-based Thai jasmine rice breed identification is demonstrated. Our nondestructive identification approach relies on a combination of fluorescent imaging and simple image processing techniques. Especially, we apply simple image thresholding, blob filtering, and image subtracting processes to either a 545 or a 575nm image in order to identify our desired Thai jasmine rice breed from others. Other key advantages include no waste product and fast identification time. In our demonstration, UVC light is used as our exciting light, a liquid crystal tunable optical filter is used as our wavelength seclector, and a digital camera with 640activepixels×480activepixels is used to capture the desired spectral image. Eight Thai rice breeds having similar size and shape are tested. Our experimental proof of concept shows that by suitably applying image thresholding, blob filtering, and image subtracting processes to the selected fluorescent image, the Thai jasmine rice breed can be identified with measured false acceptance rates of <22.9% and <25.7% for spectral images at 545 and 575nm wavelengths, respectively. A measured fast identification time is 25ms, showing high potential for real-time applications.

  20. Nanoscale Fresnel coherent diffraction imaging tomography using ptychography.

    PubMed

    Peterson, I; Abbey, B; Putkunz, C T; Vine, D J; van Riessen, G A; Cadenazzi, G A; Balaur, E; Ryan, R; Quiney, H M; McNulty, I; Peele, A G; Nugent, K A

    2012-10-22

    We demonstrate Fresnel Coherent Diffractive Imaging (FCDI) tomography in the X-ray regime. The method uses an incident X-ray illumination with known curvature in combination with ptychography to overcome existing problems in diffraction imaging. The resulting tomographic reconstruction represents a 3D map of the specimen's complex refractive index at nano-scale resolution. We use this technique to image a lithographically fabricated glass capillary, in which features down to 70nm are clearly resolved.

  1. Pulse sliced picosecond Ballistic Imaging and two planar elastic scattering: Development of the techniques and their application to diesel sprays

    NASA Astrophysics Data System (ADS)

    Duran, Sean Patrick Hynes

    A line of sight imaging technique was developed which utilized pulse slicing of laser pulses to shorten the duration of the parent laser pulse, thereby making time gating more effective at removing multiple scattered light. This included the development of an optical train which utilized a Kerr cell to selectively pass the initial part of the laser pulse while rejecting photons contained later within the pulse. This line of sight ballistic imaging technique was applied to image high-pressure fuel sprays injected into conditions typically encountered in a diesel combustion chamber. Varying the environmental conditions into which the fuel was injected revealed trends in spray behavior which depend on both temperature and pressure. Different fuel types were also studied in this experiment which demonstrated remarkably different shedding structures from one another. Additional experiments were performed to characterize the imaging technique at ambient conditions. The technique was modified to use two wavelengths to allow further rejection of scattered light. The roles of spatial, temporal and polarization filtration were examined by imaging an USAF 1951 line-pair target through a highly scattering field of polystyrene micro-spheres. The optical density of the scattering field was varied by both the optical path length and number densities of the spheres. The equal optical density, but with variable path length results demonstrated the need for an aggressively shorter pulse length to effectively image the distance scales typical encountered in the primary breakup regions of diesel sprays. Results indicate that the system performance improved via the use of two wavelengths. A final investigation was undertaken to image coherent light which has elastically scattered orthogonal to the direction of the laser pulse. Two wavelengths were focused into ˜150 micron sheets via a cylindrical lens and passed under the injector nozzle. The two sheets were adjustable spatially to allow probing of the sprays three dimensional structure. The test matrix included two nozzle diameters, 160 and 320 microns, and two fuels dodecane and methyl oleate. Results are presented comparing the fuels and the effects of nozzle diameter. A mathematical interpretation of the results is also presented.

  2. Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Kalinovsky, A.; Liauchuk, V.; Tarasau, A.

    2017-05-01

    In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.

  3. High resolution and deep tissue imaging using a near infrared acoustic resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Moothanchery, Mohesh; Sharma, Arunima; Periyasamy, Vijitha; Pramanik, Manojit

    2018-02-01

    It is always a great challenge for pure optical techniques to maintain good resolution and imaging depth at the same time. Photoacoustic imaging is an emerging technique which can overcome the limitation by pulsed light illumination and acoustic detection. Here, we report a Near Infrared Acoustic-Resolution Photoacoustic Microscopy (NIR-AR-PAM) systm with 30 MHz transducer and 1064 nm illumination which can achieve a lateral resolution of around 88 μm and imaging depth of 9.2 mm. Compared to visible light NIR beam can penetrate deeper in biological tissue due to weaker optical attenuation. In this work, we also demonstrated the in vivo imaging capabilty of NIRARPAM by near infrared detection of SLN with black ink as exogenous photoacoustic contrast agent in a rodent model.

  4. Dark-field hyperspectral X-ray imaging

    PubMed Central

    Egan, Christopher K.; Jacques, Simon D. M.; Connolley, Thomas; Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul; Cernik, Robert J.

    2014-01-01

    In recent times, there has been a drive to develop non-destructive X-ray imaging techniques that provide chemical or physical insight. To date, these methods have generally been limited; either requiring raster scanning of pencil beams, using narrow bandwidth radiation and/or limited to small samples. We have developed a novel full-field radiographic imaging technique that enables the entire physio-chemical state of an object to be imaged in a single snapshot. The method is sensitive to emitted and scattered radiation, using a spectral imaging detector and polychromatic hard X-radiation, making it particularly useful for studying large dense samples for materials science and engineering applications. The method and its extension to three-dimensional imaging is validated with a series of test objects and demonstrated to directly image the crystallographic preferred orientation and formed precipitates across an aluminium alloy friction stir weld section. PMID:24808753

  5. High dynamic range imaging by pupil single-mode filtering and remapping

    NASA Astrophysics Data System (ADS)

    Perrin, G.; Lacour, S.; Woillez, J.; Thiébaut, É.

    2006-12-01

    Because of atmospheric turbulence, obtaining high angular resolution images with a high dynamic range is difficult even in the near-infrared domain of wavelengths. We propose a novel technique to overcome this issue. The fundamental idea is to apply techniques developed for long baseline interferometry to the case of a single-aperture telescope. The pupil of the telescope is broken down into coherent subapertures each feeding a single-mode fibre. A remapping of the exit pupil allows interfering all subapertures non-redundantly. A diffraction-limited image with very high dynamic range is reconstructed from the fringe pattern analysis with aperture synthesis techniques, free of speckle noise. The performances of the technique are demonstrated with simulations in the visible range with an 8-m telescope. Raw dynamic ranges of 1:106 can be obtained in only a few tens of seconds of integration time for bright objects.

  6. Performance Evaluation of Adaptive Imaging Based on Multiphase Apodization with Cross-correlation: A Pilot Study in Abdominal Ultrasound.

    PubMed

    Shin, Junseob; Chen, Yu; Malhi, Harshawn; Chen, Frank; Yen, Jesse

    2018-05-01

    Degradation of image contrast caused by phase aberration, off-axis clutter, and reverberation clutter remains one of the most important problems in abdominal ultrasound imaging. Multiphase apodization with cross-correlation (MPAX) is a novel beamforming technique that enhances ultrasound image contrast by adaptively suppressing unwanted acoustic clutter. MPAX employs multiple pairs of complementary sinusoidal phase apodizations to intentionally introduce grating lobes that can be used to derive a weighting matrix, which mostly preserves the on-axis signals from tissue but reduces acoustic clutter contributions when multiplied with the beamformed radio-frequency (RF) signals. In this paper, in vivo performance of the MPAX technique was evaluated in abdominal ultrasound using data sets obtained from 10 human subjects referred for abdominal ultrasound at the USC Keck School of Medicine. Improvement in image contrast was quantified, first, by the contrast-to-noise ratio (CNR) and, second, by the rating of two experienced radiologists. The MPAX technique was evaluated for longitudinal and transverse views of the abdominal aorta, the inferior vena cava, the gallbladder, and the portal vein. Our in vivo results and analyses demonstrate the feasibility of the MPAX technique in enhancing image contrast in abdominal ultrasound and show potential for creating high contrast ultrasound images with improved target detectability and diagnostic confidence.

  7. Fast widefield techniques for fluorescence and phase endomicroscopy

    NASA Astrophysics Data System (ADS)

    Ford, Tim N.

    Endomicroscopy is a recent development in biomedical optics which gives researchers and physicians microscope-resolution views of intact tissue to complement macroscopic visualization during endoscopy screening. This thesis presents HiLo endomicroscopy and oblique back-illumination endomicroscopy, fast wide-field imaging techniques with fluorescence and phase contrast, respectively. Fluorescence imaging in thick tissue is often hampered by strong out-of-focus background signal. Laser scanning confocal endomicroscopy has been developed for optically-sectioned imaging free from background, but reliance on mechanical scanning fundamentally limits the frame rate and represents significant complexity and expense. HiLo is a fast, simple, widefield fluorescence imaging technique which rejects out-of-focus background signal without the need for scanning. It works by acquiring two images of the sample under uniform and structured illumination and synthesizing an optically sectioned result with real-time image processing. Oblique back-illumination microscopy (OBM) is a label-free technique which allows, for the first time, phase gradient imaging of sub-surface morphology in thick scattering tissue with a reflection geometry. OBM works by back-illuminating the sample with the oblique diffuse reflectance from light delivered via off-axis optical fibers. The use of two diametrically opposed illumination fibers allows simultaneous and independent measurement of phase gradients and absorption contrast. Video-rate single-exposure operation using wavelength multiplexing is demonstrated.

  8. Rose Bengal Photothrombosis by Confocal Optical Imaging In Vivo: A Model of Single Vessel Stroke.

    PubMed

    Talley Watts, Lora; Zheng, Wei; Garling, R Justin; Frohlich, Victoria C; Lechleiter, James Donald

    2015-06-23

    In vivo imaging techniques have increased in utilization due to recent advances in imaging dyes and optical technologies, allowing for the ability to image cellular events in an intact animal. Additionally, the ability to induce physiological disease states such as stroke in vivo increases its utility. The technique described herein allows for physiological assessment of cellular responses within the CNS following a stroke and can be adapted for other pathological conditions being studied. The technique presented uses laser excitation of the photosensitive dye Rose Bengal in vivo to induce a focal ischemic event in a single blood vessel. The video protocol demonstrates the preparation of a thin-skulled cranial window over the somatosensory cortex in a mouse for the induction of a Rose Bengal photothrombotic event keeping injury to the underlying dura matter and brain at a minimum. Surgical preparation is initially performed under a dissecting microscope with a custom-made surgical/imaging platform, which is then transferred to a confocal microscope equipped with an inverted objective adaptor. Representative images acquired utilizing this protocol are presented as well as time-lapse sequences of stroke induction. This technique is powerful in that the same area can be imaged repeatedly on subsequent days facilitating longitudinal in vivo studies of pathological processes following stroke.

  9. A fast and fully automatic registration approach based on point features for multi-source remote-sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Le; Zhang, Dengrong; Holden, Eun-Jung

    2008-07-01

    Automatic registration of multi-source remote-sensing images is a difficult task as it must deal with the varying illuminations and resolutions of the images, different perspectives and the local deformations within the images. This paper proposes a fully automatic and fast non-rigid image registration technique that addresses those issues. The proposed technique performs a pre-registration process that coarsely aligns the input image to the reference image by automatically detecting their matching points by using the scale invariant feature transform (SIFT) method and an affine transformation model. Once the coarse registration is completed, it performs a fine-scale registration process based on a piecewise linear transformation technique using feature points that are detected by the Harris corner detector. The registration process firstly finds in succession, tie point pairs between the input and the reference image by detecting Harris corners and applying a cross-matching strategy based on a wavelet pyramid for a fast search speed. Tie point pairs with large errors are pruned by an error-checking step. The input image is then rectified by using triangulated irregular networks (TINs) to deal with irregular local deformations caused by the fluctuation of the terrain. For each triangular facet of the TIN, affine transformations are estimated and applied for rectification. Experiments with Quickbird, SPOT5, SPOT4, TM remote-sensing images of the Hangzhou area in China demonstrate the efficiency and the accuracy of the proposed technique for multi-source remote-sensing image registration.

  10. Terahertz in-line digital holography of human hepatocellular carcinoma tissue.

    PubMed

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-13

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  11. Terahertz in-line digital holography of human hepatocellular carcinoma tissue

    PubMed Central

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-01-01

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer. PMID:25676705

  12. Terahertz in-line digital holography of human hepatocellular carcinoma tissue

    NASA Astrophysics Data System (ADS)

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-01

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  13. Comparison of imaging characteristics of multiple-beam equalization and storage phosphor direct digitizer radiographic systems

    NASA Astrophysics Data System (ADS)

    Sankaran, A.; Chuang, Keh-Shih; Yonekawa, Hisashi; Huang, H. K.

    1992-06-01

    The imaging characteristics of two chest radiographic equipment, Advanced Multiple Beam Equalization Radiography (AMBER) and Konica Direct Digitizer [using a storage phosphor (SP) plate] systems have been compared. The variables affecting image quality and the computer display/reading systems used are detailed. Utilizing specially designed wedge, geometric, and anthropomorphic phantoms, studies were conducted on: exposure and energy response of detectors; nodule detectability; different exposure techniques; various look- up tables (LUTs), gray scale displays and laser printers. Methods for scatter estimation and reduction were investigated. It is concluded that AMBER with screen-film and equalization techniques provides better nodule detectability than SP plates. However, SP plates have other advantages such as flexibility in the selection of exposure techniques, image processing features, and excellent sensitivity when combined with optimum reader operating modes. The equalization feature of AMBER provides better nodule detectability under the denser regions of the chest. Results of diagnostic accuracy are demonstrated with nodule detectability plots and analysis of images obtained with phantoms.

  14. High-speed transport-of-intensity phase microscopy with an electrically tunable lens.

    PubMed

    Zuo, Chao; Chen, Qian; Qu, Weijuan; Asundi, Anand

    2013-10-07

    We present a high-speed transport-of-intensity equation (TIE) quantitative phase microscopy technique, named TL-TIE, by combining an electrically tunable lens with a conventional transmission microscope. This permits the specimen at different focus position to be imaged in rapid succession, with constant magnification and no physically moving parts. The simplified image stack collection significantly reduces the acquisition time, allows for the diffraction-limited through-focus intensity stack collection at 15 frames per second, making dynamic TIE phase imaging possible. The technique is demonstrated by profiling of microlens array using optimal frequency selection scheme, and time-lapse imaging of live breast cancer cells by inversion the defocused phase optical transfer function to correct the phase blurring in traditional TIE. Experimental results illustrate its outstanding capability of the technique for quantitative phase imaging, through a simple, non-interferometric, high-speed, high-resolution, and unwrapping-free approach with prosperous applications in micro-optics, life sciences and bio-photonics.

  15. Toward in-vivo photoacoustic imaging of human ovarian tissue for cancer detection

    NASA Astrophysics Data System (ADS)

    Aguirre, Andres; Kumavor, Patrick; Ardeshirpour, Yasaman; Sanders, Mary M.; Brewer, Molly; Zhu, Quing

    2011-03-01

    Currently, most of the cancers in the ovary are detected when they have already metastasized to other parts of the body. As a result, ovarian cancer has the highest mortality of all gynecological cancers with a 5-year survival rate of 30% or less [1]. The reason is the lack of reliable symptoms as well as the lack of efficacious screening techniques [2,3]. Thus, there is an urgent need to improve the current diagnostic techniques. We have investigated the potential role of co-registered photoacoustic and ultrasound imaging in ovarian cancer detection. In an effort to bring this technique closer to clinical application, we have developed a co-registered ultrasound and photoacoustic transvaginal probe. A fiber coupling assembly has been developed to deliver the light from around the transducer for reflection geometry imaging. Co-registered ultrasound and photoacoustic images of swine ovaries through vagina wall muscle and human ovaries using the aforementioned probe, demonstrate the potential of photoacoustic imaging to non-invasively detect ovarian cancer in vivo.

  16. Fast imaging of live organisms with sculpted light sheets

    NASA Astrophysics Data System (ADS)

    Chmielewski, Aleksander K.; Kyrsting, Anders; Mahou, Pierre; Wayland, Matthew T.; Muresan, Leila; Evers, Jan Felix; Kaminski, Clemens F.

    2015-04-01

    Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed.

  17. Depth-Resolved Multispectral Sub-Surface Imaging Using Multifunctional Upconversion Phosphors with Paramagnetic Properties

    PubMed Central

    Ovanesyan, Zaven; Mimun, L. Christopher; Kumar, Gangadharan Ajith; Yust, Brian G.; Dannangoda, Chamath; Martirosyan, Karen S.; Sardar, Dhiraj K.

    2015-01-01

    Molecular imaging is very promising technique used for surgical guidance, which requires advancements related to properties of imaging agents and subsequent data retrieval methods from measured multispectral images. In this article, an upconversion material is introduced for subsurface near-infrared imaging and for the depth recovery of the material embedded below the biological tissue. The results confirm significant correlation between the analytical depth estimate of the material under the tissue and the measured ratio of emitted light from the material at two different wavelengths. Experiments with biological tissue samples demonstrate depth resolved imaging using the rare earth doped multifunctional phosphors. In vitro tests reveal no significant toxicity, whereas the magnetic measurements of the phosphors show that the particles are suitable as magnetic resonance imaging agents. The confocal imaging of fibroblast cells with these phosphors reveals their potential for in vivo imaging. The depth-resolved imaging technique with such phosphors has broad implications for real-time intraoperative surgical guidance. PMID:26322519

  18. Segmentation of radiologic images with self-organizing maps: the segmentation problem transformed into a classification task

    NASA Astrophysics Data System (ADS)

    Pelikan, Erich; Vogelsang, Frank; Tolxdorff, Thomas

    1996-04-01

    The texture-based segmentation of x-ray images of focal bone lesions using topological maps is introduced. Texture characteristics are described by image-point correlation of feature images to feature vectors. For the segmentation, the topological map is labeled using an improved labeling strategy. Results of the technique are demonstrated on original and synthetic x-ray images and quantified with the aid of quality measures. In addition, a classifier-specific contribution analysis is applied for assessing the feature space.

  19. Prospects and challenges of quantitative phase imaging in tumor cell biology

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walz-Flannigan, A; Lucas, J; Buchanan, K

    Purpose: Manual technique selection in radiography is needed for imaging situations where there is difficulty in proper positioning for AEC, prosthesis, for non-bucky imaging, or for guiding image repeats. Basic information about how to provide consistent image signal and contrast for various kV and tissue thickness is needed to create manual technique charts, and relevant for physicists involved in technique chart optimization. Guidance on technique combinations and rules-of-thumb to provide consistent image signal still in use today are based on measurements with optical density of screen-film combinations and older generation x-ray systems. Tools such as a kV-scale chart can bemore » useful to know how to modify mAs when kV is changed in order to maintain consistent image receptor signal level. We evaluate these tools for modern equipment for use in optimizing proper size scaled techniques. Methods: We used a water phantom to measure calibrated signal change for CR and DR (with grid) for various beam energies. Tube current values were calculated that would yield a consistent image signal response. Data was fit to provide sufficient granularity of detail to compose technique-scale chart. Tissue thickness approximated equivalence to 80% of water depth. Results: We created updated technique-scale charts, providing mAs and kV combinations to achieve consistent signal for CR and DR for various tissue equivalent thicknesses. We show how this information can be used to create properly scaled size-based manual technique charts. Conclusion: Relative scaling of mAs and kV for constant signal (i.e. the shape of the curve) appears substantially similar between film-screen and CR/DR. This supports the notion that image receptor related differences are minor factors for relative (not absolute) changes in mAs with varying kV. However, as demonstrated creation of these difficult to find detailed technique-scales are useful tools for manual chart optimization.« less

  1. Frequency bandwidth extension by use of multiple Zeeman field offsets for electron spin-echo EPR oxygen imaging of large objects

    PubMed Central

    Seifi, Payam; Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: Electron spin-echo (ESE) oxygen imaging is a new and evolving electron paramagnetic resonance (EPR) imaging (EPRI) modality that is useful for physiological in vivo applications, such as EPR oxygen imaging (EPROI), with potential application to imaging of multicentimeter objects as large as human tumors. A present limitation on the size of the object to be imaged at a given resolution is the frequency bandwidth of the system, since the location is encoded as a frequency offset in ESE imaging. The authors’ aim in this study was to demonstrate the object size advantage of the multioffset bandwidth extension technique.Methods: The multiple-stepped Zeeman field offset (or simply multi-B) technique was used for imaging of an 8.5-cm-long phantom containing a narrow single line triaryl methyl compound (trityl) solution at the 250 MHz imaging frequency. The image is compared to a standard single-field ESE image of the same phantom.Results: For the phantom used in this study, transverse relaxation (T2e) electron spin-echo (ESE) images from multi-B acquisition are more uniform, contain less prominent artifacts, and have a better signal to noise ratio (SNR) compared to single-field T2e images.Conclusions: The multi-B method is suitable for imaging of samples whose physical size restricts the applicability of the conventional single-field ESE imaging technique. PMID:21815379

  2. A maximum entropy reconstruction technique for tomographic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Bilsky, A. V.; Lozhkin, V. A.; Markovich, D. M.; Tokarev, M. P.

    2013-04-01

    This paper studies a novel approach for reducing tomographic PIV computational complexity. The proposed approach is an algebraic reconstruction technique, termed MENT (maximum entropy). This technique computes the three-dimensional light intensity distribution several times faster than SMART, using at least ten times less memory. Additionally, the reconstruction quality remains nearly the same as with SMART. This paper presents the theoretical computation performance comparison for MENT, SMART and MART, followed by validation using synthetic particle images. Both the theoretical assessment and validation of synthetic images demonstrate significant computational time reduction. The data processing accuracy of MENT was compared to that of SMART in a slot jet experiment. A comparison of the average velocity profiles shows a high level of agreement between the results obtained with MENT and those obtained with SMART.

  3. Magnetic Imaging: a New Tool for UK National Nuclear Security

    NASA Astrophysics Data System (ADS)

    Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-01

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  4. Magnetic Imaging: a New Tool for UK National Nuclear Security

    PubMed Central

    Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-01

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications. PMID:25608957

  5. Magnetic imaging: a new tool for UK national nuclear security.

    PubMed

    Darrer, Brendan J; Watson, Joe C; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-22

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  6. Multispectral Wavefronts Retrieval in Digital Holographic Three-Dimensional Imaging Spectrometry

    NASA Astrophysics Data System (ADS)

    Yoshimori, Kyu

    2010-04-01

    This paper deals with a recently developed passive interferometric technique for retrieving a set of spectral components of wavefronts that are propagating from a spatially incoherent, polychromatic object. The technique is based on measurement of 5-D spatial coherence function using a suitably designed interferometer. By applying signal processing, including aperture synthesis and spectral decomposition, one may obtains a set of wavefronts of different spectral bands. Since each wavefront is equivalent to the complex Fresnel hologram at a particular spectrum of the polychromatic object, application of the conventional Fresnel transform yields 3-D image of different spectrum. Thus, this technique of multispectral wavefronts retrieval provides a new type of 3-D imaging spectrometry based on a fully passive interferometry. Experimental results are also shown to demonstrate the validity of the method.

  7. Demonstration of movement in the sacroiliac joint using ultrasound

    NASA Astrophysics Data System (ADS)

    Krupinski, Elizabeth A.; Brooks, William J.; Lund, Pamela J.

    1995-05-01

    The goal of this study was to demonstrate quantitatively, using ultrasound (US) recording techniques, the extent of motion of the sacroiliac joint achieved using manual medicine techniques. Initial judgements of perceived (i.e., felt) SI mobility during manual examination were made on 22 subjects. Baseline no movement ultrasound images (static) were obtained of the left and right SI joints at two levels-- posterior-superior-iliac-spine and inferior (PSIS, INF)--and two projections (AP and LAT). Manual medicine spring testing of the SI joint was then performed while ultrasound recordings (on video) were made. The differences between baseline separation of the SI joint and displacement distance during spring testing were measured by six radiologists who typically read US images. Significant movement of at least one SI joint was demonstrated in 91% of the subjects using ultrasound recordings. The extent of movement appeared to corroborate the experience of manual medicine practitioners.

  8. Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting

    PubMed Central

    Yun, S. H.; Tearney, G. J.; de Boer, J. F.; Bouma, B. E.

    2009-01-01

    A novel technique using an acousto-optic frequency shifter in optical frequency domain imaging (OFDI) is presented. The frequency shift eliminates the ambiguity between positive and negative differential delays, effectively doubling the interferometric ranging depth while avoiding image cross-talk. A signal processing algorithm is demonstrated to accommodate nonlinearity in the tuning slope of the wavelength-swept OFDI laser source. PMID:19484034

  9. Hiding Techniques for Dynamic Encryption Text based on Corner Point

    NASA Astrophysics Data System (ADS)

    Abdullatif, Firas A.; Abdullatif, Alaa A.; al-Saffar, Amna

    2018-05-01

    Hiding technique for dynamic encryption text using encoding table and symmetric encryption method (AES algorithm) is presented in this paper. The encoding table is generated dynamically from MSB of the cover image points that used as the first phase of encryption. The Harris corner point algorithm is applied on cover image to generate the corner points which are used to generate dynamic AES key to second phase of text encryption. The embedded process in the LSB for the image pixels except the Harris corner points for more robust. Experimental results have demonstrated that the proposed scheme have embedding quality, error-free text recovery, and high value in PSNR.

  10. The Wide-Field Imaging Interferometry Testbed (WIIT): Recent Progress and Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.; Frey, Bradley J.; Leisawitz, David T.; Lyon, Richard G.; Maher, Stephen F.; Martino, Anthony J.

    2008-01-01

    Continued research with the Wide-Field Imaging Interferometry Testbed (WIIT) has achieved several important milestones. We have moved WIIT into the Advanced Interferometry and Metrology (AIM) Laboratory at Goddard, and have characterized the testbed in this well-controlled environment. The system is now completely automated and we are in the process of acquiring large data sets for analysis. In this paper, we discuss these new developments and outline our future research directions. The WIIT testbed, combined with new data analysis techniques and algorithms, provides a demonstration of the technique of wide-field interferometric imaging, a powerful tool for future space-borne interferometers.

  11. Spectroscopic techniques (Mössbauer spectrometry, NMR, ESR,…) as tools to resolve doubtful NMR images: Study of the craniopharyngioma tumor

    NASA Astrophysics Data System (ADS)

    Rimbert, J. N.; Dumas, F.; Lafargue, C.; Kellershohn, C.; Brunelle, F.; Lallemand, D.

    1990-07-01

    Craniopharyngioma, an intracranial tumor, exhibits hyperintensity in the Spin-Echo-T2-NMR image and a hyposignal in the SE-T1-image. However, in some cases (15-20% cases), hypersignals are seen in both SE-T1 and T2-MRI. Using spectroscopic techniques, Mössbauer spectrometry in particular, we have demonstrated that the T1 hypersignal is due to ferritin, dissolved in the cystic liquid, after tumor cell lysis, in the course of time. Other possible reasons inducing a shortening of the T1 relaxation time (presence of lipids, intratumoral hemorrhage) have been rejected.

  12. Status of the Whipple Observatory Cerenkov air shower imaging telescope array

    NASA Technical Reports Server (NTRS)

    Akerlof, C. W.; Cawley, M. F.; Fegan, D. J.; Fennell, S.; Freeman, S.; Frishman, D.; Harris, K.; Hillas, A. M.; Jennings, D.; Lamb, R. C.

    1992-01-01

    Recently the power of the Cerenkov imaging technique in Very High Energy gamma-ray astronomy was demonstrated by the detection of the Crab nebula at high statistical significance. In order to further develop this technique to allow the detection of weaker or more distant sources a second 10 m class reflector was constructed about 120 m from the original instrument. The addition of the second reflector will allow both a reduction in the energy threshold and an improvement in the rejection of the hadronic background. The design and construction of the second reflector, Gamma Ray Astrophysics New Imaging TElescope (GRANITE) is described.

  13. Phase-amplitude imaging: its application to fully automated analysis of magnetic field measurements in laser-produced plasmas.

    PubMed

    Kalal, M; Nugent, K A; Luther-Davies, B

    1987-05-01

    An interferometric technique which enables simultaneous phase and amplitude imaging of optically transparent objects is discussed with respect to its application for the measurement of spontaneous toroidal magnetic fields generated in laser-produced plasmas. It is shown that this technique can replace the normal independent pair of optical systems (interferometry and shadowgraphy) by one system and use computer image processing to recover both the plasma density and magnetic field information with high accuracy. A fully automatic algorithm for the numerical analysis of the data has been developed and its performance demonstrated for the case of simulated as well as experimental data.

  14. Phase-amplitude imaging: its application to fully automated analysis of magnetic field measurements in laser-produced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalal, M.; Nugent, K.A.; Luther-Davies, B.

    1987-05-01

    An interferometric technique which enables simultaneous phase and amplitude imaging of optically transparent objects is discussed with respect to its application for the measurement of spontaneous toroidal magnetic fields generated in laser-produced plasmas. It is shown that this technique can replace the normal independent pair of optical systems (interferometry and shadowgraphy) by one system and use computer image processing to recover both the plasma density and magnetic field information with high accuracy. A fully automatic algorithm for the numerical analysis of the data has been developed and its performance demonstrated for the case of simulated as well as experimental data.

  15. Photographic image enhancement

    NASA Technical Reports Server (NTRS)

    Hite, Gerald E.

    1990-01-01

    Deblurring capabilities would significantly improve the scientific return from Space Shuttle crew-acquired images of the Earth and the safety of Space Shuttle missions. Deblurring techniques were developed and demonstrated on two digitized images that were blurred in different ways. The first was blurred by a Gaussian blurring function analogous to that caused by atmospheric turbulence, while the second was blurred by improper focussing. It was demonstrated, in both cases, that the nature of the blurring (Gaussian and Airy) and the appropriate parameters could be obtained from the Fourier transformation of their images. The difficulties posed by the presence of noise necessitated special consideration. It was demonstrated that a modified Wiener frequency filter judiciously constructed to avoid over emphasis of frequency regions dominated by noise resulted in substantially improved images. Several important areas of future research were identified. Two areas of particular promise are the extraction of blurring information directly from the spatial images and improved noise abatement form investigations of select spatial regions and the elimination of spike noise.

  16. Digital image enhancement techniques used in some ERTS application problems. [geology, geomorphology, and oceanography

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Billingsley, F. C.

    1974-01-01

    Enhancements discussed include contrast stretching, multiratio color displays, Fourier plane operations to remove striping and boosting MTF response to enhance high spatial frequency content. The use of each technique in a specific application in the fields of geology, geomorphology and oceanography is demonstrated.

  17. Novel Raman Techniques for Imaging and Sensing

    NASA Astrophysics Data System (ADS)

    Edwards, Perry S.

    Raman scattering spectroscopy is extensively demonstrated as a label-free, chemically selective sensing and imaging technique for a multitude of chemical and biological applications. The ability to detect "fingerprint" spectral signatures of individual molecules, without the need to introduce chemical labelers, makes Raman scattering a powerful sensing technique. However, spectroscopy based on spontaneous Raman scattering traditionally suffers from inherently weak signals due to small Raman scattering cross-sections. Thus, considerable efforts have been put forth to find pathways towards enhancing Raman signals to bolster sensitivity for detecting small concentrations of molecules or particles. The development of coherent Raman techniques that can offer orders of magnitude increase in signal have garnered significant interest in recent years for their application in imaging; such techniques include coherent anti-Stokes Raman scattering and stimulated Raman scattering. Additionally, methods to enhance the local field of either the pump or generated Raman signal, such as through surface enhanced Raman scattering, have been investigated for their orders of magnitude improvement in sensitivity and single molecule sensing capability. The work presented in this dissertation describes novel techniques for performing high speed and highly sensitive Raman imaging as well as sensing applications towards bioimaging and biosensing. Coherent anti-Stokes Raman scattering (CARS) is combined with holography to enable recording of high-speed (single laser shot), wide field CARS holograms which can be used to reconstruct the both the amplitude and the phase of the anti-Stokes field therefore allowing 3D imaging. This dissertation explores CARS holography as a viable label-free bio-imaging technique. A Raman scattering particle sensing system is also developed that utilizes wave guide properties of optical fibers and ring-resonators to perform enhanced particle sensing. Resonator-enhanced particle sensing is experimentally examined as a new method for enhancing Raman scattering from particles interacting with circulating optical fields within both a fiber ring-cavity and whispering gallery mode microtoroid microresonators. The achievements described in this dissertation include: (1) Demonstration of the bio-imaging capability of CARS holography by recording of CARS holograms of subcellular components in live cancer (HeLa) cells. (2) Label-free Raman microparticle sensing using a tapered optical fibers. A tapered fiber can guide light to particles adsorbed on the surface of the taper to generate scattered Raman signal which can be collected by a microRaman detection system. (3) Demonstration of the proof of concept of resonator-enhanced Raman spectroscopy in a fiber ring resonator consisting of a section of fiber taper. (4) A method for locking the pump laser to the resonate frequencies of a resonator. This is demonstrated using a fiber ring resonator and microtoroid microresonators. (5) Raman scattered signal from particles adhered to microtoroid microresonators is acquired using 5 seconds of signal integration time and with the pump laser locked to a cavity resonance. (6) Theoretical analysis is performed that indicates resonator-enhanced Raman scattering from microparticles adhered to microresonators can be achieved with the pump laser locked to the frequency of a high-Q cavity resonant mode.

  18. Revealing Shadows 1

    NASA Image and Video Library

    2012-07-23

    These images from NASA Dawn spacecraft, located in Vesta Caparronia quadrangle, in Vesta northern hemisphere, demonstrate a special analytical technique, which results in shadowed areas of Vesta surface becoming illuminated.

  19. Imaging the inside of thick structures using cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guardincerri, E., E-mail: elenaguardincerri@lanl.gov; Durham, J. M.; Morris, C.

    2016-01-15

    The authors present here a new method to image reinforcement elements inside thick structures and the results of a demonstration measurement performed on a mock-up wall built at Los Alamos National Laboratory. The method, referred to as “multiple scattering muon radiography”, relies on the use of cosmic-ray muons as probes. The work described in this article was performed to prove the viability of the technique as a means to image the interior of the dome of Florence Cathedral Santa Maria del Fiore, one of the UNESCO World Heritage sites and among the highest profile buildings in existence. Its result showsmore » the effectiveness of the technique as a tool to radiograph thick structures and image denser object inside them.« less

  20. Subsurface imaging and cell refractometry using quantitative phase/ shear-force feedback microscopy

    NASA Astrophysics Data System (ADS)

    Edward, Kert; Farahi, Faramarz

    2009-10-01

    Over the last few years, several novel quantitative phase imaging techniques have been developed for the study of biological cells. However, many of these techniques are encumbered by inherent limitations including 2π phase ambiguities and diffraction limited spatial resolution. In addition, subsurface information in the phase data is not exploited. We hereby present a novel quantitative phase imaging system without 2 π ambiguities, which also allows for subsurface imaging and cell refractometry studies. This is accomplished by utilizing simultaneously obtained shear-force topography information. We will demonstrate how the quantitative phase and topography data can be used for subsurface and cell refractometry analysis and will present results for a fabricated structure and a malaria infected red blood cell.

  1. Depth-resolved analytical model and correction algorithm for photothermal optical coherence tomography

    PubMed Central

    Lapierre-Landry, Maryse; Tucker-Schwartz, Jason M.; Skala, Melissa C.

    2016-01-01

    Photothermal OCT (PT-OCT) is an emerging molecular imaging technique that occupies a spatial imaging regime between microscopy and whole body imaging. PT-OCT would benefit from a theoretical model to optimize imaging parameters and test image processing algorithms. We propose the first analytical PT-OCT model to replicate an experimental A-scan in homogeneous and layered samples. We also propose the PT-CLEAN algorithm to reduce phase-accumulation and shadowing, two artifacts found in PT-OCT images, and demonstrate it on phantoms and in vivo mouse tumors. PMID:27446693

  2. Optimization of white matter tractography for pre-surgical planning and image-guided surgery.

    PubMed

    Arfanakis, Konstantinos; Gui, Minzhi; Lazar, Mariana

    2006-01-01

    Accurate localization of white matter fiber tracts in relation to brain tumors is a goal of critical importance to the neurosurgical community. White matter fiber tractography by means of diffusion tensor magnetic resonance imaging (DTI) is the only non-invasive method that can provide estimates of brain connectivity. However, conventional tractography methods are based on data acquisition techniques that suffer from image distortions and artifacts. Thus, a large percentage of white matter fiber bundles are distorted, and/or terminated early, while others are completely undetected. This severely limits the potential of fiber tractography in pre-surgical planning and image-guided surgery. In contrast, Turboprop-DTI is a technique that provides images with significantly fewer distortions and artifacts than conventional DTI data acquisition methods. The purpose of this study was to evaluate fiber tracking results obtained from Turboprop-DTI data. It was demonstrated that Turboprop may be a more appropriate DTI data acquisition technique for tracing white matter fibers than conventional DTI methods, especially in applications such as pre-surgical planning and image-guided surgery.

  3. Time-resolved C-arm cone beam CT angiography (TR-CBCTA) imaging from a single short-scan C-arm cone beam CT acquisition with intra-arterial contrast injection

    NASA Astrophysics Data System (ADS)

    Li, Yinsheng; Garrett, John W.; Li, Ke; Wu, Yijing; Johnson, Kevin; Schafer, Sebastian; Strother, Charles; Chen, Guang-Hong

    2018-04-01

    Time-resolved C-arm cone-beam CT (CBCT) angiography (TR-CBCTA) images can be generated from a series of CBCT acquisitions that satisfy data sufficiency condition in analytical image reconstruction theory. In this work, a new technique was developed to generate TR-CBCTA images from a single short-scan CBCT data acquisition with contrast media injection. The reconstruction technique enabling this application is a previously developed image reconstruction technique, synchronized multi-artifact reduction with tomographic reconstruction (SMART-RECON). In this new application, the acquired short-scan CBCT projection data were sorted into a union of several sub-sectors of view angles and each sub-sector of view angles corresponds to an individual image volume to be reconstructed. The SMART-RECON method was then used to jointly reconstruct all of these individual image volumes under two constraints: (1) each individual image volume is maximally consistent with the measured cone-beam projection data within the corresponding view angle sector and (2) the nuclear norm of the image matrix is minimized. The difference between these reconstructed individual image volumes is used to generated the desired subtracted angiograms. To validate the technique, numerical simulation data generated from a fractal tree angiogram phantom were used to quantitatively study the accuracy of the proposed method and retrospective in vivo human subject studies were used to demonstrate the feasibility of generating TR-CBCTA in clinical practice.

  4. Chroma key without color restrictions based on asynchronous amplitude modulation of background illumination on retroreflective screens

    NASA Astrophysics Data System (ADS)

    Vidal, Borja; Lafuente, Juan A.

    2016-03-01

    A simple technique to avoid color limitations in image capture systems based on chroma key video composition using retroreflective screens and light-emitting diodes (LED) rings is proposed and demonstrated. The combination of an asynchronous temporal modulation onto the background illumination and simple image processing removes the usual restrictions on foreground colors in the scene. The technique removes technical constraints in stage composition, allowing its design to be purely based on artistic grounds. Since it only requires adding a very simple electronic circuit to widely used chroma keying hardware based on retroreflective screens, the technique is easily applicable to TV and filming studios.

  5. Combining Ultrasound Pulse-Echo and Transmission Computed Tomography for Quantitative Imaging the Cortical Shell of Long Bone Replicas

    NASA Astrophysics Data System (ADS)

    Shortell, Matthew P.; Althomali, Marwan A. M.; Wille, Marie-Luise; Langton, Christian M.

    2017-11-01

    We demonstrate a simple technique for quantitative ultrasound imaging of the cortical shell of long bone replicas. Traditional ultrasound computed tomography instruments use the transmitted or reflected waves for separate reconstructions but suffer from strong refraction artefacts in highly heterogenous samples such as bones in soft tissue. The technique described here simplifies the long bone to a two-component composite and uses both the transmitted and reflected waves for reconstructions, allowing the speed of sound and thickness of the cortical shell to be calculated accurately. The technique is simple to implement, computationally inexpensive and sample positioning errors are minimal.

  6. Applications of two-photon fluorescence microscopy in deep-tissue imaging

    NASA Astrophysics Data System (ADS)

    Dong, Chen-Yuan; Yu, Betty; Hsu, Lily L.; Kaplan, Peter D.; Blankschstein, D.; Langer, Robert; So, Peter T. C.

    2000-07-01

    Based on the non-linear excitation of fluorescence molecules, two-photon fluorescence microscopy has become a significant new tool for biological imaging. The point-like excitation characteristic of this technique enhances image quality by the virtual elimination of off-focal fluorescence. Furthermore, sample photodamage is greatly reduced because fluorescence excitation is limited to the focal region. For deep tissue imaging, two-photon microscopy has the additional benefit in the greatly improved imaging depth penetration. Since the near- infrared laser sources used in two-photon microscopy scatter less than their UV/glue-green counterparts, in-depth imaging of highly scattering specimen can be greatly improved. In this work, we will present data characterizing both the imaging characteristics (point-spread-functions) and tissue samples (skin) images using this novel technology. In particular, we will demonstrate how blind deconvolution can be used further improve two-photon image quality and how this technique can be used to study mechanisms of chemically-enhanced, transdermal drug delivery.

  7. Toward Imaging of Small Objects with XUV Radiation

    NASA Astrophysics Data System (ADS)

    Sayrac, Muhammed; Kolomenski, Alexandre A.; Boran, Yakup; Schuessler, Hans

    The coherent diffraction imaging (CDI) technique has the potential to capture high resolution images of nano- or micron-sized structures when using XUV radiation obtained by high harmonic radiation (HHG) process. When a small object is exposed to XUV radiation, a diffraction pattern of the object is created. The advances in the coherent HHG enable obtaining photon flux sufficient for XUV imaging. The diffractive imaging technique from coherent table top XUV beams have made possible nanometer-scale resolution imaging by replacing the imaging optics with a computer reconstruction algorithm. In this study, we present our initial work on diffractive imaging using a tabletop XUV source. The initial investigation of imaging of a micron-sized mesh with an optimized HHG source is demonstrated. This work was supported in part by the Robert A. Welch Foundation Grant No. A1546 and the Qatar Foundation under the grant NPRP 8-735-1-154. M. Sayrac acknowledges support from the Ministry of National Education of the Republic of Turkey.

  8. Molecular breast imaging using a dedicated high-performance instrument

    NASA Astrophysics Data System (ADS)

    O'Connor, Michael K.; Wagenaar, Douglas; Hruska, Carrie B.; Phillips, Stephen; Caravaglia, Gina; Rhodes, Deborah

    2006-08-01

    In women with radiographically dense breasts, the sensitivity of mammography is less than 50%. With the increase in the percent of women with dense breasts, it is important to look at alternative screening techniques for this population. This article reviews the strengths and weaknesses of current imaging techniques and focuses on recent developments in semiconductor-based gamma camera systems that offer significant improvements in image quality over that achievable with single-crystal sodium iodide systems. We have developed a technique known as Molecular Breast Imaging (MBI) using small field of view Cadmium Zinc Telluride (CZT) gamma cameras that permits the breast to be imaged in a similar manner to mammography, using light pain-free compression. Computer simulations and experimental studies have shown that use of low-energy high sensitivity collimation coupled with the excellent energy resolution and intrinsic spatial resolution of CZT detectors provides optimum image quality for the detection of small breast lesions. Preliminary clinical studies with a prototype dual-detector system have demonstrated that Molecular Breast Imaging has a sensitivity of ~90% for the detection of breast tumors less than 10 mm in diameter. By comparison, conventional scintimammography only achieves a sensitivity of 50% in the detection of lesions < 10 mm. Because Molecular Breast Imaging is not affected by breast density, this technique may offer an important adjunct to mammography in the evaluation of women with dense breast parenchyma.

  9. Efficient sweep buffering in swept source optical coherence tomography using a fast optical switch

    PubMed Central

    Dhalla, Al-Hafeez; Shia, Kevin; Izatt, Joseph A.

    2012-01-01

    We describe a novel buffering technique for increasing the A-scan rate of swept source optical coherence tomography (SSOCT) systems employing low duty cycle swept source lasers. This technique differs from previously reported buffering techniques in that it employs a fast optical switch, capable of switching in 60 ns, instead of a fused fiber coupler at the end of the buffering stage, and is therefore appreciably more power efficient. The use of the switch also eliminates patient exposure to light that is not used for imaging that occurs at the end of the laser sweep, thereby increasing the system sensitivity. We also describe how careful management of polarization can remove undesirable artifacts due to polarization mode dispersion. In addition, we demonstrate how numerical compensation techniques can be used to modify the signal from a Mach-Zehnder interferometer (MZI) clock obtained from the original sweep to recalibrate the buffered sweep, thereby reducing the complexity of systems employing lasers with integrated MZI clocks. Combining these methods, we constructed an SSOCT system employing an Axsun technologies laser with a sweep rate of 100kHz and 6dB imaging range of 5.5mm. The sweep rate was doubled with sweep buffering to 200 kHz, and the imaging depth was extended to 9 mm using coherence revival. We demonstrated the feasibility of this system by acquiring images of the anterior segments and retinas of healthy human volunteers. PMID:23243559

  10. Efficient sweep buffering in swept source optical coherence tomography using a fast optical switch.

    PubMed

    Dhalla, Al-Hafeez; Shia, Kevin; Izatt, Joseph A

    2012-12-01

    We describe a novel buffering technique for increasing the A-scan rate of swept source optical coherence tomography (SSOCT) systems employing low duty cycle swept source lasers. This technique differs from previously reported buffering techniques in that it employs a fast optical switch, capable of switching in 60 ns, instead of a fused fiber coupler at the end of the buffering stage, and is therefore appreciably more power efficient. The use of the switch also eliminates patient exposure to light that is not used for imaging that occurs at the end of the laser sweep, thereby increasing the system sensitivity. We also describe how careful management of polarization can remove undesirable artifacts due to polarization mode dispersion. In addition, we demonstrate how numerical compensation techniques can be used to modify the signal from a Mach-Zehnder interferometer (MZI) clock obtained from the original sweep to recalibrate the buffered sweep, thereby reducing the complexity of systems employing lasers with integrated MZI clocks. Combining these methods, we constructed an SSOCT system employing an Axsun technologies laser with a sweep rate of 100kHz and 6dB imaging range of 5.5mm. The sweep rate was doubled with sweep buffering to 200 kHz, and the imaging depth was extended to 9 mm using coherence revival. We demonstrated the feasibility of this system by acquiring images of the anterior segments and retinas of healthy human volunteers.

  11. Multi-atlas segmentation with joint label fusion and corrective learning—an open source implementation

    PubMed Central

    Wang, Hongzhi; Yushkevich, Paul A.

    2013-01-01

    Label fusion based multi-atlas segmentation has proven to be one of the most competitive techniques for medical image segmentation. This technique transfers segmentations from expert-labeled images, called atlases, to a novel image using deformable image registration. Errors produced by label transfer are further reduced by label fusion that combines the results produced by all atlases into a consensus solution. Among the proposed label fusion strategies, weighted voting with spatially varying weight distributions derived from atlas-target intensity similarity is a simple and highly effective label fusion technique. However, one limitation of most weighted voting methods is that the weights are computed independently for each atlas, without taking into account the fact that different atlases may produce similar label errors. To address this problem, we recently developed the joint label fusion technique and the corrective learning technique, which won the first place of the 2012 MICCAI Multi-Atlas Labeling Challenge and was one of the top performers in 2013 MICCAI Segmentation: Algorithms, Theory and Applications (SATA) challenge. To make our techniques more accessible to the scientific research community, we describe an Insight-Toolkit based open source implementation of our label fusion methods. Our implementation extends our methods to work with multi-modality imaging data and is more suitable for segmentation problems with multiple labels. We demonstrate the usage of our tools through applying them to the 2012 MICCAI Multi-Atlas Labeling Challenge brain image dataset and the 2013 SATA challenge canine leg image dataset. We report the best results on these two datasets so far. PMID:24319427

  12. Revealing Shadows 6

    NASA Image and Video Library

    2012-07-30

    These images from NASA Dawn spacecraft, located in asteroid Vesta Caparronia quadrangle, in Vesta northern hemisphere, demonstrate a special analytical technique, which results in shadowed areas of Vesta surface becoming illuminated.

  13. Revealing Shadows 3

    NASA Image and Video Library

    2012-07-25

    These images from NASA Dawn spacecraft, located in asteroid Vesta Marcia quadrangle, in Vesta northern hemisphere, demonstrate a special analytical technique, which results in shadowed areas of Vesta surface becoming illuminated.

  14. Revealing Shadows 2

    NASA Image and Video Library

    2012-07-24

    These images from NASA Dawn spacecraft, located in asteroid Vesta Oppia quadrangle, in Vesta northern hemisphere, demonstrate a special analytical technique, which results in shadowed areas of Vesta surface becoming illuminated.

  15. Revealing Shadows 7

    NASA Image and Video Library

    2012-07-31

    These images from NASA Dawn spacecraft, located in asteroid VestaFloronia quadrangle, in Vesta northern hemisphere, demonstrate a special analytical technique, which results in shadowed areas of Vesta surface becoming illuminated.

  16. Revealing Shadows 5

    NASA Image and Video Library

    2012-07-27

    These images from NASA Dawn spacecraft, located in asteroid Vesta Floronia quadrangle, in Vesta northern hemisphere, demonstrate a special analytical technique, which results in shadowed areas of Vesta surface becoming illuminated.

  17. Revealing Shadows 4

    NASA Image and Video Library

    2012-07-26

    These images from NASA Dawn spacecraft, located in asteroid Vesta Marcia quadrangle, in Vesta northern hemisphere, demonstrate a special analytical technique, which results in shadowed areas of Vesta surface becoming illuminated.

  18. An Integrated Calibration Technique for Stereo Vision Systems (PREPRINT)

    DTIC Science & Technology

    2010-03-01

    technique for stereo vision systems has been developed. To demonstrate and evaluate this calibration technique, multiple Wii Remotes (Wiimotes) from Nintendo ...from Nintendo were used to form stereo vision systems to perform 3D motion capture in real time. This integrated technique is a two-step process...Wiimotes) used in Nintendo Wii games. Many researchers have successfully dealt with the problem of camera calibration by taking images from a 2D

  19. Visualizing medium and biodistribution in complex cell culture bioreactors using in vivo imaging.

    PubMed

    Ratcliffe, E; Thomas, R J; Stacey, A J

    2014-01-01

    There is a dearth of technology and methods to aid process characterization, control and scale-up of complex culture platforms that provide niche micro-environments for some stem cell-based products. We have demonstrated a novel use of 3d in vivo imaging systems to visualize medium flow and cell distribution within a complex culture platform (hollow fiber bioreactor) to aid characterization of potential spatial heterogeneity and identify potential routes of bioreactor failure or sources of variability. This can then aid process characterization and control of such systems with a view to scale-up. Two potential sources of variation were observed with multiple bioreactors repeatedly imaged using two different imaging systems: shortcutting of medium between adjacent inlet and outlet ports with the potential to create medium gradients within the bioreactor, and localization of bioluminescent murine 4T1-luc2 cells upon inoculation with the potential to create variable seeding densities at different points within the cell growth chamber. The ability of the imaging technique to identify these key operational bioreactor characteristics demonstrates an emerging technique in troubleshooting and engineering optimization of bioreactor performance. © 2013 American Institute of Chemical Engineers.

  20. A Unified Framework for Brain Segmentation in MR Images

    PubMed Central

    Yazdani, S.; Yusof, R.; Karimian, A.; Riazi, A. H.; Bennamoun, M.

    2015-01-01

    Brain MRI segmentation is an important issue for discovering the brain structure and diagnosis of subtle anatomical changes in different brain diseases. However, due to several artifacts brain tissue segmentation remains a challenging task. The aim of this paper is to improve the automatic segmentation of brain into gray matter, white matter, and cerebrospinal fluid in magnetic resonance images (MRI). We proposed an automatic hybrid image segmentation method that integrates the modified statistical expectation-maximization (EM) method and the spatial information combined with support vector machine (SVM). The combined method has more accurate results than what can be achieved with its individual techniques that is demonstrated through experiments on both real data and simulated images. Experiments are carried out on both synthetic and real MRI. The results of proposed technique are evaluated against manual segmentation results and other methods based on real T1-weighted scans from Internet Brain Segmentation Repository (IBSR) and simulated images from BrainWeb. The Kappa index is calculated to assess the performance of the proposed framework relative to the ground truth and expert segmentations. The results demonstrate that the proposed combined method has satisfactory results on both simulated MRI and real brain datasets. PMID:26089978

  1. Optimal Control-Enabled Imaging and Spectroscopy using a Nanowire Magnetic Resonance Force Microscope

    NASA Astrophysics Data System (ADS)

    Rose, William; Haas, Holger; Chen, Angela; Cory, David; Budakian, Raffi

    Magnetic resonance imaging (MRI) is a powerful non-invasive technique that has transformed our ability to study the structure and function of biological systems. Key to its success has been the unique ability to combine imaging with magnetic resonance spectroscopy. Although it remains a significant challenge, there is considerable interest in extending MRI spectroscopy to the nanometer scale because it would provide a fundamentally new route for determining the structure and function of complex biomolecules. We present data taken with a nanowire magnetic resonance force microscopy (MRFM) setup. We show how the capabilities of this very sensitive spin-detection system can be extended to include spectroscopy and nanometer-scale imaging by combining optimal control theory (OCT) techniques with magic echo sequences. We apply OCT-based dynamical-decoupling pulses to nanoscale ensembles of proton spins in polystyrene, and demonstrate a 500-fold line-narrowing of the proton spin resonance, from 30 kHz to 60 Hz. We further demonstrate 1-D imaging over a 35-nm region with an average voxel size of 2.2 nm. Funding provided by the U.S. Army Research Office, Grant No. W911NF-12-1-0341.

  2. Revised radiometric calibration technique for LANDSAT-4 Thematic Mapper data by the Canada Centre for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Murphy, J.; Butlin, T.; Duff, P.; Fitzgerald, A.

    1984-01-01

    Observations of raw image data, raw radiometric calibration data, and background measurements extracted from the raw data streams on high density tape reveal major shortcomings in a technique proposed by the Canadian Center for Remote Sensing in 1982 for the radiometric correction of TM data. Results are presented which correlate measurements of the DC background with variations in both image data background and calibration samples. The effect on both raw data and data corrected using the earlier proposed technique is explained and the correction required for these factors as a function of individual scan line number for each detector is described. How the revised technique can be incorporated into an operational environment is demonstrated.

  3. Social Inferences from Faces: Ambient Images Generate a Three-Dimensional Model

    ERIC Educational Resources Information Center

    Sutherland, Clare A. M.; Oldmeadow, Julian A.; Santos, Isabel M.; Towler, John; Burt, D. Michael; Young, Andrew W.

    2013-01-01

    Three experiments are presented that investigate the two-dimensional valence/trustworthiness by dominance model of social inferences from faces (Oosterhof & Todorov, 2008). Experiment 1 used image averaging and morphing techniques to demonstrate that consistent facial cues subserve a range of social inferences, even in a highly variable sample of…

  4. An Accurate Scatter Measurement and Correction Technique for Cone Beam Breast CT Imaging Using Scanning Sampled Measurement (SSM) Technique.

    PubMed

    Liu, Xinming; Shaw, Chris C; Wang, Tianpeng; Chen, Lingyun; Altunbas, Mustafa C; Kappadath, S Cheenu

    2006-02-28

    We developed and investigated a scanning sampled measurement (SSM) technique for scatter measurement and correction in cone beam breast CT imaging. A cylindrical polypropylene phantom (water equivalent) was mounted on a rotating table in a stationary gantry experimental cone beam breast CT imaging system. A 2-D array of lead beads, with the beads set apart about ~1 cm from each other and slightly tilted vertically, was placed between the object and x-ray source. A series of projection images were acquired as the phantom is rotated 1 degree per projection view and the lead beads array shifted vertically from one projection view to the next. A series of lead bars were also placed at the phantom edge to produce better scatter estimation across the phantom edges. Image signals in the lead beads/bars shadow were used to obtain sampled scatter measurements which were then interpolated to form an estimated scatter distribution across the projection images. The image data behind the lead bead/bar shadows were restored by interpolating image data from two adjacent projection views to form beam-block free projection images. The estimated scatter distribution was then subtracted from the corresponding restored projection image to obtain the scatter removed projection images.Our preliminary experiment has demonstrated that it is feasible to implement SSM technique for scatter estimation and correction for cone beam breast CT imaging. Scatter correction was successfully performed on all projection images using scatter distribution interpolated from SSM and restored projection image data. The resultant scatter corrected projection image data resulted in elevated CT number and largely reduced the cupping effects.

  5. Edge enhancement and noise suppression for infrared image based on feature analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Meng

    2018-06-01

    Infrared images are often suffering from background noise, blurred edges, few details and low signal-to-noise ratios. To improve infrared image quality, it is essential to suppress noise and enhance edges simultaneously. To realize it in this paper, we propose a novel algorithm based on feature analysis in shearlet domain. Firstly, as one of multi-scale geometric analysis (MGA), we introduce the theory and superiority of shearlet transform. Secondly, after analyzing the defects of traditional thresholding technique to suppress noise, we propose a novel feature extraction distinguishing image structures from noise well and use it to improve the traditional thresholding technique. Thirdly, with computing the correlations between neighboring shearlet coefficients, the feature attribute maps identifying the weak detail and strong edges are completed to improve the generalized unsharped masking (GUM). At last, experiment results with infrared images captured in different scenes demonstrate that the proposed algorithm suppresses noise efficiently and enhances image edges adaptively.

  6. 4-D OCT in Developmental Cardiology

    NASA Astrophysics Data System (ADS)

    Jenkins, Michael W.; Rollins, Andrew M.

    Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.

  7. Atomic resolution ADF-STEM imaging of organic molecular crystal of halogenated copper phthalocyanine.

    PubMed

    Haruta, Mitsutaka; Yoshida, Kaname; Kurata, Hiroki; Isoda, Seiji

    2008-05-01

    Annular dark-field (ADF) scanning transmission electron microscopy (STEM) measurements are demonstrated for the first time to be applicable for acquiring Z-contrast images of organic molecules at atomic resolution. High-angle ADF imaging by STEM is a new technique that provides incoherent high-resolution Z-contrast images for organic molecules. In the present study, low-angle ADF-STEM is successfully employed to image the molecular crystal structure of hexadecachloro-Cu-phthalocyanine (Cl16-CuPc), an organic molecule. The structures of CuPc derivatives (polyhalogenated CuPc with Br and Cl) are determined quantitatively using the same technique to determine the occupancy of halogens at each chemical site. By comparing the image contrasts of atomic columns, the occupancy of Br is found to be ca. 56% at the inner position, slightly higher than that for random substitution and in good agreement with previous TEM results.

  8. Forensic detection of noise addition in digital images

    NASA Astrophysics Data System (ADS)

    Cao, Gang; Zhao, Yao; Ni, Rongrong; Ou, Bo; Wang, Yongbin

    2014-03-01

    We proposed a technique to detect the global addition of noise to a digital image. As an anti-forensics tool, noise addition is typically used to disguise the visual traces of image tampering or to remove the statistical artifacts left behind by other operations. As such, the blind detection of noise addition has become imperative as well as beneficial to authenticate the image content and recover the image processing history, which is the goal of general forensics techniques. Specifically, the special image blocks, including constant and strip ones, are used to construct the features for identifying noise addition manipulation. The influence of noising on blockwise pixel value distribution is formulated and analyzed formally. The methodology of detectability recognition followed by binary decision is proposed to ensure the applicability and reliability of noising detection. Extensive experimental results demonstrate the efficacy of our proposed noising detector.

  9. Fast regional readout CMOS Image Sensor for dynamic MLC tracking

    NASA Astrophysics Data System (ADS)

    Zin, H.; Harris, E.; Osmond, J.; Evans, P.

    2014-03-01

    Advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT) require verification of the complex beam delivery including tracking of multileaf collimators (MLC) and monitoring the dose rate. This work explores the feasibility of a prototype Complementary metal-oxide semiconductor Image Sensor (CIS) for tracking these complex treatments by utilising fast, region of interest (ROI) read out functionality. An automatic edge tracking algorithm was used to locate the MLC leaves edges moving at various speeds (from a moving triangle field shape) and imaged with various sensor frame rates. The CIS demonstrates successful edge detection of the dynamic MLC motion within accuracy of 1.0 mm. This demonstrates the feasibility of the sensor to verify treatment delivery involving dynamic MLC up to ~400 frames per second (equivalent to the linac pulse rate), which is superior to any current techniques such as using electronic portal imaging devices (EPID). CIS provides the basis to an essential real-time verification tool, useful in accessing accurate delivery of complex high energy radiation to the tumour and ultimately to achieve better cure rates for cancer patients.

  10. Assessing blood vessel perfusion and vital signs through retinal imaging photoplethysmography.

    PubMed

    Hassan, Harnani; Jaidka, Sheila; Dwyer, Vincent M; Hu, Sijung

    2018-05-01

    One solution to the global challenge of increasing ocular disease is a cost-effective technique for rapid screening and assessment. Current ophthalmic imaging techniques, e.g. scanning and ocular blood flow systems, are expensive, complex to operate and utilize invasive contrast agents during assessment. The work presented here demonstrates a simple retinal imaging photoplethysmography (iPPG) system with the potential to provide screening, diagnosis, monitoring and assessment that is non-invasive, painless and radiationless. Time series of individual retinal blood vessel images, captured with an eye fundus camera, are processed using standard filtering, amplitude demodulation and principle component analysis (PCA) methods to determine the values of the heart rate (HR) and respiration rate (RR), which are in compliance with simultaneously obtained measurements using commercial pulse oximetry. It also seems possible that some information on the dynamic changes in oxygen saturation levels ( SpO 2 ) in a retinal blood vessel may also be obtained. As a consequence, the retinal iPPG modality system demonstrates a potential avenue for rapid ophthalmic screening, and even early diagnosis, against ocular disease without the need for fluorescent or contrast agents.

  11. Towards real-time detection of tumor margins using photothermal imaging of immune-targeted gold nanoparticles

    PubMed Central

    Jakobsohn, Kobi; Motiei, Menachem; Sinvani, Moshe; Popovtzer, Rachela

    2012-01-01

    Background One of the critical problems in cancer management is local recurrence of disease. Between 20% and 30% of patients who undergo tumor resection surgery require reoperation due to incomplete excision. Currently, there are no validated methods for intraoperative tumor margin detection. In the present work, we demonstrate the potential use of gold nanoparticles (GNPs) as a novel contrast agent for photothermal molecular imaging of cancer. Methods Phantoms containing different concentrations of GNPs were irradiated with continuous-wave laser and measured with a thermal imaging camera which detected the temperature field of the irradiated phantoms. Results The results clearly demonstrate the ability to distinguish between cancerous cells specifically targeted with GNPs and normal cells. This technique, which allows highly sensitive discrimination between adjacent low GNP concentrations, will allow tumor margin detection while the temperature increases by only a few degrees Celsius (for GNPs in relevant biological concentrations). Conclusion We expect this real-time intraoperative imaging technique to assist surgeons in determining clear tumor margins and to maximize the extent of tumor resection while sparing normal background tissue. PMID:22956871

  12. Automated 3D ultrasound measurement of the angle of progression in labor.

    PubMed

    Montaguti, Elisa; Rizzo, Nicola; Pilu, Gianluigi; Youssef, Aly

    2018-01-01

    To assess the feasibility and reliability of an automated technique for the assessment of the angle of progression (AoP) in labor by using three-dimensional (3D) ultrasound. AoP was assessed by using 3D transperineal ultrasound by two operators in 52 women in active labor to evaluate intra- and interobserver reproducibility. Furthermore, intermethod agreement between automated and manual techniques on 3D images, and between automated technique on 3D vs 2D images were evaluated. Automated measurements were feasible in all cases. Automated measurements were considered acceptable in 141 (90.4%) out of the 156 on the first assessments and in all 156 after repeating measurements for unacceptable evaluations. The automated technique on 3D images demonstrated good intra- and interobserver reproducibility. The 3D-automated technique showed a very good agreement with the 3D manual technique. Notably, AoP calculated with the 3D automated technique were significantly wider in comparison with those measured manually on 3D images (133 ± 17° vs 118 ± 21°, p = 0.013). The assessment of the angle of progression through 3D ultrasound is highly reproducible. However, automated software leads to a systematic overestimation of AoP in comparison with the standard manual technique thus hindering its use in clinical practice in its present form.

  13. Ultrafast nanoscale imaging using high order harmonic generation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Merdji, Hamed

    2017-05-01

    Ultrafast coherent diffraction using soft and hard X-rays is actually revolutionizing imaging science thanks to new sources recently available. This powerful technique extends standard X-ray diffraction towards imaging of non-crystalline objects and leads actually to a strong impact in physics, chemistry and biology. New ultrashort pulses recently available hold the promise of watching matter evolving with unprecedented space and time resolution. Femtosecond coherent and intense radiation in the soft X-ray (λ = 10-40 nm) is currently produced in our laboratory, from highly non linear frequency conversion (high harmonic generation). A high intensity UV-X coherent beam is obtained using a loose focusing geometry, which allows coupling a very high amount of Ti:Sapphire laser system energy in the HHG process. Using a long gas cell and a long focal length lens, the emitting volume can be increased by orders of magnitude compared to standard HHG set-ups. This approach, allows reaching up to 1x1011 photons per shot for the 25th harmonic (λ=32nm). We have already demonstrated nanoscale imaging in a single shot mode reaching 70 nm spatial resolution and 20 femtoseconds snapshot [1]. We then implemented a recently proposed holographic technique using extended references. This technique, easy to implement, allows a direct non iterative image reconstruction. In the single shot regime, we demonstrated a spatial resolution of 110nm [2].This opens fascinating perspectives in imaging dynamical phenomena to be spread over a large scientific community. I will present recent results in the investigation of femtosecond phase spin-reversals of magnetic nano-domains [3]. Finally, I will report on recent development on noise sensitivity of the technique and perspectives in attosecond coherent imaging [4]. [1] A. Ravasio et al., Physical Review Letters 103, 028104 (2009). [2] D. Gauthier et al., Physical Review Letters 105, 093901 (2010). [3] Vodungbo et al., Nature Communications 3, 999 (2012) [4] Williams et al., Optics Letters 40 (13), 3205 (2015)

  14. Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: Approach for tuning algorithm parameters

    NASA Astrophysics Data System (ADS)

    Mueller, Jenna L.; Harmany, Zachary T.; Mito, Jeffrey K.; Kennedy, Stephanie A.; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G.; Willett, Rebecca M.; Brown, J. Quincy; Ramanujam, Nimmi

    2013-02-01

    The combination of fluorescent contrast agents with microscopy is a powerful technique to obtain real time images of tissue histology without the need for fixing, sectioning, and staining. The potential of this technology lies in the identification of robust methods for image segmentation and quantitation, particularly in heterogeneous tissues. Our solution is to apply sparse decomposition (SD) to monochrome images of fluorescently-stained microanatomy to segment and quantify distinct tissue types. The clinical utility of our approach is demonstrated by imaging excised margins in a cohort of mice after surgical resection of a sarcoma. Representative images of excised margins were used to optimize the formulation of SD and tune parameters associated with the algorithm. Our results demonstrate that SD is a robust solution that can advance vital fluorescence microscopy as a clinically significant technology.

  15. Real-time high dynamic range laser scanning microscopy

    PubMed Central

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-01-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. PMID:27032979

  16. Quality measures in applications of image restoration.

    PubMed

    Kriete, A; Naim, M; Schafer, L

    2001-01-01

    We describe a new method for the estimation of image quality in image restoration applications. We demonstrate this technique on a simulated data set of fluorescent beads, in comparison with restoration by three different deconvolution methods. Both the number of iterations and a regularisation factor are varied to enforce changes in the resulting image quality. First, the data sets are directly compared by an accuracy measure. These values serve to validate the image quality descriptor, which is developed on the basis of optical information theory. This most general measure takes into account the spectral energies and the noise, weighted in a logarithmic fashion. It is demonstrated that this method is particularly helpful as a user-oriented method to control the output of iterative image restorations and to eliminate the guesswork in choosing a suitable number of iterations.

  17. Comparison of breathing gated CT images generated using a 5DCT technique and a commercial clinical protocol in a porcine model

    PubMed Central

    O’Connell, Dylan P.; Thomas, David H.; Dou, Tai H.; Lamb, James M.; Feingold, Franklin; Low, Daniel A.; Fuld, Matthew K.; Sieren, Jered P.; Sloan, Chelsea M.; Shirk, Melissa A.; Hoffman, Eric A.; Hofmann, Christian

    2015-01-01

    Purpose: To demonstrate that a “5DCT” technique which utilizes fast helical acquisition yields the same respiratory-gated images as a commercial technique for regular, mechanically produced breathing cycles. Methods: Respiratory-gated images of an anesthetized, mechanically ventilated pig were generated using a Siemens low-pitch helical protocol and 5DCT for a range of breathing rates and amplitudes and with standard and low dose imaging protocols. 5DCT reconstructions were independently evaluated by measuring the distances between tissue positions predicted by a 5D motion model and those measured using deformable registration, as well by reconstructing the originally acquired scans. Discrepancies between the 5DCT and commercial reconstructions were measured using landmark correspondences. Results: The mean distance between model predicted tissue positions and deformably registered tissue positions over the nine datasets was 0.65 ± 0.28 mm. Reconstructions of the original scans were on average accurate to 0.78 ± 0.57 mm. Mean landmark displacement between the commercial and 5DCT images was 1.76 ± 1.25 mm while the maximum lung tissue motion over the breathing cycle had a mean value of 27.2 ± 4.6 mm. An image composed of the average of 30 deformably registered images acquired with a low dose protocol had 6 HU image noise (single standard deviation) in the heart versus 31 HU for the commercial images. Conclusions: An end to end evaluation of the 5DCT technique was conducted through landmark based comparison to breathing gated images acquired with a commercial protocol under highly regular ventilation. The techniques were found to agree to within 2 mm for most respiratory phases and most points in the lung. PMID:26133604

  18. Portable automated imaging in complex ceramics with a microwave interference scanning system

    NASA Astrophysics Data System (ADS)

    Goitia, Ryan M.; Schmidt, Karl F.; Little, Jack R.; Ellingson, William A.; Green, William; Franks, Lisa P.

    2013-01-01

    An improved portable microwave interferometry system has been automated to permit rapid examination of components with minimal operator attendance. Functionalities include stereo and multiplexed, frequency-modulated at multiple frequencies, producing layered volumetric images of complex ceramic structures. The technique has been used to image composite ceramic armor and ceramic matrix composite components, as well as other complex dielectric materials. The system utilizes Evisive Scan microwave interference scanning technique. Validation tests include artificial and in-service damage of ceramic armor, surrogates and ceramic matrix composite samples. Validation techniques include micro-focus x-ray and computed tomography imaging. The microwave interference scanning technique has demonstrated detection of cracks, interior laminar features and variations in material properties such as density. The image yields depth information through phase angle manipulation, and shows extent of feature and relative dielectric property information. It requires access to only one surface, and no coupling medium. Data are not affected by separation of layers of dielectric material, such as outer over-wrap. Test panels were provided by the US Army Research Laboratory, and the US Army Tank Automotive Research, Development and Engineering Center (TARDEC), who with the US Air Force Research Laboratory have supported this work.

  19. Multimodal 3D cancer-mimicking optical phantom

    PubMed Central

    Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee Bowden, Audrey K.

    2016-01-01

    Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing various aspects of optical systems, including for evaluating new probe designs, characterizing the diagnostic potential of new technologies, and assessing novel image processing algorithms prior to validation in real tissue. We introduce and characterize the use of a new material, Dragon Skin (Smooth-On Inc.), and fabrication technique, air-brushing, for fabrication of a 3D phantom that mimics the appearance of a real organ under multiple imaging modalities. We demonstrate the utility of the material and technique by fabricating the first 3D, hollow bladder phantom with realistic normal and multi-stage pathology features suitable for endoscopic detection using the gold standard imaging technique, white light cystoscopy (WLC), as well as the complementary imaging modalities of optical coherence tomography and blue light cystoscopy, which are aimed at improving the sensitivity and specificity of WLC to bladder cancer detection. The flexibility of the material and technique used for phantom construction allowed for the representation of a wide range of diseased tissue states, ranging from inflammation (benign) to high-grade cancerous lesions. Such phantoms can serve as important tools for trainee education and evaluation of new endoscopic instrumentation. PMID:26977369

  20. Grazing-incidence coherent x-ray imaging in true reflection geometry

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Jiang, Zhang; Strzalka, Joseph; Wang, Jin

    2012-02-01

    The development of the 3^rd and 4^th generation synchrotrons has stimulated extensive research activities in x-ray imaging techniques. Among all, coherent diffractive imaging (CDI) shows great promise, as its resolution is only limited by the wavelength of the source. Most of the CDI work reported thus far used transmission geometry, which however is not suitable for samples on opaque substrates or in which only the surfaces are the regions of interest. Even though two groups have performed CDI experiments (using laser or x-ray) in reflection geometry and succeeded in reconstructing the planar image of the surface, the theoretical underpinnings and analysis approaches of their techniques are essentially identical to transmission CDI. Most importantly, they couldn't obtain the structural information along sample thickness direction. Here, we introduce a reflection CDI technique that works at grazing-incidence geometry. By visualizing Au nanostructures fabricated on Si substrate, we demonstrate that this innovative imaging technique is capable of obtaining both 2D and 3D information of surfaces or buried structures in the samples. In the meanwhile, we will also explain the grazing-incidence-scattering based-algorithm developed for 3D phase retrieval.

  1. Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images.

    PubMed

    Morgan, David G; Ramasse, Quentin M; Browning, Nigel D

    2009-06-01

    Zone axis images recorded using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM or Z-contrast imaging) reveal the atomic structure with a resolution that is defined by the probe size of the microscope. In most cases, the full images contain many sub-images of the crystal unit cell and/or interface structure. Thanks to the repetitive nature of these images, it is possible to apply standard image processing techniques that have been developed for the electron crystallography of biological macromolecules and have been used widely in other fields of electron microscopy for both organic and inorganic materials. These methods can be used to enhance the signal-to-noise present in the original images, to remove distortions in the images that arise from either the instrumentation or the specimen itself and to quantify properties of the material in ways that are difficult without such data processing. In this paper, we describe briefly the theory behind these image processing techniques and demonstrate them for aberration-corrected, high-resolution HAADF-STEM images of Si(46) clathrates developed for hydrogen storage.

  2. An underwater turbulence degraded image restoration algorithm

    NASA Astrophysics Data System (ADS)

    Furhad, Md. Hasan; Tahtali, Murat; Lambert, Andrew

    2017-09-01

    Underwater turbulence occurs due to random fluctuations of temperature and salinity in the water. These fluctuations are responsible for variations in water density, refractive index and attenuation. These impose random geometric distortions, spatio-temporal varying blur, limited range visibility and limited contrast on the acquired images. There are some restoration techniques developed to address this problem, such as image registration based, lucky region based and centroid-based image restoration algorithms. Although these methods demonstrate better results in terms of removing turbulence, they require computationally intensive image registration, higher CPU load and memory allocations. Thus, in this paper, a simple patch based dictionary learning algorithm is proposed to restore the image by alleviating the costly image registration step. Dictionary learning is a machine learning technique which builds a dictionary of non-zero atoms derived from the sparse representation of an image or signal. The image is divided into several patches and the sharp patches are detected from them. Next, dictionary learning is performed on these patches to estimate the restored image. Finally, an image deconvolution algorithm is employed on the estimated restored image to remove noise that still exists.

  3. Wireless image-data transmission from an implanted image sensor through a living mouse brain by intra body communication

    NASA Astrophysics Data System (ADS)

    Hayami, Hajime; Takehara, Hiroaki; Nagata, Kengo; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2016-04-01

    Intra body communication technology allows the fabrication of compact implantable biomedical sensors compared with RF wireless technology. In this paper, we report the fabrication of an implantable image sensor of 625 µm width and 830 µm length and the demonstration of wireless image-data transmission through a brain tissue of a living mouse. The sensor was designed to transmit output signals of pixel values by pulse width modulation (PWM). The PWM signals from the sensor transmitted through a brain tissue were detected by a receiver electrode. Wireless data transmission of a two-dimensional image was successfully demonstrated in a living mouse brain. The technique reported here is expected to provide useful methods of data transmission using micro sized implantable biomedical sensors.

  4. Non-invasive continuous imaging of drug release from soy-based skin equivalent using wide-field interferometry

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Baranes-Zeevi, Maya; Zilberman, Meital; Shaked, Natan T.

    2013-04-01

    We propose an off-axis interferometric imaging system as a simple and unique modality for continuous, non-contact and non-invasive wide-field imaging and characterization of drug release from its polymeric device used in biomedicine. In contrast to the current gold-standard methods in this field, usually based on chromatographic and spectroscopic techniques, our method requires no user intervention during the experiment, and only one test-tube is prepared. We experimentally demonstrate imaging and characterization of drug release from soy-based protein matrix, used as skin equivalent for wound dressing with controlled anesthetic, Bupivacaine drug release. Our preliminary results demonstrate the high potential of our method as a simple and low-cost modality for wide-field imaging and characterization of drug release from drug delivery devices.

  5. Dual-beam manually-actuated distortion-corrected imaging (DMDI) with micromotor catheters.

    PubMed

    Lee, Anthony M D; Hohert, Geoffrey; Angkiriwang, Patricia T; MacAulay, Calum; Lane, Pierre

    2017-09-04

    We present a new paradigm for performing two-dimensional scanning called dual-beam manually-actuated distortion-corrected imaging (DMDI). DMDI operates by imaging the same object with two spatially-separated beams that are being mechanically scanned rapidly in one dimension with slower manual actuation along a second dimension. Registration of common features between the two imaging channels allows remapping of the images to correct for distortions due to manual actuation. We demonstrate DMDI using a 4.7 mm OD rotationally scanning dual-beam micromotor catheter (DBMC). The DBMC requires a simple, one-time calibration of the beam paths by imaging a patterned phantom. DMDI allows for distortion correction of non-uniform axial speed and rotational motion of the DBMC. We show the utility of this technique by demonstrating en face OCT image distortion correction of a manually-scanned checkerboard phantom and fingerprint scan.

  6. An automatic rat brain extraction method based on a deformable surface model.

    PubMed

    Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M

    2013-08-15

    The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE PAGES

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; ...

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  8. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, S.; Lee, T.M.; Kay, A.R.

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normalmore » physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity.« less

  9. Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation

    NASA Astrophysics Data System (ADS)

    Ogawa, S.; Lee, T. M.; Kay, A. R.; Tank, D. W.

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high fields, we demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complements other techniques that are attempting to provide positron emission tomography-like measurements related to regional neural activity.

  10. Resolution enhancement in integral microscopy by physical interpolation.

    PubMed

    Llavador, Anabel; Sánchez-Ortiga, Emilio; Barreiro, Juan Carlos; Saavedra, Genaro; Martínez-Corral, Manuel

    2015-08-01

    Integral-imaging technology has demonstrated its capability for computing depth images from the microimages recorded after a single shot. This capability has been shown in macroscopic imaging and also in microscopy. Despite the possibility of refocusing different planes from one snap-shot is crucial for the study of some biological processes, the main drawback in integral imaging is the substantial reduction of the spatial resolution. In this contribution we report a technique, which permits to increase the two-dimensional spatial resolution of the computed depth images in integral microscopy by a factor of √2. This is made by a double-shot approach, carried out by means of a rotating glass plate, which shifts the microimages in the sensor plane. We experimentally validate the resolution enhancement as well as we show the benefit of applying the technique to biological specimens.

  11. Multiparametric optical coherence tomography imaging of the inner retinal hemodynamic response to visual stimulation

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Harsha; Srinivasan, Vivek J.

    2013-08-01

    The hemodynamic response to neuronal activation is a well-studied phenomenon in the brain, due to the prevalence of functional magnetic resonance imaging. The retina represents an optically accessible platform for studying lamina-specific neurovascular coupling in the central nervous system; however, due to methodological limitations, this has been challenging to date. We demonstrate techniques for the imaging of visual stimulus-evoked hyperemia in the rat inner retina using Doppler optical coherence tomography (OCT) and OCT angiography. Volumetric imaging with three-dimensional motion correction, en face flow calculation, and normalization of dynamic signal to static signal are techniques that reduce spurious changes caused by motion. We anticipate that OCT imaging of retinal functional hyperemia may yield viable biomarkers in diseases, such as diabetic retinopathy, where the neurovascular unit may be impaired.

  12. 3D Lunar Terrain Reconstruction from Apollo Images

    NASA Technical Reports Server (NTRS)

    Broxton, Michael J.; Nefian, Ara V.; Moratto, Zachary; Kim, Taemin; Lundy, Michael; Segal, Alkeksandr V.

    2009-01-01

    Generating accurate three dimensional planetary models is becoming increasingly important as NASA plans manned missions to return to the Moon in the next decade. This paper describes a 3D surface reconstruction system called the Ames Stereo Pipeline that is designed to produce such models automatically by processing orbital stereo imagery. We discuss two important core aspects of this system: (1) refinement of satellite station positions and pose estimates through least squares bundle adjustment; and (2) a stochastic plane fitting algorithm that generalizes the Lucas-Kanade method for optimal matching between stereo pair images.. These techniques allow us to automatically produce seamless, highly accurate digital elevation models from multiple stereo image pairs while significantly reducing the influence of image noise. Our technique is demonstrated on a set of 71 high resolution scanned images from the Apollo 15 mission

  13. Resolution enhancement in integral microscopy by physical interpolation

    PubMed Central

    Llavador, Anabel; Sánchez-Ortiga, Emilio; Barreiro, Juan Carlos; Saavedra, Genaro; Martínez-Corral, Manuel

    2015-01-01

    Integral-imaging technology has demonstrated its capability for computing depth images from the microimages recorded after a single shot. This capability has been shown in macroscopic imaging and also in microscopy. Despite the possibility of refocusing different planes from one snap-shot is crucial for the study of some biological processes, the main drawback in integral imaging is the substantial reduction of the spatial resolution. In this contribution we report a technique, which permits to increase the two-dimensional spatial resolution of the computed depth images in integral microscopy by a factor of √2. This is made by a double-shot approach, carried out by means of a rotating glass plate, which shifts the microimages in the sensor plane. We experimentally validate the resolution enhancement as well as we show the benefit of applying the technique to biological specimens. PMID:26309749

  14. Rapid water and lipid imaging with T2 mapping using a radial IDEAL-GRASE technique.

    PubMed

    Li, Zhiqiang; Graff, Christian; Gmitro, Arthur F; Squire, Scott W; Bilgin, Ali; Outwater, Eric K; Altbach, Maria I

    2009-06-01

    Three-point Dixon methods have been investigated as a means to generate water and fat images without the effects of field inhomogeneities. Recently, an iterative algorithm (IDEAL, iterative decomposition of water and fat with echo asymmetry and least squares estimation) was combined with a gradient and spin-echo acquisition strategy (IDEAL-GRASE) to provide a time-efficient method for lipid-water imaging with correction for the effects of field inhomogeneities. The method presented in this work combines IDEAL-GRASE with radial data acquisition. Radial data sampling offers robustness to motion over Cartesian trajectories as well as the possibility of generating high-resolution T(2) maps in addition to the water and fat images. The radial IDEAL-GRASE technique is demonstrated in phantoms and in vivo for various applications including abdominal, pelvic, and cardiac imaging.

  15. Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels.

    PubMed

    Sornapudi, Sudhir; Stanley, Ronald Joe; Stoecker, William V; Almubarak, Haidar; Long, Rodney; Antani, Sameer; Thoma, George; Zuna, Rosemary; Frazier, Shelliane R

    2018-01-01

    Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods.

  16. Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques.

    PubMed

    Heath, D G; Soyer, P A; Kuszyk, B S; Bliss, D F; Calhoun, P S; Bluemke, D A; Choti, M A; Fishman, E K

    1995-07-01

    The three most common techniques for three-dimensional reconstruction are surface rendering, maximum-intensity projection (MIP), and volume rendering. Surface-rendering algorithms model objects as collections of geometric primitives that are displayed with surface shading. The MIP algorithm renders an image by selecting the voxel with the maximum intensity signal along a line extended from the viewer's eye through the data volume. Volume-rendering algorithms sum the weighted contributions of all voxels along the line. Each technique has advantages and shortcomings that must be considered during selection of one for a specific clinical problem and during interpretation of the resulting images. With surface rendering, sharp-edged, clear three-dimensional reconstruction can be completed on modest computer systems; however, overlapping structures cannot be visualized and artifacts are a problem. MIP is computationally a fast technique, but it does not allow depiction of overlapping structures, and its images are three-dimensionally ambiguous unless depth cues are provided. Both surface rendering and MIP use less than 10% of the image data. In contrast, volume rendering uses nearly all of the data, allows demonstration of overlapping structures, and engenders few artifacts, but it requires substantially more computer power than the other techniques.

  17. Arterial spin labeled perfusion imaging using three-dimensional turbo spin echo with a distributed spiral-in/out trajectory.

    PubMed

    Li, Zhiqiang; Schär, Michael; Wang, Dinghui; Zwart, Nicholas R; Madhuranthakam, Ananth J; Karis, John P; Pipe, James G

    2016-01-01

    The three-dimensional (3D) spiral turbo spin echo (TSE) sequence is one of the preferred readout methods for arterial spin labeled (ASL) perfusion imaging. Conventional spiral TSE collects the data using a spiral-out readout on a stack of spirals trajectory. However, it may result in suboptimal image quality and is not flexible in protocol design. The goal of this study is to provide a more robust readout technique without such limitation. The proposed technique incorporates a spiral-in/out readout into 3D TSE, and collects the data on a distributed spirals trajectory. The data set is split into the spiral-in and -out subsets that are reconstructed separately and combined after image deblurring. The volunteer results acquired with the proposed technique show no geometric distortion or signal pileup, as is present with GRASE, and no signal loss, as is seen with conventional spiral TSE. Examples also demonstrate the flexibility in changing the imaging parameters to satisfy various criteria. The 3D TSE with a distributed spiral-in/out trajectory provides a robust readout technique and allows for easy protocol design, thus is a promising alternative to GRASE or conventional spiral TSE for ASL perfusion imaging. © 2015 Wiley Periodicals, Inc.

  18. Neural network for image compression

    NASA Astrophysics Data System (ADS)

    Panchanathan, Sethuraman; Yeap, Tet H.; Pilache, B.

    1992-09-01

    In this paper, we propose a new scheme for image compression using neural networks. Image data compression deals with minimization of the amount of data required to represent an image while maintaining an acceptable quality. Several image compression techniques have been developed in recent years. We note that the coding performance of these techniques may be improved by employing adaptivity. Over the last few years neural network has emerged as an effective tool for solving a wide range of problems involving adaptivity and learning. A multilayer feed-forward neural network trained using the backward error propagation algorithm is used in many applications. However, this model is not suitable for image compression because of its poor coding performance. Recently, a self-organizing feature map (SOFM) algorithm has been proposed which yields a good coding performance. However, this algorithm requires a long training time because the network starts with random initial weights. In this paper we have used the backward error propagation algorithm (BEP) to quickly obtain the initial weights which are then used to speedup the training time required by the SOFM algorithm. The proposed approach (BEP-SOFM) combines the advantages of the two techniques and, hence, achieves a good coding performance in a shorter training time. Our simulation results demonstrate the potential gains using the proposed technique.

  19. Fast Neutron Tomography of Low-Z Object in High-Z Material Shielding

    NASA Astrophysics Data System (ADS)

    Babai, Ruth Weiss; Sabo-Napadensky, Iris; Bar, Doron; Mor, Ilan; Tamim, Noam; Dangendorf, Volker; Tittelmeier, Kai; Bromberger, Benjamin; Weierganz, Mathias

    The technique and first results of Fast Neutron Tomography (FNCT) experiments are presented which are performed at the accelerator facility of PTB, Germany. A high-intensity neutron beam of broad spectral distribution with an average energy of 5.5 MeV, was produced by 11.5 MeV deuterons impinging upon a thick beryllium target. The capability of FNCT for high contrast imaging of low-Z materials embedded in thick high-Z shielding materials is demonstrated, which is superior to more conventional high-energy X-ray imaging techniques. For demonstrating the method special test objects were prepared: One consisted of an assembled polyethylene cylinder with holes of various diameters and directions drilled in its surface and inner parts. The plastic phantom was inserted into lead cylinders of different thicknesses. The detector system consisted of a plastic scintillator along with a dedicated optics, image-intensifier and a CCD camera. Two scintillator screens were compared: a bulk plastic scintillator screen and a fibres optical scintillator screen. The tomographic scans were taken in two geometrical configurations: cone beam and semi-fan beam configuration. The image quality favours the semi-fan beam configuration which on the other hand is more time consuming The obtained tomographic images and a comparison of the imaging quality between the different experimental conditions will be presented.

  20. Compressed Sensing for Body MRI

    PubMed Central

    Feng, Li; Benkert, Thomas; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo; Chandarana, Hersh

    2016-01-01

    The introduction of compressed sensing for increasing imaging speed in MRI has raised significant interest among researchers and clinicians, and has initiated a large body of research across multiple clinical applications over the last decade. Compressed sensing aims to reconstruct unaliased images from fewer measurements than that are traditionally required in MRI by exploiting image compressibility or sparsity. Moreover, appropriate combinations of compressed sensing with previously introduced fast imaging approaches, such as parallel imaging, have demonstrated further improved performance. The advent of compressed sensing marks the prelude to a new era of rapid MRI, where the focus of data acquisition has changed from sampling based on the nominal number of voxels and/or frames to sampling based on the desired information content. This paper presents a brief overview of the application of compressed sensing techniques in body MRI, where imaging speed is crucial due to the presence of respiratory motion along with stringent constraints on spatial and temporal resolution. The first section provides an overview of the basic compressed sensing methodology, including the notion of sparsity, incoherence, and non-linear reconstruction. The second section reviews state-of-the-art compressed sensing techniques that have been demonstrated for various clinical body MRI applications. In the final section, the paper discusses current challenges and future opportunities. PMID:27981664

  1. Passive lighting responsive three-dimensional integral imaging

    NASA Astrophysics Data System (ADS)

    Lou, Yimin; Hu, Juanmei

    2017-11-01

    A three dimensional (3D) integral imaging (II) technique with a real-time passive lighting responsive ability and vivid 3D performance has been proposed and demonstrated. Some novel lighting responsive phenomena, including light-activated 3D imaging, and light-controlled 3D image scaling and translation, have been realized optically without updating images. By switching the on/off state of a point light source illuminated on the proposed II system, the 3D images can show/hide independent of the diffused illumination background. By changing the position or illumination direction of the point light source, the position and magnification of the 3D image can be modulated in real time. The lighting responsive mechanism of the 3D II system is deduced analytically and verified experimentally. A flexible thin film lighting responsive II system with a 0.4 mm thickness was fabricated. This technique gives some additional degrees of freedom in order to design the II system and enable the virtual 3D image to interact with the real illumination environment in real time.

  2. Perspective: Advanced particle imaging

    PubMed Central

    Chandler, David W.

    2017-01-01

    Since the first ion imaging experiment [D. W. Chandler and P. L. Houston, J. Chem. Phys. 87, 1445–1447 (1987)], demonstrating the capability of collecting an image of the photofragments from a unimolecular dissociation event and analyzing that image to obtain the three-dimensional velocity distribution of the fragments, the efficacy and breadth of application of the ion imaging technique have continued to improve and grow. With the addition of velocity mapping, ion/electron centroiding, and slice imaging techniques, the versatility and velocity resolution have been unmatched. Recent improvements in molecular beam, laser, sensor, and computer technology are allowing even more advanced particle imaging experiments, and eventually we can expect multi-mass imaging with co-variance and full coincidence capability on a single shot basis with repetition rates in the kilohertz range. This progress should further enable “complete” experiments—the holy grail of molecular dynamics—where all quantum numbers of reactants and products of a bimolecular scattering event are fully determined and even under our control. PMID:28688442

  3. Digital processing of radiographic images

    NASA Technical Reports Server (NTRS)

    Bond, A. D.; Ramapriyan, H. K.

    1973-01-01

    Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.

  4. SPECKLE NOISE SUBTRACTION AND SUPPRESSION WITH ADAPTIVE OPTICS CORONAGRAPHIC IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren Deqing; Dou Jiangpei; Zhang Xi

    2012-07-10

    Future ground-based direct imaging of exoplanets depends critically on high-contrast coronagraph and wave-front manipulation. A coronagraph is designed to remove most of the unaberrated starlight. Because of the wave-front error, which is inherit from the atmospheric turbulence from ground observations, a coronagraph cannot deliver its theoretical performance, and speckle noise will limit the high-contrast imaging performance. Recently, extreme adaptive optics, which can deliver an extremely high Strehl ratio, is being developed for such a challenging mission. In this publication, we show that barely taking a long-exposure image does not provide much gain for coronagraphic imaging with adaptive optics. We furthermore » discuss a speckle subtraction and suppression technique that fully takes advantage of the high contrast provided by the coronagraph, as well as the wave front corrected by the adaptive optics. This technique works well for coronagraphic imaging with conventional adaptive optics with a moderate Strehl ratio, as well as for extreme adaptive optics with a high Strehl ratio. We show how to substrate and suppress speckle noise efficiently up to the third order, which is critical for future ground-based high-contrast imaging. Numerical simulations are conducted to fully demonstrate this technique.« less

  5. Functional and morphological ultrasonic biomicroscopy for tissue engineers

    NASA Astrophysics Data System (ADS)

    Mallidi, S.; Aglyamov, S. R.; Karpiouk, A. B.; Park, S.; Emelianov, S. Y.

    2006-03-01

    Tissue engineering is an interdisciplinary field that combines various aspects of engineering and life sciences and aims to develop biological substitutes to restore, repair or maintain tissue function. Currently, the ability to have quantitative functional assays of engineered tissues is limited to existing invasive methods like biopsy. Hence, an imaging tool for non-invasive and simultaneous evaluation of the anatomical and functional properties of the engineered tissue is needed. In this paper we present an advanced in-vivo imaging technology - ultrasound biomicroscopy combined with complementary photoacoustic and elasticity imaging techniques, capable of accurate visualization of both structural and functional changes in engineered tissues, sequential monitoring of tissue adaptation and/or regeneration, and possible assistance of drug delivery and treatment planning. The combined imaging at microscopic resolution was evaluated on tissue mimicking phantoms imaged with 25 MHz single element focused transducer. The results of our study demonstrate that the ultrasonic, photoacoustic and elasticity images synergistically complement each other in detecting features otherwise imperceptible using the individual techniques. Finally, we illustrate the feasibility of the combined ultrasound, photoacoustic and elasticity imaging techniques in accurately assessing the morphological and functional changes occurring in engineered tissue.

  6. X-ray Scatter Imaging of Hepatocellular Carcinoma in a Mouse Model Using Nanoparticle Contrast Agents

    NASA Astrophysics Data System (ADS)

    Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; Wands, Jack R.; Rose-Petruck, Christoph

    2015-10-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form an image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. The enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.

  7. Discrimination methods for biological contaminants in fresh-cut lettuce based on VNIR and NIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mo, Changyeun; Kim, Giyoung; Kim, Moon S.; Lim, Jongguk; Lee, Seung Hyun; Lee, Hong-Seok; Cho, Byoung-Kwan

    2017-09-01

    The rapid detection of biological contaminants such as worms in fresh-cut vegetables is necessary to improve the efficiency of visual inspections carried out by workers. Multispectral imaging algorithms were developed using visible-near-infrared (VNIR) and near-infrared (NIR) hyperspectral imaging (HSI) techniques to detect worms in fresh-cut lettuce. The optimal wavebands that can detect worms in fresh-cut lettuce were investigated for each type of HSI using one-way ANOVA. Worm-detection imaging algorithms for VNIR and NIR imaging exhibited prediction accuracies of 97.00% (RI547/945) and 100.0% (RI1064/1176, SI1064-1176, RSI-I(1064-1173)/1064, and RSI-II(1064-1176)/(1064+1176)), respectively. The two HSI techniques revealed that spectral images with a pixel size of 1 × 1 mm or 2 × 2 mm had the best classification accuracy for worms. The results demonstrate that hyperspectral reflectance imaging techniques have the potential to detect worms in fresh-cut lettuce. Future research relating to this work will focus on a real-time sorting system for lettuce that can simultaneously detect various defects such as browning, worms, and slugs.

  8. Evaluation of segmentation algorithms for optical coherence tomography images of ovarian tissue

    NASA Astrophysics Data System (ADS)

    Sawyer, Travis W.; Rice, Photini F. S.; Sawyer, David M.; Koevary, Jennifer W.; Barton, Jennifer K.

    2018-02-01

    Ovarian cancer has the lowest survival rate among all gynecologic cancers due to predominantly late diagnosis. Early detection of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no reliable early detection techniques exist. Optical coherence tomography (OCT) is an emerging technique that provides depthresolved, high-resolution images of biological tissue in real time and demonstrates great potential for imaging of ovarian tissue. Mouse models are crucial to quantitatively assess the diagnostic potential of OCT for ovarian cancer imaging; however, due to small organ size, the ovaries must rst be separated from the image background using the process of segmentation. Manual segmentation is time-intensive, as OCT yields three-dimensional data. Furthermore, speckle noise complicates OCT images, frustrating many processing techniques. While much work has investigated noise-reduction and automated segmentation for retinal OCT imaging, little has considered the application to the ovaries, which exhibit higher variance and inhomogeneity than the retina. To address these challenges, we evaluated a set of algorithms to segment OCT images of mouse ovaries. We examined ve preprocessing techniques and six segmentation algorithms. While all pre-processing methods improve segmentation, Gaussian filtering is most effective, showing an improvement of 32% +/- 1.2%. Of the segmentation algorithms, active contours performs best, segmenting with an accuracy of 0.948 +/- 0.012 compared with manual segmentation (1.0 being identical). Nonetheless, further optimization could lead to maximizing the performance for segmenting OCT images of the ovaries.

  9. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-02-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.

  10. Laser-induced photo-thermal strain imaging

    NASA Astrophysics Data System (ADS)

    Choi, Changhoon; Ahn, Joongho; Jeon, Seungwan; Kim, Chulhong

    2018-02-01

    Vulnerable plaque is the one of the leading causes of cardiovascular disease occurrence. However, conventional intravascular imaging techniques suffer from difficulty in finding vulnerable plaque due to limitation such as lack of physiological information, imaging depth, and depth sensitivity. Therefore, new techniques are needed to help determine the vulnerability of plaque, Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed that varies with temperature of medium. During temperature increase, strain occurs in the medium and its variation tendency is depending on the type of tissue, which makes it possible to use for tissue differentiation. Here, we demonstrate laser-induced photo-thermal strain imaging (pTSI) to differentiate tissue using an intravascular ultrasound (IVUS) catheter and a 1210-nm continuous-wave laser for heating lipids intensively. During heating, consecutive US images were obtained from a custom-made phantom made of porcine fat and gelatin. A cross correlation-based speckle-tracking algorithm was then applied to calculate the strain of US images. In the strain images, the positive strain produced in lipids (porcine fat) was clearly differentiated from water-bearing tissue (gelatin). This result shows that laser-induced pTSI could be a new method to distinguish lipids in the plaque and can help to differentiate vulnerability of plaque.

  11. A human visual based binarization technique for histological images

    NASA Astrophysics Data System (ADS)

    Shreyas, Kamath K. M.; Rajendran, Rahul; Panetta, Karen; Agaian, Sos

    2017-05-01

    In the field of vision-based systems for object detection and classification, thresholding is a key pre-processing step. Thresholding is a well-known technique for image segmentation. Segmentation of medical images, such as Computed Axial Tomography (CAT), Magnetic Resonance Imaging (MRI), X-Ray, Phase Contrast Microscopy, and Histological images, present problems like high variability in terms of the human anatomy and variation in modalities. Recent advances made in computer-aided diagnosis of histological images help facilitate detection and classification of diseases. Since most pathology diagnosis depends on the expertise and ability of the pathologist, there is clearly a need for an automated assessment system. Histological images are stained to a specific color to differentiate each component in the tissue. Segmentation and analysis of such images is problematic, as they present high variability in terms of color and cell clusters. This paper presents an adaptive thresholding technique that aims at segmenting cell structures from Haematoxylin and Eosin stained images. The thresholded result can further be used by pathologists to perform effective diagnosis. The effectiveness of the proposed method is analyzed by visually comparing the results to the state of art thresholding methods such as Otsu, Niblack, Sauvola, Bernsen, and Wolf. Computer simulations demonstrate the efficiency of the proposed method in segmenting critical information.

  12. Is there a role for free breathing non-contrast steady-state free precession renal MRA imaging for assessing live donors? A preliminary study.

    PubMed

    Laurence, I; Ariff, B; Quest, R A; Moser, S; Glover, A; Taube, D; Gishen, P; Papalois, V; Juli, C

    2012-08-01

    Accurate pre-operative evaluation of renal vascular anatomy is essential for successful renal harvest in live donor transplantation. Non-contrast renal MR angiographic (MRA) techniques are potentially well suited to the screening of donors; however, their restricted imaging field of view (FOV) has previously been an important limitation. We sought to assess whether the addition of a large FOV balanced fast field echo (BFFE) steady-state free precession (SSFP) sequence to non-contrast SSFP MRA could overcome this problem. Comparison with contrast-enhanced MRA (CE MRA) and findings at surgery were performed. 22 potential renal donors each underwent SSFP and CE MRA. 11 out of 22 potential donors subsequently underwent a donor nephrectomy. All images were diagnostic. Both SSFP MRA and CE MRA identified an equal number of arteries. Surgery confirmed two accessory renal arteries, both demonstrated with both imaging techniques. A third accessory vessel was identified with both techniques on a kidney contralateral to the donated organ. 6 out of 11 procured kidneys demonstrated early branch arteries at surgery, 5 out of 6 of which had been depicted on both SSFP and CE MRA. The median grading of image quality for main renal arteries was slightly better for CE MRA (p=0.048), but for accessory vessels it was better for SSFP MRA. This pilot study indicates that by combining free-breathing SSFP MRA with large-FOV bFFE images, an accurate depiction of renal vascular anatomy without the need for intravenous contrast administration can be obtained, as compared with surgical findings and CE MRA.

  13. Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator.

    PubMed

    King, A P; Buerger, C; Tsoumpas, C; Marsden, P K; Schaeffter, T

    2012-01-01

    Respiratory motion models have potential application for estimating and correcting the effects of motion in a wide range of applications, for example in PET-MR imaging. Given that motion cycles caused by breathing are only approximately repeatable, an important quality of such models is their ability to capture and estimate the intra- and inter-cycle variability of the motion. In this paper we propose and describe a technique for free-form nonrigid respiratory motion correction in the thorax. Our model is based on a principal component analysis of the motion states encountered during different breathing patterns, and is formed from motion estimates made from dynamic 3-D MRI data. We apply our model using a data-driven technique based on a 2-D MRI image navigator. Unlike most previously reported work in the literature, our approach is able to capture both intra- and inter-cycle motion variability. In addition, the 2-D image navigator can be used to estimate how applicable the current motion model is, and hence report when more imaging data is required to update the model. We also use the motion model to decide on the best positioning for the image navigator. We validate our approach using MRI data acquired from 10 volunteers and demonstrate improvements of up to 40.5% over other reported motion modelling approaches, which corresponds to 61% of the overall respiratory motion present. Finally we demonstrate one potential application of our technique: MRI-based motion correction of real-time PET data for simultaneous PET-MRI acquisition. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Hyper-spectrum scanning laser optical tomography

    NASA Astrophysics Data System (ADS)

    Chen, Lingling; Li, Guiye; Li, Yingchao; Liu, Lina; Liu, Ang; Hu, Xuejuan; Ruan, Shuangchen

    2018-02-01

    We describe a quantitative fluorescence projection tomography technique which measures the three-dimensional fluorescence spectrum in biomedical samples with size up to several millimeters. This is achieved by acquiring a series of hyperspectral images, by using laser scanning scheme, at different projection angles. We demonstrate that this technique provide a quantitative measure of the fluorescence signal by comparing the spectrum and intensity profile of a fluorescent bead phantom and also demonstrate its application to differentiating the extrinsic label and the autofluorescence in a mouse embryo.

  15. High throughput imaging cytometer with acoustic focussing.

    PubMed

    Zmijan, Robert; Jonnalagadda, Umesh S; Carugo, Dario; Kochi, Yu; Lemm, Elizabeth; Packham, Graham; Hill, Martyn; Glynne-Jones, Peter

    2015-10-31

    We demonstrate an imaging flow cytometer that uses acoustic levitation to assemble cells and other particles into a sheet structure. This technique enables a high resolution, low noise CMOS camera to capture images of thousands of cells with each frame. While ultrasonic focussing has previously been demonstrated for 1D cytometry systems, extending the technology to a planar, much higher throughput format and integrating imaging is non-trivial, and represents a significant jump forward in capability, leading to diagnostic possibilities not achievable with current systems. A galvo mirror is used to track the images of the moving cells permitting exposure times of 10 ms at frame rates of 50 fps with motion blur of only a few pixels. At 80 fps, we demonstrate a throughput of 208 000 beads per second. We investigate the factors affecting motion blur and throughput, and demonstrate the system with fluorescent beads, leukaemia cells and a chondrocyte cell line. Cells require more time to reach the acoustic focus than beads, resulting in lower throughputs; however a longer device would remove this constraint.

  16. Superresolution Interferometric Imaging with Sparse Modeling Using Total Squared Variation: Application to Imaging the Black Hole Shadow

    NASA Astrophysics Data System (ADS)

    Kuramochi, Kazuki; Akiyama, Kazunori; Ikeda, Shiro; Tazaki, Fumie; Fish, Vincent L.; Pu, Hung-Yi; Asada, Keiichi; Honma, Mareki

    2018-05-01

    We propose a new imaging technique for interferometry using sparse modeling, utilizing two regularization terms: the ℓ 1-norm and a new function named total squared variation (TSV) of the brightness distribution. First, we demonstrate that our technique may achieve a superresolution of ∼30% compared with the traditional CLEAN beam size using synthetic observations of two point sources. Second, we present simulated observations of three physically motivated static models of Sgr A* with the Event Horizon Telescope (EHT) to show the performance of proposed techniques in greater detail. Remarkably, in both the image and gradient domains, the optimal beam size minimizing root-mean-squared errors is ≲10% of the traditional CLEAN beam size for ℓ 1+TSV regularization, and non-convolved reconstructed images have smaller errors than beam-convolved reconstructed images. This indicates that TSV is well matched to the expected physical properties of the astronomical images and the traditional post-processing technique of Gaussian convolution in interferometric imaging may not be required. We also propose a feature-extraction method to detect circular features from the image of a black hole shadow and use it to evaluate the performance of the image reconstruction. With this method and reconstructed images, the EHT can constrain the radius of the black hole shadow with an accuracy of ∼10%–20% in present simulations for Sgr A*, suggesting that the EHT would be able to provide useful independent measurements of the mass of the supermassive black holes in Sgr A* and also another primary target, M87.

  17. Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data.

    PubMed

    Daducci, Alessandro; Canales-Rodríguez, Erick J; Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C; Thiran, Jean-Philippe

    2015-01-15

    Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Comparative studies of brain activation with MEG and functional MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, J.S.; Aine, C.J.; Sanders, J.A.

    The past two years have witnessed the emergence of MRI as a functional imaging methodology. Initial demonstrations involved the injection of a paramagnetic contrast agent and required ultrafast echo planar imaging capability to adequately resolve the passage of the injected bolus. By measuring the local reduction in image intensity due to magnetic susceptibility, it was possible to calculate blood volume, which changes as a function of neural activation. Later developments have exploited endogenous contrast mechanisms to monitor changes in blood volume or in venous blood oxygen content. Recently, we and others have demonstrated that it is possible to make suchmore » measurements in a clinical imager, suggesting that the large installed base of such machines might be utilized for functional imaging. Although it is likely that functional MRI (fMRI) will subsume some of the clinical and basic neuroscience applications now touted for MEG, it is also clear that these techniques offer different largely complementary, capabilities. At the very least, it is useful to compare and cross-validate the activation maps produced by these techniques. Such studies will be valuable as a check on results of neuromagnetic distributed current reconstructions and will allow better characterization of the relationship between neurophysiological activation and associated hemodynamic changes. A more exciting prospect is the development of analyses that combine information from the two modalities to produce a better description of underlying neural activity than is possible with either technique in isolation. In this paper we describe some results from initial comparative studies and outline several techniques that can be used to treat MEG and fMRI data within a unified computational framework.« less

  19. In-Situ Characterization of Tissue Blood Flow, Blood Content, and Water State Using New Techniques in Magnetic Resonance Imaging.

    NASA Astrophysics Data System (ADS)

    Conturo, Thomas Edward

    Tissue blood flow, blood content, and water state have been characterized in-situ with new nuclear magnetic resonance imaging techniques. The sensitivities of standard techniques to the physiologic tissue parameters spin density (N_{rm r}) and relaxation times (T_1 and T_2 ) are mathematically defined. A new driven inversion method is developed so that tissue T_1 and T_2 changes produce cooperative intensity changes, yielding high contrast, high signal to noise, and sensitivity to a wider range of tissue parameters. The actual tissue parameters were imaged by automated collection of multiple-echo data having multiple T _1 dependence. Data are simultaneously fit by three-parameters to a closed-form expression, producing lower inter-parameter correlation and parameter noise than in separate T_1 or T_2 methods or pre-averaged methods. Accurate parameters are obtained at different field strengths. Parametric images of pathology demonstrate high sensitivity to tissue heterogeneity, and water content is determined in many tissues. Erythrocytes were paramagnetically labeled to study blood content and relaxation mechanisms. Liver and spleen relaxation were enhanced following 10% exchange of animal blood volumes. Rapid water exchange between intracellular and extracellular compartments was validated. Erythrocytes occupied 12.5% of renal cortex volume, and blood content was uniform in the liver, spleen and kidney. The magnitude and direction of flow velocity was then imaged. To eliminate directional artifacts, a bipolar gradient technique sensitized to flow in different directions was developed. Phase angle was reconstructed instead of intensity since the former has a 2pi -fold higher dynamic range. Images of flow through curves demonstrated secondary flow with a centrifugally-biased laminar profile and stationary velocity peaks along the curvature. Portal vein flow velocities were diminished or reversed in cirrhosis. Image artifacts have been characterized and removed. The foldover in magnified images was eliminated by exciting limited regions with orthogonal pi/2 and pi pulses. Off-midline regions were imaged by tandemly offsetting the phase-encoding and excitation. Artifacts due to non-steady-state conditions were demonstrated. The approach to steady state was defined by operators and vectors, and any repeated series of RF pulses was proven to produce a steady-state. The vector difference between the magnetization and its steady state value is relatively constant during the approach. The repetition time relative to T_1 is the main determinant of approach rate, and off-resonant RF pulses incoherent with the magnetization produce a more rapid approach than on-resonant pulses.

  20. Accelerating Sequences in the Presence of Metal by Exploiting the Spatial Distribution of Off-Resonance

    PubMed Central

    Smith, Matthew R.; Artz, Nathan S.; Koch, Kevin M.; Samsonov, Alexey; Reeder, Scott B.

    2014-01-01

    Purpose To demonstrate feasibility of exploiting the spatial distribution of off-resonance surrounding metallic implants for accelerating multispectral imaging techniques. Theory Multispectral imaging (MSI) techniques perform time-consuming independent 3D acquisitions with varying RF frequency offsets to address the extreme off-resonance from metallic implants. Each off-resonance bin provides a unique spatial sensitivity that is analogous to the sensitivity of a receiver coil, and therefore provides a unique opportunity for acceleration. Methods Fully sampled MSI was performed to demonstrate retrospective acceleration. A uniform sampling pattern across off-resonance bins was compared to several adaptive sampling strategies using a total hip replacement phantom. Monte Carlo simulations were performed to compare noise propagation of two of these strategies. With a total knee replacement phantom, positive and negative off-resonance bins were strategically sampled with respect to the B0 field to minimize aliasing. Reconstructions were performed with a parallel imaging framework to demonstrate retrospective acceleration. Results An adaptive sampling scheme dramatically improved reconstruction quality, which was supported by the noise propagation analysis. Independent acceleration of negative and positive off-resonance bins demonstrated reduced overlapping of aliased signal to improve the reconstruction. Conclusion This work presents the feasibility of acceleration in the presence of metal by exploiting the spatial sensitivities of off-resonance bins. PMID:24431210

  1. 3D imaging with a single-aperture 3-mm objective lens: concept, fabrication, and test

    NASA Astrophysics Data System (ADS)

    Korniski, Ronald; Bae, Sam Y.; Shearn, Michael; Manohara, Harish; Shahinian, Hrayr

    2011-10-01

    There are many advantages to minimally invasive surgery (MIS). An endoscope is the optical system of choice by the surgeon for MIS. The smaller the incision or opening made to perform the surgery, the smaller the optical system needed. For minimally invasive neurological and skull base surgeries the openings are typically 10-mm in diameter (dime sized) or less. The largest outside diameter (OD) endoscope used is 4mm. A significant drawback to endoscopic MIS is that it only provides a monocular view of the surgical site thereby lacking depth information for the surgeon. A stereo view would provide the surgeon instantaneous depth information of the surroundings within the field of view, a significant advantage especially during brain surgery. Providing 3D imaging in an endoscopic objective lens system presents significant challenges because of the tight packaging constraints. This paper presents a promising new technique for endoscopic 3D imaging that uses a single lens system with complementary multi-bandpass filters (CMBFs), and describes the proof-of-concept demonstrations performed to date validating the technique. These demonstrations of the technique have utilized many commercial off-the- shelf (COTS) components including the ones used in the endoscope objective.

  2. 3D Imaging with a Single-Aperture 3-mm Objective Lens: Concept, Fabrication and Test

    NASA Technical Reports Server (NTRS)

    Korniski, Ron; Bae, Sam Y.; Shearn, Mike; Manohara, Harish; Shahinian, Hrayr

    2011-01-01

    There are many advantages to minimally invasive surgery (MIS). An endoscope is the optical system of choice by the surgeon for MIS. The smaller the incision or opening made to perform the surgery, the smaller the optical system needed. For minimally invasive neurological and skull base surgeries the openings are typically 10-mm in diameter (dime sized) or less. The largest outside diameter (OD) endoscope used is 4mm. A significant drawback to endoscopic MIS is that it only provides a monocular view of the surgical site thereby lacking depth information for the surgeon. A stereo view would provide the surgeon instantaneous depth information of the surroundings within the field of view, a significant advantage especially during brain surgery. Providing 3D imaging in an endoscopic objective lens system presents significant challenges because of the tight packaging constraints. This paper presents a promising new technique for endoscopic 3D imaging that uses a single lens system with complementary multi-bandpass filters (CMBFs), and describes the proof-of-concept demonstrations performed to date validating the technique. These demonstrations of the technique have utilized many commercial off-the-shelf (COTS) components including the ones used in the endoscope objective.

  3. Fat-suppressed three-dimensional fast spoiled gradient-recalled echo imaging: a modified FS 3D SPGR technique for assessment of patellofemoral joint chondromalacia.

    PubMed

    Wang, S F; Cheng, H C; Chang, C Y

    1999-01-01

    Fast fat-suppressed (FS) three-dimensional (3D) spoiled gradient-recalled echo (SPGR) imaging of 64 articular cartilage regions in 16 patellofemoral joints was evaluated to assess its feasibility in diagnosing patellofemoral chondromalacia. It demonstrated good correlation with arthroscopic reports and took about half of the examination time that FS 3D SPGR did. This modified, faster technique has the potential to diagnose patellofemoral chondromalacia with shorter examination time than FS 3D SPGR did.

  4. Quantum-optical coherence tomography with classical light.

    PubMed

    Lavoie, J; Kaltenbaek, R; Resch, K J

    2009-03-02

    Quantum-optical coherence tomography (Q-OCT) is an interferometric technique for axial imaging offering several advantages over conventional methods. Chirped-pulse interferometry (CPI) was recently demonstrated to exhibit all of the benefits of the quantum interferometer upon which Q-OCT is based. Here we use CPI to measure axial interferograms to profile a sample accruing the important benefits of Q-OCT, including automatic dispersion cancellation, but with 10 million times higher signal. Our technique solves the artifact problem in Q-OCT and highlights the power of classical correlation in optical imaging.

  5. Optical metabolic imaging of live tissue cultures

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Cook, Rebecca S.; Arteaga, Carlos L.; Skala, Melissa C.

    2013-02-01

    The fluorescence properties, both intensity and fluorescence lifetime, of NADH and FAD, two coenzymes of metabolism, are sensitive, high resolution measures of cellular metabolism. However, often in vivo measurements of tissue are not feasible. In this study, we investigate the stability over time of two-photon auto-fluorescence imaging of NADH and FAD in live-cultured tissues. Our results demonstrate that cultured tissues remain viable for at least several days post excision. Furthermore, the optical redox ratio, NADH fluorescence lifetime, and FAD fluorescence lifetime do not significantly change in the cultured tissues over time. With these findings, we demonstrate the potential of sustained tissue culture techniques for optical metabolic imaging.

  6. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Justin S; Endres, Christopher; Foss, Catherine

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained frommore » CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.« less

  7. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.

    2013-06-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a ^99mTc-pertechnetate phantom, ^99mTc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand ^123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained frommore » CT. The binding potential of ^123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.« less

  8. Modulated scattering technique in the terahertz domain enabled by current actuated vanadium dioxide switches

    PubMed Central

    Vitale, W. A.; Tamagnone, M.; Émond, N.; Le Drogoff, B.; Capdevila, S.; Skrivervik, A.; Chaker, M.; Mosig, J. R.; Ionescu, A. M.

    2017-01-01

    The modulated scattering technique is based on the use of reconfigurable electromagnetic scatterers, structures able to scatter and modulate an impinging electromagnetic field in function of a control signal. The modulated scattering technique is used in a wide range of frequencies up to millimeter waves for various applications, such as field mapping of circuits or antennas, radio-frequency identification devices and imaging applications. However, its implementation in the terahertz domain remains challenging. Here, we describe the design and experimental demonstration of the modulated scattering technique at terahertz frequencies. We characterize a modulated scatterer consisting in a bowtie antenna loaded with a vanadium dioxide switch, actuated using a continuous current. The modulated scatterer behavior is demonstrated using a time domain terahertz spectroscopy setup and shows significant signal strength well above 0.5 THz, which makes this device a promising candidate for the development of fast and energy-efficient THz communication devices and imaging systems. Moreover, our experiments allowed us to verify the operation of a single micro-meter sized VO2 switch at terahertz frequencies, thanks to the coupling provided by the antenna. PMID:28145523

  9. A detailed study of gold-nanoparticle loaded cells using X-ray based techniques for cell-tracking applications with single-cell sensitivity

    NASA Astrophysics Data System (ADS)

    Astolfo, Alberto; Arfelli, Fulvia; Schültke, Elisabeth; James, Simon; Mancini, Lucia; Menk, Ralf-Hendrik

    2013-03-01

    In the present study complementary high-resolution imaging techniques on different length scales are applied to elucidate a cellular loading protocol of gold nanoparticles and subsequently its impact on long term and high-resolution cell-tracking utilizing X-ray technology. Although demonstrated for malignant cell lines the results can be applied to non-malignant cell lines as well. In particular the accumulation of the gold marker per cell has been assessed quantitatively by virtue of electron microscopy, two-dimensional X-ray fluorescence imaging techniques and X-ray CT with micrometric and sub-micrometric resolution. Moreover, utilizing these techniques the three dimensional distribution of the incorporated nanoparticles, which are sequestered in lysosomes as a permanent marker, could be determined. The latter allowed elucidation of the gold partition during mitosis and the cell size, which subsequently enabled us to define the optimal instrument settings of a compact microCT system to visualize gold loaded cells. The results obtained demonstrate the feasibility of cell-tracking using X-ray CT with compact sources.

  10. Development of two-photon fluorescence microscopy for quantitative imaging in turbid tissues

    NASA Astrophysics Data System (ADS)

    Coleno, Mariah Lee

    Two-photon laser scanning fluorescence microscopy (TPM) is a high resolution, non-invasive biological imaging technique that can be used to image turbid tissues both in vitro and in vivo at depths of several hundred microns. Although TPM has been widely used to image tissue structures, no one has focused on using TPM to extract quantitative information from turbid tissues at depth. As a result, this thesis addresses the quantitative characterization of two-photon signals in turbid media. Initially, a two-photon microscope system is constructed, and two-photon images that validate system performance are obtained. Then TPM is established as an imaging technique that can be used to validate theoretical observations already listed in the literature. In particular, TPM is found to validate the exponential dependence of the fluorescence intensity decay with depth in turbid tissue model systems. Results from these studies next prompted experimental investigation into whether TPM could be used to determine tissue optical properties. Comparing the exponential dependence of the decay with a Monte Carlo model involving tissue optical properties, TPM is shown to be useful for determining the optical properties (total attenuation coefficient) of thick, turbid tissues on a small spatial scale. Next, a role for TPM for studying and optimizing wound healing is demonstrated. In particular, TPM is used to study the effects of perturbations (growth factors, PDT) on extracellular matrix remodeling in artificially engineered skin tissues. Results from these studies combined with tissue contraction studies are shown to demonstrate ways to modulate tissues to optimize the wound healing immune response and reduce scarring. In the end, TPM is shown to be an extremely important quantitative biological imaging technique that can be used to optimize wound repair.

  11. Segmentation of dermatoscopic images by frequency domain filtering and k-means clustering algorithms.

    PubMed

    Rajab, Maher I

    2011-11-01

    Since the introduction of epiluminescence microscopy (ELM), image analysis tools have been extended to the field of dermatology, in an attempt to algorithmically reproduce clinical evaluation. Accurate image segmentation of skin lesions is one of the key steps for useful, early and non-invasive diagnosis of coetaneous melanomas. This paper proposes two image segmentation algorithms based on frequency domain processing and k-means clustering/fuzzy k-means clustering. The two methods are capable of segmenting and extracting the true border that reveals the global structure irregularity (indentations and protrusions), which may suggest excessive cell growth or regression of a melanoma. As a pre-processing step, Fourier low-pass filtering is applied to reduce the surrounding noise in a skin lesion image. A quantitative comparison of the techniques is enabled by the use of synthetic skin lesion images that model lesions covered with hair to which Gaussian noise is added. The proposed techniques are also compared with an established optimal-based thresholding skin-segmentation method. It is demonstrated that for lesions with a range of different border irregularity properties, the k-means clustering and fuzzy k-means clustering segmentation methods provide the best performance over a range of signal to noise ratios. The proposed segmentation techniques are also demonstrated to have similar performance when tested on real skin lesions representing high-resolution ELM images. This study suggests that the segmentation results obtained using a combination of low-pass frequency filtering and k-means or fuzzy k-means clustering are superior to the result that would be obtained by using k-means or fuzzy k-means clustering segmentation methods alone. © 2011 John Wiley & Sons A/S.

  12. Intraoperative intrinsic optical imaging of human somatosensory cortex during neurosurgical operations.

    PubMed

    Sato, Katsushige; Nariai, Tadashi; Momose-Sato, Yoko; Kamino, Kohtaro

    2017-07-01

    Intrinsic optical imaging as developed by Grinvald et al. is a powerful technique for monitoring neural function in the in vivo central nervous system. The advent of this dye-free imaging has also enabled us to monitor human brain function during neurosurgical operations. We briefly describe our own experience in functional mapping of the human somatosensory cortex, carried out using intraoperative optical imaging. The maps obtained demonstrate new additional evidence of a hierarchy for sensory response patterns in the human primary somatosensory cortex.

  13. Real-time terahertz imaging through self-mixing in a quantum-cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wienold, M., E-mail: martin.wienold@dlr.de; Rothbart, N.; Hübers, H.-W.

    2016-07-04

    We report on a fast self-mixing approach for real-time, coherent terahertz imaging based on a quantum-cascade laser and a scanning mirror. Due to a fast deflection of the terahertz beam, images with frame rates up to several Hz are obtained, eventually limited by the mechanical inertia of the employed scanning mirror. A phase modulation technique allows for the separation of the amplitude and phase information without the necessity of parameter fitting routines. We further demonstrate the potential for transmission imaging.

  14. Magnetic force microscopy/current contrast imaging: A new technique for internal current probing of ICs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, A.N.; Cole, E.I. Jr.; Dodd, B.A.

    This invited paper describes recently reported work on the application of magnetic force microscopy (MFM) to image currents in IC conductors [1]. A computer model for MFM imaging of IC currents and experimental results demonstrating the ability to determine current direction and magnitude with a resolution of {approximately} 1 mA dc and {approximately} 1 {mu}A ac are presented. The physics of MFM signal generation and applications to current imaging and measurement are described.

  15. Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care.

    PubMed

    Rostami, Elham; Engquist, Henrik; Enblad, Per

    2014-01-01

    Ischemia is a common and deleterious secondary injury following traumatic brain injury (TBI). A great challenge for the treatment of TBI patients in the neurointensive care unit (NICU) is to detect early signs of ischemia in order to prevent further advancement and deterioration of the brain tissue. Today, several imaging techniques are available to monitor cerebral blood flow (CBF) in the injured brain such as positron emission tomography (PET), single-photon emission computed tomography, xenon computed tomography (Xenon-CT), perfusion-weighted magnetic resonance imaging (MRI), and CT perfusion scan. An ideal imaging technique would enable continuous non-invasive measurement of blood flow and metabolism across the whole brain. Unfortunately, no current imaging method meets all these criteria. These techniques offer snapshots of the CBF. MRI may also provide some information about the metabolic state of the brain. PET provides images with high resolution and quantitative measurements of CBF and metabolism; however, it is a complex and costly method limited to few TBI centers. All of these methods except mobile Xenon-CT require transfer of TBI patients to the radiological department. Mobile Xenon-CT emerges as a feasible technique to monitor CBF in the NICU, with lower risk of adverse effects. Promising results have been demonstrated with Xenon-CT in predicting outcome in TBI patients. This review covers available imaging methods used to monitor CBF in patients with severe TBI.

  16. Imaging of Cerebral Blood Flow in Patients with Severe Traumatic Brain Injury in the Neurointensive Care

    PubMed Central

    Rostami, Elham; Engquist, Henrik; Enblad, Per

    2014-01-01

    Ischemia is a common and deleterious secondary injury following traumatic brain injury (TBI). A great challenge for the treatment of TBI patients in the neurointensive care unit (NICU) is to detect early signs of ischemia in order to prevent further advancement and deterioration of the brain tissue. Today, several imaging techniques are available to monitor cerebral blood flow (CBF) in the injured brain such as positron emission tomography (PET), single-photon emission computed tomography, xenon computed tomography (Xenon-CT), perfusion-weighted magnetic resonance imaging (MRI), and CT perfusion scan. An ideal imaging technique would enable continuous non-invasive measurement of blood flow and metabolism across the whole brain. Unfortunately, no current imaging method meets all these criteria. These techniques offer snapshots of the CBF. MRI may also provide some information about the metabolic state of the brain. PET provides images with high resolution and quantitative measurements of CBF and metabolism; however, it is a complex and costly method limited to few TBI centers. All of these methods except mobile Xenon-CT require transfer of TBI patients to the radiological department. Mobile Xenon-CT emerges as a feasible technique to monitor CBF in the NICU, with lower risk of adverse effects. Promising results have been demonstrated with Xenon-CT in predicting outcome in TBI patients. This review covers available imaging methods used to monitor CBF in patients with severe TBI. PMID:25071702

  17. Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue: a multimodality characterization

    NASA Astrophysics Data System (ADS)

    Chatelin, Simon; Bernal, Miguel; Deffieux, Thomas; Papadacci, Clément; Flaud, Patrice; Nahas, Amir; Boccara, Claude; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-11-01

    Shear wave elastography imaging techniques provide quantitative measurement of soft tissues elastic properties. Tendons, muscles and cerebral tissues are composed of fibers, which induce a strong anisotropic effect on the mechanical behavior. Currently, these tissues cannot be accurately represented by existing elastography phantoms. Recently, a novel approach for orthotropic hydrogel mimicking soft tissues has been developed (Millon et al 2006 J. Biomed. Mater. Res. B 305-11). The mechanical anisotropy is induced in a polyvinyl alcohol (PVA) cryogel by stretching the physical crosslinks of the polymeric chains while undergoing freeze/thaw cycles. In the present study we propose an original multimodality imaging characterization of this new transverse isotropic (TI) PVA hydrogel. Multiple properties were investigated using a large variety of techniques at different scales compared with an isotropic PVA hydrogel undergoing similar imaging and rheology protocols. The anisotropic mechanical (dynamic and static) properties were studied using supersonic shear wave imaging technique, full-field optical coherence tomography (FFOCT) strain imaging and classical linear rheometry using dynamic mechanical analysis. The anisotropic optical and ultrasonic spatial coherence properties were measured by FFOCT volumetric imaging and backscatter tensor imaging, respectively. Correlation of mechanical and optical properties demonstrates the complementarity of these techniques for the study of anisotropy on a multi-scale range as well as the potential of this TI phantom as fibrous tissue-mimicking phantom for shear wave elastographic applications.

  18. An assessment of multimodal imaging of subsurface text in mummy cartonnage using surrogate papyrus phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Adam; Piquette, Kathryn E.; Bergmann, Uwe

    Ancient Egyptian mummies were often covered with an outer casing, panels and masks made from cartonnage: a lightweight material made from linen, plaster, and recycled papyrus held together with adhesive. Egyptologists, papyrologists, and historians aim to recover and read extant text on the papyrus contained within cartonnage layers, but some methods, such as dissolving mummy casings, are destructive. The use of an advanced range of different imaging modalities was investigated to test the feasibility of non-destructive approaches applied to multi-layered papyrus found in ancient Egyptian mummy cartonnage. Eight different techniques were compared by imaging four synthetic phantoms designed to providemore » robust, well-understood, yet relevant sample standards using modern papyrus and replica inks. The techniques include optical (multispectral imaging with reflection and transillumination, and optical coherence tomography), X-ray (X-ray fluorescence imaging, X-ray fluorescence spectroscopy, X-ray micro computed tomography and phase contrast X-ray) and terahertz-based approaches. Optical imaging techniques were able to detect inks on all four phantoms, but were unable to significantly penetrate papyrus. X-ray-based techniques were sensitive to iron-based inks with excellent penetration but were not able to detect carbon-based inks. However, using terahertz imaging, it was possible to detect carbon-based inks with good penetration but with less sensitivity to iron-based inks. The phantoms allowed reliable and repeatable tests to be made at multiple sites on three continents. Finally, the tests demonstrated that each imaging modality needs to be optimised for this particular application: it is, in general, not sufficient to repurpose an existing device without modification. Furthermore, it is likely that no single imaging technique will to be able to robustly detect and enable the reading of text within ancient Egyptian mummy cartonnage. However, by carefully selecting, optimising and combining techniques, text contained within these fragile and rare artefacts may eventually be open to non-destructive imaging, identification, and interpretation.« less

  19. An assessment of multimodal imaging of subsurface text in mummy cartonnage using surrogate papyrus phantoms

    DOE PAGES

    Gibson, Adam; Piquette, Kathryn E.; Bergmann, Uwe; ...

    2018-02-26

    Ancient Egyptian mummies were often covered with an outer casing, panels and masks made from cartonnage: a lightweight material made from linen, plaster, and recycled papyrus held together with adhesive. Egyptologists, papyrologists, and historians aim to recover and read extant text on the papyrus contained within cartonnage layers, but some methods, such as dissolving mummy casings, are destructive. The use of an advanced range of different imaging modalities was investigated to test the feasibility of non-destructive approaches applied to multi-layered papyrus found in ancient Egyptian mummy cartonnage. Eight different techniques were compared by imaging four synthetic phantoms designed to providemore » robust, well-understood, yet relevant sample standards using modern papyrus and replica inks. The techniques include optical (multispectral imaging with reflection and transillumination, and optical coherence tomography), X-ray (X-ray fluorescence imaging, X-ray fluorescence spectroscopy, X-ray micro computed tomography and phase contrast X-ray) and terahertz-based approaches. Optical imaging techniques were able to detect inks on all four phantoms, but were unable to significantly penetrate papyrus. X-ray-based techniques were sensitive to iron-based inks with excellent penetration but were not able to detect carbon-based inks. However, using terahertz imaging, it was possible to detect carbon-based inks with good penetration but with less sensitivity to iron-based inks. The phantoms allowed reliable and repeatable tests to be made at multiple sites on three continents. Finally, the tests demonstrated that each imaging modality needs to be optimised for this particular application: it is, in general, not sufficient to repurpose an existing device without modification. Furthermore, it is likely that no single imaging technique will to be able to robustly detect and enable the reading of text within ancient Egyptian mummy cartonnage. However, by carefully selecting, optimising and combining techniques, text contained within these fragile and rare artefacts may eventually be open to non-destructive imaging, identification, and interpretation.« less

  20. Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy.

    PubMed

    Huang, Zhiwei; Teh, Seng Khoon; Zheng, Wei; Mo, Jianhua; Lin, Kan; Shao, Xiaozhuo; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan

    2009-03-15

    We report an integrated Raman spectroscopy and trimodal (white-light reflectance, autofluorescence, and narrow-band) imaging techniques for real-time in vivo tissue Raman measurements at endoscopy. A special 1.8 mm endoscopic Raman probe with filtering modules is developed, permitting effective elimination of interference of fluorescence background and silica Raman in fibers while maximizing tissue Raman collections. We demonstrate that high-quality in vivo Raman spectra of upper gastrointestinal tract can be acquired within 1 s or subseconds under the guidance of wide-field endoscopic imaging modalities, greatly facilitating the adoption of Raman spectroscopy into clinical research and practice during routine endoscopic inspections.

  1. Bidirectional light-scattering image processing method for high-concentration jet sprays

    NASA Astrophysics Data System (ADS)

    Shimizu, I.; Emori, Y.; Yang, W.-J.; Shimoda, M.; Suzuki, T.

    1985-01-01

    In order to study the distributions of droplet size and volume density in high-concentration jet sprays, a new technique is developed, which combines the forward and backward light scattering method and an image processing method. A pulsed ruby laser is used as the light source. The Mie scattering theory is applied to the results obtained from image processing on the scattering photographs. The time history is obtained for the droplet size and volume density distributions, and the method is demonstrated by diesel fuel sprays under various injecting conditions. The validity of the technique is verified by a good agreement in the injected fuel volume distributions obtained by the present method and by injection rate measurements.

  2. Spatially variant apodization for squinted synthetic aperture radar images.

    PubMed

    Castillo-Rubio, Carlos F; Llorente-Romano, Sergio; Burgos-García, Mateo

    2007-08-01

    Spatially variant apodization (SVA) is a nonlinear sidelobe reduction technique that improves sidelobe level and preserves resolution at the same time. This method implements a bidimensional finite impulse response filter with adaptive taps depending on image information. Some papers that have been previously published analyze SVA at the Nyquist rate or at higher rates focused on strip synthetic aperture radar (SAR). This paper shows that traditional SVA techniques are useless when the sensor operates with a squint angle. The reasons for this behaviour are analyzed, and a new implementation that largely improves the results is presented. The algorithm is applied to simulated SAR images in order to demonstrate the good quality achieved along with efficient computation.

  3. Forward model with space-variant of source size for reconstruction on X-ray radiographic image

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Liu, Jun; Jing, Yue-feng; Xiao, Bo; Wei, Cai-hua; Guan, Yong-hong; Zhang, Xuan

    2018-03-01

    The Forward Imaging Technique is a method to solve the inverse problem of density reconstruction in radiographic imaging. In this paper, we introduce the forward projection equation (IFP model) for the radiographic system with areal source blur and detector blur. Our forward projection equation, based on X-ray tracing, is combined with the Constrained Conjugate Gradient method to form a new method for density reconstruction. We demonstrate the effectiveness of the new technique by reconstructing density distributions from simulated and experimental images. We show that for radiographic systems with source sizes larger than the pixel size, the effect of blur on the density reconstruction is reduced through our method and can be controlled within one or two pixels. The method is also suitable for reconstruction of non-homogeneousobjects.

  4. PET-CMR in heart failure - synergistic or redundant imaging?

    PubMed

    Quail, Michael A; Sinusas, Albert J

    2017-07-01

    Imaging in heart failure (HF) provides data for diagnosis, prognosis and disease monitoring. Both MRI and nuclear imaging techniques have been successfully used for this purpose in HF. Positron Emission Tomography-Cardiac Magnetic Resonance (PET-CMR) is an example of a new multimodality diagnostic imaging technique with potential applications in HF. The threshold for adopting a new diagnostic tool to clinical practice must necessarily be high, lest they exacerbate costs without improving care. New modalities must demonstrate clinical superiority, or at least equivalence, combined with another important advantage, such as lower cost or improved patient safety. The purpose of this review is to outline the current status of multimodality PET-CMR with regard to HF applications, and determine whether the clinical utility of this new technology justifies the cost.

  5. Deep into the Brain: Artificial Intelligence in Stroke Imaging

    PubMed Central

    Lee, Eun-Jae; Kim, Yong-Hwan; Kim, Namkug; Kang, Dong-Wha

    2017-01-01

    Artificial intelligence (AI), a computer system aiming to mimic human intelligence, is gaining increasing interest and is being incorporated into many fields, including medicine. Stroke medicine is one such area of application of AI, for improving the accuracy of diagnosis and the quality of patient care. For stroke management, adequate analysis of stroke imaging is crucial. Recently, AI techniques have been applied to decipher the data from stroke imaging and have demonstrated some promising results. In the very near future, such AI techniques may play a pivotal role in determining the therapeutic methods and predicting the prognosis for stroke patients in an individualized manner. In this review, we offer a glimpse at the use of AI in stroke imaging, specifically focusing on its technical principles, clinical application, and future perspectives. PMID:29037014

  6. Vorticity field measurement using digital inline holography

    NASA Astrophysics Data System (ADS)

    Mallery, Kevin; Hong, Jiarong

    2017-11-01

    We demonstrate the direct measurement of a 3D vorticity field using digital inline holographic microscopy. Microfiber tracer particles are illuminated with a 532 nm continuous diode laser and imaged using a single CCD camera. The recorded holographic images are processed using a GPU-accelerated inverse problem approach to reconstruct the 3D structure of each microfiber in the imaged volume. The translation and rotation of each microfiber are measured using a time-resolved image sequence - yielding velocity and vorticity point measurements. The accuracy and limitations of this method are investigated using synthetic holograms. Measurements of solid body rotational flow are used to validate the accuracy of the technique under known flow conditions. The technique is further applied to a practical turbulent flow case for investigating its 3D velocity field and vorticity distribution.

  7. Deep into the Brain: Artificial Intelligence in Stroke Imaging.

    PubMed

    Lee, Eun-Jae; Kim, Yong-Hwan; Kim, Namkug; Kang, Dong-Wha

    2017-09-01

    Artificial intelligence (AI), a computer system aiming to mimic human intelligence, is gaining increasing interest and is being incorporated into many fields, including medicine. Stroke medicine is one such area of application of AI, for improving the accuracy of diagnosis and the quality of patient care. For stroke management, adequate analysis of stroke imaging is crucial. Recently, AI techniques have been applied to decipher the data from stroke imaging and have demonstrated some promising results. In the very near future, such AI techniques may play a pivotal role in determining the therapeutic methods and predicting the prognosis for stroke patients in an individualized manner. In this review, we offer a glimpse at the use of AI in stroke imaging, specifically focusing on its technical principles, clinical application, and future perspectives.

  8. Process techniques of charge transfer time reduction for high speed CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Zhongxiang, Cao; Quanliang, Li; Ye, Han; Qi, Qin; Peng, Feng; Liyuan, Liu; Nanjian, Wu

    2014-11-01

    This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD) node by controlling and optimizing the N doping concentration in the PPD and the threshold voltage of the reset transistor, respectively. The techniques shorten the charge transfer time from the PPD diode to the FD node effectively. The proposed process techniques do not need extra masks and do not cause harm to the fill factor. A sub array of 32 × 64 pixels was designed and implemented in the 0.18 μm CIS process with five implantation conditions splitting the N region in the PPD. The simulation and measured results demonstrate that the charge transfer time can be decreased by using the proposed techniques. Comparing the charge transfer time of the pixel with the different implantation conditions of the N region, the charge transfer time of 0.32 μs is achieved and 31% of image lag was reduced by using the proposed process techniques.

  9. Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy

    PubMed Central

    Yao, Atsushi; Kobayashi, Kei; Nosaka, Shunta; Kimura, Kuniko; Yamada, Hirofumi

    2017-01-01

    Several researchers have recently demonstrated visualization of subsurface features with a nanometer-scale resolution using various imaging schemes based on atomic force microscopy. Since all these subsurface imaging techniques require excitation of the oscillation of the cantilever and/or sample surface, it has been difficult to identify a key imaging mechanism. Here we demonstrate visualization of Au nanoparticles buried 300 nm into a polymer matrix by measurement of the thermal noise spectrum of a microcantilever with a tip in contact to the polymer surface. We show that the subsurface Au nanoparticles are detected as the variation in the contact stiffness and damping reflecting the viscoelastic properties of the polymer surface. The variation in the contact stiffness well agrees with the effective stiffness of a simple one-dimensional model, which is consistent with the fact that the maximum depth range of the technique is far beyond the extent of the contact stress field. PMID:28210001

  10. The history of MR imaging as seen through the pages of radiology.

    PubMed

    Edelman, Robert R

    2014-11-01

    The first reports in Radiology pertaining to magnetic resonance (MR) imaging were published in 1980, 7 years after Paul Lauterbur pioneered the first MR images and 9 years after the first human computed tomographic images were obtained. Historical advances in the research and clinical applications of MR imaging very much parallel the remarkable advances in MR imaging technology. These advances can be roughly classified into hardware (eg, magnets, gradients, radiofrequency [RF] coils, RF transmitter and receiver, MR imaging-compatible biopsy devices) and imaging techniques (eg, pulse sequences, parallel imaging, and so forth). Image quality has been dramatically improved with the introduction of high-field-strength superconducting magnets, digital RF systems, and phased-array coils. Hybrid systems, such as MR/positron emission tomography (PET), combine the superb anatomic and functional imaging capabilities of MR imaging with the unsurpassed capability of PET to demonstrate tissue metabolism. Supported by the improvements in hardware, advances in pulse sequence design and image reconstruction techniques have spurred dramatic improvements in imaging speed and the capability for studying tissue function. In this historical review, the history of MR imaging technology and developing research and clinical applications, as seen through the pages of Radiology, will be considered.

  11. Forensic applications of chemical imaging: latent fingerprint detection using visible absorption and luminescence.

    PubMed

    Exline, David L; Wallace, Christie; Roux, Claude; Lennard, Chris; Nelson, Matthew P; Treado, Patrick J

    2003-09-01

    Chemical imaging technology is a rapid examination technique that combines molecular spectroscopy and digital imaging, providing information on morphology, composition, structure, and concentration of a material. Among many other applications, chemical imaging offers an array of novel analytical testing methods, which limits sample preparation and provides high-quality imaging data essential in the detection of latent fingerprints. Luminescence chemical imaging and visible absorbance chemical imaging have been successfully applied to ninhydrin, DFO, cyanoacrylate, and luminescent dye-treated latent fingerprints, demonstrating the potential of this technology to aid forensic investigations. In addition, visible absorption chemical imaging has been applied successfully to visualize untreated latent fingerprints.

  12. Computational imaging with a single-pixel detector and a consumer video projector

    NASA Astrophysics Data System (ADS)

    Sych, D.; Aksenov, M.

    2018-02-01

    Single-pixel imaging is a novel rapidly developing imaging technique that employs spatially structured illumination and a single-pixel detector. In this work, we experimentally demonstrate a fully operating modular single-pixel imaging system. Light patterns in our setup are created with help of a computer-controlled digital micromirror device from a consumer video projector. We investigate how different working modes and settings of the projector affect the quality of reconstructed images. We develop several image reconstruction algorithms and compare their performance for real imaging. Also, we discuss the potential use of the single-pixel imaging system for quantum applications.

  13. A three-wavelength multi-channel brain functional imager based on digital lock-in photon-counting technique

    NASA Astrophysics Data System (ADS)

    Ding, Xuemei; Wang, Bingyuan; Liu, Dongyuan; Zhang, Yao; He, Jie; Zhao, Huijuan; Gao, Feng

    2018-02-01

    During the past two decades there has been a dramatic rise in the use of functional near-infrared spectroscopy (fNIRS) as a neuroimaging technique in cognitive neuroscience research. Diffuse optical tomography (DOT) and optical topography (OT) can be employed as the optical imaging techniques for brain activity investigation. However, most current imagers with analogue detection are limited by sensitivity and dynamic range. Although photon-counting detection can significantly improve detection sensitivity, the intrinsic nature of sequential excitations reduces temporal resolution. To improve temporal resolution, sensitivity and dynamic range, we develop a multi-channel continuous-wave (CW) system for brain functional imaging based on a novel lock-in photon-counting technique. The system consists of 60 Light-emitting device (LED) sources at three wavelengths of 660nm, 780nm and 830nm, which are modulated by current-stabilized square-wave signals at different frequencies, and 12 photomultiplier tubes (PMT) based on lock-in photon-counting technique. This design combines the ultra-high sensitivity of the photon-counting technique with the parallelism of the digital lock-in technique. We can therefore acquire the diffused light intensity for all the source-detector pairs (SD-pairs) in parallel. The performance assessments of the system are conducted using phantom experiments, and demonstrate its excellent measurement linearity, negligible inter-channel crosstalk, strong noise robustness and high temporal resolution.

  14. Optimization of single shot 3D breath-hold non-enhanced MR angiography of the renal arteries.

    PubMed

    Tan, Huan; Koktzoglou, Ioannis; Glielmi, Christopher; Galizia, Mauricio; Edelman, Robert R

    2012-05-19

    Cardiac and navigator-gated, inversion-prepared non-enhanced magnetic resonance angiography techniques can accurately depict the renal arteries without the need for contrast administration. However, the scan time and effectiveness of navigator-gated techniques depend on the subject respiratory pattern, which at times results in excessively prolonged scan times or suboptimal image quality. A single-shot 3D magnetization-prepared steady-state free precession technique was implemented to allow the full extent of the renal arteries to be depicted within a single breath-hold. Technical optimization of the breath-hold technique was performed with fourteen healthy volunteers. An alternative magnetization preparation scheme was tested to maximize inflow signal. Quantitative and qualitative comparisons were made between the breath-hold technique and the clinically accepted navigator-gated technique in both volunteers and patients on a 1.5 T scanner. The breath-hold technique provided an average of seven fold reduction in imaging time, without significant loss of image quality. Comparable single-to-noise and contrast-to-noise ratios of intra- and extra-renal arteries were found between the breath-hold and the navigator-gated techniques in volunteers. Furthermore, the breath-hold technique demonstrated good image quality for diagnostic purposes in a small number of patients in a pilot study. The single-shot, breath-hold technique offers an alternative to navigator-gated methods for non-enhanced renal magnetic resonance angiography. The initial results suggest a potential supplementary clinical role for the breath-hold technique in the evaluation of suspected renal artery diseases.

  15. Significance of perceptually relevant image decolorization for scene classification

    NASA Astrophysics Data System (ADS)

    Viswanathan, Sowmya; Divakaran, Govind; Soman, Kutti Padanyl

    2017-11-01

    Color images contain luminance and chrominance components representing the intensity and color information, respectively. The objective of this paper is to show the significance of incorporating chrominance information to the task of scene classification. An improved color-to-grayscale image conversion algorithm that effectively incorporates chrominance information is proposed using the color-to-gray structure similarity index and singular value decomposition to improve the perceptual quality of the converted grayscale images. The experimental results based on an image quality assessment for image decolorization and its success rate (using the Cadik and COLOR250 datasets) show that the proposed image decolorization technique performs better than eight existing benchmark algorithms for image decolorization. In the second part of the paper, the effectiveness of incorporating the chrominance component for scene classification tasks is demonstrated using a deep belief network-based image classification system developed using dense scale-invariant feature transforms. The amount of chrominance information incorporated into the proposed image decolorization technique is confirmed with the improvement to the overall scene classification accuracy. Moreover, the overall scene classification performance improved by combining the models obtained using the proposed method and conventional decolorization methods.

  16. Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions.

    PubMed

    Robson, Philip M; Grant, Aaron K; Madhuranthakam, Ananth J; Lattanzi, Riccardo; Sodickson, Daniel K; McKenzie, Charles A

    2008-10-01

    Parallel imaging reconstructions result in spatially varying noise amplification characterized by the g-factor, precluding conventional measurements of noise from the final image. A simple Monte Carlo based method is proposed for all linear image reconstruction algorithms, which allows measurement of signal-to-noise ratio and g-factor and is demonstrated for SENSE and GRAPPA reconstructions for accelerated acquisitions that have not previously been amenable to such assessment. Only a simple "prescan" measurement of noise amplitude and correlation in the phased-array receiver, and a single accelerated image acquisition are required, allowing robust assessment of signal-to-noise ratio and g-factor. The "pseudo multiple replica" method has been rigorously validated in phantoms and in vivo, showing excellent agreement with true multiple replica and analytical methods. This method is universally applicable to the parallel imaging reconstruction techniques used in clinical applications and will allow pixel-by-pixel image noise measurements for all parallel imaging strategies, allowing quantitative comparison between arbitrary k-space trajectories, image reconstruction, or noise conditioning techniques. (c) 2008 Wiley-Liss, Inc.

  17. Reducing radiation dose without compromising image quality in preoperative perforator flap imaging with CTA using ASIR technology.

    PubMed

    Niumsawatt, Vachara; Debrotwir, Andrew N; Rozen, Warren Matthew

    2014-01-01

    Computed tomographic angiography (CTA) has become a mainstay in preoperative perforator flap planning in the modern era of reconstructive surgery. However, the increased use of CTA does raise the concern of radiation exposure to patients. Several techniques have been developed to decrease radiation dosage without compromising image quality, with varying results. The most recent advance is in the improvement of image reconstruction using an adaptive statistical iterative reconstruction (ASIR) algorithm. We sought to evaluate the image quality of ASIR in preoperative deep inferior epigastric perforator (DIEP) flap surgery, through a direct comparison with conventional filtered back projection (FBP) images. A prospective review of 60 consecutive ASIR and 60 consecutive FBP CTA images using similar protocol (except for radiation dosage) was undertaken, analyzed by 2 independent reviewers. In both groups, we were able to accurately identify axial arteries and their perforators. Subjective analysis of image quality demonstrated no statistically significant difference between techniques. ASIR can thus be used for preoperative imaging with similar image quality to FBP, but with a 60% reduction in radiation delivery to patients.

  18. Introducing keytagging, a novel technique for the protection of medical image-based tests.

    PubMed

    Rubio, Óscar J; Alesanco, Álvaro; García, José

    2015-08-01

    This paper introduces keytagging, a novel technique to protect medical image-based tests by implementing image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. It relies on the association of tags (binary data strings) to stable, semistable or volatile features of the image, whose access keys (called keytags) depend on both the image and the tag content. Unlike watermarking, this technique can associate information to the most stable features of the image without distortion. Thus, this method preserves the clinical content of the image without the need for assessment, prevents eavesdropping and collusion attacks, and obtains a substantial capacity-robustness tradeoff with simple operations. The evaluation of this technique, involving images of different sizes from various acquisition modalities and image modifications that are typical in the medical context, demonstrates that all the aforementioned security measures can be implemented simultaneously and that the algorithm presents good scalability. In addition to this, keytags can be protected with standard Cryptographic Message Syntax and the keytagging process can be easily combined with JPEG2000 compression since both share the same wavelet transform. This reduces the delays for associating keytags and retrieving the corresponding tags to implement the aforementioned measures to only ≃30 and ≃90ms respectively. As a result, keytags can be seamlessly integrated within DICOM, reducing delays and bandwidth when the image test is updated and shared in secure architectures where different users cooperate, e.g. physicians who interpret the test, clinicians caring for the patient and researchers. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Biodynamic profiling of three-dimensional tissue growth techniques

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Merrill, Dan; Turek, John; Nolte, David

    2016-03-01

    Three-dimensional tissue culture presents a more biologically relevant environment in which to perform drug development than conventional two-dimensional cell culture. However, obtaining high-content information from inside three dimensional tissue has presented an obstacle to rapid adoption of 3D tissue culture for pharmaceutical applications. Biodynamic imaging is a high-content three-dimensional optical imaging technology based on low-coherence interferometry and digital holography that uses intracellular dynamics as high-content image contrast. In this paper, we use biodynamic imaging to compare pharmaceutical responses to Taxol of three-dimensional multicellular spheroids grown by three different growth techniques: rotating bioreactor, hanging-drop and plate-grown spheroids. The three growth techniques have systematic variations among tissue cohesiveness and intracellular activity and consequently display different pharmacodynamics under identical drug dose conditions. The in vitro tissue cultures are also compared to ex vivo living biopsies. These results demonstrate that three-dimensional tissue cultures are not equivalent, and that drug-response studies must take into account the growth method.

  20. Image steganalysis using Artificial Bee Colony algorithm

    NASA Astrophysics Data System (ADS)

    Sajedi, Hedieh

    2017-09-01

    Steganography is the science of secure communication where the presence of the communication cannot be detected while steganalysis is the art of discovering the existence of the secret communication. Processing a huge amount of information takes extensive execution time and computational sources most of the time. As a result, it is needed to employ a phase of preprocessing, which can moderate the execution time and computational sources. In this paper, we propose a new feature-based blind steganalysis method for detecting stego images from the cover (clean) images with JPEG format. In this regard, we present a feature selection technique based on an improved Artificial Bee Colony (ABC). ABC algorithm is inspired by honeybees' social behaviour in their search for perfect food sources. In the proposed method, classifier performance and the dimension of the selected feature vector depend on using wrapper-based methods. The experiments are performed using two large data-sets of JPEG images. Experimental results demonstrate the effectiveness of the proposed steganalysis technique compared to the other existing techniques.

Top