Science.gov

Sample records for imaging techniques yield

  1. Prediction of Potato Crop Yield Using Precision Agriculture Techniques

    PubMed Central

    Al-Gaadi, Khalid A.; Hassaballa, Abdalhaleem A.; Tola, ElKamil; Kayad, Ahmed G.; Madugundu, Rangaswamy; Alblewi, Bander; Assiri, Fahad

    2016-01-01

    Crop growth and yield monitoring over agricultural fields is an essential procedure for food security and agricultural economic return prediction. The advances in remote sensing have enhanced the process of monitoring the development of agricultural crops and estimating their yields. Therefore, remote sensing and GIS techniques were employed, in this study, to predict potato tuber crop yield on three 30 ha center pivot irrigated fields in an agricultural scheme located in the Eastern Region of Saudi Arabia. Landsat-8 and Sentinel-2 satellite images were acquired during the potato growth stages and two vegetation indices (the normalized difference vegetation index (NDVI) and the soil adjusted vegetation index (SAVI)) were generated from the images. Vegetation index maps were developed and classified into zones based on vegetation health statements, where the stratified random sampling points were accordingly initiated. Potato yield samples were collected 2–3 days prior to the harvest time and were correlated to the adjacent NDVI and SAVI, where yield prediction algorithms were developed and used to generate prediction yield maps. Results of the study revealed that the difference between predicted yield values and actual ones (prediction error) ranged between 7.9 and 13.5% for Landsat-8 images and between 3.8 and 10.2% for Sentinel-2 images. The relationship between actual and predicted yield values produced R2 values ranging between 0.39 and 0.65 for Landsat-8 images and between 0.47 and 0.65 for Sentinel-2 images. Results of this study revealed a considerable variation in field productivity across the three fields, where high-yield areas produced an average yield of above 40 t ha-1; while, the low-yield areas produced, on the average, less than 21 t ha-1. Identifying such great variation in field productivity will assist farmers and decision makers in managing their practices. PMID:27611577

  2. Prediction of Potato Crop Yield Using Precision Agriculture Techniques.

    PubMed

    Al-Gaadi, Khalid A; Hassaballa, Abdalhaleem A; Tola, ElKamil; Kayad, Ahmed G; Madugundu, Rangaswamy; Alblewi, Bander; Assiri, Fahad

    2016-01-01

    Crop growth and yield monitoring over agricultural fields is an essential procedure for food security and agricultural economic return prediction. The advances in remote sensing have enhanced the process of monitoring the development of agricultural crops and estimating their yields. Therefore, remote sensing and GIS techniques were employed, in this study, to predict potato tuber crop yield on three 30 ha center pivot irrigated fields in an agricultural scheme located in the Eastern Region of Saudi Arabia. Landsat-8 and Sentinel-2 satellite images were acquired during the potato growth stages and two vegetation indices (the normalized difference vegetation index (NDVI) and the soil adjusted vegetation index (SAVI)) were generated from the images. Vegetation index maps were developed and classified into zones based on vegetation health statements, where the stratified random sampling points were accordingly initiated. Potato yield samples were collected 2-3 days prior to the harvest time and were correlated to the adjacent NDVI and SAVI, where yield prediction algorithms were developed and used to generate prediction yield maps. Results of the study revealed that the difference between predicted yield values and actual ones (prediction error) ranged between 7.9 and 13.5% for Landsat-8 images and between 3.8 and 10.2% for Sentinel-2 images. The relationship between actual and predicted yield values produced R2 values ranging between 0.39 and 0.65 for Landsat-8 images and between 0.47 and 0.65 for Sentinel-2 images. Results of this study revealed a considerable variation in field productivity across the three fields, where high-yield areas produced an average yield of above 40 t ha-1; while, the low-yield areas produced, on the average, less than 21 t ha-1. Identifying such great variation in field productivity will assist farmers and decision makers in managing their practices.

  3. Imaging technologies and techniques.

    PubMed

    Rafter, Patrick; Phillips, Patrick; Vannan, Mani A

    2004-05-01

    Equipment manufacturers provide contrast-specific detection techniques that have excellent sensitivity and excellent agent-to-tissue specificity along with helpful tools that improve workflow efficiency dramatically. Excellent contrast agents have been approved for LV opacification and are available worldwide. Techniques designed for low-MI imaging offer real-time acquisition capabilities and lead to faster examinations. Techniques designed for medium-MI imaging offer better sensitivity than low-MI techniques while maintaining the benefit of rapid image acquisition. Techniques designed for high-MI imaging offer the best sensitivity with longer acquisition times. These techniques are viable means for imaging contrast agents tailored to clinical needs. Progress by contrast agent manufacturers, equipment manufacturers, and physicians will continue to drive improvements in the areas of detection and clinical workflow for improved patient care.

  4. Eastern shelf exploration yields to multiple techniques

    SciTech Connect

    Verseckes, M.S.; Wilson, G.E.

    1995-06-01

    Hydrocarbon exploration along the Eastern Shelf of Texas is challenging, particularly in multi-pay areas. One group of Eastern Shelf explorationists is improving their drilling results using an innovative multi-technique approach. They are combining seismic and near surface geochemical data with subsurface geologic information and dramatically increasing their commercial success. Using this method has yielded total success rates over 70% in an area that typically exhibits completion ratios of some 30%. Two case histories show this approach.

  5. Multimodality imaging techniques.

    PubMed

    Martí-Bonmatí, Luis; Sopena, Ramón; Bartumeus, Paula; Sopena, Pablo

    2010-01-01

    In multimodality imaging, the need to combine morphofunctional information can be approached by either acquiring images at different times (asynchronous), and fused them through digital image manipulation techniques or simultaneously acquiring images (synchronous) and merging them automatically. The asynchronous post-processing solution presents various constraints, mainly conditioned by the different positioning of the patient in the two scans acquired at different times in separated machines. The best solution to achieve consistency in time and space is obtained by the synchronous image acquisition. There are many multimodal technologies in molecular imaging. In this review we will focus on those multimodality image techniques more commonly used in the field of diagnostic imaging (SPECT-CT, PET-CT) and new developments (as PET-MR). The technological innovations and development of new tracers and smart probes are the main key points that will condition multimodality image and diagnostic imaging professionals' future. Although SPECT-CT and PET-CT are standard in most clinical scenarios, MR imaging has some advantages, providing excellent soft-tissue contrast and multidimensional functional, structural and morphological information. The next frontier is to develop efficient detectors and electronics systems capable of detecting two modality signals at the same time. Not only PET-MR but also MR-US or optic-PET will be introduced in clinical scenarios. Even more, MR diffusion-weighted, pharmacokinetic imaging, spectroscopy or functional BOLD imaging will merge with PET tracers to further increase molecular imaging as a relevant medical discipline. Multimodality imaging techniques will play a leading role in relevant clinical applications. The development of new diagnostic imaging research areas, mainly in the field of oncology, cardiology and neuropsychiatry, will impact the way medicine is performed today. Both clinical and experimental multimodality studies, in

  6. Image compression technique

    DOEpatents

    Fu, C.Y.; Petrich, L.I.

    1997-03-25

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  7. Image compression technique

    DOEpatents

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.

  8. Renal imaging techniques.

    PubMed

    Hierholzer, K; Hierholzer, J

    1997-01-01

    The ancient approach to obtain an image of the kidneys (and other internal organs) was 'section-inspection-imaging' by drawing, painting, sculpturing, and modelling. The present study follows chronologically the development and use of sectioning techniques from ancient (often forbidden) methods to modern microdissection and maceration of silicone-rubber-injected tubules. Inspection evolved from the use of the naked eye to magnifying lenses, microscopes and finally electron microscopy. Pertinent examples such as the description of the kidneys as the site of urine formation, the visualization of loop structures in the renal medulla and the imaging of tight junction strands are discussed. Inspection or visualization of renal structure and function has been revolutionized by modern noninvasive techniques, such as X-ray imaging, imaging by radioisotopes, ultrasound, computer tomography and nuclear magnetic resonance. Pertinent examples are given demonstrating the potency of the various techniques. The contribution of computerized data evaluation is discussed. The development of micropuncture and microperfusion techniques has opened the field for direct imaging not only of renal (sub)structural details but also of functional parameters such as transtubular reabsorption rates, single glomerular capillary filtration and conductance of the paracellular pathway. We focus particularly on techniques specifically designed to visualize renal hemodynamic and transport parameters.

  9. Scalp imaging techniques

    NASA Astrophysics Data System (ADS)

    Otberg, Nina; Shapiro, Jerry; Lui, Harvey; Wu, Wen-Yu; Alzolibani, Abdullateef; Kang, Hoon; Richter, Heike; Lademann, Jürgen

    2017-05-01

    Scalp imaging techniques are necessary tools for the trichological practice and for visualization of permeation, penetration and absorption processes into and through the scalp and for the research on drug delivery and toxicology. The present letter reviews different scalp imaging techniques and discusses their utility. Moreover, two different studies on scalp imaging techniques are presented in this letter: (1) scalp imaging with phototrichograms in combination with laser scanning microscopy, and (2) follicular measurements with cyanoacrylate surface replicas and light microscopy in combination with laser scanning microscopy. The experiments compare different methods for the determination of hair density on the scalp and different follicular measures. An average terminal hair density of 132 hairs cm-2 was found in 6 Caucasian volunteers and 135 hairs cm-2 in 6 Asian volunteers. The area of the follicular orifices accounts to 16.3% of the skin surface on average measured with laser scanning microscopy images. The potential volume of the follicular infundibulum was calculated based on the laser scanning measurements and is found to be 4.63 mm3 per cm2 skin on average. The experiments show that hair follicles are quantitatively relevant pathways and potential reservoirs for topically applied drugs and cosmetics.

  10. [Progress in imaging techniques].

    PubMed

    Mishima, Kazuaki; Otsuka, Tsukasa

    2013-05-01

    Today it is common to perform real-time diagnosis and treatment via live broadcast as a method of education and to spread new technology for diagnosis and therapy in medical fields. Live medical broadcasts have developed along with broadcast technology. In the early days, live video feeds were sent from operating rooms to classrooms and lecture halls in universities and hospitals. However, the development of imaging techniques and communication networks enabled live broadcasts that bi-directionally link operating rooms and meeting halls during scientific meetings and live demonstration courses. Live broadcasts therefore became an important method for education and the dissemination of new medical technologies. The development of imaging techniques has contributed to more realistic live broadcasts through such innovative techniques as three-dimensional viewing and higher-definition 4K technology. In the future, live broadcasts will be transmitted on personal computers using regular Internet connections. In addition to the enhancement of image delivery technology, it will also be necessary to examine the entire image delivery environment carefully, including issues of security and privacy of personal information.

  11. Brain Vascular Imaging Techniques

    PubMed Central

    Laviña, Bàrbara

    2016-01-01

    Recent major improvements in a number of imaging techniques now allow for the study of the brain in ways that could not be considered previously. Researchers today have well-developed tools to specifically examine the dynamic nature of the blood vessels in the brain during development and adulthood; as well as to observe the vascular responses in disease situations in vivo. This review offers a concise summary and brief historical reference of different imaging techniques and how these tools can be applied to study the brain vasculature and the blood-brain barrier integrity in both healthy and disease states. Moreover, it offers an overview on available transgenic animal models to study vascular biology and a description of useful online brain atlases. PMID:28042833

  12. Psychophysical rating of image compression techniques

    NASA Technical Reports Server (NTRS)

    Stein, Charles S.; Hitchner, Lewis E.; Watson, Andrew B.

    1989-01-01

    Image compression schemes abound with little work which compares their bit-rate performance based on subjective fidelity measures. Statistical measures of image fidelity, such as squared error measures, do not necessarily correspond to subjective measures of image fidelity. Most previous comparisons of compression techniques have been based on these statistical measures. A psychophysical method has been used to estimate, for a number of compression techniques, a threshold bit-rate yielding a criterion level of performance in discriminating original and compressed images. The compression techniques studied include block truncation, Laplacian pyramid, block discrete cosine transform, with and without a human visual system scaling, and cortex transform coders.

  13. Psychophysical rating of image compression techniques

    NASA Technical Reports Server (NTRS)

    Stein, Charles S.; Hitchner, Lewis E.; Watson, Andrew B.

    1989-01-01

    Image compression schemes abound with little work which compares their bit-rate performance based on subjective fidelity measures. Statistical measures of image fidelity, such as squared error measures, do not necessarily correspond to subjective measures of image fidelity. Most previous comparisons of compression techniques have been based on these statistical measures. A psychophysical method has been used to estimate, for a number of compression techniques, a threshold bit-rate yielding a criterion level of performance in discriminating original and compressed images. The compression techniques studied include block truncation, Laplacian pyramid, block discrete cosine transform, with and without a human visual system scaling, and cortex transform coders.

  14. Image processing techniques for acoustic images

    NASA Astrophysics Data System (ADS)

    Murphy, Brian P.

    1991-06-01

    The primary goal of this research is to test the effectiveness of various image processing techniques applied to acoustic images generated in MATLAB. The simulated acoustic images have the same characteristics as those generated by a computer model of a high resolution imaging sonar. Edge detection and segmentation are the two image processing techniques discussed in this study. The two methods tested are a modified version of the Kalman filtering and median filtering.

  15. Nondestructive Acoustic Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Schmitz, Volker

    Acoustic imaging techniques are used in the field of nondestructive testing of technical components to measure defects such as lack of side wall fusion or cracks in welded joints. Data acquisition is performed by a remote-controlled manipulator and a PC for the mass storage of the high-frequency time-of-flight data at each probe position. The quality of the acoustic images and the interpretation relies on the proper understanding of the transmitted wave fronts and the arrangement of the probes in pulse-echo mode or in pitch-and-catch arrangement. The use of the Synthetic Aperture Focusing Technique allows the depth-dependent resolution to be replaced by a depth-independent resolution and the signal-to-noise ratio to be improved. Examples with surface-connected cracks are shown to demonstrate the improved features. The localization accuracy could be improved by entering 2-dimensional or 3-dimensional reconstructed data into the environment of a 3-dimensional CAD drawing. The propagation of ultrasonic waves through austenitic welds is disturbed by the anisotropic and inhomogeneous structure of the material. The effect is more or less severe depending upon the longitudinal or shear wave modes. To optimize the performance of an inspection software tool, a 3-dimensional CAD-Ray program has been implemented, where the shape of the inhomogeneous part of a weld can be simulated together with the grain structure based on the elastic constants. Ray-tracing results are depicted for embedded and for surface-connected defects.

  16. Radiologic imaging technique

    SciTech Connect

    Bushong, S.C. ); Eastman, T.R. )

    1990-01-01

    The authors focus on the subject of clinical radiographic technique. Emphasizing correct radiographic technique, it's heavily illustrated with radiographs that demonstrate proper exposure and show what happens when exposure variables are changed. A key feature is a discussion and evaluation of radiographic technique charts. Basic technique charts are provided for every body part examined.

  17. Imaging techniques for myocardial inflammation

    SciTech Connect

    O'Connell, J.B.; Henkin, R.E.; Robinson, J.A.

    1986-03-01

    Dilated cardiomyopathy (DC) represents a heterogeneous group of disorders which results in morbidity and mortality in young individuals. Recent evidence suggests that a subset of these patients have histologic evidence of myocarditis which is potentially treatable with immunosuppression. The identification of myocardial inflammation may therefore lead to development of therapeutic regimens designed to treat the cause rather than the effect of the myocardial disease. Ultimately, this may result in improvement in the abysmal prognosis of DC. The currently accepted technique for identification of active myocardial inflammation is endomyocardial biopsy. This technique is not perfect, however, since pathologic standards for the diagnosis of myocarditis have not been established. Furthermore, focal inflammation may give rise to sampling error. The inflammation-avid radioisotope gallium-67 citrate has been used as an adjunct to biopsy improving the yield of myocarditis from 7 percent to 36 percent. Serial imaging correlates well to biopsy results. Future studies are designed to study the applicability of lymphocyte labelling techniques to myocardial inflammatory disease.

  18. Hybrid ultrasound imaging techniques (fusion imaging).

    PubMed

    Sandulescu, Daniela Larisa; Dumitrescu, Daniela; Rogoveanu, Ion; Saftoiu, Adrian

    2011-01-07

    Visualization of tumor angiogenesis can facilitate non-invasive evaluation of tumor vascular characteristics to supplement the conventional diagnostic imaging goals of depicting tumor location, size, and morphology. Hybrid imaging techniques combine anatomic [ultrasound, computed tomography (CT), and/or magnetic resonance imaging (MRI)] and molecular (single photon emission CT and positron emission tomography) imaging modalities. One example is real-time virtual sonography, which combines ultrasound (grayscale, colour Doppler, or dynamic contrast harmonic imaging) with contrast-enhanced CT/MRI. The benefits of fusion imaging include an increased diagnostic confidence, direct comparison of the lesions using different imaging modalities, more precise monitoring of interventional procedures, and reduced radiation exposure.

  19. Sensor image prediction techniques

    NASA Astrophysics Data System (ADS)

    Stenger, A. J.; Stone, W. R.; Berry, L.; Murray, T. J.

    1981-02-01

    The preparation of prediction imagery is a complex, costly, and time consuming process. Image prediction systems which produce a detailed replica of the image area require the extensive Defense Mapping Agency data base. The purpose of this study was to analyze the use of image predictions in order to determine whether a reduced set of more compact image features contains enough information to produce acceptable navigator performance. A job analysis of the navigator's mission tasks was performed. It showed that the cognitive and perceptual tasks he performs during navigation are identical to those performed for the targeting mission function. In addition, the results of the analysis of his performance when using a particular sensor can be extended to the analysis of this mission tasks using any sensor. An experimental approach was used to determine the relationship between navigator performance and the type of amount of information in the prediction image. A number of subjects were given image predictions containing varying levels of scene detail and different image features, and then asked to identify the predicted targets in corresponding dynamic flight sequences over scenes of cultural, terrain, and mixed (both cultural and terrain) content.

  20. A computational hyperspectral imaging technique

    NASA Astrophysics Data System (ADS)

    Habibi, Nasim; Azari, Mohammad; Abolbashari, Mehrdad; Farahi, Faramarz

    2016-03-01

    A novel spectral imaging technique is introduced based on a highly dispersive imaging lens system. The chromatic aberration of the lens system is utilized to spread the spectral content of the object over a focal distance. Two three-dimensional surface reconstruction algorithms, depth from focus and depth from defocus, are applied to images captured by dispersive lens system. Using these algorithms, the spectral imager is able to relate either the location of focused image or the amount of defocus at the imaging detector to the spectral content of the object. A spectral imager with ~5 nm spectral resolution is designed based on this technique. The spectral and spatial resolutions of the introduced technique are independent and can be improved simultaneously. Simulation and experimental results are presented.

  1. Harvesting Technique Affects Adipose-Derived Stem Cell Yield

    PubMed Central

    Iyyanki, Tejaswi; Hubenak, Justin; Liu, Jun; Chang, Edward I.; Beahm, Elisabeth K.; Zhang, Qixu

    2015-01-01

    Background The success of an autologous fat graft depends in part on its total stromal vascular fraction (SVF) and adipose-derived stem cells (ASCs). However, variations in the yields of ASCs and SVF cells as a result of different harvesting techniques and donor sites are poorly understood. Objective To investigate the effects of adipose tissue harvesting technique and donor site on the yield of ASCs and SVF cells. Methods Subcutaneous fat tissues from the abdomen, flank, or axilla were harvested from patients of various ages by mechanical liposuction, direct surgical excision, or Coleman's technique with or without centrifugation. Cells were isolated and then analyzed with flow cytometry to determine the yields of total SVF cells and ASCs (CD11b−, CD45−, CD34+, CD90+, D7-FIB+). Differences in ASC and total SVF yields were assessed with one-way analysis of variance. Differentiation experiments were performed to confirm the multilineage potential of cultured SVF cells. Results Compared with Coleman's technique without centrifugation, direct excision yielded significantly more ASCs (P < .001) and total SVF cells (P = .007); liposuction yielded significantly fewer ASCs (P < .001) and total SVF cells (P < .05); and Coleman's technique with centrifugation yielded significantly more total SVF cells (P < .005), but not ASCs. The total number of SVF cells in fat harvested from the abdomen was significantly larger than the number in fat harvested from the flank or axilla (P < .05). Cultured SVF cells differentiated to adipocytes, osteocytes, and chondrocytes. Conclusions Adipose tissue harvested from the abdomen through direct excision or Coleman's technique with centrifugation was found to yield the most SVF cells and ASCs. PMID:25791999

  2. Eye Redness Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Adnan, M. R. H. Mohd; Zain, Azlan Mohd; Haron, Habibollah; Alwee, Razana; Zulfaezal Che Azemin, Mohd; Osman Ibrahim, Ashraf

    2017-09-01

    The use of photographs for the assessment of ocular conditions has been suggested to further standardize clinical procedures. The selection of the photographs to be used as scale reference images was subjective. Numerous methods have been proposed to assign eye redness scores by computational methods. Image analysis techniques have been investigated over the last 20 years in an attempt to forgo subjective grading scales. Image segmentation is one of the most important and challenging problems in image processing. This paper briefly outlines the comprehensive of image processing and the implementation of image segmentation in eye redness.

  3. Tooling Techniques Enhance Medical Imaging

    NASA Technical Reports Server (NTRS)

    2012-01-01

    mission. The manufacturing techniques developed to create the components have yielded innovations advancing medical imaging, transportation security, and even energy efficiency.

  4. EDITORIAL: Imaging Systems and Techniques Imaging Systems and Techniques

    NASA Astrophysics Data System (ADS)

    Giakos, George; Yang, Wuqiang; Petrou, M.; Nikita, K. S.; Pastorino, M.; Amanatiadis, A.; Zentai, G.

    2011-10-01

    This special feature on Imaging Systems and Techniques comprises 27 technical papers, covering essential facets in imaging systems and techniques both in theory and applications, from research groups spanning three different continents. It mainly contains peer-reviewed articles from the IEEE International Conference on Imaging Systems and Techniques (IST 2011), held in Thessaloniki, Greece, as well a number of articles relevant to the scope of this issue. The multifaceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment, and the technological revolution; there is an urgent need to address and propose dynamic and innovative solutions to problems that tend to be either complex and static or rapidly evolving with a lot of unknowns. For instance, exploration of the engineering and physical principles of new imaging systems and techniques for medical applications, remote sensing, monitoring of space resources and enhanced awareness, exploration and management of natural resources, and environmental monitoring, are some of the areas that need to be addressed with urgency. Similarly, the development of efficient medical imaging techniques capable of providing physiological information at the molecular level is another important area of research. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, using high resolution and high selectivity nanoimaging techniques, can play an important role in the diagnosis and treatment of cancer, as well as provide efficient drug-delivery imaging solutions for disease treatment with increased sensitivity and specificity. On the other hand, technical advances in the development of efficient digital imaging systems and techniques and tomographic devices operating on electric impedance tomography, computed tomography, single-photon emission and positron emission tomography detection principles are anticipated to have a significant impact on a

  5. Simultaneous multislice (SMS) imaging techniques

    PubMed Central

    Barth, Markus; Breuer, Felix; Koopmans, Peter J.; Poser, Benedikt A.

    2015-01-01

    Simultaneous multislice imaging (SMS) using parallel image reconstruction has rapidly advanced to become a major imaging technique. The primary benefit is an acceleration in data acquisition that is equal to the number of simultaneously excited slices. Unlike in‐plane parallel imaging this can have only a marginal intrinsic signal‐to‐noise ratio penalty, and the full acceleration is attainable at fixed echo time, as is required for many echo planar imaging applications. Furthermore, for some implementations SMS techniques can reduce radiofrequency (RF) power deposition. In this review the current state of the art of SMS imaging is presented. In the Introduction, a historical overview is given of the history of SMS excitation in MRI. The following section on RF pulses gives both the theoretical background and practical application. The section on encoding and reconstruction shows how the collapsed multislice images can be disentangled by means of the transmitter pulse phase, gradient pulses, and most importantly using multichannel receiver coils. The relationship between classic parallel imaging techniques and SMS reconstruction methods is explored. The subsequent section describes the practical implementation, including the acquisition of reference data, and slice cross‐talk. Published applications of SMS imaging are then reviewed, and the article concludes with an outlook and perspective of SMS imaging. Magn Reson Med 75:63–81, 2016. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. PMID:26308571

  6. Simultaneous multislice (SMS) imaging techniques.

    PubMed

    Barth, Markus; Breuer, Felix; Koopmans, Peter J; Norris, David G; Poser, Benedikt A

    2016-01-01

    Simultaneous multislice imaging (SMS) using parallel image reconstruction has rapidly advanced to become a major imaging technique. The primary benefit is an acceleration in data acquisition that is equal to the number of simultaneously excited slices. Unlike in-plane parallel imaging this can have only a marginal intrinsic signal-to-noise ratio penalty, and the full acceleration is attainable at fixed echo time, as is required for many echo planar imaging applications. Furthermore, for some implementations SMS techniques can reduce radiofrequency (RF) power deposition. In this review the current state of the art of SMS imaging is presented. In the Introduction, a historical overview is given of the history of SMS excitation in MRI. The following section on RF pulses gives both the theoretical background and practical application. The section on encoding and reconstruction shows how the collapsed multislice images can be disentangled by means of the transmitter pulse phase, gradient pulses, and most importantly using multichannel receiver coils. The relationship between classic parallel imaging techniques and SMS reconstruction methods is explored. The subsequent section describes the practical implementation, including the acquisition of reference data, and slice cross-talk. Published applications of SMS imaging are then reviewed, and the article concludes with an outlook and perspective of SMS imaging. © 2015 Wiley Periodicals, Inc.

  7. Automated medical image segmentation techniques

    PubMed Central

    Sharma, Neeraj; Aggarwal, Lalit M.

    2010-01-01

    Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT) and Magnetic resonance (MR) imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images. PMID:20177565

  8. Automated medical image segmentation techniques.

    PubMed

    Sharma, Neeraj; Aggarwal, Lalit M

    2010-01-01

    Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT) and Magnetic resonance (MR) imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

  9. Urologic imaging and interventional techniques

    SciTech Connect

    Bush, W.H.

    1989-01-01

    This book provides an overview of all imaging modalities and invasive techniques of the genitourinary system. Three general chapters discuss ionic and nonionic contrast media, the management of reactions to contrast media, and radiation doses from various uroradiologic procedures. Chapters are devoted to intravenous pyelography, computed tomography, magnetic resonance imaging, ultrasound, nuclear medicine, lymphography, arteriography, and venography. Two chapters discuss the pediatric applications of uroradiology and ultrasound. Two chapters integrate the various imaging techniques of the upper and lower genitourinary systems into an algorithmic approach for various pathologic entities.

  10. Advances in imaging ultrastructure yield new insights into presynaptic biology

    PubMed Central

    Bruckner, Joseph J.; Zhan, Hong; O’Connor-Giles, Kate M.

    2015-01-01

    Synapses are the fundamental functional units of neural circuits, and their dysregulation has been implicated in diverse neurological disorders. At presynaptic terminals, neurotransmitter-filled synaptic vesicles are released in response to calcium influx through voltage-gated calcium channels activated by the arrival of an action potential. Decades of electrophysiological, biochemical, and genetic studies have contributed to a growing understanding of presynaptic biology. Imaging studies are yielding new insights into how synapses are organized to carry out their critical functions. The development of techniques for rapid immobilization and preservation of neuronal tissues for electron microscopy (EM) has led to a new renaissance in ultrastructural imaging that is rapidly advancing our understanding of synapse structure and function. PMID:26052269

  11. EDITORIAL: Imaging systems and techniques Imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios

    2009-10-01

    The papers in this special issue focus on providing the state-of-the-art approaches and solutions to some of the most challenging imaging areas, such as the design, development, evaluation and applications of imaging systems, measuring techniques, image processing algorithms and instrumentation, with an ultimate aim of enhancing the measurement accuracy and image quality. This special issue explores the principles, engineering developments and applications of new imaging systems and techniques, and encourages broad discussion of imaging methodologies, shaping the future and identifying emerging trends. The multi-faceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment and technological evolution. There is an urgent need to address new problems, which tend to be either static but complex, or dynamic, e.g. rapidly evolving with time, with many unknowns, and to propose innovative solutions. For instance, the battles against cancer and terror, monitoring of space resources and enhanced awareness, management of natural resources and environmental monitoring are some of the areas that need to be addressed. The complexity of the involved imaging scenarios and demanding design parameters, e.g. speed, signal-to-noise ratio (SNR), specificity, contrast, spatial resolution, scatter rejection, complex background and harsh environments, necessitate the development of a multi-functional, scalable and efficient imaging suite of sensors, solutions driven by innovation, and operation on diverse detection and imaging principles. Efficient medical imaging techniques capable of providing physiological information at the molecular level present another important research area. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, and using high-resolution, high-selectivity nano-imaging methods, quantum dots, nanoparticles, biomarkers, nanostructures, nanosensors, micro-array imaging chips

  12. Morphological image processing techniques in thermographic imaging.

    PubMed

    Schulze, M A; Pearce, J A

    1993-01-01

    Mathematical morphology is a set algebra that defines some important new techniques in image processing. Morphological filters are closely related to order statistic and other nonlinear filters, but they are uniquely sensitive to shape. A morphological filter will preserve shapes similar to its structuring element shape while modifying dissimilar shapes. Most morphological filters are effective at removing both linear and nonlinear noise processes. However, the standard morphological operators introduce a statistical and deterministic bias to images. Fortunately, these operators exist in complementary pairs that are equally and oppositely biased. One way to alleviate the bias is to average the two complementary operators. The filters formed by such averages are the midrange filter (basic operators), the pseudomedian filter (singly compound operators) and the LOCO filter (doubly compound operators). In thermographic imaging, one often wishes to find exact temperatures or accurate isothermal contours. Therefore, techniques used to remove sensor noise and scanning artifact should not introduce bias. The LOCO filter that we have devised provides the shape control and noise suppression of morphological techniques without biasing the image. We will demonstrate the effects of different structuring element shapes on thermographic images of tissue heated by laser irradiation and electrosurgery.

  13. Remote sensing techniques for mapping range sites and estimating range yield

    NASA Technical Reports Server (NTRS)

    Benson, L. A.; Frazee, C. J.; Waltz, F. A.; Reed, C.; Carey, R. L.; Gropper, J. L.

    1974-01-01

    Image interpretation procedures for determining range yield and for extrapolating range information were investigated for an area of the Pine Ridge Indian Reservation in southwestern South Dakota. Soil and vegetative data collected in the field utilizing a grid sampling design and digital film data from color infrared film and black and white films were analyzed statistically using correlation and regression techniques. The pattern recognition techniques used were K-class, mode seeking, and thresholding. The herbage yield equation derived for the detailed test site was used to predict yield for an adjacent similar field. The herbage yield estimate for the adjacent field was 1744 lbs. of dry matter per acre and was favorably compared to the mean yield of 1830 lbs. of dry matter per acre based upon ground observations. Also an inverse relationship was observed between vegetative cover and the ratio of MSS 5 to MSS 7 of ERTS-1 imagery.

  14. Quantifying suspended sediment yield with fingerprinting technique in coastal catchments

    NASA Astrophysics Data System (ADS)

    Mizugaki, Shigeru; Ohtsuka, Junichi; Ohashi, Masami; Tanise, Atsushi; Shimme, Ryuichi

    2017-04-01

    The suspended sediment load transported by a river will commonly represent a mixture of sediment delivered from different locations and from various source types within the contributing catchment. Sediment yield of catchment is well known to depend on dominant geology underlying in the catchment, but the variation in sediment yield has rarely been quantified. The objective of this study was to quantify the suspended sediment yield of various lithological area within catchment. To achieve the objective, the fingerprinting was conducted using natural radionuclide tracers across a couple of adjacent coastal catchments, the Saru River and the Mukawa River in Hokkaido, northern Japan. Fingerprinting technique showed that the suspended sediment was mainly originated from sedimentary rock and metamorphic rock, while coastal sand was mainly originated from plutonic rock and melange matrix of accretionary complex. Suspended sediment yield was quantified for each lithological source group with fingerprinting technique and hydrological observation, showing the highest in the metamorphic rock area, where the landslide scar densely distributes. These results suggest that mass movement and weathering features depending on lithology can control the contribution of source to suspended sediment and its particle size from mountain to coastal area.

  15. Potato growth and yield using nutrient film technique (NFT)

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Hinkle, C. R.

    1990-01-01

    Potato plants, cvs Denali and Norland, were grown in polyvinyl chloride (PVC) trays using a continuous flowing nutrient film technique (NFT) to study tuber yield for NASA's Controlled Ecological Life Support Systems (CELSS) program. Nutrient solution pH was controlled automatically using 0.39M (2.5% (v/v) nitric acid (HNO3), while water and nutrients were replenished manually each day and twice each week, respectively. Plants were spaced either one or two per tray, allotting 0.2 or 0.4 m2 per plant. All plants were harvested after 112 days. Denali plants yielded 2850 and 2800 g tuber fresh weight from the one- and two-plant trays, respectively, while Norland plants yielded 1800 and 2400 g tuber fresh weight from the one- and two-plant trays. Many tubers of both cultivars showed injury to the periderm tissue, possibly caused by salt accumulation from the nutrient solution on the surface. Total system water usage throughout the study for all the plants equaled 709 liters (L), or approximately 2 L m-2 d-1. Total system acid usage throughout the study (for nutrient solution pH control) equaled 6.60 L, or 18.4 ml m-2 d-1 (7.2 mmol m-2 d-1). The results demonstrate that continuous flowing nutrient film technique can be used for tuber production with acceptable yields for the CELSS program.

  16. Potato growth and yield using nutrient film technique (NFT)

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Hinkle, C. R.

    1990-01-01

    Potato plants, cvs Denali and Norland, were grown in polyvinyl chloride (PVC) trays using a continuous flowing nutrient film technique (NFT) to study tuber yield for NASA's Controlled Ecological Life Support Systems (CELSS) program. Nutrient solution pH was controlled automatically using 0.39M (2.5% (v/v) nitric acid (HNO3), while water and nutrients were replenished manually each day and twice each week, respectively. Plants were spaced either one or two per tray, allotting 0.2 or 0.4 m2 per plant. All plants were harvested after 112 days. Denali plants yielded 2850 and 2800 g tuber fresh weight from the one- and two-plant trays, respectively, while Norland plants yielded 1800 and 2400 g tuber fresh weight from the one- and two-plant trays. Many tubers of both cultivars showed injury to the periderm tissue, possibly caused by salt accumulation from the nutrient solution on the surface. Total system water usage throughout the study for all the plants equaled 709 liters (L), or approximately 2 L m-2 d-1. Total system acid usage throughout the study (for nutrient solution pH control) equaled 6.60 L, or 18.4 ml m-2 d-1 (7.2 mmol m-2 d-1). The results demonstrate that continuous flowing nutrient film technique can be used for tuber production with acceptable yields for the CELSS program.

  17. Potato growth and yield using nutrient film technique (NFT).

    PubMed

    Wheeler, R M; Mackowiak, C L; Sager, J C; Knott, W M; Hinkle, C R

    1990-01-01

    Potato plants, cvs Denali and Norland, were grown in polyvinyl chloride (PVC) trays using a continuous flowing nutrient film technique (NFT) to study tuber yield for NASA's Controlled Ecological Life Support Systems (CELSS) program. Nutrient solution pH was controlled automatically using 0.39M (2.5% (v/v) nitric acid (HNO3), while water and nutrients were replenished manually each day and twice each week, respectively. Plants were spaced either one or two per tray, allotting 0.2 or 0.4 m2 per plant. All plants were harvested after 112 days. Denali plants yielded 2850 and 2800 g tuber fresh weight from the one- and two-plant trays, respectively, while Norland plants yielded 1800 and 2400 g tuber fresh weight from the one- and two-plant trays. Many tubers of both cultivars showed injury to the periderm tissue, possibly caused by salt accumulation from the nutrient solution on the surface. Total system water usage throughout the study for all the plants equaled 709 liters (L), or approximately 2 L m-2 d-1. Total system acid usage throughout the study (for nutrient solution pH control) equaled 6.60 L, or 18.4 ml m-2 d-1 (7.2 mmol m-2 d-1). The results demonstrate that continuous flowing nutrient film technique can be used for tuber production with acceptable yields for the CELSS program.

  18. A summary of image segmentation techniques

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    1993-01-01

    Machine vision systems are often considered to be composed of two subsystems: low-level vision and high-level vision. Low level vision consists primarily of image processing operations performed on the input image to produce another image with more favorable characteristics. These operations may yield images with reduced noise or cause certain features of the image to be emphasized (such as edges). High-level vision includes object recognition and, at the highest level, scene interpretation. The bridge between these two subsystems is the segmentation system. Through segmentation, the enhanced input image is mapped into a description involving regions with common features which can be used by the higher level vision tasks. There is no theory on image segmentation. Instead, image segmentation techniques are basically ad hoc and differ mostly in the way they emphasize one or more of the desired properties of an ideal segmenter and in the way they balance and compromise one desired property against another. These techniques can be categorized in a number of different groups including local vs. global, parallel vs. sequential, contextual vs. noncontextual, interactive vs. automatic. In this paper, we categorize the schemes into three main groups: pixel-based, edge-based, and region-based. Pixel-based segmentation schemes classify pixels based solely on their gray levels. Edge-based schemes first detect local discontinuities (edges) and then use that information to separate the image into regions. Finally, region-based schemes start with a seed pixel (or group of pixels) and then grow or split the seed until the original image is composed of only homogeneous regions. Because there are a number of survey papers available, we will not discuss all segmentation schemes. Rather than a survey, we take the approach of a detailed overview. We focus only on the more common approaches in order to give the reader a flavor for the variety of techniques available yet present enough

  19. Diagnostic cardiology: Noninvasive imaging techniques

    SciTech Connect

    Come, P.C.

    1985-01-01

    This book contains 23 chapters. Some of the chapter titles are: The chest x-ray and cardiac series; Computed tomographic scanning of the heart, coronary arteries, and great vessels; Digital subtraction angiography in the assessment of cardiovascular disease; Magnetic resonance: technique and cardiac applications; Basics of radiation physics and instrumentation; and Nuclear imaging: the assessment of cardiac performance.

  20. Assessment of cluster yield components by image analysis.

    PubMed

    Diago, Maria P; Tardaguila, Javier; Aleixos, Nuria; Millan, Borja; Prats-Montalban, Jose M; Cubero, Sergio; Blasco, Jose

    2015-04-01

    Berry weight, berry number and cluster weight are key parameters for yield estimation for wine and tablegrape industry. Current yield prediction methods are destructive, labour-demanding and time-consuming. In this work, a new methodology, based on image analysis was developed to determine cluster yield components in a fast and inexpensive way. Clusters of seven different red varieties of grapevine (Vitis vinifera L.) were photographed under laboratory conditions and their cluster yield components manually determined after image acquisition. Two algorithms based on the Canny and the logarithmic image processing approaches were tested to find the contours of the berries in the images prior to berry detection performed by means of the Hough Transform. Results were obtained in two ways: by analysing either a single image of the cluster or using four images per cluster from different orientations. The best results (R(2) between 69% and 95% in berry detection and between 65% and 97% in cluster weight estimation) were achieved using four images and the Canny algorithm. The model's capability based on image analysis to predict berry weight was 84%. The new and low-cost methodology presented here enabled the assessment of cluster yield components, saving time and providing inexpensive information in comparison with current manual methods. © 2014 Society of Chemical Industry.

  1. A Review of Imaging Techniques for Plant Phenotyping

    PubMed Central

    Li, Lei; Zhang, Qin; Huang, Danfeng

    2014-01-01

    Given the rapid development of plant genomic technologies, a lack of access to plant phenotyping capabilities limits our ability to dissect the genetics of quantitative traits. Effective, high-throughput phenotyping platforms have recently been developed to solve this problem. In high-throughput phenotyping platforms, a variety of imaging methodologies are being used to collect data for quantitative studies of complex traits related to the growth, yield and adaptation to biotic or abiotic stress (disease, insects, drought and salinity). These imaging techniques include visible imaging (machine vision), imaging spectroscopy (multispectral and hyperspectral remote sensing), thermal infrared imaging, fluorescence imaging, 3D imaging and tomographic imaging (MRT, PET and CT). This paper presents a brief review on these imaging techniques and their applications in plant phenotyping. The features used to apply these imaging techniques to plant phenotyping are described and discussed in this review. PMID:25347588

  2. A review of imaging techniques for plant phenotyping.

    PubMed

    Li, Lei; Zhang, Qin; Huang, Danfeng

    2014-10-24

    Given the rapid development of plant genomic technologies, a lack of access to plant phenotyping capabilities limits our ability to dissect the genetics of quantitative traits. Effective, high-throughput phenotyping platforms have recently been developed to solve this problem. In high-throughput phenotyping platforms, a variety of imaging methodologies are being used to collect data for quantitative studies of complex traits related to the growth, yield and adaptation to biotic or abiotic stress (disease, insects, drought and salinity). These imaging techniques include visible imaging (machine vision), imaging spectroscopy (multispectral and hyperspectral remote sensing), thermal infrared imaging, fluorescence imaging, 3D imaging and tomographic imaging (MRT, PET and CT). This paper presents a brief review on these imaging techniques and their applications in plant phenotyping. The features used to apply these imaging techniques to plant phenotyping are described and discussed in this review.

  3. Neurophysiological imaging techniques in dementia.

    PubMed

    Comi, G; Leocani, L

    1999-01-01

    Neurophysiological methods, such as electroencephalography (EEG) and event-related potentials, are useful tools in the investigation of brain cognitive function in normal and pathological conditions, with an excellent time resolution when compared to that of other functional imaging techniques. Advanced techniques using a high number of EEG channels also enable a good spatial resolution to be achieved. This, together with the possibility of integration with other anatomical and functional images, may increase the ability to localize brain functions. Spectral analysis of the resting EEG, which gives information on the integrity of the cortical and subcortical networks involved in the generation of cortical rhythms, has the limitation of low sensitivity and specificity for the type of cognitive impairment. In almost all types of dementia, decreased power of the high frequencies is indeed observed in mild stages, accompanied by increased power of the slow rhythms in the more advanced phases. The sensitivity for the detection of spectral abnormalities is improved by studying centroid modifications. More specific information on the type of dementia can be provided by coherence analysis of the resting EEG, a measure of functional cortico-cortical connections, which has different abnormal patterns in Alzheimer's disease, cerebrovascular dementia and dementia associated with multiple sclerosis. Another tool for improving the assessment of demented patients is the study of EEG activity related to particular tasks, such as event-related potentials and event-related desynchronization/synchronization of the EEG, which allow the study of brain activation during cognitive and motor tasks.

  4. Imaging techniques in biology and medicine

    SciTech Connect

    Swenberg, C.E.

    1988-01-01

    This book serves as an introduction to some aspects of imaging techniques as utilized in biology and medicine. Techniques presented include image processing, ultrasound, radiotracers, autoradiography, computed tomography, and MRI (all major imaging techniques). The underlying mathematics and physics are kept to a minimum.

  5. Imaging Techniques in Acute Heart Failure.

    PubMed

    Pérez del Villar, Candelas; Yotti, Raquel; Bermejo, Javier

    2015-07-01

    In recent years, imaging techniques have revolutionized the diagnosis of heart failure. In patients with a clinical picture of acute decompensation, prognosis is largely determined by early implementation of general measures and treatment of the underlying cause. Given its diagnostic yield and portability, ultrasound has become an essential tool in the setting of acute heart failure, and is currently found in all medical departments involved in the care of the critically ill patient. Cardiac magnetic resonance and computed tomography allow detailed characterization of multiple aspects of cardiac structure and function that were previously unavailable. This helps guide and monitor many of the treatment decisions in the acute heart failure population in an entirely noninvasive way. This article aims to review the usefulness of the imaging techniques that are clinically relevant in the context of an episode of acute heart failure. We discuss the indications and limitations of these techniques in detail and describe the general principles for the appropriate interpretation of results. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  6. Bayes Syndrome and Imaging Techniques.

    PubMed

    Betancor, Ivan Hernandez; Izquierdo-Gomez, Maria Manuela; Niebla, Javier Garcia; Laynez-Cerdeña, Ignacio; Garcia-Gonzalez, Martin Jesus; Barragan-Acea, Antonio; Iribarren-Sarriá, Jose Luis; Jimenez-Rivera, Juan Jose; Lacalzada-Almeida, Juan

    2017-07-13

    Interatrial block (IAB) is due to disruption in the Bachmann region (BR). According to whether interatrial electrical conduction is delayed or completely blocked through the BR, it can be classified as IAB of first, second or third degree. On the surface electrocardiogram, a P wave ≥ 120 ms (partial IAB) is observed or associated to the prolongation of the P wave with a biphasic (positive / negative) morphology in the inferior leads (advanced IAB). Bayes syndrome is defined as an advanced IAB associated with atrial arrhythmia, more specifically atrial fibrillation. The purpose of this review is to describe the latest evidence about an entity considered an anatomical and electrical substrate with its own name, which may be a predictor of supraventricular arrhythmia and cardioembolic cerebrovascular accidents, as well as the role of new imaging techniques, such as echocardiographic strain and cardiac magnetic resonance imaging, in characterizing atrial alterations associated with this syndrome and generally in the study of anatomy and atrial function. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Bone fragility and imaging techniques

    PubMed Central

    D’Elia, Giovanni; Caracchini, Giuseppe; Cavalli, Loredana; Innocenti, Paolo

    2009-01-01

    Bone fragility is a silent condition that increases bone fracture risk, enhanced by low bone mass and microarchitecture deterioration of bone tissue that lead to osteoporosis. Fragility fractures are the major clinical manifestation of osteoporosis. A large body of epidemiological data indicates that the current standard for predicting fragility fracture risk is an areal BMD (aBMD) measurement by DXA. Although mineral density measurements assess the quantity of bone, the quality of the tissue is an important predictor of fragility. Thus, bone strength is explained not only by BMD but also by macrostructural and microstructural characteristics of bone tissue. Imaging diagnostics, through the use of X-rays, DXA, Ultrasonography, CT and MR, provides methods for diagnosis and characterization of fractures, and semi- and quantitative methods for assessment of bone consistency and strength, that become precious for bone fragility clinical management if they are integrated by clinical risk factors. The last employment of sophisticated non-invasively imaging techniques in clinical research as high-resolution CT (hrCT), microCT (μ-CT), high-resolution MR (hrMR) and, microRM (μRM), combined with finite element analysis methods, open to new challenges in a better bone strength assessment to enhance the comprehension of biomechanical parameters and the prediction of fragility fractures. PMID:22461252

  8. Image Transmission via Spread Spectrum Techniques

    DTIC Science & Technology

    1978-01-01

    Images From Remote Piloted Vehicles, Coding Techniques For RPV and SAR Images, Image Coding Techniques, Stochastic Image Models and Hybrid Coding...FAST COSINE TRANSFORM. . . 125 APPENDIX E: STUDY OF HUMAN FACTORS INVOLVED WITH VIEWING COMPRESSED IMAGES FROM REMOTE PILOTED VEHICLES...Program was accomplished in 1977. A complete flyable system was produced by RCA and delivered to Harris Corp for integration into an AQUILA remotely

  9. Imaging Techniques in Endodontics: An Overview

    PubMed Central

    Deepak, B. S.; Subash, T. S.; Narmatha, V. J.; Anamika, T.; Snehil, T. K.; Nandini, D. B.

    2012-01-01

    This review provides an overview of the relevance of imaging techniques such as, computed tomography, cone beam computed tomography, and ultrasound, to endodontic practice. Many limitations of the conventional radiographic techniques have been overcome by the newer methods. Advantages and disadvantages of various imaging techniques in endodontic practice are also discussed. PMID:22530184

  10. Digital image registration by correlation techniques.

    NASA Technical Reports Server (NTRS)

    Popp, D. J.; Mccormack, D. S.; Lee, G. M.

    1972-01-01

    This study considers the translation problem associated with digital image registration and develops a means for comparing commonly used correlation techniques. Using suitably defined constraints, an optimum and four suboptimum registration techniques are defined and evaluated. A computational comparison is made and Gaussian image statistics are used to compare the selected techniques in terms of radial position location error.

  11. Access Techniques for Document Image Databases.

    ERIC Educational Resources Information Center

    Walker, Frank L.; Thoma, George R.

    1990-01-01

    Describes access and retrieval techniques implemented as part of a research and development program in electronic imaging applied to document storage and retrieval at the National Library of Medicine. Design considerations for large image databases are discussed. (six references) (EAM)

  12. Crop yield forecast for France based on the CNDVI technique

    NASA Astrophysics Data System (ADS)

    Vignolles, Cecile; Genovese, Giampiero; Negre, Thierry

    2002-01-01

    The objective of the research presented here is to obtain crop yield forecasts basing on the information of NOAA- AVHRR/NDVI and CORINE land cover data. The methodology described in Genovese et al. (2001) consists of extracting yield indicators from CNDVI (CORINE-NDVI) time series at a regional scale. In Genovese et al. (2001), a preliminary study on Spain for a four year span (1995-1998) has shown that indicators extracted from the CNDVI profiles can be more closely related to crop yield performances than indicators based on simple NDVI profiles. To prove the validity of this approach, a more complete experiment was realised on France for the same period. Linear regressions were calculated using regional CNDVI-based indicators versus regional wheat yield data (EUROSTAT NEW CRONOS database). A French national wheat yield forecast was then derived by aggregation of regional results. The goodness of the results confirms the advantages of such approach. The combination of a CNDVI-based indicator with the linear trend observed on yields between 1975 and 1997 led to very good regression criteria (coefficient of determination higher than 86%) and allowed a satisfying prediction of wheat yields.

  13. Medical imaging techniques: implications for nursing care.

    PubMed

    Malcolm, Alison

    The four basic techniques of medical imaging are X-ray, ultrasound, magnetic resonance and radionuclide. This article describes imaging techniques that display anatomical structure and those that are better at showing the physiological function of organs and tissues. Safety and preparation relating to nursing practice are discussed. Understanding the purpose and limitations of the different imaging techniques is important for providing best patient care.

  14. Interframe Adaptive Data Compression Techniques for Images.

    DTIC Science & Technology

    1979-08-01

    1.3.1 Predictive Coding Techniques 8 1.3.2 Transform Coding Techniques 15 1.3.3 Hybrid Coding Techniques 17 1.4 Research Objectives 18 1.5 Description ...Chemical Plant Images 82 4.2.3 X-ray Projection Images 83 V INTERFRAME HYBRID CODING SCHEMES 91 5.1 Adaptive Interframe Hybrid Coding Scheme 95 5.2 Hybrid...Images 99 5.4.2 Chemical Plant Images 109 5.4.3 Angiocardiogram Images .7 777 T- - . vi Page VI DATA COMPRESSION FOR NOISY CHANNELS 117 6.1 Channel

  15. Application of optical correlation techniques to particle imaging velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1988-01-01

    Pulsed laser sheet velocimetry yields nonintrusive measurements of velocity vectors across an extended 2-dimensional region of the flow field. The application of optical correlation techniques to the analysis of multiple exposure laser light sheet photographs can reduce and/or simplify the data reduction time and hardware. Here, Matched Spatial Filters (MSF) are used in a pattern recognition system. Usually MSFs are used to identify the assembly line parts. In this application, the MSFs are used to identify the iso-velocity vector contours in the flow. The patterns to be recognized are the recorded particle images in a pulsed laser light sheet photograph. Measurement of the direction of the partical image displacements between exposures yields the velocity vector. The particle image exposure sequence is designed such that the velocity vector direction is determined unambiguously. A global analysis technique is used in comparison to the more common particle tracking algorithms and Young's fringe analysis technique.

  16. Low energy neutral atom imaging techniques

    SciTech Connect

    Funsten, H.O. McComas, D.J.; Scime, E.E.

    1993-01-01

    The potential scientific return from low energy neutral atom (LENA) imaging of the magnetosphere is extraordinary. The technical challenges of LENA detection include (1) removal of LENAs from the tremendous ambient UV without losing information of their incident trajectories, (2) quantification of their trajectories, and (3) obtaining high sensitivity measurements. Two techniques that have been proposed for this purpose are based on fundamentally different atomic interaction mechanisms between LENAs and a solid: LENA transmission through an ultrathin foil and LENA reflection from a solid surface. Both of these methods provide LENA ionization (for subsequent removal from the UV by electrostatic deflection) and secondary electron emission (for start pulse generation for time-of-flight and/or coincidence). We present a comparative study of the transmission and reflection techniques based on differences in atomic interactions with solids and surfaces. We show that transmission methods yield an order of magnitude greater secondary electron emission than reflection methods. Transmission methods are shown to be sufficient for LENA energies of approximately 1 keV to greater than 30 keV. Reflection methods using low work function surfaces could be employed for LENA ionization for energies less than several keV.

  17. A new technique for measuring sputtering yields at high energies

    NASA Technical Reports Server (NTRS)

    Qiu, Y.; Griffith, J. E.; Tombrello, T. A.

    1984-01-01

    The use of thin, self-supporting carbon catcher foils allows one to measure sputtering yields in a broad range of materials with high sensitivity. Analyzing the foils with Rutherford forward scattering, sputtered Al, Si and P surface densities down to 5 x 10 to the 13th per sq cm with uncertainties of about 20 percent have been measured.

  18. NMR imaging techniques and applications: A review

    NASA Astrophysics Data System (ADS)

    Bottomley, Paul A.

    1982-09-01

    Over the past ten years, a variety of techniques have been proposed and demonstrated that enable the spatial discrimination and mapping of nuclear-magnetic-resonance (NMR) signals in heterogeneous objects. These NMR imaging techniques are currently finding useful application in clinical medicine and physiological chemistry, where their noninvasive, apparently hazard-free nature, and the sensitivity of the NMR signal to the state of biological tissue, are key advantages. This article reviews the historical development, the conceptual basis, and the applications of the various NMR imaging techniques. Qualitative descriptions and illustrations of each technique and an outline of imaging instrumentation are provided. Proton NMR imaging, in medicine, of pathological states such as cancer, imaging of relaxation time, chemical shift and flow parameters, imaging of nuclei other than hydrogen, and potential hazards are discussed and demonstrated with examples.

  19. Three dimensional scattering center imaging techniques

    NASA Technical Reports Server (NTRS)

    Younger, P. R.; Burnside, W. D.

    1991-01-01

    Two methods to image scattering centers in 3-D are presented. The first method uses 2-D images generated from Inverse Synthetic Aperture Radar (ISAR) measurements taken by two vertically offset antennas. This technique is shown to provide accurate 3-D imaging capability which can be added to an existing ISAR measurement system, requiring only the addition of a second antenna. The second technique uses target impulse responses generated from wideband radar measurements from three slightly different offset antennas. This technique is shown to identify the dominant scattering centers on a target in nearly real time. The number of measurements required to image a target using this technique is very small relative to traditional imaging techniques.

  20. Imaging techniques: Nanoparticle atoms pinpointed

    NASA Astrophysics Data System (ADS)

    Farle, Michael

    2017-02-01

    The locations of atoms in a metallic alloy nanoparticle have been determined using a combination of electron microscopy and image simulation, revealing links between the particle's structure and magnetic properties. See Letter p.75

  1. Planet Diversity Yields with Space-based Direct Imaging Telescopes

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, Shawn; Kopparapu, Ravi Kumar; Hébrard, Eric; Stark, Chris; Robinson, Tyler D.; Roberge, Aki; Mandell, Avi; McElwain, Michael W.; Clampin, Mark; Meadows, Victoria; Arney, Giada; Advanced Technology Large Aperture Space Telescope Science Team, Exoplanet Climate Group

    2016-01-01

    In this presentation, we will estimate the yield for a diversity of planets from future space-based flagship telescopes. We first divvy up planets into categories that are based on current observables, and that should impact the spectra we hope to observe in the future. The two main classification parameters we use here are the size of a planet and the energy flux into the planet's atmosphere. These two parameters are measureable or inferable from present-day observations, and should have a strong influence on future spectroscopy observations from JWST, WFIRST (with a coronagraph and/or starshade), and concept flagship missions that would fly some time after WFIRST. This allows us to calculate "ηplanet" values for each kind of planet. These η values then allow calculations of the expected yields from direct imaging missions, by leveraging the models and prior work by Stark and colleagues (2014, 2015). That work estimated the yields for potentially Earth-like worlds (i.e. of a size and stellar irradiation consistent with definitions of the habitable zone) for telescopes with a variety of observational parameters. We will do the same thing here, but for a wider variety of planets. This will allow us to discuss the implications of architecture and instrument properties on the diversity of worlds that future direct imaging missions would observe.

  2. Ultra high speed image processing techniques. [electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.

  3. Electronic imaging system and technique

    DOEpatents

    Bolstad, Jon O.

    1987-01-01

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  4. Electronic imaging system and technique

    DOEpatents

    Bolstad, J.O.

    1984-06-12

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  5. Digital imaging techniques for dental alloy castability quantification.

    PubMed

    Cohen, S M; Vaidyanathan, T K; Tanabe, N

    1992-05-01

    In this study, mesh monitors cast from experimental compositions of a Ni-Cr-Be alloy are evaluated by the application of image analysis techniques. Castability values obtained by this method are then contrasted with those from three commonly employed manual counting procedures. While castability values obtained by all methods reflect the effect of compositional variations, a comparison of results with respect to evaluation method indicates that the image analysis technique consistently yields higher castability values, especially evident in the poorly casting groups. The apparent explanation for these observed differences is that with imaging, segments that are partially cast to varying degrees are not arbitrarily eliminated from the data, as is the usual practice in manual counting methods; therefore, castability values obtained by using the imaging technique will very closely reflect an actual alloy volume of each cast monitor.

  6. An accurate registration technique for distorted images

    NASA Technical Reports Server (NTRS)

    Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis

    1990-01-01

    Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.

  7. Tank Yield Estimation using Flow Routing and GIS Techniques

    NASA Astrophysics Data System (ADS)

    Sudharsanan, R.; Krishnaveni, M.

    2012-09-01

    The surface water storage structure, small in capacity known as tank in South Asian Countries, is one of the main hydrologic units. It stores water due to rainfall on its catchment and is released for fulfilling various needs. The estimation of tank catchment yield will be more essential for southern parts of Indian peninsula since several tanks exist over wide area. In this study, estimation of tank catchment yield is carried by time-area method of flow routing using geographical information system (GIS). Time-area method utilizes a convolution of the effective rainfall hyetograph with the service of time-area diagram. Duraiswamipuram tank at Sindapalli Uppodai sub basin of Vaippar Basin, situated in Virudhunagar District of Tamil Nadu, India is selected for the study. It receives water from free catchment alone. The catchment area, water spread area and drainage pattern of the Duraiswamipuram tank are calculated with the capabilities of GIS. Capacity survey of the tank is conducted using Global Positioning System (GPS) and utilized to develop stage against capacity curve. The tank water level at the end of each storm event is observed and converted into volume of water reaching the tank with the help of stage-capacity curve. The validation of the model is carried out by comparing the estimated storage and the observed storage obtained from the capacity curve and measured water levels in the tank.

  8. Image processing technique for arbitrary image positioning in holographic stereogram

    NASA Astrophysics Data System (ADS)

    Kang, Der-Kuan; Yamaguchi, Masahiro; Honda, Toshio; Ohyama, Nagaaki

    1990-12-01

    In a one-step holographic stereogram, if the series of original images are used just as they are taken from perspective views, three-dimensional images are usually reconstructed in back of the hologram plane. In order to enhance the sense of perspective of the reconstructed images and minimize blur of the interesting portions, we introduce an image processing technique for making a one-step flat format holographic stereogram in which three-dimensional images can be observed at an arbitrary specified position. Experimental results show the effect of the image processing. Further, we show results of a medical application using this image processing.

  9. Improvement of ultrasound speckle image velocimetry using image enhancement techniques.

    PubMed

    Yeom, Eunseop; Nam, Kweon-Ho; Paeng, Dong-Guk; Lee, Sang Joon

    2014-01-01

    Ultrasound-based techniques have been developed and widely used in noninvasive measurement of blood velocity. Speckle image velocimetry (SIV), which applies a cross-correlation algorithm to consecutive B-mode images of blood flow has often been employed owing to its better spatial resolution compared with conventional Doppler-based measurement techniques. The SIV technique utilizes speckles backscattered from red blood cell (RBC) aggregates as flow tracers. Hence, the intensity and size of such speckles are highly dependent on hemodynamic conditions. The grayscale intensity of speckle images varies along the radial direction of blood vessels because of the shear rate dependence of RBC aggregation. This inhomogeneous distribution of echo speckles decreases the signal-to-noise ratio (SNR) of a cross-correlation analysis and produces spurious results. In the present study, image-enhancement techniques such as contrast-limited adaptive histogram equalization (CLAHE), min/max technique, and subtraction of background image (SB) method were applied to speckle images to achieve a more accurate SIV measurement. A mechanical sector ultrasound scanner was used to obtain ultrasound speckle images from rat blood under steady and pulsatile flows. The effects of the image-enhancement techniques on SIV analysis were evaluated by comparing image intensities, velocities, and cross-correlation maps. The velocity profiles and wall shear rate (WSR) obtained from RBC suspension images were compared with the analytical solution for validation. In addition, the image-enhancement techniques were applied to in vivo measurement of blood flow in human vein. The experimental results of both in vitro and in vivo SIV measurements show that the intensity gradient in heterogeneous speckles has substantial influence on the cross-correlation analysis. The image-enhancement techniques used in this study can minimize errors encountered in ultrasound SIV measurement in which RBCs are used as flow

  10. Plenoptic Ophthalmoscopy: A Novel Imaging Technique.

    PubMed

    Adam, Murtaza K; Aenchbacher, Weston; Kurzweg, Timothy; Hsu, Jason

    2016-11-01

    This prospective retinal imaging case series was designed to establish feasibility of plenoptic ophthalmoscopy (PO), a novel mydriatic fundus imaging technique. A custom variable intensity LED array light source adapter was created for the Lytro Gen1 light-field camera (Lytro, Mountain View, CA). Initial PO testing was performed on a model eye and rabbit fundi. PO image acquisition was then performed on dilated human subjects with a variety of retinal pathology and images were subjected to computational enhancement. The Lytro Gen1 light-field camera with custom LED array captured fundus images of eyes with diabetic retinopathy, age-related macular degeneration, retinal detachment, and other diagnoses. Post-acquisition computational processing allowed for refocusing and perspective shifting of retinal PO images, resulting in improved image quality. The application of PO to image the ocular fundus is feasible. Additional studies are needed to determine its potential clinical utility. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:1038-1043.].

  11. High-yield biopsy technique for subepidermal blisters.

    PubMed

    Braswell, Mark A; McCowan, Nancye K; Schulmeier, Jennifer S; Brodell, Robert T

    2015-04-01

    Dermatologists often perform 2 biopsies in patients with widespread tense blisters: one for light microscopy and another for direct immunofluorescence (DIF). Biopsy techniques recommended for blistering diseases with tense blisters are discussed, and illustrations demonstrate an alternative approach utilizing a single punch biopsy. A single punch biopsy is more cost effective and provides the same diagnostic information as the standard 2-biopsy approach for subepidermal blisters plus additional salt-split skin-like diagnostic information. A limitation for bisecting the single punch biopsy specimen is a potential complete separation of the epidermis from the dermis. The single punch biopsy technique is a simple cost-effective method for obtaining necessary diagnostic information when sampling tense blisters in patients with blistering diseases.

  12. FPGA implementation of image enhancement techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Karan; Jain, Aditya; Srivastava, Atul Kumar

    2009-06-01

    The objective of this paper is designing, modeling, simulation and synthesis of four Image Enhancement techniques on FPGA. Image Enhancement Algorithms can be classified as point processing Techniques, in which operation is done on pixel level and Spatial Filtering Technique, in which operation is performed within neighborhood of a pixel. Algorithms of all the techniques are studied and hardware circuits are realized for them. Then hardware logic is modeled in Matlab Simulink using Xilinx System Generator Block set and synthesized onto Virtex4 xc4vsx35-10ff668 FPGA chip. Using hardware co-simulation feature of FPGA kit, the algorithms developed are validated.

  13. Matching technique yields optimum LNA performance. [Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Sifri, J. D.

    1986-01-01

    The present article is concerned with a case in which an optimum noise figure and unconditional stability have been designed into a 2.385-GHz low-noise preamplifier via an unusual method for matching the input with a suspended line. The results obtained with several conventional line-matching techniques were not satisfactory. Attention is given to the minimization of thermal noise, the design procedure, requirements for a high-impedance line, a sampling of four matching networks, the noise figure of the single-line matching network as a function of frequency, and the approaches used to achieve unconditional stability.

  14. A comparison of image inpainting techniques

    NASA Astrophysics Data System (ADS)

    Liu, Yaojie; Shu, Chang

    2015-03-01

    Image inpainting is an important research topic in the field of image processing. The objective of inpainting is to "guess" the lost information according to surrounding image information, which can be applied in old photo restoration, object removal and demosaicing. Based on the foundation of previous literature of image inpainting and image modeling, this paper provides an overview of the state-of-art image inpainting methods. This survey first covers mathematics models of inpainting and different kinds of image impairment. Then it goes to the main components of an image, the structure and the texture, and states how these inpainting models and algorithms deal with the two separately, using PDE's method, exemplar-based method and etc. Afterwards sparse-representation-based inpainting and related techniques are introduced. Experimental analysis will be presented to evaluate the relative merits of different algorithms, with the measure of Peak Signal to Noise Ratio (PSNR) as well as direct visual perception.

  15. Enhanced integral imaging system using image floating technique

    NASA Astrophysics Data System (ADS)

    Min, Sung-Wook; Kim, Joohwan; Lee, Byoungho

    2005-09-01

    Enhanced integral imaging system based on the image floating method is proposed. The integral imaging is one of the most promising methods among the autostereoscopic displays and the integrated image has the volumetric characteristics unlike the other stereoscopic images. The image floating is a common 3D display technique, which uses a big convex lens or a concave mirror to exhibit the image of a real object to the observer. The image floating method can be used to emphasize the viewing characteristics of the volumetric image and the noise image which is located on the fixed plane can be eliminated by the floating lens through the control of the focal length. In this paper, the solution of the seam noise and the image flipping of the integral imaging system is proposed using the image floating method. Moreover, the advanced techniques of the integral imaging system can be directly applied to the proposed system. The proposed system can be successfully applied to many 3D applications such as 3D television.

  16. Image processing techniques for digital orthophotoquad production

    USGS Publications Warehouse

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  17. Superresolution imaging: a survey of current techniques

    NASA Astrophysics Data System (ADS)

    Cristóbal, G.; Gil, E.; Šroubek, F.; Flusser, J.; Miravet, C.; Rodríguez, F. B.

    2008-08-01

    Imaging plays a key role in many diverse areas of application, such as astronomy, remote sensing, microscopy, and tomography. Owing to imperfections of measuring devices (e.g., optical degradations, limited size of sensors) and instability of the observed scene (e.g., object motion, media turbulence), acquired images can be indistinct, noisy, and may exhibit insuffcient spatial and temporal resolution. In particular, several external effects blur images. Techniques for recovering the original image include blind deconvolution (to remove blur) and superresolution (SR). The stability of these methods depends on having more than one image of the same frame. Differences between images are necessary to provide new information, but they can be almost unperceivable. State-of-the-art SR techniques achieve remarkable results in resolution enhancement by estimating the subpixel shifts between images, but they lack any apparatus for calculating the blurs. In this paper, after introducing a review of current SR techniques we describe two recently developed SR methods by the authors. First, we introduce a variational method that minimizes a regularized energy function with respect to the high resolution image and blurs. In this way we establish a unifying way to simultaneously estimate the blurs and the high resolution image. By estimating blurs we automatically estimate shifts with subpixel accuracy, which is inherent for good SR performance. Second, an innovative learning-based algorithm using a neural architecture for SR is described. Comparative experiments on real data illustrate the robustness and utilization of both methods.

  18. Image registration techniques for multimodal sensors

    NASA Astrophysics Data System (ADS)

    Altinalev, Tevfik; Cetin, Enis A.; Yardimci, Yasemin C.

    2002-08-01

    Image registration refers to the problem of spatially aligning two or more images. A challenging problem in this area is the registration of images obtained by different types of sensors. In general such images have different gray level characteristics and commonly used techniques such as those based on area correlations cannot be applied directly. On the other hand, contours representing the region boundaries are preserved in most cases. Therefore, contour based registration techniques are applicable to multimodal sensors. In this paper, various registration techniques based on subband decomposition and projection along x and y directions are introduced. The effect of binarization is investigated. Unknown translation and scaling parameters are computed using cross-correlation methods over the projections. Performance of the algorithms is compared.

  19. Fast Multigrid Techniques in Total Variation-Based Image Reconstruction

    NASA Technical Reports Server (NTRS)

    Oman, Mary Ellen

    1996-01-01

    Existing multigrid techniques are used to effect an efficient method for reconstructing an image from noisy, blurred data. Total Variation minimization yields a nonlinear integro-differential equation which, when discretized using cell-centered finite differences, yields a full matrix equation. A fixed point iteration is applied with the intermediate matrix equations solved via a preconditioned conjugate gradient method which utilizes multi-level quadrature (due to Brandt and Lubrecht) to apply the integral operator and a multigrid scheme (due to Ewing and Shen) to invert the differential operator. With effective preconditioning, the method presented seems to require Omicron(n) operations. Numerical results are given for a two-dimensional example.

  20. Ultrasonic imaging techniques for breast cancer detection.

    SciTech Connect

    Goulding, N. R.; Marquez, J. D.; Prewett, E. M.; Claytor, T. N.; Nadler, B. R.; Huang, L.

    2006-01-01

    Improving the resolution and specificity of current ultrasonic imaging technology can enhance its relevance to detection of early-stage breast cancers. Ultrasonic evaluation of breast lesions is desirable because it is quick, inexpensive, and does not expose the patient to potentially harmful ionizing radiation. Improved image quality and resolution enables earlier detection and more accurate diagnoses of tumors, thus reducing the number of biopsies performed, increasing treatment options, and lowering mortality, morbidity, and remission percentages. In this work, a novel ultrasonic imaging reconstruction method that exploits straight-ray migration is described. This technique, commonly used in seismic imaging, accounts for scattering more accurately than standard ultrasonic approaches, thus providing superior image resolution. A breast phantom with various inclusions is imaged using a pulse-echo approach. The data are processed using the ultrasonic migration method and results are compared to standard linear ultrasound and to x-ray computed tomography (CT) scans. For an ultrasonic frequency of 2.25 MHz, imaged inclusions and features of approximately 1mm are resolved, although better resolution is expected with minor modifications. Refinement of this application using other imaging techniques such as time-reversal mirrors (TRM), synthetic aperture focusing technique (SAFT), decomposition of the time reversal operator (DORT), and factorization methods is also briefly discussed.

  1. Ultrasonic Imaging Techniques for Breast Cancer Detection

    NASA Astrophysics Data System (ADS)

    Goulding, N. R.; Marquez, J. D.; Prewett, E. M.; Claytor, T. N.; Nadler, B. R.

    2008-02-01

    Improving the resolution and specificity of current ultrasonic imaging technology is needed to enhance its relevance to breast cancer detection. A novel ultrasonic imaging reconstruction method is described that exploits classical straight-ray migration. This novel method improves signal processing for better image resolution and uses novel staging hardware options using a pulse-echo approach. A breast phantom with various inclusions is imaged using the classical migration method and is compared to standard computed tomography (CT) scans. These innovative ultrasonic methods incorporate ultrasound data acquisition, beam profile characterization, and image reconstruction. For an ultrasonic frequency of 2.25 MHz, imaged inclusions of approximately 1 cm are resolved and identified. Better resolution is expected with minor modifications. Improved image quality and resolution enables earlier detection and more accurate diagnoses of tumors thus reducing the number of biopsies performed, increasing treatment options, and lowering remission percentages. Using these new techniques the inclusions in the phantom are resolved and compared to the results of standard methods. Refinement of this application using other imaging techniques such as time-reversal mirrors (TRM), synthetic aperture focusing technique (SAFT), decomposition of the time reversal operator (DORT), and factorization methods is also discussed.

  2. Robust document image binarization technique for degraded document images.

    PubMed

    Su, Bolan; Lu, Shijian; Tan, Chew Lim

    2013-04-01

    Segmentation of text from badly degraded document images is a very challenging task due to the high inter/intra-variation between the document background and the foreground text of different document images. In this paper, we propose a novel document image binarization technique that addresses these issues by using adaptive image contrast. The adaptive image contrast is a combination of the local image contrast and the local image gradient that is tolerant to text and background variation caused by different types of document degradations. In the proposed technique, an adaptive contrast map is first constructed for an input degraded document image. The contrast map is then binarized and combined with Canny's edge map to identify the text stroke edge pixels. The document text is further segmented by a local threshold that is estimated based on the intensities of detected text stroke edge pixels within a local window. The proposed method is simple, robust, and involves minimum parameter tuning. It has been tested on three public datasets that are used in the recent document image binarization contest (DIBCO) 2009 & 2011 and handwritten-DIBCO 2010 and achieves accuracies of 93.5%, 87.8%, and 92.03%, respectively, that are significantly higher than or close to that of the best-performing methods reported in the three contests. Experiments on the Bickley diary dataset that consists of several challenging bad quality document images also show the superior performance of our proposed method, compared with other techniques.

  3. Review: Magnetic resonance imaging techniques in ophthalmology

    PubMed Central

    Fagan, Andrew J.

    2012-01-01

    Imaging the eye with magnetic resonance imaging (MRI) has proved difficult due to the eye’s propensity to move involuntarily over typical imaging timescales, obscuring the fine structure in the eye due to the resulting motion artifacts. However, advances in MRI technology help to mitigate such drawbacks, enabling the acquisition of high spatiotemporal resolution images with a variety of contrast mechanisms. This review aims to classify the MRI techniques used to date in clinical and preclinical ophthalmologic studies, describing the qualitative and quantitative information that may be extracted and how this may inform on ocular pathophysiology. PMID:23112569

  4. Techniques for molecular imaging probe design.

    PubMed

    Reynolds, Fred; Kelly, Kimberly A

    2011-12-01

    Molecular imaging allows clinicians to visualize disease-specific molecules, thereby providing relevant information in the diagnosis and treatment of patients. With advances in genomics and proteomics and underlying mechanisms of disease pathology, the number of targets identified has significantly outpaced the number of developed molecular imaging probes. There has been a concerted effort to bridge this gap with multidisciplinary efforts in chemistry, proteomics, physics, material science, and biology--all essential to progress in molecular imaging probe development. In this review, we discuss target selection, screening techniques, and probe optimization with the aim of developing clinically relevant molecularly targeted imaging agents.

  5. Techniques for Molecular Imaging Probe Design

    PubMed Central

    Reynolds, Fred; Kelly, Kimberly A.

    2011-01-01

    Molecular imaging allows clinicians to visualize disease specific molecules, thereby providing relevant information in the diagnosis and treatment of patients. With advances in genomics and proteomics and underlying mechanisms of disease pathology, the number of targets identified has significantly outpaced the number of developed molecular imaging probes. There has been a concerted effort to bridge this gap with multidisciplinary efforts in chemistry, proteomics, physics, material science, and biology; all essential to progress in molecular imaging probe development. In this review, we will discuss target selection, screening techniques and probe optimization with the aim of developing clinically relevant molecularly targeted imaging agents. PMID:22201532

  6. Geometric assessment of image quality using digital image registration techniques

    NASA Technical Reports Server (NTRS)

    Tisdale, G. E.

    1976-01-01

    Image registration techniques were developed to perform a geometric quality assessment of multispectral and multitemporal image pairs. Based upon LANDSAT tapes, accuracies to a small fraction of a pixel were demonstrated. Because it is insensitive to the choice of registration areas, the technique is well suited to performance in an automatic system. It may be implemented at megapixel-per-second rates using a commercial minicomputer in combination with a special purpose digital preprocessor.

  7. Comparison of lossless compression techniques for prepress color images

    NASA Astrophysics Data System (ADS)

    Van Assche, Steven; Denecker, Koen N.; Philips, Wilfried R.; Lemahieu, Ignace L.

    1998-12-01

    In the pre-press industry color images have both a high spatial and a high color resolution. Such images require a considerable amount of storage space and impose long transmission times. Data compression is desired to reduce these storage and transmission problems. Because of the high quality requirements in the pre-press industry only lossless compression is acceptable. Most existing lossless compression schemes operate on gray-scale images. In this case the color components of color images must be compressed independently. However, higher compression ratios can be achieved by exploiting inter-color redundancies. In this paper we present a comparison of three state-of-the-art lossless compression techniques which exploit such color redundancies: IEP (Inter- color Error Prediction) and a KLT-based technique, which are both linear color decorrelation techniques, and Interframe CALIC, which uses a non-linear approach to color decorrelation. It is shown that these techniques are able to exploit color redundancies and that color decorrelation can be done effectively and efficiently. The linear color decorrelators provide a considerable coding gain (about 2 bpp) on some typical prepress images. The non-linear interframe CALIC predictor does not yield better results, but the full interframe CALIC technique does.

  8. Comparison of various enhanced radar imaging techniques

    NASA Astrophysics Data System (ADS)

    Gupta, Inder J.; Gandhe, Avinash

    1998-09-01

    Recently, many techniques have been proposed to enhance the quality of radar images obtained using SAR and/or ISAR. These techniques include spatially variant apodization (SVA), adaptive sidelobe reduction (ASR), the Capon method, amplitude and phase estimation of sinusoids (APES) and data extrapolation. SVA is a special case of ASR; whereas the APES algorithm is similar to the Capon method except that it provides a better amplitude estimate. In this paper, the ASR technique, the APES algorithm and data extrapolation are used to generate radar images of two experimental targets and an airborne target. It is shown that although for ideal situations (point targets) the APES algorithm provides the best radar images (reduced sidelobe level and sharp main lobe), its performance degrades quickly for real world targets. The ASR algorithm gives radar images with low sidelobes but at the cost of some loss of information about the target. Also, there is not much improvement in radar image resolution. Data extrapolation, on the other hand, improves image resolution. In this case one can reduce the sidelobes by using non-uniform weights. Any loss in the radar image resolution due to non-uniform weights can be compensated by further extrapolating the scattered field data.

  9. Update on imaging techniques in oculoplastics

    PubMed Central

    Cetinkaya, Altug

    2012-01-01

    Imaging is a beneficial aid to the oculoplastic surgeon especially in orbital and lacrimal disorders when the pathology is not visible from outside. It is a powerful tool that may be benefited in not only diagnosis but also management and follow-up. The most common imaging modalities required are CT and MRI, with CT being more frequently ordered by oculoplastic surgeons. Improvements in technology enabled the acquisition times to shorten incredibly. Radiologists can now obtain images with superb resolution, and isolate the site and tissue of interest from other structures with special techniques. Better contrast agents and 3D imaging capabilities make complicated cases easier to identify. Color Doppler imaging is becoming more popular both for research and clinical purposes. Magnetic resonance angiography (MRA) added so much to the vascular system imaging recently. Although angiography is still the gold standard, new software and techniques rendered MRA as valuable as angiography in most circumstances. Stereotactic navigation, although in use for a long time, recently became the focus of interest for the oculoplastic surgeon especially in orbital decompressions. Improvements in radiology and nuclear medicine techniques of lacrimal drainage system imaging provided more detailed analysis of the system. PMID:23961020

  10. Interpretation techniques. [image enhancement and pattern recognition

    NASA Technical Reports Server (NTRS)

    Dragg, J. L.

    1974-01-01

    The image enhancement and geometric correction and registration techniques developed and/or demonstrated on ERTS data are relatively mature and greatly enhance the utility of the data for a large variety of users. Pattern recognition was improved by the use of signature extension, feature extension, and other classification techniques. Many of these techniques need to be developed and generalized to become operationally useful. Advancements in the mass precision processing of ERTS were demonstrated, providing the hope for future earth resources data to be provided in a more readily usable state. Also in evidence is an increasing and healthy interaction between the techniques developers and the user/applications investigators.

  11. Interpretation techniques. [image enhancement and pattern recognition

    NASA Technical Reports Server (NTRS)

    Dragg, J. L.

    1974-01-01

    The image enhancement and geometric correction and registration techniques developed and/or demonstrated on ERTS data are relatively mature and greatly enhance the utility of the data for a large variety of users. Pattern recognition was improved by the use of signature extension, feature extension, and other classification techniques. Many of these techniques need to be developed and generalized to become operationally useful. Advancements in the mass precision processing of ERTS were demonstrated, providing the hope for future earth resources data to be provided in a more readily usable state. Also in evidence is an increasing and healthy interaction between the techniques developers and the user/applications investigators.

  12. Investigating CBIR Techniques for Cervicographic Images

    PubMed Central

    Xue, Zhiyun; Antani, Sameer; Long, L. Rodney; Jeronimo, Jose; Thoma, George R.

    2007-01-01

    The National Library of Medicine (NLM) and the National Cancer Institute (NCI) are creating a digital archive of 100,000 cervicographic images and clinical and diagnostic data obtained through two major longitudinal studies. In addition to developing tools for Web access to these data, we are conducting research in Content-Based Image Retrieval (CBIR) techniques for retrieving visually similar and pathologically relevant images. The resulting system of tools is expected to greatly benefit medical education and research into uterine cervical cancer which is the second most common cancer affecting women worldwide. Our current prototype system with fundamental CBIR functions operates on a small test subset of images and retrieves relevant cervix images containing tissue regions similar in color, texture, size, and/or location to a query image region marked by the user. Initial average precision result for retrieval by color of acetowhite lesions is 52%, and for the columnar epithelium is 64.2%, respectively. PMID:18693952

  13. Digital Imaging Techniques for Radiotherapy Treatment Verification

    NASA Astrophysics Data System (ADS)

    Leszczynski, Konrad Wojciech

    The curative effect of ionizing radiation depends strongly upon the precision with which dose is delivered to the prescribed target volume. The requirement for high geometric accuracy in patient positioning is even more stringent where complex treatment techniques are used, such as conformal, dynamic arc or truly 3-D (non-coplanar) beams. It is expected that digital on-line portal imaging devices will play a key role in the monitoring of radiation therapy treatments. Different approaches to on-line portal image acquisition have been compared, and the basic imaging properties of a video portal imager have been evaluated and discussed in this thesis. Analysis of the system performance indicates the most efficient ways to effect improvements in spatial resolution and signal-to-noise ratio. Digital image processing techniques for noise suppression and contrast enhancement have been developed and implemented in order to facilitate visual analysis of on-line portal images. Results obtained with phantom and clinical images indicate that improvement in image quality can be achieved using adaptive filtering and local histogram modification. A novel study of observer performance with on-line portal images showed that enhancement of contrast by selective local histogram modification significantly improves perceptibility of anatomical landmarks and assures higher accuracy in quantitative computer-assisted treatment verification. Fully automated treatment verification is the ultimate goal of on-line digital portal imaging. It should include analysis of size and shape of the radiation field as well as evaluation of placement of the field with respect to the internal anatomy of the patient. A computerized technique, has been developed, for extraction of the treatment field edges and for parametrization of the field, and examples of its application to automated analysis of size and shape of the radiation field are presented.

  14. Functional magnetic resonance imaging: imaging techniques and contrast mechanisms.

    PubMed Central

    Howseman, A M; Bowtell, R W

    1999-01-01

    Functional magnetic resonance imaging (fMRI) is a widely used technique for generating images or maps of human brain activity. The applications of the technique are widespread in cognitive neuroscience and it is hoped they will eventually extend into clinical practice. The activation signal measured with fMRI is predicated on indirectly measuring changes in the concentration of deoxyhaemoglobin which arise from an increase in blood oxygenation in the vicinity of neuronal firing. The exact mechanisms of this blood oxygenation level dependent (BOLD) contrast are highly complex. The signal measured is dependent on both the underlying physiological events and the imaging physics. BOLD contrast, although sensitive, is not a quantifiable measure of neuronal activity. A number of different imaging techniques and parameters can be used for fMRI, the choice of which depends on the particular requirements of each functional imaging experiment. The high-speed MRI technique, echo-planar imaging provides the basis for most fMRI experiments. The problems inherent to this method and the ways in which these may be overcome are particularly important in the move towards performing functional studies on higher field MRI systems. Future developments in techniques and hardware are also likely to enhance the measurement of brain activity using MRI. PMID:10466145

  15. Retinal Image Simulation of Subjective Refraction Techniques.

    PubMed

    Perches, Sara; Collados, M Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient's response-guided refraction) is the most commonly used approach. In this context, this paper's main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques--including Jackson's Cross-Cylinder test (JCC)--relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software's usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training.

  16. Red flag imaging techniques in Barrett's esophagus.

    PubMed

    Saxena, Payal; Canto, Marcia Irene

    2013-07-01

    The key to detection and treatment of early neoplasia in Barrett's esophagus (BE) is thorough and careful inspection of the Barrett's segment. The greatest role for red flag techniques is to help identify neoplastic lesions for targeted biopsy and therapy. High-definition white light endoscopy (HD-WLE) can potentially improve endoscopic imaging of BE compared with standard endoscopy, but little scientific evidence supports this. The addition of autofluorescence imaging to HD-WLE and narrow band imaging increases sensitivity and the false-positive rate without significantly improving overall detection of BE-related neoplasia.

  17. Digital imaging techniques in experimental stress analysis

    NASA Technical Reports Server (NTRS)

    Peters, W. H.; Ranson, W. F.

    1982-01-01

    Digital imaging techniques are utilized as a measure of surface displacement components in laser speckle metrology. An image scanner which is interfaced to a computer records and stores in memory the laser speckle patterns of an object in a reference and deformed configuration. Subsets of the deformed images are numerically correlated with the references as a measure of surface displacements. Discrete values are determined around a closed contour for plane problems which then become input into a boundary integral equation method in order to calculate surface traction in the contour. Stresses are then calculated within this boundary. The solution procedure is illustrated by a numerical example of a case of uniform tension.

  18. Angular Differential Imaging: a Powerful High-Contrast Imaging Technique

    SciTech Connect

    Marois, C; Lafreniere, D; Doyon, R; Macintosh, B; Nadeau, D

    2005-11-07

    Angular differential imaging is a high-contrast imaging technique that reduces speckle noise from quasi-static optical aberrations and facilitates the detection of faint nearby companions. A sequence of images is acquired with an altitude/azimuth telescope, the instrument rotator being turned off. This keeps the instrument and telescope optics aligned, stabilizes the instrumental PSF and allows the field of view to rotate with respect to the instrument. For each image, a reference PSF obtained from other images of the sequence is subtracted. All residual images are then rotated to align the field and are median combined. Observed performances are reported for Gemini Altair/NIRI data. Inside the speckle dominated region of the PSF, it is shown that quasi-static PSF noise can be reduced by a factor {approx}5 for each image subtraction. The combination of all residuals then provides an additional gain of the order of the square root of the total number of images acquired. To our knowledge, this is the first time an acquisition strategy and reduction pipeline designed for speckle attenuation and high contrast imaging is demonstrated to significantly get better detection limits with longer integration times at all angular separations. A PSF noise attenuation of 100 was achieved from 2-hour long sequences of images of Vega, reaching a 5-sigma contrast of 20 magnitudes for separations greater than 7''. This technique can be used with currently available instruments to search for {approx} 1 M{sub Jup} exoplanets with orbits of radii between 50 and 300 AU around nearby young stars. The possibility of combining the technique with other high-contrast imaging methods is briefly discussed.

  19. Improving image classification in a complex wetland ecosystem through image fusion techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit; Sinha, Priyakant; Taylor, Subhashni

    2014-01-01

    The aim of this study was to evaluate the impact of image fusion techniques on vegetation classification accuracies in a complex wetland system. Fusion of panchromatic (PAN) and multispectral (MS) Quickbird satellite imagery was undertaken using four image fusion techniques: Brovey, hue-saturation-value (HSV), principal components (PC), and Gram-Schmidt (GS) spectral sharpening. These four fusion techniques were compared in terms of their mapping accuracy to a normal MS image using maximum-likelihood classification (MLC) and support vector machine (SVM) methods. Gram-Schmidt fusion technique yielded the highest overall accuracy and kappa value with both MLC (67.5% and 0.63, respectively) and SVM methods (73.3% and 0.68, respectively). This compared favorably with the accuracies achieved using the MS image. Overall, improvements of 4.1%, 3.6%, 5.8%, 5.4%, and 7.2% in overall accuracies were obtained in case of SVM over MLC for Brovey, HSV, GS, PC, and MS images, respectively. Visual and statistical analyses of the fused images showed that the Gram-Schmidt spectral sharpening technique preserved spectral quality much better than the principal component, Brovey, and HSV fused images. Other factors, such as the growth stage of species and the presence of extensive background water in many parts of the study area, had an impact on classification accuracies.

  20. Surface definition technique for clinical imaging

    NASA Astrophysics Data System (ADS)

    Liao, Wen-gen; Simovsky, Ilya; Li, Andrew; Kramer, David M.; Kaufman, Leon; Rhodes, Michael L.

    1991-05-01

    Surface descriptions are difficult to specify. Though image processing techniques are well established to generate nearly any planar or three-dimensionally curved surface, methods to describe such complex shapes are often disorienting. Even the best intentioned interface for surface description can confuse a seasoned user. This paper introduces a surface definition technique that is simple, accurate and intuitive for the needs of routine medical image analysis. We describe a procedure to define a curved surface based on surface intersection points in a series of parallel images. In this medical context, points selected describe a surface that contains pathology of diagnostic interest. Using this technique diagnostic views are generated that conform to natural anatomic shape, physicians are no longer restricted to orthogonal or even single curve surfaces. This user interface provides analytic descriptions to produce surface views that use a Fourier-shift technique for reconstruction. Surfaces through a volume are produced with resolution equal to that of the original data set. Example images are illustrated.

  1. Retinal Imaging Techniques for Diabetic Retinopathy Screening

    PubMed Central

    Goh, James Kang Hao; Cheung, Carol Y.; Sim, Shaun Sebastian; Tan, Pok Chien; Tan, Gavin Siew Wei; Wong, Tien Yin

    2016-01-01

    Due to the increasing prevalence of diabetes mellitus, demand for diabetic retinopathy (DR) screening platforms is steeply increasing. Early detection and treatment of DR are key public health interventions that can greatly reduce the likelihood of vision loss. Current DR screening programs typically employ retinal fundus photography, which relies on skilled readers for manual DR assessment. However, this is labor-intensive and suffers from inconsistency across sites. Hence, there has been a recent proliferation of automated retinal image analysis software that may potentially alleviate this burden cost-effectively. Furthermore, current screening programs based on 2-dimensional fundus photography do not effectively screen for diabetic macular edema (DME). Optical coherence tomography is becoming increasingly recognized as the reference standard for DME assessment and can potentially provide a cost-effective solution for improving DME detection in large-scale DR screening programs. Current screening techniques are also unable to image the peripheral retina and require pharmacological pupil dilation; ultra-widefield imaging and confocal scanning laser ophthalmoscopy, which address these drawbacks, possess great potential. In this review, we summarize the current DR screening methods using various retinal imaging techniques, and also outline future possibilities. Advances in retinal imaging techniques can potentially transform the management of patients with diabetes, providing savings in health care costs and resources. PMID:26830491

  2. Imaging Instrumentation and Techniques for Precision Radiotherapy

    NASA Astrophysics Data System (ADS)

    Parodi, Katia; Parodi, Katia; Thieke, Christian; Thieke, Christian

    Over the last decade, several technological advances have considerably improved the achievable precision of dose delivery in radiation therapy. Clinical exploitation of the superior tumor-dose conformality offered by modern radiotherapy techniques like intensity-modulated radiotherapy and ion beam therapy requires morphological and functional assessment of the tumor during the entire therapy chain from treatment planning to beam application and treatment response evaluation. This chapter will address the main rationale and role of imaging in state-of-the-art external beam radiotherapy. Moreover, it will present the status of novel imaging instrumentation and techniques being nowadays introduced in clinical use or still under development for image guidance and, ultimately, dose guidance of precision radiotherapy.

  3. Generative technique for dynamic infrared image sequences

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Cao, Zhiguo; Zhang, Tianxu

    2001-09-01

    The generative technique of the dynamic infrared image was discussed in this paper. Because infrared sensor differs from CCD camera in imaging mechanism, it generates the infrared image by incepting the infrared radiation of scene (including target and background). The infrared imaging sensor is affected deeply by the atmospheric radiation, the environmental radiation and the attenuation of atmospheric radiation transfers. Therefore at first in this paper the imaging influence of all kinds of the radiations was analyzed and the calculation formula of radiation was provided, in addition, the passive scene and the active scene were analyzed separately. Then the methods of calculation in the passive scene were provided, and the functions of the scene model, the atmospheric transmission model and the material physical attribute databases were explained. Secondly based on the infrared imaging model, the design idea, the achievable way and the software frame for the simulation software of the infrared image sequence were introduced in SGI workstation. Under the guidance of the idea above, in the third segment of the paper an example of simulative infrared image sequences was presented, which used the sea and sky as background and used the warship as target and used the aircraft as eye point. At last the simulation synthetically was evaluated and the betterment scheme was presented.

  4. Advanced automated char image analysis techniques

    SciTech Connect

    Tao Wu; Edward Lester; Michael Cloke

    2006-05-15

    Char morphology is an important characteristic when attempting to understand coal behavior and coal burnout. In this study, an augmented algorithm has been proposed to identify char types using image analysis. On the basis of a series of image processing steps, a char image is singled out from the whole image, which then allows the important major features of the char particle to be measured, including size, porosity, and wall thickness. The techniques for automated char image analysis have been tested against char images taken from ICCP Char Atlas as well as actual char particles derived from pyrolyzed char samples. Thirty different chars were prepared in a drop tube furnace operating at 1300{sup o}C, 1% oxygen, and 100 ms from 15 different world coals sieved into two size fractions (53-75 and 106-125 {mu}m). The results from this automated technique are comparable with those from manual analysis, and the additional detail from the automated sytem has potential use in applications such as combustion modeling systems. Obtaining highly detailed char information with automated methods has traditionally been hampered by the difficulty of automatic recognition of individual char particles. 20 refs., 10 figs., 3 tabs.

  5. Techniques for millimetre-wave imaging

    NASA Astrophysics Data System (ADS)

    Lettington, Alan H.; Dunn, Dennis; Alexander, Naomi E.; Wabby, Anas; Chen, Chun-Hong

    2004-12-01

    This paper reviews the formation of an image with coherent and incoherent radiation. It discusses the various mm-wave methods for electronic beam-forming and beam-steering such as phased array, leaky-wave antennas, up-conversion, tapped delay lines and digital beam-forming techniques. These methods are related in the paper to their optical analogues of beam-forming and steering by a lens and the measurement of the aperture function in the case of holography. It concludes that digital techniques will be used in the future when the cost of receivers is reduced but that at present opto-mechanical techniques are more cost effective. A high efficiency, compact opto-mechanical system is described. This is able to operate at any wavelength and be active or passive. Typical 94GHz images are presented.

  6. Retinal Image Simulation of Subjective Refraction Techniques

    PubMed Central

    Perches, Sara; Collados, M. Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient’s response-guided refraction) is the most commonly used approach. In this context, this paper’s main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques—including Jackson’s Cross-Cylinder test (JCC)—relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software’s usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training. PMID:26938648

  7. Adrenal imaging (Part 1): Imaging techniques and primary cortical lesions

    PubMed Central

    Panda, Ananya; Das, Chandan J.; Dhamija, Ekta; Kumar, Rakesh; Gupta, A. K.

    2015-01-01

    Adrenal glands can be affected by a variety of lesions. Adrenal lesions can either be primary, of adrenal origin, or secondary to other pathologies. Primary adrenal lesions can further be either of cortical or medullary origin. Functioning adrenal lesions can also give clues to the histologic diagnosis and direct workup. Over the years, various imaging techniques have been developed that have increased diagnostic accuracy and helped in better characterization of adrenal lesions non-invasively. In the first part of the two part series, we review adrenal imaging techniques and adrenal cortical tumors such as adenomas, adrenocortical tumors, adrenal hyperplasia and oncocytomas. PMID:25593820

  8. Image processing techniques for passive millimeter-wave imaging

    NASA Astrophysics Data System (ADS)

    Lettington, Alan H.; Gleed, David G.

    1998-08-01

    We present our results on the application of image processing techniques for passive millimeter-wave imaging and discuss possible future trends. Passive millimeter-wave imaging is useful in poor weather such as in fog and cloud. Its spatial resolution, however, can be restricted due to the diffraction limit of the front aperture. Its resolution may be increased using super-resolution techniques but often at the expense of processing time. Linear methods may be implemented in real time but non-linear methods which are required to restore missing spatial frequencies are usually more time consuming. In the present paper we describe fast super-resolution techniques which are potentially capable of being applied in real time. Associated issues such as reducing the influence of noise and improving recognition capability will be discussed. Various techniques have been used to enhance passive millimeter wave images giving excellent results and providing a significant quantifiable increase in spatial resolution. Examples of applying these techniques to imagery will be given.

  9. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  10. Real-time optical image processing techniques

    NASA Astrophysics Data System (ADS)

    Liu, Hua-Kuang

    1988-10-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  11. In vitro imaging techniques in neurodegenerative diseases.

    PubMed

    Långström, Bengt; Andrén, Per E; Lindhe, Orjan; Svedberg, Marie; Hall, Håkan

    2007-01-01

    Neurodegeneration induces various changes in the brain, changes that may be investigated using neuroimaging techniques. The in vivo techniques are useful for the visualization of major changes, and the progressing abnormalities may also be followed longitudinally. However, to study and quantify minor abnormalities, neuroimaging of postmortem brain tissue is used. These in vitro methods are complementary to the in vivo techniques and contribute to the knowledge of pathophysiology and etiology of the neurodegenerative diseases. In vitro radioligand autoradiography has given great insight in the involvement of different neuronal receptor systems in these diseases. Data on the dopamine and cholinergic systems in neurodegeneration are discussed in this review. Also, the amyloid plaques are studied using in vitro radioligand autoradiography. Using one of the newer methods, imaging matrix-assisted laser desorption ionization mass spectrometry, the distribution of a large number of peptides and proteins may be detected in vitro on brain cryosections. In this overview, we describe in vitro imaging techniques in the neurodegenerative diseases as a complement to in vivo positron emission tomography and single photon emission computed tomography imaging.

  12. A comparison of spotlight synthetic aperture radar image formation techniques

    SciTech Connect

    Knittle, C.D.; Doren, N.E.; Jakowatz, C.V.

    1996-10-01

    Spotlight synthetic aperture radar images can be formed from the complex phase history data using two main techniques: (1) polar-to-cartesian interpolation followed by two-dimensional inverse Fourier transform (2DFFT), and (2) convolution backprojection (CBP). CBP has been widely used to reconstruct medical images in computer aided tomography, and only recently has been applied to form synthetic aperture radar imagery. It is alleged that CBP yields higher quality images because (1) all the Fourier data are used and (2) the polar formatted data is used directly to form a 2D Cartesian image and therefore 2D interpolation is not required. This report compares the quality of images formed by CBP and several modified versions of the 2DFFT method. We show from an image quality point of view that CBP is equivalent to first windowing the phase history data and then interpolating to an exscribed rectangle. From a mathematical perspective, we should expect this conclusion since the same Fourier data are used to form the SAR image. We next address the issue of parallel implementation of each algorithm. We dispute previous claims that CBP is more readily parallelizable than the 2DFFT method. Our conclusions are supported by comparing execution times between massively parallel implementations of both algorithms, showing that both experience similar decreases in computation time, but that CBP takes significantly longer to form an image.

  13. Single-molecule mountains yield nanoscale cell images

    PubMed Central

    Moerner, W E

    2009-01-01

    Methods to simultaneously localize the positions of multiple single fluorophores by precisely determining their individual positions are now yielding impressive gains in fluorescence microscopy resolution. PMID:16990808

  14. Combining calcium imaging with other optical techniques.

    PubMed

    Canepari, Marco; Zecevic, Dejan; Vogt, Kaspar E; Ogden, David; De Waard, Michel

    2013-12-01

    Ca(2+) imaging is a commonly used approach for measuring Ca(2+) signals at high spatial resolution. The method is often combined with electrode recordings to correlate electrical and chemical signals or to investigate Ca(2+) signals following an electrical stimulation. To obtain information on electrical activity at the same spatial resolution, Ca(2+) imaging must be combined with membrane potential imaging. Similarly, stimulation of subcellular compartments requires photostimulation. Thus, combining Ca(2+) imaging with an additional optical technique facilitates the study of a number of physiological questions. The aim of this article is to introduce some basic principles regarding the combination of Ca(2+) imaging with other optical techniques. We discuss the design of the optics, the design of experimental protocols, the optical characteristics of Ca(2+) indicators used in combination with an optical probe, and the affinity of the Ca(2+) indicator in relation to the type of measurement. This information will enable the reader to devise an optimal strategy for combined optical experiments.

  15. Vascular Imaging Techniques of the Spinal Cord.

    PubMed

    Vargas, Maria Isabel; Barnaure, Isabelle; Gariani, Joanna; Boto, José; Pellaton, Alain; Dietemann, Jean-Louis; Kulcsar, Zsolt

    2017-04-01

    The various imaging techniques used to depict vascular lesions of the spinal cord are described in this article with particular emphasis on magnetic resonance imaging (MRI), vascular sequences, and advantages of high-field MRI. Technical vascular protocols are discussed in computed tomography, MRI, and conventional angiography. The diverse magnetic resonance angiography protocols are presented as well as their findings, specificities, and pitfalls. A review of the vascular anatomy and the most common pathologies analyzed by magnetic resonance angiography and conventional angiography is described.

  16. Image Recognition Techniques for Gamma Spectroscopy

    SciTech Connect

    Vlachos, D. S.; Tsabaris, C. G.

    2007-12-26

    Photons, after generated from a radioactive source and before they deposit their energy in a photo detector, are subsequent to multiple scattering mechanisms. As a result, the measured energy from the photo detector is different from the energy the photon had when generated. This is known as folding of the photon energy. Moreover, statistical fluctuation inside the detector contribute to energy folding. In this work, a new method is presented for unfolding the gamma ray spectrum. The method uses a 2-dimensional representation of the measured spectrum (image) and then uses image recognition techniques, and especially differential edge detection, to generate the original spectrum.

  17. [Imaging techniques in modern trauma diagnostics].

    PubMed

    Vogl, T J; Eichler, K; Marzi, I; Wutzler, S; Zacharowski, K; Frellessen, C

    2017-08-17

    Modern trauma room management requires interdisciplinary teamwork and synchronous communication between a team of anaesthesists, surgeons and radiologists. As the length of stay in the trauma room influences morbidity and mortality of a severely injured person, optimizing time is one of the main targets. With the direct involvement of modern imaging techniques the injuries caused by trauma should be detected within a very short period of time in order to enable a priority-orientated treatment. Radiology influences structure and process quality, management and development of trauma room algorithms regarding the use of imaging techniques. For the individual case interventional therapy methods can be added. Based on current data and on the Frankfurt experience the current diagnostic concepts of trauma diagnostics are presented.

  18. [Imaging techniques in modern trauma diagnostics].

    PubMed

    Vogl, T J; Eichler, K; Marzi, I; Wutzler, S; Zacharowski, K; Frellessen, C

    2017-05-01

    Modern trauma room management requires interdisciplinary teamwork and synchronous communication between a team of anaesthesists, surgeons and radiologists. As the length of stay in the trauma room influences morbidity and mortality of a severely injured person, optimizing time is one of the main targets. With the direct involvement of modern imaging techniques the injuries caused by trauma should be detected within a very short period of time in order to enable a priority-orientated treatment. Radiology influences structure and process quality, management and development of trauma room algorithms regarding the use of imaging techniques. For the individual case interventional therapy methods can be added. Based on current data and on the Frankfurt experience the current diagnostic concepts of trauma diagnostics are presented.

  19. [Imaging techniques in modern trauma diagnostics].

    PubMed

    Vogl, T J; Eichler, K; Marzi, I; Wutzler, S; Zacharowski, K; Frellessen, C

    2017-09-21

    Modern trauma room management requires interdisciplinary teamwork and synchronous communication between a team of anaesthesists, surgeons and radiologists. As the length of stay in the trauma room influences morbidity and mortality of a severely injured person, optimizing time is one of the main targets. With the direct involvement of modern imaging techniques the injuries caused by trauma should be detected within a very short period of time in order to enable a priority-orientated treatment. Radiology influences structure and process quality, management and development of trauma room algorithms regarding the use of imaging techniques. For the individual case interventional therapy methods can be added. Based on current data and on the Frankfurt experience the current diagnostic concepts of trauma diagnostics are presented.

  20. Imaging In focus: Reflected light imaging: Techniques and applications.

    PubMed

    Guggenheim, Emily J; Lynch, Iseult; Rappoport, Joshua Z

    2017-02-01

    Reflectance imaging is a broad term that describes the formation of images by the detection of illumination light that is back-scattered from reflective features within a sample. Reflectance imaging can be performed in a variety of different configurations, such as confocal, oblique angle illumination, structured illumination, interferometry and total internal reflectance, permitting a plethora of biomedical applications. Reflectance imaging has proven indispensable for critical investigations into the safety and understanding of biomedically and environmentally relevant nano-materials, an area of high priority and investment. The non-destructive in vivo imaging ability of reflectance techniques permits alternative diagnostic strategies that may eventually facilitate the eradication of some invasive biopsy procedures. Reflectance can also provide additional structural information and clarity necessary in fluorescent based in vivo studies. Near-coverslip interrogation techniques, such as reflectance interferometry and total internal reflection, have provided a label free means to investigate cell-surface contacts, cell motility and vesicle trafficking in vivo and in vitro. Other key advances include the ability to acquire superresolution reflectance images providing increased spatial resolution.

  1. Lunar surface chemistry: A new imaging technique

    USGS Publications Warehouse

    Andre, C.G.; Bielefeld, M.J.; Eliason, E.; Soderblom, L.A.; Adler, I.; Philpotts, J.A.

    1977-01-01

    Detailed chemical maps of the lunar surface have been constructed by applying a new weighted-filter imaging technique to Apollo 15 and Apollo 16 x-ray fluorescence data. The data quality improvement is amply demonstrated by (i) modes in the frequency distribution, representing highland and mare soil suites, which are not evident before data filtering and (ii) numerous examples of chemical variations which are correlated with small-scale (about 15 kilometer) lunar topographic features.

  2. Imaging Body Fat: Techniques and Cardiometabolic Implications

    PubMed Central

    Wang, H.; Chen, Y. E; Eitzman, D.T.

    2014-01-01

    Obesity is a world-wide epidemic and is associated with multiple comorbidities. The mechanisms underlying the relationship between obesity and adverse health outcomes remain poorly understood. This may be due to several factors including the crude measures used to estimate adiposity, the striking heterogeneity between adipose tissue depots, and the influence of fat accumulation in multiple organs. In order to advance our understanding of fat stores and associated co-morbidities in humans, it will be necessary to image adiposity throughout the body and ultimately also assess its functionality. Large clinical studies are demonstrating the prognostic importance of adipose tissue imaging. Newer techniques capable of imaging fat metabolism and other functions of adipose tissue may provide additional prognostic utility and may be useful in guiding therapeutic interventions. PMID:25147343

  3. Biometric Identification Using Holographic Radar Imaging Techniques

    SciTech Connect

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.; Kennedy, Mike O.; Foote, Harlan P.

    2007-04-01

    Pacific Northwest National Laboratory researchers have been at the forefront of developing innovative screening systems to enhance security and a novel imaging system to provide custom-fit clothing using holographic radar imaging techniques. First-of-a-kind cylindrical holographic imaging systems have been developed to screen people at security checkpoints for the detection of concealed, body worn, non-metallic threats such as plastic and liquid explosives, knifes and contraband. Another embodiment of this technology is capable of obtaining full sized body measurements in near real time without the person under surveillance removing their outer garments. Radar signals readily penetrate clothing and reflect off the water in skin. This full body measurement system is commercially available for best fitting ready to wear clothing, which was the first “biometric” application for this technology. One compelling feature of this technology for security biometric applications is that it can see effectively through disguises, appliances and body hair.

  4. Biometric identification using holographic radar imaging techniques

    NASA Astrophysics Data System (ADS)

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.; Kennedy, Mike O.; Foote, Harlen P.

    2007-04-01

    Pacific Northwest National Laboratory researchers have been at the forefront of developing innovative screening systems to enhance security and a novel imaging system to provide custom-fit clothing using holographic radar imaging techniques. First-of-a-kind cylindrical holographic imaging systems have been developed to screen people at security checkpoints for the detection of concealed, body worn, non-metallic threats such as plastic and liquid explosives, knifes and contraband. Another embodiment of this technology is capable of obtaining full sized body measurements in near real time without the person under surveillance removing their outer garments. Radar signals readily penetrate clothing and reflect off the water in skin. This full body measurement system is commercially available for best fitting ready to wear clothing, which was the first "biometric" application for this technology. One compelling feature of this technology for security biometric applications is that it can see effectively through disguises, appliances and body hair.

  5. Diagnostic imaging techniques in thyroid cancer

    SciTech Connect

    Friedman, M.; Toriumi, D.M.; Mafee, M.F.

    1988-02-01

    With the refinement of fine-needle aspiration, the specific applications of thyroid imaging techniques need to be reevaluated for efficiency and cost containment. No thyroid imaging test should be routinely obtained. Radionuclide scanning is most beneficial in evaluating the functional status of thyroid nodules when fine-needle aspiration is inadequate, the findings are benign, or when there is no discrete nodule that is palpated in an enlarged gland. When fine-needle aspiration is unavailable or unreliable, radionuclide scanning becomes a first-line diagnostic tool. Ultrasonography should be used primarily for identifying a solid component of a cystic nodule, determining the size of nodules on thyroxine suppression that are not easily palpable, or for performing guided fine-needle aspiration. Computerized tomography and magnetic resonance imaging both have a definite role in the evaluation of thyroid tumors. Magnetic resonance imaging is superior to computerized tomography for the evaluation of metastatic, retrotracheal, or mediastinal involvement of large thyroid tumors or goiters. Careful selection of the diagnostic techniques will ensure more accurate diagnosis and reduce unnecessary patient costs in the treatment of thyroid cancer.

  6. Resolution enhancement techniques for halftoned images

    NASA Astrophysics Data System (ADS)

    Ryu, Byong Tae; Lee, Jong Ok; Kim, Choon-Woo; Lee, Ho Keun; Kim, Sang Ho

    2007-01-01

    Recently, speed and resolution of electrophotographic printer engine have been significantly improved. In today's market, it is not difficult to find low to mid-end electrophotographic printers with the spatial resolution greater than 600 dpi and/or bit-depth resolution more than 1 bit. Printing speed is determined by the processing time at computer, data transmission time between computer and printer, and processing and printing time at printer. When halftoning is performed at computer side, halftoned data would be compressed and sent to printer. In this case, increase in the spatial and bit-depth resolution would increase data size to be transmitted and memory size at printer. For a high-speed printer, increased transmission time may limit the throughput in imaging chain. One of possible solutions to this problem is to develop resolution enhancement techniques. In this paper, a fast and efficient spatial resolution enhancement technique is proposed. Objectives of the proposed technique are to reduce the data size for transmission and minimize image quality deterioration. In the proposed technique, number of black pixels in the halftoned data is binary coded for data reduction. At printer, black pixel placement algorithm is applied to binary coded data. For non-edge area, screen order is utilized for the black pixel placement. When identified as edge area, locations of black pixels are selected by the edge order designed by genetic algorithm.

  7. The use of spectral data in wheat yield estimation - An assessment of techniques explored in LACIE

    NASA Technical Reports Server (NTRS)

    Stuff, R. G.; Barnett, T. L.

    1979-01-01

    The object of the paper is to assess the results of the Large Area Crop Inventory Experiment (LACIE) and closely related research on yield estimation techniques based on remote sensing variables. The exploratory research conducted during LACIE substantiated the hypothesis of yield related information contained in Landsat multispectral scanner data and indicated some of its empirical characteristics. It is noted that leaf area and possibly other foliage features can be derived from spectral data for yield estimation through agrometeorological models and that multiple vegetative and grain related features may be discernable by Landsat derived wheat spectra at different points in the crop development.

  8. Robustness of speckle imaging techniques applied to horizontal imaging scenarios

    NASA Astrophysics Data System (ADS)

    Bos, Jeremy P.

    Atmospheric turbulence near the ground severely limits the quality of imagery acquired over long horizontal paths. In defense, surveillance, and border security applications, there is interest in deploying man-portable, embedded systems incorporating image reconstruction to improve the quality of imagery available to operators. To be effective, these systems must operate over significant variations in turbulence conditions while also subject to other variations due to operation by novice users. Systems that meet these requirements and are otherwise designed to be immune to the factors that cause variation in performance are considered robust. In addition to robustness in design, the portable nature of these systems implies a preference for systems with a minimum level of computational complexity. Speckle imaging methods are one of a variety of methods recently been proposed for use in man-portable horizontal imagers. In this work, the robustness of speckle imaging methods is established by identifying a subset of design parameters that provide immunity to the expected variations in operating conditions while minimizing the computation time necessary for image recovery. This performance evaluation is made possible using a novel technique for simulating anisoplanatic image formation. I find that incorporate as few as 15 image frames and 4 estimates of the object phase per reconstructed frame provide an average reduction of 45% reduction in Mean Squared Error (MSE) and 68% reduction in deviation in MSE. In addition, the Knox-Thompson phase recovery method is demonstrated to produce images in half the time required by the bispectrum. Finally, it is shown that certain blind image quality metrics can be used in place of the MSE to evaluate reconstruction quality in field scenarios. Using blind metrics rather depending on user estimates allows for reconstruction quality that differs from the minimum MSE by as little as 1%, significantly reducing the deviation in

  9. Special feature on imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George

    2013-07-01

    The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would

  10. Advanced Imaging Techniques for Multiphase Flows Analysis

    NASA Astrophysics Data System (ADS)

    Amoresano, A.; Langella, G.; Di Santo, M.; Iodice, P.

    2017-08-01

    Advanced numerical techniques, such as fuzzy logic and neural networks have been applied in this work to digital images acquired on two applications, a centrifugal pump and a stationary spray in order to define, in a stochastic way, the gas-liquid interface evolution. Starting from the numeric matrix representing the image it is possible to characterize geometrical parameters and the time evolution of the jet. The algorithm used works with the fuzzy logic concept to binarize the chromatist of the pixels, depending them, by using the difference of the light scattering for the gas and the liquid phase.. Starting from a primary fixed threshold, the applied technique, can select the ‘gas’ pixel from the ‘liquid’ pixel and so it is possible define the first most probably boundary lines of the spray. Acquiring continuously the images, fixing a frame rate, a most fine threshold can be select and, at the limit, the most probably geometrical parameters of the jet can be detected.

  11. The integration of ground investigations and radar images on rice yield prediction

    NASA Astrophysics Data System (ADS)

    Syu, Chien-Hui; Lo, Wei-Shen; Guo, Horng-Yuh

    2016-04-01

    Rice is the staple food and the largest crop in terms of area in Taiwan. Developing the real-time and accurate methods to predict rice yield of large area is important for food security. However, due to the size of rice fields is small and fragmented, and the disturbed weather in Taiwan. It difficult to acquire the information of cropping area and rice yield by optical satellite data, such as SPOT and FORMOSAT-2, because of the cloud cover commonly observed in the region. In contrast, the RADARSAT image data can overcome such problems due to which can penetrate through cloud. The aim of this study is to integrate the data of ground investigations and radar images to predict the rice yield of large area. We used the data of rice yield (ground investigation) and radar images to do regression analysis, and then predict the rice yield of large area. The results of ground investigation indicated that there were high correlation between sample sites yield and real harvest yield (R2 = 0.99), it reveals the investigating method has a high representativeness. The results of the prediction of rice yield by multi-temporal radar images indicated that there was high correlation between ground trust and yield estimation (R2 = 0.68, proof data, 6 fields), and the yield estimation accuracy is higher than 85%. Therefore, this study suggests the application of multi-temporal radar image data can effective and accurate to predict the paddy rice yield in Taiwan.

  12. A new image calibration technique for colposcopic images

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Soto-Thompson, Marcelo; Xiong, Yizhi; Lange, Holger

    2006-03-01

    Colposcopy is a primary diagnostic method used to detect cancer and precancerous lesions of the uterine cervix. During the examination, the metaplastic and abnormal tissues exhibit different degrees of whiteness (acetowhitening effect) after applying a 3%-5% acetic acid solution. Colposcopists evaluate the color and density of the acetowhite tissue to assess the severity of lesions for the purpose of diagnosis, telemedicine, and annotation. However, the color and illumination of the colposcopic images vary with the light sources, the instruments and camera settings, as well as the clinical environments. This makes assessment of the color information very challenging even for an expert. In terms of developing a Computer-Aided Diagnosis (CAD) system for colposcopy, these variations affect the performance of the feature extraction algorithm for the acetowhite color. Non-uniform illumination from the light source is also an obstacle for detecting acetowhite regions, lesion margins and anatomic features. Therefore, in digital colposcopy, it is critical to map the color appearance of the images taken with different colposcopes into one standard color space with normalized illumination. This paper presents a novel image calibration technique for colposcopic images. First, a specially designed calibration unit is mounted on the colposcope to acquire daily calibration data prior to performing patient examinations. The calibration routine is fast, automated, accurate and reliable. We then use our illumination correction algorithm and a color calibration algorithm to calibrate the patient data. In this paper we describe these techniques and demonstrate their applications in clinical studies.

  13. Imaging techniques with refractive beam shaping optics

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2012-10-01

    Applying of the refractive beam shapers in real research optical setups as well as in industrial installations requires very often manipulation of a final laser spot size. In many cases this task can be easily solved by using various imaging optical layouts presuming creating an image of a beam shaper output aperture. Due to the unique features of the refractive beam shapers of field mapping type, like flat wave front and low divergence of the collimated resulting beam with flattop or another intensity profile, there is a freedom in building of various imaging systems with using ordinary optical components, including off-the-shelf ones. There will be considered optical layouts providing high, up to 1/200×, de-magnifying factors, combining of refractive beam shapers like πShaper with scanning systems, building of relay imaging systems with extended depth of field. These optical layouts are widely used in such laser technologies like drilling holes in PCB, welding, various micromachining techniques with galvo-mirror scanning, interferometry and holography, various SLM-based applications. Examples of real implementations and experimental results will be presented as well.

  14. Atherosclerosis staging: imaging using FLIM technique

    NASA Astrophysics Data System (ADS)

    Sicchieri, Leticia B.; Barioni, Marina Berardi; Silva, Mônica Nascimento; Monteiro, Andrea Moreira; Figueiredo Neto, Antonio Martins; Ito, Amando S.; Courrol, Lilia C.

    2014-03-01

    In this work it was used fluorescence lifetime imaging (FLIM) to analyze biochemical composition of atherosclerotic plaque. For this purpose an animal experimentation was done with New Zealand rabbits divided into two groups: a control group of 4 rabbits that received a regular diet for 0, 20, 40 and 60 days; and an experimental group of 9 rabbits, divided in 3 subgroups, that were fed with 1% cholesterol diet for 20, 40 and 60 days respectively. The aortas slices stained with europium chlortetracycline were analyzed by FLIM exciting samples at 440 nm. The results shown an increase in the lifetime imaging of rabbits fed with cholesterol. It was observed that is possible to detect the metabolic changes associated with atherosclerosis at an early stage using FLIM technique exciting the tissue around 440 nm and observing autofluorescence lifetime. Lifetimes longer than 1.75 ns suggest the presence of porphyrins in the tissue and consequently, inflammation and the presence of macrophages.

  15. Image Enhancement Techniques for Cockpit Displays

    DTIC Science & Technology

    1974-12-01

    waveforms on the other hand have magnitudes of only 1, -1 and 0. This results in only addition and substraction for their computation. The following...PERFORMING ORG. REPORT NUMBER P74-530R/D0802 7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(s) David J. Ketcham N00014-74-C-0313 Roger W. Lowe J. William Weber 9...Entered) Report No. P74-530R IMAGE ENHANCEMENT TECHNIQUES FOR COCKPIT DISPLAYS TECHNICAL REPORT David J. Ketcham Roger W. Lowe 3. William Weber Contract

  16. Assessing the performance of dynamical and statistical downscaling techniques to simulate crop yield in West Africa

    NASA Astrophysics Data System (ADS)

    Sultan, B.; Oettli, P.; Vrac, M.; Baron, C.

    2010-12-01

    Global circulation models (GCM) are increasingly capable of making relevant predictions of seasonal and long-term climate variability, thus improving prospects of predicting impact on crop yields. This is particularly important for semi-arid West Africa where climate variability and drought threaten food security. Translating GCM outputs into attainable crop yields is difficult because GCM grid boxes are of larger scale than the processes governing yield, involving partitioning of rain among runoff, evaporation, transpiration, drainage and storage at plot scale. It therefore requires the use of downscaling methods. This study analyzes the performance of both dynamical and statistical downscaling techniques in simulating crop yield at local scale. A detailed case study is conducted using historical weather data for Senegal, applied to the crop model SARRAH for simulating several tropical cereals (sorghum, millet, maize) at local scale. This control simulation is used as a benchmark to evaluate a set of Regional Climate Models (RCM) simulations, forced by ERA-Interim, from the ENSEMBLES project and a statistical downscaling method, the CDF-Transform, used to correct biases in RCM outputs. We first evaluate each climate variable that drives the simulated yield in the control simulation (radiation, rainfall, temperatures). We then simulate crop yields with RCM outputs (with or without applying the CDG-Transform) and evaluate the performance of each RCM in regards to crop yield simulations.

  17. Update on cardiac imaging techniques 2014.

    PubMed

    Mahía-Casado, Patricia; García-Orta, Rocío; Gómez de Diego, José J; Barba-Cosials, Joaquín; Rodríguez-Palomares, José F; Aguadé-Bruix, Santiago

    2015-02-01

    In this article, we review the contributions of the most important imaging techniques used in cardiology, reported in 2014. Echocardiography remains the cornerstone for diagnosing and monitoring valvular heart disease, and there has been a continuing effort to improve quantification of this condition and obtain prognostic parameters for follow-up. The study of regional myocardial function is anchored in the diagnosis of subclinical ventricular dysfunction, and 3-dimensional transesophageal echocardiography has become the perfect ally in interventional procedures for structural heart disease. Cardiac magnetic resonance imaging and cardiac computed tomography are the focus of most publications on cardiac imaging in ischemic heart disease, reflecting their consolidated use in clinical practice. Nuclear medicine excels in the study of myocardial viability after interventional treatment of acute coronary syndromes and its performance is validated in the diagnosis of ischemic heart disease. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  18. Fast Imaging Technique for fMRI: Consecutive Multishot Echo Planar Imaging Accelerated with GRAPPA Technique.

    PubMed

    Kang, Daehun; Sung, Yul-Wan; Kang, Chang-Ki

    2015-01-01

    This study was to evaluate the proposed consecutive multishot echo planar imaging (cmsEPI) combined with a parallel imaging technique in terms of signal-to-noise ratio (SNR) and acceleration for a functional imaging study. We developed cmsEPI sequence using both consecutively acquired multishot EPI segments and variable flip angles to minimize the delay between segments and to maximize the SNR, respectively. We also combined cmsEPI with the generalized autocalibrating partially parallel acquisitions (GRAPPA) method. Temporal SNRs were measured at different acceleration factors and number of segments for functional sensitivity evaluation. We also examined the geometric distortions, which inherently occurred in EPI sequence. The practical acceleration factors, R = 2 or R = 3, of the proposed technique improved the temporal SNR by maximally 18% in phantom test and by averagely 8.2% in in vivo experiment, compared to cmsEPI without parallel imaging. The data collection time was decreased in inverse proportion to the acceleration factor as well. The improved temporal SNR resulted in better statistical power when evaluated on the functional response of the brain. In this study, we demonstrated that the combination of cmsEPI with the parallel imaging technique could provide the improved functional sensitivity for functional imaging study, compensating for the lower SNR by cmsEPI.

  19. Fast Imaging Technique for fMRI: Consecutive Multishot Echo Planar Imaging Accelerated with GRAPPA Technique

    PubMed Central

    Kang, Daehun; Sung, Yul-Wan; Kang, Chang-Ki

    2015-01-01

    This study was to evaluate the proposed consecutive multishot echo planar imaging (cmsEPI) combined with a parallel imaging technique in terms of signal-to-noise ratio (SNR) and acceleration for a functional imaging study. We developed cmsEPI sequence using both consecutively acquired multishot EPI segments and variable flip angles to minimize the delay between segments and to maximize the SNR, respectively. We also combined cmsEPI with the generalized autocalibrating partially parallel acquisitions (GRAPPA) method. Temporal SNRs were measured at different acceleration factors and number of segments for functional sensitivity evaluation. We also examined the geometric distortions, which inherently occurred in EPI sequence. The practical acceleration factors, R = 2 or R = 3, of the proposed technique improved the temporal SNR by maximally 18% in phantom test and by averagely 8.2% in in vivo experiment, compared to cmsEPI without parallel imaging. The data collection time was decreased in inverse proportion to the acceleration factor as well. The improved temporal SNR resulted in better statistical power when evaluated on the functional response of the brain. In this study, we demonstrated that the combination of cmsEPI with the parallel imaging technique could provide the improved functional sensitivity for functional imaging study, compensating for the lower SNR by cmsEPI. PMID:26413518

  20. Analysis of a proposed Compton backscatter imaging technique

    SciTech Connect

    Hall, J.; Jacoby, B.

    1992-12-01

    Imaging techniques which require access to only one side of the object being viewed are potentially useful in situations where conventional projection radiography and tomography cannot be applied, such as looking for voids in a large container where access to the back of the object is inconvenient or even impossible. One-sided imaging techniques are currently being used in nondestructive evaluation of surfaces and shallow subsurface structures. In this work we present both analytical calculations and detailed Monte Carlo simulations aimed at assessing the capability of a proposed Compton backscatter imaging technique designed to detect and characterize voids located several centimeters below the surface of a solid. The proposed technique, based on a scheme suggested by Farmer and Collins, encodes the spatial position and structure of voids in a solid in the energy spectrum of the Compton-scattered photons as recorded by a high resolution detector. Our calculations model a {sup 137}Cs source projecting a 1 mm{sup 2} pencil beam of 662 keV gammas into a target slab at an incident angle of 45{degrees} and a collimated detector (also oriented at 45{degrees} with respect to the surface) which views the beam path at a central angle of 90{degrees}. The detector collimator is modeled here as a triangular slit viewing a 2.54 cm (1.000``) segment of the beam path at a depth of 2 cm below the surface of the slab. Our results suggest that the proposed technique should be capable of an absolute position resolution of {approx} 0.25 mm ({approx} 0.010``) for isolated voids and an overall object resolution of {approx} 1.00 Ip/mm ({approx} 0.04``). The predicted signal contrast for voids packed with various contraband materials will be discussed as well as multiple scattering contributions to the predicted yields.

  1. The impact of surgical technique on neck dissection nodal yield: making a difference.

    PubMed

    Lörincz, Balazs B; Langwieder, Felix; Möckelmann, Nikolaus; Sehner, Susanne; Knecht, Rainald

    2016-05-01

    The nodal yield of neck dissections is an independent prognostic factor in several types of head and neck cancer. The authors aimed to determine whether the applied dissection technique has a significant impact on nodal yield. This is a single-institution, prospective study with internal control group (level of evidence: 2A). Data of 150 patients undergoing 223 neck dissections between February 2011 and March 2013 have been collected in a comprehensive cancer centre. Eighty-two patients underwent neck dissection with unwrapping the cervical fascia from lateral to medial, while 68 patients were operated without specifically unwrapping the fascia, in a caudal to cranial fashion. The standardised, horizontal neck dissection technique along the fascial planes resulted in a significantly higher nodal count in Levels I, II, III and IV, as well as in terms of overall nodal yield (mean: n = 22.53) than that of the vertical dissection applied in the control group (mean: n = 15.00). This is the first publication showing a direct correlation between neck dissection nodal yield and surgical technique. Therefore, it is paramount to optimise the applied surgical concept to maximise the oncological benefit.

  2. Assessment of regularization techniques for electrocardiographic imaging

    PubMed Central

    Milanič, Matija; Jazbinšek, Vojko; MacLeod, Robert S.; Brooks, Dana H.; Hren, Rok

    2014-01-01

    A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed to control wild oscillations of the solution, the choice of proper regularization methods for obtaining clinically acceptable solutions is still a subject of ongoing research. However there has been little rigorous comparison across methods proposed by different groups. This study systematically compared various regularization techniques for solving the ECGI problem under a unified simulation framework, consisting of both 1) progressively more complex idealized source models (from single dipole to triplet of dipoles), and 2) an electrolytic human torso tank containing a live canine heart, with the cardiac source being modeled by potentials measured on a cylindrical cage placed around the heart. We tested 13 different regularization techniques to solve the inverse problem of recovering epicardial potentials, and found that non-quadratic methods (total variation algorithms) and first-order and second-order Tikhonov regularizations outperformed other methodologies and resulted in similar average reconstruction errors. PMID:24369741

  3. Maximizing the ExoEarth candidate yield from a future direct imaging mission

    SciTech Connect

    Stark, Christopher C.; Roberge, Aki; Mandell, Avi; Robinson, Tyler D.

    2014-11-10

    ExoEarth yield is a critical science metric for future exoplanet imaging missions. Here we estimate exoEarth candidate yield using single visit completeness for a variety of mission design and astrophysical parameters. We review the methods used in previous yield calculations and show that the method choice can significantly impact yield estimates as well as how the yield responds to mission parameters. We introduce a method, called Altruistic Yield Optimization, that optimizes the target list and exposure times to maximize mission yield, adapts maximally to changes in mission parameters, and increases exoEarth candidate yield by up to 100% compared to previous methods. We use Altruistic Yield Optimization to estimate exoEarth candidate yield for a large suite of mission and astrophysical parameters using single visit completeness. We find that exoEarth candidate yield is most sensitive to telescope diameter, followed by coronagraph inner working angle, followed by coronagraph contrast, and finally coronagraph contrast noise floor. We find a surprisingly weak dependence of exoEarth candidate yield on exozodi level. Additionally, we provide a quantitative approach to defining a yield goal for future exoEarth-imaging missions.

  4. [Effects of cultivation technique on yield and favonoid content of Chrysanthemum flower (Qiju) grown in Hebei].

    PubMed

    Yang, Tai-Xin; Ouyang, Yun-Yan; Guo, Yu-Hai; Zhai, Zhi-Xi

    2005-09-01

    To study the effect of cultivation techniques on the flower yield flavonoid content in Chrysanthemum flower grown in Hebei. Studied on flowers yield and three factors (transplanting date and plant density and fertilizer quantity) were examined in field experiment at 4 treatments levels. The best results were obtained at following conditions: diammonium phosphate 300 kg x hm(-2) and potassium sulfate 150 kg x hm(-2) fertilized before transplanting, transplanting at the first ten days of May and the spacing 40 cm x 40 cm.

  5. New imaging techniques in retinal vasculitis.

    PubMed

    Mesquida, Marina; Llorens, Víctor; Adán, Alfredo

    2017-09-20

    The term retinal vasculitis (RV) encompasses a heterogeneous group of sight-threatening conditions that are included in the intraocular inflammatory diseases that affect the posterior segment of the eye. Based on the nature of the inflammatory process, RV are classified into predominantly inflammatory or ischaemic (occlusive RV). The diagnosis is clinical and the aetiology can be infectious or non-infectious (immune-mediated). RV can be an isolated ocular syndrome or be associated with a systemic disease, of which they can represent the first manifestation. New retinal imaging techniques such as ultra-wide field fluorescein angiography and optical coherence tomography angiography will help us classify the RV and aid the diagnostic process, which can be challenging and require a multidisciplinary approach. Therefore, clinical knowledge of RV is essential for prompt diagnosis and to establish the appropriate treatment. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  6. Graphene reflux: improving the yield of liquid-exfoliated nanosheets through repeated separation techniques

    NASA Astrophysics Data System (ADS)

    Rountree, Kyler S.; Shah, Smit A.; Sweeney, Charles B.; Irin, Fahmida; Green, Micah J.

    2016-12-01

    Scalable production of graphene through liquid-phase exfoliation has been plagued by low yields. Although several recent studies have attempted to improve graphene exfoliation technology, the problem of separating colloidal nanosheets from unexfoliated parent material has received far less attention. Here we demonstrate a scalable method for improving nanosheet yield through a facile washing process. By probing the sedimentation of liquid-phase exfoliated slurries of graphene nanosheets and parent material, we found that a portion of exfoliated graphene is entrapped in the sediment, but can be recovered by repeatedly washing the slurry of nanosheet and parent material with additional solvent. We found this process to significantly increase the overall yield of graphene (graphene/parent material) and recover a roughly constant proportion of graphene with each wash. The cumulative amount of graphene recovered is only a function of total solvent volume. Moreover, we found this technique to be applicable to other types of nanosheets such as boron nitride nanosheets.

  7. Sedimentology of Martian Gravels from Mardi Twilight Imaging: Techniques

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Malin, Michael C.; Minitti, M. E.

    2014-01-01

    Quantitative sedimentologic analysis of gravel surfaces dominated by pebble-sized clasts has been employed in an effort to untangle aspects of the provenance of surface sediments on Mars using Curiosity's MARDI nadir-viewing camera operated at twilight Images have been systematically acquired since sol 310 providing a representative sample of gravel-covered surfaces since the rover departed the Shaler region. The MARDI Twilight imaging dataset offers approximately 1 millimeter spatial resolution (slightly out of focus) for patches beneath the rover that cover just under 1 m2 in area, under illumination that makes clast size and inter-clast spacing analysis relatively straightforward using semi- automated codes developed for use with nadir images. Twilight images are utilized for these analyses in order to reduce light scattering off dust deposited on the front MARDI lens element during the terminal stages of Curiosity's entry, descent and landing. Such scattering is worse when imaging bright, directly-illuminated surfaces; twilight imaging times yield diffusely-illuminated surfaces that improve the clarity of the resulting MARDI product. Twilight images are obtained between 10-30 minutes after local sunset, governed by the timing of the end of the no-heat window for the camera. Techniques were also utilized to examine data terrestrial locations (the Kau Desert in Hawaii and near Askja Caldera in Iceland). Methods employed include log hyperbolic size distribution (LHD) analysis and Delauney Triangulation (DT) inter-clast spacing analysis. This work extends the initial results reported in Yingst et al., that covered the initial landing zone, to the Rapid-Transit Route (RTR) towards Mount Sharp.

  8. Use of a sandwich technique to control image geometry in clinical studies comparing intraoral xeroradiographs and E-speed films

    SciTech Connect

    Ludlow, J.B.; Hill, R.A.; Hayes, C.J.

    1988-05-01

    A method of superimposing a film on a xeroradiographic (XR) cassette for simultaneous intraoral exposure is evaluated for use as an imaging technique in clinical studies comparing Ektaspeed film and XR images. Sandwich images were indistinguishable from those produced by conventional technique. Pilot studies were conducted with 104 patients who had symptomatic dental problems. No significant differences were found in diagnostic usefulness or image quality between XR and film radiographs when sign test analysis was used. The sandwich technique yielded film and XR images with duplicate image geometry while reducing patient exposures to one half of that used in conventional image comparison protocols.

  9. Techniques calm fear of imaging machine

    SciTech Connect

    Van Pelt, D.

    1990-04-02

    Magnetic resonance imaging has become a valuable tool in diagnosing diseases, and the imaging devices are now used as often as 2 million times a year in the United States. But as many as 10 percent of patients advised to undergo the procedure cannot because they become overwhelmed with claustrophobialike fear triggered by having to lie motionless in the machine's tunnel-like cylinder for about 45 minutes. To counteract this fear, several hospitals now practice various techniques to help reduce the feelings of confinement. One popular method is to give a patient special eyeglasses that allow him to look beyond his feet and see the tunnel opening. Other glasses use mirrors to direct the patient's vision out the back of the unit to large wilderness photographs or murals that simulate a sense of spaciousness. Even a basic item like a set of headphones that plays music can often distract a patient, and technicians frequently hold a patient's hand or foot during the procedure. Another trick is to invite family members and friends to remain with the patient during the scan to provide company and reassurance.

  10. Update on cardiac imaging techniques 2013.

    PubMed

    García-Orta, Rocío; Mahía-Casado, Patricia; Gómez de Diego, José J; Barba-Cosials, Joaquín; Rodriguez-Palomares, José F; Aguadé-Bruix, Santiago; Candell-Riera, Jaume

    2014-02-01

    Cardiac imaging is a cornerstone of diagnosis in heart conditions, and an essential tool for assessing prognosis and establishing treatment decisions. This year, echocardiography stands out as a guide in interventional procedures and in choosing the size of the prosthesis. It is also proving to be a valuable technique in low-flow, low-gradient aortic stenosis. Three-dimensional echocardiography is advancing our knowledge of cardiac anatomy and valvular measurements. The parameters indicating tissue deformation have predictive power in valve disease and in the follow-up of drug-induced cardiotoxicity. Single-photon emission computed tomography and positron emission tomography are proving useful in ischemic heart disease and in the diagnosis of cardiac inflammation and infections. The role of computed tomography has been strengthened in noninvasive coronary angiography, the emergency room management of chest pain, assessment of chronic occlusions, and morphologic study of coronary plaque. Cardiac magnetic resonance imaging remains the gold standard for tissue characterization in ischemic heart disease and cardiomyopathies, and is assuming a greater role in stress studies and in the assessment of myocardial viability. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  11. Mathematical Morphology Techniques For Image Processing Applications In Biomedical Imaging

    NASA Astrophysics Data System (ADS)

    Bartoo, Grace T.; Kim, Yongmin; Haralick, Robert M.; Nochlin, David; Sumi, Shuzo M.

    1988-06-01

    Mathematical morphology operations allow object identification based on shape and are useful for grouping a cluster of small objects into one object. Because of these capabilities, we have implemented and evaluated this technique for our study of Alzheimer's disease. The microscopic hallmark of Alzheimer's disease is the presence of brain lesions known as neurofibrillary tangles and senile plaques. These lesions have distinct shapes compared to normal brain tissue. Neurofibrillary tangles appear as flame-shaped structures, whereas senile plaques appear as circular clusters of small objects. In order to quantitatively analyze the distribution of these lesions, we have developed and applied the tools of mathematical morphology on the Pixar Image Computer. As a preliminary test of the accuracy of the automatic detection algorithm, a study comparing computer and human detection of senile plaques was performed by evaluating 50 images from 5 different patients. The results of this comparison demonstrates that the computer counts correlate very well with the human counts (correlation coefficient = .81). Now that the basic algorithm has been shown to work, optimization of the software will be performed to improve its speed. Also future improvements such as local adaptive thresholding will be made to the image analysis routine to further improve the systems accuracy.

  12. Direct measurement of the yield stress of filamentous fermentation broths with the rotating vane technique.

    PubMed

    Leong-Poi, L; Allen, D G

    1992-07-01

    The existence of a yield stress in filamentous fermentation broths has important transport phenomena implications in the design and operation of bioreactors. In this study, the constant shear rate vane method was assessed for directly measuring the yield stress of filamentous Aspergillus niger fermentation broths, as well as model fluids (ketchup, yogurt, and pulp suspensions). The method involved rotating 4-, 6-, and 8-bladed vanes (7.2 cm < or = height < or = 15 cm; 4.0 cm < or = dia. < or= 6 cm) at speeds of 0.01 to 0.64 rpm in the fluid and plotting the torque as a function of time. Based on visual observations, the consistency of the results with vane type and speed and comparison with previous work on nonbiological samples, it was concluded that the method is an effective and consistent technique for yield stress measurements on filamentous fermentation broths. Based on comparisons with concentric cylinder viscometer results, it was also concluded that the value determined via the vane method was a "static" yield stress (values of up to 28 Pa) which was much greater than the extrapolated (or "dynamic") yield stress determined via the concentric cylinder viscometer. (c) 1992 John Wiley & Sons, Inc.

  13. Measuring techniques in induced polarisation imaging

    NASA Astrophysics Data System (ADS)

    Dahlin, Torleif; Leroux, Virginie; Nissen, Johan

    2002-06-01

    Multi-electrode geoelectrical imaging has become very popular and is used for many different purposes. For some of these, the inclusion of IP data would be desirable as it would allow the interpreter to distinguish between, e.g. sand formations with saltwater infiltration and clay formations or help delineate landfills. However, present-day IP measuring techniques require the use of nonpolarisable potential electrodes and special wire layout and are thus cumbersome and expensive. In this paper, we suggest making IP measurements with multi-electrode cables and just one set of steel electrodes. The polarisation potentials on the potential electrodes are corrected for by subtracting the polarisation potential measured when no primary current and no IP signal are present. Test measurements indicate that the polarisation potentials vary slowly and that the correction procedure is feasible. At two sites in southern Sweden, we have compared measurements with only stainless steel electrodes and measurements with both stainless steel and Pb-PbCl nonpolarisable electrodes using one or two sets of multicore cables, respectively. Almost no difference between the two data sets was observed. At one site, the charge-up effect on the potential electrodes was not important, while at the other site, the correction procedure was crucial. Though only two sites have been studied so far, it seems that time-domain IP imaging measurements can be taken with only steel electrodes and ordinary multicore cables. Coupling in the multicore cables has not presented any problems at the investigated sites where grounding resistances were moderate, making the coupling effect small. High grounding resistance sites have not yet been investigated.

  14. A Literature Review on Image Encryption Techniques

    NASA Astrophysics Data System (ADS)

    Khan, Majid; Shah, Tariq

    2014-12-01

    Image encryption plays a paramount part to guarantee classified transmission and capacity of image over web. Then again, a real-time image encryption confronts a more noteworthy test because of vast measure of information included. This paper exhibits an audit on image encryption in spatial, frequency and hybrid domains with both full encryption and selective encryption strategy.

  15. Photodetachment of O^- Yielding O(1D_2, {}^3P) Atoms, Viewed with Velocity Map Imaging

    NASA Astrophysics Data System (ADS)

    Gibson, Stephen T.; Laws, Benjamin A.; Lewis, Brenton R.; Duong, Ly

    2016-06-01

    lectron photodetachment of O^-(2P3/2,1/2) is measured using velocity-map imaging at wavelengths near 350 nm, where detachment yields both O(^1D_2) and O(^3P2,1,0) atoms, simultaneously, producing slow (˜ 0.1 eV) and fast electrons (˜ 2 eV). The photoelectron spectrum resolves the fine-structure transitions, which together with the well known atomic fine-structure splittings, and intensity ratios, provide an excellent test of the spectral quality of the velocity-map imaging technique. Although the photoelectron angular distribution for the two atomic limits have the same negative anisotropy sign, the energy dependence differs. The variation is qualitatively in accordance with R-matrix cross section calculations, that indicate a more gradual d-wave onset for the ^1D limit. However, more exact evaluation is only possible with information about the matrix element phases. Research supported by the Australian Research Council Discovery Project GrantDP160102585. physics.nist.gov/cgi-bin/ASD/energy1.pl O. Scharf and M. R. Godefried, arXiv:0808.3529v1 O. Zatsarinny and K. Bartschat, Phys. Rev. A, 73, 022714 (2006). doi:10.1103/PhysRevA.73.022714

  16. Photo-dissociation quantum yields of mammalian oxyhemoglobin investigated by a nanosecond laser technique

    SciTech Connect

    Yang Ningli; Zhang Shuyi . E-mail: zhangsy@nju.edu.cn; Kuo Paokuang; Qu Min; Fang Jianwen; Li Jiahuang; Hua Zichun

    2007-02-23

    The photo-dissociations of oxyhemoglobin of several mammals, such as human, bovine, pig, horse, and rabbit, have been studied. By means of optical pump-probe technique, the quantum yields for photo-dissociation of these oxyhemoglobin have been determined at pH 7 and 20 {sup o}C. A nanosecond laser at 532 nm is used as the pumping source, and a xenon lamp through a monochrometer provides a probe light at 432 nm. The experimental results show that the quantum yields of these mammalian oxyhemoglobin are different from each other, especially for that of rabbit. By analyzing the amino acid sequences and tetramer structures as well as the flexibility and hydrophobicity of the different hemoglobin, possible explanations for the differences are proposed.

  17. Imaging techniques: MRI illuminated by γ-rays

    NASA Astrophysics Data System (ADS)

    Bowtell, Richard

    2016-09-01

    A technique that combines magnetic resonance with nuclear medicine has been used to image the distribution of a radioactive tracer, potentially opening up a powerful and innovative approach to medical imaging. See Letter p.652

  18. [Tomographic ultrasound imaging (TUI)--technique and methodological study].

    PubMed

    Markov, D

    2008-01-01

    We present a new form of data image processing obtained through three-dimensional scanning named tomographic ultrasound imaging (TUI) and discuss its technique and clinical implications in obstetrics and gynecology.

  19. Functional Imaging and Related Techniques: An Introduction for Rehabilitation Researchers

    PubMed Central

    Crosson, Bruce; Ford, Anastasia; McGregor, Keith M.; Meinzer, Marcus; Cheshkov, Sergey; Li, Xiufeng; Walker-Batson, Delaina; Briggs, Richard W.

    2010-01-01

    Functional neuroimaging and related neuroimaging techniques are becoming important tools for rehabilitation research. Functional neuroimaging techniques can be used to determine the effects of brain injury or disease on brain systems related to cognition and behavior and to determine how rehabilitation changes brain systems. These techniques include: functional magnetic resonance imaging (fMRI), positron emission tomography (PET), electroencephalography (EEG), magnetoencephalography (MEG), near infrared spectroscopy (NIRS), and transcranial magnetic stimulation (TMS). Related diffusion weighted magnetic resonance imaging techniques (DWI), including diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), can quantify white matter integrity. With the proliferation of these imaging techniques in rehabilitation research, it is critical that rehabilitation researchers, as well as consumers of rehabilitation research, become familiar with neuroimaging techniques, what they can offer, and their strengths and weaknesses The purpose to this review is to provide such an introduction to these neuroimaging techniques. PMID:20593321

  20. A Technique for Nanoscale Plasmonic Imaging via Photoemission

    NASA Astrophysics Data System (ADS)

    Pickard, Daniel S.

    2009-03-01

    The scientific community is witnessing increased research activity on Surface Plasmon Polaritons (SPPs). The potential applications of SPPs and plasmonic structures based on their control and manipulation are truly multi-disciplinary, spanning high speed nano-scale interconnects, meta-materials, chemical and biological sensing, sub-wavelength optics and waveguides, near-field optical trapping, high-density data storage, and the enhancement of non-linear effects. Measurement of the localized optical field intensity is a critical component in validating physical models and characterizing plasmonic structures. The dominant technique employed for this task is the Scanning Near-Field Optical Microscope (SNOM) or Photon Scanning Tunneling Microscope (PSTM), whose contrast mechanism is based on measuring light scattered from the near-field with a probe. These techniques can provide high resolution images of the localized fields, but they are slow. Furthermore, tip-sample interactions can perturb the fields, yielding ambiguity between electric and magnetic fields and frustrating attempts at accurate optical characterization. One way to facilitate the advance of plasmonics is to develop new techniques for imaging and characterizing SPP behavior on the nanoscale. Recent efforts employing photoemission to reveal the localized fields have demonstrated that this technique can provide both high spatial (˜10nm) and temporal (fs) resolution when combined with a Photoelectron Emission Microscope (PEEM)[1-3]. The PEEM does not require a probe so the fields can be imaged without perturbation. It also provides a parallel image of the full field, so acquisition times are fast. We are expanding the capabilities of the PEEM to exploit a novel contrast mechanism which will broaden the spectrum of plasmonic devices observable. We present our experimental efforts in this area, detail the underlying physics of the contrast mechanism and discuss how it can be controlled to enable unique

  1. A Color-Matching Technique for Monitoring Tar/Nicotine Yields to Smokers

    PubMed Central

    Kozlowski, Lynn T.; Rickert, William S.; Pope, Marilyn A.; Robinson, Jack C.

    1982-01-01

    We describe a technique that enables individuals to detect the number of puffs taken on a filter cigarette by comparing the “color” of the spent filter to a color scale that simulates the appearance of filters exposed to low-, standard-, or high-yield smoking-machine regimens. Average ratings of filters by 11 subjects correlated almost perfectly with the number of standard puffs to which the filters had been exposed. (Am J Public Health 1982; 72:597-599.) PMID:7072878

  2. Regressions by leaps and bounds and biased estimation techniques in yield modeling

    NASA Technical Reports Server (NTRS)

    Marquina, N. E. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. It was observed that OLS was not adequate as an estimation procedure when the independent or regressor variables were involved in multicollinearities. This was shown to cause the presence of small eigenvalues of the extended correlation matrix A'A. It was demonstrated that the biased estimation techniques and the all-possible subset regression could help in finding a suitable model for predicting yield. Latent root regression was an excellent tool that found how many predictive and nonpredictive multicollinearities there were.

  3. Imaging fault zones using 3D seismic image processing techniques

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    Significant advances in structural analysis of deep water structure, salt tectonic and extensional rift basin come from the descriptions of fault system geometries imaged in 3D seismic data. However, even where seismic data are excellent, in most cases the trajectory of thrust faults is highly conjectural and still significant uncertainty exists as to the patterns of deformation that develop between the main faults segments, and even of the fault architectures themselves. Moreover structural interpretations that conventionally define faults by breaks and apparent offsets of seismic reflectors are commonly conditioned by a narrow range of theoretical models of fault behavior. For example, almost all interpretations of thrust geometries on seismic data rely on theoretical "end-member" behaviors where concepts as strain localization or multilayer mechanics are simply avoided. Yet analogue outcrop studies confirm that such descriptions are commonly unsatisfactory and incomplete. In order to fill these gaps and improve the 3D visualization of deformation in the subsurface, seismic attribute methods are developed here in conjunction with conventional mapping of reflector amplitudes (Marfurt & Chopra, 2007)). These signal processing techniques recently developed and applied especially by the oil industry use variations in the amplitude and phase of the seismic wavelet. These seismic attributes improve the signal interpretation and are calculated and applied to the entire 3D seismic dataset. In this contribution we will show 3D seismic examples of fault structures from gravity-driven deep-water thrust structures and extensional basin systems to indicate how 3D seismic image processing methods can not only build better the geometrical interpretations of the faults but also begin to map both strain and damage through amplitude/phase properties of the seismic signal. This is done by quantifying and delineating the short-range anomalies on the intensity of reflector amplitudes

  4. In Vivo Imaging Techniques: A New Era for Histochemical Analysis

    PubMed Central

    Busato, A.; Feruglio, P. Fumene; Parnigotto, P.P.; Marzola, P.; Sbarbati, A.

    2016-01-01

    In vivo imaging techniques can be integrated with classical histochemistry to create an actual histochemistry of water. In particular, Magnetic Resonance Imaging (MRI), an imaging technique primarily used as diagnostic tool in clinical/preclinical research, has excellent anatomical resolution, unlimited penetration depth and intrinsic soft tissue contrast. Thanks to the technological development, MRI is not only capable to provide morphological information but also and more interestingly functional, biophysical and molecular. In this paper we describe the main features of several advanced imaging techniques, such as MRI microscopy, Magnetic Resonance Spectroscopy, functional MRI, Diffusion Tensor Imaging and MRI with contrast agent as a useful support to classical histochemistry. PMID:28076937

  5. Imaging techniques in signal transduction IHC.

    PubMed

    Sedgewick, Jerry

    2011-01-01

    Augmentation of digital images is almost always a necessity in order to obtain a reproduction that matches the appearance of the original. However, that augmentation can mislead if it is done incorrectly and not within reasonable limits. When procedures are in place for ensuring that originals are archived, and image manipulation steps are reported, scientists not only follow good laboratory practices, but also avoid ethical issues associated with postprocessing and protect their labs from any future allegations of scientific misconduct. Also, when procedures are in place for correct acquisition of images, the extent of postprocessing is minimized or eliminated. These procedures include color balancing (for brighfield images), keeping tonal values within the dynamic range of the detector, frame averaging to eliminate noise (typically in fluorescence imaging), use of the highest bit depth when a choice is available, flatfield correction, and archiving of the image in a nonlossy format (not JPEG).When postprocessing is necessary, the commonly used applications for correction include Photoshop, and ImageJ, but a free program (GIMP) can also be used. Corrections to images include scaling the bit depth to higher and lower ranges, removing color casts from brightfield images, setting brightness and contrast, reducing color noise, reducing "grainy" noise, conversion of pure colors to grayscale, conversion of grayscale to colors typically used in fluorescence imaging, correction of uneven illumination and flatfield correction, blending color images (fluorescence), and extending the depth of focus. These corrections are explained in step-by-step procedures in the chapter that follows.

  6. A hybrid technique for medical image segmentation.

    PubMed

    Nyma, Alamgir; Kang, Myeongsu; Kwon, Yung-Keun; Kim, Cheol-Hong; Kim, Jong-Myon

    2012-01-01

    Medical image segmentation is an essential and challenging aspect in computer-aided diagnosis and also in pattern recognition research. This paper proposes a hybrid method for magnetic resonance (MR) image segmentation. We first remove impulsive noise inherent in MR images by utilizing a vector median filter. Subsequently, Otsu thresholding is used as an initial coarse segmentation method that finds the homogeneous regions of the input image. Finally, an enhanced suppressed fuzzy c-means is used to partition brain MR images into multiple segments, which employs an optimal suppression factor for the perfect clustering in the given data set. To evaluate the robustness of the proposed approach in noisy environment, we add different types of noise and different amount of noise to T1-weighted brain MR images. Experimental results show that the proposed algorithm outperforms other FCM based algorithms in terms of segmentation accuracy for both noise-free and noise-inserted MR images.

  7. An image compression technique for use on token ring networks

    NASA Astrophysics Data System (ADS)

    Gorjala, B.; Sayood, Khalid; Meempat, G.

    1992-12-01

    A low complexity technique for compression of images for transmission over local area networks is presented. The technique uses the synchronous traffic as a side channel for improving the performance of an adaptive differential pulse code modulation (ADPCM) based coder.

  8. An image compression technique for use on token ring networks

    NASA Technical Reports Server (NTRS)

    Gorjala, B.; Sayood, Khalid; Meempat, G.

    1992-01-01

    A low complexity technique for compression of images for transmission over local area networks is presented. The technique uses the synchronous traffic as a side channel for improving the performance of an adaptive differential pulse code modulation (ADPCM) based coder.

  9. Application of digital image processing techniques to astronomical imagery 1977

    NASA Technical Reports Server (NTRS)

    Lorre, J. J.; Lynn, D. J.

    1978-01-01

    Nine specific techniques of combination of techniques developed for applying digital image processing technology to existing astronomical imagery are described. Photoproducts are included to illustrate the results of each of these investigations.

  10. A content-based image retrieval method for optical colonoscopy images based on image recognition techniques

    NASA Astrophysics Data System (ADS)

    Nosato, Hirokazu; Sakanashi, Hidenori; Takahashi, Eiichi; Murakawa, Masahiro

    2015-03-01

    This paper proposes a content-based image retrieval method for optical colonoscopy images that can find images similar to ones being diagnosed. Optical colonoscopy is a method of direct observation for colons and rectums to diagnose bowel diseases. It is the most common procedure for screening, surveillance and treatment. However, diagnostic accuracy for intractable inflammatory bowel diseases, such as ulcerative colitis (UC), is highly dependent on the experience and knowledge of the medical doctor, because there is considerable variety in the appearances of colonic mucosa within inflammations with UC. In order to solve this issue, this paper proposes a content-based image retrieval method based on image recognition techniques. The proposed retrieval method can find similar images from a database of images diagnosed as UC, and can potentially furnish the medical records associated with the retrieved images to assist the UC diagnosis. Within the proposed method, color histogram features and higher order local auto-correlation (HLAC) features are adopted to represent the color information and geometrical information of optical colonoscopy images, respectively. Moreover, considering various characteristics of UC colonoscopy images, such as vascular patterns and the roughness of the colonic mucosa, we also propose an image enhancement method to highlight the appearances of colonic mucosa in UC. In an experiment using 161 UC images from 32 patients, we demonstrate that our method improves the accuracy of retrieving similar UC images.

  11. Selective document image data compression technique

    DOEpatents

    Fu, C.Y.; Petrich, L.I.

    1998-05-19

    A method of storing information from filled-in form-documents comprises extracting the unique user information in the foreground from the document form information in the background. The contrast of the pixels is enhanced by a gamma correction on an image array, and then the color value of each of pixel is enhanced. The color pixels lying on edges of an image are converted to black and an adjacent pixel is converted to white. The distance between black pixels and other pixels in the array is determined, and a filled-edge array of pixels is created. User information is then converted to a two-color format by creating a first two-color image of the scanned image by converting all pixels darker than a threshold color value to black. All the pixels that are lighter than the threshold color value to white. Then a second two-color image of the filled-edge file is generated by converting all pixels darker than a second threshold value to black and all pixels lighter than the second threshold color value to white. The first two-color image and the second two-color image are then combined and filtered to smooth the edges of the image. The image may be compressed with a unique Huffman coding table for that image. The image file is also decimated to create a decimated-image file which can later be interpolated back to produce a reconstructed image file using a bilinear interpolation kernel. 10 figs.

  12. Selective document image data compression technique

    DOEpatents

    Fu, Chi-Yung; Petrich, Loren I.

    1998-01-01

    A method of storing information from filled-in form-documents comprises extracting the unique user information in the foreground from the document form information in the background. The contrast of the pixels is enhanced by a gamma correction on an image array, and then the color value of each of pixel is enhanced. The color pixels lying on edges of an image are converted to black and an adjacent pixel is converted to white. The distance between black pixels and other pixels in the array is determined, and a filled-edge array of pixels is created. User information is then converted to a two-color format by creating a first two-color image of the scanned image by converting all pixels darker than a threshold color value to black. All the pixels that are lighter than the threshold color value to white. Then a second two-color image of the filled-edge file is generated by converting all pixels darker than a second threshold value to black and all pixels lighter than the second threshold color value to white. The first two-color image and the second two-color image are then combined and filtered to smooth the edges of the image. The image may be compressed with a unique Huffman coding table for that image. The image file is also decimated to create a decimated-image file which can later be interpolated back to produce a reconstructed image file using a bilinear interpolation kernel.--(235 words)

  13. Bayesian technique for image classifying registration.

    PubMed

    Hachama, Mohamed; Desolneux, Agnès; Richard, Frédéric J P

    2012-09-01

    In this paper, we address a complex image registration issue arising while the dependencies between intensities of images to be registered are not spatially homogeneous. Such a situation is frequently encountered in medical imaging when a pathology present in one of the images modifies locally intensity dependencies observed on normal tissues. Usual image registration models, which are based on a single global intensity similarity criterion, fail to register such images, as they are blind to local deviations of intensity dependencies. Such a limitation is also encountered in contrast-enhanced images where there exist multiple pixel classes having different properties of contrast agent absorption. In this paper, we propose a new model in which the similarity criterion is adapted locally to images by classification of image intensity dependencies. Defined in a Bayesian framework, the similarity criterion is a mixture of probability distributions describing dependencies on two classes. The model also includes a class map which locates pixels of the two classes and weighs the two mixture components. The registration problem is formulated both as an energy minimization problem and as a maximum a posteriori estimation problem. It is solved using a gradient descent algorithm. In the problem formulation and resolution, the image deformation and the class map are estimated simultaneously, leading to an original combination of registration and classification that we call image classifying registration. Whenever sufficient information about class location is available in applications, the registration can also be performed on its own by fixing a given class map. Finally, we illustrate the interest of our model on two real applications from medical imaging: template-based segmentation of contrast-enhanced images and lesion detection in mammograms. We also conduct an evaluation of our model on simulated medical data and show its ability to take into account spatial variations

  14. Overview of image security techniques with applications in multimedia systems

    NASA Astrophysics Data System (ADS)

    Wolfgang, Raymond B.; Delp, Edward J., III

    1998-02-01

    The growth of networked multimedia system has created a need for the copyright protection of digital images and video. Copyright protection involves the authentication of image content and/or ownership. This can be used to identify illegal copies of an image. One approach is to mark an image by adding an invisible structure known as a digital watermark to the image. Techniques of incorporating such a watermark into digital images include spatial-domain techniques, transform-domain algorithms and sub-band filtering approaches.

  15. Various diffusion magnetic resonance imaging techniques for pancreatic cancer

    PubMed Central

    Tang, Meng-Yue; Zhang, Xiao-Ming; Chen, Tian-Wu; Huang, Xiao-Hua

    2015-01-01

    Pancreatic cancer is one of the most common malignant tumors and remains a treatment-refractory cancer with a poor prognosis. Currently, the diagnosis of pancreatic neoplasm depends mainly on imaging and which methods are conducive to detecting small lesions. Compared to the other techniques, magnetic resonance imaging (MRI) has irreplaceable advantages and can provide valuable information unattainable with other noninvasive or minimally invasive imaging techniques. Advances in MR hardware and pulse sequence design have particularly improved the quality and robustness of MRI of the pancreas. Diffusion MR imaging serves as one of the common functional MRI techniques and is the only technique that can be used to reflect the diffusion movement of water molecules in vivo. It is generally known that diffusion properties depend on the characterization of intrinsic features of tissue microdynamics and microstructure. With the improvement of the diffusion models, diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique to the more complex. In this review, the various diffusion MRI techniques for pancreatic cancer are discussed, including conventional diffusion weighted imaging (DWI), multi-b DWI based on intra-voxel incoherent motion theory, diffusion tensor imaging and diffusion kurtosis imaging. The principles, main parameters, advantages and limitations of these techniques, as well as future directions for pancreatic diffusion imaging are also discussed. PMID:26753059

  16. Forensic Techniques for Image Source Classification: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Delp, Edward J.

    Digital images can be captured or generated by a variety of sources including digital cameras, scanners and computer graphics softwares. In many cases it is important to be able to determine the source of a digital image such as for criminal and forensic investigation. Based on their originating mechanism digital images can be classified into three classes: digital camera images, scanner generated images and computer-graphics generated images. Image source classification is helpful as a first step for identifying the unique device or system which produced the image. This paper presents a survey of different methods for solving image source classification problem, some improvements over them and compares their performance in a common framework. As expected with the advances in computer graphics techniques, artificial images are becoming closer and closer to the natural ones and harder to distinguish by human visual system. Hence, the methods based on characteristics of image generating process are more successful than those based on image content.

  17. Stochastic distribution of the fibrils that yielded the Shroud of Turin body image

    NASA Astrophysics Data System (ADS)

    Fazio, G.; Mandaglio, G.

    2011-07-01

    The fibrils that yielded the Shroud body image show a stochastic distribution on the Linen of Turin. In fact, the probability of a fibril yellowing is a function of the energy, while this is not the case for the optical density value. This means that the above image is a latent image. We suggest thermal radiation or low-temperature chemical processes as possible natural energy sources to explain, by stochastic effects, the Shroud body image formation. Unfortunately, due to the nature of the phenomenon, we are not able to extract the energy source.

  18. Low-energy neutral-atom imaging techniques

    NASA Astrophysics Data System (ADS)

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1993-07-01

    The potential scientific return from low energy neutral atom (LENA) imaging of the magnetosphere is extraordinary. The technical challenges of LENA detection include (1) removal of LENAs from the tremendous ambient UV without losing information of their incident trajectories, (2) quantification of their trajectories, and (3) obtaining high sensitivity measurements. Two techniques that have been proposed for this purpose are based on fundamentally different atomic interaction mechanisms between LENAs and a solid: LENA transmission through an ultrathin foil and LENA reflection from a solid surface. Both of these methods provide LENA ionization (for subsequent removal from the UV by electrostatic deflection) and secondary electron emission (for start pulse generation for time-of-flight and/or coincidence). We present a comparative study of the transmission and reflection techniques based on differences in atomic interactions with solids and surfaces. We show that transmission yield an order of magnitude greater secondary electron emission than reflection methods. Transmission methods are shown to be sufficient for LEAN energies of approximately 1 keV to greater than 30 keV.

  19. Yield stress of pretreated corn stover suspensions using magnetic resonance imaging.

    PubMed

    Lavenson, David M; Tozzi, Emilio J; McCarthy, Michael J; Powell, Robert L

    2011-10-01

    Cellulose fibers in water form networks that give rise to an apparent yield stress, especially at high solids contents. Measuring the yield stress and correlating it with fiber concentration is important for the biomass and pulp industries. Understanding how the yield stress behaves at high solids concentrations is critical to optimize enzymatic hydrolysis of biomass in the production of biofuels. Rheological studies on pretreated corn stover and various pulp fibers have shown that yield stress values correlate with fiber mass concentration through a power-law relationship. We use magnetic resonance imaging (MRI) as an in-line rheometer to measure velocity profiles during pipe flow. If coupled with pressure drop measurements, these allow yield stress values to be determined. We compare our results with literature values and discuss the accuracy and precision of the rheo-MRI measurement, along with the effects of fiber characteristics on the power-law coefficients.

  20. Unconventional techniques of fundus imaging: A review.

    PubMed

    Shanmugam, Mahesh P; Mishra, Divyansh Kailash Chandra; Rajesh, R; Madhukumar, R

    2015-07-01

    The methods of fundus examination include direct and indirect ophthalmoscopy and imaging with a fundus camera are an essential part of ophthalmic practice. The usage of unconventional equipment such as a hand-held video camera, smartphone, and a nasal endoscope allows one to image the fundus with advantages and some disadvantages. The advantages of these instruments are the cost-effectiveness, ultra portability and ability to obtain images in a remote setting and share the same electronically. These instruments, however, are unlikely to replace the fundus camera but then would always be an additional arsenal in an ophthalmologist's armamentarium.

  1. Holographic Radar Imaging Privacy Techniques Utilizing Dual-Frequency Implementation

    SciTech Connect

    McMakin, Douglas L.; Hall, Thomas E.; Sheen, David M.

    2008-04-18

    Over the last 15 years, the Pacific Northwest National Laboratory has performed significant research and development activities to enhance the state of the art of holographic radar imaging systems to be used at security checkpoints for screening people for concealed threats hidden under their garments. These enhancement activities included improvements to privacy techniques to remove human features and providing automatic detection of body-worn concealed threats. The enhanced privacy and detection methods used both physical and software imaging techniques. The physical imaging techniques included polarization-diversity illumination and reception, dual-frequency implementation, and high-frequency imaging at 60 GHz. Software imaging techniques to enhance the privacy of the person under surveillance included extracting concealed threat artifacts from the imagery to automatically detect the threat. This paper will focus on physical privacy techniques using dual-frequency implementation.

  2. Combined neutron imaging techniques for cultural heritage purpose

    SciTech Connect

    Materna, T.

    2009-01-28

    This article presents the different new neutron techniques developed by the Ancient Charm collaboration to image objects of cultural heritage importance: Prompt-gamma-ray activation imaging (PGAI) coupled to cold/thermal neutron transmission tomography, Neutron Resonance Capture Imaging (NRCI) and Neutron Resonance Tomography.

  3. Laser image denoising technique based on multi-fractal theory

    NASA Astrophysics Data System (ADS)

    Du, Lin; Sun, Huayan; Tian, Weiqing; Wang, Shuai

    2014-02-01

    The noise of laser images is complex, which includes additive noise and multiplicative noise. Considering the features of laser images, the basic processing capacity and defects of the common algorithm, this paper introduces the fractal theory into the research of laser image denoising. The research of laser image denoising is implemented mainly through the analysis of the singularity exponent of each pixel in fractal space and the feature of multi-fractal spectrum. According to the quantitative and qualitative evaluation of the processed image, the laser image processing technique based on fractal theory not only effectively removes the complicated noise of the laser images obtained by range-gated laser active imaging system, but can also maintains the detail information when implementing the image denoising processing. For different laser images, multi-fractal denoising technique can increase SNR of the laser image at least 1~2dB compared with other denoising techniques, which basically meet the needs of the laser image denoising technique.

  4. Investigation of Antiangiogenic Mechanisms Using Novel Imaging Techniques

    DTIC Science & Technology

    2010-02-01

    Biomed. Opt. 95, 982–994 2004. 6. M. Khurana, E. H. Moriyama, A. Mariampillai, and B. C. Wilson, “ Intravital high-resolution optical imaging of...Mechanisms Using Novel Imaging Techniques PRINCIPAL INVESTIGATOR: Andrew Fontanella CONTRACTING ORGANIZATION: Duke University Durham...Using Novel Imaging Techniques 5b. GRANT NUMBER W81XWH-09-1-0113 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Andrew Fontanella

  5. Technique for identifying, tracing, or tracking objects in image data

    DOEpatents

    Anderson, Robert J [Albuquerque, NM; Rothganger, Fredrick [Albuquerque, NM

    2012-08-28

    A technique for computer vision uses a polygon contour to trace an object. The technique includes rendering a polygon contour superimposed over a first frame of image data. The polygon contour is iteratively refined to more accurately trace the object within the first frame after each iteration. The refinement includes computing image energies along lengths of contour lines of the polygon contour and adjusting positions of the contour lines based at least in part on the image energies.

  6. Phase Diversity and Polarization Augmented Techniques for Active Imaging

    DTIC Science & Technology

    2007-03-01

    Phase Diversity and Polarization Augmented Techniques for Active Imaging DISSERTATION Peter M. Johnson, Captain, USAF AFIT/DS/ENG/07-05 DEPARTMENT OF...Force, Department of Defense, or the United States Government. AFIT/DS/ENG/07-05 Phase Diversity and Polarization Augmented Techniques for Active Imaging...must be used. To facilitate this, a multi-frame active phase diversity imaging (APDI) algorithm is derived and demonstrated for the statistics of

  7. Tandem mass spectrometric analysis of a mixture of isobars using the survival yield technique.

    PubMed

    Memboeuf, Antony; Jullien, Laure; Lartia, Rémy; Brasme, Bernard; Gimbert, Yves

    2011-10-01

    Collision induced dissociation tandem mass spectrometry experiments were performed to unequivocally separate compounds from an isobaric mixture of two products. The Survival Yield curve was obtained and is shown to consist in a linear combination of the curves corresponding to the two components separately. For such a mixture, a plateau appears on the diagram in lieu of the continuous decrease expected allowing for the structural study of the two components separately. The width of the plateau critically relates to the fragmentation parameters of the two molecular ions, which need to be sufficiently different structurally for the plateau to be observed. However, at constant fragmentation parameters, we have observed the width significantly increases at large m/z. This makes the separation more and more efficient as isobars have larger m/z and the technique complementary to those applicable at low m/z only. We have observed that the vertical position of the plateau relates linearly to the relative concentration of the two compounds that may be useful for quantification. Repeatability was estimated at 2% on a quadrupole ion trap. An advantage of using survival yield curves only, is that a priori knowledge of the respective fragmentation patterns of the two isobars becomes unnecessary. Consequently, similar performances are obtained if fragments are isobaric, which is also demonstrated in our study. The critical case of reverse peptides, at low m/z and similar fragmentation parameters, is also presented as a limitation of the method.

  8. Comparison and improvement of color-based image retrieval techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Yujin; Liu, Zhong W.; He, Yun

    1997-12-01

    With the increasing popularity of image manipulation with contents, many color-based image retrieval techniques have been proposed in the literature. A systematic and comparative study of 8 representative techniques is first presented in this paper, which uses a database of 200 images of flags and trademarks. These techniques are determined to cover the variations of the color models used, of the characteristic color features employed and of the distance measures calculated for judging the similarity of color images. The results of this comparative study are presented both by the list of retrieved images for subjective visual inspection and by the retrieving ratios computed for objective judgement. All of them show that the cumulative histogram based techniques using Euclidean distance measures in two perception related color spaces give best results among the 8 techniques under consideration. Started from the best performed techniques, works toward further improving their retrieving capability are then carried on and this has resulted 2 new techniques which use local cumulative histograms. The new techniques have been tested by using a database of 400 images of real flowers which are quite complicated in color contents. Some satisfactory results, compared to that obtained by using existing cumulative histogram based techniques are obtained and presented.

  9. Steganalysis Techniques for Documents and Images

    DTIC Science & Technology

    2007-11-02

    generalized our previous steganalysis technique of sample pair analysis to a theoretical framework for the detection of the LSB steganography . The new...steganalysis technique of sample pair analysis to a theoretical framework for the detection of the LSB steganography . The new framework exploits high-order... steganography as an additive noise process and measuring the mean and variance of the stego-signal. We derived a formula that governs all additive

  10. Externally triggered imaging technique for microbolometer-type terahertz imager

    NASA Astrophysics Data System (ADS)

    Oda, Naoki; Sudou, Takayuki; Ishi, Tsutomu; Okubo, Syuichi; Isoyama, Goro; Irizawa, Akinori; Kawase, Keigo; Kato, Ryukou

    2016-04-01

    The authors developed terahertz (THz) imager which incorporates 320x240 focal plane array (FPA) with enhanced sensitivity in sub-THz region (ca. 0.5 THz). The imager includes functions such as external-trigger imaging, lock-in imaging, beam profiling and so on. The function of the external-trigger imaging is mainly described in this paper, which was verified in combination of the THz imager with the pulsed THz free electron laser (THz-FEL) developed by Osaka University. The THz-FEL emits THz radiation in a wavelength range of 25 - 150 μm at repetition rates of 2.5, 3.3, 5.0 and 10 pulses per second. The external trigger pulse for the THz imager was generated with a pulse generator, using brightening pulse for THz-FEL. A series of pulses emitted by the THz-FEL at 86 μm were introduced to the THz imager and Joule meter via beam splitter, so that the output signal of THz imager was normalized with the output of the Joule meter and the stability of the THz radiation from FEL was also monitored. The normalized output signals of THz imager (digits/μJ) obtained at the repetition rates mentioned above were found consistent with one another. The timing-relation of the external trigger pulse to the brightening pulse was varied and the influence of the timing-relation on beam pattern is presented. These experimental results verify that the external trigger imaging function operates correctly.

  11. Infrared Imaging Data Reduction Software and Techniques

    NASA Astrophysics Data System (ADS)

    Sabbey, C. N.; McMahon, R. G.; Lewis, J. R.; Irwin, M. J.

    Developed to satisfy certain design requirements not met in existing packages (e.g., full weight map handling) and to optimize the software for large data sets (non-interactive tasks that are CPU and disk efficient), the InfraRed Data Reduction software package is a small ANSI C library of fast image processing routines for automated pipeline reduction of infrared (dithered) observations. The software includes stand-alone C programs for tasks such as running sky frame subtraction with object masking, image registration and co-addition with weight maps, dither offset measurement using cross-correlation, and object mask dilation. Although currently used for near-IR mosaic images, the modular software is concise and readily adaptable for reuse in other work. IRDR, available via anonymous ftp at ftp.ast.cam.ac.uk in pub/sabbey

  12. Cartilage imaging in children: current indications, magnetic resonance imaging techniques, and imaging findings.

    PubMed

    Ho-Fung, Victor M; Jaramillo, Diego

    2013-07-01

    Evaluation of hyaline cartilage in pediatric patients requires in-depth understanding of normal physiologic changes in the developing skeleton. Magnetic resonance (MR) imaging is a powerful tool for morphologic and functional imaging of the cartilage. In this review article, current imaging indications for cartilage evaluation pertinent to the pediatric population are described. In particular, novel surgical techniques for cartilage repair and MR classification of cartilage injuries are summarized. The authors also provide a review of the normal anatomy and a concise description of the advances in quantitative cartilage imaging (ie, T2 mapping, delayed gadolinium-enhanced MR imaging of cartilage, and T1rho). Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Development of neutron tomography and phase contrast imaging technique

    SciTech Connect

    Kashyap, Y. S.; Agrawal, Ashish; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2013-02-05

    This paper presents design and development of a state of art neutron imaging technique at CIRUS reactor with special reference for techniques adopted for tomography and phase contrast imaging applications. Different components of the beamline such as collimator, shielding, sample manipulator, digital imaging system were designed keeping in mind the requirements of data acquisition time and resolution. The collimator was designed in such a way that conventional and phase contrast imaging can be done using same collimator housing. We have done characterization of fuel pins, study of hydride blisters in pressure tubes hydrogen based cells, two phase flow visualization, and online study of locomotive parts etc. using neutron tomography and radiography technique. We have also done some studies using neutron phase contrast imaging technique on this beamline.

  14. Development of neutron tomography and phase contrast imaging technique

    NASA Astrophysics Data System (ADS)

    Kashyap, Y. S.; Agrawal, Ashish; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2013-02-01

    This paper presents design and development of a state of art neutron imaging technique at CIRUS reactor with special reference for techniques adopted for tomography and phase contrast imaging applications. Different components of the beamline such as collimator, shielding, sample manipulator, digital imaging system were designed keeping in mind the requirements of data acquisition time and resolution. The collimator was designed in such a way that conventional and phase contrast imaging can be done using same collimator housing. We have done characterization of fuel pins, study of hydride blisters in pressure tubes hydrogen based cells, two phase flow visualization, and online study of locomotive parts etc. using neutron tomography and radiography technique. We have also done some studies using neutron phase contrast imaging technique on this beamline.

  15. Neurovascular coupling: in vivo optical techniques for functional brain imaging.

    PubMed

    Liao, Lun-De; Tsytsarev, Vassiliy; Delgado-Martínez, Ignacio; Li, Meng-Lin; Erzurumlu, Reha; Vipin, Ashwati; Orellana, Josue; Lin, Yan-Ren; Lai, Hsin-Yi; Chen, You-Yin; Thakor, Nitish V

    2013-04-30

    Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology.

  16. Neurovascular coupling: in vivo optical techniques for functional brain imaging

    PubMed Central

    2013-01-01

    Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology. PMID:23631798

  17. Compression technique for plume hyperspectral images

    NASA Astrophysics Data System (ADS)

    Feather, B. K.; Fulkerson, S. A.; Jones, J. H.; Reed, R. A.; Simmons, M. A.; Swann, D. G.; Taylor, W. E.; Bernstein, L. S.

    2005-06-01

    The authors recently developed a hyperspectral image output option for a standardized government code designed to predict missile exhaust plume infrared signatures. Typical predictions cover the 2- to 5-m wavelength range (2000 to 5000 cm-1) at 5 cm-1 spectral resolution, and as a result the hyperspectral images have several hundred frequency channels. Several hundred hyperspectral plume images are needed to span the full operational envelope of missile altitude, Mach number, and aspect angle. Since the net disk storage space can be as large as 100 GB, a Principal Components Analysis is used to compress the spectral dimension, reducing the volume of data to just a few gigabytes. The principal challenge was to specify a robust default setting for the data compression routine suitable for general users, who are not necessarily specialists in data compression. Specifically, the objective was to provide reasonable data compression efficiency of the hyperspectral imagery while at the same time retaining sufficient accuracy for infrared scene generation and hardware-in-the-loop test applications over a range of sensor bandpasses and scenarios. In addition, although the end users of the code do not usually access the detailed spectral information contained in these hyperspectral images, this information must nevertheless be of sufficient fidelity so that atmospheric transmission losses between the missile plume and the sensor could be reliably computed as a function of range. Several metrics were used to determine how far the plume signature hyperspectral data could be safely compressed while still meeting these end-user requirements.

  18. Diffusion weighted imaging: Technique and applications

    PubMed Central

    Baliyan, Vinit; Das, Chandan J; Sharma, Raju; Gupta, Arun Kumar

    2016-01-01

    Diffusion weighted imaging (DWI) is a method of signal contrast generation based on the differences in Brownian motion. DWI is a method to evaluate the molecular function and micro-architecture of the human body. DWI signal contrast can be quantified by apparent diffusion coefficient maps and it acts as a tool for treatment response evaluation and assessment of disease progression. Ability to detect and quantify the anisotropy of diffusion leads to a new paradigm called diffusion tensor imaging (DTI). DTI is a tool for assessment of the organs with highly organised fibre structure. DWI forms an integral part of modern state-of-art magnetic resonance imaging and is indispensable in neuroimaging and oncology. DWI is a field that has been undergoing rapid technical evolution and its applications are increasing every day. This review article provides insights in to the evolution of DWI as a new imaging paradigm and provides a summary of current role of DWI in various disease processes. PMID:27721941

  19. Recovering depth from focus using iterative image estimation techniques

    SciTech Connect

    Vitria, J.; Llacer, J.

    1993-09-01

    In this report we examine the possibility of using linear and nonlinear image estimation techniques to build a depth map of a three dimensional scene from a sequence of partially focused images. In particular, the techniques proposed to solve the problem of construction of a depth map are: (1) linear methods based on regularization procedures and (2) nonlinear methods based on statistical modeling. In the first case, we have implemented a matrix-oriented method to recover the point spread function (PSF) of a sequence of partially defocused images. In the second case, the chosen method has been a procedure based on image estimation by means of the EM algorithm, a well known technique in image reconstruction in medical applications. This method has been generalized to deal with optically defocused image sequences.

  20. Towards Automatic Image Segmentation Using Optimised Region Growing Technique

    NASA Astrophysics Data System (ADS)

    Alazab, Mamoun; Islam, Mofakharul; Venkatraman, Sitalakshmi

    Image analysis is being adopted extensively in many applications such as digital forensics, medical treatment, industrial inspection, etc. primarily for diagnostic purposes. Hence, there is a growing interest among researches in developing new segmentation techniques to aid the diagnosis process. Manual segmentation of images is labour intensive, extremely time consuming and prone to human errors and hence an automated real-time technique is warranted in such applications. There is no universally applicable automated segmentation technique that will work for all images as the image segmentation is quite complex and unique depending upon the domain application. Hence, to fill the gap, this paper presents an efficient segmentation algorithm that can segment a digital image of interest into a more meaningful arrangement of regions and objects. Our algorithm combines region growing approach with optimised elimination of false boundaries to arrive at more meaningful segments automatically. We demonstrate this using X-ray teeth images that were taken for real-life dental diagnosis.

  1. Verification of Ultrasonic Image Fusion Technique for Laparoscopic Surgery

    NASA Astrophysics Data System (ADS)

    Zenbutsu, Satoki; Igarashi, Tatsuo; Mamou, Jonathan; Yamaguchi, Tadashi

    2012-07-01

    Laparoscopic surgery is one of the most challenging surgical operations, because inside information about the target organ cannot be fully understood from the laparoscopic image. Therefore, a fusion technique of laparoscopic and ultrasonic images is proposed for guidance during laparoscopic surgery. The proposed technique can display the internal organ structure by overlaying a three-dimensional (3D) ultrasonic image over a 3D laparoscopic image, which is acquired using a stereo laparoscope. The registration of the 3D images is performed by registering the surface of the target organ, which is found in the two 3D images without requiring the use of an external position detecting device. The proposed technique was evaluated experimentally using a tissue-mimicking phantom. Results obtained led to registration accuracy better than 2 cm. The total computation time was 3.1 min on a personal computer (Xeon processor, 3 GHz CPU). The structural information permits the visualization of target organs during laparoscopic surgery.

  2. Feasibility study of hidden flow imaging based on laser speckle technique using multiperspectives contrast images

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Moshe, Tomer

    2014-11-01

    This paper demonstrates the insertion of lens array in the front of a CCD camera in a laser speckle imaging (LSI) like-technique to acquire multiple speckle reflectance projections for imaging blood flow in an intact biological tissue. In some of LSI applications, flow imaging is obtained by thinning or removing of the upper tissue layers to access blood vessels. In contrast, with the proposed approach flow imaging can be achieved while the tissue is intact. In the system, each lens from an hexagonal lens array observed the sample from slightly different perspectives and captured with a CCD camera. In the computer, these multiview raw images are converted to speckled contrast maps. Then, a self-deconvolution shift-and-add algorithm is employed for processing yields high contrast flow information. The method is experimentally validated first with a plastic tube filled with scattering liquid running at different controlled flow rates hidden in a biological tissue and then extensively tested for imaging of cerebral blood flow in an intact rodent head experience different conditions. A total of fifteen mice were used in the experiments divided randomly into three groups as follows: Group 1 (n=5) consisted of injured mice experience hypoxic ischemic brain injury monitored for ~40 min. Group 2 (n=5) injured mice experience anoxic brain injury monitored up to 20 min. Group 3 (n=5) experience functional activation monitored up to ~35 min. To increase tissue transparency and the penetration depth of photons through head tissue layers, an optical clearing method was employed. To our knowledge, this work presents for the first time the use of lens array in LSI scheme.

  3. Color-gamut mapping techniques for color hardcopy images

    NASA Astrophysics Data System (ADS)

    Hoshino, Toru; Berns, Roy S.

    1993-08-01

    Color gamut mapping is required whenever two imaging devices do not have coincident color gamuts or viewing conditions. Two major gamut mapping techniques include lightness and chroma manipulations. Lightness mapping accounts for differences in white level, black level, and viewing conditions while chroma mapping accounts for differences in gamut volume. As a three dimensional space in which color gamut mapping is implemented, the 1991 Hunt model of color appearance was used utilizing dimensions of lightness, chroma, and hue. This model accounts for viewing conditions in addition to the usual device independent specification. The mapping techniques were applied to back-lit photographic transparencies in order to reproduce images using a dye diffusion thermal transfer printer. As the first experiment, a lightness mapping experiment was performed. Three different lightness mapping techniques, a linear technique and two non-linear techniques, were tested for four images. The psychophysical method of paired comparison was used to generate interval scales of preferred color reproduction. In general, the preferred technique depended on the amount of lightness mapping required and on the original image's lightness histograms. For small amounts of compression, the preferred technique was a clipping type. For large amounts of compression, the preferred technique was image dependent; low preference was caused by loss of detail or apparent fluorescence of high chroma image areas.

  4. Cylindrical millimeter-wave imaging technique and applications

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2006-05-01

    The wideband microwave or millimeter-wave cylindrical imaging technique has been developed at Pacific Northwest National Laboratory (PNNL) for several applications including concealed weapon detection and automated body measurement for apparel fitting. This technique forms a fully-focused, diffraction-limited, three-dimensional image of the person or imaging target by scanning an inward-directed vertical array around the person or imaging target. The array is switched electronically to sequence across the array at high-speed, so that a full 360 degree mechanical scan over the cylindrical aperture can occur in 2-10 seconds. Wideband, coherent reflection data from each antenna position are recorded in a computer and subsequently reconstructed using an FFT-based image reconstruction algorithm developed at PNNL. The cylindrical scanning configuration is designed to optimize the illumination of the target and minimize non-returns due to specular reflection of the illumination away from the array. In this paper, simulated modeling data are used to explore imaging issues that affect the cylindrical imaging technique. Physical optics scattering simulations are used to model realistic returns from curved surfaces to determine the extent to which specular reflection affects the signal return and subsequent image reconstruction from these surfaces. This is a particularly important issue for the body measurement application. Also, an artifact in the imaging technique, referred to as "circular convolution aliasing" is discussed including methods to reduce or eliminate it. Numerous simulated and laboratory measured imaging results are presented.

  5. Cylindrical Millemeter-Wave Imaging Technique and Applications

    SciTech Connect

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2006-08-01

    The wideband microwave or millimeter-wave cylindrical imaging technique has been developed at Pacific Northwest National Laboratory (PNNL) for several applications including concealed weapon detection and automated body measurements for apparel fitting. This technique forms a fully-focused, diffraction-limited, three-dimensional image of the person or imaging target by scanning an inward-directed vertical array around the person or imaging target. The array is switched electronically to sequence across the array at high-speed, so that a full 360 degree mechanical scan over the cylindrical aperture can occur in 2-10 seconds. Wideband, coherent reflection data from each antenna position are recorded in a computer and subsequently reconstructed using an FFT-based image reconstruction algorithm developed at PNNL. The cylindrical scanning configuration is designed to optimize the illumination of the target and minimize non-returns due to specular reflection of the illumination away from the array. In this paper, simulated modeling data is used to explore imaging issues that affect the cylindrical imaging technique. Physical optics scattering simulations are used to model realistic returns from curved surfaces to determine the extent to which specular reflection affects the signal return and subsequent image reconstruction from these surfaces. This is a particularly important issue for the body measurement application. Also, an artifact in the imaging technique, referred to as "circular convolution aliasing" is discussed including methods to reduce or eliminate it. Numerous simulated and laboratory measured imaging results are presented.

  6. Hierarchical clustering techniques for image database organization and summarization

    NASA Astrophysics Data System (ADS)

    Vellaikal, Asha; Kuo, C.-C. Jay

    1998-10-01

    This paper investigates clustering techniques as a method of organizing image databases to support popular visual management functions such as searching, browsing and navigation. Different types of hierarchical agglomerative clustering techniques are studied as a method of organizing features space as well as summarizing image groups by the selection of a few appropriate representatives. Retrieval performance using both single and multiple level hierarchies are experimented with and the algorithms show an interesting relationship between the top k correct retrievals and the number of comparisons required. Some arguments are given to support the use of such cluster-based techniques for managing distributed image databases.

  7. High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.

    PubMed

    Uba, Franklin I; Hu, Bo; Weerakoon-Ratnayake, Kumuditha; Oliver-Calixte, Nyote; Soper, Steven A

    2015-02-21

    Over the past decade, thermoplastics have been used as alternative substrates to glass and Si for microfluidic devices because of the diverse and robust fabrication protocols available for thermoplastics that can generate high production rates of the desired structures at low cost and with high replication fidelity, the extensive array of physiochemical properties they possess, and the simple surface activation strategies that can be employed to tune their surface chemistry appropriate for the intended application. While the advantages of polymer microfluidics are currently being realized, the evolution of thermoplastic-based nanofluidic devices is fraught with challenges. One challenge is assembly of the device, which consists of sealing a cover plate to the patterned fluidic substrate. Typically, channel collapse or substrate dissolution occurs during assembly making the device inoperable resulting in low process yield rates. In this work, we report a low temperature hybrid assembly approach for the generation of functional thermoplastic nanofluidic devices with high process yield rates (>90%) and with a short total assembly time (16 min). The approach involves thermally sealing a high T(g) (glass transition temperature) substrate containing the nanofluidic structures to a cover plate possessing a lower T(g). Nanofluidic devices with critical feature sizes ranging between 25-250 nm were fabricated in a thermoplastic substrate (T(g) = 104 °C) and sealed with a cover plate (T(g) = 75 °C) at a temperature significantly below the T(g) of the substrate. Results obtained from sealing tests revealed that the integrity of the nanochannels remained intact after assembly and devices were useful for fluorescence imaging at high signal-to-noise ratios. The functionality of the assembled devices was demonstrated by studying the stretching and translocation dynamics of dsDNA in the enclosed thermoplastic nanofluidic channels.

  8. Optical image segmentation using wavelet filtering techniques

    NASA Astrophysics Data System (ADS)

    Veronin, Christopher P.

    1990-12-01

    This research effort successfully implemented an automatic, optically based image segmentation scheme for locating potential targets in a cluttered FLIR image. Such a design is critical to achieve real-time segmentation and classification for machine vision applications. The segmentation scheme used in this research was based on texture discrimination and employs orientation specific, bandpass spatial filters as its main component. The orientation specific, bandpass spatial filters designed during this research include symmetrically located circular apertures implemented on heavy, black aluminum foil; cosine and sine Gabor filters implemented with detour-phase computer generated holography photoreduced onto glass slides; and symmetrically located circular apertures implemented on a liquid crystal television (LCTV) for real-time filter selection. The most successful design was the circular aperture pairs implemented on the aluminum foil. Segmentation was illustrated for simple and complex texture slides, glass template slides, and static and real-time FLIR imagery displayed on an LCTV.

  9. Multiwavelet-transform-based image compression techniques

    NASA Astrophysics Data System (ADS)

    Rao, Sathyanarayana S.; Yoon, Sung H.; Shenoy, Deepak

    1996-10-01

    Multiwavelet transforms are a new class of wavelet transforms that use more than one prototype scaling function and wavelet in the multiresolution analysis/synthesis. The popular Geronimo-Hardin-Massopust multiwavelet basis functions have properties of compact support, orthogonality, and symmetry which cannot be obtained simultaneously in scalar wavelets. The performance of multiwavelets in still image compression is studied using vector quantization of multiwavelet subbands with a multiresolution codebook. The coding gain of multiwavelets is compared with that of other well-known wavelet families using performance measures such as unified coding gain. Implementation aspects of multiwavelet transforms such as pre-filtering/post-filtering and symmetric extension are also considered in the context of image compression.

  10. Reconstruction Techniques for Sparse Multistatic Linear Array Microwave Imaging

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.

    2014-06-09

    Sequentially-switched linear arrays are an enabling technology for a number of near-field microwave imaging applications. Electronically sequencing along the array axis followed by mechanical scanning along an orthogonal axis allows dense sampling of a two-dimensional aperture in near real-time. In this paper, a sparse multi-static array technique will be described along with associated Fourier-Transform-based and back-projection-based image reconstruction algorithms. Simulated and measured imaging results are presented that show the effectiveness of the sparse array technique along with the merits and weaknesses of each image reconstruction approach.

  11. Automated thermal mapping techniques using chromatic image analysis

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    1989-01-01

    Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.

  12. High-Resolution and Animal Imaging Instrumentation and Techniques

    NASA Astrophysics Data System (ADS)

    Belcari, Nicola; Guerra, AlbertoDel

    During the last decade we have observed a growing interest in "in vivo" imaging techniques for small animals. This is due to the necessity of studying biochemical processes at a molecular level for pharmacology, genetic, and pathology investigations. This field of research is usually called "molecular imaging."Advances in biological understanding have been accompanied by technological advances in instrumentation and techniques and image-reconstruction software, resulting in improved image quality, visibility, and interpretation. The main technological challenge is then the design of systems with high spatial resolution and high sensitivity.

  13. The application of image enhancement techniques to remote manipulator operation

    NASA Technical Reports Server (NTRS)

    Gonzalez, R. C.

    1974-01-01

    Methods of image enhancement which can be used by an operator who is not experienced with the mechanisms of enhancement to obtain satisfactory results were designed and implemented. Investigation of transformations which operate directly on the image domain resulted in a new technique of contrast enhancement. Transformations on the Fourier transform of the original image, including such techniques as homomorphic filtering, were also investigated. The methods of communication between the enhancement system and the computer operator were analyzed, and a language was developed for use in image enhancement. A working enhancement system was then created, and is included.

  14. Efficient imaging techniques using an ultrasonic array

    NASA Astrophysics Data System (ADS)

    Moreau, L.; Hunter, A. J.; Drinkwater, B. W.; Wilcox, P. D.

    2010-03-01

    Over the past few years, ultrasonic phased arrays have shown good potential for non-destructive testing (NDT), thanks to high resolution imaging algorithms that allow the characterization of defects in a structure. Many algorithms are based on the full matrix capture, obtained by firing each element of an ultrasonic array independently, while collecting the data with all elements. Because of the finite sound velocity in the specimen, two consecutive firings must be separated by a minimum time interval. Therefore, more elements in the array require longer data acquisition times. Moreover, if the array has N elements, then the full matrix contains N2 temporal signals to be processed. Because of the limited calculation speed of current computers, a large matrix of data can result in rather long post-processing times. In an industrial context where real-time imaging is desirable, it is crucial to reduce acquisition and/or post-processing times. This paper investigates methods designed to reduce acquisition and post-processing times for the TFM and wavenumber algorithms. To reduce data capture and post-processing, limited transmission cycles are used. Post-processing times is also further reduced by demodulating the data to baseband, which allows reducing the sampling rate of signals. Results are presented so that a compromise can be made between acquisition time, post-processing time and image quality. Possible improvement of images quality, using the effective aperture theory, is discussed. This has been implemented for the TFM but it still has to be developed for the wavenumber algorithm.

  15. Robust image modeling technique with a bioluminescence image segmentation application

    NASA Astrophysics Data System (ADS)

    Zhong, Jianghong; Wang, Ruiping; Tian, Jie

    2009-02-01

    A robust pattern classifier algorithm for the variable symmetric plane model, where the driving noise is a mixture of a Gaussian and an outlier process, is developed. The veracity and high-speed performance of the pattern recognition algorithm is proved. Bioluminescence tomography (BLT) has recently gained wide acceptance in the field of in vivo small animal molecular imaging. So that it is very important for BLT to how to acquire the highprecision region of interest in a bioluminescence image (BLI) in order to decrease loss of the customers because of inaccuracy in quantitative analysis. An algorithm in the mode is developed to improve operation speed, which estimates parameters and original image intensity simultaneously from the noise corrupted image derived from the BLT optical hardware system. The focus pixel value is obtained from the symmetric plane according to a more realistic assumption for the noise sequence in the restored image. The size of neighborhood is adaptive and small. What's more, the classifier function is base on the statistic features. If the qualifications for the classifier are satisfied, the focus pixel intensity is setup as the largest value in the neighborhood.Otherwise, it will be zeros.Finally,pseudo-color is added up to the result of the bioluminescence segmented image. The whole process has been implemented in our 2D BLT optical system platform and the model is proved.

  16. Employing image processing techniques for cancer detection using microarray images.

    PubMed

    Dehghan Khalilabad, Nastaran; Hassanpour, Hamid

    2017-02-01

    Microarray technology is a powerful genomic tool for simultaneously studying and analyzing the behavior of thousands of genes. The analysis of images obtained from this technology plays a critical role in the detection and treatment of diseases. The aim of the current study is to develop an automated system for analyzing data from microarray images in order to detect cancerous cases. The proposed system consists of three main phases, namely image processing, data mining, and the detection of the disease. The image processing phase performs operations such as refining image rotation, gridding (locating genes) and extracting raw data from images the data mining includes normalizing the extracted data and selecting the more effective genes. Finally, via the extracted data, cancerous cell is recognized. To evaluate the performance of the proposed system, microarray database is employed which includes Breast cancer, Myeloid Leukemia and Lymphomas from the Stanford Microarray Database. The results indicate that the proposed system is able to identify the type of cancer from the data set with an accuracy of 95.45%, 94.11%, and 100%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Automated synthesis of image processing procedures using AI planning techniques

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Mortensen, Helen

    1994-01-01

    This paper describes the Multimission VICAR (Video Image Communication and Retrieval) Planner (MVP) (Chien 1994) system, which uses artificial intelligence planning techniques (Iwasaki & Friedland, 1985, Pemberthy & Weld, 1992, Stefik, 1981) to automatically construct executable complex image processing procedures (using models of the smaller constituent image processing subprograms) in response to image processing requests made to the JPL Multimission Image Processing Laboratory (MIPL). The MVP system allows the user to specify the image processing requirements in terms of the various types of correction required. Given this information, MVP derives unspecified required processing steps and determines appropriate image processing programs and parameters to achieve the specified image processing goals. This information is output as an executable image processing program which can then be executed to fill the processing request.

  18. Biophotonics techniques for structural and functional imaging, in vivo.

    PubMed

    Ardeshirpour, Yasaman; Gandjbakhche, Amir H; Najafizadeh, Laleh

    2013-01-01

    In vivo optical imaging is being conducted in a variety of medical applications, including optical breast cancer imaging, functional brain imaging, endoscopy, exercise medicine, and monitoring the photodynamic therapy and progress of neoadjuvant chemotherapy. In the past three decades, in vivo diffuse optical breast cancer imaging has shown promising results in cancer detection, and monitoring the progress of neoadjuvant chemotherapy. The use of near infrared spectroscopy for functional brain imaging has been growing rapidly. In fluorescence imaging, the difference between autofluorescence of cancer lesions compared to normal tissues were used in endoscopy to distinguish malignant lesions from normal tissue or inflammation and in determining the boarders of cancer lesions in surgery. Recent advances in drugs targeting specific tumor receptors, such as monoclonal antibodies (mAb), has created a new demand for developing non-invasive in vivo imaging techniques for detection of cancer biomarkers, and for monitoring their down regulations during therapy. Targeted treatments, combined with new imaging techniques, are expected to potentially result in new imaging and treatment paradigms in cancer therapy. Similar approaches can potentially be applied for the characterization of other disease-related biomarkers. In this chapter, we provide a review of diffuse optical and fluorescence imaging techniques with their application in functional brain imaging and cancer diagnosis.

  19. Biophotonics techniques for structural and functional imaging, in vivo.

    PubMed

    Ardeshirpour, Yasaman; Gandjbakhche, Amir H; Najafizadeh, Laleh

    2012-01-01

    In vivo optical imaging is being conducted in a variety of medical applications, including optical breast cancer imaging, functional brain imaging, endoscopy, exercise medicine, and monitoring the photodynamic therapy and progress of neoadjuvant chemotherapy. In the past three decades, in vivo diffuse optical breast cancer imaging has shown promising results in cancer detection, and monitoring the progress of neoadjuvant chemotherapy. The use of near infrared spectroscopy for functional brain imaging has been growing rapidly. In fluorescence imaging, the difference between autofluorescence of cancer lesions compared to normal tissues were used in endoscopy to distinguish malignant lesions from normal tissue or inflammation and in determining the boarders of cancer lesions in surgery. Recent advances in drugs targeting specific tumor receptors, such as AntiBodies (MAB), has created a new demand for developing non-invasive in vivo imaging techniques for detection of cancer biomarkers, and for monitoring their down regulations during therapy. Targeted treatments, combined with new imaging techniques, are expected to potentially result in new imaging and treatment paradigms in cancer therapy. Similar approaches can potentially be applied for the characterization of other disease-related biomarkers. In this chapter, we provide a review of diffuse optical and fluorescence imaging techniques with their application in functional brain imaging and cancer diagnosis.

  20. Optical double image encryption employing a pseudo image technique in the Fourier domain

    NASA Astrophysics Data System (ADS)

    Guo, Changliang; Liu, Shi; Sheridan, John T.

    2014-06-01

    A novel optical encryption method is proposed involving double image encryption in which one image is introduced as the pseudo image while the other is the original object image. The Double Random Phase Encoding technique is used to encrypt both the pseudo and object images into complex images. A unique binary image is then employed to first generate the random phase key for the object image encryption and then to embed the encrypted object image into the encrypted pseudo image, which acts as host image. Both the second random phase mask used for encoding the pseudo image and the binary image act as encryption keys. If an attacker attempts to crack the random phase key and decrypt the original object image, the pseudo image will be obtained instead. Simulation results and robustness tests are performed which demonstrate the feasibility of the algorithm.

  1. "Relative CIR": an image enhancement and visualization technique

    USGS Publications Warehouse

    Fleming, Michael D.

    1993-01-01

    Many techniques exist to spectrally and spatially enhance digital multispectral scanner data. One technique enhances an image while keeping the colors as they would appear in a color-infrared (CIR) image. This "relative CIR" technique generates an image that is both spectrally and spatially enhanced, while displaying a maximum range of colors. The technique enables an interpreter to visualize either spectral or land cover classes by their relative CIR characteristics. A relative CIR image is generated by developed spectral statistics for each class in the classifications and then, using a nonparametric approach for spectral enhancement, the means of the classes for each band are ranked. A 3 by 3 pixel smoothing filter is applied to the classification for spatial enhancement and the classes are mapped to the representative rank for each band. Practical applications of the technique include displaying an image classification product as a CIR image that was not derived directly from a spectral image, visualizing how a land cover classification would look as a CIR image, and displaying a spectral classification or intermediate product that will be used to label spectral classes.

  2. Comparison of interferometric spectral imaging techniques near the pupil plane and image plane

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuyoshi; Inoue, Takashi; Ichioka, Yoshiki

    1990-07-01

    We present an analysis of signal to noise ratios of two interferometric techniques for spectral imaging and its experimental verification. One technique makes use of interference signals detected near the pupil plane and the other uses the signals near the image plane. The experiments showed that the latter technique is superior to the former under the normal conditions. 1.

  3. Visualization of sound generation: special imaging techniques

    NASA Astrophysics Data System (ADS)

    Hahlweg, Cornelius F.; Skaloud, Daniel C.; Gutzmann, Holger L.; Kutz, Sascha; Rothe, Hendrik

    2013-09-01

    The present paper is dedicated to the Optics and Music session of the Novel Systems Design and Optimization XVI Conference. It is intended as an informative paper for the music enthusiasts. Included are some examples of visualization of sound generation and vibration modes of musically relevant objects and processes - record playback, an electric guitar and a wine glass - using high speed video, borescopic view and cross polarization techniques.

  4. New spectral imaging techniques for blood oximetry in the retina

    NASA Astrophysics Data System (ADS)

    Alabboud, Ied; Muyo, Gonzalo; Gorman, Alistair; Mordant, David; McNaught, Andrew; Petres, Clement; Petillot, Yvan R.; Harvey, Andrew R.

    2007-07-01

    Hyperspectral imaging of the retina presents a unique opportunity for direct and quantitative mapping of retinal biochemistry - particularly of the vasculature where blood oximetry is enabled by the strong variation of absorption spectra with oxygenation. This is particularly pertinent both to research and to clinical investigation and diagnosis of retinal diseases such as diabetes, glaucoma and age-related macular degeneration. The optimal exploitation of hyperspectral imaging however, presents a set of challenging problems, including; the poorly characterised and controlled optical environment of structures within the retina to be imaged; the erratic motion of the eye ball; and the compounding effects of the optical sensitivity of the retina and the low numerical aperture of the eye. We have developed two spectral imaging techniques to address these issues. We describe first a system in which a liquid crystal tuneable filter is integrated into the illumination system of a conventional fundus camera to enable time-sequential, random access recording of narrow-band spectral images. Image processing techniques are described to eradicate the artefacts that may be introduced by time-sequential imaging. In addition we describe a unique snapshot spectral imaging technique dubbed IRIS that employs polarising interferometry and Wollaston prism beam splitters to simultaneously replicate and spectrally filter images of the retina into multiple spectral bands onto a single detector array. Results of early clinical trials acquired with these two techniques together with a physical model which enables oximetry map are reported.

  5. Technique development for photoacoustic imaging guided interventions

    NASA Astrophysics Data System (ADS)

    Cheng, Qian; Zhang, Haonan; Yuan, Jie; Feng, Ting; Xu, Guan; Wang, Xueding

    2015-03-01

    Laser-induced thermotherapy (LITT), i.e. tissue destruction induced by a local increase of temperature by means of laser light energy transmission, has been frequently used for minimally invasive treatments of various diseases such as benign thyroid nodules and liver cancer. The emerging photoacoustic (PA) imaging, when integrated with ultrasound (US), could contribute to LITT procedure. PA can enable a good visualization of percutaneous apparatus deep inside tissue and, therefore, can offer accurate guidance of the optical fibers to the target tissue. Our initial experiment demonstrated that, by picking the strong photoacoustic signals generated at the tips of optical fibers as a needle, the trajectory and position of the fibers could be visualized clearly using a commercial available US unit. When working the conventional US Bscan mode, the fibers disappeared when the angle between the fibers and the probe surface was larger than 60 degree; while working on the new PA mode, the fibers could be visualized without any problem even when the angle between the fibers and the probe surface was larger than 75 degree. Moreover, with PA imaging function integrated, the optical fibers positioned into the target tissue, besides delivering optical energy for thermotherapy, can also be used to generate PA signals for on-line evaluation of LITT. Powered by our recently developed PA physio-chemical analysis, PA measurements from the tissue can provide a direct and accurate feedback of the tissue responses to laser ablation, including the changes in not only chemical compositions but also histological microstructures. The initial experiment on the rat liver model has demonstrated the excellent sensitivity of PA imaging to the changes in tissue temperature rise and tissue status (from native to coagulated) when the tissue is treated in vivo with LITT.

  6. Photodissociation dynamics of 2-bromopropane using velocity map imaging technique.

    PubMed

    Zhu, Rongshu; Tang, Bifeng; Zhang, Xiu; Zhang, Bing

    2010-06-03

    Photodissociation dynamics of 2-bromopropane in the A band was investigated at several wavelengths between 232 and 267 nm using resonance-enhanced multiphoton ionization technique combined with velocity map ion-imaging detection. The ion images of Br ((2)P(3/2)) and Br* ((2)P(1/2)) were analyzed to yield corresponding total translational energy and angular distributions. The total translational energy distributions showed that the channel leading to Br carried more internal energy in the 2-C(3)H(7) moiety than the channel leading to Br*. The anisotropy parameters of beta (Br) were obtained to be between 0.68 and 1.49, and beta (Br*) between 0.73 and 1.96, indicating that the Br* product originates from direct excitation of the (3)Q(0) state and the (1)Q(1) --> (3)Q(0) nonadiabatic transition, and the Br product from direct excitation of the (1)Q(1) or (3)Q(1) state and the (3)Q(0) --> (1)Q(1) nonadiabatic transition. The curve crossing probabilities were determined to be increase with the wavelength. As compared with the case of CH(3)Br, the two heavier branched CH(3) groups significantly enhance the Br ((2)P(3/2)) production from nonadiabatic contribution. The curve crossing from the (3)Q(0) to the (1)Q(1) surface is much higher than that of the reverse from the (1)Q(1) to the (3)Q(0) surface, which may have resulted from the difference in shape between the potential energy surfaces of the (3)Q(0) and (1)Q(1) states. Finally, based on the experimental data, the partial absorption cross sections of the A band for the (3)Q(0), (3)Q(1), and (1)Q(1) states were extracted.

  7. Studies of EGRET sources with a novel image restoration technique

    SciTech Connect

    Tajima, Hiroyasu; Cohen-Tanugi, Johann; Kamae, Tuneyoshi; Finazzi, Stefano; Chiang, James

    2007-07-12

    We have developed an image restoration technique based on the Richardson-Lucy algorithm optimized for GLAST-LAT image analysis. Our algorithm is original since it utilizes the PSF (point spread function) that is calculated for each event. This is critical for EGRET and GLAST-LAT image analysis since the PSF depends on the energy and angle of incident gamma-rays and varies by more than one order of magnitude. EGRET and GLAST-LAT image analysis also faces Poisson noise due to low photon statistics. Our technique incorporates wavelet filtering to minimize noise effects. We present studies of EGRET sources using this novel image restoration technique for possible identification of extended gamma-ray sources.

  8. A fuzzy optimal threshold technique for medical images

    NASA Astrophysics Data System (ADS)

    Thirupathi Kannan, Balaji; Krishnasamy, Krishnaveni; Pradeep Kumar Kenny, S.

    2011-12-01

    A new fuzzy based thresholding method for medical images especially cervical cytology images having blob and mosaic structures is proposed in this paper. Many existing thresholding algorithms may segment either blob or mosaic images but there aren't any single algorithm that can do both. In this paper, an input cervical cytology image is binarized, preprocessed and the pixel value with minimum Fuzzy Gaussian Index is identified as an optimal threshold value and used for segmentation. The proposed technique is tested on various cervical cytology images having blob or mosaic structures, compared with various existing algorithms and proved better than the existing algorithms.

  9. A fuzzy optimal threshold technique for medical images

    NASA Astrophysics Data System (ADS)

    Thirupathi Kannan, Balaji; Krishnasamy, Krishnaveni; Pradeep Kumar Kenny, S.

    2012-01-01

    A new fuzzy based thresholding method for medical images especially cervical cytology images having blob and mosaic structures is proposed in this paper. Many existing thresholding algorithms may segment either blob or mosaic images but there aren't any single algorithm that can do both. In this paper, an input cervical cytology image is binarized, preprocessed and the pixel value with minimum Fuzzy Gaussian Index is identified as an optimal threshold value and used for segmentation. The proposed technique is tested on various cervical cytology images having blob or mosaic structures, compared with various existing algorithms and proved better than the existing algorithms.

  10. Optical and digital microscopic imaging techniques and applications in pathology.

    PubMed

    Chen, Xiaodong; Zheng, Bin; Liu, Hong

    2011-01-01

    The conventional optical microscope has been the primary tool in assisting pathological examinations. The modern digital pathology combines the power of microscopy, electronic detection, and computerized analysis. It enables cellular-, molecular-, and genetic-imaging at high efficiency and accuracy to facilitate clinical screening and diagnosis. This paper first reviews the fundamental concepts of microscopic imaging and introduces the technical features and associated clinical applications of optical microscopes, electron microscopes, scanning tunnel microscopes, and fluorescence microscopes. The interface of microscopy with digital image acquisition methods is discussed. The recent developments and future perspectives of contemporary microscopic imaging techniques such as three-dimensional and in vivo imaging are analyzed for their clinical potentials.

  11. Magnetic resonance image segmentation using multifractal techniques

    NASA Astrophysics Data System (ADS)

    Yu, Yue-e.; Wang, Fang; Liu, Li-lin

    2015-11-01

    In order to delineate target region for magnetic resonance image (MRI) with diseases, the classical multifractal spectrum (MFS)-segmentation method and latest multifractal detrended fluctuation spectrum (MF-DFS)-based segmentation method are employed in our study. One of our main conclusions from experiments is that both of the two multifractal-based methods are workable for handling MRIs. The best result is obtained by MF-DFS-based method using Lh10 as local characteristic. The anti-noises experiments also suppot the conclusion. This interest finding shows that the features can be better represented by the strong fluctuations instead of the weak fluctuations for the MRIs. By comparing the multifractal nature between lesion and non-lesion area on the basis of the segmentation results, an interest finding is that the gray value's fluctuation in lesion area is much severer than that in non-lesion area.

  12. Advanced millimeter-wave security portal imaging techniques

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-03-01

    Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.

  13. Investigations of Antiangiogenic Mechanisms Using Novel Imaging Techniques

    DTIC Science & Technology

    2011-02-01

    Wilson, “ Intravital high-resolution optical imaging of individual vessel re- sponse to photodynamic treatment,” J. Biomed. Opt. 134, 040502 2008. 7...nanoparticles ∼80–100 nm diam. 1.2 Microscope A Zeiss MPS intravital microscope was used for all imaging , using a 2.5X objective. A DAPI excitation filter...Jan 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER BC083195 Investigation of Antiangiogenic Mechanisms Using Novel Imaging Techniques 5b

  14. Development of Digital Steroscopic Imaging Technique in Mammography

    DTIC Science & Technology

    2001-05-01

    imaging technique in which the phantom was shifted instead of the focal spot for acquisition of the left-eye and right-eye images. In a preliminary observer... Phantoms (C) Phantom Evaluation of Full Field Steremammography (D) Evaluation of the Effect of Zooming on Depth Measurements in Digital...interpretation by radiologists and reduce unnecessary biopsies. To accomplish this goal, we first performed phantom studies to develop an optimal imaging

  15. Simulating a Radial Velocity Precurser Survey for Target Yield Optimization for a Future Direct Imaging Mission

    NASA Astrophysics Data System (ADS)

    Newman, Patrick; Plavchan, Peter; Crepp, Justin R.; Dulz, Shannon; Stark, Chris; Kane, Stephen R.

    2017-01-01

    Future direct imaging mission concepts such as HabEx and LUVOIR aim to directly image and characterize Earth-analogs around nearby stars. With the scope and expense of these missions, the exoplanet yield is strongly dependent on the frequency of Earth-like planets and the a priori knowledge of which stars specifically host suitable planetary systems. Ground-based radial velocity surveys can potentially perform the pre-selection of direct imaging missions at a fraction of the cost of a blind direct imaging survey. We present a simulation of such a survey. We consider both the WIYN and Large Binocular Telescope, including weather conditions and limitations in telescope time, fitted with spectrometers of varying sensitivities including iLocator and NEID. We recover simulated planets and their orbital parameters, estimating the effectiveness of a pre-cursor radial velocity survey.

  16. Study of quality perception in medical images based on comparison of contrast enhancement techniques in mammographic images

    NASA Astrophysics Data System (ADS)

    Matheus, B.; Verçosa, L. B.; Barufaldi, B.; Schiabel, H.

    2014-03-01

    With the absolute prevalence of digital images in mammography several new tools became available for radiologist; such as CAD schemes, digital zoom and contrast alteration. This work focuses in contrast variation and how the radiologist reacts to these changes when asked to evaluated image quality. Three contrast enhancing techniques were used in this study: conventional equalization, CCB Correction [1] - a digitization correction - and value subtraction. A set of 100 images was used in tests from some available online mammographic databases. The tests consisted of the presentation of all four versions of an image (original plus the three contrast enhanced images) to the specialist, requested to rank each one from the best up to worst quality for diagnosis. Analysis of results has demonstrated that CCB Correction [1] produced better images in almost all cases. Equalization, which mathematically produces a better contrast, was considered the worst for mammography image quality enhancement in the majority of cases (69.7%). The value subtraction procedure produced images considered better than the original in 84% of cases. Tests indicate that, for the radiologist's perception, it seems more important to guaranty full visualization of nuances than a high contrast image. Another result observed is that the "ideal" scanner curve does not yield the best result for a mammographic image. The important contrast range is the middle of the histogram, where nodules and masses need to be seen and clearly distinguished.

  17. Reconstruction techniques for sparse multistatic linear array microwave imaging

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.

    2014-06-01

    Sequentially-switched linear arrays are an enabling technology for a number of near-field microwave imaging applications. Electronically sequencing along the array axis followed by mechanical scanning along an orthogonal axis allows dense sampling of a two-dimensional aperture in near real-time. The Pacific Northwest National Laboratory (PNNL) has developed this technology for several applications including concealed weapon detection, groundpenetrating radar, and non-destructive inspection and evaluation. These techniques form three-dimensional images by scanning a diverging beam swept frequency transceiver over a two-dimensional aperture and mathematically focusing or reconstructing the data into three-dimensional images. Recently, a sparse multi-static array technology has been developed that reduces the number of antennas required to densely sample the linear array axis of the spatial aperture. This allows a significant reduction in cost and complexity of the linear-array-based imaging system. The sparse array has been specifically designed to be compatible with Fourier-Transform-based image reconstruction techniques; however, there are limitations to the use of these techniques, especially for extreme near-field operation. In the extreme near-field of the array, back-projection techniques have been developed that account for the exact location of each transmitter and receiver in the linear array and the 3-D image location. In this paper, the sparse array technique will be described along with associated Fourier-Transform-based and back-projection-based image reconstruction algorithms. Simulated imaging results are presented that show the effectiveness of the sparse array technique along with the merits and weaknesses of each image reconstruction approach.

  18. Cell imaging techniques based on digital image plane holography

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoji; Gong, Wendi; Liu, Feifei; Wang, Huaying

    2010-11-01

    This paper has further studied the implementation methods and recording conditions of digital microscopic image plane holography (DMIPH). Two optical systems of DMIPH were built: one is recording hologram by using plane waves as reference light, the other is recording hologram by spherical reference light. Breast cancer cells and USAF resolution test target is used as tested samples in the experiment. Then the intensity distribution and three-dimensional shape information of the cells are got accurately. The experiment results show that DMIPH avoids the process of finding recording distance by using auto-focusing approach. The recording and reconstruction process of DMIPH is simple. Therefore DMIPH can be applied to the microscopic imaging of cells more effectively.

  19. Application of digital image processing techniques to astronomical imagery 1978

    NASA Technical Reports Server (NTRS)

    Lorre, J. J.

    1978-01-01

    Techniques for using image processing in astronomy are identified and developed for the following: (1) geometric and radiometric decalibration of vidicon-acquired spectra, (2) automatic identification and segregation of stars from galaxies; and (3) display of multiband radio maps in compact and meaningful formats. Examples are presented of these techniques applied to a variety of objects.

  20. The estimation of rice paddy yield with GRAMI crop model and Geostationary Ocean Color Imager (GOCI) image over South Korea

    NASA Astrophysics Data System (ADS)

    Yeom, J. M.; Kim, H. O.

    2014-12-01

    In this study, we estimated the rice paddy yield with moderate geostationary satellite based vegetation products and GRAMI model over South Korea. Rice is the most popular staple food for Asian people. In addition, the effects of climate change are getting stronger especially in Asian region, where the most of rice are cultivated. Therefore, accurate and timely prediction of rice yield is one of the most important to accomplish food security and to prepare natural disasters such as crop defoliation, drought, and pest infestation. In the present study, GOCI, which is world first Geostationary Ocean Color Image, was used for estimating temporal vegetation indices of the rice paddy by adopting atmospheric correction BRDF modeling. For the atmospheric correction with LUT method based on Second Simulation of the Satellite Signal in the Solar Spectrum (6S), MODIS atmospheric products such as MOD04, MOD05, MOD07 from NASA's Earth Observing System Data and Information System (EOSDIS) were used. In order to correct the surface anisotropy effect, Ross-Thick Li-Sparse Reciprocal (RTLSR) BRDF model was performed at daily basis with 16day composite period. The estimated multi-temporal vegetation images was used for crop classification by using high resolution satellite images such as Rapideye, KOMPSAT-2 and KOMPSAT-3 to extract the proportional rice paddy area in corresponding a pixel of GOCI. In the case of GRAMI crop model, initial conditions are determined by performing every 2 weeks field works at Chonnam National University, Gwangju, Korea. The corrected GOCI vegetation products were incorporated with GRAMI model to predict rice yield estimation. The predicted rice yield was compared with field measurement of rice yield.

  1. Using image processing techniques on proximity probe signals in rotordynamics

    NASA Astrophysics Data System (ADS)

    Diamond, Dawie; Heyns, Stephan; Oberholster, Abrie

    2016-06-01

    This paper proposes a new approach to process proximity probe signals in rotordynamic applications. It is argued that the signal be interpreted as a one dimensional image. Existing image processing techniques can then be used to gain information about the object being measured. Some results from one application is presented. Rotor blade tip deflections can be calculated through localizing phase information in this one dimensional image. It is experimentally shown that the newly proposed method performs more accurately than standard techniques, especially where the sampling rate of the data acquisition system is inadequate by conventional standards.

  2. The Advanced Space Plant Culture Device with Live Imaging Technique

    NASA Astrophysics Data System (ADS)

    Zheng, Weibo; Zhang, Tao; Tong, Guanghui

    The live imaging techniques, including the color and fluorescent imags, are very important and useful for space life science. The advanced space plant culture Device (ASPCD) with live imaging Technique, developed for Chinese Spacecraft, would be introduced in this paper. The ASPCD had two plant experimental chambers. Three cameras (two color cameras and one fluorescent camera) were installed in the two chambers. The fluorescent camera could observe flowering genes, which were labeled by GFP. The lighting, nutrient, temperature controling and water recycling were all independent in each chamber. The ASPCD would beed applied to investigate for the growth and development of the high plant under microgravity conditions on board the Chinese Spacecraft.

  3. A fast iterative technique for restoring scanning electron microscope images

    NASA Astrophysics Data System (ADS)

    Nakahira, Kenji; Miyamoto, Atsushi; Honda, Toshifumi

    2014-12-01

    This paper proposes a fast new technique for restoring scanning electron microscope images to improve their sharpness. The images with our approach are sharpened by deconvolution with the point spread function modeled as the intensity distribution of the electron beam at the specimen's surface. We propose an iterative technique that employs a modified cost function based on the Richardson-Lucy method to achieve faster processing. The empirical results indicate significant improvements in image quality. The proposed approach speeds up deconvolution by about 10-50 times faster than that with the conventional Richardson-Lucy method.

  4. Nondestructive evaluation technique using infrared thermography and terahertz imaging

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahide; Shiozawa, Daiki; Tamaki, Yoshitaka; Iwama, Tatsuya

    2016-05-01

    Nondestructive testing (NDT) techniques using pulse heating infrared thermography and terahertz (THz) imaging were developed for detecting deterioration of oil tank floor, such as blister and delamination of corrosion protection coating, or corrosion of the bottom steel plate under coating. Experimental studies were conducted to demonstrate the practicability of developed techniques. It was found that the pulse heating infrared thermography was utilized for effective screening inspection and THz-TDS imaging technique performed well for the detailed inspection of coating deterioration and steel corrosion.

  5. Imaging techniques applied to characterize bitumen and bituminous emulsions.

    PubMed

    Rodríguez-Valverde, M A; Ramón-Torregrosa, P; Páez-Dueñas, A; Cabrerizo-Vílchez, M A; Hidalgo-Alvarez, R

    2008-01-15

    The purpose of this article is to present some important advances in the imaging techniques currently used in the characterization of bitumen and bituminous emulsions. Bitumen exhibits some properties, such as a black colour and a reflecting surface at rest, which permit the use of optical techniques to study the macroscopic behaviour of asphalt mixes in the cold mix technology based on emulsion use. Imaging techniques allow monitoring in situ the bitumen thermal sensitivity as well as the complex phenomenon of emulsion breaking. Evaporation-driven breaking was evaluated from the shape of evaporating emulsion drops deposited onto non-porous and hydrophobic substrates. To describe the breaking kinetics, top-view images of a drying emulsion drop placed on an aggregate sheet were acquired and processed properly. We can conclude that computer-aided image analysis in road pavement engineering can elucidate the mechanism of breaking and curing of bituminous emulsion.

  6. Vascular image registration techniques: A living review.

    PubMed

    Matl, Stefan; Brosig, Richard; Baust, Maximilian; Navab, Nassir; Demirci, Stefanie

    2017-01-01

    Registration of vascular structures is crucial for preoperative planning, intraoperative navigation, and follow-up assessment. Typical applications include, but are not limited to, Trans-catheter Aortic Valve Implantation and monitoring of tumor vasculature or aneurysm growth. In order to achieve the aforementioned goals, a large number of various registration algorithms has been developed. With this review paper we provide a comprehensive overview over the plethora of existing techniques with a particular focus on the suitable classification criteria such as the involved modalities of the employed optimization methods. However, we wish to go beyond a static literature review which is naturally doomed to be outdated after a certain period of time due to the research progress. We augment this review paper with an extendable and interactive database in order to obtain a living review whose currency goes beyond the one of a printed paper. All papers in this database are labeled with one or multiple tags according to 13 carefully defined categories. The classification of all entries can then be visualized as one or multiple trees which are presented via a web-based interactive app (http://livingreview.in.tum.de) allowing the user to choose a unique perspective for literature review. In addition, the user can search the underlying database for specific tags or publications related to vessel registration. Many applications of this framework are conceivable, including the use for getting a general overview on the topic or the utilization by physicians for deciding about the best-suited algorithm for a specific application.

  7. Minimax Techniques For Optimizing Non-Linear Image Algebra Transforms

    NASA Astrophysics Data System (ADS)

    Davidson, Jennifer L.

    1989-08-01

    It has been well established that the Air Force Armament Technical Laboratory (AFATL) image algebra is capable of expressing all linear transformations [7]. The embedding of the linear algebra in the image algebra makes this possible. In this paper we show a relation of the image algebra to another algebraic system called the minimax algebra. This system is used extensively in economics and operations research, but until now has not been investigated for applications to image processing. The relationship is exploited to develop new optimization methods for a class of non-linear image processing transforms. In particular, a general decomposition technique for templates in this non-linear domain is presented. Template decomposition techniques are an important tool in mapping algorithms efficiently to both sequential and massively parallel architectures.

  8. Computational ghost imaging: advanced compressive sensing (CS) technique

    NASA Astrophysics Data System (ADS)

    Katkovnik, Vladimir; Astola, Jaakko

    2012-10-01

    A novel efficient variational technique for speckle imaging is discussed. It is developed with the main motivation to filter noise, to wipe out the typical diffraction artifacts and to achieve crisp imaging. A sparse modeling is used for the wave field at the object plane in order to overcome the loss of information due to the ill-posedness of forward propagation image formation operators. This flexible and data adaptive modeling relies on the recent progress in sparse imaging and compressive sensing (CS). Being in line with the general formalism of CS, we develop an original approach to wave field reconstruction.7 In this paper we demonstrate this technique in its application for computational amplitude ghost imaging (GI), where a spatial light modulator (SLM) is used in order to generate a speckle wave field sensing a transmitted mask object.

  9. Cardiac magnetic resonance imaging has limited additional yield in cryptogenic stroke evaluation after transesophageal echocardiography.

    PubMed

    Liberman, Ava L; Kalani, Rizwan E; Aw-Zoretic, Jessie; Sondag, Matthew; Daruwalla, Vistasp J; Mitter, Sumeet S; Bernstein, Richard; Collins, Jeremy D; Prabhakaran, Shyam

    2017-01-01

    Background The use of cardiac magnetic resonance imaging is increasing, but its role in the diagnostic work-up following ischemic stroke has received limited study. We aimed to explore the added yield of cardiac magnetic resonance imaging to identify cardio-aortic sources not detected by transesophageal echocardiography among patients with cryptogenic stroke. Methods A retrospective single-center cohort study was performed from 01 January 2009 to 01 March 2013. Consecutive patients who had both a stroke protocol cardiac magnetic resonance imaging and a transesophageal echocardiography preformed during a single hospitalization were included. All cardiac magnetic resonance imaging studies underwent independent, blinded review by two investigators. We applied the causative classification system for ischemic stroke to all patients, first blinded to cardiac magnetic resonance imaging results; we then reapplied the causative classification system using cardiac magnetic resonance imaging. Standard statistical tests to evaluate stroke subtype reclassification rates were used. Results Ninety-three patients were included in the final analysis; 68.8% were classified as cryptogenic stroke after initial diagnostic evaluation. Among patients with cryptogenic stroke, five (7.8%) were reclassified due to cardiac magnetic resonance imaging findings: one was reclassified as "cardio-aortic embolism evident" due to the presence of a patent foramen ovale and focal cardiac infarct and four were reclassified as "cardio-aortic embolism possible" due to mitral valve thickening (n = 1) or hypertensive cardiomyopathy (n = 3). Overall, findings on cardiac magnetic resonance imaging reduced the percentage of patients with cryptogenic stroke by slightly more than 1%. Conclusion Our stroke subtype reclassification rate after the addition of cardiac magnetic resonance imaging results to a diagnostic work-up which includes transesophageal echocardiography was very low. Prospective studies

  10. An image morphing technique based on optimal mass preserving mapping.

    PubMed

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2007-06-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L(2) mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods.

  11. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    PubMed Central

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  12. Digital subtraction angiography: principles and pitfalls of image improvement techniques.

    PubMed

    Levin, D C; Schapiro, R M; Boxt, L M; Dunham, L; Harrington, D P; Ergun, D L

    1984-09-01

    The technology of imaging methods in digital subtraction angiography (DSA) is discussed in detail. Areas covered include function of the video camera in both interlaced and sequential scan modes, digitization by the analog-to-digital converter, logarithmic signal processing, dose rates, and acquisition of images using frame integration and pulsed-sequential techniques. Also discussed are various methods of improving image content and quality by both hardware and software modifications. These include the development of larger image intensifiers, larger matrices, video camera improvements, reregistration, hybrid subtraction, matched filtering, recursive filtering, DSA tomography, and edge enhancement.

  13. Quantification of saleable meat yield using objective measurements captured by video image analysis technology.

    PubMed

    McEvers, T J; Hutcheson, J P; Lawrence, T E

    2012-09-01

    Video image analysis (VIA) images from grain-finished beef carcasses [n = 211; of which 63 did not receive zilpaterol hydrochloride (ZIL) and 148 received ZIL before harvest] were analyzed for indicators of muscle and fat to illustrate the ability to improve methodology to predict saleable meat yield of cattle fed and not fed ZIL. Carcasses were processed in large commercial beef processing facilities and were fabricated into standard subprimals, fat, and bone. Images taken by VIA technology were evaluated using computer image analysis software to quantify fat and lean parameters which were subsequently used in multiple-linear regression models to predict percentage of saleable meat yield for each carcass. Prediction models included variables currently quantified by VIA technology such as LM area (LMA), subcutaneous (SC) fat thickness at 75% the length of the LM (SFT75), and intramuscular fat score (IMF). Additional distance and area measures included LM width (LW), LM depth (LD), iliocostalis muscle area (IA), SC fat thickness at 25, 50, and 100% the length of the LM (SFT25, SFT50, SFT100), SC fat area from 25 to 100% the length of the LM (SCFA), and SC fat area adjacent to the 75% length of the LM from the spinous processes (SCFA75). Multiple ratio and product variables were also created from distance and area measures. For carcasses in this investigation, a 6 variable equation (Adj. R(2) = 0.62, MSE = 0.022) was calculated which included coefficients for ZIL treatment, SCFA75, LW, SCFA, SCFA/HCW, and SFT100/HCW. Use of parameters in the U.S. (Adj. R(2) = 0.39, MSE = 0.028) and Canadian [Adj. R(2) = 0.10, root mean square error (MSE) = 0.034] yield grade equations lack the predictability of the newly adapted equations developed for ZIL-fed and non-ZIL-fed cattle. Prediction equations developed in this study indicate that the use of VIA technology to quantify measurements taken at the 12th/13th rib separation could be used to predict saleable meat yield more

  14. A new x-ray imaging technique for radiography mode of flat-panel imager

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Ikeda, S.; Ueda, K.; Baba, R.

    2007-03-01

    A digital radiography system using a flat-panel imager, which has a novel imaging technique for a radiography mode, has been developed. A radiographic image captured by the new imaging technique has a wide dynamic range in comparison with conventional radiographic images. The purpose of this presentation is to show the basic performance of the image quality acquired by the new imaging technique and compare it with an image taken by a conventional technique. The flat-panel imager has a gain switching capability, normally used in a dynamic imaging mode for a cone-beam CT study. The gain switching method has two gain settings and switches between them automatically, depending on the incident dose to each pixel of flat-panel imager. As a result of the gain switching method, an image having wide dynamic range is achieved. In this study, we applied the gain switching method to the radiography mode, and achieved a radiographic image with wider dynamic range than a conventional radiograph. Furthermore, we have also developed an algorithm for calibration of the gain switching method in radiography mode.

  15. [Novel endoscopic techniques to image the upper gastrointestinal tract].

    PubMed

    Quénéhervé, Lucille; Neunlist, Michel; Bruley des Varannes, Stanislas; Tearney, Guillermo; Coron, Emmanuel

    2015-01-01

    Novel endoscopic techniques for the analysis of the digestive wall have recently been developed to allow investigating digestive diseases beyond standard "white-light" macroscopic imaging of the mucosal surface. Among innovative techniques under clinical evaluation, confocal endomicroscopy and optical frequency domain imaging (OFDI) are the most promising. Indeed, these techniques allow performing in vivo microscopy with different levels in terms of depths and magnification, as well as functional assessment of structures. Some of these techniques, such as capsule-based OFDI, are also less invasive than traditional endoscopy and might help screening large groups of patients for specific disorders, for instance oesophageal precancerous diseases. In this review, we will focus on the results obtained with these techniques in precancerous, inflammatory and neuromuscular disorders.

  16. Development of an image-analysis light-scattering technique

    NASA Astrophysics Data System (ADS)

    Algarni, Saad; Kashuri, Hektor; Iannacchione, Germano

    2013-03-01

    We describe the progress in developing a versatile image-analysis approach for a light-scattering experiment. Recent advances in image analysis algorithms, computational power, and CCD image capture has allowed for the complete digital recording of the scattering of coherent laser light by a wide variety of samples. This digital record can then yield both static and dynamic information about the scattering events. Our approach is described using a very simple and in-expensive experimental arrangement for liquid samples. Calibration experiments were performed on aqueous suspensions of latex spheres having 0.5 and 1.0 micrometer diameter for three concentrations of 2 X 10-6, 1 X 10-6, and 5 X 10-7 % w/w at room temperature. The resulting data span a wave-vector range of q = 102 to 105 cm-1 and time averages over 0.05 to 1200 sec. The static analysis yield particle sizes in good agreement with expectations and a simple dynamic analysis yields an estimate of the characteristic time scale of the particle dynamics. Further developments in image corrections (laser stability, vibration, curvature, etc.) as well as time auto-correlation analysis will also be discussed.

  17. 3D thermography imaging standardization technique for inflammation diagnosis

    NASA Astrophysics Data System (ADS)

    Ju, Xiangyang; Nebel, Jean-Christophe; Siebert, J. Paul

    2005-01-01

    We develop a 3D thermography imaging standardization technique to allow quantitative data analysis. Medical Digital Infrared Thermal Imaging is very sensitive and reliable mean of graphically mapping and display skin surface temperature. It allows doctors to visualise in colour and quantify temperature changes in skin surface. The spectrum of colours indicates both hot and cold responses which may co-exist if the pain associate with an inflammatory focus excites an increase in sympathetic activity. However, due to thermograph provides only qualitative diagnosis information, it has not gained acceptance in the medical and veterinary communities as a necessary or effective tool in inflammation and tumor detection. Here, our technique is based on the combination of visual 3D imaging technique and thermal imaging technique, which maps the 2D thermography images on to 3D anatomical model. Then we rectify the 3D thermogram into a view independent thermogram and conform it a standard shape template. The combination of these imaging facilities allows the generation of combined 3D and thermal data from which thermal signatures can be quantified.

  18. Technique Standards for Skin Lesion Imaging: A Delphi Consensus Statement.

    PubMed

    Katragadda, Chinmayee; Finnane, Anna; Soyer, H Peter; Marghoob, Ashfaq A; Halpern, Allan; Malvehy, Josep; Kittler, Harald; Hofmann-Wellenhof, Rainer; Da Silva, Dennis; Abraham, Ivo; Curiel-Lewandrowski, Clara

    2016-11-23

    Variability in the metrics for image acquisition at the total body, regional, close-up, and dermoscopic levels impacts the quality and generalizability of skin images. Consensus guidelines are indicated to achieve universal imaging standards in dermatology. To achieve consensus among members of the International Skin Imaging Collaboration (ISIC) on standards for image acquisition metrics using a hybrid Delphi method. Delphi study with 5 rounds of ratings and revisions until relative consensus was achieved. The initial set of statements was developed by a core group (CG) on the basis of a literature review and clinical experience followed by 2 rounds of rating and revisions. The consensus process was validated by an extended group (EG) of ISIC members through 2 rounds of scoring and revisions. In all rounds, respondents rated the draft recommendations on a 1 (strongly agree) to 5 (strongly disagree) scale, explained ratings of less than 5, and optionally provided comments. At any stage, a recommendation was retained if both mean and median rating was 4 or higher. The initial set of 45 items (round 1) was expanded by the CG to 56 variants in round 2, subsequently reduced to 42 items scored by the EG in round 3, yielding an EG set of 33 recommendations (rounds 4 and 5): general recommendation (1 guideline), lighting (5), background color (3), field of view (3), image orientation (8), focus/depth of field (3), resolution (4), scale (3), color calibration (2), and image storage (1). This iterative process of ratings and comments yielded a strong consensus on standards for skin imaging in dermatology practice. Adoption of these methods for image standardization is likely to improve clinical practice, information exchange, electronic health record documentation, harmonization of clinical studies and database development, and clinical decision support. Feasibility and validity testing under real-world clinical conditions is indicated.

  19. Pattern recognition software and techniques for biological image analysis.

    PubMed

    Shamir, Lior; Delaney, John D; Orlov, Nikita; Eckley, D Mark; Goldberg, Ilya G

    2010-11-24

    The increasing prevalence of automated image acquisition systems is enabling new types of microscopy experiments that generate large image datasets. However, there is a perceived lack of robust image analysis systems required to process these diverse datasets. Most automated image analysis systems are tailored for specific types of microscopy, contrast methods, probes, and even cell types. This imposes significant constraints on experimental design, limiting their application to the narrow set of imaging methods for which they were designed. One of the approaches to address these limitations is pattern recognition, which was originally developed for remote sensing, and is increasingly being applied to the biology domain. This approach relies on training a computer to recognize patterns in images rather than developing algorithms or tuning parameters for specific image processing tasks. The generality of this approach promises to enable data mining in extensive image repositories, and provide objective and quantitative imaging assays for routine use. Here, we provide a brief overview of the technologies behind pattern recognition and its use in computer vision for biological and biomedical imaging. We list available software tools that can be used by biologists and suggest practical experimental considerations to make the best use of pattern recognition techniques for imaging assays.

  20. Pattern Recognition Software and Techniques for Biological Image Analysis

    PubMed Central

    Shamir, Lior; Delaney, John D.; Orlov, Nikita; Eckley, D. Mark; Goldberg, Ilya G.

    2010-01-01

    The increasing prevalence of automated image acquisition systems is enabling new types of microscopy experiments that generate large image datasets. However, there is a perceived lack of robust image analysis systems required to process these diverse datasets. Most automated image analysis systems are tailored for specific types of microscopy, contrast methods, probes, and even cell types. This imposes significant constraints on experimental design, limiting their application to the narrow set of imaging methods for which they were designed. One of the approaches to address these limitations is pattern recognition, which was originally developed for remote sensing, and is increasingly being applied to the biology domain. This approach relies on training a computer to recognize patterns in images rather than developing algorithms or tuning parameters for specific image processing tasks. The generality of this approach promises to enable data mining in extensive image repositories, and provide objective and quantitative imaging assays for routine use. Here, we provide a brief overview of the technologies behind pattern recognition and its use in computer vision for biological and biomedical imaging. We list available software tools that can be used by biologists and suggest practical experimental considerations to make the best use of pattern recognition techniques for imaging assays. PMID:21124870

  1. Rock type discrimination techniques using Landsat and Seasat image data

    NASA Technical Reports Server (NTRS)

    Blom, R.; Abrams, M.; Conrad, C.

    1981-01-01

    Results of a sedimentary rock type discrimination project using Seasat radar and Landsat multispectral image data of the San Rafael Swell, in eastern Utah, are presented, which has the goal of determining the potential contribution of radar image data to Landsat image data for rock type discrimination, particularly when the images are coregistered. The procedure employs several images processing techniques using the Landsat and Seasat data independently, and then both data sets are coregistered. The images are evaluated according to the ease with which contacts can be located and rock units (not just stratigraphically adjacent ones) separated. Results show that of the Landsat images evaluated, the image using a supervised classification scheme is the best for sedimentary rock type discrimination. Of less value, in decreasing order, are color ratio composites, principal components, and the standard color composite. In addition, for rock type discrimination, the black and white Seasat image is less useful than any of the Landsat color images by itself. However, it is found that the incorporation of the surface textural measures made from the Seasat image provides a considerable and worthwhile improvement in rock type discrimination.

  2. Rock type discrimination techniques using Landsat and Seasat image data

    NASA Technical Reports Server (NTRS)

    Blom, R.; Abrams, M.; Conrad, C.

    1981-01-01

    Results of a sedimentary rock type discrimination project using Seasat radar and Landsat multispectral image data of the San Rafael Swell, in eastern Utah, are presented, which has the goal of determining the potential contribution of radar image data to Landsat image data for rock type discrimination, particularly when the images are coregistered. The procedure employs several images processing techniques using the Landsat and Seasat data independently, and then both data sets are coregistered. The images are evaluated according to the ease with which contacts can be located and rock units (not just stratigraphically adjacent ones) separated. Results show that of the Landsat images evaluated, the image using a supervised classification scheme is the best for sedimentary rock type discrimination. Of less value, in decreasing order, are color ratio composites, principal components, and the standard color composite. In addition, for rock type discrimination, the black and white Seasat image is less useful than any of the Landsat color images by itself. However, it is found that the incorporation of the surface textural measures made from the Seasat image provides a considerable and worthwhile improvement in rock type discrimination.

  3. An imaging technique for detection and absolute calibration of scintillation light

    SciTech Connect

    Pappalardo, Alfio; Cosentino, Luigi; Finocchiaro, Paolo

    2010-03-15

    Triggered by the need of a detection system to be used in experiments of nuclear fusion in laser-generated plasmas, we developed an imaging technique for the measurement and calibration of the scintillation light yield of scintillating materials. As in such experiments, all the reaction products are generated in an ultrashort time frame, the event-by-event data acquisition scheme is not feasible. As an alternative to the emulsion technique (or the equivalent CR39 sheets) we propose a scintillating screen readout by means of a high performance charge coupled device camera. Even though it is not strictly required in the particular application, this technique allows the absolute calibration of the scintillation light yield.

  4. Imaging in pulmonary hypertension, part 1: clinical perspectives, classification, imaging techniques and imaging algorithm.

    PubMed

    McCann, Caroline; Gopalan, Deepa; Sheares, Karen; Screaton, Nicholas

    2012-05-01

    Pulmonary arterial hypertension (PAH) is an uncommon condition associated with significant morbidity and mortality. It has diverse aetiology with differing clinical presentations, imaging features and treatments that range from surgical treatment of proximal chronic thromboembolic disease to targeted medical therapies in small vessel disease. Current classification of pulmonary hypertension (PH) is clinically based and groups diseases with similar pathophysiological mechanisms and therapeutic approaches. Groupings include conditions characterised by diffuse small vessel diseases such as idiopathic PAH, PH secondary to chronic hypoxic lung disease, left sided cardiac disease, chronic large vessel obstruction such as chronic thromboembolic disease and a miscellaneous group of diseases. The physiological manifestation of all of these diseases is increased pulmonary vascular resistance and PAH and while clinical features may provide a clue to diagnosis imaging plays a fundamental role in establishing a precise diagnosis and therefore guides therapy. A broad range of imaging modalities is available for the patient with suspected PH including chest radiograph, echocardiography, ventilation/perfusion scintigraphy, catheter pulmonary angiography as well as cross-sectional CT and MRI. Each modality has its strengths and limitations and different techniques may be used at different stages of diagnostic investigation and frequently complement each other. For example, while MRI and echocardiography permit cardiac structural and functional assessment, CT pulmonary angiography provides exquisite morphological information about the proximal pulmonary vasculature and lung parenchyma but little functional information. Modern cross-sectional imaging techniques (CT and MRI) hold the promise of a comprehensive evaluation of the heart, circulation and lung parenchyma in PH. The authors present a multimodality-imaging algorithm for the investigation of patients with suspected PH though

  5. Radiation-Based Medical Imaging Techniques: An Overview

    NASA Astrophysics Data System (ADS)

    Prior, John O.; Lecoq, Paul

    This chapter will present an overview of two radiation-based medical imaging techniques using radiopharmaceuticals used in nuclear medicine/molecular imaging, namely, single-photon emission computed tomography (SPECT) and positron emission tomography (PET). The relative merits in terms of radiation sensitivity and image resolution of SPECT and PET will be compared to the main conventional radiologic modalities that are computed tomography (CT) and magnetic resonance (MR) imaging. Differences in terms of temporal resolution will also be outlined, as well as the other similarities and dissimilarities of these two techniques, including their latest and upcoming multimodality combination. The main clinical applications are briefly described and examples of specific SPECT and PET radiopharmaceuticals are listed. SPECT and PET imaging will be then further detailed in the two subsequent chapters describing in greater depth the basics and future trends of each technique (see Chaps. 37, "SPECT Imaging: Basics and New Trends" 10.1007/978-3-642-13271-1_37 and 38, "PET Imaging: Basics and New Trends" 10.1007/978-3-642-13271-1_38.

  6. Video Multiple Watermarking Technique Based on Image Interlacing Using DWT

    PubMed Central

    Ibrahim, Mohamed M.; Abdel Kader, Neamat S.; Zorkany, M.

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth. PMID:25587570

  7. Video multiple watermarking technique based on image interlacing using DWT.

    PubMed

    Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  8. Advances in image-guided intratumoral drug delivery techniques

    PubMed Central

    Solorio, Luis; Patel, Ravi B; Wu, Hanping; Krupka, Tianyi; Exner, Agata A

    2017-01-01

    Image-guided drug delivery provides a means for treating a variety of diseases with minimal systemic involvement while concurrently monitoring treatment efficacy. These therapies are particularly useful to the field of interventional oncology, where elevation of tumor drug levels, reduction of systemic side effects and post-therapy assessment are essential. This review highlights three such image-guided procedures: transarterial chemoembolization, drug-eluting implants and convection-enhanced delivery. Advancements in medical imaging technology have resulted in a growing number of new applications, including image-guided drug delivery. This minimally invasive approach provides a comprehensive answer to many challenges with local drug delivery. Future evolution of imaging devices, image-acquisition techniques and multifunctional delivery agents will lead to a paradigm shift in patient care. PMID:22816134

  9. Image measurement technique on vibration amplitude of ultrasonic horn

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-bin; Wu, Zhi-qun; Zhu, Jian-ping; He, Jian-guo; Liu, Guang-min

    2013-10-01

    The paper proposes a method to measure vibration amplitude of ultrasonic horn which is a very important component in the spindle for micro-electrical-chemical discharging machining. The method of image measuring amplitude on high frequency vibration is introduced. Non-contact measurement system based on vision technology is constructed. High precision location algorithm on image centroid, quadratic location algorithm, is presented to find the center of little light spot. Measurement experiments have been done to show the effect of image measurement technique on vibration amplitude of ultrasonic horn. In the experiments, precise calibration of the vision system is implemented using a normal graticule to obtain the scale factor between image pixel and real distance. The vibration amplitude of ultrasonic horn is changed by modifying the voltage amplitude of pulse power supply. The image of feature on ultrasonic horn is captured and image processing is carried out. The vibration amplitudes are got at different voltages.

  10. Spaceborne synthetic-aperture imaging radars - Applications, techniques, and technology

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Bicknell, T.; Jordan, R. L.; Wu, C.

    1982-01-01

    In June 1978, the Seasat satellite was placed into orbit around the earth with a synthetic-aperture imaging radar (SAR) as one of the payload sensors. The Seasat SAR provided, for the first time, synoptic radar images of the earth's surface with a resolution of 25 m. In November 1981, the second imaging radar was successfully operated from space on the Shuttle. The Shuttle Imaging Radar-A acquired images over a variety of regions around the world with an imaging geometry different from the one used by the Seasat SAR. The spaceborne SAR principle is discussed, taking into account ambiguities, orbital and environmental factors, range curvature and range walk, surface interaction mechanisms, thermal and speckle noise, key tradeoff parameters, and nonconventional SAR systems. Attention is also given to spaceborne SAR sensors, the digital processing of spaceborne SAR data, the optical processing of spaceborne SAR data, postimage formation processing, data interpretation techniques and applications, and the next decade.

  11. Insight into efficient image registration techniques and the demons algorithm.

    PubMed

    Vercauteren, Tom; Pennec, Xavier; Malis, Ezio; Perchant, Aymeric; Ayache, Nicholas

    2007-01-01

    As image registration becomes more and more central to many biomedical imaging applications, the efficiency of the algorithms becomes a key issue. Image registration is classically performed by optimizing a similarity criterion over a given spatial transformation space. Even if this problem is considered as almost solved for linear registration, we show in this paper that some tools that have recently been developed in the field of vision-based robot control can outperform classical solutions. The adequacy of these tools for linear image registration leads us to revisit non-linear registration and allows us to provide interesting theoretical roots to the different variants of Thirion's demons algorithm. This analysis predicts a theoretical advantage to the symmetric forces variant of the demons algorithm. We show that, on controlled experiments, this advantage is confirmed, and yields a faster convergence.

  12. Reducing scanning electron microscope charging by using exponential contrast stretching technique on post-processing images.

    PubMed

    Sim, K S; Tan, Y Y; Lai, M A; Tso, C P; Lim, W K

    2010-04-01

    An exponential contrast stretching (ECS) technique is developed to reduce the charging effects on scanning electron microscope images. Compared to some of the conventional histogram equalization methods, such as bi-histogram equalization and recursive mean-separate histogram equalization, the proposed ECS method yields better image compensation. Diode sample chips with insulating and conductive surfaces are used as test samples to evaluate the efficiency of the developed algorithm. The algorithm is implemented in software with a frame grabber card, forming the front-end video capture element.

  13. Telematics techniques for image based diagnosis, therapy planning and monitoring.

    PubMed

    Bidaut, L M; Scherrer, J R

    1998-01-01

    This paper is intended to describe and illustrate some of the actual use of telematics related techniques together with modern biomedical imaging capabilities for helping in diagnosis, as well as for the planning and monitoring of therapy. To this end, most current imaging modalities are initially introduced. Then it is shown how telematics related techniques are necessary to improve the outcome of current image-based protocols. Such techniques allow data, means, or competencies--which may intrinsically be of a complementary nature or distributed at many different locations--to be integrated together and transcend the simple sum of individual expectations. Examples of actual implementations are given in the fields of radio-oncology, neurosurgery and orthopedics. To conclude, the papers and posters presented in the corresponding session of the MIE'97 symposium are summarized to provide further telematics references for the reader.

  14. Improving face image extraction by using deep learning technique

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; Antani, Sameer; Long, L. R.; Demner-Fushman, Dina; Thoma, George R.

    2016-03-01

    The National Library of Medicine (NLM) has made a collection of over a 1.2 million research articles containing 3.2 million figure images searchable using the Open-iSM multimodal (text+image) search engine. Many images are visible light photographs, some of which are images containing faces ("face images"). Some of these face images are acquired in unconstrained settings, while others are studio photos. To extract the face regions in the images, we first applied one of the most widely-used face detectors, a pre-trained Viola-Jones detector implemented in Matlab and OpenCV. The Viola-Jones detector was trained for unconstrained face image detection, but the results for the NLM database included many false positives, which resulted in a very low precision. To improve this performance, we applied a deep learning technique, which reduced the number of false positives and as a result, the detection precision was improved significantly. (For example, the classification accuracy for identifying whether the face regions output by this Viola- Jones detector are true positives or not in a test set is about 96%.) By combining these two techniques (Viola-Jones and deep learning) we were able to increase the system precision considerably, while avoiding the need to manually construct a large training set by manual delineation of the face regions.

  15. A human visual based binarization technique for histological images

    NASA Astrophysics Data System (ADS)

    Shreyas, Kamath K. M.; Rajendran, Rahul; Panetta, Karen; Agaian, Sos

    2017-05-01

    In the field of vision-based systems for object detection and classification, thresholding is a key pre-processing step. Thresholding is a well-known technique for image segmentation. Segmentation of medical images, such as Computed Axial Tomography (CAT), Magnetic Resonance Imaging (MRI), X-Ray, Phase Contrast Microscopy, and Histological images, present problems like high variability in terms of the human anatomy and variation in modalities. Recent advances made in computer-aided diagnosis of histological images help facilitate detection and classification of diseases. Since most pathology diagnosis depends on the expertise and ability of the pathologist, there is clearly a need for an automated assessment system. Histological images are stained to a specific color to differentiate each component in the tissue. Segmentation and analysis of such images is problematic, as they present high variability in terms of color and cell clusters. This paper presents an adaptive thresholding technique that aims at segmenting cell structures from Haematoxylin and Eosin stained images. The thresholded result can further be used by pathologists to perform effective diagnosis. The effectiveness of the proposed method is analyzed by visually comparing the results to the state of art thresholding methods such as Otsu, Niblack, Sauvola, Bernsen, and Wolf. Computer simulations demonstrate the efficiency of the proposed method in segmenting critical information.

  16. A High Performance Image Data Compression Technique for Space Applications

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Venbrux, Jack

    2003-01-01

    A highly performing image data compression technique is currently being developed for space science applications under the requirement of high-speed and pushbroom scanning. The technique is also applicable to frame based imaging data. The algorithm combines a two-dimensional transform with a bitplane encoding; this results in an embedded bit string with exact desirable compression rate specified by the user. The compression scheme performs well on a suite of test images acquired from spacecraft instruments. It can also be applied to three-dimensional data cube resulting from hyper-spectral imaging instrument. Flight qualifiable hardware implementations are in development. The implementation is being designed to compress data in excess of 20 Msampledsec and support quantization from 2 to 16 bits. This paper presents the algorithm, its applications and status of development.

  17. Laser Illumination Modality of Photoacoustic Imaging Technique for Prostate Cancer

    NASA Astrophysics Data System (ADS)

    Peng, Dong-qing; Peng, Yuan-yuan; Guo, Jian; Li, Hui

    2016-02-01

    Photoacoustic imaging (PAI) has recently emerged as a promising imaging technique for prostate cancer. But there was still a lot of challenge in the PAI for prostate cancer detection, such as laser illumination modality. Knowledge of absorbed light distribution in prostate tissue was essential since the distribution characteristic of absorbed light energy would influence the imaging depth and range of PAI. In order to make a comparison of different laser illumination modality of photoacoustic imaging technique for prostate cancer, optical model of human prostate was established and combined with Monte Carlo simulation method to calculate the light absorption distribution in the prostate tissue. Characteristic of light absorption distribution of transurethral and trans-rectal illumination case, and of tumor at different location was compared with each other.The relevant conclusions would be significant for optimizing the light illumination in a PAI system for prostate cancer detection.

  18. Utilization of thermal infrared image for inversion of winter wheat yield and biomass.

    PubMed

    Du, Wen-Yong; Zhang, Lu-Da; Hu, Zhen-Fang; Shamaila, Z; Zeng, Ai-Jun; Song, Jian-Li; Liu, Ya-Jia; Wolfram, S; Joachim, M; He, Xiong-Kui

    2011-06-01

    The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation (drip irrigation, sprinkler irrigation, flood irrigation). It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass. The temperature of crop and background was measured by thermal infrared image. It is necessary to get the crop background separation index (CBSI(L), CBSI(H)), which can be used for distinguishing the crop value from the image. CBSI(L) and CBSI(H) (the temperature when the leaves are wet adequately; the temperature when the stomata of leaf is closed completely) are the threshold values. The temperature of crop ranged from CBSI(L) to CBSI(H). Then the ICWSI was calculated based on relevant theoretical method. The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI. In order to construct the high accuracy simulation model, the samples were divided into two parts. One was used for constructing the simulation model, the other for checking the accuracy of the model. Such result of the model was concluded as: (1) As for the simulation model of soil moisture, the correlation coefficient (R2) is larger than 0.887 6, the average of relative error (Er) ranges from 13.33% to 16.88%; (2) As for the simulation model of winter wheat yield, drip irrigation (0.887 6, 16.89%, -0.12), sprinkler irrigation (0.970 0, 14.85%, - 0.12), flood irrigation (0.969 0, 18.87%, -0.18), with the values of R2, Er and CRM listed in the parentheses followed by the individual term. (3) As for winter wheat biomass, drip irrigation (0.980 0, 13.70%, -0.13), sprinkler irrigation (0.95, 13.15%, -0.14), flood irrigation (0.970 0, 14.48%, -0.13), and the values in the parentheses are demonstrated the same as above. Both the CRM and Er are shown to be very low values, which points to the accuracy and reliability of the model investigated. The accuracy of model

  19. Segmentation technique of complex image scene for an automatic blood-cell-counting system

    NASA Astrophysics Data System (ADS)

    Kovalev, Vassili A.; Grigoriev, Andrei Y.; Ahn, Hyo-Sok; Myshkin, Nickolai K.

    1996-04-01

    The paper presents a method for automatic localization and segmentation of white blood cells (WBCs) with color images to develop an efficient automated leukocyte counter by using pattern recognition-based slide readers. The segmentation techniques consist of the following steps. On the first a smear image acquired at the low magnification. The next is extraction of WBC nuclei by chromatic properties and image mapping. After this the cells clustered according to the distances between them and regions of interest (ROI) determined. Image of ROI captured at the high magnification and its validity checked. Then nucleus segments extracted and grouped into prospective cells. The detection of blood cells is based on the intensity of G image plane and the balance between G and B intensity of the nuclei. A cytoplasm region approximated by a circle area around the nucleus center. Finally, the cytoplasm area cleaned considering a priori knowledge of background color and possible cell occlusions. The result of the segmentation is presented in the form of a cell location list and image template in which every pixel is assigned to a label such as Background, Cytoplasm, Nucleus, Hole, etc. The proposed technique has yielded correct segmentation of complex image scenes for blood smears prepared by ordinary manual staining methods in 99% of tested images.

  20. Laparoscopic Imaging Techniques in Endometriosis Therapy: A Systematic Review.

    PubMed

    Vlek, Stijn L; Lier, M C I; Ankersmit, M; Ket, Johannes C F; Dekker, J J M L; Mijatovic, V; Tuynman, J B

    2016-01-01

    Endometriosis is a common disease associated with pelvic pain and subfertility. Laparoscopic surgical treatment has proven effective in endometriosis, but is hampered by a high rate of recurrence. The aim of this systematic review was to evaluate the intraoperative identification of endometriosis by enhanced laparoscopic imaging techniques, focusing on sensitivity and specificity. A systematic review was conducted according to PRISMA guidelines in PubMed, Embase, Cochrane Library, and Web of Science. Published prospective studies reporting on enhanced laparoscopic imaging techniques during endometriosis surgery were included. General study characteristics and reported outcomes, including sensitivity and specificity, were extracted. Nine studies were eligible for inclusion. Three techniques were described: 5-ALA fluorescence (5-ALA), autofluorescence (AFI), and narrow-band imaging (NBI). The reported sensitivity of 5-ALA and AFI for identifying endometriosis ranged from 91% to 100%, compared with 48% to 69% for conventional white light laparoscopy (WL). A randomized controlled trial comparing NBI + WL with WL alone reported better sensitivity of NBI (100% vs 79%; p < .001). All 9 studies reported an enhanced detection rate of endometriotic lesions with enhanced imaging techniques. Enhanced imaging techniques are a promising additive for laparoscopic detection and treatment of endometriosis. The 5-ALA, AFI, and NBI intraoperative imaging techniques had a better detection rate for peritoneal endometriosis compared with conventional WL laparoscopy. None of the studies reported clinical data regarding outcomes. Future studies should address long-term results, such as quality of life, recurrence, and need for reoperation. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  1. Tracking stem cells for cardiovascular applications in vivo: focus on imaging techniques

    PubMed Central

    Fu, Yingli; Azene, Nicole; Xu, Yi; Kraitchman, Dara L

    2011-01-01

    Despite rapid translation of stem cell therapy into clinical practice, the treatment of cardiovascular disease using embryonic stem cells, adult stem and progenitor cells or induced pluripotent stem cells has not yielded satisfactory results to date. Noninvasive stem cell imaging techniques could provide greater insight into not only the therapeutic benefit, but also the fundamental mechanisms underlying stem cell fate, migration, survival and engraftment in vivo. This information could also assist in the appropriate choice of stem cell type(s), delivery routes and dosing regimes in clinical cardiovascular stem cell trials. Multiple imaging modalities, such as MRI, PET, SPECT and CT, have emerged, offering the ability to localize, monitor and track stem cells in vivo. This article discusses stem cell labeling approaches and highlights the latest cardiac stem cell imaging techniques that may help clinicians, research scientists or other healthcare professionals select the best cellular therapeutics for cardiovascular disease management. PMID:22287982

  2. Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    NASA Astrophysics Data System (ADS)

    Choi, Heedong; Ogawa, Yasutaka; Nishimura, Toshihiko; Ohgane, Takeo

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

  3. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging

    PubMed Central

    Antaris, Alexander L.; Chen, Hao; Diao, Shuo; Ma, Zhuoran; Zhang, Zhe; Zhu, Shoujun; Wang, Joy; Lozano, Alexander X.; Fan, Quli; Chew, Leila; Zhu, Mark; Cheng, Kai; Hong, Xuechuan; Dai, Hongjie; Cheng, Zhen

    2017-01-01

    Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with >1,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. Here, we report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for the fastest video-rate imaging in the second NIR window with ∼50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. In addition, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body. PMID:28524850

  4. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging

    DOE PAGES

    Antaris, Alexander L.; Chen, Hao; Diao, Shuo; ...

    2017-05-19

    Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less

  5. Image Based Mango Fruit Detection, Localisation and Yield Estimation Using Multiple View Geometry

    PubMed Central

    Stein, Madeleine; Bargoti, Suchet; Underwood, James

    2016-01-01

    This paper presents a novel multi-sensor framework to efficiently identify, track, localise and map every piece of fruit in a commercial mango orchard. A multiple viewpoint approach is used to solve the problem of occlusion, thus avoiding the need for labour-intensive field calibration to estimate actual yield. Fruit are detected in images using a state-of-the-art faster R-CNN detector, and pair-wise correspondences are established between images using trajectory data provided by a navigation system. A novel LiDAR component automatically generates image masks for each canopy, allowing each fruit to be associated with the corresponding tree. The tracked fruit are triangulated to locate them in 3D, enabling a number of spatial statistics per tree, row or orchard block. A total of 522 trees and 71,609 mangoes were scanned on a Calypso mango orchard near Bundaberg, Queensland, Australia, with 16 trees counted by hand for validation, both on the tree and after harvest. The results show that single, dual and multi-view methods can all provide precise yield estimates, but only the proposed multi-view approach can do so without calibration, with an error rate of only 1.36% for individual trees. PMID:27854271

  6. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging

    NASA Astrophysics Data System (ADS)

    Antaris, Alexander L.; Chen, Hao; Diao, Shuo; Ma, Zhuoran; Zhang, Zhe; Zhu, Shoujun; Wang, Joy; Lozano, Alexander X.; Fan, Quli; Chew, Leila; Zhu, Mark; Cheng, Kai; Hong, Xuechuan; Dai, Hongjie; Cheng, Zhen

    2017-05-01

    Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with >1,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. Here, we report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for the fastest video-rate imaging in the second NIR window with ~50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. In addition, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.

  7. Results on plasma temperature measurement using an image processing technique

    NASA Astrophysics Data System (ADS)

    Mahdavipour, B.; Hatami, A.; Salar Elahi, A.

    Image processing technique (IPT) is a computational technique which is a simple, wide and great for many purposes. In this paper, we used IPT to obtain plasma source such as sun and sunspot temperatures. Sun image was taken by a telescope and DSLR camera and imported to MATLAB software. Using the IPT, we cropped two areas and evaluated their RGB values, using a code which was written according to Python software. We computed wavelengths and then by substituting wavelengths in Wien's law, we obtained sun's surface and sunspot temperature's. The temperature errors for surface and sunspot were 0.57% and 13% respectively.

  8. Digital image correlation techniques applied to LANDSAT multispectral imagery

    NASA Technical Reports Server (NTRS)

    Bonrud, L. O. (Principal Investigator); Miller, W. J.

    1976-01-01

    The author has identified the following significant results. Automatic image registration and resampling techniques applied to LANDSAT data achieved accuracies, resulting in mean radial displacement errors of less than 0.2 pixel. The process method utilized recursive computational techniques and line-by-line updating on the basis of feedback error signals. Goodness of local feature matching was evaluated through the implementation of a correlation algorithm. An automatic restart allowed the system to derive control point coordinates over a portion of the image and to restart the process, utilizing this new control point information as initial estimates.

  9. Value of radionuclide imaging techniques in assessing cardiomyopathy

    SciTech Connect

    Goldman, M.R.; Boucher, C.A.

    1980-12-18

    Radionuclide imaging techniques add an important dimension to the diagnosis, classification and management of myocardial disease. The gated blood pool scan provides information allowing determination of the functional type of cardiomyopathy (congestive, restrictive or hypertrophic) as well as evaluation of ventricular performance. Myocardial perfusion imaging with thallium-201 is useful in distinguishing congestive cardiomyopathy from severe coronary artery disease and also in depicting septal abnormalities in hypertrophic cardiomyopathy. Radionuclide techniques also prove useful in following progression of disease and in evaluating the efficacy of therapeutic interventions.

  10. A novel data processing technique for image reconstruction of penumbral imaging

    NASA Astrophysics Data System (ADS)

    Xie, Hongwei; Li, Hongyun; Xu, Zeping; Song, Guzhou; Zhang, Faqiang; Zhou, Lin

    2011-06-01

    CT image reconstruction technique was applied to the data processing of the penumbral imaging. Compared with other traditional processing techniques for penumbral coded pinhole image such as Wiener, Lucy-Richardson and blind technique, this approach is brand new. In this method, the coded aperture processing method was used for the first time independent to the point spread function of the image diagnostic system. In this way, the technical obstacles was overcome in the traditional coded pinhole image processing caused by the uncertainty of point spread function of the image diagnostic system. Then based on the theoretical study, the simulation of penumbral imaging and image reconstruction was carried out to provide fairly good results. While in the visible light experiment, the point source of light was used to irradiate a 5mm×5mm object after diffuse scattering and volume scattering. The penumbral imaging was made with aperture size of ~20mm. Finally, the CT image reconstruction technique was used for image reconstruction to provide a fairly good reconstruction result.

  11. Comparative analysis of infrared images degraded by lossy compression techniques

    NASA Astrophysics Data System (ADS)

    Toussaint, W. A.; Weber, Reed A.

    2015-09-01

    This work addresses image degradation introduced by lossy compression techniques and the effects of such degradation on signal detection statistics for applications in fast-framing (<100 Hz) IR image analysis. As future space systems make use of increasingly higher pixel count IR focal plane arrays, data generation rates are anticipated to become too copious for continuous download. The prevailing solution to this issue has been to compress image data prior to downlink. While this solution is application independent for lossless compression, the expected benefits of lossy compression, including higher compression ratio, necessitate several application specific trades in order to characterize preservation of critical information within the data. Current analyses via standard statistical image processing techniques following tunably lossy compression algorithms (JPEG2000, JPEG-LS) allow for detection statistics nearly identical to analyses following standard lossless compression techniques, such as Rice and PNG, even at degradation levels offering a greater than twofold increase in compression ratio. Ongoing efforts focus on repeating the analysis for other tunably lossy compression techniques while also assessing the relative computational burden of each algorithm. Current results suggest that lossy compression techniques can preserve critical information in fast-framing IR data while either significantly reducing downlink bandwidth requirements or significantly increasing the usable focal plane array window size.

  12. A Range-Shift Technique for TOF Range Image Sensors

    NASA Astrophysics Data System (ADS)

    Sawada, Tomonari; Ito, Kana; Nakayama, Masakatsu; Kawahito, Shoji

    In Time-of-Flight (TOF) range image sensors using periodical pulsed light, there is a trade-off between the maximum range and range resolution. This paper proposes a range-shift technique for improving range resolution of the TOF range image sensor without sacrificing the measurement range. The range-shift operation uses a TOF range imaging pixel with periodical charge draining structure and several time-shifted short pulses. The use of the short pulse can improve the range resolution. The range image using the range-shift technique is synthesized with several sub-frames, each acquires one of the shifted range images. The use of the small duty-ratio pulse leads to reducing the effect of ambient light and improving the range resolution. The range-shift technique is tested with an implemented TOF range image sensor and it is found that the range resolution is improved to 2cm using a 10ns light pulse and 7 overlapped shifted ranges for the measurement range of 0.5m to 4.0m.

  13. Image Enhancement and Display Techniques Applied to SAR580 Images of Ships

    DTIC Science & Technology

    1987-04-01

    applied to the images. This report discusses tht properties of SAR ship returns, reviews the various types of image enhancement techniques applied to...Figures , , a . . . . , , , . . . , . . . . , . . iii I. INTRODUCTION . . . . . . . . . . . . I 2. PROPERTIES OF SAR SHIP IMAGES ... ... ...... I 3...Page 1 Original Ship Photos 5 2 Ship Profile and Plan Views 9 3 SAR Ship Images 14 4 SAR Contour Plots 16 5 SAR Three-Dimensional Plots 19 6 Container

  14. Post-yield nanomechanics of human cortical bone in compression using synchrotron X-ray scattering techniques.

    SciTech Connect

    Dong, X.N.; Almer, J.D.; Wang, X.

    2011-02-24

    The ultrastructural response to applied loads governs the post-yield deformation and failure behavior of bone, and is correlated with bone fragility fractures. Combining a novel progressive loading protocol and synchrotron X-ray scattering techniques, this study investigated the correlation of the local deformation (i.e., internal strains of the mineral and collagen phases) with the bulk mechanical behavior of bone. The results indicated that the internal strains of the longitudinally oriented collagen fibrils and mineral crystals increased almost linearly with respect to the macroscopic strain prior to yielding, but markedly decreased first and then gradually leveled off after yielding. Similar changes were also observed in the applied stress before and after yielding of bone. However, the collagen to mineral strain ratio remained nearly constant throughout the loading process. In addition, the internal strains of longitudinal mineral and collagen phases did not exhibit a linear relationship with either the modulus loss or the plastic deformation of bulk bone tissue. Finally, the time-dependent response of local deformation in the mineral phase was observed after yielding. Based on the results, we speculate that the mineral crystals and collagen fibrils aligned with the loading axis only partially explain the post-yield deformation, suggesting that shear deformation involving obliquely oriented crystals and fibrils (off axis) is dominant mechanism of yielding for human cortical bone in compression.

  15. An improved coding technique for image encryption and key management

    NASA Astrophysics Data System (ADS)

    Wu, Xu; Ma, Jie; Hu, Jiasheng

    2005-02-01

    An improved chaotic algorithm for image encryption on the basis of conventional chaotic encryption algorithm is proposed. Two keys are presented in our technique. One is called private key, which is fixed and protected in the system. The other is named assistant key, which is public and transferred with the encrypted image together. For different original image, different assistant key should be chosen so that one could get different encrypted key. The updated encryption algorithm not only can resist a known-plaintext attack, but also offers an effective solution for key management. The analyses and the computer simulations show that the security is improved greatly, and can be easily realized with hardware.

  16. Hyperspectral imaging using the single-pixel Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2017-03-01

    Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.

  17. Demodulation techniques for the amplitude modulated laser imager.

    PubMed

    Mullen, Linda; Laux, Alan; Cochenour, Brandon; Zege, Eleonora P; Katsev, Iosif L; Prikhach, Alexander S

    2007-10-20

    A new technique has been found that uses in-phase and quadrature phase (I/Q) demodulation to optimize the images produced with an amplitude-modulated laser imaging system. An I/Q demodulator was used to collect the I/Q components of the received modulation envelope. It was discovered that by adjusting the local oscillator phase and the modulation frequency, the backscatter and target signals can be analyzed separately via the I/Q components. This new approach enhances image contrast beyond what was achieved with a previous design that processed only the composite magnitude information.

  18. Hyperspectral imaging using the single-pixel Fourier transform technique

    PubMed Central

    Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2017-01-01

    Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400–1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes. PMID:28338100

  19. Image analysis techniques for the study of turbulent flows

    NASA Astrophysics Data System (ADS)

    Ferrari, Simone

    In this paper, a brief review of Digital Image Analysis techniques employed in Fluid Mechanics for the study of turbulent flows is given. Particularly the focus is on the techniques developed by the research teams the Author worked in, that can be considered relatively "low cost" techniques. Digital Image Analysis techniques have the advantage, when compared to the traditional techniques employing physical point probes, to be non-intrusive and quasi-continuous in space, as every pixel on the camera sensor works as a single probe: consequently, they allow to obtain two-dimensional or three-dimensional fields of the measured quantity in less time. Traditionally, the disadvantages are related to the frequency of acquisition, but modern high-speed cameras are typically able to acquire at frequencies from the order of 1 KHz to the order of 1 MHz. Digital Image Analysis techniques can be employed to measure concentration, temperature, position, displacement, velocity, acceleration and pressure fields with similar equipment and setups, and can be consequently considered as a flexible and powerful tool for measurements on turbulent flows.

  20. Comparative analysis of NDE techniques with image processing

    NASA Astrophysics Data System (ADS)

    Rathod, Vijay R.; Anand, R. S.; Ashok, Alaknanda

    2012-12-01

    The paper reports comparative results of nondestructive testing (NDT) based experimentation done on created flaws in the casting at the Central Foundry Forge Plant (CFFP) of Bharat Heavy Electrical Ltd. India (BHEL). The present experimental study is aimed at comparing the evaluation of image processing methods applied on the radiographic images of welding defects such as slag inclusion, porosity, lack-of-root penetration and cracks with other NDT methods. Different image segmentation techniques have been proposed here for identifying the above created welding defects. Currently, there is a large amount of research work going on in the field of automated system for inspection, analysis and detection of flaws in the weldments. Comparison of other NDT methods and application of image processing on the radiographic images of weld defects are aimed to detect defects reliably and to make accept/reject decisions as per the international standard.

  1. Emerging techniques and technologies in brain tumor imaging

    PubMed Central

    Ellingson, Benjamin M.; Bendszus, Martin; Sorensen, A. Gregory; Pope, Whitney B.

    2014-01-01

    The purpose of this report is to describe the state of imaging techniques and technologies for detecting response of brain tumors to treatment in the setting of multicenter clinical trials. Within currently used technologies, implementation of standardized image acquisition and the use of volumetric estimates and subtraction maps are likely to help to improve tumor visualization, delineation, and quantification. Upon further development, refinement, and standardization, imaging technologies such as diffusion and perfusion MRI and amino acid PET may contribute to the detection of tumor response to treatment, particularly in specific treatment settings. Over the next few years, new technologies such as 23Na MRI and CEST imaging technologies will be explored for their use in expanding the ability to quantitatively image tumor response to therapies in a clinical trial setting. PMID:25313234

  2. Vegetation change detection based on image fusion technique

    NASA Astrophysics Data System (ADS)

    Jia, Yonghong; Liu, Yueyan; Yu, Hui; Li, Deren

    2005-10-01

    The change detection of land use and land cover has always been the focus of remotely sensed study and application. Based on techniques of image fusion, a new approach of detecting vegetation change according to vector of brightness index (BI) and perpendicular vegetation index (PVI) extracted from multi-temporal remotely sensed imagery is proposed. The procedure is introduced. Firstly, the Landsat eTM+ imagery is geometrically corrected and registered. Secondly, band 2,3,4 and panchromatic images of Landsat eTM+ are fused by a trous wavelet fusion, and bands 1,2,3 of SPOT are registered to the fused images. Thirdly, brightness index and perpendicular vegetation index are respectively extracted from SPOT images and fused images. Finally, change vectors are obtained and used to detect vegetation change. The testing results show that the approach of detecting vegetation change is very efficient.

  3. Modern Micro and Nanoparticle-Based Imaging Techniques

    PubMed Central

    Ryvolova, Marketa; Chomoucka, Jana; Drbohlavova, Jana; Kopel, Pavel; Babula, Petr; Hynek, David; Adam, Vojtech; Eckschlager, Tomas; Hubalek, Jaromir; Stiborova, Marie; Kaiser, Jozef; Kizek, Rene

    2012-01-01

    The requirements for early diagnostics as well as effective treatment of insidious diseases such as cancer constantly increase the pressure on development of efficient and reliable methods for targeted drug/gene delivery as well as imaging of the treatment success/failure. One of the most recent approaches covering both the drug delivery as well as the imaging aspects is benefitting from the unique properties of nanomaterials. Therefore a new field called nanomedicine is attracting continuously growing attention. Nanoparticles, including fluorescent semiconductor nanocrystals (quantum dots) and magnetic nanoparticles, have proven their excellent properties for in vivo imaging techniques in a number of modalities such as magnetic resonance and fluorescence imaging, respectively. In this article, we review the main properties and applications of nanoparticles in various in vitro imaging techniques, including microscopy and/or laser breakdown spectroscopy and in vivo methods such as magnetic resonance imaging and/or fluorescence-based imaging. Moreover the advantages of the drug delivery performed by nanocarriers such as iron oxides, gold, biodegradable polymers, dendrimers, lipid based carriers such as liposomes or micelles are also highlighted. PMID:23202187

  4. Remote sensing image denoising by using discrete multiwavelet transform techniques

    NASA Astrophysics Data System (ADS)

    Wang, Haihui; Wang, Jun; Zhang, Jian

    2006-01-01

    We present a new method by using GHM discrete multiwavelet transform in image denoising on this paper. The developments in wavelet theory have given rise to the wavelet thresholding method, for extracting a signal from noisy data. The method of signal denoising via wavelet thresholding was popularized. Multiwavelets have recently been introduced and they offer simultaneous orthogonality, symmetry and short support. This property makes multiwavelets more suitable for various image processing applications, especially denoising. It is based on thresholding of multiwavelet coefficients arising from the standard scalar orthogonal wavelet transform. It takes into account the covariance structure of the transform. Denoising of images via thresholding of the multiwavelet coefficients result from preprocessing and the discrete multiwavelet transform can be carried out by treating the output in this paper. The form of the threshold is carefully formulated and is the key to the excellent results obtained in the extensive numerical simulations of image denoising. We apply the multiwavelet-based to remote sensing image denoising. Multiwavelet transform technique is rather a new method, and it has a big advantage over the other techniques that it less distorts spectral characteristics of the image denoising. The experimental results show that multiwavelet based image denoising schemes outperform wavelet based method both subjectively and objectively.

  5. Microvascular imaging: techniques and opportunities for clinical physiological measurements.

    PubMed

    Allen, John; Howell, Kevin

    2014-07-01

    The microvasculature presents a particular challenge in physiological measurement because the vessel structure is spatially inhomogeneous and perfusion can exhibit high variability over time. This review describes, with a clinical focus, the wide variety of methods now available for imaging of the microvasculature and their key applications. Laser Doppler perfusion imaging and laser speckle contrast imaging are established, commercially-available techniques for determining microvascular perfusion, with proven clinical utility for applications such as burn-depth assessment. Nailfold capillaroscopy is also commercially available, with significant published literature that supports its use for detecting microangiopathy secondary to specific connective tissue diseases in patients with Raynaud's phenomenon. Infrared thermography measures skin temperature and not perfusion directly, and it has only gained acceptance for some surgical and peripheral microvascular applications. Other emerging technologies including imaging photoplethysmography, optical coherence tomography, photoacoustic tomography, hyperspectral imaging, and tissue viability imaging are also described to show their potential as techniques that could become established tools for clinical microvascular assessment. Growing interest in the microcirculation has helped drive the rapid development in perfusion imaging of the microvessels, bringing exciting opportunities in microvascular research.

  6. A rapid compression technique for 4-D functional MRI images using data rearrangement and modified binary array techniques.

    PubMed

    Uma Vetri Selvi, G; Nadarajan, R

    2015-12-01

    Compression techniques are vital for efficient storage and fast transfer of medical image data. The existing compression techniques take significant amount of time for performing encoding and decoding and hence the purpose of compression is not fully satisfied. In this paper a rapid 4-D lossy compression method constructed using data rearrangement, wavelet-based contourlet transformation and a modified binary array technique has been proposed for functional magnetic resonance imaging (fMRI) images. In the proposed method, the image slices of fMRI data are rearranged so that the redundant slices form a sequence. The image sequence is then divided into slices and transformed using wavelet-based contourlet transform (WBCT). In WBCT, the high frequency sub-band obtained from wavelet transform is further decomposed into multiple directional sub-bands by directional filter bank to obtain more directional information. The relationship between the coefficients has been changed in WBCT as it has more directions. The differences in parent–child relationships are handled by a repositioning algorithm. The repositioned coefficients are then subjected to quantization. The quantized coefficients are further compressed by modified binary array technique where the most frequently occurring value of a sequence is coded only once. The proposed method has been experimented with fMRI images the results indicated that the processing time of the proposed method is less compared to existing wavelet-based set partitioning in hierarchical trees and set partitioning embedded block coder (SPECK) compression schemes [1]. The proposed method could also yield a better compression performance compared to wavelet-based SPECK coder. The objective results showed that the proposed method could gain good compression ratio in maintaining a peak signal noise ratio value of above 70 for all the experimented sequences. The SSIM value is equal to 1 and the value of CC is greater than 0.9 for all

  7. Magneto-optical imaging technique for hostile environments: The ghost imaging approach

    SciTech Connect

    Meda, A.; Caprile, A.; Avella, A.; Ruo Berchera, I.; Degiovanni, I. P.; Magni, A.; Genovese, M.

    2015-06-29

    In this paper, we develop an approach to magneto optical imaging (MOI), applying a ghost imaging (GI) protocol to perform Faraday microscopy. MOI is of the utmost importance for the investigation of magnetic properties of material samples, through Weiss domains shape, dimension and dynamics analysis. Nevertheless, in some extreme conditions such as cryogenic temperatures or high magnetic field applications, there exists a lack of domain images due to the difficulty in creating an efficient imaging system in such environments. Here, we present an innovative MOI technique that separates the imaging optical path from the one illuminating the object. The technique is based on thermal light GI and exploits correlations between light beams to retrieve the image of magnetic domains. As a proof of principle, the proposed technique is applied to the Faraday magneto-optical observation of the remanence domain structure of an yttrium iron garnet sample.

  8. Magneto-optical imaging technique for hostile environments: The ghost imaging approach

    NASA Astrophysics Data System (ADS)

    Meda, A.; Caprile, A.; Avella, A.; Ruo Berchera, I.; Degiovanni, I. P.; Magni, A.; Genovese, M.

    2015-06-01

    In this paper, we develop an approach to magneto optical imaging (MOI), applying a ghost imaging (GI) protocol to perform Faraday microscopy. MOI is of the utmost importance for the investigation of magnetic properties of material samples, through Weiss domains shape, dimension and dynamics analysis. Nevertheless, in some extreme conditions such as cryogenic temperatures or high magnetic field applications, there exists a lack of domain images due to the difficulty in creating an efficient imaging system in such environments. Here, we present an innovative MOI technique that separates the imaging optical path from the one illuminating the object. The technique is based on thermal light GI and exploits correlations between light beams to retrieve the image of magnetic domains. As a proof of principle, the proposed technique is applied to the Faraday magneto-optical observation of the remanence domain structure of an yttrium iron garnet sample.

  9. Study pollen grains in rice by using multispectral imaging techniques

    NASA Astrophysics Data System (ADS)

    Wu, Qiongshui; Hu, Yaojun; Ke, Hengyu; Zeng, Libo; Ding, Yi

    2005-03-01

    This paper describes a novel multispectral imaging microscope and its applications in the study of pollen grains in rice. The Imaging instruments can simultaneously record both spectral and spatial information of a sample, which is helpful to study the chemical states and physical properties of the sample by taking advantage of spatial image processing and spectroscopic analysis techniques. A LCTF (liquid crystal tunable filter) device is used for fast wavelength selection in the range of 400nm to 720nm and a cooled two-dimensional monochrome CCD for image detection. In this paper, the image acquisition process, spatial and spectral calibration and spectral imaging analysis methods are detailed. And also a novel method using this multispectral imaging microscope to observe rice pollen grains is reported here. The multispectral images were systematically processed and analyzed by the software. The results illustrated that the transmittance analysis of multispectral pollen images can accurately identify the pollen abortion stage of male-sterile rice, and can easily distinguish a variety of male sterile cytoplasm. Compared with cytological and histochemical methods reported previously, the method reported here has demonstrated to be more efficient and reliable in the study of chemical states and physical properties in plant cells.

  10. Microscopic Image Photography Techniques of the Past, Present, and Future.

    PubMed

    Morrison, Annie O; Gardner, Jerad M

    2015-12-01

    The field of pathology is driven by microscopic images. Educational activities for trainees and practicing pathologists alike are conducted through exposure to images of a variety of pathologic entities in textbooks, publications, online tutorials, national and international conferences, and interdepartmental conferences. During the past century and a half, photographic technology has progressed from primitive and bulky, glass-lantern projector slides to static and/or whole slide digital-image formats that can now be transferred around the world in a matter of moments via the Internet. To provide a historic and technologic overview of the evolution of microscopic-image photographic tools and techniques. Primary historic methods of microscopic image capture were delineated through interviews conducted with senior staff members in the Emory University Department of Pathology. Searches for the historic image-capturing methods were conducted using the Google search engine. Google Scholar and PubMed databases were used to research methods of digital photography, whole slide scanning, and smart phone cameras for microscopic image capture in a pathology practice setting. Although film-based cameras dominated for much of the time, the rise of digital cameras outside of pathology generated a shift toward digital-image capturing methods, including mounted digital cameras and whole slide digital-slide scanning. Digital image capture techniques have ushered in new applications for slide sharing and second-opinion consultations of unusual or difficult cases in pathology. With their recent surge in popularity, we suspect that smart phone cameras are poised to become a widespread, cost-effective method for pathology image acquisition.

  11. Analysis of soil images applying Laplacian Pyramidal techniques

    NASA Astrophysics Data System (ADS)

    Ballesteros, F.; de Castro, J.; Tarquis, A. M.; Méndez, A.

    2012-04-01

    The Laplacian pyramid is a technique for image encoding in which local operators of many scales but identical shape are the basis functions. Our work describes some properties of the filters of the Laplacian pyramid. Specially, we pay attention to Gaussian and fractal behaviour of these filters, and we determine the normal and fractal ranges in the case of single parameter filters, while studying the influence of these filters in soil image processing. One usual property of any image is that neighboring pixels are highly correlated. This property makes inefficient to represent the image directly in terms of the pixel values, because most of the encoded information would be redundant. Burt and Adelson designed a technique, named Laplacian pyramid, for removing image correlation which combines features of predictive and transform methods. This technique is non causal, and its computations are simple and local. The predicted value for each pixel is computed as a local weighted average, using a unimodal weighting function centred on the pixel itself. Pyramid construction is equivalent to convolving the original image with a set of weighting functions determined by a parameter that defines the filter. According to the parameter values, these filters have a behaviour that goes from the Gaussian shape to the fractal. Previous works only analyze Gaussian filters, but we determine the Gaussian and fractal intervals and study the energy of the Laplacian pyramid images according to the filter types. The different behaviour, qualitatively, involves a significant change in statistical characteristics at different levels of iteration, especially the fractal case, which can highlight specific information from the images. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010-21501/AGR is greatly appreciated.

  12. Image analysis techniques associated with automatic data base generation.

    NASA Technical Reports Server (NTRS)

    Bond, A. D.; Ramapriyan, H. K.; Atkinson, R. J.; Hodges, B. C.; Thomas, D. T.

    1973-01-01

    This paper considers some basic problems relating to automatic data base generation from imagery, the primary emphasis being on fast and efficient automatic extraction of relevant pictorial information. Among the techniques discussed are recursive implementations of some particular types of filters which are much faster than FFT implementations, a 'sequential similarity detection' technique of implementing matched filters, and sequential linear classification of multispectral imagery. Several applications of the above techniques are presented including enhancement of underwater, aerial and radiographic imagery, detection and reconstruction of particular types of features in images, automatic picture registration and classification of multiband aerial photographs to generate thematic land use maps.

  13. Comparing Imaging and Non-Imaging Techniques for Reducing Background Clutter and Resolving Distant Point Sources

    SciTech Connect

    Wurtz, R; Ziock, K; Fabris, L; Graham, R

    2005-11-10

    To reach maximum sensitivity, any method used to search for orphan sources must be insensitive to local variations of the background. Using imaging and non-imaging techniques, we analyzed the same data acquired by a search instrument deployed as a large-area, coded-mask imager. Data from many passes past a 1 mCi source at 65 m from the instrument were used to construct a model of the instrument response. We then used the model to ''hide'' the source in data taken in a light urban environment. We compared the success of detecting the hidden sources using imaging coded-mask methods, pseudo-imaging based on a zero-area matched filter, and non-imaging using simple thresholding. The results clearly indicate the superiority of imaging with the coded-mask techniques returning the best results.

  14. Feminist Pedagogy, Body Image, and the Dance Technique Class

    ERIC Educational Resources Information Center

    Barr, Sherrie; Oliver, Wendy

    2016-01-01

    This paper investigates the evolution of feminist consciousness in dance technique class as related to body image, the myth of the perfect body, and the development of feminist pedagogy. Western concert dance forms have often been taught in a manner where imitating the teacher is primary in the learning process. In this traditional scenario,…

  15. Feminist Pedagogy, Body Image, and the Dance Technique Class

    ERIC Educational Resources Information Center

    Barr, Sherrie; Oliver, Wendy

    2016-01-01

    This paper investigates the evolution of feminist consciousness in dance technique class as related to body image, the myth of the perfect body, and the development of feminist pedagogy. Western concert dance forms have often been taught in a manner where imitating the teacher is primary in the learning process. In this traditional scenario,…

  16. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  17. Image analysis techniques for automated IVUS contour detection.

    PubMed

    Papadogiorgaki, Maria; Mezaris, Vasileios; Chatzizisis, Yiannis S; Giannoglou, George D; Kompatsiaris, Ioannis

    2008-09-01

    Intravascular ultrasound (IVUS) constitutes a valuable technique for the diagnosis of coronary atherosclerosis. The detection of lumen and media-adventitia borders in IVUS images represents a necessary step towards the reliable quantitative assessment of atherosclerosis. In this work, a fully automated technique for the detection of lumen and media-adventitia borders in IVUS images is presented. This comprises two different steps for contour initialization: one for each corresponding contour of interest and a procedure for the refinement of the detected contours. Intensity information, as well as the result of texture analysis, generated by means of a multilevel discrete wavelet frames decomposition, are used in two different techniques for contour initialization. For subsequently producing smooth contours, three techniques based on low-pass filtering and radial basis functions are introduced. The different combinations of the proposed methods are experimentally evaluated in large datasets of IVUS images derived from human coronary arteries. It is demonstrated that our proposed segmentation approaches can quickly and reliably perform automated segmentation of IVUS images.

  18. Evaluation of optical reflectance techniques for imaging of alveolar structure

    NASA Astrophysics Data System (ADS)

    Unglert, Carolin I.; Namati, Eman; Warger, William C.; Liu, Linbo; Yoo, Hongki; Kang, DongKyun; Bouma, Brett E.; Tearney, Guillermo J.

    2012-07-01

    Three-dimensional (3-D) visualization of the fine structures within the lung parenchyma could advance our understanding of alveolar physiology and pathophysiology. Current knowledge has been primarily based on histology, but it is a destructive two-dimensional (2-D) technique that is limited by tissue processing artifacts. Micro-CT provides high-resolution three-dimensional (3-D) imaging within a limited sample size, but is not applicable to intact lungs from larger animals or humans. Optical reflectance techniques offer the promise to visualize alveolar regions of the large animal or human lung with sub-cellular resolution in three dimensions. Here, we present the capabilities of three optical reflectance techniques, namely optical frequency domain imaging, spectrally encoded confocal microscopy, and full field optical coherence microscopy, to visualize both gross architecture as well as cellular detail in fixed, phosphate buffered saline-immersed rat lung tissue. Images from all techniques were correlated to each other and then to corresponding histology. Spatial and temporal resolution, imaging depth, and suitability for in vivo probe development were compared to highlight the merits and limitations of each technology for studying respiratory physiology at the alveolar level.

  19. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; hide

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  20. Statistical Techniques for Efficient Indexing and Retrieval of Document Images

    ERIC Educational Resources Information Center

    Bhardwaj, Anurag

    2010-01-01

    We have developed statistical techniques to improve the performance of document image search systems where the intermediate step of OCR based transcription is not used. Previous research in this area has largely focused on challenges pertaining to generation of small lexicons for processing handwritten documents and enhancement of poor quality…

  1. Techniques for Field Application of Lingual Ultrasound Imaging

    ERIC Educational Resources Information Center

    Gick, Bryan; Bird, Sonya; Wilson, Ian

    2005-01-01

    Techniques are discussed for using ultrasound for lingual imaging in field-related applications. The greatest challenges we have faced distinguishing the field setting from the laboratory setting are the lack of controlled head/transducer movement, and the related issue of tissue compression. Two experiments are reported. First, a pilot study…

  2. A Narrow Band Imaging Technique for Passive Radar (Preprint)

    DTIC Science & Technology

    2014-10-09

    valuable role in narrowband imaging in concert with the Doppler technique as well as more conventional approaches [1]. Passive Bistatic Radar (PBR...targets at ranges of 2 and 2.5 m. A stationary X- band horn antenna with a 50°, 3 dB beamwidth was placed approximately 2.25 m from a linear target

  3. Techniques for Field Application of Lingual Ultrasound Imaging

    ERIC Educational Resources Information Center

    Gick, Bryan; Bird, Sonya; Wilson, Ian

    2005-01-01

    Techniques are discussed for using ultrasound for lingual imaging in field-related applications. The greatest challenges we have faced distinguishing the field setting from the laboratory setting are the lack of controlled head/transducer movement, and the related issue of tissue compression. Two experiments are reported. First, a pilot study…

  4. Image encryption techniques based on the fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Hennelly, B. M.; Sheridan, J. T.

    2003-11-01

    The fractional Fourier transform, (FRT), is a generalisation of the Fourier transform which allows domains of mixed spatial frequency and spatial information to be examined. A number of method have recently been proposed in the literature for the encryption of two dimensional information using optical systems based on the FRT. Typically, these methods require random phase screen keys to decrypt the data, which must be stored at the receiver and must be carefully aligned with the received encrypted data. We have proposed a new technique based on a random shifting or Jigsaw transformation. This method does not require the use of phase keys. The image is encrypted by juxtaposition of sections of the image in various FRT domains. The new method has been compared numerically with existing methods and shows comparable or superior robustness to blind decryption. An optical implementation is also proposed and the sensitivity of the various encryption keys to blind decryption is quantified. We also present a second image encryption technique, which is based on a recently proposed method of optical phase retrieval using the optical FRT and one of its discrete counterparts. Numerical simulations of the new algorithm indicates that the sensitivity of the keys is much greater than any of the techniques currently available. In fact the sensitivity appears to be so high that optical implementation, based on existing optical signal processing technology, may be impossible. However, the technique has been shown to be a powerful method of 2-D image data encryption.

  5. Statistical Techniques for Efficient Indexing and Retrieval of Document Images

    ERIC Educational Resources Information Center

    Bhardwaj, Anurag

    2010-01-01

    We have developed statistical techniques to improve the performance of document image search systems where the intermediate step of OCR based transcription is not used. Previous research in this area has largely focused on challenges pertaining to generation of small lexicons for processing handwritten documents and enhancement of poor quality…

  6. Characterization of burns using hyperspectral imaging technique - a preliminary study.

    PubMed

    Calin, Mihaela Antonina; Parasca, Sorin Viorel; Savastru, Roxana; Manea, Dragos

    2015-02-01

    Surgical burn treatment depends on accurate estimation of burn depth. Many methods have been used to asses burns, but none has gained wide acceptance. Hyperspectral imaging technique has recently entered the medical research field with encouraging results. In this paper we present a preliminary study (case presentation) that aims to point out the value of this optical method in burn wound characterization and to set up future lines of investigation. A hyperspectral image of a leg and foot with partial thickness burns was obtained in the fifth postburn day. The image was analyzed using linear spectral unmixing model as a tool for mapping the investigated areas. The article gives details on the mathematical bases of the interpretation model and correlations with clinical examination pointing out the advantages of hyperspectral imaging technique. While the results were encouraging, further more extended and better founded studies are being prepared before recognizing hyperspectral imaging technique as an applicable method of burn wound assessment. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  7. Imaging of contact acoustic nonlinearity using synthetic aperture technique.

    PubMed

    Yun, Dongseok; Kim, Jongbeom; Jhang, Kyung-Young

    2013-09-01

    The angle beam incidence and reflection technique for the evaluation of contact acoustic nonlinearity (CAN) at solid-solid contact interfaces (e.g., closed cracks) has recently been developed to overcome the disadvantage of accessing both the inner and outer surfaces of structures for attaching pulsing and receiving transducers in the through-transmission of normal incidence technique. This paper proposes a technique for B-mode imaging of CAN based on the above reflection technique, which uses the synthetic aperture focusing technique (SAFT) and short-time Fourier transform (STFT) to visualize the distribution of the CAN-induced second harmonic magnitude as well as the nonlinear parameter. In order to verify the usefulness of the proposed method, a solid-solid contact interface was tested and the change of the contact acoustic nonlinearity according to the increasing contact pressure was visualized in images of the second harmonic magnitude and the relative nonlinear parameter. The experimental results showed good agreement with the previously developed theory identifying the dependence of the scattered second harmonics on the contact pressure. This technique can be used for the detection and improvement of the sizing accuracy of closed cracks that are difficult to detect using the conventional linear ultrasonic technique.

  8. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    PubMed Central

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Background Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. Methods We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. Results In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. Conclusion In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary. PMID:18215290

  9. The Application of Special Computing Techniques to Speed-Up Image Feature Extraction and Processing Techniques.

    DTIC Science & Technology

    1981-12-01

    of image feature extrac - tion and processing techniques. 1.2 Project Objectives The objective of this project is to demonstrate the increased...computer architecture over a conventional or serial machine in terms of image feature extrac - 53 tion and processing. Thus, essentially one can simply...and Cybernetics, vol. SMC-7, no. 3, March, 1977. 23. K.S. Shanmugam, F.M. Dickey, and J.A. Green , "A Optimal Prequency Domain Filter for Edge Detection

  10. Adaptive differential correspondence imaging based on sorting technique

    NASA Astrophysics Data System (ADS)

    Wu, Heng; Zhang, Xianmin; Shan, Yilin; He, Zhenya; Li, Hai; Luo, Chunling

    2017-04-01

    We develop an adaptive differential correspondence imaging (CI) method using a sorting technique. Different from the conventional CI schemes, the bucket detector signals (BDS) are first processed by a differential technique, and then sorted in a descending (or ascending) order. Subsequently, according to the front and last several frames of the sorted BDS, the positive and negative subsets (PNS) are created by selecting the relative frames from the reference detector signals. Finally, the object image is recovered from the PNS. Besides, an adaptive method based on two-step iteration is designed to select the optimum number of frames. To verify the proposed method, a single-detector computational ghost imaging (GI) setup is constructed. We experimentally and numerically compare the performance of the proposed method with different GI algorithms. The results show that our method can improve the reconstruction quality and reduce the computation cost by using fewer measurement data.

  11. Novel technique in the segmentation of magnetic resonance image

    NASA Astrophysics Data System (ADS)

    Chan, Kwok-Leung

    1996-04-01

    In this investigation, automatic image segmentation is carried out on magnetic resonance image (MRI). A novel technique based on the maximum minimum measure is devised. The measure is improved by combining the smoothing and counting processes, and then normalizing the number of maximum and minimum positions over the region of interest (ROI). Two parameters (MM_H and MM_V) are generated and used for the segmentation. The technique is tested on some brain MRIs of a human male from the Visible Human Project of the National Library of Medicine, National Institutes of Health, USA. Preliminary results indicate that the maximum minimum measure can provide effective parameters for human tissue characterization and image segmentation with an added advantage of faster computation.

  12. Implementation of Image-Guidance Techniques in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Thomas, Michael; Clark, Brenda; MacPherson, Miller; Montgomery, Lynn; Gerig, Lee

    2008-06-01

    For more than 100 years, physicists have been a vital part of the medical team required to deliver radiation therapy. Their role encompasses the verification of dose accuracy to the development and implementation of new techniques, the most recent of which is the incorporation of daily image guidance to account for inter- and intra-fraction target changes. For example, computed tomography (CT) integrated into radiotherapy treatment units allows the image-guided treatment of the prostate where the target location depends on the degree of rectal filling--a parameter that changes on timescales from minutes to weeks. Different technology is required for the adequate treatment of small lung tumours since respiration occurs on timescales of seconds. This presentation will review current image-guided techniques.

  13. Clutter removal techniques for GPR images in structure inspection tasks

    NASA Astrophysics Data System (ADS)

    Vuksanovic, Branislav; Bostanudin, Nurul Jihan Farhah

    2012-04-01

    This document analyses the performance of subspace signal processing techniques applied to ground penetrating radar (GPR) images in order to reduce the amount of clutter and noise in the measured GPR image. Two methods considered in this work are Principal Component Analysis (PCA) and Independent Component Analysis (ICA). An approach to combine those two techniques to improve their effectiveness when applied to GPR data is proposed in this paper. The experiments performed to gather GPR data and evaluate proposed algorithms are also described. The aim of undertaken experiments is to replicate conditions found in water reservoirs where cracks and holes in the reservoir foundations and joints cause excessive water leakages and losses to water companies and the UK economy in general. Performance of implemented algorithms is discussed and compared to the results achieved by a highly skilled human - GPR image analyst.

  14. Medical Image Processing Using Real-Time Optical Fourier Technique

    NASA Astrophysics Data System (ADS)

    Rao, D. V. G. L. N.; Panchangam, Appaji; Sastry, K. V. L. N.; Material Science Team

    2001-03-01

    Optical Image Processing Techniques are inherently fast in view of parallel processing. A self-adaptive Optical Fourier Processing system using photo induced dichroism in a Bacteriorhodopsin film was experimentally demonstrated for medical image processing. Application of this powerful analog all-optical interactive technique for cancer diagnostics is illustrated with mammograms and Pap smears. Micro calcification clusters buried in surrounding tissue showed up clearly in the processed image. By playing with one knob, which rotates the analyzer in the optical system, either the micro calcification clusters or the surrounding dense tissue can be selectively displayed. Bacteriorhodopsin films are stable up to 140^oC and environmental friendly. As no interference is involved in the experiments, vibration isolation and even a coherent light source are not required. It may be possible to develop a low-cost rugged battery operated portable signal-enhancing magnifier.

  15. Novel imaging techniques as response biomarkers in cervical cancer.

    PubMed

    Harry, Vanessa N

    2010-02-01

    The use of novel imaging techniques that have the ability to evaluate tumour biology and function shows a great deal of promise in providing early surrogate biomarkers of response to therapy which may allow for individualised or patient-specific regimes. This would have considerable clinical benefit in allowing for a treatment regimen tailored accordingly to meet the expected response, thereby reducing morbidity. Several of these imaging modalities such as dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted MRI (DW-MRI), MR spectroscopy (MRS) and fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) are now being introduced into the field of gynaecological oncology, with the majority of work being performed on cervical tumours. This review examines the use of these functional imaging techniques as response biomarkers in cervical cancer. Copyright 2009 Elsevier Inc. All rights reserved.

  16. Air-insufflated high-definition dacryoendoscopy yields significantly better image quality than conventional dacryoendoscopy.

    PubMed

    Sasaki, Tsugihisa; Sounou, Tsutomu; Tsuji, Hideki; Sugiyama, Kazuhisa

    2017-01-01

    To facilitate the analysis of lacrimal conditions, we utilized high-definition dacryoendoscopy (HDD) and undertook observations with a pressure-controlled air-insufflation system. We report the safety and performance of HDD. In this retrospective, non-randomized clinical trial, 46 patients (14 males and 32 females; age range 39-91 years; mean age ± SD 70.3±12.0 years) who had lacrimal disorders were examined with HDD and conventional dacryoendoscopy (CD). The high-definition dacryoendoscope had 15,000 picture element image fibers and an advanced objective lens. Its outer diameter was 0.9-1.2 mm. Air insufflation was controlled at 0-20 kPa with a digital manometer-based pressure-controlled air-insufflation system to evaluate the quality of the image. The HDD had an air/saline irrigation channel between the outer sheath (outer diameter =1.2 mm) and the metal inner sheath of the endoscope. We used it and the CD in air, saline, and diluted milk saline with and without manual irrigation to quantitatively evaluate the effect of air pressure and saline irrigation on image quality. In vivo, the most significant improvement in image quality was demonstrated with air-insufflated (5-15 kPa) HDD, as compared with saline-irrigated HDD and saline-irrigated CD. No emphysema or damage was noted under observation with HDD. In vitro, no significant difference was demonstrated between air-insufflated HDD and saline-irrigated HDD. In vitro, the image quality of air-insufflated HDD was significantly improved as compared with that of saline-irrigated CD. Pressure-controlled (5-15 kPa) air-insufflated HDD is safe, and yields significantly better image quality than CD and saline-irrigated HDD.

  17. Imaging and machine learning techniques for diagnosis of Alzheimer's disease.

    PubMed

    Mirzaei, Golrokh; Adeli, Anahita; Adeli, Hojjat

    2016-12-01

    Alzheimer's disease (AD) is a common health problem in elderly people. There has been considerable research toward the diagnosis and early detection of this disease in the past decade. The sensitivity of biomarkers and the accuracy of the detection techniques have been defined to be the key to an accurate diagnosis. This paper presents a state-of-the-art review of the research performed on the diagnosis of AD based on imaging and machine learning techniques. Different segmentation and machine learning techniques used for the diagnosis of AD are reviewed including thresholding, supervised and unsupervised learning, probabilistic techniques, Atlas-based approaches, and fusion of different image modalities. More recent and powerful classification techniques such as the enhanced probabilistic neural network of Ahmadlou and Adeli should be investigated with the goal of improving the diagnosis accuracy. A combination of different image modalities can help improve the diagnosis accuracy rate. Research is needed on the combination of modalities to discover multi-modal biomarkers.

  18. Molecular imaging of rheumatoid arthritis: emerging markers, tools, and techniques.

    PubMed

    Put, Stéphanie; Westhovens, René; Lahoutte, Tony; Matthys, Patrick

    2014-04-15

    Early diagnosis and effective monitoring of rheumatoid arthritis (RA) are important for a positive outcome. Instant treatment often results in faster reduction of inflammation and, as a consequence, less structural damage. Anatomical imaging techniques have been in use for a long time, facilitating diagnosis and monitoring of RA. However, mere imaging of anatomical structures provides little information on the processes preceding changes in synovial tissue, cartilage, and bone. Molecular imaging might facilitate more effective diagnosis and monitoring in addition to providing new information on the disease pathogenesis. A limiting factor in the development of new molecular imaging techniques is the availability of suitable probes. Here, we review which cells and molecules can be targeted in the RA joint and discuss the advances that have been made in imaging of arthritis with a focus on such molecular targets as folate receptor, F4/80, macrophage mannose receptor, E-selectin, intercellular adhesion molecule-1, phosphatidylserine, and matrix metalloproteinases. In addition, we discuss a new tool that is being introduced in the field, namely the use of nanobodies as tracers. Finally, we describe additional molecules displaying specific features in joint inflammation and propose these as potential new molecular imaging targets, more specifically receptor activator of nuclear factor κB and its ligand, chemokine receptors, vascular cell adhesion molecule-1, αVβ₃ integrin, P2X7 receptor, suppression of tumorigenicity 2, dendritic cell-specific transmembrane protein, and osteoclast-stimulatory transmembrane protein.

  19. Imaging through a biological medium using speckle noise removal techniques

    NASA Astrophysics Data System (ADS)

    Cuddihy, Aoife; Hennelly, Bryan; Naughton, Thomas J.; Markham, Charles; O'Neill, Raymond

    2007-07-01

    Experimental work has been carried out to extend a recently introduced technique, namely non-invasive optical imaging by speckle ensemble (NOISE), to non-invasively image a structure embedded beneath a 2.5mm thick layer of biological tissue (bacon). This method uses a microlens array and a coherent light source in transmission mode. Image reconstruction is achieved by averaging individual images from selected microlenses, thus reducing the speckle noise created due to the tissue layers. We advance on previous work by use of a more powerful laser source (75mW HeNe) and a higher resolution camera (2048x2048). Further advancement led to the introduction of a rotating ground glass diffuser into the system, which additionally reduced the speckle noise and enhanced the image quality. Leading on from this, an even simpler method of imaging beneath biological tissue is devised using the same setup, but without the microlens array. The principle is the same as the NOISE technique, except instead of taking a spatial average of independent speckle patterns a time average is taken within the exposure time of the CCD camera. Experimental results and comparisons are provided that support the theory.

  20. Planning/scheduling techniques for VQ-based image compression

    NASA Technical Reports Server (NTRS)

    Short, Nicholas M., Jr.; Manohar, Mareboyana; Tilton, James C.

    1994-01-01

    The enormous size of the data holding and the complexity of the information system resulting from the EOS system pose several challenges to computer scientists, one of which is data archival and dissemination. More than ninety percent of the data holdings of NASA is in the form of images which will be accessed by users across the computer networks. Accessing the image data in its full resolution creates data traffic problems. Image browsing using a lossy compression reduces this data traffic, as well as storage by factor of 30-40. Of the several image compression techniques, VQ is most appropriate for this application since the decompression of the VQ compressed images is a table lookup process which makes minimal additional demands on the user's computational resources. Lossy compression of image data needs expert level knowledge in general and is not straightforward to use. This is especially true in the case of VQ. It involves the selection of appropriate codebooks for a given data set and vector dimensions for each compression ratio, etc. A planning and scheduling system is described for using the VQ compression technique in the data access and ingest of raw satellite data.

  1. Quantum-yield-optimized fluorophores for site-specific labeling and super-resolution imaging.

    PubMed

    Grunwald, Christian; Schulze, Katrin; Giannone, Gregory; Cognet, Laurent; Lounis, Brahim; Choquet, Daniel; Tampé, Robert

    2011-06-01

    Single-molecule applications, saturated pattern excitation microscopy, and stimulated emission depletion (STED) microscopy demand bright as well as highly stable fluorescent dyes. Here we describe the synthesis of quantum-yield-optimized fluorophores for reversible, site-specific labeling of proteins or macromolecular complexes. We used polyproline-II (PPII) helices as sufficiently rigid spacers with various lengths to improve the fluorescence signals of a set of different trisNTA-fluorophores. The improved quantum yields were demonstrated by steady-state and fluorescence lifetime analyses. As a proof of principle, we characterized the trisNTA-PPII-fluorophores with respect to in vivo protein labeling and super-resolution imaging at synapses of living neurons. The distribution of His-tagged AMPA receptors (GluA1) in spatially restricted synaptic clefts was imaged by confocal and STED microscopy. The comparison of fluorescence intensity profiles revealed the superior resolution of STED microscopy. These results highlight the advantages of biocompatible and, in particular, small and photostable trisNTA-PPII-fluorophores in super-resolution microscopy.

  2. Further Developments of the Fringe-Imaging Skin Friction Technique

    NASA Technical Reports Server (NTRS)

    Zilliac, Gregory C.

    1996-01-01

    Various aspects and extensions of the Fringe-Imaging Skin Friction technique (FISF) have been explored through the use of several benchtop experiments and modeling. The technique has been extended to handle three-dimensional flow fields with mild shear gradients. The optical and imaging system has been refined and a PC-based application has been written that has made it possible to obtain high resolution skin friction field measurements in a reasonable period of time. The improved method was tested on a wingtip and compared with Navier-Stokes computations. Additionally, a general approach to interferogram-fringe spacing analysis has been developed that should have applications in other areas of interferometry. A detailed error analysis of the FISF technique is also included.

  3. Image Analysis Technique for Material Behavior Evaluation in Civil Structures.

    PubMed

    Speranzini, Emanuela; Marsili, Roberto; Moretti, Michele; Rossi, Gianluca

    2017-07-08

    The article presents a hybrid monitoring technique for the measurement of the deformation field. The goal is to obtain information about crack propagation in existing structures, for the purpose of monitoring their state of health. The measurement technique is based on the capture and analysis of a digital image set. Special markers were used on the surface of the structures that can be removed without damaging existing structures as the historical masonry. The digital image analysis was done using software specifically designed in Matlab to follow the tracking of the markers and determine the evolution of the deformation state. The method can be used in any type of structure but is particularly suitable when it is necessary not to damage the surface of structures. A series of experiments carried out on masonry walls of the Oliverian Museum (Pesaro, Italy) and Palazzo Silvi (Perugia, Italy) have allowed the validation of the procedure elaborated by comparing the results with those derived from traditional measuring techniques.

  4. Ambient Mass Spectrometry Imaging Using Direct Liquid Extraction Techniques

    SciTech Connect

    Laskin, Julia; Lanekoff, Ingela

    2015-11-13

    Mass spectrometry imaging (MSI) is a powerful analytical technique that enables label-free spatial localization and identification of molecules in complex samples.1-4 MSI applications range from forensics5 to clinical research6 and from understanding microbial communication7-8 to imaging biomolecules in tissues.1, 9-10 Recently, MSI protocols have been reviewed.11 Ambient ionization techniques enable direct analysis of complex samples under atmospheric pressure without special sample pretreatment.3, 12-16 In fact, in ambient ionization mass spectrometry, sample processing (e.g., extraction, dilution, preconcentration, or desorption) occurs during the analysis.17 This substantially speeds up analysis and eliminates any possible effects of sample preparation on the localization of molecules in the sample.3, 8, 12-14, 18-20 Venter and co-workers have classified ambient ionization techniques into three major categories based on the sample processing steps involved: 1) liquid extraction techniques, in which analyte molecules are removed from the sample and extracted into a solvent prior to ionization; 2) desorption techniques capable of generating free ions directly from substrates; and 3) desorption techniques that produce larger particles subsequently captured by an electrospray plume and ionized.17 This review focuses on localized analysis and ambient imaging of complex samples using a subset of ambient ionization methods broadly defined as “liquid extraction techniques” based on the classification introduced by Venter and co-workers.17 Specifically, we include techniques where analyte molecules are desorbed from solid or liquid samples using charged droplet bombardment, liquid extraction, physisorption, chemisorption, mechanical force, laser ablation, or laser capture microdissection. Analyte extraction is followed by soft ionization that generates ions corresponding to intact species. Some of the key advantages of liquid extraction techniques include the ease

  5. A dual-view digital tomosynthesis imaging technique for improved chest imaging

    SciTech Connect

    Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C.

    2015-09-15

    Purpose: Digital tomosynthesis (DTS) has been shown to be useful for reducing the overlapping of abnormalities with anatomical structures at various depth levels along the posterior–anterior (PA) direction in chest radiography. However, DTS provides crude three-dimensional (3D) images that have poor resolution in the lateral view and can only be displayed with reasonable quality in the PA view. Furthermore, the spillover of high-contrast objects from off-fulcrum planes generates artifacts that may impede the diagnostic use of the DTS images. In this paper, the authors describe and demonstrate the use of a dual-view DTS technique to improve the accuracy of the reconstructed volume image data for more accurate rendition of the anatomy and slice images with improved resolution and reduced artifacts, thus allowing the 3D image data to be viewed in views other than the PA view. Methods: With the dual-view DTS technique, limited angle scans are performed and projection images are acquired in two orthogonal views: PA and lateral. The dual-view projection data are used together to reconstruct 3D images using the maximum likelihood expectation maximization iterative algorithm. In this study, projection images were simulated or experimentally acquired over 360° using the scanning geometry for cone beam computed tomography (CBCT). While all projections were used to reconstruct CBCT images, selected projections were extracted and used to reconstruct single- and dual-view DTS images for comparison with the CBCT images. For realistic demonstration and comparison, a digital chest phantom derived from clinical CT images was used for the simulation study. An anthropomorphic chest phantom was imaged for the experimental study. The resultant dual-view DTS images were visually compared with the single-view DTS images and CBCT images for the presence of image artifacts and accuracy of CT numbers and anatomy and quantitatively compared with root-mean-square-deviation (RMSD) values

  6. Diagnostic yield of electromagnetic navigation bronchoscopy is highly dependent on the presence of a Bronchus sign on CT imaging: results from a prospective study.

    PubMed

    Seijo, Luis M; de Torres, Juan P; Lozano, María D; Bastarrika, Gorka; Alcaide, Ana B; Lacunza, Maria M; Zulueta, Javier J

    2010-12-01

    Electromagnetic navigation bronchoscopy (ENB) has been developed as a novel ancillary tool for the bronchoscopic diagnosis of pulmonary nodules. Despite successful navigation in 90% of patients, ENB diagnostic yield does not generally exceed 70%. We sought to determine whether the presence of a bronchus sign on CT imaging conditions diagnostic yield of ENB and might account for the discrepancy between successful navigation and diagnostic yield. We conducted a prospective, single-center study of ENB in 51 consecutive patients with pulmonary nodules. ENB was chosen as the least invasive diagnostic technique in patients with a high surgical risk, suspected metastatic disease, or advanced-stage disease, or in those who demanded a preoperative diagnosis prior to undergoing curative resection. We studied patient and technical variables that might condition diagnostic yield, including size, cause, location, distance to the pleural surface, and fluorodeoxyglucose uptake of a given nodule; the presence of a bronchus sign on CT imaging; registration point divergence; and the minimum distance from the tip of the locatable guide to the nodule measured during the procedure. The diagnostic yield of ENB was 67% (34/51). The sensitivity and specificity of ENB for malignancy in this study were 71% and 100%, respectively. ENB was diagnostic in 79% (30/38) patients with a bronchus sign on CT imaging but only in 4/13 (31%) with no discernible bronchus sign. Univariate analysis identified the bronchus sign (P = .005) and nodule size (P = .04) as statistically significant variables conditioning yield, but on multivariate analysis, only the bronchus sign remained significant (OR, 7.6; 95% CI, 1.8-31.7). No procedure-related complications were observed. ENB diagnostic yield is highly dependent on the presence of a bronchus sign on CT imaging.

  7. Image encryption using a synchronous permutation-diffusion technique

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Abdullah, Abdul Hanan; Isnin, Ismail Fauzi; Altameem, Ayman; Lee, Malrey

    2017-03-01

    In the past decade, the interest on digital images security has been increased among scientists. A synchronous permutation and diffusion technique is designed in order to protect gray-level image content while sending it through internet. To implement the proposed method, two-dimensional plain-image is converted to one dimension. Afterward, in order to reduce the sending process time, permutation and diffusion steps for any pixel are performed in the same time. The permutation step uses chaotic map and deoxyribonucleic acid (DNA) to permute a pixel, while diffusion employs DNA sequence and DNA operator to encrypt the pixel. Experimental results and extensive security analyses have been conducted to demonstrate the feasibility and validity of this proposed image encryption method.

  8. Rock porosity and fracture parameter estimation by image technique

    NASA Astrophysics Data System (ADS)

    Wang, W.; Wang, Ch. Z.; Hu, Y. Z.

    2009-06-01

    To estimate rock porosity in 2D and 3D, we used image technique to analyze rock fractures. We set up some models to characterize the rock fractures, based on the models, we used Best fit Ferret method to auto-determine fracture zone, then, analyze rock fracture porosities in 2-D and 3-D. In this study, rock sample is cut off into a number of slices of a certain thickness (18mm), then the fracture images are taken slice by slice both by using ultraviolet and visible lights, subsequently the fracture images are auto-thresholded into binary images, and fracture zones are determined by minimum circumscribed rectangles, finally the porosities are calculated in 2-D dimensional, and 3-D porosities are estimated based on 2-D porosity information.

  9. FT-IR microspectroscopic imaging of human carcinoma thin sections based on pattern recognition techniques.

    PubMed

    Lasch, P; Naumann, D

    1998-02-01

    FT-IR microspectroscopic maps of unstained thin sections from human melanoma and colon carcinoma tissues were obtained on a conventional infrared microscope equipped with an automatic x, y stage. Mapped infrared data were analyzed by different image re-assembling techniques, namely functional group mapping ("chemical mapping") and, for the first time by cluster analysis, principal component analysis and artificial neural networks. The output values of the different classifiers were recombined with the original spatial information to construct IR-images whose color or gray tones were based on the spatial distribution of individual spectral patterns. While the functional group mapping technique could not reliably differentiate between the different tissue regions, the approach based on pattern recognition yielded images with a high contrast that confirmed standard histopathological techniques. The new technique turned out to be particularly helpful to improve discrimination between different types of tissue structures in general, and to increase image contrast between normal and cancerous regions of a given tissue sample.

  10. Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis

    SciTech Connect

    Ikejimba, Lynda C.; Kiarashi, Nooshin; Ghate, Sujata V.; Samei, Ehsan; Lo, Joseph Y.

    2014-06-15

    Purpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Methods: Imaging performance was characterized using a detectability index d{sup ′}, derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d{sup ′} was generated as a function of dose and iodine concentration. Results: For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d{sup ′}, while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d{sup ′} values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. Conclusions: At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of

  11. Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis

    PubMed Central

    Ikejimba, Lynda C.; Kiarashi, Nooshin; Ghate, Sujata V.; Samei, Ehsan; Lo, Joseph Y.

    2014-01-01

    Purpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Methods: Imaging performance was characterized using a detectability index d′, derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d′ was generated as a function of dose and iodine concentration. Results: For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d′, while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d′ values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. Conclusions: At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of inplane structures and

  12. Quantitative Image Analysis Techniques with High-Speed Schlieren Photography

    NASA Technical Reports Server (NTRS)

    Pollard, Victoria J.; Herron, Andrew J.

    2017-01-01

    Optical flow visualization techniques such as schlieren and shadowgraph photography are essential to understanding fluid flow when interpreting acquired wind tunnel test data. Output of the standard implementations of these visualization techniques in test facilities are often limited only to qualitative interpretation of the resulting images. Although various quantitative optical techniques have been developed, these techniques often require special equipment or are focused on obtaining very precise and accurate data about the visualized flow. These systems are not practical in small, production wind tunnel test facilities. However, high-speed photography capability has become a common upgrade to many test facilities in order to better capture images of unsteady flow phenomena such as oscillating shocks and flow separation. This paper describes novel techniques utilized by the authors to analyze captured high-speed schlieren and shadowgraph imagery from wind tunnel testing for quantification of observed unsteady flow frequency content. Such techniques have applications in parametric geometry studies and in small facilities where more specialized equipment may not be available.

  13. Forecast of wheat yield throughout the agricultural season using optical and radar satellite images

    NASA Astrophysics Data System (ADS)

    Fieuzal, R.; Baup, F.

    2017-07-01

    The aim of this study is to estimate the capabilities of forecasting the yield of wheat using an artificial neural network combined with multi-temporal satellite data acquired at high spatial resolution throughout the agricultural season in the optical and/or microwave domains. Reflectance (acquired by Formosat-2, and Spot 4-5 in the green, red, and near infrared wavelength) and multi-configuration backscattering coefficients (acquired by TerraSAR-X and Radarsat-2 in the X- and C-bands, at co- (abbreviated HH and VV) and cross-polarization states (abbreviated HV and VH)) constitute the input variable of the artificial neural networks, which are trained and validated on the successively acquired images, providing yield forecast in near real-time conditions. The study is based on data collected over 32 fields of wheat distributed over a study area located in southwestern France, near Toulouse. Among the tested sensor configurations, several satellite data appear useful for the yield forecasting throughout the agricultural season (showing coefficient of determination (R2) larger than 0.60 and a root mean square error (RMSE) lower than 9.1 quintals by hectare (q ha-1)): CVH, CHV, or the combined used of XHH and CHH, CHH and CHV, or green reflectance and CHH. Nevertheless, the best accurate forecast (R2 = 0.76 and RMSE = 7.0 q ha-1) is obtained longtime before the harvest (on day 98, during the elongation of stems) using the combination of co- and cross-polarized backscattering coefficients acquired in the C-band (CVV and CVH). These results highlight the high interest of using synthetic aperture radar (SAR) data instead of optical ones to early forecast the yield before the harvest of wheat.

  14. An adaptive technique to maximize lossless image data compression of satellite images

    NASA Technical Reports Server (NTRS)

    Stewart, Robert J.; Lure, Y. M. Fleming; Liou, C. S. Joe

    1994-01-01

    Data compression will pay an increasingly important role in the storage and transmission of image data within NASA science programs as the Earth Observing System comes into operation. It is important that the science data be preserved at the fidelity the instrument and the satellite communication systems were designed to produce. Lossless compression must therefore be applied, at least, to archive the processed instrument data. In this paper, we present an analysis of the performance of lossless compression techniques and develop an adaptive approach which applied image remapping, feature-based image segmentation to determine regions of similar entropy and high-order arithmetic coding to obtain significant improvements over the use of conventional compression techniques alone. Image remapping is used to transform the original image into a lower entropy state. Several techniques were tested on satellite images including differential pulse code modulation, bi-linear interpolation, and block-based linear predictive coding. The results of these experiments are discussed and trade-offs between computation requirements and entropy reductions are used to identify the optimum approach for a variety of satellite images. Further entropy reduction can be achieved by segmenting the image based on local entropy properties then applying a coding technique which maximizes compression for the region. Experimental results are presented showing the effect of different coding techniques for regions of different entropy. A rule-base is developed through which the technique giving the best compression is selected. The paper concludes that maximum compression can be achieved cost effectively and at acceptable performance rates with a combination of techniques which are selected based on image contextual information.

  15. Meat quality evaluation by hyperspectral imaging technique: an overview.

    PubMed

    Elmasry, Gamal; Barbin, Douglas F; Sun, Da-Wen; Allen, Paul

    2012-01-01

    During the last two decades, a number of methods have been developed to objectively measure meat quality attributes. Hyperspectral imaging technique as one of these methods has been regarded as a smart and promising analytical tool for analyses conducted in research and industries. Recently there has been a renewed interest in using hyperspectral imaging in quality evaluation of different food products. The main inducement for developing the hyperspectral imaging system is to integrate both spectroscopy and imaging techniques in one system to make direct identification of different components and their spatial distribution in the tested product. By combining spatial and spectral details together, hyperspectral imaging has proved to be a promising technology for objective meat quality evaluation. The literature presented in this paper clearly reveals that hyperspectral imaging approaches have a huge potential for gaining rapid information about the chemical structure and related physical properties of all types of meat. In addition to its ability for effectively quantifying and characterizing quality attributes of some important visual features of meat such as color, quality grade, marbling, maturity, and texture, it is able to measure multiple chemical constituents simultaneously without monotonous sample preparation. Although this technology has not yet been sufficiently exploited in meat process and quality assessment, its potential is promising. Developing a quality evaluation system based on hyperspectral imaging technology to assess the meat quality parameters and to ensure its authentication would bring economical benefits to the meat industry by increasing consumer confidence in the quality of the meat products. This paper provides a detailed overview of the recently developed approaches and latest research efforts exerted in hyperspectral imaging technology developed for evaluating the quality of different meat products and the possibility of its widespread

  16. Comparison and evaluation of retrospective intermodality image registration techniques

    NASA Astrophysics Data System (ADS)

    West, Jay B.; Fitzpatrick, J. Michael; Wang, Matthew Y.; Dawant, Benoit M.; Maurer, Calvin R., Jr.; Kessler, Robert M.; Maciunas, Robert J.; Barillot, Christian; Lemoine, Didier; Collignon, Andre M. F.; Maes, Frederik; Suetens, Paul; Vandermeulen, Dirk; van den Elsen, Petra A.; Hemler, Paul F.; Napel, Sandy; Sumanaweera, Thilaka S.; Harkness, Beth A.; Hill, Derek L.; Studholme, Colin; Malandain, Gregoire; Pennec, Xavier; Noz, Marilyn E.; Maguire, Gerald Q., Jr.; Pollack, Michael; Pelizzari, Charles A.; Robb, Richard A.; Hanson, Dennis P.; Woods, Roger P.

    1996-04-01

    All retrospective image registration methods have attached to them some intrinsic estimate of registration error. However, this estimate of accuracy may not always be a good indicator of the distance between actual and estimated positions of targets within the cranial cavity. This paper describes a project whose principal goal is to use a prospective method based on fiducial markers as a 'gold standard' to perform an objective, blinded evaluation of the accuracy of several retrospective image-to-image registration techniques. Image volumes of three modalities -- CT, MR, and PET -- were taken of patients undergoing neurosurgery at Vanderbilt University Medical Center. These volumes had all traces of the fiducial markers removed, and were provided to project collaborators outside Vanderbilt, who then performed retrospective registrations on the volumes, calculating transformations from CT to MR and/or from PET to MR, and communicated their transformations to Vanderbilt where the accuracy of each registration was evaluated. In this evaluation the accuracy is measured at multiple 'regions of interest,' i.e. areas in the brain which would commonly be areas of neurological interest. A region is defined in the MR image and its centroid C is determined. Then the prospective registration is used to obtain the corresponding point C' in CT or PET. To this point the retrospective registration is then applied, producing C' in MR. Statistics are gathered on the target registration error (TRE), which is the disparity between the original point C and its corresponding point C'. A second goal of the project is to evaluate the importance of correcting geometrical distortion in MR images, by comparing the retrospective TRE in the rectified images, i.e., those which have had the distortion correction applied, with that of the same images before rectification. This paper presents preliminary results of this study along with a brief description of each registration technique and an

  17. Surface conversion techniques for low energy neutral atom imagers

    NASA Technical Reports Server (NTRS)

    Quinn, J. M.

    1995-01-01

    This investigation has focused on development of key technology elements for low energy neutral atom imaging. More specifically, we have investigated the conversion of low energy neutral atoms to negatively charged ions upon reflection from specially prepared surfaces. This 'surface conversion' technique appears to offer a unique capability of detecting, and thus imaging, neutral atoms at energies of 0.01 - 1 keV with high enough efficiencies to make practical its application to low energy neutral atom imaging in space. Such imaging offers the opportunity to obtain the first instantaneous global maps of macroscopic plasma features and their temporal variation. Through previous in situ plasma measurements, we have a statistical picture of large scale morphology and local measurements of dynamic processes. However, with in situ techniques it is impossible to characterize or understand many of the global plasma transport and energization processes. A series of global plasma images would greatly advance our understanding of these processes and would provide the context for interpreting previous and future in situ measurements. Fast neutral atoms, created from ions that are neutralized in collisions with exospheric neutrals, offer the means for remotely imaging plasma populations. Energy and mass analysis of these neutrals provides critical information about the source plasma distribution. The flux of neutral atoms available for imaging depends upon a convolution of the ambient plasma distribution with the charge exchange cross section for the background neutral population. Some of the highest signals are at relatively low energies (well below 1 keV). This energy range also includes some of the most important plasma populations to be imaged, for example the base of the cleft ion fountain.

  18. Analysis of High Contrast Imaging Techniques for Space Based Direct Planetary Imaging

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Gezari, Dan Y.; Nisenson, P.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We report on our ongoing investigations of a number of techniques for direct detection and imaging of Earth-like planets around nearby stellar sources. Herein, we give a quantitative analysis of these techniques and compare and contrast them via computer simulations. The techniques we will be reporting on are Bracewell Interferometry, Nisenson Apodized Square Aperture, and Coronagraphic masking techniques. We parameterize our results with respect to wavelength, aperture size, effects of mirror speckle, both mid- and high-spatial frequency, detector and photon noise as well pointing error. The recent numerous detections of Jupiter and Saturn like planets has driven a resurgence in research of space based high contrast imaging techniques for direct planetary imaging. Work is currently ongoing for concepts for NASA's Terrestrial Planet Finder mission and a number of study teams have been funded. The authors are members of one team.

  19. Comparison of sonochemiluminescence images using image analysis techniques and identification of acoustic pressure fields via simulation.

    PubMed

    Tiong, T Joyce; Chandesa, Tissa; Yap, Yeow Hong

    2017-05-01

    One common method to determine the existence of cavitational activity in power ultrasonics systems is by capturing images of sonoluminescence (SL) or sonochemiluminescence (SCL) in a dark environment. Conventionally, the light emitted from SL or SCL was detected based on the number of photons. Though this method is effective, it could not identify the sonochemical zones of an ultrasonic systems. SL/SCL images, on the other hand, enable identification of 'active' sonochemical zones. However, these images often provide just qualitative data as the harvesting of light intensity data from the images is tedious and require high resolution images. In this work, we propose a new image analysis technique using pseudo-colouring images to quantify the SCL zones based on the intensities of the SCL images and followed by comparison of the active SCL zones with COMSOL simulated acoustic pressure zones.

  20. Image segmentation using common techniques and illumination applied to tissue culture

    NASA Astrophysics Data System (ADS)

    Vazquez Rueda, Martin G.; Hahn, Federico

    1998-03-01

    This paper present the comparation and performance on no adaptive image segmentation techniques using illumination and adaptive image segmentation techniques. Results obtained on indoor plant reproduction by tissue culture, show the improve in time process, simplify the image segmentation process, experimental results are presented using common techniques in image processing and illumination, contrasted with adaptive image segmentation.

  1. Rubber yield prediction by meteorological conditions using mixed models and multi-model inference techniques

    NASA Astrophysics Data System (ADS)

    Golbon, Reza; Ogutu, Joseph Ochieng; Cotter, Marc; Sauerborn, Joachim

    2015-12-01

    Linear mixed models were developed and used to predict rubber ( Hevea brasiliensis) yield based on meteorological conditions to which rubber trees had been exposed for periods ranging from 1 day to 2 months prior to tapping events. Predictors included a range of moving averages of meteorological covariates spanning different windows of time before the date of the tapping events. Serial autocorrelation in the latex yield measurements was accounted for using random effects and a spatial generalization of the autoregressive error covariance structure suited to data sampled at irregular time intervals. Information theoretics, specifically the Akaike information criterion (AIC), AIC corrected for small sample size (AICc), and Akaike weights, was used to select models with the greatest strength of support in the data from a set of competing candidate models. The predictive performance of the selected best model was evaluated using both leave-one-out cross-validation (LOOCV) and an independent test set. Moving averages of precipitation, minimum and maximum temperature, and maximum relative humidity with a 30-day lead period were identified as the best yield predictors. Prediction accuracy expressed in terms of the percentage of predictions within a measurement error of 5 g for cross-validation and also for the test dataset was above 99 %.

  2. Rubber yield prediction by meteorological conditions using mixed models and multi-model inference techniques.

    PubMed

    Golbon, Reza; Ogutu, Joseph Ochieng; Cotter, Marc; Sauerborn, Joachim

    2015-12-01

    Linear mixed models were developed and used to predict rubber (Hevea brasiliensis) yield based on meteorological conditions to which rubber trees had been exposed for periods ranging from 1 day to 2 months prior to tapping events. Predictors included a range of moving averages of meteorological covariates spanning different windows of time before the date of the tapping events. Serial autocorrelation in the latex yield measurements was accounted for using random effects and a spatial generalization of the autoregressive error covariance structure suited to data sampled at irregular time intervals. Information theoretics, specifically the Akaike information criterion (AIC), AIC corrected for small sample size (AICc), and Akaike weights, was used to select models with the greatest strength of support in the data from a set of competing candidate models. The predictive performance of the selected best model was evaluated using both leave-one-out cross-validation (LOOCV) and an independent test set. Moving averages of precipitation, minimum and maximum temperature, and maximum relative humidity with a 30-day lead period were identified as the best yield predictors. Prediction accuracy expressed in terms of the percentage of predictions within a measurement error of 5 g for cross-validation and also for the test dataset was above 99 %.

  3. Multivariate image processing technique for noninvasive glucose sensing

    NASA Astrophysics Data System (ADS)

    Webb, Anthony J.; Cameron, Brent D.

    2010-02-01

    A potential noninvasive glucose sensing technique was investigated for application towards in vivo glucose monitoring for individuals afflicted with diabetes mellitus. Three dimensional ray tracing simulations using a realistic iris pattern integrated into an advanced human eye model are reported for physiological glucose concentrations ranging between 0 to 500 mg/dL. The anterior chamber of the human eye contains a clear fluid known as the aqueous humor. The optical refractive index of the aqueous humor varies on the order of 1.5x10-4 for a change in glucose concentration of 100 mg/dL. The simulation data was analyzed with a developed multivariate chemometrics procedure that utilizes iris-based images to form a calibration model. Results from these simulations show considerable potential for use of the developed method in the prediction of glucose. For further demonstration, an in vitro eye model was developed to validate the computer based modeling technique. In these experiments, a realistic iris pattern was placed in an analog eye model in which the glucose concentration within the fluid representing the aqueous humor was varied. A series of high resolution digital images were acquired using an optical imaging system. These images were then used to form an in vitro calibration model utilizing the same multivariate chemometric technique demonstrated in the 3-D optical simulations. In general, the developed method exhibits considerable applicability towards its use as an in vivo platform for the noninvasive monitoring of physiological glucose concentration.

  4. Applicability of three-dimensional imaging techniques in fetal medicine*

    PubMed Central

    Werner Júnior, Heron; dos Santos, Jorge Lopes; Belmonte, Simone; Ribeiro, Gerson; Daltro, Pedro; Gasparetto, Emerson Leandro; Marchiori, Edson

    2016-01-01

    Objective To generate physical models of fetuses from images obtained with three-dimensional ultrasound (3D-US), magnetic resonance imaging (MRI), and, occasionally, computed tomography (CT), in order to guide additive manufacturing technology. Materials and Methods We used 3D-US images of 31 pregnant women, including 5 who were carrying twins. If abnormalities were detected by 3D-US, both MRI and in some cases CT scans were then immediately performed. The images were then exported to a workstation in DICOM format. A single observer performed slice-by-slice manual segmentation using a digital high resolution screen. Virtual 3D models were obtained from software that converts medical images into numerical models. Those models were then generated in physical form through the use of additive manufacturing techniques. Results Physical models based upon 3D-US, MRI, and CT images were successfully generated. The postnatal appearance of either the aborted fetus or the neonate closely resembled the physical models, particularly in cases of malformations. Conclusion The combined use of 3D-US, MRI, and CT could help improve our understanding of fetal anatomy. These three screening modalities can be used for educational purposes and as tools to enable parents to visualize their unborn baby. The images can be segmented and then applied, separately or jointly, in order to construct virtual and physical 3D models. PMID:27818540

  5. Comparison of additive image fusion vs. feature-level image fusion techniques for enhanced night driving

    NASA Astrophysics Data System (ADS)

    Bender, Edward J.; Reese, Colin E.; Van Der Wal, Gooitzen S.

    2003-02-01

    The Night Vision & Electronic Sensors Directorate (NVESD) has conducted a series of image fusion evaluations under the Head-Tracked Vision System (HTVS) program. The HTVS is a driving system for both wheeled and tracked military vehicles, wherein dual-waveband sensors are directed in a more natural head-slewed imaging mode. The HTVS consists of thermal and image-intensified TV sensors, a high-speed gimbal, a head-mounted display, and a head tracker. A series of NVESD field tests over the past two years has investigated the degree to which additive (A+B) image fusion of these sensors enhances overall driving performance. Additive fusion employs a single (but user adjustable) fractional weighting for all the features of each sensor's image. More recently, NVESD and Sarnoff Corporation have begun a cooperative effort to evaluate and refine Sarnoff's "feature-level" multi-resolution (pyramid) algorithms for image fusion. This approach employs digital processing techniques to select at each image point only the sensor with the strongest features, and to utilize only those features to reconstruct the fused video image. This selection process is performed simultaneously at multiple scales of the image, which are combined to form the reconstructed fused image. All image fusion techniques attempt to combine the "best of both sensors" in a single image. Typically, thermal sensors are better for detecting military threats and targets, while image-intensified sensors provide more natural scene cues and detect cultural lighting. This investigation will address the differences between additive fusion and feature-level image fusion techniques for enhancing the driver's overall situational awareness.

  6. Image processing of correlated data by experimental design techniques

    SciTech Connect

    Stern, D.

    1987-01-01

    New classes of algorithms are developed for processing of two-dimensional image data imbedded in correlated noise. The algorithms are based on modifications of standard analysis of variance (ANOVA) techniques ensuring their proper operation in dependent noise. The approach taken in the development of procedures is deductive. First, the theory of modified ANOVA (MANOVA) techniques involving one- and two-way layouts are considered for noise models with autocorrelation matrix (ACM) formed by direct multiplication of rows and columns or tensored correlation matrices (TCM) stressing the special case of the first-order Markov process. Next, the techniques are generalized to include arbitrary, wide-sense stationary (WSS) processes. This permits dealing with diagonal masks which have ACM of a general form even for TCM. As further extension, the theory of Latin square (LS) masks is generalized to include dependent noise with TCM. This permits dealing with three different effects of m levels using only m{sup 2} observations rather than m{sup 3}. Since in many image-processing problems, replication of data is possible, the masking techniques are generalized to replicated data for which the replication is TCM dependent. For all procedures developed, algorithms are implemented which ensure real-time processing of images.

  7. Comparison of Computational Techniques for Estimating Solar Wind Ion Sputtering Yields on Silicates

    NASA Astrophysics Data System (ADS)

    Hutcherson, Adam; Schaible, Micah; Johnson, Robert

    2015-11-01

    Bodies in space containing silicates and oxides continuously experience ion collisions that result in surface sputtering. Knowledge of sputter yields allows for the estimation of destruction rates of small grains in protoplanetary clouds and predictions of exosphere densities around small bodies to be carried out. However, sputter yields for astrophysical type materials are poorly constrained and there has been little work to compare computational models to experimental results. Theoretical models using sputtering yields commonly use the software SRIM to simulate ion implantation into solids. However, the program has been shown to give results that are in poor agreement with experimental data for low energy (<10 keV) incident ions typical of the solar wind. Here we compare predicted sputtering yields from SRIM and a program based on the TRIM.Sp algorithm called SDTrimSP. Both programs were designed to simulate atomic collisions in amorphous targets with predefined stoichiometric compositions and atomic binding energies. During the simulation, a one dimensional target is exposed to an incident beam of particles with a composition and energy determined by the user. The binary collision approximation is used to handle the collisions and the energy loss of the incident particle and energy gain of the recoil is then calculated. This process is repeated for resulting collisions until all particle energies fall below a preset value or have left the target. However, SDTrimSP can account for changing surface composition with increasing irradiation fluence and also provides the option to use several different surface binding energy models.Simulations of H and He irradiation of simple oxides were run using both programs at energies in the 0.1-10 keV range and compared to published experimental data. SDTrimSP was seen to display a better agreement with this data than SRIM, making it a more reliable method of estimating sputtering yields. The model was then expanded to simulate

  8. Assessment of banana fruit maturity by image processing technique.

    PubMed

    Surya Prabha, D; Satheesh Kumar, J

    2015-03-01

    Maturity stage of fresh banana fruit is an important factor that affects the fruit quality during ripening and marketability after ripening. The ability to identify maturity of fresh banana fruit will be a great support for farmers to optimize harvesting phase which helps to avoid harvesting either under-matured or over-matured banana. This study attempted to use image processing technique to detect the maturity stage of fresh banana fruit by its color and size value of their images precisely. A total of 120 images comprising 40 images from each stage such as under-mature, mature and over-mature were used for developing algorithm and accuracy prediction. The mean color intensity from histogram; area, perimeter, major axis length and minor axis length from the size values, were extracted from the calibration images. Analysis of variance between each maturity stage on these features indicated that the mean color intensity and area features were more significant in predicting the maturity of banana fruit. Hence, two classifier algorithms namely, mean color intensity algorithm and area algorithm were developed and their accuracy on maturity detection was assessed. The mean color intensity algorithm showed 99.1 % accuracy in classifying the banana fruit maturity. The area algorithm classified the under-mature fruit at 85 % accuracy. Hence the maturity assessment technique proposed in this paper could be used commercially to develop a field based complete automatic detection system to take decision on the right time of harvest by the banana growers.

  9. Dual self-image technique for beam collimation

    NASA Astrophysics Data System (ADS)

    Herrera-Fernandez, Jose Maria; Sanchez-Brea, Luis Miguel; Torcal-Milla, Francisco Jose; Morlanes, Tomas; Bernabeu, Eusebio

    2016-07-01

    We propose an accurate technique for obtaining highly collimated beams, which also allows testing the collimation degree of a beam. It is based on comparing the period of two different self-images produced by a single diffraction grating. In this way, variations in the period of the diffraction grating do not affect to the measuring procedure. Self-images are acquired by two CMOS cameras and their periods are determined by fitting the variogram function of the self-images to a cosine function with polynomial envelopes. This way, loss of accuracy caused by imperfections of the measured self-images is avoided. As usual, collimation is obtained by displacing the collimation element with respect to the source along the optical axis. When the period of both self-images coincides, collimation is achieved. With this method neither a strict control of the period of the diffraction grating nor a transverse displacement, required in other techniques, are necessary. As an example, a LED considering paraxial approximation and point source illumination is collimated resulting a resolution in the divergence of the beam of δ φ =+/- 1.57 μ {rad}.

  10. Imaging technique for washed-out ink inscriptions on vellum

    NASA Astrophysics Data System (ADS)

    Kovalchuk, Alexander

    2011-09-01

    An imaging technique that had been developed for reading destroyed texts in an ancient manuscript is described. A codex of early Peshitta Gospels was examined. The leaves of the codex were made of vellum. Texts were inscribed with black and red iron based inks. The codex suffered extensive damage from a prolonged exposure to water. The black ink was completely washed off from the majority of the pages. Multispectral imaging showed no detectable traces of ink in the pores of the vellum. It was discovered that the vellum retains "memory" of the long gone inscriptions. It has been shown that in oblique illumination a ratio of reflected to absorbed light differs for areas of vellum at which the ink once was applied and the areas which were never covered with ink. Experiments have been carried out for finding the optimal polarisation and spectral characteristics of light to be used for illumination of the surface of vellum as well as the best angles of incidence of light and angle of observation. A device for imaging folios of the water damaged Peshitta codex have been designed and the algorithms for processing the raw images have been developed. Application of the our imaging technique has allowed reading completely destroyed ink inscriptions of the invaluable historic artefact.

  11. Imaging technique for washed-out ink inscriptions on vellum

    NASA Astrophysics Data System (ADS)

    Kovalchuk, Alexander

    2012-01-01

    An imaging technique that had been developed for reading destroyed texts in an ancient manuscript is described. A codex of early Peshitta Gospels was examined. The leaves of the codex were made of vellum. Texts were inscribed with black and red iron based inks. The codex suffered extensive damage from a prolonged exposure to water. The black ink was completely washed off from the majority of the pages. Multispectral imaging showed no detectable traces of ink in the pores of the vellum. It was discovered that the vellum retains "memory" of the long gone inscriptions. It has been shown that in oblique illumination a ratio of reflected to absorbed light differs for areas of vellum at which the ink once was applied and the areas which were never covered with ink. Experiments have been carried out for finding the optimal polarisation and spectral characteristics of light to be used for illumination of the surface of vellum as well as the best angles of incidence of light and angle of observation. A device for imaging folios of the water damaged Peshitta codex have been designed and the algorithms for processing the raw images have been developed. Application of the our imaging technique has allowed reading completely destroyed ink inscriptions of the invaluable historic artefact.

  12. Super-Resolution Enhancement From Multiple Overlapping Images: A Fractional Area Technique

    NASA Astrophysics Data System (ADS)

    Michaels, Joshua A.

    With the availability of large quantities of relatively low-resolution data from several decades of space borne imaging, methods of creating an accurate, higher-resolution image from the multiple lower-resolution images (i.e. super-resolution), have been developed almost since such imagery has been around. The fractional-area super-resolution technique developed in this thesis has never before been documented. Satellite orbits, like Landsat, have a quantifiable variation, which means each image is not centered on the exact same spot more than once and the overlapping information from these multiple images may be used for super-resolution enhancement. By splitting a single initial pixel into many smaller, desired pixels, a relationship can be created between them using the ratio of the area within the initial pixel. The ideal goal for this technique is to obtain smaller pixels with exact values and no error, yielding a better potential result than those methods that yield interpolated pixel values with consequential loss of spatial resolution. A Fortran 95 program was developed to perform all calculations associated with the fractional-area super-resolution technique. The fractional areas are calculated using traditional trigonometry and coordinate geometry and Linear Algebra Package (LAPACK; Anderson et al., 1999) is used to solve for the higher-resolution pixel values. In order to demonstrate proof-of-concept, a synthetic dataset was created using the intrinsic Fortran random number generator and Adobe Illustrator CS4 (for geometry). To test the real-life application, digital pictures from a Sony DSC-S600 digital point-and-shoot camera with a tripod were taken of a large US geological map under fluorescent lighting. While the fractional-area super-resolution technique works in perfect synthetic conditions, it did not successfully produce a reasonable or consistent solution in the digital photograph enhancement test. The prohibitive amount of processing time (up to

  13. Positron imaging techniques for process engineering: recent developments at Birmingham

    NASA Astrophysics Data System (ADS)

    Parker, D. J.; Leadbeater, T. W.; Fan, X.; Hausard, M. N.; Ingram, A.; Yang, Z.

    2008-09-01

    For over 20 years the University of Birmingham has been using positron-emitting radioactive tracers to study engineering processes. The imaging technique of positron emission tomography (PET), widely used for medical applications, has been adapted for these studies, and the complementary technique of positron emission particle tracking (PEPT) has been developed. The radioisotopes are produced using the Birmingham MC40 cyclotron, and a variety of techniques are employed to produce suitable tracers in a wide range of forms. Detectors originally designed for medical use have been modified for engineering applications, allowing measurements to be made on real process equipment, at laboratory or pilot plant scale. This paper briefly reviews the capability of the techniques and introduces a few of the many processes to which they have been applied.

  14. The Handbook of Medical Image Perception and Techniques

    NASA Astrophysics Data System (ADS)

    Samei, Ehsan; Krupinski, Elizabeth

    2009-12-01

    Peter Ayton; Part V. Optimization and Practical Issues: 25. Optimization of 2D and 3D radiographic systems Jeff Siewerdson; 26. Applications of AFC methodology in optimization of CT imaging systems Kent Ogden and Walter Huda; 27. Perceptual issues in reading mammograms Margarita Zuley; 28. Perceptual optimization of display processing techniques Richard Van Metter; 29. Optimization of display systems Elizabeth Krupinski and Hans Roehrig; 30. Ergonomic radiologist workplaces in the PACS environment Carl Zylack; Part VI. Epilogue: 31. Future prospects of medical image perception Ehsan Samei and Elizabeth Krupinski; Index.

  15. The Handbook of Medical Image Perception and Techniques

    NASA Astrophysics Data System (ADS)

    Samei, Ehsan; Krupinski, Elizabeth

    2014-07-01

    Peter Ayton; Part V. Optimization and Practical Issues: 25. Optimization of 2D and 3D radiographic systems Jeff Siewerdson; 26. Applications of AFC methodology in optimization of CT imaging systems Kent Ogden and Walter Huda; 27. Perceptual issues in reading mammograms Margarita Zuley; 28. Perceptual optimization of display processing techniques Richard Van Metter; 29. Optimization of display systems Elizabeth Krupinski and Hans Roehrig; 30. Ergonomic radiologist workplaces in the PACS environment Carl Zylack; Part VI. Epilogue: 31. Future prospects of medical image perception Ehsan Samei and Elizabeth Krupinski; Index.

  16. Scene correction (precision techniques) of ERTS sensor data using digital image processing techniques

    NASA Technical Reports Server (NTRS)

    Bernstein, R.

    1974-01-01

    Techniques have been developed, implemented, and evaluated to process ERTS Return Beam Vidicon (RBV) and Multispectral Scanner (MSS) sensor data using digital image processing techniques. The RBV radiometry has been corrected to remove shading effects, and the MSS geometry and radiometry have been corrected to remove internal and external radiometric and geometric errors. The results achieved show that geometric mapping accuracy of about one picture element RMS and two picture elements (maximum) can be achieved by the use of nine ground control points. Radiometric correction of MSS and RBV sensor data has been performed to eliminate striping and shading effects to about one count accuracy. Image processing times on general purpose computers of the IBM 370/145 to 168 class are in the range of 29 to 3.2 minutes per MSS scene (4 bands). Photographic images of the fully corrected and annotated scenes have been generated from the processed data and have demonstrated excellent quality and information extraction potential.

  17. Computer image processing - The Viking experience. [digital enhancement techniques

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1977-01-01

    Computer processing of digital imagery from the Viking mission to Mars is discussed, with attention given to subjective enhancement and quantitative processing. Contrast stretching and high-pass filtering techniques of subjective enhancement are described; algorithms developed to determine optimal stretch and filtering parameters are also mentioned. In addition, geometric transformations to rectify the distortion of shapes in the field of view and to alter the apparent viewpoint of the image are considered. Perhaps the most difficult problem in quantitative processing of Viking imagery was the production of accurate color representations of Orbiter and Lander camera images.

  18. Application of digital image processing techniques to astronomical imagery, 1979

    NASA Technical Reports Server (NTRS)

    Lorre, J. J.

    1979-01-01

    Several areas of applications of image processing to astronomy were identified and discussed. These areas include: (1) deconvolution for atmospheric seeing compensation; a comparison between maximum entropy and conventional Wiener algorithms; (2) polarization in galaxies from photographic plates; (3) time changes in M87 and methods of displaying these changes; (4) comparing emission line images in planetary nebulae; and (5) log intensity, hue saturation intensity, and principal component color enhancements of M82. Examples are presented of these techniques applied to a variety of objects.

  19. Reduction and analysis techniques for infrared imaging data

    NASA Technical Reports Server (NTRS)

    Mccaughrean, Mark

    1989-01-01

    Infrared detector arrays are becoming increasingly available to the astronomy community, with a number of array cameras already in use at national observatories, and others under development at many institutions. As the detector technology and imaging instruments grow more sophisticated, more attention is focussed on the business of turning raw data into scientifically significant information. Turning pictures into papers, or equivalently, astronomy into astrophysics, both accurately and efficiently, is discussed. Also discussed are some of the factors that can be considered at each of three major stages; acquisition, reduction, and analysis, concentrating in particular on several of the questions most relevant to the techniques currently applied to near infrared imaging.

  20. Computer image processing - The Viking experience. [digital enhancement techniques

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1977-01-01

    Computer processing of digital imagery from the Viking mission to Mars is discussed, with attention given to subjective enhancement and quantitative processing. Contrast stretching and high-pass filtering techniques of subjective enhancement are described; algorithms developed to determine optimal stretch and filtering parameters are also mentioned. In addition, geometric transformations to rectify the distortion of shapes in the field of view and to alter the apparent viewpoint of the image are considered. Perhaps the most difficult problem in quantitative processing of Viking imagery was the production of accurate color representations of Orbiter and Lander camera images.

  1. Application of image processing techniques to gamma-angiography.

    PubMed

    Romary, D; Lerallut, J F; Fontenier, G

    1985-10-01

    Different image processing techniques have been tested and compared on data derived from gamma-angiography images to detect the boundary of the left ventricle. The method involves a preprocessing step, followed by the edge detection itself. The best preprocessing is a nonlinear "variant" filtering, where each pixel is replaced by the average of the 3 X 3 neighborhood having the smallest variance. The edge detector giving the best contour is a Sobel operator. A second-order high-pass Butterworth filter also provides a good segmentation.

  2. New techniques for imaging and analyzing lung tissue.

    PubMed Central

    Roggli, V L; Ingram, P; Linton, R W; Gutknecht, W F; Mastin, P; Shelburne, J D

    1984-01-01

    The recent technological revolution in the field of imaging techniques has provided pathologists and toxicologists with an expanding repertoire of analytical techniques for studying the interaction between the lung and the various exogenous materials to which it is exposed. Analytical problems requiring elemental sensitivity or specificity beyond the range of that offered by conventional scanning electron microscopy and energy dispersive X-ray analysis are particularly appropriate for the application of these newer techniques. Electron energy loss spectrometry, Auger electron spectroscopy, secondary ion mass spectrometry, and laser microprobe mass analysis each offer unique advantages in this regard, but also possess their own limitations and disadvantages. Diffraction techniques provide crystalline structural information available through no other means. Bulk chemical techniques provide useful cross-checks on the data obtained by microanalytical approaches. It is the purpose of this review to summarize the methodology of these techniques, acknowledge situations in which they have been used in addressing problems in pulmonary toxicology, and comment on the relative advantages and disadvantages of each approach. It is necessary for an investigator to weigh each of these factors when deciding which technique is best suited for any given analytical problem; often it is useful to employ a combination of two or more of the techniques discussed. It is anticipated that there will be increasing utilization of these technologies for problems in pulmonary toxicology in the decades to come. Images FIGURE 3. A FIGURE 3. B FIGURE 3. C FIGURE 3. D FIGURE 4. FIGURE 5. FIGURE 7. A FIGURE 7. B FIGURE 8. A FIGURE 8. B FIGURE 8. C FIGURE 9. A FIGURE 9. B FIGURE 10. PMID:6090115

  3. Evaluation of phase-diversity techniques for solar-image restoration

    NASA Technical Reports Server (NTRS)

    Paxman, Richard G.; Seldin, John H.; Lofdahl, Mats G.; Scharmer, Goran B.; Keller, Christoph U.

    1995-01-01

    Phase-diversity techniques provide a novel observational method for overcomming the effects of turbulence and instrument-induced aberrations in ground-based astronomy. Two implementations of phase-diversity techniques that differ with regard to noise model, estimator, optimization algorithm, method of regularization, and treatment of edge effects are described. Reconstructions of solar granulation derived by applying these two implementations to common data sets are shown to yield nearly identical images. For both implementations, reconstructions from phase-diverse speckle data (involving multiple realizations of turbulence) are shown to be superior to those derived from conventional phase-diversity data (involving a single realization). Phase-diverse speckle reconstructions are shown to achieve near diffraction-limited resolution and are validated by internal and external consistency tests, including a comparison with a reconstruction using a well-accepted speckle-imaging method.

  4. Adapting content-based image retrieval techniques for the semantic annotation of medical images.

    PubMed

    Kumar, Ashnil; Dyer, Shane; Kim, Jinman; Li, Changyang; Leong, Philip H W; Fulham, Michael; Feng, Dagan

    2016-04-01

    The automatic annotation of medical images is a prerequisite for building comprehensive semantic archives that can be used to enhance evidence-based diagnosis, physician education, and biomedical research. Annotation also has important applications in the automatic generation of structured radiology reports. Much of the prior research work has focused on annotating images with properties such as the modality of the image, or the biological system or body region being imaged. However, many challenges remain for the annotation of high-level semantic content in medical images (e.g., presence of calcification, vessel obstruction, etc.) due to the difficulty in discovering relationships and associations between low-level image features and high-level semantic concepts. This difficulty is further compounded by the lack of labelled training data. In this paper, we present a method for the automatic semantic annotation of medical images that leverages techniques from content-based image retrieval (CBIR). CBIR is a well-established image search technology that uses quantifiable low-level image features to represent the high-level semantic content depicted in those images. Our method extends CBIR techniques to identify or retrieve a collection of labelled images that have similar low-level features and then uses this collection to determine the best high-level semantic annotations. We demonstrate our annotation method using retrieval via weighted nearest-neighbour retrieval and multi-class classification to show that our approach is viable regardless of the underlying retrieval strategy. We experimentally compared our method with several well-established baseline techniques (classification and regression) and showed that our method achieved the highest accuracy in the annotation of liver computed tomography (CT) images.

  5. Single-image rectification technique in forensic science.

    PubMed

    González-Jorge, Higinio; Puente, Iván; Eguía, Pablo; Arias, Pedro

    2013-03-01

    Many researchers have been working in Spain to document the communal graves of those assassinated during the Spanish Civil War. This article shows the results obtained with two low-cost photogrammetric techniques for the basic documentation of forensic studies. These low-cost techniques are based on single-image rectification and the correction of the original photo displacement due to the projection and perspective distortions introduced by the lens of the camera. The capability of image rectification is tested in an excavation in the village of Loma de Montija (Burgos, Spain). The results of both techniques are compared with the more accurate data obtained from a laser scanner system RIEGL LMS-Z390i to evaluate the error in the lengths. The first technique uses a camera situated on a triangle-shaped pole at a height of 5 m and the second positions the camera over the grave using a linearly actuated device. The first technique shows measurement errors less than 6%, whereas the second shows greater errors (between 8% and 14%) owing to the positioning of the carbon-fiber cross on an uneven surface. © 2013 American Academy of Forensic Sciences.

  6. Using Geostatistical Data Fusion Techniques and MODIS Data to Upscale Simulated Wheat Yield

    NASA Astrophysics Data System (ADS)

    Castrignano, A.; Buttafuoco, G.; Matese, A.; Toscano, P.

    2014-12-01

    Population growth increases food request. Assessing food demand and predicting the actual supply for a given location are critical components of strategic food security planning at regional scale. Crop yield can be simulated using crop models because is site-specific and determined by weather, management, length of growing season and soil properties. Crop models require reliable location-specific data that are not generally available. Obtaining these data at a large number of locations is time-consuming, costly and sometimes simply not feasible. An upscaling method to extend coverage of sparse estimates of crop yield to an appropriate extrapolation domain is required. This work is aimed to investigate the applicability of a geostatistical data fusion approach for merging remote sensing data with the predictions of a simulation model of wheat growth and production using ground-based data. The study area is Capitanata plain (4000 km2) located in Apulia Region, mostly cropped with durum wheat. The MODIS EVI/NDVI data products for Capitanata plain were downloaded from the Land Processes Distributed Active Archive Center (LPDAAC) remote for the whole crop cycle of durum wheat. Phenological development, biomass growth and grain quantity of durum wheat were simulated by the Delphi system, based on a crop simulation model linked to a database including soil properties, agronomical and meteorological data. Multicollocated cokriging was used to integrate secondary exhaustive information (multi-spectral MODIS data) with primary variable (sparsely distributed biomass/yield model predictions of durum wheat). The model estimates looked strongly spatially correlated with the radiance data (red and NIR bands) and the fusion data approach proved to be quite suitable and flexible to integrate data of different type and support.

  7. Use of image analyzer technique to validate bivalve embryo bioassays

    SciTech Connect

    Uiniou, F.; Goraguer, H.; Quiniou, L.

    1995-12-31

    Bivalve bioassays are based on visual observation of normal and abnormal D larvae. This qualitative and morphological criteria is long and time-consuming. Moreover, this work needs to be performed by the same person to avoid the human discrepancy. This study shows how the image analyzer technique, based only on measurements, without shape recognition, allows the assessment of the dose-response effect of a toxic compound regardless of scientific evaluation. Furthermore, by this technique, geometrical features of the larvae permit the observation, at very low concentrations, of a hormetic effect visually undetectable.

  8. Astronomical imaging by filtered weighted-shift-and-add technique

    NASA Technical Reports Server (NTRS)

    Ribak, Erez

    1986-01-01

    The weighted-shift-and-add speckle imaging technique is analyzed using simple assumptions. The end product is shown to be a convolution of the object with a typical point-spread function (psf) that is similar in shape to the telescope psf and depends marginally on the speckle psf. A filter can be applied to each data frame before locating the maxima, either to identify the speckle locations (matched filter) or to estimate the instantaneous atmospheric psf (Wiener filter). Preliminary results show the power of the technique when applied to photon-limited data and to extended objects.

  9. Applications of Indirect Imaging Techniques in X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Harlaftis, E. T.

    A review is given on aspects of indirect imaging techniques in X-ray binaries which are used as diagnostics tools for probing the X-ray dominated accretion disc physics. These techniques utilize observed properties such as the emission line profile variability, the time delays between simultaneous optical/X-ray light curves, the light curves of eclipsing systems and the pulsed emission from the compact object in order to reconstruct the accretion disc's line emissivity (Doppler tomography), the irradiated disc and heated secondary (echo mapping), the outer disc structure (modified eclipse mapping) and the accreting regions onto the compact object, respectively.

  10. [Noninvasive imaging techniques to study coronary artery aneurysms].

    PubMed

    de Agustín, J A; Marcos-Alberca, P; Fernández-Golfín, C; Bordes, S; Pozo, E; Macaya, C; Zamorano, J

    2012-01-01

    Given the growing evidence about the use of membrane-covered stents to treat coronary artery aneurysms, it is fundamental to know the exact anatomy of the aneurysm to enable patients to be selected correctly. Invasive heart catheterization has limitations for diagnostic purposes and can underestimate the size of the aneurysm. In this article, we review the noninvasive diagnostic imaging techniques for the study of coronary artery aneurysms, illustrating the usefulness of each technique. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  11. [Functional magnetic resonance imaging: physiopathology, techniques and applications].

    PubMed

    Delmaire, C; Krainik, A; Lethuc, V; Reyns, N; Duffau, H; Capelle, L; Lehéricy, S

    2007-03-01

    Brain functional MRI (fMRI) provides an indirect mapping of cerebral activity, based on the detection of local changes in blood flow and oxygenation levels that are associated with neuronal activity (BOLD contrast). fMRI allows noninvasive studies of normal and pathological aspects of the brain's functional organization. It is based on the comparison of two or more cognitive states. Echoplanar imaging is the technique of choice, providing the quickest study of the entire brain. Activation maps are calculated from a statistical analysis of the local signal changes. fMRI has become one of the most widely used functional imaging techniques in neuroscience. In clinical practice, fMRI can identify eloquent areas involved in motor and language functions in surgical patients and can evaluate the risk of postoperative neurological deficit.

  12. Image Guidance in Radiation Therapy: Techniques and Applications

    PubMed Central

    Kataria, Tejinder

    2014-01-01

    In modern day radiotherapy, the emphasis on reduction on volume exposed to high radiotherapy doses, improving treatment precision as well as reducing radiation-related normal tissue toxicity has increased, and thus there is greater importance given to accurate position verification and correction before delivering radiotherapy. At present, several techniques that accomplish these goals impeccably have been developed, though all of them have their limitations. There is no single method available that eliminates treatment-related uncertainties without considerably adding to the cost. However, delivering “high precision radiotherapy” without periodic image guidance would do more harm than treating large volumes to compensate for setup errors. In the present review, we discuss the concept of image guidance in radiotherapy, the current techniques available, and their expected benefits and pitfalls. PMID:25587445

  13. Electronic whiteboard construction using whiteboard and image-locating techniques

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Yuan; Wang, Jing-Wein; Chung, Chin-Ho

    2009-11-01

    We use image-locating techniques and a traditional whiteboard with two cameras to construct an electronic whiteboard (EWB) with a size of 88×176 cm corresponding to 1280-×1024-pixel resolution. We employ two strategies achieve the goal: (1) we develope a modified scale and bilinear interpolation (MSBI) method for pen locating and acceleration operation, and obtain high accuracy detection; and (2) a block parameter database (BPD) is created to improve the accuracy. For the BPD, we divide the whiteboard image into several blocks and record each block parameter (the X and Y coordinates) to follow pen position calculation. Experimental results demonstrate that the MSBI method can correctly calculate the pen position. Additionally, the BPD strategy is better than the traditional method as it improves the accuracy and decreases the maximum detection error from 6 to 3 pixels. The simulation results prove our method is an effective and low-cost EWB technique.

  14. A maximum entropy reconstruction technique for tomographic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Bilsky, A. V.; Lozhkin, V. A.; Markovich, D. M.; Tokarev, M. P.

    2013-04-01

    This paper studies a novel approach for reducing tomographic PIV computational complexity. The proposed approach is an algebraic reconstruction technique, termed MENT (maximum entropy). This technique computes the three-dimensional light intensity distribution several times faster than SMART, using at least ten times less memory. Additionally, the reconstruction quality remains nearly the same as with SMART. This paper presents the theoretical computation performance comparison for MENT, SMART and MART, followed by validation using synthetic particle images. Both the theoretical assessment and validation of synthetic images demonstrate significant computational time reduction. The data processing accuracy of MENT was compared to that of SMART in a slot jet experiment. A comparison of the average velocity profiles shows a high level of agreement between the results obtained with MENT and those obtained with SMART.

  15. Optical Imaging Techniques for Point-of-care Diagnostics

    PubMed Central

    Zhu, Hongying; Isikman, Serhan O.; Mudanyali, Onur; Greenbaum, Alon; Ozcan, Aydogan

    2012-01-01

    Improving the access to effective and affordable healthcare has long been a global endeavor. In this quest, the development of cost-effective and easy-to-use medical testing equipment that enable rapid and accurate diagnosis is essential to reduce the time and costs associated with healthcare services. To this end, point-of-care (POC) diagnostics plays a crucial role in healthcare delivery in both the developed and developing countries by bringing medical testing to patients, or to sites near patients. As the diagnosis of a wide range of diseases, including various types of cancers and many endemics relies on optical techniques, numerous compact and cost-effective optical imaging platforms have been developed in recent years for use at the POC. Here, we review the state-of-the-art optical imaging techniques that can have significant impact on global health by facilitating effective and affordable POC diagnostics. PMID:23044793

  16. Surface imaging of eclipsing binary stars. 1: Techniques

    NASA Astrophysics Data System (ADS)

    Vincent, A.; Piskunov, N. E.; Tuominen, I.

    1993-11-01

    Surface (Doppler) imaging techniques for mapping the temperature distribution of a single star are generalized to the case of an eclipsing spectroscopic binary. In this paper we study three main questions, crucial for further application of the techniques. We found that the method described in this paper can be successfully used for imaging eclipsing binary systems. The resulting map is more sensitive to the errors in the parameters of the system than is the case of a single star. Characteristic distortions of the map can be used as indicators for fine tuning of some of the parameters. We also found that a good phase coverage of the observations is most important for reducing the artificial equatorial symmetry, typical for the line profile inversion when used for high inclination binary systems.

  17. Cotton yield estimation using very high-resolution digital images acquired on a low-cost small unmanned aerial vehicle

    USDA-ARS?s Scientific Manuscript database

    Yield estimation is a critical task in crop management. A number of traditional methods are available for crop yield estimation but they are costly, time-consuming and difficult to expand to a relatively large field. Remote sensing provides techniques to develop quick coverage over a field at any sc...

  18. Assessment of stable coronary artery disease by cardiovascular magnetic resonance imaging: Current and emerging techniques

    PubMed Central

    Foley, James R J; Plein, Sven; Greenwood, John P

    2017-01-01

    Coronary artery disease (CAD) is a leading cause of death and disability worldwide. Cardiovascular magnetic resonance (CMR) is established in clinical practice guidelines with a growing evidence base supporting its use to aid the diagnosis and management of patients with suspected or established CAD. CMR is a multi-parametric imaging modality that yields high spatial resolution images that can be acquired in any plane for the assessment of global and regional cardiac function, myocardial perfusion and viability, tissue characterisation and coronary artery anatomy, all within a single study protocol and without exposure to ionising radiation. Advances in technology and acquisition techniques continue to progress the utility of CMR across a wide spectrum of cardiovascular disease, and the publication of large scale clinical trials continues to strengthen the role of CMR in daily cardiology practice. This article aims to review current practice and explore the future directions of multi-parametric CMR imaging in the investigation of stable CAD. PMID:28289524

  19. Quantitative characterization of diesel sprays using digital imaging techniques

    NASA Astrophysics Data System (ADS)

    Shao, J.; Yan, Y.; Greeves, G.; Smith, S.

    2003-07-01

    This paper presents the application of digital imaging and image processing techniques for the quantitative characterization of diesel sprays. An optically accessible, constant volume chamber was configured to allow direct photographic imaging of diesel sprays, which were generated from a six-hole nozzle in a non-evaporating and pressurized environment. A high-resolution CCD camera and a flash light source were used to capture the images of the sprays. Dedicated image processing software has been developed to quantify a set of macroscopic, characteristic parameters of the sprays including tip penetration, near-and far-field angles. The spray parameters produced using this software are compared with those obtained using manual methods. The results obtained under typical spray conditions demonstrate that the software is capable of producing more accurate, consistent and efficient results than the manual methods. An application of the imaging processing software to the characterization of diesel sprays for a valve covered orifice nozzle is also presented and discussed.

  20. Image processing techniques in computer-assisted patch clamping

    NASA Astrophysics Data System (ADS)

    Azizian, Mahdi; Patel, Rajni; Gavrilovici, Cezar; Poulter, Michael O.

    2010-02-01

    Patch clamping is used in electrophysiology to study single or multiple ion channels in cells. Multiple micropipettes are used as electrodes to collect data from several cells. Placement of these electrodes is a time consuming and complicated task due to the lack of depth perception, limited view through the microscope lens and the possibility of collisions between micro-pipettes. To aid in this process, a computer-assisted approach is developed using image processing techniques applied to images obtained through the microscope. Image processing algorithms are applied to perform autofocusing, relative depth estimation, distance estimation and tracking of the micro-pipettes in the images without making any major changes in the existing patch clamp equipment. An autofocusing algorithm with a micrometer precision is developed and the relative depth estimation is performed based on autofocusing. A micro-pipette tip detection algorithm is developed which can be used to initialize or reset the tracking algorithm and to calibrate the system by registering the relative image and micro-manipulator coordinates. An image-based tracking algorithm is also developed to track a micro-pipette tip in real time. The real-time tracking data is then used for visual servoing the micro-pipette tips and updating the calibration information.

  1. Enhanced EDX images by fusion of multimodal SEM images using pansharpening techniques.

    PubMed

    Franchi, G; Angulo, J; Moreaud, M; Sorbier, L

    2017-08-16

    The goal of this paper is to explore the potential interest of image fusion in the context of multimodal scanning electron microscope (SEM) imaging. In particular, we aim at merging the backscattered electron images that usually have a high spatial resolution but do not provide enough discriminative information to physically classify the nature of the sample, with energy-dispersive X-ray spectroscopy (EDX) images that have discriminative information but a lower spatial resolution. The produced images are named enhanced EDX. To achieve this goal, we have compared the results obtained with classical pansharpening techniques for image fusion with an original approach tailored for multimodal SEM fusion of information. Quantitative assessment is obtained by means of two SEM images and a simulated dataset produced by a software based on PENELOPE. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  2. Automated Coronal Loop Identification using Digital Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Lee, J. K.; Gary, G. A.; Newman, T. S.

    2003-05-01

    The results of a Master's thesis study of computer algorithms for automatic extraction and identification (i.e., collectively, "detection") of optically-thin, 3-dimensional, (solar) coronal-loop center "lines" from extreme ultraviolet and X-ray 2-dimensional images will be presented. The center lines, which can be considered to be splines, are proxies of magnetic field lines. Detecting the loops is challenging because there are no unique shapes, the loop edges are often indistinct, and because photon and detector noise heavily influence the images. Three techniques for detecting the projected magnetic field lines have been considered and will be described in the presentation. The three techniques used are (i) linear feature recognition of local patterns (related to the inertia-tensor concept), (ii) parametric space inferences via the Hough transform, and (iii) topological adaptive contours (snakes) that constrain curvature and continuity. Since coronal loop topology is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information that has also been incorporated into the detection process. Synthesized images have been generated to benchmark the suitability of the three techniques, and the performance of the three techniques on both synthesized and solar images will be presented and numerically evaluated in the presentation. The process of automatic detection of coronal loops is important in the reconstruction of the coronal magnetic field where the derived magnetic field lines provide a boundary condition for magnetic models ( cf. , Gary (2001, Solar Phys., 203, 71) and Wiegelmann & Neukirch (2002, Solar Phys., 208, 233)). . This work was supported by NASA's Office of Space Science - Solar and Heliospheric Physics Supporting Research and Technology Program.

  3. Analysis of Cultural Heritage by Accelerator Techniques and Analytical Imaging

    NASA Astrophysics Data System (ADS)

    Ide-Ektessabi, Ari; Toque, Jay Arre; Murayama, Yusuke

    2011-12-01

    In this paper we present the result of experimental investigation using two very important accelerator techniques: (1) synchrotron radiation XRF and XAFS; and (2) accelerator mass spectrometry and multispectral analytical imaging for the investigation of cultural heritage. We also want to introduce a complementary approach to the investigation of artworks which is noninvasive and nondestructive that can be applied in situ. Four major projects will be discussed to illustrate the potential applications of these accelerator and analytical imaging techniques: (1) investigation of Mongolian Textile (Genghis Khan and Kublai Khan Period) using XRF, AMS and electron microscopy; (2) XRF studies of pigments collected from Korean Buddhist paintings; (3) creating a database of elemental composition and spectral reflectance of more than 1000 Japanese pigments which have been used for traditional Japanese paintings; and (4) visible light-near infrared spectroscopy and multispectral imaging of degraded malachite and azurite. The XRF measurements of the Japanese and Korean pigments could be used to complement the results of pigment identification by analytical imaging through spectral reflectance reconstruction. On the other hand, analysis of the Mongolian textiles revealed that they were produced between 12th and 13th century. Elemental analysis of the samples showed that they contained traces of gold, copper, iron and titanium. Based on the age and trace elements in the samples, it was concluded that the textiles were produced during the height of power of the Mongol empire, which makes them a valuable cultural heritage. Finally, the analysis of the degraded and discolored malachite and azurite demonstrates how multispectral analytical imaging could be used to complement the results of high energy-based techniques.

  4. LensPerfect: Gravitational Lens Mass Map Reconstructions Yielding Exact Reproduction of All Multiple Images

    NASA Astrophysics Data System (ADS)

    Coe, D.; Fuselier, E.; Benítez, N.; Broadhurst, T.; Frye, B.; Ford, H.

    2008-07-01

    We present a new approach to gravitational lens mass map reconstruction. Our mass map solutions perfectly reproduce the positions, fluxes, and shears of all multiple images, and each mass map accurately recovers the underlying mass distribution to a resolution limited by the number of multiple images detected. We demonstrate our technique given a mock galaxy cluster similar to Abell 1689, which gravitationally lenses 19 mock background galaxies to produce 93 multiple images. We also explore cases in which as few as four multiple images are observed. Mass map solutions are never unique, and our method makes it possible to explore an extremely flexible range of physical (and unphysical) solutions, all of which perfectly reproduce the data given. Each reconfiguration of the source galaxies produces a new mass map solution. An optimization routine is provided to find those source positions (and redshifts, within uncertainties) that produce the "most physical" mass map solution, according to a new figure of merit developed here. Our method imposes no assumptions about the slope of the radial profile or mass following light. However, unlike "nonparametric" grid-based methods, the number of free parameters that we solve for is only as many as the number of observable constraints (or slightly greater if fluxes are constrained). For each set of source positions and redshifts, mass map solutions are obtained "instantly" via direct matrix inversion by smoothly interpolating the deflection field using a recently developed mathematical technique. Our LensPerfect software is straightforward and easy to use, and is publicly available on our Web site.

  5. Validation of an image simulation technique for two computed radiography systems: An application to neonatal imaging

    SciTech Connect

    Smans, Kristien; Vandenbroucke, Dirk; Pauwels, Herman; Struelens, Lara; Vanhavere, Filip; Bosmans, Hilde

    2010-05-15

    Purpose: The purpose of this study is to develop a computer model to simulate the image acquisition for two computed radiography (CR) imaging systems used for neonatal chest imaging: (1) The Agfa ADC Compact, a flying spot reader with powder phosphor image plates (MD 40.0); and (2) the Agfa DX-S, a line-scanning CR reader with needle crystal phosphor image plates (HD 5.0). The model was then applied to compare the image quality of the two CR imaging systems. Methods: Monte Carlo techniques were used to simulate the transport of primary and scattered x rays in digital x-ray systems. The output of the Monte Carlo program was an image representing the energy absorbed in the detector material. This image was then modified using physical characteristics of the CR imaging systems to account for the signal intensity variations due to the heel effect along the anode-cathode axis, the spatial resolution characteristics of the imaging system, and the various sources of image noise. The simulation was performed for typical acquisition parameters of neonatal chest x-ray examinations. To evaluate the computer model, the authors compared the threshold-contrast detectability in simulated and experimentally acquired images of a contrast-detail phantom. Threshold-contrast curves were computed using a commercially available scoring program. Results: The threshold-contrast curves of the simulated and experimentally acquired images show good agreement; for the two CR systems, 93% of the threshold diameters calculated from the simulated images fell within the confidence intervals of the threshold diameter calculated from the experimentally assessed images. Moreover, the superiority of needle based CR plates for neonatal imaging was confirmed. Conclusions: The good agreement between simulated and experimental acquired results indicates that the computer model is accurate.

  6. Optical techniques for millimeter-wave detection and imaging

    NASA Astrophysics Data System (ADS)

    Schuetz, Christopher Arnim

    The benefits of imaging using regions of the electromagnetic spectrum outside the visible range have been known for decades. Infrared and radio frequency imaging techniques have achieved great successes in both military and civilian applications. However, there remains a range of the spectrum between these two regimes that remains relatively unexplored. Millimeter waves, or the range of wavelengths between one millimeter and one centimeter, have remained relatively unexplored as an imaging technology, largely due to the lack of sufficiently sensitive, practical detectors for passive imaging in this regime. At these short wavelengths, the diffraction limit imposed by the limited extent of the imaging aperture significantly limits attainable image resolution. Recent developments in semiconductor low-noise amplifiers have demonstrated many desirable applications for such imaging technology, but have, as yet, not been able to demonstrate the economical, small-format imagers necessary to make such imagers practical in most of the conceived applications. In this regard, I present a new approach to millimeter-wave detection based on optical modulation with subsequent carrier suppression. This approach demonstrates promise in achieving the goal of economical, high-resolution imagers with sufficient sensitivity for passive millimeter-wave imaging. In this thesis, I explain the operational requirements of such detectors, provide theoretical background for their operation, and describe current experimental results obtained using commercially available components in the 35 GHz. In addition, I describe successful efforts to fabricate modulators with improved modulation bandwidths for detection in the 95 GHz atmospheric window. These demonstration systems have attained sufficient single pixel performance to detect thermal emission with a noise equivalent temperature difference (NETD) approaching 1K/ Hz at both 35 and 95 GHz. The NETDs attained correspond to sub-picowatt noise

  7. Low yield of ED magnetic resonance imaging for suspected epidural abscess.

    PubMed

    El Sayed, Mazen; Witting, Michael D

    2011-11-01

    The aim of this study was to estimate the yield of emergency department (ED) magnetic resonance imaging (MRI) in detecting spinal epidural abscess (SEA) and to identify clinical factors predicting positive MRI results. We examined a cohort of patients who underwent MRI to rule out SEA, followed by a nested case-control comparison of those with positive results and a sample with negative results. A positive result was defined as osteomyelitis, discitis, or SEA. Predictor variables included temperature, presenting complaint, drug abuse status, history of SEA or back surgery, midline back tenderness, neurologic deficit, MRI level, mean white blood cell count, erythrocyte sedimentation rate, and C-reactive protein level. Fourteen of the 120 available MRIs were excluded; 7 (6.6%) of the remaining 106 were positive. Temperature was 1.1°C higher in cases than controls (95% CI, 0.6-1.7). Emergency department MRI for suspected SEA has a low yield. Clinical guidelines are needed to improve efficiency. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Processing techniques for digital sonar images from GLORIA.

    USGS Publications Warehouse

    Chavez, P.S.

    1986-01-01

    Image processing techniques have been developed to handle data from one of the newest members of the remote sensing family of digital imaging systems. This paper discusses software to process data collected by the GLORIA (Geological Long Range Inclined Asdic) sonar imaging system, designed and built by the Institute of Oceanographic Sciences (IOS) in England, to correct for both geometric and radiometric distortions that exist in the original 'raw' data. Preprocessing algorithms that are GLORIA-specific include corrections for slant-range geometry, water column offset, aspect ratio distortion, changes in the ship's velocity, speckle noise, and shading problems caused by the power drop-off which occurs as a function of range.-from Author

  9. Light and sound - emerging imaging techniques for inflammatory bowel disease

    PubMed Central

    Knieling, Ferdinand; Waldner, Maximilian J

    2016-01-01

    Patients with inflammatory bowel disease are known to have a high demand of recurrent evaluation for therapy and disease activity. Further, the risk of developing cancer during the disease progression is increasing from year to year. New, mostly non-radiant, quick to perform and quantitative methods are challenging, conventional endoscopy with biopsy as gold standard. Especially, new physical imaging approaches utilizing light and sound waves have facilitated the development of advanced functional and molecular modalities. Besides these advantages they hold the promise to predict personalized therapeutic responses and to spare frequent invasive procedures. Within this article we highlight their potential for initial diagnosis, assessment of disease activity and surveillance of cancer development in established techniques and recent advances such as wide-view full-spectrum endoscopy, chromoendoscopy, autofluorescence endoscopy, endocytoscopy, confocal laser endoscopy, multiphoton endoscopy, molecular imaging endoscopy, B-mode and Doppler ultrasound, contrast-enhanced ultrasound, ultrasound molecular imaging, and elastography. PMID:27433080

  10. Image correlation techniques in radiation therapy treatment planning.

    PubMed

    Chen, G T; Pelizzari, C A

    1989-01-01

    A technique to spatially correlate multi-modality or serial imaging studies of the head is described. Surface fitting of a well defined structure in different imaging studies is used to determine the optimal three dimensional transformation between the coordinate systems. The transformation is then used to map volumes of interest between studies or to reslice the studies along comparable planes. The approach is feasible in the presence of variations in slice thickness, pixel size, imaging plane, or head position, and for correlations between different modalities. Correlations have been performed between serial CT, CT/MRI, and PET/CT/MRI studies. Phantom studies and clinical cases are presented. Accuracy is typically on the order of the sum of the pixel sizes between studies. Applications in radiation therapy treatment planning are described.

  11. Atomic Force Microscopy Imaging Techniques for Piezoelectric Materials

    NASA Astrophysics Data System (ADS)

    Kunz, Jeremy; Inglefield, Colin

    2009-10-01

    Using an Atomic Force Microscope (AFM) and a Lock-in Detector we investigated the effectiveness of two different methods of local piezoelectricity within a standard commercial piezoelectric material, Pb(Ti, Zr)O3 (PIC 151). In the first method, sometimes known as piezo-mode AFM, we applied an AC voltage to the sample locally through the tip of the AFM; we were able to image the local piezoelectric response while taking a topographical image. For the second set of measurements, we used a sample of the PIC 151 material with a uniform silver electrode over the entire surface. The voltage was applied to the entire sample through the electrodes and the AFM cantilever measured local response. Images based on the two techniques will be compared along with the methods themselves.

  12. Bioluminescence: a versatile technique for imaging cellular and molecular features

    PubMed Central

    Paley, Miranda A.

    2016-01-01

    Bioluminescence is a ubiquitous imaging modality for visualizing biological processes in vivo. This technique employs visible light and interfaces readily with most cell and tissue types, making it a versatile technology for preclinical studies. Here we review basic bioluminescence imaging principles, along with applications of the technology that are relevant to the medicinal chemistry community. These include noninvasive cell tracking experiments, analyses of protein function, and methods to visualize small molecule metabolites. In each section, we also discuss how bioluminescent tools have revealed insights into experimental therapies and aided drug discovery. Last, we highlight the development of new bioluminescent tools that will enable more sensitive and multi-component imaging experiments and, thus, expand our broader understanding of living systems. PMID:27594981

  13. Speckle noise reduction in ultrasound images using a discrete wavelet transform-based image fusion technique.

    PubMed

    Choi, Hyun Ho; Lee, Ju Hwan; Kim, Sung Min; Park, Sung Yun

    2015-01-01

    Here, the speckle noise in ultrasonic images is removed using an image fusion-based denoising method. To optimize the denoising performance, each discrete wavelet transform (DWT) and filtering technique was analyzed and compared. In addition, the performances were compared in order to derive the optimal input conditions. To evaluate the speckle noise removal performance, an image fusion algorithm was applied to the ultrasound images, and comparatively analyzed with the original image without the algorithm. As a result, applying DWT and filtering techniques caused information loss and noise characteristics, and did not represent the most significant noise reduction performance. Conversely, an image fusion method applying SRAD-original conditions preserved the key information in the original image, and the speckle noise was removed. Based on such characteristics, the input conditions of SRAD-original had the best denoising performance with the ultrasound images. From this study, the best denoising technique proposed based on the results was confirmed to have a high potential for clinical application.

  14. Simultaneous iterative reconstruction technique for diffuse optical tomography imaging: iteration criterion and image recognition

    NASA Astrophysics Data System (ADS)

    Yu, Zong-Han; Wu, Chun-Ming; Lin, Yo-Wei; Chuang, Ming-Lung; Tsai, Jui-che; Sun, Chia-Wei

    2008-02-01

    Diffuse optical tomography (DOT) is an emerging technique for biomedical imaging. The imaging quality of the DOT strongly depends on the reconstruction algorithm. In this paper, four inhomogeneities with various shapes of absorption distributions are simulated by a continues-wave DOT system. The DOT images are obtained based on the simultaneous iterative reconstruction technique (SIRT) method. To solve the trade-off problem between time consumption of reconstruction process and accuracy of reconstructed image, the iteration process needs a optimization criterion in algorithm. In this paper, the comparison between the root mean square error (RMSE) and the convergence rate (CR) in SIRT algorithm are demonstrated. From the simulation results, the CR reveals the information of global minimum in the iteration process. Based on the CR calculation, the SIRT can offer higher efficient image reconstructing in DOT system.

  15. Imaging of skull base pathologies: Role of advanced magnetic resonance imaging techniques

    PubMed Central

    Mathur, Ankit; Kesavadas, C; Thomas, Bejoy; Kapilamoorthy, TR

    2015-01-01

    Imaging plays a vital role in evaluation of skull base pathologies as this region is not directly accessible for clinical evaluation. Computerized tomography (CT) and magnetic resonance imaging (MRI) have played complementary roles in the diagnosis of the various neoplastic and non-neoplastic lesions of the skull base. However, CT and conventional MRI may at times be insufficient to correctly pinpoint the accurate diagnosis. Advanced MRI techniques, though difficult to apply in the skull base region, in conjunction with CT and conventional MRI can however help in improving the diagnostic accuracy. This article aims to highlight the importance of advanced MRI techniques like diffusion-weighted imaging, susceptibility-weighted imaging, perfusion-weighted imaging, and MR spectroscopy in differentiation of various lesions involving the skull base. PMID:26427895

  16. Simulated and experimental technique optimization of dual-energy radiography: abdominal imaging applications

    NASA Astrophysics Data System (ADS)

    Sabol, John M.; Wheeldon, Samuel J.; Jabri, Kadri N.

    2006-03-01

    With growing clinical acceptance of dual-energy chest radiography, there is increased interest in the application of dual-energy techniques to other clinical areas. This paper describes the creation and experimental validation of a poly-energetic signal-propagation model for technique optimization of new dual-energy clinical applications. The model is verified using phantom experiments simulating typical abdominal radiographic applications such as Intravenous Urography (IVU) and the detection of pelvic and sacral bone lesions or kidney stones in the presence of bowel gas. The model is composed of a spectral signal propagation component and an image-processing component. The spectral propagation component accepts detector specifications, X-ray spectra, phantom and imaging geometry as inputs, and outputs the detected signal and estimated noise. The image-processing module performs dual-energy logarithmic subtraction and returns figures-of-merit such as contrast and contrast-to-noise ratio (CNR), which are evaluated in conjunction with Monte Carlo calculations of dose. Phantoms assembled from acrylic, aluminum, and iodinated contrast-agent filled tubes were imaged using a range of kVp's and dose levels. Simulated and experimental results were compared by dose, clinical suitability, and system limitations in order to yield technique recommendations that optimize one or more figures-of-merit. The model accurately describes phantom images obtained in a low scatter environment. For the visualization of iodinated vessels in the abdomen and the detection of pelvic bone lesions, both simulated and experimental results indicate that dual-energy techniques recommended by the model yield significant improvements in CNR without significant increases in patient dose as compared to conventional techniques. For example the CNR of iodinated vessels can be doubled using two-thirds of the dose of a standard exam. Alternatively, in addition to a standard dose image, the clinician can

  17. Three-dimensional imaging technique using optical diffraction

    NASA Astrophysics Data System (ADS)

    Tan, Sheng; Hart, Douglas P.

    2002-02-01

    This paper presents a novel fast and simple technique to measure three-dimensional (3D) objects. An integrated 3D camera is built, which features a motorized off-axis rotating aperture. A regular spot pattern projection adds texture onto smooth 3D objects. When rotating, the off-axis aperture translates depth information into blurred image diameter. The displacement of each spot between two arbitrary aperture positions reveals depth. A pseudo- correlation algorithm based on optical diffraction is proposed to measure spot displacement fast and accurately. When subtracting two consecutive images of a roughly Gaussian-shaped displaced spot, the normalized subtraction intensity peak height is directly proportional to the spot displacement. The peak height to displacement calibration curve is specifically defined by optical parameters of the imaging system. Proper combination of off-axis aperture location and magnification ratio determines the size of the measurement range. Experiment observations show that the calibration curve is highly smooth and sensitive to the spot displacement at sub-pixel level. Real-time processing is possible with only order of image size arithmetic operations. The proposed technique holds potential for various industrial machine vision applications.

  18. Sand Shear Band Thickness Measurements by Digital Imaging Techniques

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Sture, Stein

    1998-01-01

    Digital imaging analysis was used to study localized deformations in granular materials tested under plane strain condition. Two independent techniques were applied and compared. In the first, the digitized optical images of a grid printed on the latex membrane were used to measure the shear band orientation angle and thickness, and were found to be 54.5' and 3.01 mm respectively. The second technique involved introducing an ultra-low viscosity resin into the specimen in preparation for thin- sectioning and microscopic study of the internal fabric. A total of 24 microscopic images obtained from four thin sections were analyzed and void ratio variation was measured. The shear band thickness measurements from images located along the shear band axis (at two locations) were equal to 3.19 mm and 3.29 mm which are very close to the average value obtained from surface analysis. The study was then extended to investigate the effects of sand grain-size and properties, specimen density, and confining pressure on shear band thickness. It was found that the normalized shear band thickness decreases as grain-size and confining pressure increase and as density decreases. Finally, shear band thickness is highly influenced by the specimen dilatancy.

  19. Prewarping techniques in imaging: applications in nanotechnology and biotechnology

    NASA Astrophysics Data System (ADS)

    Poonawala, Amyn; Milanfar, Peyman

    2005-03-01

    In all imaging systems, the underlying process introduces undesirable distortions that cause the output signal to be a warped version of the input. When the input to such systems can be controlled, pre-warping techniques can be employed which consist of systematically modifying the input such that it cancels out (or compensates for) the process losses. In this paper, we focus on the mask (reticle) design problem for 'optical micro-lithography', a process similar to photographic printing used for transferring binary circuit patterns onto silicon wafers. We use a pixel-based mask representation and model the above process as a cascade of convolution (aerial image formation) and thresholding (high-contrast recording) operations. The pre-distorted mask is obtained by minimizing the norm of the difference between the 'desired' output image and the 'reproduced' output image. We employ the regularization framework to ensure that the resulting masks are close-to-binary as well as simple and easy to fabricate. Finally, we provide insight into two additional applications of pre-warping techniques. First is 'e-beam lithography', used for fabricating nano-scale structures, and second is 'electronic visual prosthesis' which aims at providing limited vision to the blind by using a prosthetic retinally implanted chip capable of electrically stimulating the retinal neuron cells.

  20. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers.

    PubMed

    López, Yuri Álvarez; Lorenzo, José Ángel Martínez

    2017-01-15

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated.

  1. Sand Shear Band Thickness Measurements by Digital Imaging Techniques

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Sture, Stein

    1998-01-01

    Digital imaging analysis was used to study localized deformations in granular materials tested under plane strain condition. Two independent techniques were applied and compared. In the first, the digitized optical images of a grid printed on the latex membrane were used to measure the shear band orientation angle and thickness, and were found to be 54.5' and 3.01 mm respectively. The second technique involved introducing an ultra-low viscosity resin into the specimen in preparation for thin- sectioning and microscopic study of the internal fabric. A total of 24 microscopic images obtained from four thin sections were analyzed and void ratio variation was measured. The shear band thickness measurements from images located along the shear band axis (at two locations) were equal to 3.19 mm and 3.29 mm which are very close to the average value obtained from surface analysis. The study was then extended to investigate the effects of sand grain-size and properties, specimen density, and confining pressure on shear band thickness. It was found that the normalized shear band thickness decreases as grain-size and confining pressure increase and as density decreases. Finally, shear band thickness is highly influenced by the specimen dilatancy.

  2. Terahertz imaging of metastatic lymph nodes using spectroscopic integration technique

    PubMed Central

    Park, Jae Yeon; Choi, Hyuck Jae; Cheon, Hwayeong; Cho, Seong Whi; Lee, Seungkoo; Son, Joo-Hiuk

    2017-01-01

    Terahertz (THz) imaging was used to differentiate the metastatic states of frozen lymph nodes (LNs) by using spectroscopic integration technique (SIT). The metastatic states were classified into three groups: healthy LNs, completely metastatic LNs, and partially metastatic LNs, which were obtained from three mice without infection and six mice infected with murine melanoma cells for 30 days and 15 days, respectively. Under histological examination, the healthy LNs and completely metastatic LNs were found to have a homogeneous cellular structure but the partially metastatic LNs had interfaces of the melanoma and healthy tissue. THz signals between the experimental groups were not distinguished at room temperature due to high attenuation by water in the tissues. However, a signal gap between the healthy and completely metastatic LNs was detected at freezing temperature. The signal gap could be enhanced by using SIT that is a signal processing method dichotomizing the signal difference between the healthy cells and melanoma cells with their normalized spectral integration. This technique clearly imaged the interfaces in the partially metastatic LNs, which could not be achieved by existing methods using a peak point or spectral value. The image resolution was high enough to recognize a metastatic area of about 0.7 mm size in the partially metastatic LNs. Therefore, this pilot study demonstrated that THz imaging of the frozen specimen using SIT can be used to diagnose the metastatic state of LNs for clinical application. PMID:28271007

  3. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers

    PubMed Central

    Álvarez López, Yuri; Martínez Lorenzo, José Ángel

    2017-01-01

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated. PMID:28098841

  4. Image-Processing Techniques for the Creation of Presentation-Quality Astronomical Images

    NASA Astrophysics Data System (ADS)

    Rector, Travis A.; Levay, Zoltan G.; Frattare, Lisa M.; English, Jayanne; Pu'uohau-Pummill, Kirk

    2007-02-01

    The quality of modern astronomical data and the agility of current image-processing software enable the visualization of data in a way that exceeds the traditional definition of an astronomical image. Two developments in particular have led to a fundamental change in how astronomical images can be assembled. First, the availability of high-quality multiwavelength and narrowband data allow for images that do not correspond to the wavelength sensitivity of the human eye, thereby introducing ambiguity in the usage and interpretation of color. Second, many image-processing software packages now use a layering metaphor that allows for any number of astronomical data sets to be combined into a color image. With this technique, images with as many as eight data sets have been produced. Each data set is intensity-scaled and colorized independently, creating an immense parameter space that can be used to assemble the image. Since such images are intended for data visualization, scaling and color schemes must be chosen that best illustrate the science. A practical guide is presented on how to use the layering metaphor to generate publication-ready astronomical images from as many data sets as desired. A methodology is also given on how to use intensity scaling, color, and composition to create contrasts in an image that highlight the scientific detail. Examples of image creation are discussed.

  5. Adenomyosis: usual and unusual imaging manifestations, pitfalls, and problem-solving MR imaging techniques.

    PubMed

    Takeuchi, Mayumi; Matsuzaki, Kenji

    2011-01-01

    Adenomyosis is a common nonneoplastic gynecologic disease characterized by the presence of ectopic endometrium within the myometrium. On T2-weighted magnetic resonance (MR) images, typical adenomyosis appears as an ill-demarcated low-signal-intensity lesion with uterine enlargement. However, various physiologic or pathologic states such as amount of functional endometrial tissue, phase of the menstrual cycle, endogenous hormonal abnormality, and exogenous hormonal stimulation may affect the MR imaging appearance of adenomyosis and may result in a tumorlike appearance. Problem-solving MR imaging techniques used in diagnosis of adenomyosis include diffusion-weighted imaging, susceptibility-weighted imaging, hydrogen 1 MR spectroscopy, cine MR imaging, and high-resolution MR imaging at 3 T. Adenomyotic lesions that show high signal intensity relative to the outer myometrium on T2-weighted images mimic malignancies such as leiomyosarcoma and endometrial stromal sarcoma. In these cases, a relatively high apparent diffusion coefficient at diffusion-weighted imaging and a low choline peak at MR spectroscopy are suggestive of a benign lesion. Small hemorrhagic foci suggestive of an adenomyotic lesion are well demonstrated as signal voids at susceptibility-weighted imaging. Cine MR imaging is useful in differentiating transient myometrial contraction from focal adenomyosis. High-resolution MR imaging at 3 T demonstrates anatomically detailed structures and may improve diagnostic accuracy in differentiating adenomyosis from its mimics, such as low-grade endometrial stromal sarcoma.

  6. Coherent X-ray Imaging Techniques for Shock Physics

    NASA Astrophysics Data System (ADS)

    Montgomery, David

    2015-06-01

    X-ray radiography has been used for several decades in dynamic experiments to measure material flow in extreme conditions via absorption of x-rays propagating through the materials. Image contrast in traditional radiography is determined by the absorption coefficients and areal densities of the materials at a given x-ray wavelength, and often limits these measurements to materials with sufficiently high atomic numbers and areal density, while low-Z materials and small areal density variations are completely transparent and not visible in the image. Coherent x-ray sources, such as those found at synchrotrons and x-ray free-electron lasers, provide new opportunities for imaging dynamic experiments due to their high spatial and spectral coherence, high brightness and short temporal duration (<100 ps). Phase-sensitive techniques, such as phase contrast imaging (PCI), rely on the overlap and interference of the x-rays due to spatial variations in their transmitted phase, and are enabled primarily by high spatial coherence of the x-ray source. Objects that are otherwise transparent to x-rays can be imaged with PCI, and small variations in areal density become visible that would be not observable with traditional radiography. In this talk an overview of PCI will be given, and current applications of this technique in high-energy density physics, shock physics and material dynamics will be presented. Other future uses of imaging using coherent x-ray sources in dynamic high-pressure experiments will be discussed. Work performed under the auspices of DOE by LANL under Contract DE-AC52-06NA25396.

  7. Electromagnetic Time-Reversal Imaging and Tracking Techniques for Inverse Scattering and Wireless Communications

    NASA Astrophysics Data System (ADS)

    Fouda, Ahmed E.

    Time-reversal (TR) was originated in acoustics as a technique for re-focusing waves around their source location. Under certain conditions, the wave equation is invariant under TR, therefore, waves emanated from a source or scattered from a passive target, and recorded by a transceivers array, will retrace their forward path and automatically focus at the source/target location if back propagated in a time-reversed (last-in first-out) fashion from that array. Focusing resolution of time-reversed back propagation in rich scattering environments beats that in free space, yielding what is known as 'superresolution'. Moreover, under ultrawideband (UWB) operation, TR exhibits the distinctive property of 'statistical stability', which makes it an attractive technique for imaging in disordered media whose characteristics are not known deterministically (random media). Over the past few years, TR has been exploited in a variety of electromagnetic sensing and imaging applications such as ground penetrating radar, breast cancer detection, nondestructive testing, and through-wall imaging. In addition, TR has been extensively applied in UWB wireless communication providing myriad of advantages including reduced receiver complexity, power saving, increased system capacity, and enhanced information secrecy. In this work, we introduce new TR-based signal processing techniques for imaging, tracking, and communicating with targets/users embedded in rich scattering environments. We start by demonstrating, both numerically and experimentally, the statistical stability of UWB TR imaging in inhomogeneous random media, under different combinations of random medium parameters and interrogating signal properties. We examine conditions under which frequency decorrelation in random media provides a more effective 'self-averaging' and therefore better statistical stability. Then, we devise a technique for detecting and tracking multiple moving targets in cluttered environments based on

  8. Imaging techniques for assessment of coronary flow reserve.

    PubMed

    Petretta, Mario; Acampa, Wanda; Zampella, Emilia; Assante, Roberta; Petretta, Maria Piera; Cuocolo, Renato; Fabiani, Irma; Della Rattal, Giuseppe Luca; Perrone-Filardi, Pasquale; Cuocolo, Alberto

    2011-12-01

    The assessment of coronary flow reserve (CFR) may be useful for the functional evaluation of coronary artery disease (CAD). Invasive techniques, such as intracoronary Doppler ultrasound and pressure-derived method, directly assess CFR velocity and fractional flow reserve. Positron emission tomography (PET) has emerged as an accurate noninvasive technique to quantify CFR. Nevertheless, this approach has not been applied to routine studies because of its high cost and complexity. Recently, attempts to estimate CFR with single-photon emission computed tomography (SPECT) tracers have been made in order to obtain, with noninvasive methods, data for quantitative functional assessment of CAD. This review analyzes the relative merit and limitations of CFR measurements by cardiac imaging techniques and describes the potential clinical applications.

  9. Failure And Yield Analysis Techniques For Readout Devices Tested In A High Throughput Automated Wafer Probing Environment

    NASA Astrophysics Data System (ADS)

    Jolivet, Noel D.; Holoien, Lee D.

    1990-01-01

    Failure and yield analysis capabilities were developed for focal plane array (FPA) readout devices probe tested at wafer level instead of merely performing production rate testing and cataloging data. Innovative test strategies have been combined with software techniques to provide tools which accomplish these analyses while maintaining high throughput in test. This approach has been beneficial and valuable in saving test time when searching for hardware faults, investigating design susceptibilities, revealing foundry process variations from wafer to wafer and/or lot to lot, and creating a yield model for the parts tested. Testing of readout devices has historically been viewed as a major obstacle in high volume production of reliable components for focal plane systems. Thorough testing in a high throughput automated wafer probe environment may be achieved, but often at the expense of real-time analysis of failures and yield factors. Production testing has been established with these goals in mind rather than as an afterthought. This enables one to identify failure mechanisms as they occur in order to reduce yield loss and unnecessary test time. In addition to performing requisite data base management, routines have been created to re-sort data and reevaluate yield through varying performance parameter limits, to track and map failure mechanisms as they are encountered, to examine acquired data as a function of limits, and to provide yield information for feedback response to foundry processing. Ideas for aiding operators in recognizing and diagnosing possible test set hardware problems (as opposed to on-chip failures) have also been implemented.

  10. Analysis of filtering techniques and image quality in pixel duplicated images

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; McLauchlan, Lifford

    2009-08-01

    When images undergo filtering operations, valuable information can be lost besides the intended noise or frequencies due to averaging of neighboring pixels. When the image is enlarged by duplicating pixels, such filtering effects can be reduced and more information retained, which could be critical when analyzing image content automatically. Analysis of retinal images could reveal many diseases at early stage as long as minor changes that depart from a normal retinal scan can be identified and enhanced. In this paper, typical filtering techniques are applied to an early stage diabetic retinopathy image which has undergone digital pixel duplication. The same techniques are applied to the original images for comparison. The effects of filtering are then demonstrated for both pixel duplicated and original images to show the information retention capability of pixel duplication. Image quality is computed based on published metrics. Our analysis shows that pixel duplication is effective in retaining information on smoothing operations such as mean filtering in the spatial domain, as well as lowpass and highpass filtering in the frequency domain, based on the filter window size. Blocking effects due to image compression and pixel duplication become apparent in frequency analysis.

  11. Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images.

    PubMed

    Rogowska, Jadwiga; Brezinski, Mark E

    2002-02-21

    Osteoarthritis, whose hallmark is the progressive loss of joint cartilage, is a major cause of morbidity worldwide. Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the assessment of articular cartilage. Among the most important parameters to be assessed is cartilage width. However, detection of the bone cartilage interface is critical for the assessment of cartilage width. At present, the quantitative evaluations of cartilage thickness are being done using manual tracing of cartilage-bone borders. Since data is being obtained near video rate with OCT, automated identification of the bone-cartilage interface is critical. In order to automate the process of boundary detection on OCT images, there is a need for developing new image processing techniques. In this paper we describe the image processing techniques for speckle removal, image enhancement and segmentation of cartilage OCT images. In particular, this paper focuses on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. In this study, a variety of techniques were examined. Ultimately, by combining an adaptive filtering technique with edge detection (vertical gradient, Sobel edge detection), cartilage edges can be detected. The procedure requires several steps and can be automated. Once the cartilage edges are outlined, the cartilage thickness can be measured.

  12. New imaging technique gets under the skin...deep

    SciTech Connect

    Radousky, H; Demos, S

    2000-11-01

    Using a combination of simple optical techniques, plain old white light, and image processing, two Lawrence Livermore researchers and a colleague from the City College of New York (CCNY) have developed a technique for imaging tissue structures--tendons, veins, tumors--deep beneath the skin. The ultimate goal of this research is to dramatically improve the ability to perform minimally invasive cancer detection. ''With a technique called spectral polarization difference imaging [SPDI], we use different wavelengths of light to reach different depths. We also use the polarization properties of the light to help us select the light that penetrates into the tissue and is reflected back out of the tissue as opposed to the light that bounces off the tissue surface,'' says Livermore physicist Harry Radousky, acting Director of University Relations. ''We then image the tissue structures at the different depths, based on how these structures absorb, scatter, and depolarize light. This technique, combined with fiber optics, charge-coupled-device cameras, and image enhancement calculations, allows us to image up to 1.5 centimeters inside tissue, far deeper than the millimeter depths managed by other existing optical techniques.'' The basic research to develop this technique was funded by the Department of Energy through one of its centers of excellence in laser medicine--the DOE Center for Laser Imaging and Cancer Diagnostics directed by Robert Alfano, M.D., at CCNY. A branch of this center is hosted at the Laboratory within the Materials Research Institute. wavelengths in the visible spectrum are scattered and absorbed within the tissue. For even longer wavelengths--those in the near-infrared spectral region--scattering and absorption of the photons is even further reduced.'' The light that passes through the filter then passes through a polarizer. The light that finally hits the tissue sample is thus not only of a given wavelength but also of a selected polarization. As

  13. Study on classification of pork quality using hyperspectral imaging technique

    NASA Astrophysics Data System (ADS)

    Zeng, Shan; Bai, Jun; Wang, Haibin

    2015-12-01

    The relative problems' research of chilled meat, thawed meat and spoiled meat discrimination by hyperspectral image technique were proposed, such the section of feature wavelengths, et al. First, based on 400 ~ 1000nm range hyperspectral image data of testing pork samples, by K-medoids clustering algorithm based on manifold distance, we select 30 important wavelengths from 753 wavelengths, and thus select 8 feature wavelengths (454.4, 477.5, 529.3, 546.8, 568.4, 580.3, 589.9 and 781.2nm) based on the discrimination value. Then 8 texture features of each image under 8 feature wavelengths were respectively extracted by two-dimensional Gabor wavelets transform as pork quality feature. Finally, we build a pork quality classification model using the fuzzy C-mean clustering algorithm. Through the experiment of extracting feature wavelengths, we found that although the hyperspectral images between adjacent bands have a strong linear correlation, they show a significant non-linear manifold relationship from the entire band. K-medoids clustering algorithm based on manifold distance used in this paper for selecting the characteristic wavelengths, which is more reasonable than traditional principal component analysis (PCA). Through the classification result, we conclude that hyperspectral imaging technology can distinguish among chilled meat, thawed meat and spoiled meat accurately.

  14. Comparison of Yarrowia lipolytica lipase immobilization yield of entrapment, adsorption, and covalent bond techniques.

    PubMed

    Alloue, Wazé Aimée Mireille; Destain, Jacqueline; El Medjoub, Thami; Ghalfi, Hakim; Kabran, Philomène; Thonart, Philippe

    2008-07-01

    The purpose of this study was to immobilize lipase from Yarrowia lipolytica using three methods including inclusion, adsorption, and covalent bond to study enzyme leaching, storage, and catalytic properties. Sodium alginate and chitosan were the polymers selected to immobilize lipase by inclusion. The beads of each polymer were dried by freeze drying and fluidization. The results show that chitosan was more adapted to the inclusion of lipase. Even though freeze dried, bead activity was low compared to that of fluidized beads. The freeze-drying process seems to produce suitable beads for storage at 4 and 20 degrees C. The immobilization by adsorption was carried out on both celite and silica gel. Maximum immobilization yield of 76% was obtained with celite followed by 43% in silica gel. The enzyme adsorbed on the two supports exhibited greater stability at a certain temperature (50 degrees C) and in no polar solvents (Isooctane, n-heptane, and n-hexane). In addition, the lipase immobilized by covalent bond retained residual activity equitable to 70%. It was demonstrated that the enzyme immobilized by covalent bond showed greater activity (80%) after 5 months of storage.

  15. Imaging photonic crystals using Fourier plane imaging and Fourier ptychographic microscopy techniques implemented with a computer controlled hemispherical digital condenser

    NASA Astrophysics Data System (ADS)

    Sen, Sanchari; Desai, Darshan B.; Alsubaie, Meznh H.; Zhelyeznyakov, Maksym V.; Molina, L.; Sarraf, Hamed Sari; Bernussi, Ayrton A.; Peralta, Luis Grave de

    2017-01-01

    Fourier plane imaging (FPIM) and Fourier ptychographic (FPM) microscopy techniques were used to image photonic crystals. A computer-controlled hemispherical digital condenser provided required sample illumination with variable inclination. Notable improvement in image resolution was obtained with both methods. However, it was determined that the FPM technique cannot surpass the Rayleigh resolution limit when imaging photonic crystals.

  16. Genetic algorithm tracking technique for particle image velocimetry and comparison with other tracking models

    SciTech Connect

    Yoon, C.; Hassan, Y.A.; Ortiz-Villafuerte, J.; Schmidl, W.D.

    1996-12-31

    Particle Image Velocimetry (PIV) is a nonintrusive measurement technique, which can be used to study the structure of various fluid flows. PIV is a very efficient measurement technique since it can obtain both qualitative and quantitative spatial information about the flow field being studied. This information can be further processed into information such as vorticity and pathlines. Other flow measurement techniques (Laser Doppler Velocimetry, Hot Wire Anemometry, etc...) only provide quantitative information at a single point. A study on the performance of the Sub-Grid Genetic Tracking Algorithm for use in Particle Image Velocimetry was performed. A comparison with other tracking routines as the Cross Correlation, Spring Model and Neural Network tracking techniques was conducted. All four algorithms were used to track with synthetic data, and the results are compared with those obtained from a Large Eddy simulation computational fluid dynamics program. The simulated vectors were compared with the results from the four tracking techniques, to determine the yield and reliability of each tracking algorithm.

  17. Factors influencing the diagnostic yield and accuracy of image-guided percutaneous needle biopsy of pediatric tumors: single-center audit of a 26-year experience.

    PubMed

    Blondiaux, Eléonore; Laurent, Méryle; Audureau, Etienne; Boudjemaa, Sabah; Sileo, Chiara; Lenoir, Marion; Dainese, Linda; Garel, Catherine; Coulomb, Aurore; Ducou le Pointe, Hubert

    2016-03-01

    Image-guided percutaneous core needle biopsy is a common procedure for diagnosis of both solid tumors and hematological malignancies in children. Despite recent improvements, a certain rate of non-diagnostic biopsies persists. To assess the factors influencing the diagnostic yield and accuracy of percutaneous core needle biopsies of pediatric tumors. We conducted a single-center retrospective study of a 26-year experience with image-guided biopsies in children and young adults. Using uni- and multivariate analysis, we evaluated the association of diagnostic yield and accuracy with technical factors (image-guided procedure, pathological technique) and clinical factors (complication rate, histological type and anatomical location). We retrieved data relating to 396 biopsies were performed in 363 children and young adults (mean age: 7.4 years). Overall, percutaneous core needle biopsy showed a diagnostic yield of 89.4% (95% confidence interval [CI] 85.9-92.2) and an accuracy of 90.9% (CI 87.6-93.6) with a complication rate of 2.5% (CI 1.2-4.6).The diagnostic yield increased with the use of advanced tissue assessment techniques (95.7% with immunohistochemistry versus 82.3% without immunohistochemistry; P < 0.0001) and an increased number of passes (mean: 3.96 for diagnostic biopsies versus 3.62 for non-diagnostic biopsies; P = 0.044). The use of advanced pathological techniques and an increased number of passes are the two main factors influencing the diagnostic success of biopsies in pediatric tumors.

  18. High-resolution 3D-GRE imaging of the abdomen using controlled aliasing acceleration technique - a feasibility study.

    PubMed

    AlObaidy, Mamdoh; Ramalho, Miguel; Busireddy, Kiran K R; Liu, Baodong; Burke, Lauren M; Altun, Ersan; Dale, Brian M; Semelka, Richard C

    2015-12-01

    To assess the feasibility of high-resolution 3D-gradient-recalled echo (GRE) fat-suppressed T1-weighted images using controlled aliasing acceleration technique (CAIPIRINHA-VIBE), and compare image quality and lesion detection to standard-resolution 3D-GRE images using conventional acceleration technique (GRAPPA-VIBE). Eighty-four patients (41 males, 43 females; age range: 14-90 years, 58.8 ± 15.6 years) underwent abdominal MRI at 1.5 T with CAIPIRINHA-VIBE [spatial resolution, 0.76 ± 0.04 mm] and GRAPPA-VIBE [spatial resolution, 1.17 ± 0.14 mm]. Two readers independently reviewed image quality, presence of artefacts, lesion conspicuity, and lesion detection. Kappa statistic was used to assess interobserver agreement. Wilcoxon signed-rank test was used for image qualitative pairwise comparisons. Logistic regression with post-hoc testing was used to evaluate statistical significance of lesions evaluation. Interobserver agreement ranged between 0.45-0.93. Pre-contrast CAIPIRINHA-VIBE showed significantly (p < 0.001) sharper images and lesion conspicuity with decreased residual aliasing, but more noise enhancement and inferior image quality. Post-contrast CAIPIRINHA-VIBE showed significantly (p < 0.001) sharper images and higher lesion conspicuity, with less respiratory motion and residual aliasing artefacts. Inferior fat-suppression was noticeable on CAIPIRINHA-VIBE sequences (p < 0.001). High in-plane resolution abdominal 3D-GRE fat-suppressed T1-weighted imaging using controlled-aliasing acceleration technique is feasible and yields sharper images compared to standard-resolution images using standard acceleration, with higher post-contrast image quality and trend for improved hepatic lesions detection. • High-resolution imaging of the upper abdomen is clinically feasible using 2D-controlled aliasing acceleration technique. • High-resolution imaging yields significantly sharper images and increased hepatic lesions conspicuity. • High

  19. Speckle detection in ultrasonic images using unsupervised clustering techniques.

    PubMed

    Azar, Arezou Akbarian; Rivaz, Hasan; Boctor, Emad

    2011-01-01

    In ultrasonic images, identification of speckled regions helps to estimate probe movement as well as improve performance of algorithms for adaptive speckle suppression and the elevational separation of B-scans by speckle decorrelation. By tracking FDS patch displacements over time we can calculate strain and detect tumor location. Previous studies for speckle detection were based on classification techniques which estimated parameters of the statistical distribution which were based on observation data and ultrasound echo envelope signal. However, in this study, we proposed a new combination of statistical features which were extracted from the ultrasound images and explored their properties for the speckle detection. These features were used as inputs to the unsupervised clustering algorithms for the speckle classification. We used five different types of unsupervised techniques and compared their performance by feeding different combinations of the statistical features. In order to quantitatively compare statistical features and classification methods, as ground truth, we used simulations of cyst and fetus ultrasound images which were generated using Field II ultrasound simulation program[1]. Initial results showed that by combining two statistical models (K and Rayleigh distributions) we can get best speck detection signatures to feed unsupervised classifiers and maximize speckle detection performance.

  20. Nonlinear plasmonic imaging techniques and their biological applications

    NASA Astrophysics Data System (ADS)

    Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei

    2017-01-01

    Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.

  1. Nonlinear plasmonic imaging techniques and their biological applications

    NASA Astrophysics Data System (ADS)

    Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei

    2016-07-01

    Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.

  2. Comparison of retinal image evaluation techniques in novice clinicians

    PubMed Central

    Putnam, Christopher M.; Permann, Alex; Bassi, Carl J.

    2015-01-01

    Abstract. Retinal fundus evaluation is learned through experience and training. This study aimed to determine the image presentation characteristics and the accompanying evaluation techniques, which led to the most accurate and efficient retinal pathology detection method. Phase I included 25 novice clinicians asked to evaluate 14 different pathologies using spatial versus temporal image presentations. Phase II included 25 different novice clinicians asked to evaluate five different simulated pathologies at three different pixel sizes presented in both spatial and temporal image presentations. Accuracy and speed of recognition were evaluated between the spatial and temporal presentations of the same simulated pathology. In phase l, subjects were significantly faster at simulated pathology detection using a temporal presentation with a 95% accuracy rate versus a spatial presentation with a 79% accuracy rate. In phase II, subjects demonstrated significant differences in speed of detection using the temporal technique at all 3 pixel number sizes with the greatest difference in detection times shown at the smallest retinal defects. Accuracy and speed of recognition in simulated pathology assessment were improved in a temporal presentation and the greatest improvements were demonstrated at the smallest pixel numbers. PMID:26158113

  3. Kalman filter techniques for accelerated Cartesian dynamic cardiac imaging.

    PubMed

    Feng, Xue; Salerno, Michael; Kramer, Christopher M; Meyer, Craig H

    2013-05-01

    In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome, and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and signal-to-noise ratio. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view-sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction.

  4. Biomass yield and composition of sweetpotato grown in a nutrient film technique system.

    PubMed

    Almazan, A M; Zhou, X

    1997-01-01

    Sweetpotato cultivar TU-82-155 grown in a nutrient film technique system and separated into foliage, tips, fibrous, string and storage roots at harvest had a total dry biomass of 89.9 g per plant with 38.4% inedible portion. Tips and storage roots, the traditional edible parts, were analyzed for dry matter, protein, fat, ash, minerals (Ca, Fe, K, Mg, Na, Zn), vitamins (carotene, ascorbic acid, thiamin), oxalic and tannic acids, and trypsin and chymotrypsin inhibitors to determine their nutritional quality. Water soluble matter, minerals (Ca, Fe, K, Mg, Na, Zn), cellulose, hemicellulose and lignin concentrations in the edible and inedible parts were obtained to provide information needed for the selection of appropriate bioconversion processes of plant wastes into food or forms suitable for crop production in a controlled biological life support system.

  5. Signal and image processing techniques for functional near-infrared imaging of the human brain

    PubMed Central

    Toronov, Vladislav Y.; Zhang, Xiaofeng; Fabiani, Monica; Gratton, Gabriele; Webb, Andrew G.

    2011-01-01

    Near-infrared spectro-imaging (NIRSI) is a quickly developing method for the in-vivo imaging of biological tissues. In particular, it is now extensively employed for imaging the human brain. In this non-invasive technique, the information about the brain is obtained from the analysis of spatial light bundles formed by the photons traveling from light sources to detectors placed on the surface of the head. Most significant problems in the functional brain NIRSI are the separation of the brain information from the physiological noise in non-cerebral tissues, and the localization of functional signals. In this paper we describe signal and image processing techniques we developed in order to measure two types of functional cerebral signals: the hemodynamic responses, and neuronal responses. PMID:21738383

  6. Signal and image processing techniques for functional near-infrared imaging of the human brain

    NASA Astrophysics Data System (ADS)

    Toronov, Vladislav Y.; Zhang, Xiaofeng; Fabiani, Monica; Gratton, Gabriele; Webb, Andrew G.

    2005-03-01

    Near-infrared spectro-imaging (NIRSI) is a quickly developing method for the in-vivo imaging of biological tissues. In particular, it is now extensively employed for imaging the human brain. In this non-invasive technique, the information about the brain is obtained from the analysis of spatial light bundles formed by the photons traveling from light sources to detectors placed on the surface of the head. Most significant problems in the functional brain NIRSI are the separation of the brain information from the physiological noise in non-cerebral tissues, and the localization of functional signals. In this paper we describe signal and image processing techniques we developed in order to measure two types of functional cerebral signals: the hemodynamic responses, and neuronal responses.

  7. Modified Core Biopsy Technique to Increase Diagnostic Yields for Well-Circumscribed Indeterminate Thyroid Nodules: A Retrospective Analysis.

    PubMed

    Han, S; Shin, J H; Hahn, S Y; Oh, Y L

    2016-06-01

    The results of conventional core biopsy for some thyroid nodules with indeterminate cytology have still remained indeterminate. The aim of this study was to evaluate whether the ultrasonography-guided core needle biopsy technique containing the nodule, capsular portion, and surrounding parenchyma was more effective than a conventional method in enhancing diagnostic yield for circumscribed solid thyroid nodules without malignant sonographic features. This retrospective comparative study evaluated 26 thyroid nodules in 26 consecutive patients between 2006 and 2010. They were biopsied by using a conventional method, and 61 nodules from 60 patients were biopsied by using a modified ultrasonography-guided core needle biopsy technique in 2013. The patients enrolled in this study presented with circumscribed solid thyroid nodules without malignant sonographic features, classified as nondiagnostic or atypia/follicular lesions of undetermined significance at previous cytology. The ultrasonography-guided core needle biopsy results of the 2 groups were compared. The rate of inconclusive ultrasonography-guided core needle biopsy results was 34.6% (9/26) in the conventional group and 11.4% (7/61) in the modified technique group (P = .018). There was no significant difference in the mean size of the nodules between the 2 groups (P = .134). The malignancy rate was 33% (3/9) for the conventional group and 52% (27/52) for the modified technique group (P = .473). The most common malignant pathology was a follicular variant of papillary thyroid carcinoma and follicular adenoma was the most common benign lesion. For circumscribed solid nodules without malignant sonographic features with indeterminate cytology, the ultrasonography-guided core needle biopsy technique containing the nodule, capsular portion, and surrounding parenchyma is more effective in diagnostic yield compared with a conventional method that biopsies the intranodular portion. © 2016 by American Journal of

  8. Virtual reality techniques for the visualization of biomedical imaging data

    NASA Astrophysics Data System (ADS)

    Shaw, Maurice A.; Spillman, William B., Jr.; Meissner, Ken E.; Gabbard, Joseph

    2001-07-01

    The Optical Sciences & Engineering Research Center (OSER) at Virginia Polytechnic and State University investigates advanced laser surgery optics, biocompatible material for implants, and diagnostic patches and other diagnostic and drug delivery tools. The Center employs optics to provide new biological research tools for visualization, measurement, analysis and manipulation. The Center's Research into Multispectral Medical Analysis and Visualization techniques will allow human and veterinary medical professionals to diagnose various conditions of the body in much the same way that satellite information is used to study earth resources. Each pixel in the image has an associated spectra. Advanced image analysis techniques are combined with cross-correlation of the spectra with signatures of known conditions, allowing automated diagnostic assistance to physicians. The analysis and visualization system consists of five components: data acquisition, data storage, data standardization, data analysis, and data visualization. OSER research efforts will be directed toward investigations of these system components as an integrated tool for next generation medical diagnostics. OSER will research critical data quality and data storage issues, mult-spectral sensor technologies, data analysis techniques, and diagnostic visualization systems including the VT-CAVE, (www.cave.vt.edu). The VT-CAVE is Virginia Tech's configuration of Fakespace Systems, Inc Virtual Reality system.

  9. DIFFUSION-WEIGHTED IMAGING OF THE LIVER: TECHNIQUES AND APPLICATIONS

    PubMed Central

    Lewis, Sara; Dyvorne, Hadrien; Cui, Yong; Taouli, Bachir

    2014-01-01

    SYNOPSIS Diffusion weighted MRI (DWI) is a technique that assesses the cellularity, tortuosity of the extracellular/extravascular space and cell membrane density based upon differences in water proton mobility in tissues. The strength of the diffusion weighting is reflected by the b-value. DWI using several b-values enables quantification of the apparent diffusion coefficient (ADC). DWI is increasingly employed in liver imaging for multiple reasons: it can add useful qualitative and quantitative information to conventional imaging sequences, it is acquired relatively quickly, it is easily incorporated into existing clinical protocols, and it is a non-contrast technique. DWI is useful for focal liver lesion detection and characterization, for the assessment of post-treatment tumor response and for evaluation of diffuse liver disease. ADC quantification can be used to characterize lesions as cystic/necrotic or solid and for predicting tumor response to therapy. Advanced diffusion methods such as IVIM (intravoxel incoherent motion) may have potential for detection, staging and evaluation of the progression of liver fibrosis and for liver lesion characterization. The lack of standardization of DWI technique including choice of b-values and sequence parameters has somewhat limited its widespread adoption. PMID:25086935

  10. Digital Compositing Techniques for Coronal Imaging (Invited review)

    NASA Astrophysics Data System (ADS)

    Espenak, F.

    2000-04-01

    The solar corona exhibits a huge range in brightness which cannot be captured in any single photographic exposure. Short exposures show the bright inner corona and prominences, while long exposures reveal faint details in equatorial streamers and polar brushes. For many years, radial gradient filters and other analog techniques have been used to compress the corona's dynamic range in order to study its morphology. Such techniques demand perfect pointing and tracking during the eclipse, and can be difficult to calibrate. In the past decade, the speed, memory and hard disk capacity of personal computers have rapidly increased as prices continue to drop. It is now possible to perform sophisticated image processing of eclipse photographs on commercially available CPU's. Software programs such as Adobe Photoshop permit combining multiple eclipse photographs into a composite image which compresses the corona's dynamic range and can reveal subtle features and structures. Algorithms and digital techniques used for processing 1998 eclipse photographs will be discussed which are equally applicable to the recent eclipse of 1999 August 11.

  11. Digital Image Processing Techniques to Create Attractive Astronomical Images from Research Data

    NASA Astrophysics Data System (ADS)

    Rector, T. A.; Levay, Z.; Frattare, L. M.; English, J.; Pummill, K.

    2003-12-01

    The quality of modern astronomical data, the power of modern computers and the agility of current image processing software enable the creation of high-quality images in a purely digital form that rival the quality of traditional photographic astronomical images. The combination of these technological advancements has created a new ability to make color astronomical images. And in many ways, it has led to a new philosophy towards how to create them. We present a practical guide to generate astronomical images from research data by using powerful image processing programs. These programs use a layering metaphor that allows an unlimited number of astronomical datasets to be combined in any desired color scheme, creating an immense parameter space to be explored using an iterative approach. Several examples of image creation are presented. We also present a philosophy on how to use color and composition to create images that simultaneously highlight the scientific detail within an image and are aesthetically appealing. We advocate an approach that uses visual grammar, defined as the elements which affect the interpretation of an image, to maximize the richness and detail in an image while maintaining scientific accuracy. By properly using visual grammar, one can imply qualities that a two-dimensional image intrinsically cannot show, such as depth, motion and energy. In addition, composition can be used to engage the viewer and keep him or her interested for a longer period of time. The effective use of these techniques can result in a striking image that will effectively convey the science within the image, to scientists and to the public.

  12. Digital Image Processing Techniques to Create Attractive Astronomical Images from Research Data

    NASA Astrophysics Data System (ADS)

    Rector, T. A.; Levay, Z.; Frattare, L.; English, J.; Pu'uohau-Pummill, K.

    2004-05-01

    The quality of modern astronomical data, the power of modern computers and the agility of current image processing software enable the creation of high-quality images in a purely digital form that rival the quality of traditional photographic astronomical images. The combination of these technological advancements has created a new ability to make color astronomical images. And in many ways, it has led to a new philosophy towards how to create them. We present a practical guide to generate astronomical images from research data by using powerful image processing programs. These programs use a layering metaphor that allows an unlimited number of astronomical datasets to be combined in any desired color scheme, creating an immense parameter space to be explored using an iterative approach. Several examples of image creation are presented. We also present a philosophy on how to use color and composition to create images that simultaneously highlight the scientific detail within an image and are aesthetically appealing. We advocate an approach that uses visual grammar, defined as the elements which affect the interpretation of an image, to maximize the richness and detail in an image while maintaining scientific accuracy. By properly using visual grammar, one can imply qualities that a two-dimensional image intrinsically cannot show, such as depth, motion and energy. In addition, composition can be used to engage the viewer and keep him or her interested for a longer period of time. The effective use of these techniques can result in a striking image that will effectively convey the science within the image, to scientists and to the public.

  13. Imaging of Heterogeneous Materials with a Turbo Spin Echo Single-Point Imaging Technique

    NASA Astrophysics Data System (ADS)

    Beyea, Steven D.; Balcom, Bruce J.; Mastikhin, Igor V.; Bremner, Theodore W.; Armstrong, Robin L.; Grattan-Bellew, Patrick E.

    2000-06-01

    A magnetic resonance imaging method is presented for imaging of heterogeneous broad linewidth materials. This method allows for distortionless relaxation weighted imaging by obtaining multiple phase encoded k-space data points with each RF excitation pulse train. The use of this method, turbo spin echo single-point imaging-(turboSPI), leads to decreased imaging times compared to traditional constant-time imaging techniques, as well as the ability to introduce spin-spin relaxation contrast through the use of longer effective echo times. Imaging times in turboSPI are further decreased through the use of low flip angle steady-state excitation. Two-dimensional images of paramagnetic doped agarose phantoms were obtained, demonstrating the contrast and resolution characteristics of the sequence, and a method for both amplitude and phase deconvolution was demonstrated for use in high-resolution turboSPI imaging. Three-dimensional images of a partially water-saturated porous volcanic aggregate (T2L ≈ 200 ms, Δν1/2 ≈ 2500 Hz) contained in a hardened white Portland cement matrix (T2L ≈ 0.5 ms, Δν1/2 ≈ 2500 Hz) and a water-saturated quartz sand (T2 ≈ 300 ms, T2* ≈ 800 μs) are shown.

  14. Tumor functional and molecular imaging utilizing ultrasound and ultrasound-mediated optical techniques.

    PubMed

    Yuan, Baohong; Rychak, Joshua

    2013-02-01

    Tumor functional and molecular imaging has significantly contributed to cancer preclinical research and clinical applications. Among typical imaging modalities, ultrasonic and optical techniques are two commonly used methods; both share several common features such as cost efficiency, absence of ionizing radiation, relatively inexpensive contrast agents, and comparable maximum-imaging depth. Ultrasonic and optical techniques are also complementary in imaging resolution, molecular sensitivity, and imaging space (vascular and extravascular). The marriage between ultrasonic and optical techniques takes advantages of both techniques. This review introduces tumor functional and molecular imaging using microbubble-based ultrasound and ultrasound-mediated optical imaging techniques.

  15. Determining Angle of Humeral Torsion Using Image Software Technique

    PubMed Central

    Sethi, Madhu; Vasudeva, Neelam

    2016-01-01

    Introduction Several researches have been done on the measurement of angles of humeral torsion in different parts of the world. Previously described methods were more complicated, not much accurate, cumbersome or required sophisticated instruments. Aim The present study was conducted with the aim to determine the angles of humeral torsion with a newer simple technique using digital images and image tool software. Materials and Methods A total of 250 dry normal adult human humeri were obtained from the bone bank of Department of Anatomy. The length and mid-shaft circumference of each bone was measured with the help of measuring tape. The angle of humeral torsion was measured directly from the digital images by the image analysis using Image Tool 3.0 software program. The data was analysed statistically with SPSS version 17 using unpaired t-test and Spearman’s rank order correlation coefficient. Results The mean angle of torsion was 64.57°±7.56°. On the right side it was 66.84°±9.69°, whereas, on the left side it was found to be 63.31±9.50°. The mean humeral length was 31.6 cm on right side and 30.33 cm on left side. Mid shaft circumference was 5.79 on right side and 5.63 cm on left side. No statistical differences were seen in angles between right and left humeri (p>0.001). Conclusion From our study, it was concluded that circumference of shaft is inversely proportional to angle of humeral torsion. The length and side of humerus has no relation with the humeral torsion. With advancement of digital technology, it is better to use new image softwares for anatomical studies. PMID:27891326

  16. Imaging of Hip Pain: From Radiography to Cross-Sectional Imaging Techniques

    PubMed Central

    Ruiz Santiago, Fernando; Santiago Chinchilla, Alicia; Ansari, Afshin; Guzmán Álvarez, Luis; Castellano García, Maria del Mar; Martínez Martínez, Alberto; Tercedor Sánchez, Juan

    2016-01-01

    Hip pain can have multiple causes, including intra-articular, juxta-articular, and referred pain, mainly from spine or sacroiliac joints. In this review, we discuss the causes of intra-articular hip pain from childhood to adulthood and the role of the appropriate imaging techniques according to clinical suspicion and age of the patient. Stress is put on the findings of radiographs, currently considered the first imaging technique, not only in older people with degenerative disease but also in young people without osteoarthritis. In this case plain radiography allows categorization of the hip as normal or dysplastic or with impingement signs, pincer, cam, or a combination of both. PMID:26885391

  17. Study of acoustic shadow moire for imaging technique

    NASA Astrophysics Data System (ADS)

    Yaqoub, Mahmoud

    This research is to utilize ultrasound waves and moire phenomena to establish a new imaging technology for industrial and medical applications. The theory and mathematical description is presented in this work. Numerical simulation is performed to prove the concept; COMSOL simulation, which uses finite difference technique, is used. The results are compared with experimental results done by a researcher from NIU at Santec Systems Inc., Wheeling, IL. The diffraction of the ultrasound waves is dependent on the wavelength. Because the sound wave length is large, a diffraction grating of wider pitch is used. Therefore, using ultrasound in shadow moire imaging will be limited by the size of pitch of the diffraction grating. Talbot image of the grating was studied using numerical simulation. The simulation results were found to be in agreement with experimental results. This is an evidence that ultrasound shadow moire has the same characteristics as light shadow moire. This work simulates the imaging of an inclined specimen with two different angles, 20 and 25 degrees. The distance between the first 2-moire fringes is found to be close to 5.5 mm. This means that the second fringe is a locus of constant out-of-plane elevation of 4.2mm with respect to the first fringe. This simulation provides an error compared with the experimental and theoretical results of 17.7%. This difference can be attributed to the fact that the experiments conditions are not ideal, and the use of paraxial and Fresnel approximation used in the analytical equations.

  18. Automated Coronal Loop Identification Using Digital Image Processing Techniques

    NASA Technical Reports Server (NTRS)

    Lee, Jong K.; Gary, G. Allen; Newman, Timothy S.

    2003-01-01

    The results of a master thesis project on a study of computer algorithms for automatic identification of optical-thin, 3-dimensional solar coronal loop centers from extreme ultraviolet and X-ray 2-dimensional images will be presented. These center splines are proxies of associated magnetic field lines. The project is pattern recognition problems in which there are no unique shapes or edges and in which photon and detector noise heavily influence the images. The study explores extraction techniques using: (1) linear feature recognition of local patterns (related to the inertia-tensor concept), (2) parametric space via the Hough transform, and (3) topological adaptive contours (snakes) that constrains curvature and continuity as possible candidates for digital loop detection schemes. We have developed synthesized images for the coronal loops to test the various loop identification algorithms. Since the topology of these solar features is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information in the identification process. Results from both synthesized and solar images will be presented.

  19. Advances in low energy neutral atom imaging techniques

    SciTech Connect

    Scime, E.E.; Funsten, H.O.; McComas, D.J.; Moore, K.R. ); Gruntman, M. . Space Sciences Center)

    1993-01-01

    Recently proposed low energy neutral atom (LENA) imaging techniques use a collisional process to convert the low energy neutrals into ions before detection. At low energies, collisional processes limit the angular resolution and conversion efficiencies of these devices. However, if the intense ultraviolet light background can be suppressed, direct LENA detection is possible. We present results from a series of experiments designed to develop a novel filtering structure based on free-standing transmission gratings. If the grating period is sufficiently small, free standing transmission gratings can be employed to substantially polarize ultraviolet (UV) light in the wavelength range 300 [Angstrom] to 1500 [Angstrom]. If a second grating is placed behind the first grating with its axis of polarization oriented at a right angle to the first's, a substantial attenuation of UV radiation is achievable. ne neutrals will pass through the remaining open area of two gratings and be detected without UV background complications. We have obtained nominal 2000 [Angstrom] period (1000 [Angstrom] bars with 1000 [Angstrom] slits) free standing, gold transmission gratings and measured their UV and atomic transmission characteristics. The geometric factor of a LENA imager based on this technology is comparable to that of other proposed LENA imagers. In addition, this of imager does not distort the neutral trajectories, allowing for high angular resolution.

  20. Surveying and benchmarking techniques to analyse DNA gel fingerprint images.

    PubMed

    Heras, Jónathan; Domínguez, César; Mata, Eloy; Pascual, Vico

    2016-11-01

    DNA fingerprinting is a genetic typing technique that allows the analysis of the genomic relatedness between samples, and the comparison of DNA patterns. The analysis of DNA gel fingerprint images usually consists of five consecutive steps: image pre-processing, lane segmentation, band detection, normalization and fingerprint comparison. In this article, we firstly survey the main methods that have been applied in the literature in each of these stages. Secondly, we focus on lane-segmentation and band-detection algorithms-as they are the steps that usually require user-intervention-and detect the seven core algorithms used for both tasks. Subsequently, we present a benchmark that includes a data set of images, the gold standards associated with those images and the tools to measure the performance of lane-segmentation and band-detection algorithms. Finally, we implement the core algorithms used both for lane segmentation and band detection, and evaluate their performance using our benchmark. As a conclusion of that study, we obtain that the average profile algorithm is the best starting point for lane segmentation and band detection.

  1. Automated Coronal Loop Identification Using Digital Image Processing Techniques

    NASA Technical Reports Server (NTRS)

    Lee, Jong K.; Gary, G. Allen; Newman, Timothy S.

    2003-01-01

    The results of a master thesis project on a study of computer algorithms for automatic identification of optical-thin, 3-dimensional solar coronal loop centers from extreme ultraviolet and X-ray 2-dimensional images will be presented. These center splines are proxies of associated magnetic field lines. The project is pattern recognition problems in which there are no unique shapes or edges and in which photon and detector noise heavily influence the images. The study explores extraction techniques using: (1) linear feature recognition of local patterns (related to the inertia-tensor concept), (2) parametric space via the Hough transform, and (3) topological adaptive contours (snakes) that constrains curvature and continuity as possible candidates for digital loop detection schemes. We have developed synthesized images for the coronal loops to test the various loop identification algorithms. Since the topology of these solar features is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information in the identification process. Results from both synthesized and solar images will be presented.

  2. Quantitative coronary angiography using image recovery techniques for background estimation in unsubtracted images

    SciTech Connect

    Wong, Jerry T.; Kamyar, Farzad; Molloi, Sabee

    2007-10-15

    Densitometry measurements have been performed previously using subtracted images. However, digital subtraction angiography (DSA) in coronary angiography is highly susceptible to misregistration artifacts due to the temporal separation of background and target images. Misregistration artifacts due to respiration and patient motion occur frequently, and organ motion is unavoidable. Quantitative densitometric techniques would be more clinically feasible if they could be implemented using unsubtracted images. The goal of this study is to evaluate image recovery techniques for densitometry measurements using unsubtracted images. A humanoid phantom and eight swine (25-35 kg) were used to evaluate the accuracy and precision of the following image recovery techniques: Local averaging (LA), morphological filtering (MF), linear interpolation (LI), and curvature-driven diffusion image inpainting (CDD). Images of iodinated vessel phantoms placed over the heart of the humanoid phantom or swine were acquired. In addition, coronary angiograms were obtained after power injections of a nonionic iodinated contrast solution in an in vivo swine study. Background signals were estimated and removed with LA, MF, LI, and CDD. Iodine masses in the vessel phantoms were quantified and compared to known amounts. Moreover, the total iodine in left anterior descending arteries was measured and compared with DSA measurements. In the humanoid phantom study, the average root mean square errors associated with quantifying iodine mass using LA and MF were approximately 6% and 9%, respectively. The corresponding average root mean square errors associated with quantifying iodine mass using LI and CDD were both approximately 3%. In the in vivo swine study, the root mean square errors associated with quantifying iodine in the vessel phantoms with LA and MF were approximately 5% and 12%, respectively. The corresponding average root mean square errors using LI and CDD were both 3%. The standard deviations

  3. BaTMAn: Bayesian Technique for Multi-image Analysis

    NASA Astrophysics Data System (ADS)

    Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.

    2016-12-01

    Bayesian Technique for Multi-image Analysis (BaTMAn) characterizes any astronomical dataset containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (i.e. identical signal within the errors). The output segmentations successfully adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. BaTMAn identifies (and keeps) all the statistically-significant information contained in the input multi-image (e.g. an IFS datacube). The main aim of the algorithm is to characterize spatially-resolved data prior to their analysis.

  4. Techniques to evaluate the quality of medical images

    NASA Astrophysics Data System (ADS)

    Perez-Diaz, Marlen

    2014-11-01

    There is not a perfect agree in the definition of medical image quality from the physician and physicist point of view. The present conference analyzes the standard techniques used to grade image quality. In the first place, an analysis about how viewing conditions related to environment, monitor used or physician experience determines the subjective evaluation is done. After that, the physics point of view is analyzed including the advantage and disadvantage of the main published methods like: Quality Control Tests, Mathematical metrics, Modulation Transfer Function, Noise Power Spectrum, System Response Curve and Mathematical observers. Each method is exemplified with the results of updated papers. We concluded that the most successful methods up to the present have been those which include simulations of the Human Visual System. They have good correlation between the results of the objective metrics and the subjective evaluation made by the observers.

  5. RBI-EMML signal separation for imaging techniques

    NASA Astrophysics Data System (ADS)

    Meidunas, Eduardo C.; Puetz, Angela; Hoke, Michael L.; Byrne, Charles L.

    2002-08-01

    Many imaging techniques commonly involve the extraction of mixed signal information from a pixel. In most mixed pixel cases, this is assumed to be a linear mixture and signal separation routines have been developed with this mixing compositions scheme in mind. One such signal separation routine incorporates the Expectation Maximization Maximum Likelihood (EMML) algorithm for the determination of signal mixtures in a pixel. This routine, however is very inefficient in that it requires large iteration values to converge to a solution. This report is the result of the implementation of a Re-scaled Block Iterative EMML approach, commonly used in the medical field for emission tomography image processing, to perform signal separation, while greatly increasing the efficiency in computation and rate of convergence to a solution.

  6. Update of choroidal imaging techniques: Past, present and future.

    PubMed

    Ruiz-Medrano, J; Flores-Moreno, I; Gutierrez-Bonet, R; Chhablani, J; Ruiz-Moreno, J M

    2017-03-01

    The choroid is the middle layer of the eye, a very vascular and pigmented tissue, with its role in several ophthalmological pathologies already having been clearly established. But it was not until the last few years that we have been able to reliably and precisely measure and quantify its shape and thickness. Ultrasound technology and indocyanine green angiography were the first techniques used for the study of the choroid, and they still maintain their use and clinical indications for the diagnosis and management of several pathologies. But it was the advent of optical coherence tomography that was the greatest breakthrough in choroidal imaging. In this chapter, the past, current and future image modalities for the study of the choroid will be discussed, with special focus on optical coherence tomography and its latest developments.

  7. Imaging technique optimization of tungsten anode FFDM system

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Smith, Andrew P.; Jing, Zhenxue; Ingal, Elena

    2009-02-01

    Single Mo target, Mo / Rh, or Mo / W bi-track targets with corresponding Mo and Rh filters have provided optimal target / filter combinations for traditional screen / film systems. In the advent of full-field digital mammography, similar target / filter combinations were adopted directly for digital imaging systems with direct and indirect conversion based detectors. To reduce the average glandular dose while maintaining the clinical image quality of FFDMs, alternative target / filter combinations have been investigated extensively to take advantages of the digital detectors with high dynamic range, high detection dose efficiency, and low noise level. This paper reports the development of a digital FFDM system that is equipped with single tungsten target and rhodium and silver filters. A mathematical model was constructed to quantitatively simulate x-ray spectra, breast compositions, contrast objects, x-ray scatter distribution, grid performance, and characteristics of a-Se flat panel detector. Computer simulations were performed to select kV/filter for different breast thickness and breast compositions through maximizing the contrast object detection dose efficiency. A set of phantom experiments were employed to optimize the x-ray techniques within the constraints of exposure time and required dose levels. A 50-micrometer rhodium filter was applied for thin and average breasts and a 50-micrometer silver filter for thicker breasts. To meet our design requirements and EUREF protocol specifications, we finely adjusted x-ray techniques for 0.45, 0.75, 1.0, 1.35 mGy dose modes with regards to ACR phantom scoring and PMMA phantom SNR/CNR performance, respectively. The optimal x-ray techniques significantly reduce average glandular dose while maintaining imaging performance.

  8. Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis

    SciTech Connect

    Erskine, D J; Smith, R F; Bolme, C; Celliers, P; Collins, G

    2011-03-23

    We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISAR optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.

  9. The use of optical imaging techniques in the gastrointestinal tract

    PubMed Central

    Beg, Sabina; Wilson, Ana; Ragunath, Krish

    2016-01-01

    With significant advances in the management of gastrointestinal disease there has been a move from diagnosing advanced pathology, to detecting early lesions that are potentially amenable to curative endoscopic treatment. This has required an improvement in diagnostics, with a focus on identifying and characterising subtle mucosal changes. There is great interest in the use of optical technologies to predict histology and enable the formulation of a real-time in vivo diagnosis, a so-called ‘optical biopsy’. The aim of this review is to explore the evidence for the use of the current commercially available imaging techniques in the gastrointestinal tract. PMID:27429735

  10. Readout techniques for photon-counting microchannel image systems

    NASA Technical Reports Server (NTRS)

    Lampton, Michael

    1988-01-01

    A comparative evaluation is made of such readout methods for the microchannel plates that are commonly used in EUV, FUV, and X-ray low light level image systems as the (1) phosphor-video, (2) phosphor and binary-mask encoder, (3) direct discrete-position encoder, (4) direct analog amplitude position-encoder systems, and (5) delay-line encoders. Relative advantages and limitations are discussed in the context of low light level space-based astronomy applications. The delay-line technique offers great promise for high-resolution applications where oversampling is mandatory, as in spectroscopy.

  11. Application of image processing techniques to fluid flow data analysis

    NASA Technical Reports Server (NTRS)

    Giamati, C. C.

    1981-01-01

    The application of color coding techniques used in processing remote sensing imagery to analyze and display fluid flow data is discussed. A minicomputer based color film recording and color CRT display system is described. High quality, high resolution images of two-dimensional data are produced on the film recorder. Three dimensional data, in large volume, are used to generate color motion pictures in which time is used to represent the third dimension. Several applications and examples are presented. System hardware and software is described.

  12. Moire technique by means of digital image processing.

    PubMed

    Gasvik, K J

    1983-11-15

    Moiré technique by means of projected fringes is a suitable method for full field measurements of out-of-plane deformations and object contouring. One disadvantage in industrial applications has been the photographic process with the involved time-consuming development of the photographic film. This paper presents a new method using a TV camera and a digital image processor whereby real-time measurements of deformations and comparison of object contours are possible. Also the principles and limitations of the projected moiré method are described.

  13. Task 7: Image Enhancement and Advanced Information Extraction Techniques, 1385

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Nalepka, R. F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Atmospheric effects in satellite multispectral scanner data can influence results obtained with either manual image interpretation or computer information extraction techniques. The atmosphere attenuates radiation arriving from the surface and adds an extraneous path radiance component. Initial results of an investigation of atmospheric effects in ERTS-1 data are presented. Empirical analyses of ERTS-1 MSS data and simultaneous airborne MSS underflight data for one frame, along with theoretical calculations of atmospheric effects, are discussed. The effect of limited spatial resolution on the accuracy of information extracted from ERTS-1 data also is important. Problems occur when individual resolution elements contain two or more materials. Results from an initial application of Environmental Research Institute of Michigan techniques for estimating proportions of materials within individual elements are presented and discussed. Very accurate determination of surface areas of small lakes is achieved.

  14. Quantifying and imaging engineered nanomaterials in vivo: challenges and techniques.

    PubMed

    He, Xiao; Ma, Yuhui; Li, Meng; Zhang, Peng; Li, Yuanyuan; Zhang, Zhiyong

    2013-05-27

    Quantifying and imaging the engineered nanomaterials (ENMs) in vivo can provide information on the bio-distribution and fate of ENMs in living systems. A necessary amount of in vivo quantitative data is indispensable to verify the extrapolation from in vitro tests, to modify the predictive models of ENM exposure, and to underpin the risk management strategy for ENMs. However, it remains a challenge to quantitatively assess the bio-distribution of ENMs under realistic exposure, their long-term deposition (especially in non-targeted tissues), their passage across the natural barriers, and the impacts of nano-bio interactions on their in vivo behaviors. Some commonly used techniques for in vivo ENM quantification, such as electron microscopy, fluorescence-based detection, atomic spectroscopy, radiotracing, and techniques basing on synchrotron radiation are reviewed, and their technical characteristics, the state of the art, limitations, and future prospects are addressed.

  15. Prediction of foal carcass composition and wholesale cut yields by using video image analysis.

    PubMed

    Lorenzo, J M; Guedes, C M; Agregán, R; Sarriés, M V; Franco, D; Silva, S R

    2017-07-11

    This work represents the first contribution for the application of the video image analysis (VIA) technology in predicting lean meat and fat composition in the equine species. Images of left sides of the carcass (n=42) were captured from the dorsal, lateral and medial views using a high-resolution digital camera. A total of 41 measurements (angles, lengths, widths and areas) were obtained by VIA. The variation of percentage of lean meat obtained from the forequarter (FQ) and hindquarter (HQ) carcass ranged between 5.86% and 7.83%. However, the percentage of fat (FAT) obtained from the FQ and HQ carcass presented a higher variation (CV between 41.34% and 44.58%). By combining different measurements and using prediction models with cold carcass weight (CCW) and VIA measurement the coefficient of determination (k-fold-R 2) were 0.458 and 0.532 for FQ and HQ, respectively. On the other hand, employing the most comprehensive model (CCW plus all VIA measurements), the k-fold-R 2 increased from 0.494 to 0.887 and 0.513 to 0.878 with respect to the simplest model (only with CCW), while precision increased with the reduction in the root mean square error (2.958 to 0.947 and 1.841 to 0.787) for the hindquarter fat and lean percentage, respectively. With CCW plus VIA measurements is possible to explain the wholesale value cuts yield variation (k-fold-R 2 between 0.533 and 0.889). Overall, the VIA technology performed in the present study could be considered as an accurate method to assess the horse carcass composition which could have a role in breeding programmes and research studies to assist in the development of a value-based marketing system for horse carcass.

  16. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques.

    PubMed

    Macyszyn, Luke; Akbari, Hamed; Pisapia, Jared M; Da, Xiao; Attiah, Mark; Pigrish, Vadim; Bi, Yingtao; Pal, Sharmistha; Davuluri, Ramana V; Roccograndi, Laura; Dahmane, Nadia; Martinez-Lage, Maria; Biros, George; Wolf, Ronald L; Bilello, Michel; O'Rourke, Donald M; Davatzikos, Christos

    2016-03-01

    MRI characteristics of brain gliomas have been used to predict clinical outcome and molecular tumor characteristics. However, previously reported imaging biomarkers have not been sufficiently accurate or reproducible to enter routine clinical practice and often rely on relatively simple MRI measures. The current study leverages advanced image analysis and machine learning algorithms to identify complex and reproducible imaging patterns predictive of overall survival and molecular subtype in glioblastoma (GB). One hundred five patients with GB were first used to extract approximately 60 diverse features from preoperative multiparametric MRIs. These imaging features were used by a machine learning algorithm to derive imaging predictors of patient survival and molecular subtype. Cross-validation ensured generalizability of these predictors to new patients. Subsequently, the predictors were evaluated in a prospective cohort of 29 new patients. Survival curves yielded a hazard ratio of 10.64 for predicted long versus short survivors. The overall, 3-way (long/medium/short survival) accuracy in the prospective cohort approached 80%. Classification of patients into the 4 molecular subtypes of GB achieved 76% accuracy. By employing machine learning techniques, we were able to demonstrate that imaging patterns are highly predictive of patient survival. Additionally, we found that GB subtypes have distinctive imaging phenotypes. These results reveal that when imaging markers related to infiltration, cell density, microvascularity, and blood-brain barrier compromise are integrated via advanced pattern analysis methods, they form very accurate predictive biomarkers. These predictive markers used solely preoperative images, hence they can significantly augment diagnosis and treatment of GB patients. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques

    PubMed Central

    Macyszyn, Luke; Akbari, Hamed; Pisapia, Jared M.; Da, Xiao; Attiah, Mark; Pigrish, Vadim; Bi, Yingtao; Pal, Sharmistha; Davuluri, Ramana V.; Roccograndi, Laura; Dahmane, Nadia; Martinez-Lage, Maria; Biros, George; Wolf, Ronald L.; Bilello, Michel; O'Rourke, Donald M.; Davatzikos, Christos

    2016-01-01

    Background MRI characteristics of brain gliomas have been used to predict clinical outcome and molecular tumor characteristics. However, previously reported imaging biomarkers have not been sufficiently accurate or reproducible to enter routine clinical practice and often rely on relatively simple MRI measures. The current study leverages advanced image analysis and machine learning algorithms to identify complex and reproducible imaging patterns predictive of overall survival and molecular subtype in glioblastoma (GB). Methods One hundred five patients with GB were first used to extract approximately 60 diverse features from preoperative multiparametric MRIs. These imaging features were used by a machine learning algorithm to derive imaging predictors of patient survival and molecular subtype. Cross-validation ensured generalizability of these predictors to new patients. Subsequently, the predictors were evaluated in a prospective cohort of 29 new patients. Results Survival curves yielded a hazard ratio of 10.64 for predicted long versus short survivors. The overall, 3-way (long/medium/short survival) accuracy in the prospective cohort approached 80%. Classification of patients into the 4 molecular subtypes of GB achieved 76% accuracy. Conclusions By employing machine learning techniques, we were able to demonstrate that imaging patterns are highly predictive of patient survival. Additionally, we found that GB subtypes have distinctive imaging phenotypes. These results reveal that when imaging markers related to infiltration, cell density, microvascularity, and blood–brain barrier compromise are integrated via advanced pattern analysis methods, they form very accurate predictive biomarkers. These predictive markers used solely preoperative images, hence they can significantly augment diagnosis and treatment of GB patients. PMID:26188015

  18. Thermal imaging technique to characterize laser light reflection from thermoplastics

    NASA Astrophysics Data System (ADS)

    Azhikannickal, Elizabeth; Bates, Philip J.; Zak, Gene

    2012-07-01

    Characterization of laser light reflection during the laser transmission welding (LTW) of thermoplastics is especially important for applications in which non-zero laser incidence angles are used. At higher laser incidence angles, reflection increases and has the potential to burn surrounding features of the part to be welded. This study presents and validates a technique for laser reflection measurement. Reflected energy is absorbed by a black plastic plate (containing carbon black, which is the absorber of the reflected energy). The surface temperature of the plate is measured by an infrared (IR) camera. The distribution of reflected power required to generate this temperature profile is estimated using a simple heat transfer model. The technique was validated by irradiating the black plate by the laser directly, while observing the time-varying temperature distribution of the plate by the IR camera. In this case, good agreement was observed between the estimated total power and the actual laser input power. Good agreement also existed between the estimated power distribution and that determined experimentally via a knife edge based beam profiling technique. The thermal imaging technique was subsequently used to measure the magnitude and distribution of laser light reflection from unreinforced nylon 6. Abbreviations: LTW—laser transmission welding, CB—carbon black, IR—infrared, NPFD—normalized power flux distribution

  19. Evaluation of crop yield loss of floods based on water turbidity index with multi-temporal HJ-CCD images

    NASA Astrophysics Data System (ADS)

    Gu, Xiaohe; Xu, Peng; Wang, Lei; Wang, Xiuhui

    2015-12-01

    Paddy is one of the most important food crops in China. Due to the intensive planting in the surrounding of rivers and lakes, paddy is vulnerable to flooding stress. The research on predicting crop yield loss derived from flooding stress will help the adjustment of crop planting structure and the claims of agricultural insurance. The paper aimed to develop a method of estimating yield loss of paddy derived from flooding by multi-temporal HJ CCD images. At first, the water pixels after flooding were extracted, from which the water line (WL) of turbid water pixels was generated. Secondly, the water turbidity index (WTI) and perpendicular vegetation index (PVI) was defined and calculated. By analyzing the relation among WTI, PVI and paddy yield, the model of evaluating yield loss of flooding was developed. Based on this model, the spatial distribution of paddy yield loss derived from flooding was mapped in the study area. Results showed that the water turbidity index (WTI) could be used to monitor the sediment content of flood, which was closely related to the plant physiology and per unit area yield of paddy. The PVI was the good indicator of paddy yield with significant correlation (0.965). So the PVI could be used to estimate the per unit area yield before harvesting. The PVI and WTI had good linear relation, which could provide an effective, practical and feasible method for monitoring yield loss of waterlogged paddy.

  20. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.

    PubMed

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Shaw, Philip J; Ukosakit, Kittipat; Tragoonrung, Somvong; Tongsima, Sissades

    2015-01-01

    DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. This work presents an automated genotyping tool from DNA

  1. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique

    PubMed Central

    2015-01-01

    Background DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. Results We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. Conclusions This work presents an

  2. Macroscopic-imaging technique for subsurface quantification of near-infrared markers during surgery

    PubMed Central

    Jermyn, Michael; Kolste, Kolbein; Pichette, Julien; Sheehy, Guillaume; Angulo-Rodríguez, Leticia; Paulsen, Keith D.; Roberts, David W.; Wilson, Brian C.; Petrecca, Kevin; Leblond, Frederic

    2015-01-01

    Abstract. Obtaining accurate quantitative information on the concentration and distribution of fluorescent markers lying at a depth below the surface of optically turbid media, such as tissue, is a significant challenge. Here, we introduce a fluorescence reconstruction technique based on a diffusion light transport model that can be used during surgery, including guiding resection of brain tumors, for depth-resolved quantitative imaging of near-infrared fluorescent markers. Hyperspectral fluorescence images are used to compute a topographic map of the fluorophore distribution, which yields structural and optical constraints for a three-dimensional subsequent hyperspectral diffuse fluorescence reconstruction algorithm. Using the model fluorophore Alexa Fluor 647 and brain-like tissue phantoms, the technique yielded estimates of fluorophore concentration within ±25% of the true value to depths of 5 to 9 mm, depending on the concentration. The approach is practical for integration into a neurosurgical fluorescence microscope and has potential to further extend fluorescence-guided resection using objective and quantified metrics of the presence of residual tumor tissue. PMID:25793562

  3. Macroscopic-imaging technique for subsurface quantification of near-infrared markers during surgery

    NASA Astrophysics Data System (ADS)

    Jermyn, Michael; Kolste, Kolbein; Pichette, Julien; Sheehy, Guillaume; Angulo-Rodríguez, Leticia; Paulsen, Keith D.; Roberts, David W.; Wilson, Brian C.; Petrecca, Kevin; Leblond, Frederic

    2015-03-01

    Obtaining accurate quantitative information on the concentration and distribution of fluorescent markers lying at a depth below the surface of optically turbid media, such as tissue, is a significant challenge. Here, we introduce a fluorescence reconstruction technique based on a diffusion light transport model that can be used during surgery, including guiding resection of brain tumors, for depth-resolved quantitative imaging of near-infrared fluorescent markers. Hyperspectral fluorescence images are used to compute a topographic map of the fluorophore distribution, which yields structural and optical constraints for a three-dimensional subsequent hyperspectral diffuse fluorescence reconstruction algorithm. Using the model fluorophore Alexa Fluor 647 and brain-like tissue phantoms, the technique yielded estimates of fluorophore concentration within ±25% of the true value to depths of 5 to 9 mm, depending on the concentration. The approach is practical for integration into a neurosurgical fluorescence microscope and has potential to further extend fluorescence-guided resection using objective and quantified metrics of the presence of residual tumor tissue.

  4. Fuzzy logic and image processing techniques for the interpretation of seismic data

    NASA Astrophysics Data System (ADS)

    Orozco-del-Castillo, M. G.; Ortiz-Alemán, C.; Urrutia-Fucugauchi, J.; Rodríguez-Castellanos, A.

    2011-06-01

    Since interpretation of seismic data is usually a tedious and repetitive task, the ability to do so automatically or semi-automatically has become an important objective of recent research. We believe that the vagueness and uncertainty in the interpretation process makes fuzzy logic an appropriate tool to deal with seismic data. In this work we developed a semi-automated fuzzy inference system to detect the internal architecture of a mass transport complex (MTC) in seismic images. We propose that the observed characteristics of a MTC can be expressed as fuzzy if-then rules consisting of linguistic values associated with fuzzy membership functions. The constructions of the fuzzy inference system and various image processing techniques are presented. We conclude that this is a well-suited problem for fuzzy logic since the application of the proposed methodology yields a semi-automatically interpreted MTC which closely resembles the MTC from expert manual interpretation.

  5. Imaging Techniques for Clinical Burn Assessment with a Focus on Multispectral Imaging

    PubMed Central

    Thatcher, Jeffrey E.; Squiers, John J.; Kanick, Stephen C.; King, Darlene R.; Lu, Yang; Wang, Yulin; Mohan, Rachit; Sellke, Eric W.; DiMaio, J. Michael

    2016-01-01

    Significance: Burn assessments, including extent and severity, are some of the most critical diagnoses in burn care, and many recently developed imaging techniques may have the potential to improve the accuracy of these evaluations. Recent Advances: Optical devices, telemedicine, and high-frequency ultrasound are among the highlights in recent burn imaging advancements. We present another promising technology, multispectral imaging (MSI), which also has the potential to impact current medical practice in burn care, among a variety of other specialties. Critical Issues: At this time, it is still a matter of debate as to why there is no consensus on the use of technology to assist burn assessments in the United States. Fortunately, the availability of techniques does not appear to be a limitation. However, the selection of appropriate imaging technology to augment the provision of burn care can be difficult for clinicians to navigate. There are many technologies available, but a comprehensive review summarizing the tissue characteristics measured by each technology in light of aiding clinicians in selecting the proper device is missing. This would be especially valuable for the nonburn specialists who encounter burn injuries. Future Directions: The questions of when burn assessment devices are useful to the burn team, how the various imaging devices work, and where the various burn imaging technologies fit into the spectrum of burn care will continue to be addressed. Technologies that can image a large surface area quickly, such as thermography or laser speckle imaging, may be suitable for initial burn assessment and triage. In the setting of presurgical planning, ultrasound or optical microscopy techniques, including optical coherence tomography, may prove useful. MSI, which actually has origins in burn care, may ultimately meet a high number of requirements for burn assessment in routine clinical use. PMID:27602255

  6. Imaging the transformation of hot strip steel using magnetic techniques

    NASA Astrophysics Data System (ADS)

    Sharif, E.; Bell, Cathy; Morris, Peter F.; Peyton, A. J.

    2001-07-01

    In the production of steel strip, the temperature distribution and cooling rates along the mill run-out table have a significant effect on the steel microstructure and hence on final material properties, e.g., yield strength, tensile strength, and ductility. Noncontacting optical temperature sensors are typically used to implement feedback control of cooling, but water spray and surface emissivity irregularities can adversely affect these sensors. Ideally, the control of cooling path should account for the progress of dynamic transformation at required points rather than the strip temperature alone. There are several reports describing the use of magnetic sensors to monitor transformation. These sensors exploit the change in the electromagnetic properties as the steel progresses through transformation, for example the austenitic phase is paramagnetic and the ferritic phase is ferromagnetic below the Curie point. Previous work has concentrated on the operation and design of individual transformation sensors. This paper now describes the use of an array of electromagnetic sensors to image the progression of transformation along a sample steel block on a pilot scale industrial mill. The paper will describe the underlying physical principles, the design of the system, and present images showing the progress of transformation along one surface of the sample.

  7. The Image-Accumulation Technique as a Variable in Multiple-Image Communication.

    ERIC Educational Resources Information Center

    Tam, Peter Tim-Kui; Reeve, Robert H.

    A study was conducted to determine the relative effectiveness of various techniques of accumulating and organizing images in multiple-screen, slide-tape presentations of geographical information. Identical stimulus materials were presented in five different ways from sequential presentation to accumulated presentation to programed accumulated…

  8. Advanced imaging techniques II: using a compound microscope for photographing point-mount specimens

    USDA-ARS?s Scientific Manuscript database

    Digital imaging technology has revolutionized the practice photographing insects for scientific study. Herein described are lighting and mounting techniques designed for imaging micro Hymenoptera. Techniques described here are applicable to all small insects, as well as other invertebrates. The ke...

  9. A new imaging technique for detecting interstellar communications

    NASA Astrophysics Data System (ADS)

    Vallerga, John; Welsh, Barry; Kotze, Marissa; Siegmund, Oswald

    2017-01-01

    We report on a unique detection methodology using the Berkeley Visible Image Tube (BVIT) mounted on the 10m Southern African Large Telescope (SALT) to search for laser pulses originating in communications from advanced extraterrestrial (ET) civilizations residing on nearby Earth-like planets located within their habitability zones. The detection technique assumes that ET communicates through high powered pulsed lasers with pulse durations on the order of 5 nanoseconds, the signals thereby being brighter than that of the host star within this very short period of time. Our technique turns down the gain of the optically sensitive photon counting microchannel plate detector such that ~30 photons are required in a 5ns window to generate an imaged event. Picking a priori targets with planets in the habitable zone substantially reduces the false alarm rate. Interplanetary communication by optical masers was first postulated by Schwartz and Townes in 1961. Under the assumption that ET has access to a 10 m class telescope operated as a transmitter then we could detect lasers with a similar power to that of the Livermore Laboratory laser (~1.8Mj per pulse), to a distance of ~ 1000 pc. In this talk we present the results of 2400 seconds of BVIT observations on the SALT of the star Wolf 1061, which is known to harbor an Earth-sized exoplanet located in the habitability zone. At this distance (4.3 pc), BVIT on SALT could detect a 48 joule per pulse laser, now commercially available as tabletop devices.

  10. Bioluminescence-based imaging technique for pressure measurement in water

    NASA Astrophysics Data System (ADS)

    Watanabe, Yasunori; Tanaka, Yasufumi

    2011-07-01

    The dinoflagellate Pyrocystis lunula emits light in response to water motion. We developed a new imaging technique for measuring pressure using plankton that emits light in response to mechanical stimulation. The bioluminescence emitted by P. lunula was used to measure impact water pressure produced using weight-drop tests. The maximum mean luminescence intensity correlated with the maximum impact pressure that the cells receive when the circadian and diurnal biological rhythms are appropriately controlled. Thus, with appropriate calibration of experimentally determined parameters, the dynamic impact pressure can be estimated by measuring the cell-flash distribution. Statistical features of the evolution of flash intensity and the probability distribution during the impacting event, which are described by both biological and mechanical response parameters, are also discussed in this paper. The practical applicability of this bioluminescence imaging technique is examined through a water drop test. The maximum dynamic pressure, occurring at the impact of a water jet against a wall, was estimated from the flash intensity of the dinoflagellate.

  11. A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging.

    PubMed

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-06-01

    The purpose of this study was to develop a techique to generate on-board volumetric cine-magnetic resonance imaging (VC-MRI) using patient prior images, motion modeling, and on-board 2-dimensional cine MRI. One phase of a 4-dimensional MRI acquired during patient simulation is used as patient prior images. Three major respiratory deformation patterns of the patient are extracted from 4-dimensional MRI based on principal-component analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2-dimensional cine MRI. The method was evaluated using both digital extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI data from 4 real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using volume-percent-difference (VPD), center-of-mass-shift (COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest (ROI) selection, patient breathing pattern change, and noise on the estimation accuracy were also evaluated. Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between normalized profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was, on average, 8.43 ± 1.52% and the COMS was, on average, 0.93 ± 0.58 mm across all time steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against noise levels up to SNR = 20. For

  12. Update: Cardiac Imaging (II). Transcatheter Aortic Valve Replacement: Advantages and Limitations of Different Cardiac Imaging Techniques.

    PubMed

    Podlesnikar, Tomaz; Delgado, Victoria

    2016-03-01

    Transcatheter aortic valve replacement is an established therapy for patients with symptomatic severe aortic stenosis and contraindications or high risk for surgery. Advances in prostheses and delivery system designs and continuous advances in multimodality imaging, particularly the 3-dimensional techniques, have led to improved outcomes with significant reductions in the incidence of frequent complications such as paravalvular aortic regurgitation. In addition, data on prosthesis durability are accumulating. Multimodality imaging plays a central role in the selection of patients who are candidates for transcatheter aortic valve replacement, procedure planning and guidance, and follow-up of prosthesis function. The strengths and limitations of each imaging technique for transcatheter aortic valve replacement will be discussed in this update article. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  13. Optical Fourier techniques for medical image processing and phase contrast imaging

    PubMed Central

    Yelleswarapu, Chandra S.; Kothapalli, Sri-Rajasekhar; Rao, D.V.G.L.N.

    2008-01-01

    This paper briefly reviews the basics of optical Fourier techniques (OFT) and applications for medical image processing as well as phase contrast imaging of live biological specimens. Enhancement of microcalcifications in a mammogram for early diagnosis of breast cancer is the main focus. Various spatial filtering techniques such as conventional 4f filtering using a spatial mask, photoinduced polarization rotation in photosensitive materials, Fourier holography, and nonlinear transmission characteristics of optical materials are discussed for processing mammograms. We also reviewed how the intensity dependent refractive index can be exploited as a phase filter for phase contrast imaging with a coherent source. This novel approach represents a significant advance in phase contrast microscopy. PMID:18458764

  14. Esophageal cancer: anatomic particularities, staging, and imaging techniques.

    PubMed

    Encinas de la Iglesia, J; Corral de la Calle, M A; Fernández Pérez, G C; Ruano Pérez, R; Álvarez Delgado, A

    2016-01-01

    Cancer of the esophagus is a tumor with aggressive behavior that is usually diagnosed in advanced stages. The absence of serosa allows it to spread quickly to neighboring mediastinal structures, and an extensive lymphatic drainage network facilitates tumor spread even in early stages. The current TNM classification, harmonized with the classification for gastric cancer, provides new definitions for the anatomic classification, adds non-anatomic characteristics of the tumor, and includes tumors of the gastroesophageal junction. Combining endoscopic ultrasound, computed tomography, positron emission tomography, and magnetic resonance imaging provides greater accuracy in determining the initial clinical stage, and these imaging techniques play an essential role in the selection, planning, and evaluation of treatment. In this article, we review some particularities that explain the behavior of this tumor and we describe the current TNM staging system; furthermore, we discuss the different imaging tests available for its evaluation and include a diagnostic algorithm. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. New endoscopic imaging techniques in surveillance of inflammatory bowel disease

    PubMed Central

    Gabbani, Tommaso; Manetti, Natalia; Bonanomi, Andrea Giovanni; Annese, Antonio Luca; Annese, Vito

    2015-01-01

    Endoscopy plays a crucial role in the management of inflammatory bowel disease (IBD). Advances imaging techniques allow visualization of mucosal details, tissue characteristics and cellular alteration. In particular chromoendoscopy, magnification endoscopy, confocal laser endomicroscopy and endocytoscopy seem to have the possibility to radically modify the approach to surveillance and decision making. Dye-based chromoendoscopy (DBC) and magnification chromoendoscopy improve detection of dysplasia, and evaluation of inflammatory activity and extension of ulcerative colitis and are thus considered the standard of care. Dye-less chromoendoscopy could probably replace conventional DBC for surveillance. Narrow band imaging and i-scan have shown to improve activity and extent assessment in comparison to white-light endoscopy. Confocal laser endomicroscopy (CLE) can detect more dysplastic lesions in surveillance colonoscopy and predict neoplastic and inflammatory changes with high accuracy compared to histology. This technology is best used in conjunction with chromoendoscopy, narrow-band imaging, or autofluorescence because of its minute scanning area. This combination is useful for appropriate tissue classification of mucosal lesions already detected by standard or optically enhanced endoscopy. The best combination for IBD surveillance appear to be chromoendoscopy for identification of areas of suspicion, with further examination with CLE to detect intraepithelial neoplasia. However cost, availability, and experience are still an issue. PMID:25789093

  16. Imaging techniques: new avenues in cancer gene and cell therapy.

    PubMed

    Saadatpour, Z; Rezaei, A; Ebrahimnejad, H; Baghaei, B; Bjorklund, G; Chartrand, M; Sahebkar, A; Morovati, H; Mirzaei, H R; Mirzaei, H

    2017-01-01

    Cancer is one of the world's most concerning health problems and poses many challenges in the range of approaches associated with the treatment of cancer. Current understanding of this disease brings to the fore a number of novel therapies that can be useful in the treatment of cancer. Among them, gene and cell therapies have emerged as novel and effective approaches. One of the most important challenges for cancer gene and cell therapies is correct monitoring of the modified genes and cells. In fact, visual tracking of therapeutic cells, immune cells, stem cells and genetic vectors that contain therapeutic genes and the various drugs is important in cancer therapy. Similarly, molecular imaging, such as nanosystems, fluorescence, bioluminescence, positron emission tomography, single photon-emission computed tomography and magnetic resonance imaging, have also been found to be powerful tools in monitoring cancer patients who have received therapeutic cell and gene therapies or drug therapies. In this review, we focus on these therapies and their molecular imaging techniques in treating and monitoring the progress of the therapies on various types of cancer.

  17. Coherent Fiber Optic Coupling Techniques For Downhole Imaging Camerasl

    NASA Astrophysics Data System (ADS)

    Cameron, George R.

    1987-10-01

    Cameras used to monitor underground nuclear testing experiments are subjected to a variety of harsh conditions which must be accounted for during the design phase. Since experiments are buried several thousand feet below ground, reliability is of foremost concern. Many of the cameras designed at Lawrence Livermore Laboratory contain coherent fiber optic components such as microchannel plate image intensifiers, fiber optic reducers, and diode or CCD imaging arrays. Coupling of these components calls for hardware which will maintain precise contact and alignment in conditions of high vibration, large thermal transition, and high humidity. In addition, the hardware must be easily assembled by untrained technical personnel under less than ideal conditions (windy, dusty, rainy, etc.). A high speed imaging camera based upon a Fairchild CCD array chip was designed at Livermore in 1984. Problems in coupling the array window to a fiber optic reducer were aggravated by mounting of the array chip rigidly to the main video circuit board. A new array chip daughter board, attached by flat ribbon cable and supported by a spring loaded lever combination was designed to overcome the problem. The hardware did not increase the overall size of the existing camera and increased the unit cost by less than 1 K$. The design of this hardware will be discussed along with useful techniques for designers of cameras used in harsh environments.

  18. Peering through the flames: imaging techniques for reacting aluminum powders

    DOE PAGES

    Zepper, Ethan T.; Pantoya, Michelle L.; Bhattacharya, Sukalyan; ...

    2017-03-17

    Combusting metals burn at high temperatures and emit high-intensity radiation in the visible spectrum which can over-saturate regular imaging sensors and obscure the field of view. Filtering the luminescence can result in limited information and hinder thorough combustion characterization. A method for “seeing through the flames” of a highly luminescent aluminum powder reaction is presented using copper vapor laser (CVL) illumination synchronized with a high-speed camera. A statistical comparison of combusting aluminum particle agglomerate between filtered halogen and CVL illumination shows the effectiveness of this diagnostic approach. When ignited by an electrically induced plasma, aluminum particles are entrained as solidmore » agglomerates that rotate about their centers of mass and are surrounded by emitted, burning gases. Furthermore, the average agglomerate diameter appears to be 160 micrometers when viewed with standard illumination and a high-speed camera. But, a significantly lower diameter of 50 micrometers is recorded when imaged with CVL illumination. Our results advocate that alternative imaging techniques are required to resolve the complexities of metal particle combustion.« less

  19. Biophoton detection as a novel technique for cancer imaging.

    PubMed

    Takeda, Motohiro; Kobayashi, Masaki; Takayama, Mariko; Suzuki, Satoshi; Ishida, Takanori; Ohnuki, Kohji; Moriya, Takuya; Ohuchi, Noriaki

    2004-08-01

    Biophoton emission is defined as extremely weak light that is radiated from any living system due to its metabolic activities, without excitation or enhancement. We measured biophoton images of tumors transplanted in mice with a highly sensitive and ultra-low noise CCD camera system. Cell lines employed for this study were AH109A, TE4 and TE9. Biophoton images of each tumor were measured 1 week after carcinoma cell transplantation to estimate the tumor size at week 1 and the biophoton intensity. Some were also measured at 2 and 3 weeks to compare the biophoton distribution with histological findings. We achieved sequential biophoton imaging during tumor growth for the first time. Comparison of microscopic findings and biophoton intensity suggested that the intensity of biophoton emission reflects the viability of the tumor tissue. The size at week 1 differed between cell lines, and the biophoton intensity of the tumor was correlated with the tumor size at week 1 (correlation coefficient 0.73). This non-invasive and simple technique has the potential to be used as an optical biopsy to detect tumor viability.

  20. Inside Out: Modern Imaging Techniques to Reveal Animal Anatomy

    PubMed Central

    Lauridsen, Henrik; Hansen, Kasper; Wang, Tobias; Agger, Peter; Andersen, Jonas L.; Knudsen, Peter S.; Rasmussen, Anne S.; Uhrenholt, Lars; Pedersen, Michael

    2011-01-01

    Animal anatomy has traditionally relied on detailed dissections to produce anatomical illustrations, but modern imaging modalities, such as MRI and CT, now represent an enormous resource that allows for fast non-invasive visualizations of animal anatomy in living animals. These modalities also allow for creation of three-dimensional representations that can be of considerable value in the dissemination of anatomical studies. In this methodological review, we present our experiences using MRI, CT and μCT to create advanced representation of animal anatomy, including bones, inner organs and blood vessels in a variety of animals, including fish, amphibians, reptiles, mammals, and spiders. The images have a similar quality to most traditional anatomical drawings and are presented together with interactive movies of the anatomical structures, where the object can be viewed from different angles. Given that clinical scanners found in the majority of larger hospitals are fully suitable for these purposes, we encourage biologists to take advantage of these imaging techniques in creation of three-dimensional graphical representations of internal structures. PMID:21445356