Sample records for imaging technology application

  1. The application of coded excitation technology in medical ultrasonic Doppler imaging

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Chen, Xiaodong; Bao, Jing; Yu, Daoyin

    2008-03-01

    Medical ultrasonic Doppler imaging is one of the most important domains of modern medical imaging technology. The application of coded excitation technology in medical ultrasonic Doppler imaging system has the potential of higher SNR and deeper penetration depth than conventional pulse-echo imaging system, it also improves the image quality, and enhances the sensitivity of feeble signal, furthermore, proper coded excitation is beneficial to received spectrum of Doppler signal. Firstly, this paper analyzes the application of coded excitation technology in medical ultrasonic Doppler imaging system abstractly, showing the advantage and bright future of coded excitation technology, then introduces the principle and the theory of coded excitation. Secondly, we compare some coded serials (including Chirp and fake Chirp signal, Barker codes, Golay's complementary serial, M-sequence, etc). Considering Mainlobe Width, Range Sidelobe Level, Signal-to-Noise Ratio and sensitivity of Doppler signal, we choose Barker codes as coded serial. At last, we design the coded excitation circuit. The result in B-mode imaging and Doppler flow measurement coincided with our expectation, which incarnated the advantage of application of coded excitation technology in Digital Medical Ultrasonic Doppler Endoscope Imaging System.

  2. Multimedia Image Technology and Computer Aided Manufacturing Engineering Analysis

    NASA Astrophysics Data System (ADS)

    Nan, Song

    2018-03-01

    Since the reform and opening up, with the continuous development of science and technology in China, more and more advanced science and technology have emerged under the trend of diversification. Multimedia imaging technology, for example, has a significant and positive impact on computer aided manufacturing engineering in China. From the perspective of scientific and technological advancement and development, the multimedia image technology has a very positive influence on the application and development of computer-aided manufacturing engineering, whether in function or function play. Therefore, this paper mainly starts from the concept of multimedia image technology to analyze the application of multimedia image technology in computer aided manufacturing engineering.

  3. WE-A-18C-01: Emerging and Innovative Ultrasound Technology in Diagnosis and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emelianov, S; Oraevsky, A; Stafford, R

    The application of new ultrasound-based technologies in medicine has expanded in recent years. One area of rapid growth has been the combination of ultrasound with other methods of image generation and imaging modalities to produce hybrid approaches for diagnostic imaging and noninvasive therapeutic intervention. The presentations associated with this session will provide an overview of two emerging technologies that are currently being developed and implemented to enhance ultrasound-related diagnostic imaging and therapy: the utilization of optically-induced ultrasound imaging (optoacoustic / photoacoustic imaging) and the use of magnetic resonance imaging to guide the use of high-intensity focused ultrasound for therapeutic applications.more » Learning Objectives: Develop a general understanding of the underlying technologies associated with optoacoustic / photoacoustic tomography and MRguided high-intensity focused ultrasound. Develop an understanding of the current methods of these new ultrasound-based technologies in preclinical research and clinical applications.« less

  4. CMOS Image Sensors for High Speed Applications.

    PubMed

    El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).

  5. Gold nanoparticle contrast agents in advanced X-ray imaging technologies.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Sang Joon

    2013-05-17

    Recently, there has been significant progress in the field of soft- and hard-X-ray imaging for a wide range of applications, both technically and scientifically, via developments in sources, optics and imaging methodologies. While one community is pursuing extensive applications of available X-ray tools, others are investigating improvements in techniques, including new optics, higher spatial resolutions and brighter compact sources. For increased image quality and more exquisite investigation on characteristic biological phenomena, contrast agents have been employed extensively in imaging technologies. Heavy metal nanoparticles are excellent absorbers of X-rays and can offer excellent improvements in medical diagnosis and X-ray imaging. In this context, the role of gold (Au) is important for advanced X-ray imaging applications. Au has a long-history in a wide range of medical applications and exhibits characteristic interactions with X-rays. Therefore, Au can offer a particular advantage as a tracer and a contrast enhancer in X-ray imaging technologies by sensing the variation in X-ray attenuation in a given sample volume. This review summarizes basic understanding on X-ray imaging from device set-up to technologies. Then this review covers recent studies in the development of X-ray imaging techniques utilizing gold nanoparticles (AuNPs) and their relevant applications, including two- and three-dimensional biological imaging, dynamical processes in a living system, single cell-based imaging and quantitative analysis of circulatory systems and so on. In addition to conventional medical applications, various novel research areas have been developed and are expected to be further developed through AuNP-based X-ray imaging technologies.

  6. Virtual imaging in sports broadcasting: an overview

    NASA Astrophysics Data System (ADS)

    Tan, Yi

    2003-04-01

    Virtual imaging technology is being used to augment television broadcasts -- virtual objects are seamlessly inserted into the video stream to appear as real entities to TV audiences. Virtual advertisements, the main application of this technology, are providing opportunities to improve the commercial value of television programming while enhancing the contents and the entertainment aspect of these programs. State-of-the-art technologies, such as image recognition, motion tracking and chroma keying, are central to a virtual imaging system. This paper reviews the general framework, the key techniques, and the sports broadcasting applications of virtual imaging technology.

  7. NASA spinoffs to bioengineering and medicine

    NASA Technical Reports Server (NTRS)

    Rouse, Doris J.; Winfield, Daniel L.; Canada, S. Catherine

    1989-01-01

    The societal and economic benefits derived from the application of aerospace technology to improved health care are examined, and examples of the space-technology spinoffs are presented. Special attention is given to the applications of aerospace technology from digital image processing, space medicine and biology, microelectronics, optics and electrooptics, and ultrasonic imaging. The role of the NASA Technology Application Team in helping the potential technology users to identify and evaluate the technology transfer opportunities and to apply space technology in the field of medicine is discussed.

  8. Recent Developments and Applications of Radiation/Detection Technology in Tsinghua University

    NASA Astrophysics Data System (ADS)

    Kang, Ke-Jun

    2010-03-01

    Nuclear technology applications have been very important research fields in Tsinghua University (THU) for more than 50 years. This paper describes two major directions and related projects running in THU concerning nuclear technology applications for radiation imaging and nuclear technology applications for astrophysics. Radiation imaging is a significant application of nuclear technology for all kinds of real world needs including security inspections, anti-smuggling operations, and medicine. The current improved imaging systems give much higher quality radiation images. THU has produced accelerating tubes for both industrial and medical accelerators with energy levels ranging from 2.5˜20Mev. Detectors have been produced for medical and industrial imaging as well as for high energy physics experiments such as the MRPC with fast time and position resolutions. DR and CT systems for radiation imaging systems have been continuously improved with new system designs and improved algorithms for image reconstruction and processing. Two important new key initiatives are the dual-energy radiography and dual-energy CT systems. Dual-energy CT imaging improves material discrimination by providing both the electron density and the atomic number distribution of scanned objects. Finally, this paper also introduces recent developments related to the hard X-ray modulation telescope (HXMT) provided by THU.

  9. TH-A-17A-01: Innovation in PET Instrumentation and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, M; Miyaoka, R; Shao, Y

    Innovation in PET instrumentation has led to the new millennium revolutionary imaging applications for diagnosis, therapeutic guidance, and development of new molecular imaging probes, etc. However, after several decades innovations, will the advances of PET technology and applications continue with the same trend and pace? What will be the next big thing beyond the PET/CT, PET/MRI, and Time-of-flight PET? How will the PET instrumentation and imaging performance be further improved by novel detector research and advanced imaging system development? Or will the development of new algorithms and methodologies extend the limit of current instrumentation and leapfrog the imaging quality andmore » quantification for practical applications? The objective of this session is to present an overview of current status and advances in the PET instrumentation and applications with speakers from leading academic institutes and a major medical imaging company. Presenting with both academic research projects and commercial technology developments, this session will provide a glimpse of some latest advances and challenges in the field, such as using semiconductor photon-sensor based PET detectors to improve performance and enable new applications, as well as the technology trend that may lead to the next breakthrough in PET imaging for clinical and preclinical applications. Both imaging and image-guided therapy subjects will be discussed. Learning Objectives: Describe the latest innovations in PET instrumentation and applications Understand the driven force behind the PET instrumentation innovation and development Learn the trend of PET technology development for applications.« less

  10. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    NASA Technical Reports Server (NTRS)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  11. [Application of terahertz technology in medical testing and diagnosis].

    PubMed

    Qi, Na; Zhang, Zhuo-Yong; Xiang, Yu-Hong

    2013-08-01

    Terahertz science and technology is increasingly emphasized in science and industry, and has progressed significantly in recent years. There is an important aspect of attention in the application of terahertz technology to medicine. The overview of the terahertz characters, terahertz spectroscopy and terahertz imaging technology is introduced. This paper focuses on reviewing the use of and research progress in terahertz spectroscopy and terahertz imaging technology in medical testing and diagnosis. Furthermore, the problems to be solved and development directions of terahertz spectroscopy and terahertz imaging technology are discussed.

  12. Craniofacial imaging informatics and technology development.

    PubMed

    Vannier, M W

    2003-01-01

    'Craniofacial imaging informatics' refers to image and related scientific data from the dentomaxillofacial complex, and application of 'informatics techniques' (derived from disciplines such as applied mathematics, computer science and statistics) to understand and organize the information associated with the data. Major trends in information technology determine the progress made in craniofacial imaging and informatics. These trends include industry consolidation, disruptive technologies, Moore's law, electronic atlases and on-line databases. Each of these trends is explained and documented, relative to their influence on craniofacial imaging. Craniofacial imaging is influenced by major trends that affect all medical imaging and related informatics applications. The introduction of cone beam craniofacial computed tomography scanners is an example of a disruptive technology entering the field. An important opportunity lies in the integration of biologic knowledge repositories with craniofacial images. The progress of craniofacial imaging will continue subject to limitations imposed by the underlying technologies, especially imaging informatics. Disruptive technologies will play a major role in the evolution of this field.

  13. An open architecture for medical image workstation

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Hu, Zhiqiang; Wang, Xiangyun

    2005-04-01

    Dealing with the difficulties of integrating various medical image viewing and processing technologies with a variety of clinical and departmental information systems and, in the meantime, overcoming the performance constraints in transferring and processing large-scale and ever-increasing image data in healthcare enterprise, we design and implement a flexible, usable and high-performance architecture for medical image workstations. This architecture is not developed for radiology only, but for any workstations in any application environments that may need medical image retrieving, viewing, and post-processing. This architecture contains an infrastructure named Memory PACS and different kinds of image applications built on it. The Memory PACS is in charge of image data caching, pre-fetching and management. It provides image applications with a high speed image data access and a very reliable DICOM network I/O. In dealing with the image applications, we use dynamic component technology to separate the performance-constrained modules from the flexibility-constrained modules so that different image viewing or processing technologies can be developed and maintained independently. We also develop a weakly coupled collaboration service, through which these image applications can communicate with each other or with third party applications. We applied this architecture in developing our product line and it works well. In our clinical sites, this architecture is applied not only in Radiology Department, but also in Ultrasonic, Surgery, Clinics, and Consultation Center. Giving that each concerned department has its particular requirements and business routines along with the facts that they all have different image processing technologies and image display devices, our workstations are still able to maintain high performance and high usability.

  14. Introduction to Raman chemical imaging technology

    USDA-ARS?s Scientific Manuscript database

    New developments in computer and imaging hardware have significantly advanced Raman spectroscopy and spectral imaging technologies, and have led to the recent emergence of new Raman detection techniques for rapid and online applications. This book chapter presents Raman chemical imaging technology a...

  15. Application of Multimodality Imaging Fusion Technology in Diagnosis and Treatment of Malignant Tumors under the Precision Medicine Plan.

    PubMed

    Wang, Shun-Yi; Chen, Xian-Xia; Li, Yi; Zhang, Yu-Ying

    2016-12-20

    The arrival of precision medicine plan brings new opportunities and challenges for patients undergoing precision diagnosis and treatment of malignant tumors. With the development of medical imaging, information on different modality imaging can be integrated and comprehensively analyzed by imaging fusion system. This review aimed to update the application of multimodality imaging fusion technology in the precise diagnosis and treatment of malignant tumors under the precision medicine plan. We introduced several multimodality imaging fusion technologies and their application to the diagnosis and treatment of malignant tumors in clinical practice. The data cited in this review were obtained mainly from the PubMed database from 1996 to 2016, using the keywords of "precision medicine", "fusion imaging", "multimodality", and "tumor diagnosis and treatment". Original articles, clinical practice, reviews, and other relevant literatures published in English were reviewed. Papers focusing on precision medicine, fusion imaging, multimodality, and tumor diagnosis and treatment were selected. Duplicated papers were excluded. Multimodality imaging fusion technology plays an important role in tumor diagnosis and treatment under the precision medicine plan, such as accurate location, qualitative diagnosis, tumor staging, treatment plan design, and real-time intraoperative monitoring. Multimodality imaging fusion systems could provide more imaging information of tumors from different dimensions and angles, thereby offing strong technical support for the implementation of precision oncology. Under the precision medicine plan, personalized treatment of tumors is a distinct possibility. We believe that multimodality imaging fusion technology will find an increasingly wide application in clinical practice.

  16. Light field imaging and application analysis in THz

    NASA Astrophysics Data System (ADS)

    Zhang, Hongfei; Su, Bo; He, Jingsuo; Zhang, Cong; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    The light field includes the direction information and location information. Light field imaging can capture the whole light field by single exposure. The four-dimensional light field function model represented by two-plane parameter, which is proposed by Levoy, is adopted in the light field. Acquisition of light field is based on the microlens array, camera array and the mask. We calculate the dates of light-field to synthetize light field image. The processing techniques of light field data include technology of refocusing rendering, technology of synthetic aperture and technology of microscopic imaging. Introducing the technology of light field imaging into THz, the efficiency of 3D imaging is higher than that of conventional THz 3D imaging technology. The advantages compared with visible light field imaging include large depth of field, wide dynamic range and true three-dimensional. It has broad application prospects.

  17. The progress of sub-pixel imaging methods

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Wen, Desheng

    2014-02-01

    This paper reviews the Sub-pixel imaging technology principles, characteristics, the current development status at home and abroad and the latest research developments. As Sub-pixel imaging technology has achieved the advantages of high resolution of optical remote sensor, flexible working ways and being miniaturized with no moving parts. The imaging system is suitable for the application of space remote sensor. Its application prospect is very extensive. It is quite possible to be the research development direction of future space optical remote sensing technology.

  18. Breast imaging technology: Recent advances in imaging endogenous or transferred gene expression utilizing radionuclide technologies in living subjects - applications to breast cancer

    PubMed Central

    Berger, Frank; Sam Gambhir, Sanjiv

    2001-01-01

    A variety of imaging technologies is being investigated as tools for studying gene expression in living subjects. Two technologies that use radiolabeled isotopes are single photon emission computed tomography (SPECT) and positron emission tomography (PET). A relatively high sensitivity, a full quantitative tomographic capability, and the ability to extend small animal imaging assays directly into human applications characterize radionuclide approaches. Various radiolabeled probes (tracers) can be synthesized to target specific molecules present in breast cancer cells. These include antibodies or ligands to target cell surface receptors, substrates for intracellular enzymes, antisense oligodeoxynucleotide probes for targeting mRNA, probes for targeting intracellular receptors, and probes for genes transferred into the cell. We briefly discuss each of these imaging approaches and focus in detail on imaging reporter genes. In a PET reporter gene system for in vivo reporter gene imaging, the protein products of the reporter genes sequester positron emitting reporter probes. PET subsequently measures the PET reporter gene dependent sequestration of the PET reporter probe in living animals. We describe and review reporter gene approaches using the herpes simplex type 1 virus thymidine kinase and the dopamine type 2 receptor genes. Application of the reporter gene approach to animal models for breast cancer is discussed. Prospects for future applications of the transgene imaging technology in human gene therapy are also discussed. Both SPECT and PET provide unique opportunities to study animal models of breast cancer with direct application to human imaging. Continued development of new technology, probes and assays should help in the better understanding of basic breast cancer biology and in the improved management of breast cancer patients. PMID:11250742

  19. High-fidelity video and still-image communication based on spectral information: natural vision system and its applications

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masahiro; Haneishi, Hideaki; Fukuda, Hiroyuki; Kishimoto, Junko; Kanazawa, Hiroshi; Tsuchida, Masaru; Iwama, Ryo; Ohyama, Nagaaki

    2006-01-01

    In addition to the great advancement of high-resolution and large-screen imaging technology, the issue of color is now receiving considerable attention as another aspect than the image resolution. It is difficult to reproduce the original color of subject in conventional imaging systems, and that obstructs the applications of visual communication systems in telemedicine, electronic commerce, and digital museum. To breakthrough the limitation of conventional RGB 3-primary systems, "Natural Vision" project aims at an innovative video and still-image communication technology with high-fidelity color reproduction capability, based on spectral information. This paper summarizes the results of NV project including the development of multispectral and multiprimary imaging technologies and the experimental investigations on the applications to medicine, digital archives, electronic commerce, and computer graphics.

  20. Imaging Technology in Libraries: Photo CD Offers New Possibilities.

    ERIC Educational Resources Information Center

    Beiser, Karl

    1993-01-01

    Describes Kodak's Photo CD technology, a format for the storage and retrieval of photographic images in electronic form. Highlights include current and future Photo CD formats; computer imaging technology; ownership issues; hardware for using Photo CD; software; library and information center applications, including image collections and…

  1. High brightness x ray source for directed energy and holographic imaging applications, phase 2

    NASA Astrophysics Data System (ADS)

    McPherson, Armon; Rhodes, Charles K.

    1992-03-01

    Advances in x-ray imaging technology and x-ray sources are such that a new technology can be brought to commercialization enabling the three-dimensional (3-D) microvisualization of hydrated biological specimens. The Company is engaged in a program whose main goal is the development of a new technology for direct three dimensional (3-D) x-ray holographic imaging. It is believed that this technology will have a wide range of important applications in the defense, medical, and scientific sectors. For example, in the medical area, it is expected that biomedical science will constitute a very active and substantial market, because the application of physical technologies for the direct visualization of biological entities has had a long and extremely fruitful history.

  2. [Development of Terahertz Imaging Technology in the Assessment of Burn Injuries].

    PubMed

    Zhu, Xinjian; He, Xuan; Wang, Pin; Gao, Dandan; Qiu, Yan; He, Qinghua; Wu, Baoming

    2016-02-01

    Terahertz waves have unique properties and advantages, which makes it gain increasing attention and applications in the biomedical field. Burns is a common clinical trauma. Since the water-sensitive and non-destructive characteristics of terahertz, terahertz imaging techniques can be used to detect burns. So far, terahertz imaging technology in the assessment of burn injuries has been developed from ex vivo to in vivo, and high-resolution images can be obtained through the gauzes and plasters. In this paper, we mainly introduces the application of terahertz imaging technology and development in the assessment of burn injuries.

  3. Development of CMOS Active Pixel Image Sensors for Low Cost Commercial Applications

    NASA Technical Reports Server (NTRS)

    Gee, R.; Kemeny, S.; Kim, Q.; Mendis, S.; Nakamura, J.; Nixon, R.; Ortiz, M.; Pain, B.; Staller, C.; Zhou, Z; hide

    1994-01-01

    JPL, under sponsorship from the NASA Office of Advanced Concepts and Technology, has been developing a second-generation solid-state image sensor technology. Charge-coupled devices (CCD) are a well-established first generation image sensor technology. For both commercial and NASA applications, CCDs have numerous shortcomings. In response, the active pixel sensor (APS) technology has been under research. The major advantages of APS technology are the ability to integrate on-chip timing, control, signal-processing and analog-to-digital converter functions, reduced sensitivity to radiation effects, low power operation, and random access readout.

  4. Caltech/JPL Conference on Image Processing Technology, Data Sources and Software for Commercial and Scientific Applications

    NASA Technical Reports Server (NTRS)

    Redmann, G. H.

    1976-01-01

    Recent advances in image processing and new applications are presented to the user community to stimulate the development and transfer of this technology to industrial and commercial applications. The Proceedings contains 37 papers and abstracts, including many illustrations (some in color) and provides a single reference source for the user community regarding the ordering and obtaining of NASA-developed image-processing software and science data.

  5. Security surveillance challenges and proven thermal imaging capabilities in real-world applications

    NASA Astrophysics Data System (ADS)

    Francisco, Glen L.; Roberts, Sharon

    2004-09-01

    Uncooled thermal imaging was first introduced to the public in early 1980's by Raytheon (legacy Texas Instruments Defense Segment Electronics Group) as a solution for military applications. Since the introduction of this technology, Raytheon has remained the leader in this market as well as introduced commercial versions of thermal imaging products specifically designed for security, law enforcement, fire fighting, automotive and industrial uses. Today, low cost thermal imaging for commercial use in security applications is a reality. Organizations of all types have begun to understand the advantages of using thermal imaging as a means to solve common surveillance problems where other popular technologies fall short. Thermal imaging has proven to be a successful solution for common security needs such as: ¸ vision at night where lighting is undesired and 24x7 surveillance is needed ¸ surveillance over waterways, lakes and ports where water and lighting options are impractical ¸ surveillance through challenging weather conditions where other technologies will be challenged by atmospheric particulates ¸ low maintenance requirements due to remote or difficult locations ¸ low cost over life of product Thermal imaging is now a common addition to the integrated security package. Companies are relying on thermal imaging for specific applications where no other technology can perform.

  6. Iris recognition via plenoptic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos-Villalobos, Hector J.; Boehnen, Chris Bensing; Bolme, David S.

    Iris recognition can be accomplished for a wide variety of eye images by using plenoptic imaging. Using plenoptic technology, it is possible to correct focus after image acquisition. One example technology reconstructs images having different focus depths and stitches them together, resulting in a fully focused image, even in an off-angle gaze scenario. Another example technology determines three-dimensional data for an eye and incorporates it into an eye model used for iris recognition processing. Another example technology detects contact lenses. Application of the technologies can result in improved iris recognition under a wide variety of scenarios.

  7. Continuous-tone applications in digital hard-copy output devices

    NASA Astrophysics Data System (ADS)

    Saunders, Jeffrey C.

    1990-11-01

    Dye diffusion technology has made a recent entry into the hardcopy printer arena making it now possible to achieve near-photographic quality images from digital raster image data. Whereas the majority of low cost printers utilizing ink-jet, thermal wax, or dotmatrix technologies advertise high resolution printheads, the restrictions which dithering algorithms apply to these inherently binary printing systems force them to sacrifice spatial resolution capability for tone scale reproduction. Dye diffusion technology allows a fully continuous range of density at each pixel location thus preserving the full spatial resolution capability of the printhead; spatial resolution is not sacrificed for tone scale. This results in images whose quality is far superior to the ink-jet or wax-transfer products; image quality so high in fact, to the unaided eye, dye diffusion images are indistinguishable from their silver-halide counterparts. Eastman Kodak Co. offers a highly refined application of dye diffusion technology in the Kodak XL 7700 Digital Continuous Tone Printer and Kodak EKTATHERM media products. The XL . 7700 Printer represents a serious alternative to expensive laser-based film recorders for applications which require high quality image output from digital data files. This paper presents an explanation of dye diffusion printing, what distinguishes it from other technologies, sensitometric control and image quality parameters, and applications within the industry, particularly that of Airborne Reconnaissance and Remote Sensing.

  8. Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop

    NASA Astrophysics Data System (ADS)

    Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.

    2018-04-01

    The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.

  9. VTT's Fabry-Perot interferometer technologies for hyperspectral imaging and mobile sensing applications

    NASA Astrophysics Data System (ADS)

    Rissanen, Anna; Guo, Bin; Saari, Heikki; Näsilä, Antti; Mannila, Rami; Akujärvi, Altti; Ojanen, Harri

    2017-02-01

    VTT's Fabry-Perot interferometers (FPI) technology enables creation of small and cost-efficient microspectrometers and hyperspectral imagers - these robust and light-weight sensors are currently finding their way into a variety of novel applications, including emerging medical products, automotive sensors, space instruments and mobile sensing devices. This presentation gives an overview of our core FPI technologies with current advances in generation of novel sensing applications including recent mobile technology demonstrators of a hyperspectral iPhone and a mobile phone CO2 sensor, which aim to advance mobile spectroscopic sensing.

  10. [Mobile phone-computer wireless interactive graphics transmission technology and its medical application].

    PubMed

    Huang, Shuo; Liu, Jing

    2010-05-01

    Application of clinical digital medical imaging has raised many tough issues to tackle, such as data storage, management, and information sharing. Here we investigated a mobile phone based medical image management system which is capable of achieving personal medical imaging information storage, management and comprehensive health information analysis. The technologies related to the management system spanning the wireless transmission technology, the technical capabilities of phone in mobile health care and management of mobile medical database were discussed. Taking medical infrared images transmission between phone and computer as an example, the working principle of the present system was demonstrated.

  11. Distributed nuclear medicine applications using World Wide Web and Java technology.

    PubMed

    Knoll, P; Höll, K; Mirzaei, S; Koriska, K; Köhn, H

    2000-01-01

    At present, medical applications applying World Wide Web (WWW) technology are mainly used to view static images and to retrieve some information. The Java platform is a relative new way of computing, especially designed for network computing and distributed applications which enables interactive connection between user and information via the WWW. The Java 2 Software Development Kit (SDK) including Java2D API, Java Remote Method Invocation (RMI) technology, Object Serialization and the Java Advanced Imaging (JAI) extension was used to achieve a robust, platform independent and network centric solution. Medical image processing software based on this technology is presented and adequate performance capability of Java is demonstrated by an iterative reconstruction algorithm for single photon emission computerized tomography (SPECT).

  12. The future of imaging spectroscopy - Prospective technologies and applications

    USGS Publications Warehouse

    Schaepman, M.E.; Green, R.O.; Ungar, S.G.; Curtiss, B.; Boardman, J.; Plaza, A.J.; Gao, B.-C.; Ustin, S.; Kokaly, R.; Miller, J.R.; Jacquemoud, S.; Ben-Dor, E.; Clark, R.; Davis, C.; Dozier, J.; Goodenough, D.G.; Roberts, D.; Swayze, G.; Milton, E.J.; Goetz, A.F.H.

    2006-01-01

    Spectroscopy has existed for more than three centuries now. Nonetheless, significant scientific advances have been achieved. We discuss the history of spectroscopy in relation to emerging technologies and applications. Advanced focal plane arrays, optical design, and intelligent on-board logic are prime prospective technologies. Scalable approaches in pre-processing of imaging spectrometer data will receive additional focus. Finally, we focus on new applications monitoring transitional ecological zones, where human impact and disturbance have highest impact as well as in monitoring changes in our natural resources and environment We conclude that imaging spectroscopy enables mapping of biophysical and biochemical variables of the Earth's surface and atmospheric composition with unprecedented accuracy.

  13. Advances in computer imaging/applications in facial plastic surgery.

    PubMed

    Papel, I D; Jiannetto, D F

    1999-01-01

    Rapidly progressing computer technology, ever-increasing expectations of patients, and a confusing medicolegal environment requires a clarification of the role of computer imaging/applications. Advances in computer technology and its applications are reviewed. A brief historical discussion is included for perspective. Improvements in both hardware and software with the advent of digital imaging have allowed great increases in speed and accuracy in patient imaging. This facilitates doctor-patient communication and possibly realistic patient expectations. Patients seeking cosmetic surgery now often expect preoperative imaging. Although society in general has become more litigious, a literature search up to 1998 reveals no lawsuits directly involving computer imaging. It appears that conservative utilization of computer imaging by the facial plastic surgeon may actually reduce liability and promote communication. Recent advances have significantly enhanced the value of computer imaging in the practice of facial plastic surgery. These technological advances in computer imaging appear to contribute a useful technique for the practice of facial plastic surgery. Inclusion of computer imaging should be given serious consideration as an adjunct to clinical practice.

  14. Perspectives on Imaging: Advanced Applications. Introduction and Overview.

    ERIC Educational Resources Information Center

    Lynch, Clifford A.; Lunin, Lois F.

    1991-01-01

    Provides an overview of six articles that address relationships between electronic imaging technology and information science. Articles discuss the areas of technology; applications in the fields of visual arts, medicine, and textile history; conceptual foundations; and future visions, including work in virtual reality and cyberspace. (LRW)

  15. ImSyn: photonic image synthesis applied to synthetic aperture radar, microscopy, and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Turpin, Terry M.; Lafuse, James L.

    1993-02-01

    ImSynTM is an image synthesis technology, developed and patented by Essex Corporation. ImSynTM can provide compact, low cost, and low power solutions to some of the most difficult image synthesis problems existing today. The inherent simplicity of ImSynTM enables the manufacture of low cost and reliable photonic systems for imaging applications ranging from airborne reconnaissance to doctor's office ultrasound. The initial application of ImSynTM technology has been to SAR processing; however, it has a wide range of applications such as: image correlation, image compression, acoustic imaging, x-ray tomographic (CAT, PET, SPECT), magnetic resonance imaging (MRI), microscopy, range- doppler mapping (extended TDOA/FDOA). This paper describes ImSynTM in terms of synthetic aperture microscopy and then shows how the technology can be extended to ultrasound and synthetic aperture radar. The synthetic aperture microscope (SAM) enables high resolution three dimensional microscopy with greater dynamic range than real aperture microscopes. SAM produces complex image data, enabling the use of coherent image processing techniques. Most importantly SAM produces the image data in a form that is easily manipulated by a digital image processing workstation.

  16. Infrared thermal imaging in medicine.

    PubMed

    Ring, E F J; Ammer, K

    2012-03-01

    This review describes the features of modern infrared imaging technology and the standardization protocols for thermal imaging in medicine. The technique essentially uses naturally emitted infrared radiation from the skin surface. Recent studies have investigated the influence of equipment and the methods of image recording. The credibility and acceptance of thermal imaging in medicine is subject to critical use of the technology and proper understanding of thermal physiology. Finally, we review established and evolving medical applications for thermal imaging, including inflammatory diseases, complex regional pain syndrome and Raynaud's phenomenon. Recent interest in the potential applications for fever screening is described, and some other areas of medicine where some research papers have included thermal imaging as an assessment modality. In certain applications thermal imaging is shown to provide objective measurement of temperature changes that are clinically significant.

  17. An active-optics image-motion compensation technology application for high-speed searching and infrared detection system

    NASA Astrophysics Data System (ADS)

    Wu, Jianping; Lu, Fei; Zou, Kai; Yan, Hong; Wan, Min; Kuang, Yan; Zhou, Yanqing

    2018-03-01

    An ultra-high angular velocity and minor-caliber high-precision stably control technology application for active-optics image-motion compensation, is put forward innovatively in this paper. The image blur problem due to several 100°/s high-velocity relative motion between imaging system and target is theoretically analyzed. The velocity match model of detection system and active optics compensation system is built, and active optics image motion compensation platform experiment parameters are designed. Several 100°/s high-velocity high-precision control optics compensation technology is studied and implemented. The relative motion velocity is up to 250°/s, and image motion amplitude is more than 20 pixel. After the active optics compensation, motion blur is less than one pixel. The bottleneck technology of ultra-high angular velocity and long exposure time in searching and infrared detection system is successfully broke through.

  18. Further applications for mosaic pixel FPA technology

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.

    2011-06-01

    In previous papers to this SPIE forum the development of novel technology for next generation PIR security sensors has been described. This technology combines the mosaic pixel FPA concept with low cost optics and purpose-designed readout electronics to provide a higher performance and affordable alternative to current PIR sensor technology, including an imaging capability. Progressive development has resulted in increased performance and transition from conventional microbolometer fabrication to manufacture on 8 or 12 inch CMOS/MEMS fabrication lines. A number of spin-off applications have been identified. In this paper two specific applications are highlighted: high performance imaging IRFPA design and forest fire detection. The former involves optional design for small pixel high performance imaging. The latter involves cheap expendable sensors which can detect approaching fire fronts and send alarms with positional data via mobile phone or satellite link. We also introduce to this SPIE forum the application of microbolometer IR sensor technology to IoT, the Internet of Things.

  19. Forensic applications of chemical imaging: latent fingerprint detection using visible absorption and luminescence.

    PubMed

    Exline, David L; Wallace, Christie; Roux, Claude; Lennard, Chris; Nelson, Matthew P; Treado, Patrick J

    2003-09-01

    Chemical imaging technology is a rapid examination technique that combines molecular spectroscopy and digital imaging, providing information on morphology, composition, structure, and concentration of a material. Among many other applications, chemical imaging offers an array of novel analytical testing methods, which limits sample preparation and provides high-quality imaging data essential in the detection of latent fingerprints. Luminescence chemical imaging and visible absorbance chemical imaging have been successfully applied to ninhydrin, DFO, cyanoacrylate, and luminescent dye-treated latent fingerprints, demonstrating the potential of this technology to aid forensic investigations. In addition, visible absorption chemical imaging has been applied successfully to visualize untreated latent fingerprints.

  20. X-ray imaging with amorphous silicon active matrix flat-panel imagers (AMFPIs)

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Jee, Kyung-Wook; Maolinbay, Manat; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Verma, Manav; Zhao, Qihua

    1997-07-01

    Recent advances in thin-film electronics technology have opened the way for the use of flat-panel imagers in a number of medical imaging applications. These novel imagers offer real time digital readout capabilities (˜30 frames per second), radiation hardness (>106cGy), large area (30×40 cm2) and compactness (˜1 cm). Such qualities make them strong candidates for the replacement of conventional x-ray imaging technologies such as film-screen and image intensifier systems. In this report, qualities and potential of amorphous silicon based active matrix flat-panel imagers are outlined for various applications such as radiation therapy, radiography, fluoroscopy and mammography.

  1. Transplant Image Processing Technology under Windows into the Platform Based on MiniGUI

    NASA Astrophysics Data System (ADS)

    Gan, Lan; Zhang, Xu; Lv, Wenya; Yu, Jia

    MFC has a large number of digital image processing-related API functions, object-oriented and class mechanisms which provides image processing technology strong support in Windows. But in embedded systems, image processing technology dues to the restrictions of hardware and software do not have the environment of MFC in Windows. Therefore, this paper draws on the experience of image processing technology of Windows and transplants it into MiniGUI embedded systems. The results show that MiniGUI/Embedded graphical user interface applications about image processing which used in embedded image processing system can be good results.

  2. 3-D surface scan of biological samples with a push-broom imaging spectrometer

    USDA-ARS?s Scientific Manuscript database

    The food industry is always on the lookout for sensing technologies for rapid and nondestructive inspection of food products. Hyperspectral imaging technology integrates both imaging and spectroscopy into unique imaging sensors. Its application for food safety and quality inspection has made signifi...

  3. Dynamic integral imaging technology for 3D applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Javidi, Bahram; Martínez-Corral, Manuel; Shieh, Han-Ping D.; Jen, Tai-Hsiang; Hsieh, Po-Yuan; Hassanfiroozi, Amir

    2017-05-01

    Depth and resolution are always the trade-off in integral imaging technology. With the dynamic adjustable devices, the two factors of integral imaging can be fully compensated with time-multiplexed addressing. Those dynamic devices can be mechanical or electrical driven. In this presentation, we will mainly focused on discussing various Liquid Crystal devices which can change the focal length, scan and shift the image position, or switched in between 2D/3D mode. By using the Liquid Crystal devices, dynamic integral imaging have been successfully applied on 3D Display, capturing, and bio-imaging applications.

  4. Optical Tecnology Developments in Biomedicine: History, Current and Future

    PubMed Central

    Nioka, Shoko; Chen, Yu

    2011-01-01

    Biomedical optics is a rapidly emerging field for medical imaging and diagnostics. This paper reviews several biomedical optical technologies that have been developed and translated for either clinical or pre-clinical applications. Specifically, we focus on the following technologies: 1) near-infrared spectroscopy and tomography, 2) optical coherence tomography, 3) fluorescence spectroscopy and imaging, and 4) optical molecular imaging. There representative biomedical applications are also discussed here. PMID:23905030

  5. Imaging System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1100C Virtual Window is based on technology developed under NASA Small Business Innovation (SBIR) contracts to Ames Research Center. For example, under one contract Dimension Technologies, Inc. developed a large autostereoscopic display for scientific visualization applications. The Virtual Window employs an innovative illumination system to deliver the depth and color of true 3D imaging. Its applications include surgery and Magnetic Resonance Imaging scans, viewing for teleoperated robots, training, and in aviation cockpit displays.

  6. Images Revealing More Than a Thousand Words

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A unique sensor developed by ProVision Technologies, a NASA Commercial Space Center housed by the Institute for Technology Development, produces hyperspectral images with cutting-edge applications in food safety, skin health, forensics, and anti-terrorism activities. While hyperspectral imaging technology continues to make advances with ProVision Technologies, it has also been transferred to the commercial sector through a spinoff company, Photon Industries, Inc.

  7. The Role of Retinal Imaging and Portable Screening Devices in Tele-ophthalmology Applications for Diabetic Retinopathy Management.

    PubMed

    DeBuc, Delia Cabrera

    2016-12-01

    In the years since its introduction, retinal imaging has transformed our capability to visualize the posterior pole of the eye. Increasing practical advances in mobile technology, regular monitoring, and population screening for diabetic retinopathy management offer the opportunity for further development of cost-effective applications through remote assessment of the diabetic eye using portable retinal cameras, smart-phone-based devices and telemedicine networks. Numerous retinal imaging methods and mobile technologies in tele-ophthalmology applications have been reported for diabetic retinopathy screening and management. They provide several advantages of automation, sensitivity, specificity, portability, and miniaturization for the development of point-of-care diagnostics for eye complications in diabetes. The aim of this paper is to review the role of retinal imaging and mobile technologies in tele-ophthalmology applications for diabetic retinopathy screening and management. At large, although improvements in current technology and telemedicine services are still needed, telemedicine has demonstrated to be a worthy tool to support health caregivers in the effective management and prevention of diabetes and its complications.

  8. Photo CD and Other Digital Imaging Technologies: What's out There and What's It For?

    ERIC Educational Resources Information Center

    Chen, Ching-Chih

    1993-01-01

    Describes Kodak's Photo CD technology and its impact on digital imaging. Color desktop publishing, image processing and preservation, image archival storage, and interactive multimedia development, as well as the equipment, software, and services that make these applications possible, are described. Contact information for developers and…

  9. Raman chemical imaging technology for food and agricultural applications

    USDA-ARS?s Scientific Manuscript database

    This paper presents Raman chemical imaging technology for inspecting food and agricultural products. The paper puts emphasis on introducing and demonstrating Raman imaging techniques for practical uses in food analysis. The main topics include Raman scattering principles, Raman spectroscopy measurem...

  10. NASA's Technology Transfer Program for the Early Detection of Breast Cancer

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory; Frey, Mary Anne; Vernikos, Joan; Winfield, Daniel; Dalton, Bonnie P. (Technical Monitor)

    1996-01-01

    The National Aeronautics and Space Administration (NASA) has led the development of advanced imaging sensors and image processing technologies for space science and Earth science missions. NASA considers the transfer and commercialization of such technologies a fundamental mission of the agency. Over the last two years, efforts have been focused on the application of aerospace imaging and computing to the field of diagnostic imaging, specifically to breast cancer imaging. These technology transfer efforts offer significant promise in helping in the national public health priority of the early detection of breast cancer.

  11. SU-E-P-10: Imaging in the Cardiac Catheterization Lab - Technologies and Clinical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fetterly, K

    2014-06-01

    Purpose: Diagnosis and treatment of cardiovascular disease in the cardiac catheterization laboratory is often aided by a multitude of imaging technologies. The purpose of this work is to highlight the contributions to patient care offered by the various imaging systems used during cardiovascular interventional procedures. Methods: Imaging technologies used in the cardiac catheterization lab were characterized by their fundamental technology and by the clinical applications for which they are used. Whether the modality is external to the patient, intravascular, or intracavity was specified. Specific clinical procedures for which multiple modalities are routinely used will be highlighted. Results: X-ray imaging modalitiesmore » include fluoroscopy/angiography and angiography CT. Ultrasound imaging is performed with external, trans-esophageal echocardiography (TEE), and intravascular (IVUS) transducers. Intravascular infrared optical coherence tomography (IVOCT) is used to assess vessel endothelium. Relatively large (>0.5 mm) anatomical structures are imaged with x-ray and ultrasound. IVUS and IVOCT provide high resolution images of vessel walls. Cardiac CT and MRI images are used to plan complex cardiovascular interventions. Advanced applications are used to spatially and temporally merge images from different technologies. Diagnosis and treatment of coronary artery disease frequently utilizes angiography and intra-vascular imaging, and treatment of complex structural heart conditions routinely includes use of multiple imaging modalities. Conclusion: There are several imaging modalities which are routinely used in the cardiac catheterization laboratory to diagnose and treat both coronary artery and structural heart disease. Multiple modalities are frequently used to enhance the quality and safety of procedures. The cardiac catheterization laboratory includes many opportunities for medical physicists to contribute substantially toward advancing patient care.« less

  12. Development of inexpensive blood imaging systems: where are we now?

    PubMed

    Chu, Kaiqin; Smith, Zachary J; Wachsmann-Hogiu, Sebastian

    2015-01-01

    Clinical applications in the developing world, such as malaria and anemia diagnosis, demand a change in the medical paradigm of expensive care given in central locations by highly trained professionals. There has been a recent explosion in optical technologies entering the consumer market through the widespread adoption of smartphones and LEDs. This technology commoditization has enabled the development of small, portable optical imaging systems at an unprecedentedly low cost. Here, we review the state-of-the-field of the application of these systems for low-cost blood imaging with an emphasis on cellular imaging systems. In addition to some promising results addressing specific clinical issues, an overview of the technology landscape is provided. We also discuss several key issues that need to be addressed before these technologies can be commercialized.

  13. [Application of computer-assisted 3D imaging simulation for surgery].

    PubMed

    Matsushita, S; Suzuki, N

    1994-03-01

    This article describes trends in application of various imaging technology in surgical planning, navigation, and computer aided surgery. Imaging information is essential factor for simulation in medicine. It includes three dimensional (3D) image reconstruction, neuro-surgical navigation, creating substantial model based on 3D imaging data and etc. These developments depend mostly on 3D imaging technique, which is much contributed by recent computer technology. 3D imaging can offer new intuitive information to physician and surgeon, and this method is suitable for mechanical control. By utilizing simulated results, we can obtain more precise surgical orientation, estimation, and operation. For more advancement, automatic and high speed recognition of medical imaging is being developed.

  14. Strategies for the promotion of computer applications in radiology in healthcare delivery.

    PubMed

    Reiner, B; Siegel, E; Allman, R

    1998-08-01

    The objective of this paper is to identify current trends in the development and implementation of computer applications in today's ever-changing healthcare environment. Marketing strategies are discussed with the goal of promoting computer applications in radiology as a means to advance future healthcare acceptance of technologic developments from the medical imaging field. With the rapid evolution of imaging and and information technologies along with the transition to filmless imaging, radiologists must assume a proactive role in the development and application of these advancements. This expansion can be accomplished in a number of ways including internet based educational programs, research partnerships, and professional membership in societies such as the Society of Computer Applications in Radiology (SCAR). Professional societies such as SCAR, in turn, should reach out to include other professionals from the healthcare community. These would include financial, administrative, and information systems disciplines to promote these technologies in a cost conscious and value added manner.

  15. Uncooled LWIR imaging: applications and market analysis

    NASA Astrophysics Data System (ADS)

    Takasawa, Satomi

    2015-05-01

    The evolution of infrared (IR) imaging sensor technology for defense market has played an important role in developing commercial market, as dual use of the technology has expanded. In particular, technologies of both reduction in pixel pitch and vacuum package have drastically evolved in the area of uncooled Long-Wave IR (LWIR; 8-14 μm wavelength region) imaging sensor, increasing opportunity to create new applications. From the macroscopic point of view, the uncooled LWIR imaging market is divided into two areas. One is a high-end market where uncooled LWIR imaging sensor with sensitivity as close to that of cooled one as possible is required, while the other is a low-end market which is promoted by miniaturization and reduction in price. Especially, in the latter case, approaches towards consumer market have recently appeared, such as applications of uncooled LWIR imaging sensors to night visions for automobiles and smart phones. The appearance of such a kind of commodity surely changes existing business models. Further technological innovation is necessary for creating consumer market, and there will be a room for other companies treating components and materials such as lens materials and getter materials and so on to enter into the consumer market.

  16. DICOMweb™: Background and Application of the Web Standard for Medical Imaging.

    PubMed

    Genereaux, Brad W; Dennison, Donald K; Ho, Kinson; Horn, Robert; Silver, Elliot Lewis; O'Donnell, Kevin; Kahn, Charles E

    2018-05-10

    This paper describes why and how DICOM, the standard that has been the basis for medical imaging interoperability around the world for several decades, has been extended into a full web technology-based standard, DICOMweb. At the turn of the century, healthcare embraced information technology, which created new problems and new opportunities for the medical imaging industry; at the same time, web technologies matured and began serving other domains well. This paper describes DICOMweb, how it extended the DICOM standard, and how DICOMweb can be applied to problems facing healthcare applications to address workflow and the changing healthcare climate.

  17. Visualizing Chemistry: The Progess and Promise of Advanced Chemical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Committee on Revealing Chemistry Through Advanced Chemical Imaging

    2006-09-01

    The field of chemical imaging can provide detailed structural, functional, and applicable information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, and technology. In recognizing the potential for more research development in the field of chemical imaging, the National Academies was asked by the National Science Foundation, Department of Energy, U.S. Army, and National Cancer Institute to complete a study that would review the current state of molecular imaging technology, point to promising future developments and their applications, and suggest a research and educational agenda to enable breakthrough improvements in the ability to image molecularmore » processes simultaneously in multiple physical dimensions as well as time. The study resulted in a consensus report that provides guidance for a focused research and development program in chemical imaging and identifies research needs and possible applications of imaging technologies that can provide the breakthrough knowledge in chemistry, materials science, biology, and engineering for which we should strive. Public release of this report is expected in early October.« less

  18. Integration of aerial imaging and variable-rate technology for site-specific aerial herbicide application

    USDA-ARS?s Scientific Manuscript database

    As remote sensing and variable rate technology are becoming more available for aerial applicators, practical methodologies on effective integration of these technologies are needed for site-specific aerial applications of crop production and protection materials. The objectives of this study were to...

  19. Compact camera technologies for real-time false-color imaging in the SWIR band

    NASA Astrophysics Data System (ADS)

    Dougherty, John; Jennings, Todd; Snikkers, Marco

    2013-11-01

    Previously real-time false-colored multispectral imaging was not available in a true snapshot single compact imager. Recent technology improvements now allow for this technique to be used in practical applications. This paper will cover those advancements as well as a case study for its use in UAV's where the technology is enabling new remote sensing methodologies.

  20. Advanced Digital Forensic and Steganalysis Methods

    DTIC Science & Technology

    2009-02-01

    investigation is simultaneously cropped, scaled, and processed, extending the technology when the digital image is printed, developing technology capable ...or other common processing operations). TECNOLOGY APPLICATIONS 1. Determining the origin of digital images 2. Matching an image to a camera...Technology Transfer and Innovation Partnerships Division of Research P.O. Box 6000 State University of New York Binghamton, NY 13902-6000 Phone: 607-777

  1. Imaging Strategies for Tissue Engineering Applications

    PubMed Central

    Nam, Seung Yun; Ricles, Laura M.; Suggs, Laura J.

    2015-01-01

    Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies. PMID:25012069

  2. Review of spectral imaging technology in biomedical engineering: achievements and challenges.

    PubMed

    Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin

    2013-10-01

    Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.

  3. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  4. Application of automatic image analysis in wood science

    Treesearch

    Charles W. McMillin

    1982-01-01

    In this paper I describe an image analysis system and illustrate with examples the application of automatic quantitative measurement to wood science. Automatic image analysis, a powerful and relatively new technology, uses optical, video, electronic, and computer components to rapidly derive information from images with minimal operator interaction. Such instruments...

  5. From Wheatstone to Cameron and beyond: overview in 3-D and 4-D imaging technology

    NASA Astrophysics Data System (ADS)

    Gilbreath, G. Charmaine

    2012-02-01

    This paper reviews three-dimensional (3-D) and four-dimensional (4-D) imaging technology, from Wheatstone through today, with some prognostications for near future applications. This field is rich in variety, subject specialty, and applications. A major trend, multi-view stereoscopy, is moving the field forward to real-time wide-angle 3-D reconstruction as breakthroughs in parallel processing and multi-processor computers enable very fast processing. Real-time holography meets 4-D imaging reconstruction at the goal of achieving real-time, interactive, 3-D imaging. Applications to telesurgery and telemedicine as well as to the needs of the defense and intelligence communities are also discussed.

  6. Incorporating digital imaging into dental hygiene practice.

    PubMed

    Saxe, M J; West, D J

    1997-01-01

    The objective of this paper is to describe digital imaging technology: available modalities, scientific imaging process, advantages and limitations, and applications to dental hygiene practice. Advances in technology have created innovative imaging modalities for intraoral radiography that eliminate film as the traditional image receptor. Digital imaging generates instantaneous radiographic images on a display monitor following exposure. Advantages include lower patient exposure per image and elimination of film processing. Digital imaging enhances diagnostic capabilities and, therefore, treatment decisions by the oral healthcare provider. Utilization of digital imaging technology for intraoral radiography will advance the practice of dental hygiene. Although spatial resolution is inferior to conventional film, digital imaging provides adequate resolution to diagnose oral diseases. Dental hygienists must evaluate new technologies in radiography to continue providing quality care while reducing patient exposure to ionizing radiation.

  7. Very large scale heterogeneous integration (VLSHI) and wafer-level vacuum packaging for infrared bolometer focal plane arrays

    NASA Astrophysics Data System (ADS)

    Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank

    2013-09-01

    Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.

  8. A Multimode Optical Imaging System for Preclinical Applications In Vivo: Technology Development, Multiscale Imaging, and Chemotherapy Assessment

    PubMed Central

    Hwang, Jae Youn; Wachsmann-Hogiu, Sebastian; Ramanujan, V. Krishnan; Ljubimova, Julia; Gross, Zeev; Gray, Harry B.; Medina-Kauwe, Lali K.; Farkas, Daniel L.

    2012-01-01

    Purpose Several established optical imaging approaches have been applied, usually in isolation, to preclinical studies; however, truly useful in vivo imaging may require a simultaneous combination of imaging modalities to examine dynamic characteristics of cells and tissues. We developed a new multimode optical imaging system designed to be application-versatile, yielding high sensitivity, and specificity molecular imaging. Procedures We integrated several optical imaging technologies, including fluorescence intensity, spectral, lifetime, intravital confocal, two-photon excitation, and bioluminescence, into a single system that enables functional multiscale imaging in animal models. Results The approach offers a comprehensive imaging platform for kinetic, quantitative, and environmental analysis of highly relevant information, with micro-to-macroscopic resolution. Applied to small animals in vivo, this provides superior monitoring of processes of interest, represented here by chemo-/nanoconstruct therapy assessment. Conclusions This new system is versatile and can be optimized for various applications, of which cancer detection and targeted treatment are emphasized here. PMID:21874388

  9. Polarimetric Hyperspectral Imaging Systems and Applications

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Mahoney, Colin; Reyes, George; Baw, Clayton La; Li, G. P.

    1996-01-01

    This paper reports activities in the development of AOTF Polarimetric Hyperspectral Imaging (PHI) Systems at JPL along with field observation results for illustrating the technology capabilities and advantages in remote sensing. In addition, the technology was also used to measure thickness distribution and structural imperfections of silicon-on-silicon wafers using white light interference phenomenon for demonstrating the potential in scientific and industrial applications.

  10. Advanced scanners and imaging systems for earth observations. [conferences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Assessments of present and future sensors and sensor related technology are reported along with a description of user needs and applications. Five areas are outlined: (1) electromechanical scanners, (2) self-scanned solid state sensors, (3) electron beam imagers, (4) sensor related technology, and (5) user applications. Recommendations, charts, system designs, technical approaches, and bibliographies are included for each area.

  11. Digital slides: present status of a tool for consultation, teaching, and quality control in pathology.

    PubMed

    Rocha, Rafael; Vassallo, José; Soares, Fernando; Miller, Keith; Gobbi, Helenice

    2009-01-01

    In the last few years, telepathology has benefited from the progress in the technology of image digitalization and transmission through the world web. The applications of telepathology and virtual imaging are more current in research and morphology teaching. In surgical pathology daily practice, this technology still has limits and is more often used for case consultation. In the present review, we intend to discuss its applications and challenges for pathologists and scientists. Much of the limitations of virtual imaging for the surgical pathologist reside in the capacity of storage of images, which so far has hindered the more widespread use of this technology. Overcoming this major drawback may revolutionize the surgical pathologist's activity and slide storing.

  12. Automated inspection of solder joints for surface mount technology

    NASA Technical Reports Server (NTRS)

    Savage, Robert M.; Park, Hyun Soo; Fan, Mark S.

    1993-01-01

    Researchers at NASA/GSFC evaluated various automated inspection systems (AIS) technologies using test boards with known defects in surface mount solder joints. These boards were complex and included almost every type of surface mount device typical of critical assemblies used for space flight applications: X-ray radiography; X-ray laminography; Ultrasonic Imaging; Optical Imaging; Laser Imaging; and Infrared Inspection. Vendors, representative of the different technologies, inspected the test boards with their particular machine. The results of the evaluation showed limitations of AIS. Furthermore, none of the AIS technologies evaluated proved to meet all of the inspection criteria for use in high-reliability applications. It was found that certain inspection systems could supplement but not replace manual inspection for low-volume, high-reliability, surface mount solder joints.

  13. Robust Light Filters Support Powerful Imaging Devices

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Infrared (IR) light filters developed by Lake Shore Cryotronics Inc. of Westerville, Ohio -- using SBIR funding from NASA s Jet Propulsion Laboratory and Langley Research Center -- employ porous silicon and metal mesh technology to provide optical filtration even at the ultra-low temperatures required by many IR sensors. With applications in the astronomy community, Lake Shore s SBIR-developed filters are also promising tools for use in terahertz imaging, the next wave of technology for applications like medical imaging, the study of fragile artworks, and airport security.

  14. Integrated imaging sensor systems with CMOS active pixel sensor technology

    NASA Technical Reports Server (NTRS)

    Yang, G.; Cunningham, T.; Ortiz, M.; Heynssens, J.; Sun, C.; Hancock, B.; Seshadri, S.; Wrigley, C.; McCarty, K.; Pain, B.

    2002-01-01

    This paper discusses common approaches to CMOS APS technology, as well as specific results on the five-wire programmable digital camera-on-a-chip developed at JPL. The paper also reports recent research in the design, operation, and performance of APS imagers for several imager applications.

  15. Atmospheric turbulence and sensor system effects on biometric algorithm performance

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Leonard, Kevin R.; Byrd, Kenneth A.; Potvin, Guy

    2015-05-01

    Biometric technologies composed of electro-optical/infrared (EO/IR) sensor systems and advanced matching algorithms are being used in various force protection/security and tactical surveillance applications. To date, most of these sensor systems have been widely used in controlled conditions with varying success (e.g., short range, uniform illumination, cooperative subjects). However the limiting conditions of such systems have yet to be fully studied for long range applications and degraded imaging environments. Biometric technologies used for long range applications will invariably suffer from the effects of atmospheric turbulence degradation. Atmospheric turbulence causes blur, distortion and intensity fluctuations that can severely degrade image quality of electro-optic and thermal imaging systems and, for the case of biometrics technology, translate to poor matching algorithm performance. In this paper, we evaluate the effects of atmospheric turbulence and sensor resolution on biometric matching algorithm performance. We use a subset of the Facial Recognition Technology (FERET) database and a commercial algorithm to analyze facial recognition performance on turbulence degraded facial images. The goal of this work is to understand the feasibility of long-range facial recognition in degraded imaging conditions, and the utility of camera parameter trade studies to enable the design of the next generation biometrics sensor systems.

  16. Improvement of passive THz camera images

    NASA Astrophysics Data System (ADS)

    Kowalski, Marcin; Piszczek, Marek; Palka, Norbert; Szustakowski, Mieczyslaw

    2012-10-01

    Terahertz technology is one of emerging technologies that has a potential to change our life. There are a lot of attractive applications in fields like security, astronomy, biology and medicine. Until recent years, terahertz (THz) waves were an undiscovered, or most importantly, an unexploited area of electromagnetic spectrum. The reasons of this fact were difficulties in generation and detection of THz waves. Recent advances in hardware technology have started to open up the field to new applications such as THz imaging. The THz waves can penetrate through various materials. However, automated processing of THz images can be challenging. The THz frequency band is specially suited for clothes penetration because this radiation does not point any harmful ionizing effects thus it is safe for human beings. Strong technology development in this band have sparked with few interesting devices. Even if the development of THz cameras is an emerging topic, commercially available passive cameras still offer images of poor quality mainly because of its low resolution and low detectors sensitivity. Therefore, THz image processing is very challenging and urgent topic. Digital THz image processing is a really promising and cost-effective way for demanding security and defense applications. In the article we demonstrate the results of image quality enhancement and image fusion of images captured by a commercially available passive THz camera by means of various combined methods. Our research is focused on dangerous objects detection - guns, knives and bombs hidden under some popular types of clothing.

  17. Why Physics in Medicine?

    PubMed

    Samei, Ehsan; Grist, Thomas M

    2018-05-18

    Despite its crucial role in the development of new medical imaging technologies, in clinical practice, physics has primarily been involved in the technical evaluation of technologies. However, this narrow role is no longer adequate. New trajectories in medicine call for a stronger role for physics in the clinic. The movement toward evidence-based, quantitative, and value-based medicine requires physicists to play a more integral role in delivering innovative precision care through the intentional clinical application of physical sciences. There are three aspects of this clinical role: technology assessment based on metrics as they relate to expected clinical performance, optimized use of technologies for patient-centered clinical outcomes, and retrospective analysis of imaging operations to ensure attainment of expectations in terms of quality and variability. These tasks fuel the drive toward high-quality, consistent practice of medical imaging that is patient centered, evidence based, and safe. While this particular article focuses on imaging, this trajectory and paradigm is equally applicable to the multitudes of the applications of physics in medicine. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  18. Advanced processing for high-bandwidth sensor systems

    NASA Astrophysics Data System (ADS)

    Szymanski, John J.; Blain, Phil C.; Bloch, Jeffrey J.; Brislawn, Christopher M.; Brumby, Steven P.; Cafferty, Maureen M.; Dunham, Mark E.; Frigo, Janette R.; Gokhale, Maya; Harvey, Neal R.; Kenyon, Garrett; Kim, Won-Ha; Layne, J.; Lavenier, Dominique D.; McCabe, Kevin P.; Mitchell, Melanie; Moore, Kurt R.; Perkins, Simon J.; Porter, Reid B.; Robinson, S.; Salazar, Alfonso; Theiler, James P.; Young, Aaron C.

    2000-11-01

    Compute performance and algorithm design are key problems of image processing and scientific computing in general. For example, imaging spectrometers are capable of producing data in hundreds of spectral bands with millions of pixels. These data sets show great promise for remote sensing applications, but require new and computationally intensive processing. The goal of the Deployable Adaptive Processing Systems (DAPS) project at Los Alamos National Laboratory is to develop advanced processing hardware and algorithms for high-bandwidth sensor applications. The project has produced electronics for processing multi- and hyper-spectral sensor data, as well as LIDAR data, while employing processing elements using a variety of technologies. The project team is currently working on reconfigurable computing technology and advanced feature extraction techniques, with an emphasis on their application to image and RF signal processing. This paper presents reconfigurable computing technology and advanced feature extraction algorithm work and their application to multi- and hyperspectral image processing. Related projects on genetic algorithms as applied to image processing will be introduced, as will the collaboration between the DAPS project and the DARPA Adaptive Computing Systems program. Further details are presented in other talks during this conference and in other conferences taking place during this symposium.

  19. Spectral imaging applications: Remote sensing, environmental monitoring, medicine, military operations, factory automation and manufacturing

    NASA Technical Reports Server (NTRS)

    Gat, N.; Subramanian, S.; Barhen, J.; Toomarian, N.

    1996-01-01

    This paper reviews the activities at OKSI related to imaging spectroscopy presenting current and future applications of the technology. The authors discuss the development of several systems including hardware, signal processing, data classification algorithms and benchmarking techniques to determine algorithm performance. Signal processing for each application is tailored by incorporating the phenomenology appropriate to the process, into the algorithms. Pixel signatures are classified using techniques such as principal component analyses, generalized eigenvalue analysis and novel very fast neural network methods. The major hyperspectral imaging systems developed at OKSI include the Intelligent Missile Seeker (IMS) demonstration project for real-time target/decoy discrimination, and the Thermal InfraRed Imaging Spectrometer (TIRIS) for detection and tracking of toxic plumes and gases. In addition, systems for applications in medical photodiagnosis, manufacturing technology, and for crop monitoring are also under development.

  20. System design and implementation of digital-image processing using computational grids

    NASA Astrophysics Data System (ADS)

    Shen, Zhanfeng; Luo, Jiancheng; Zhou, Chenghu; Huang, Guangyu; Ma, Weifeng; Ming, Dongping

    2005-06-01

    As a special type of digital image, remotely sensed images are playing increasingly important roles in our daily lives. Because of the enormous amounts of data involved, and the difficulties of data processing and transfer, an important issue for current computer and geo-science experts is developing internet technology to implement rapid remotely sensed image processing. Computational grids are able to solve this problem effectively. These networks of computer workstations enable the sharing of data and resources, and are used by computer experts to solve imbalances of network resources and lopsided usage. In China, computational grids combined with spatial-information-processing technology have formed a new technology: namely, spatial-information grids. In the field of remotely sensed images, spatial-information grids work more effectively for network computing, data processing, resource sharing, task cooperation and so on. This paper focuses mainly on the application of computational grids to digital-image processing. Firstly, we describe the architecture of digital-image processing on the basis of computational grids, its implementation is then discussed in detail with respect to the technology of middleware. The whole network-based intelligent image-processing system is evaluated on the basis of the experimental analysis of remotely sensed image-processing tasks; the results confirm the feasibility of the application of computational grids to digital-image processing.

  1. Integrated Imaging and Vision Techniques for Industrial Inspection: A Special Issue on Machine Vision and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zheng; Ukida, H.; Ramuhalli, Pradeep

    2010-06-05

    Imaging- and vision-based techniques play an important role in industrial inspection. The sophistication of the techniques assures high- quality performance of the manufacturing process through precise positioning, online monitoring, and real-time classification. Advanced systems incorporating multiple imaging and/or vision modalities provide robust solutions to complex situations and problems in industrial applications. A diverse range of industries, including aerospace, automotive, electronics, pharmaceutical, biomedical, semiconductor, and food/beverage, etc., have benefited from recent advances in multi-modal imaging, data fusion, and computer vision technologies. Many of the open problems in this context are in the general area of image analysis methodologies (preferably in anmore » automated fashion). This editorial article introduces a special issue of this journal highlighting recent advances and demonstrating the successful applications of integrated imaging and vision technologies in industrial inspection.« less

  2. New technology of functional infrared imaging and its clinical applications

    NASA Astrophysics Data System (ADS)

    Yang, Hongqin; Xie, Shusen; Lu, Zukang; Liu, Zhongqi

    2006-01-01

    With improvements in infrared camera technology, the promise of reduced costs and noninvasive character, infrared thermal imaging resurges in medicine. The paper introduces a new technology of functional infrared imaging, thermal texture maps (TTM), which is not only an apparatus for thermal radiation imaging but also a new method for revealing the relationship between the temperature distribution of the skin surface and the emission field inside body. The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Any disease in the body is associated with an alteration of the thermal distribution of human body. Infrared thermography is noninvasive, so it is the best choice for studying the physiology of thermoregulation and the thermal dysfunction associated with diseases. Reading and extracting information from the thermograms is a complex and subjective task that can be greatly facilitated by computerized techniques. Through image processing and measurement technology, surface or internal radiation sources can be non-invasively distinguished through extrapolation. We discuss the principle, the evaluation procedure and the effectiveness of TTM technology in the clinical detection and diagnosis of cancers, especially in their early stages and other diseases by comparing with other imaging technologies, such as ultrasound. Several study cases are given to show the effectiveness of this method. At last, we point out the applications of TTM technology in the research field of traditional medicine.

  3. Applications of Machine Learning for Radiation Therapy.

    PubMed

    Arimura, Hidetaka; Nakamoto, Takahiro

    2016-01-01

    Radiation therapy has been highly advanced as image guided radiation therapy (IGRT) by making advantage of image engineering technologies. Recently, novel frameworks based on image engineering technologies as well as machine learning technologies have been studied for sophisticating the radiation therapy. In this review paper, the author introduces several researches of applications of machine learning for radiation therapy. For examples, a method to determine the threshold values for standardized uptake value (SUV) for estimation of gross tumor volume (GTV) in positron emission tomography (PET) images, an approach to estimate the multileaf collimator (MLC) position errors between treatment plans and radiation delivery time, and prediction frameworks for esophageal stenosis and radiation pneumonitis risk after radiation therapy are described. Finally, the author introduces seven issues that one should consider when applying machine learning models to radiation therapy.

  4. Application of image guidance in pituitary surgery

    PubMed Central

    de Lara, Danielle; Filho, Leo F. S. Ditzel; Prevedello, Daniel M.; Otto, Bradley A.; Carrau, Ricardo L.

    2012-01-01

    Background: Surgical treatment of pituitary pathologies has evolved along the years, adding safety and decreasing morbidity related to the procedure. Advances in the field of radiology, coupled with stereotactic technology and computer modeling, have culminated in the contemporary and widespread use of image guidance systems, as we know them today. Image guidance navigation has become a frequently used technology that provides continuous three-dimensional information for the accurate performance of neurosurgical procedures. We present a discussion about the application of image guidance in pituitary surgeries. Methods: Major indications for image guidance neuronavigation application in pituitary surgery are presented and demonstrated with illustrative cases. Limitations of this technology are also presented. Results: Patients presenting a history of previous transsphenoidal surgeries, anatomical variances of the sphenoid sinus, tumors with a close relation to the internal carotid arteries, and extrasellar tumors are the most important indications for image guidance in pituitary surgeries. The high cost of the equipment, increased time of surgery due to setup time, and registration and the need of specific training for the operating room personnel could be pointed as limitations of this technology. Conclusion: Intraoperative image guidance systems provide real-time images, increasing surgical accuracy and enabling safe, minimally invasive interventions. However, the use of intraoperative navigation is not a replacement for surgical experience and a systematic knowledge of regional anatomy. It must be recognized as a tool by which the neurosurgeon can reduce the risk associated with surgical approach and treatment of pituitary pathologies. PMID:22826819

  5. Applications of Electrical Impedance Tomography (EIT): A Short Review

    NASA Astrophysics Data System (ADS)

    Kanti Bera, Tushar

    2018-03-01

    Electrical Impedance Tomography (EIT) is a tomographic imaging method which solves an ill posed inverse problem using the boundary voltage-current data collected from the surface of the object under test. Though the spatial resolution is comparatively low compared to conventional tomographic imaging modalities, due to several advantages EIT has been studied for a number of applications such as medical imaging, material engineering, civil engineering, biotechnology, chemical engineering, MEMS and other fields of engineering and applied sciences. In this paper, the applications of EIT have been reviewed and presented as a short summary. The working principal, instrumentation and advantages are briefly discussed followed by a detail discussion on the applications of EIT technology in different areas of engineering, technology and applied sciences.

  6. Comparing methods for analysis of biomedical hyperspectral image data

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas J.; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter F.; Annamdevula, Naga S.; Rich, Thomas C.

    2017-02-01

    Over the past 2 decades, hyperspectral imaging technologies have been adapted to address the need for molecule-specific identification in the biomedical imaging field. Applications have ranged from single-cell microscopy to whole-animal in vivo imaging and from basic research to clinical systems. Enabling this growth has been the availability of faster, more effective hyperspectral filtering technologies and more sensitive detectors. Hence, the potential for growth of biomedical hyperspectral imaging is high, and many hyperspectral imaging options are already commercially available. However, despite the growth in hyperspectral technologies for biomedical imaging, little work has been done to aid users of hyperspectral imaging instruments in selecting appropriate analysis algorithms. Here, we present an approach for comparing the effectiveness of spectral analysis algorithms by combining experimental image data with a theoretical "what if" scenario. This approach allows us to quantify several key outcomes that characterize a hyperspectral imaging study: linearity of sensitivity, positive detection cut-off slope, dynamic range, and false positive events. We present results of using this approach for comparing the effectiveness of several common spectral analysis algorithms for detecting weak fluorescent protein emission in the midst of strong tissue autofluorescence. Results indicate that this approach should be applicable to a very wide range of applications, allowing a quantitative assessment of the effectiveness of the combined biology, hardware, and computational analysis for detecting a specific molecular signature.

  7. Electromagnetic Imaging Methods for Nondestructive Evaluation Applications

    PubMed Central

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  8. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology.

    PubMed

    Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan

    2014-01-01

    Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery.

  9. Intraoperative Imaging-Guided Cancer Surgery: From Current Fluorescence Molecular Imaging Methods to Future Multi-Modality Imaging Technology

    PubMed Central

    Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan

    2014-01-01

    Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery. PMID:25250092

  10. Electric Potential and Electric Field Imaging with Applications

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2016-01-01

    The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  11. Feasibility study of a novel miniaturized spectral imaging system architecture in UAV surveillance

    NASA Astrophysics Data System (ADS)

    Liu, Shuyang; Zhou, Tao; Jia, Xiaodong; Cui, Hushan; Huang, Chengjun

    2016-01-01

    The spectral imaging technology is able to analysis the spectral and spatial geometric character of the target at the same time. To break through the limitation brought by the size, weight and cost of the traditional spectral imaging instrument, a miniaturized novel spectral imaging based on CMOS processing has been introduced in the market. This technology has enabled the possibility of applying spectral imaging in the UAV platform. In this paper, the relevant technology and the related possible applications have been presented to implement a quick, flexible and more detailed remote sensing system.

  12. Infrared-thermography imaging system multiapplications for manufacturing

    NASA Astrophysics Data System (ADS)

    Stern, Sharon A.

    1990-03-01

    Imaging systems technology has been utilized traditionally for diagnosing structural envelope or insulation problems in the general thermographic comunity. Industrially, new applications for utilizing thermal imaging technology have been developed i n pred i cti ve/preventi ye mai ntenance and prod uct moni tori ng prociures at Eastman Kodak Company, the largest photographic manufacturering producer in the world. In the manufacturing processes used at Eastman Kodak Company, new applications for thermal imaging include: (1) Fluid transfer line insulation (2) Web coating drying uniformity (3) Web slitter knives (4) Heating/cooling coils (5) Overheated tail bearings, and (6) Electrical phase imbalance. The substantial cost benefits gained from these applications of infrared thermography substantiate the practicality of this approach and indicate the desirability of researching further appl i cati ons.

  13. Hydrogen Flame Imaging System Soars to New, Different Heights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    When Judy and Dave Duncan of Auburn, Calif.-based Duncan Technologies Inc. (DTI) developed their color hydrogen flame imaging system in the early 1990's, their market prospects were limited. 'We talked about commercializing the technology in the hydrogen community, but we also looked at commercialization on a much broader aspect. While there were some hydrogen applications, the market was not large enough to suppport an entire company; also, safety issues were a concern,' said Judy Duncan, owner and CEO of Duncan Technologies. Using the basic technology developed under the Small Business Innovation Research Program (SBIR); DTI conducted market research, identified other applications, formulated a plan for next generation development, and implemented a far-reaching marketing strategy. 'We took that technology; reinvested our own funds and energy into a second-generation design on the overall camera electronics and deployed that basic technology intially in a series of what we call multi-spectral cameras; cameras that could image in both the visible range and the infrared,' explains Duncan. 'The SBIR program allowed us to develop the technology to do a 3CCD camera, which very few compaines in the world do, particularly not small companies. The fact that we designed our own prism and specked the coding as we had for the hydrogen application, we were able to create a custom spectral configuration which could support varying types of research and applications.' As a result, Duncan Technologies Inc. of Auburn, Ca., has achieved a milestone $ 1 million in sales.

  14. Application of near-infrared image processing in agricultural engineering

    NASA Astrophysics Data System (ADS)

    Chen, Ming-hong; Zhang, Guo-ping; Xia, Hongxing

    2009-07-01

    Recently, with development of computer technology, the application field of near-infrared image processing becomes much wider. In this paper the technical characteristic and development of modern NIR imaging and NIR spectroscopy analysis were introduced. It is concluded application and studying of the NIR imaging processing technique in the agricultural engineering in recent years, base on the application principle and developing characteristic of near-infrared image. The NIR imaging would be very useful in the nondestructive external and internal quality inspecting of agricultural products. It is important to detect stored-grain insects by the application of near-infrared spectroscopy. Computer vision detection base on the NIR imaging would be help to manage food logistics. Application of NIR imaging promoted quality management of agricultural products. In the further application research fields of NIR image in the agricultural engineering, Some advices and prospect were put forward.

  15. Present status and trends of image fusion

    NASA Astrophysics Data System (ADS)

    Xiang, Dachao; Fu, Sheng; Cai, Yiheng

    2009-10-01

    Image fusion information extracted from multiple images which is more accurate and reliable than that from just a single image. Since various images contain different information aspects of the measured parts, and comprehensive information can be obtained by integrating them together. Image fusion is a main branch of the application of data fusion technology. At present, it was widely used in computer vision technology, remote sensing, robot vision, medical image processing and military field. This paper mainly presents image fusion's contents, research methods, and the status quo at home and abroad, and analyzes the development trend.

  16. Medical Imaging System

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  17. Are we at a crossroads or a plateau? Radiomics and machine learning in abdominal oncology imaging.

    PubMed

    Summers, Ronald M

    2018-05-05

    Advances in radiomics and machine learning have driven a technology boom in the automated analysis of radiology images. For the past several years, expectations have been nearly boundless for these new technologies to revolutionize radiology image analysis and interpretation. In this editorial, I compare the expectations with the realities with particular attention to applications in abdominal oncology imaging. I explore whether these technologies will leave us at a crossroads to an exciting future or to a sustained plateau and disillusionment.

  18. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    PubMed Central

    Zhou, Jun; Zamdborg, Leonid; Sebastian, Evelyn

    2015-01-01

    The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented. PMID:26203277

  19. Multidimensional Processing and Visual Rendering of Complex 3D Biomedical Images

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.

    2016-01-01

    The proposed technology uses advanced image analysis techniques to maximize the resolution and utility of medical imaging methods being used during spaceflight. We utilize COTS technology for medical imaging, but our applications require higher resolution assessment of the medical images than is routinely applied with nominal system software. By leveraging advanced data reduction and multidimensional imaging techniques utilized in analysis of Planetary Sciences and Cell Biology imaging, it is possible to significantly increase the information extracted from the onboard biomedical imaging systems. Year 1 focused on application of these techniques to the ocular images collected on ground test subjects and ISS crewmembers. Focus was on the choroidal vasculature and the structure of the optic disc. Methods allowed for increased resolution and quantitation of structural changes enabling detailed assessment of progression over time. These techniques enhance the monitoring and evaluation of crew vision issues during space flight.

  20. [Application of 3D virtual reality technology with multi-modality fusion in resection of glioma located in central sulcus region].

    PubMed

    Chen, T N; Yin, X T; Li, X G; Zhao, J; Wang, L; Mu, N; Ma, K; Huo, K; Liu, D; Gao, B Y; Feng, H; Li, F

    2018-05-08

    Objective: To explore the clinical and teaching application value of virtual reality technology in preoperative planning and intraoperative guide of glioma located in central sulcus region. Method: Ten patients with glioma in the central sulcus region were proposed to surgical treatment. The neuro-imaging data, including CT, CTA, DSA, MRI, fMRI were input to 3dgo sczhry workstation for image fusion and 3D reconstruction. Spatial relationships between the lesions and the surrounding structures on the virtual reality image were obtained. These images were applied to the operative approach design, operation process simulation, intraoperative auxiliary decision and the training of specialist physician. Results: Intraoperative founding of 10 patients were highly consistent with preoperative simulation with virtual reality technology. Preoperative 3D reconstruction virtual reality images improved the feasibility of operation planning and operation accuracy. This technology had not only shown the advantages for neurological function protection and lesion resection during surgery, but also improved the training efficiency and effectiveness of dedicated physician by turning the abstract comprehension to virtual reality. Conclusion: Image fusion and 3D reconstruction based virtual reality technology in glioma resection is helpful for formulating the operation plan, improving the operation safety, increasing the total resection rate, and facilitating the teaching and training of the specialist physician.

  1. Research-grade CMOS image sensors for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Saint-Pe, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Martin-Gonthier, Philippe; Corbiere, Franck; Belliot, Pierre; Estribeau, Magali

    2004-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding space applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this paper will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments and performances of CIS prototypes built using an imaging CMOS process will be presented in the corresponding section.

  2. Polarimetric Multispectral Imaging Technology

    NASA Technical Reports Server (NTRS)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  3. Biomedical applications of NASA technology

    NASA Technical Reports Server (NTRS)

    Friedman, Donald S.

    1991-01-01

    Through the active transfer of technology, NASA Technology Utilization (TU) Program assists private companies, associations, and government agencies to make effective use of NASA's technological resources to improve U.S. economic competitiveness and to provide societal benefit. Aerospace technology from such areas as digital image processing, space medicine and biology, microelectronics, optics, and electro-optics, and ultrasonic imaging have found many secondary applications in medicine. Examples of technology spinoffs are briefly discussed to illustrate the benefits realized through adaptation of aerospace technology to solve health care problems. Successful implementation of new technologies increasingly requires the collaboration of industry, universities, and government and the TU Program serves as the liaison to establish such collaborations with NASA. NASA technology is an important resource to support the development of new medical products and techniques that will further advance the quality of health care available in the U.S. and worldwide.

  4. Important advances in technology and unique applications related to cardiac magnetic resonance imaging.

    PubMed

    Ghosn, Mohamad G; Shah, Dipan J

    2014-01-01

    Cardiac magnetic resonance has become a well-established imaging modality and is considered the gold standard for myocardial tissue viability assessment and ventricular volumes quantification. Recent technological hardware and software advancements in magnetic resonance imaging technology have allowed the development of new methods that can improve clinical cardiovascular diagnosis and prognosis. The advent of a new generation of higher magnetic field scanners can be beneficial to various clinical applications. Also, the development of faster acquisition techniques have allowed mapping of the magnetic relaxation properties T1, T2, and T2* in the myocardium that can be used to quantify myocardial diffuse fibrosis, determine the presence of edema or inflammation, and measure iron within the myocardium, respectively. Another recent major advancement in CMR has been the introduction of three-dimension (3D) phase contrast imaging, also known as 4D flow. The following review discusses key advances in cardiac magnetic resonance technology and their potential to improve clinical cardiovascular diagnosis and outcomes.

  5. Advances in Clinical and Biomedical Applications of Photoacoustic Imaging

    PubMed Central

    Su, Jimmy L.; Wang, Bo; Wilson, Katheryne E.; Bayer, Carolyn L.; Chen, Yun-Sheng; Kim, Seungsoo; Homan, Kimberly A.; Emelianov, Stanislav Y.

    2010-01-01

    Importance of the field Photoacoustic imaging is an imaging modality that derives image contrast from the optical absorption coefficient of the tissue being imaged. The imaging technique is able to differentiate between healthy and diseased tissue with either deeper penetration or higher resolution than other functional imaging modalities currently available. From a clinical standpoint, photoacoustic imaging has demonstrated safety and effectiveness in diagnosing diseased tissue regions using either endogenous tissue contrast or exogenous contrast agents. Furthermore, the potential of photoacoustic imaging has been demonstrated in various therapeutic interventions ranging from drug delivery and release to image-guided therapy and monitoring. Areas covered in this review This article reviews the current state of photoacoustic imaging in biomedicine from a technological perspective, highlights various biomedical and clinical applications of photoacoustic imaging, and gives insights on future directions. What the reader will gain Readers will learn about the various applications of photoacoustic imaging, as well as the various contrast agents that can be used to assist photoacoustic imaging. This review will highlight both pre-clinical and clinical uses for photoacoustic imaging, as well as discuss some of the challenges that must be addressed to move photoacoustic imaging into the clinical realm. Take home message Photoacoustic imaging offers unique advantages over existing imaging modalities. The imaging field is broad with many exciting applications for detecting and diagnosing diseased tissue or processes. Photoacoustics is also used in therapeutic applications to identify and characterize the pathology and then to monitor the treatment. Although the technology is still in its infancy, much work has been done in the pre-clinical arena, and photoacoustic imaging is fast approaching the clinical setting. PMID:21344060

  6. New developments in optical coherence tomography

    PubMed Central

    Kostanyan, Tigran; Wollstein, Gadi; Schuman, Joel S.

    2017-01-01

    Purpose of review Optical coherence tomography (OCT) has become the cornerstone technology for clinical ocular imaging in the past few years. The technology is still rapidly evolving with newly developed applications. This manuscript reviews recent innovative OCT applications for glaucoma diagnosis and management. Recent findings The improvements made in the technology have resulted in increased scanning speed, axial and transverse resolution, and more effective use of the OCT technology as a component of multimodal imaging tools. At the same time, the parallel evolution in novel algorithms makes it possible to efficiently analyze the increased volume of acquired data. Summary The innovative iterations of OCT technology have the potential to further improve the performance of the technology in evaluating ocular structural and functional characteristics and longitudinal changes in glaucoma. PMID:25594766

  7. Object and image retrieval over the Internet

    NASA Astrophysics Data System (ADS)

    Gilles, Sebastien; Winter, A.; Feldmar, J.; Poirier, N.; Bousquet, R.; Bussy, B.; Lamure, H.; Demarty, C.-H.; Nastar, Chahab

    2000-12-01

    In this article, we describe some of the work that was carried out at LookThatUp for designing an infrastructure enabling image-based search over the Internet. The service was designed to be remotely accessible and easily integrated to partner sites. One application of the technology, called Image-Shopper, is described and demonstrated. The technological basis of the system is then reviewed.

  8. Optical design and testing: introduction.

    PubMed

    Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin

    2014-10-10

    Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry.

  9. [Application of medical imaging to general thoracic surgery].

    PubMed

    Oizumi, Hiroyuki

    2014-07-01

    Medical imaging technology is rapidly progressing. Positron emission tomography (PET) has played major role in the staging and choice of treatment modality in lung cancer patients. Magnetic resonance imaging (MRI) is now routinely used for mediastinal tumors and the use of diffusion-weighted images (DWI) may help in the diagnosis of malignancies including lung cancers. The benefits of medical imaging technology are not limited to diagnostics, and include simulation or navigation for complex lung resection and other procedures. Multidetector row computed tomography (MDCT) shortens imaging time to obtain detailed and precise volume data, which improves diagnosis of small-sized lung cancers. 3-dimensional reconstruction of the volume data allows the safe performance of thoracoscopic surgery. For lung lobectomy, identification of the branching structures, diameter, and length of the arteries is useful in selecting the procedure for blood vessel treatment. For lung segmentectomy, visualization of venous branches in the affected segments and intersegmental veins has facilitated the preoperative determination of the anatomical intersegmental plane. Therefore, the application of medical imaging technology is useful in general thoracic surgery.

  10. Satellite image analysis using neural networks

    NASA Technical Reports Server (NTRS)

    Sheldon, Roger A.

    1990-01-01

    The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.

  11. Medication order communication using fax and document-imaging technologies.

    PubMed

    Simonian, Armen I

    2008-03-15

    The implementation of fax and document-imaging technology to electronically communicate medication orders from nursing stations to the pharmacy is described. The evaluation of a commercially available pharmacy order imaging system to improve order communication and to make document retrieval more efficient led to the selection and customization of a system already licensed and used in seven affiliated hospitals. The system consisted of existing fax machines and document-imaging software that would capture images of written orders and send them from nursing stations to a central database server. Pharmacists would then retrieve the images and enter the orders in an electronic medical record system. The pharmacy representatives from all seven hospitals agreed on the configuration and functionality of the custom application. A 30-day trial of the order imaging system was successfully conducted at one of the larger institutions. The new system was then implemented at the remaining six hospitals over a period of 60 days. The transition from a paper-order system to electronic communication via a standardized pharmacy document management application tailored to the specific needs of this health system was accomplished. A health system with seven affiliated hospitals successfully implemented electronic communication and the management of inpatient paper-chart orders by using faxes and document-imaging technology. This standardized application eliminated the problems associated with the hand delivery of paper orders, the use of the pneumatic tube system, and the printing of traditional faxes.

  12. Experience in the application of Java Technologies in telemedicine

    PubMed Central

    Fedyukin, IV; Reviakin, YG; Orlov, OI; Doarn, CR; Harnett, BM; Merrell, RC

    2002-01-01

    Java language has been demonstrated to be an effective tool in supporting medical image viewing in Russia. This evaluation was completed by obtaining a maximum of 20 images, depending on the client's computer workstation from one patient using a commercially available computer tomography (CT) scanner. The images were compared against standard CT images that were viewed at the site of capture. There was no appreciable difference. The client side is a lightweight component that provides an intuitive interface for end users. Each image is loaded in its own thread and the user can begin work after the first image has been loaded. This feature is especially useful on slow connection speed, 9.6 Kbps for example. The server side, which is implemented by the Java Servlet Engine works more effective than common gateway interface (CGI) programs do. Advantages of the Java Technology place this program on the next level of application development. This paper presents a unique application of Java in telemedicine. PMID:12459045

  13. Experience in the application of Java Technologies in telemedicine.

    PubMed

    Fedyukin, IV; Reviakin, YG; Orlov, OI; Doarn, CR; Harnett, BM; Merrell, RC

    2002-09-17

    Java language has been demonstrated to be an effective tool in supporting medical image viewing in Russia. This evaluation was completed by obtaining a maximum of 20 images, depending on the client's computer workstation from one patient using a commercially available computer tomography (CT) scanner. The images were compared against standard CT images that were viewed at the site of capture. There was no appreciable difference. The client side is a lightweight component that provides an intuitive interface for end users. Each image is loaded in its own thread and the user can begin work after the first image has been loaded. This feature is especially useful on slow connection speed, 9.6 Kbps for example. The server side, which is implemented by the Java Servlet Engine works more effective than common gateway interface (CGI) programs do. Advantages of the Java Technology place this program on the next level of application development. This paper presents a unique application of Java in telemedicine.

  14. Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction

    PubMed Central

    Hoshino, Yuichi; Kim, Donghwi; Fu, Freddie H.

    2012-01-01

    Anatomic study related to the anterior cruciate ligament (ACL) reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D) to three-dimensional (3D) image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction. PMID:22567310

  15. Imaging Transgene Expression with Radionuclide Imaging Technologies1

    PubMed Central

    Gambhir, SS; Herschman, HR; Cherry, SR; Barrio, JR; Satyamurthy, N; Toyokuni, T; Phelps, ME; Larson, SM; Balaton, J; Finn, R; Sadelain, M; Tjuvajev, J

    2000-01-01

    Abstract A variety of imaging technologies are being investigated as tools for studying gene expression in living subjects. Noninvasive, repetitive and quantitative imaging of gene expression will help both to facilitate human gene therapy trials and to allow for the study of animal models of molecular and cellular therapy. Radionuclide approaches using single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the most mature of the current imaging technologies and offer many advantages for imaging gene expression compared to optical and magnetic resonance imaging (MRI)-based approaches. These advantages include relatively high sensitivity, full quantitative capability (for PET), and the ability to extend small animal assays directly into clinical human applications. We describe a PET scanner (micro PET) designed specifically for studies of small animals. We review “marker/reporter gene” imaging approaches using the herpes simplex type 1 virus thymidine kinase (HSV1-tk) and the dopamine type 2 receptor (D2R) genes. We describe and contrast several radiolabeled probes that can be used with the HSV1-tk reporter gene both for SPECT and for PET imaging. We also describe the advantages/disadvantages of each of the assays developed and discuss future animal and human applications. PMID:10933072

  16. Ultrasound and other imaging technologies in the intensive care unit.

    PubMed

    Lee, S Y; Frankel, H L

    2000-06-01

    As technology advances, more imaging and procedures are performed at the bedside on critically ill patients in ICUs, thereby eliminating the risks of transporting patients. These imaging techniques can serve as diagnostic and therapeutic tools in treating the acute and chronic consequences of injured, critically ill patients. One area of growth is ultrasonography. Critical care applications of ultrasonography are expanding, and the learning curve of surgeons and intensivists performing some of these studies is improving. Ultrasonography can supplement physical examination and provide useful "real-time" information on nearly every body cavity. Other imaging technology is also available in a portable form, enabling imaging directly at the bedside. Images are now becoming readily and easily available with the advancement of teleradiology. Some of the imaging modalities are still in development, and their clinical effectiveness is being studied. In the future, more uses of these various imaging technologies may become evident and cost-effective.

  17. Diagnostic imaging applications; Proceedings of the Meeting, Amsterdam, Netherlands, October 8, 9, 1984

    NASA Technical Reports Server (NTRS)

    Beckenbach, E. S. (Editor)

    1984-01-01

    It is more important than ever that engineers have an understanding of the future needs of clinical and research medicine, and that physicians know somthing about probable future developments in instrumentation capabilities. Only by maintaining such a dialog can the most effective application of technological advances to medicine be achieved. This workshop attempted to provide this kind of information transfer in the limited field of diagnostic imaging. Biomedical research at the Jet Propulsion Laboratory is discussed, taking into account imaging results from space exploration missions, as well as biomedical research tasks based in these technologies. Attention is also given to current and future indications for magnetic resonance in medicine, high speed quantitative digital microscopy, computer processing of radiographic images, computed tomography and its modern applications, position emission tomography, and developments related to medical ultrasound.

  18. Visual Attention and Applications in Multimedia Technologies

    PubMed Central

    Le Callet, Patrick; Niebur, Ernst

    2013-01-01

    Making technological advances in the field of human-machine interactions requires that the capabilities and limitations of the human perceptual system are taken into account. The focus of this report is an important mechanism of perception, visual selective attention, which is becoming more and more important for multimedia applications. We introduce the concept of visual attention and describe its underlying mechanisms. In particular, we introduce the concepts of overt and covert visual attention, and of bottom-up and top-down processing. Challenges related to modeling visual attention and their validation using ad hoc ground truth are also discussed. Examples of the usage of visual attention models in image and video processing are presented. We emphasize multimedia delivery, retargeting and quality assessment of image and video, medical imaging, and the field of stereoscopic 3D images applications. PMID:24489403

  19. Advances in miniature spectrometer and sensor development

    NASA Astrophysics Data System (ADS)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  20. Quantum image processing: A review of advances in its security technologies

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Iliyasu, Abdullah M.; Le, Phuc Q.

    In this review, we present an overview of the advances made in quantum image processing (QIP) comprising of the image representations, the operations realizable on them, and the likely protocols and algorithms for their applications. In particular, we focus on recent progresses on QIP-based security technologies including quantum watermarking, quantum image encryption, and quantum image steganography. This review is aimed at providing readers with a succinct, yet adequate compendium of the progresses made in the QIP sub-area. Hopefully, this effort will stimulate further interest aimed at the pursuit of more advanced algorithms and experimental validations for available technologies and extensions to other domains.

  1. [Application of image recognition technology in census of national traditional Chinese medicine resources].

    PubMed

    Zhang, Xiao-Bo; Ge, Xiao-Guang; Jin, Yan; Shi, Ting-Ting; Wang, Hui; Li, Meng; Jing, Zhi-Xian; Guo, Lan-Ping; Huang, Lu-Qi

    2017-11-01

    With the development of computer and image processing technology, image recognition technology has been applied to the national medicine resources census work at all stages.Among them: ①In the preparatory work, in order to establish a unified library of traditional Chinese medicine resources, using text recognition technology based on paper materials, be the assistant in the digitalization of various categories related to Chinese medicine resources; to determine the representative area and plots of the survey from each census team, based on the satellite remote sensing image and vegetation map and other basic data, using remote sensing image classification and other technical methods to assist in determining the key investigation area. ②In the process of field investigation, to obtain the planting area of Chinese herbal medicine was accurately, we use the decision tree model, spectral feature and object-oriented method were used to assist the regional identification and area estimation of Chinese medicinal materials.③In the process of finishing in the industry, in order to be able to relatively accurately determine the type of Chinese medicine resources in the region, based on the individual photos of the plant, the specimens and the name of the use of image recognition techniques, to assist the statistical summary of the types of traditional Chinese medicine resources. ④In the application of the results of transformation, based on the pharmaceutical resources and individual samples of medicinal herbs, the development of Chinese medicine resources to identify APP and authentic herbs 3D display system, assisted the identification of Chinese medicine resources and herbs identification characteristics. The introduction of image recognition technology in the census of Chinese medicine resources, assisting census personnel to carry out related work, not only can reduce the workload of the artificial, improve work efficiency, but also improve the census results of information technology and sharing application ability. With the deepening of the work of Chinese medicine resources census, image recognition technology in the relevant work will also play its unique role. Copyright© by the Chinese Pharmaceutical Association.

  2. Scientific CCD technology at JPL

    NASA Technical Reports Server (NTRS)

    Janesick, J.; Collins, S. A.; Fossum, E. R.

    1991-01-01

    Charge-coupled devices (CCD's) were recognized for their potential as an imaging technology almost immediately following their conception in 1970. Twenty years later, they are firmly established as the technology of choice for visible imaging. While consumer applications of CCD's, especially the emerging home video camera market, dominated manufacturing activity, the scientific market for CCD imagers has become significant. Activity of the Jet Propulsion Laboratory and its industrial partners in the area of CCD imagers for space scientific instruments is described. Requirements for scientific imagers are significantly different from those needed for home video cameras, and are described. An imager for an instrument on the CRAF/Cassini mission is described in detail to highlight achieved levels of performance.

  3. [Pay attention to the standardized application of new techniques in surgical treatment of thyroid disease].

    PubMed

    Tian, W; Xi, H Q; Wang, B

    2017-08-01

    The continuous development and application of new technology in thyroid surgery has promoted the rapid improvement of thyroid surgery. New technology in the field of thyroid surgery has developed rapidly. The application of neural monitoring technology has enabled the thyroid surgery to enter an accurate era. Imtraoperative neuromonitoring and continuous intraoperative neuromonitoring have made the recurrent laryngeal nerve protection more secure. Nano-carbon parathyroid gland negative imaging technology could identify parathyroid gland more precise. However, when the nano-carbon was used, the injection time, position and dosage should be grasped so as to achieve the best effect of negative imaging. Endoscopic and robotic thyroid surgery could meet the demand of cosmetic. "Treatment first, beauty second" is still the principle to be strictly followed. Do not blindly expand indications and pursue endoscopic surgery. Energy surgical instruments' update made the operation more efficient, while the instruments have some disadvantages. Thyroid surgeon must correctly understand the working principle of new energy devices and use them rationally. Through grasping the working principle and application skills of new technology in clinical work, definiting its advantages and disadvantages, adhereing to the "reasonable choice, standard application" principle, learning the pioneers' experience, the application of new thyroid diagnosis and treatment technology could be more reasonable and safe.

  4. MO-FG-207-00: Technological Advances in PET/MR Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applicationsmore » that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.« less

  5. Out of hospital point of care ultrasound: current use models and future directions.

    PubMed

    Nelson, B P; Sanghvi, A

    2016-04-01

    Ultrasound has evolved from a modality that was once exclusively reserved to certain specialities of its current state, in which its portability and durability lend to its broadly increasing applications. This review describes portable ultrasound in the hospital setting and its comparison to gold standard imaging modalities. Also, this review summarizes current literature describing portable ultrasound use in prehospital, austere and remote environments, highlighting successes and barriers to use in these environments. Prehospital ultrasound has the ability to increase diagnostic ability and allow for therapeutic intervention in the field. In austere environments, ultrasound may be the only available imaging modality and thus can guide diagnosis, therapeutics and determine which patients may need emergent transfer to a healthcare facility. The most cutting edge applications of portable ultrasound employ telemedicine to obtain and transmit ultrasound images. This technology and ability to transmit images via satellite and cellular transmission can allow for even novice users to obtain interpretable images in austere environments. Portable ultrasound uses have steadily grown and will continue to do so with the introduction of more portable and durable technologies. As applications continue to grow, certain technologic considerations and future directions are explored.

  6. Multi-color IR sensors based on QWIP technology for security and surveillance applications

    NASA Astrophysics Data System (ADS)

    Sundaram, Mani; Reisinger, Axel; Dennis, Richard; Patnaude, Kelly; Burrows, Douglas; Cook, Robert; Bundas, Jason

    2006-05-01

    Room-temperature targets are detected at the furthest distance by imaging them in the long wavelength (LW: 8-12 μm) infrared spectral band where they glow brightest. Focal plane arrays (FPAs) based on quantum well infrared photodetectors (QWIPs) have sensitivity, noise, and cost metrics that have enabled them to become the best commercial solution for certain security and surveillance applications. Recently, QWIP technology has advanced to provide pixelregistered dual-band imaging in both the midwave (MW: 3-5 μm) and longwave infrared spectral bands in a single chip. This elegant technology affords a degree of target discrimination as well as the ability to maximize detection range for hot targets (e.g. missile plumes) by imaging in the midwave and for room-temperature targets (e.g. humans, trucks) by imaging in the longwave with one simple camera. Detection-range calculations are illustrated and FPA performance is presented.

  7. Electric potential and electric field imaging

    NASA Astrophysics Data System (ADS)

    Generazio, E. R.

    2017-02-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for "illuminating" volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e-Sensor enhancements (ephemeral e-Sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  8. Muon imaging: Principles, technologies and applications

    NASA Astrophysics Data System (ADS)

    Procureur, S.

    2018-01-01

    During the last 15 years muon-based imaging, or muography, has experienced an impressive development and has found applications in many different fields requiring penetrating probes. Structures of very different sizes and densities can be imaged thanks to the various implementations it offers: either in absorption/transmission or in deviation modes, not to mention the muon metrology for monitoring. The goal of this paper is to give an overview of the main principles of the muography, as well as the technologies employed nowadays and its current and potential applications. Considering the amount of studies dedicated to muography and the number of projects conducted in the last decade, this review focuses on the fields which are the most representative of the muography capabilities.

  9. [Research progress of Terahertz wave technology in quality measurement of food and agricultural products].

    PubMed

    Yan, Zhan-Ke; Zhang, Hong-Jian; Ying, Yi-Bin

    2007-11-01

    The quality concern of food and agricultural products has become more and more significant. The related technologies for nondestructive measurement or quality control of food products have been the focus of many researches. Terahertz (THz) radiation, or THz wave, the least explored region of the spectrum, is the electromagnetic wave that lies between mid-infrared and microwave radiation, which has very important research and application values. THz spectroscopy and THz imaging technique are the two main applications of THz wave. During the past decade, THz waves have been used to characterize the electronic, vibrational and compositional properties of solid, liquid and gas phase materials. Recently, THz technology has gained a lot of attention of researchers in various fields from biological spectral analysis to bio-medical imaging due to its unique features compared with microwave and optical waves. In the present paper, the properties of THz wave and its uniqueness in sensing and imaging applications were discussed. The most recent researches on THz technology used in food quality control and agricultural products inspection were summarized. The prospect of this novel technology in agriculture and food industry was also discussed.

  10. Breast ultrasonography: state of the art.

    PubMed

    Hooley, Regina J; Scoutt, Leslie M; Philpotts, Liane E

    2013-09-01

    Ultrasonography (US) is an indispensable tool in breast imaging and is complementary to both mammography and magnetic resonance (MR) imaging of the breast. Advances in US technology allow confident characterization of not only benign cysts but also benign and malignant solid masses. Knowledge and understanding of current and emerging US technology, along with the application of meticulous scanning technique, is imperative for image optimization and diagnosis. The ability to synthesize breast US findings with multiple imaging modalities and clinical information is also necessary to ensure the best patient care. US is routinely used to guide breast biopsies and is also emerging as a supplemental screening tool in women with dense breasts and a negative mammogram. This review provides a summary of current state-of-the-art US technology, including elastography, and applications of US in clinical practice as an adjuvant technique to mammography, MR imaging, and the clinical breast examination. The use of breast US for screening, preoperative staging for breast cancer, and breast intervention will also be discussed.

  11. Overview of CMOS process and design options for image sensor dedicated to space applications

    NASA Astrophysics Data System (ADS)

    Martin-Gonthier, P.; Magnan, P.; Corbiere, F.

    2005-10-01

    With the growth of huge volume markets (mobile phones, digital cameras...) CMOS technologies for image sensor improve significantly. New process flows appear in order to optimize some parameters such as quantum efficiency, dark current, and conversion gain. Space applications can of course benefit from these improvements. To illustrate this evolution, this paper reports results from three technologies that have been evaluated with test vehicles composed of several sub arrays designed with some space applications as target. These three technologies are CMOS standard, improved and sensor optimized process in 0.35μm generation. Measurements are focussed on quantum efficiency, dark current, conversion gain and noise. Other measurements such as Modulation Transfer Function (MTF) and crosstalk are depicted in [1]. A comparison between results has been done and three categories of CMOS process for image sensors have been listed. Radiation tolerance has been also studied for the CMOS improved process in the way of hardening the imager by design. Results at 4, 15, 25 and 50 krad prove a good ionizing dose radiation tolerance applying specific techniques.

  12. A solid-state amorphous selenium avalanche technology for low photon flux imaging applications

    PubMed Central

    Wronski, M. M.; Zhao, W.; Reznik, A.; Tanioka, K.; DeCrescenzo, G.; Rowlands, J. A.

    2010-01-01

    Purpose: The feasibility of a practical solid-state technology for low photon flux imaging applications was investigated. The technology is based on an amorphous selenium photoreceptor with a voltage-controlled avalanche multiplication gain. If this photoreceptor can provide sufficient internal gain, it will be useful for an extensive range of diagnostic imaging systems. Methods: The avalanche photoreceptor under investigation is referred to as HARP-DRL. This is a novel concept in which a high-gain avalanche rushing photoconductor (HARP) is integrated with a distributed resistance layer (DRL) and sandwiched between two electrodes. The avalanche gain and leakage current characteristics of this photoreceptor were measured. Results: HARP-DRL has been found to sustain very high electric field strengths without electrical breakdown. It has shown avalanche multiplication gains as high as 104 and a very low leakage current (≤20 pA∕mm2). Conclusions: This is the first experimental demonstration of a solid-state amorphous photoreceptor which provides sufficient internal avalanche gain for photon counting and photon starved imaging applications. PMID:20964217

  13. Super-sensing technology: industrial applications and future challenges of electrical tomography.

    PubMed

    Wei, Kent Hsin-Yu; Qiu, Chang-Hua; Primrose, Ken

    2016-06-28

    Electrical tomography is a relatively new imaging technique that can image the distribution of the passive electrical properties of an object. Since electrical tomography technology was proposed in the 1980s, the technique has evolved rapidly because of its low cost, easy scale-up and non-invasive features. The technique itself can be sensitive to all passive electrical properties, such as conductivity, permittivity and permeability. Hence, it has a huge potential to be applied in many applications. Owing to its ill-posed nature and low image resolution, electrical tomography attracts more attention in industrial fields than biomedical fields. In the past decades, there have been many research developments and industrial implementations of electrical tomography; nevertheless, the awareness of this technology in industrial sectors is still one of the biggest limitations for technology implementation. In this paper, the authors have summarized several representative applications that use electrical tomography. Some of the current tomography research activities will also be discussed. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  14. Smart image sensors: an emerging key technology for advanced optical measurement and microsystems

    NASA Astrophysics Data System (ADS)

    Seitz, Peter

    1996-08-01

    Optical microsystems typically include photosensitive devices, analog preprocessing circuitry and digital signal processing electronics. The advances in semiconductor technology have made it possible today to integrate all photosensitive and electronical devices on one 'smart image sensor' or photo-ASIC (application-specific integrated circuits containing photosensitive elements). It is even possible to provide each 'smart pixel' with additional photoelectronic functionality, without compromising the fill factor substantially. This technological capability is the basis for advanced cameras and optical microsystems showing novel on-chip functionality: Single-chip cameras with on- chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable offset and sensitivity of the pixels leading to image sensors with a dynamic range exceeding 150 dB. Smart image sensors have been demonstrated offering synchronous detection and demodulation capabilities in each pixel (lock-in CCD), and conventional image sensors are combined with an on-chip digital processor for complete, single-chip image acquisition and processing systems. Technological problems of the monolithic integration of smart image sensors include offset non-uniformities, temperature variations of electronic properties, imperfect matching of circuit parameters, etc. These problems can often be overcome either by designing additional compensation circuitry or by providing digital correction routines. Where necessary for technological or economic reasons, smart image sensors can also be combined with or realized as hybrids, making use of commercially available electronic components. It is concluded that the possibilities offered by custom smart image sensors will influence the design and the performance of future electronic imaging systems in many disciplines, reaching from optical metrology to machine vision on the factory floor and in robotics applications.

  15. Digital imagery/telecytology. International Academy of Cytology Task Force summary. Diagnostic Cytology Towards the 21st Century: An International Expert Conference and Tutorial.

    PubMed

    O'Brien, M J; Takahashi, M; Brugal, G; Christen, H; Gahm, T; Goodell, R M; Karakitsos, P; Knesel, E A; Kobler, T; Kyrkou, K A; Labbe, S; Long, E L; Mango, L J; McGoogan, E; Oberholzer, M; Reith, A; Winkler, C

    1998-01-01

    Optical digital imaging and its related technologies have applications in cytopathology that encompass training and education, image analysis, diagnosis, report documentation and archiving, and telecommunications. Telecytology involves the use of telecommunications to transmit cytology images for the purposes of diagnosis, consultation or education. This working paper provides a mainly informational overview of optical digital imaging and summarizes current technologic resources and applications and some of the ethical and legal implications of the use of these new technologies in cytopathology. Computer hardware standards for optical digital imagery will continue to be driven mainly by commercial interests and nonmedical imperatives, but professional organizations can play a valuable role in developing recommendations or standards for digital image sampling, documentation, archiving, authenticity safeguards and teleconsultation protocols; in addressing patient confidentiality and ethical, legal and informed consent issues; and in providing support for quality assurance and standardization of digital image-based testing. There is some evidence that high levels of accuracy for telepathology diagnosis can be achieved using existing dynamic systems, which may also be applicable to telecytology consultation. Static systems for both telepathology and telecytology, which have the advantage of considerably lower cost, appear to have lower levels of accuracy. Laboratories that maintain digital image databases should adopt practices and protocols that ensure patient confidentiality. Individuals participating in telecommunication of digital images for diagnosis should be properly qualified, meet licensing requirements and use procedures that protect patient confidentiality. Such individuals should be cognizant of the limitations of the technology and employ quality assurance practices that ensure the validity and accuracy of each consultation. Even in an informal teleconsultation setting one should define the extent of participation and be mindful of potential malpractice liability. Digital imagery applications will continue to present new opportunities and challenges. Position papers such as this are directed toward assisting the profession to stay informed and in control of these applications in the laboratory. Telecytology is an area in particular need of studies of good quality to provide data on factors affecting accuracy. New technologic approaches to addressing the issue of selective sampling in static image consultation are needed. The use of artificial intelligence software as an adjunct to enhance the accuracy and reproducibility of cytologic diagnosis of digital images in routine and consultation settings deserves to be pursued. Other telecytology-related issues that require clarification and the adoption of workable guidelines include interstate licensure and protocols to define malpractice liability.

  16. Handheld hyperspectral imager for standoff detection of chemical and biological aerosols

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Jensen, James O.; McAnally, Gerard

    2004-02-01

    Pacific Advanced Technology has developed a small hand held imaging spectrometer, Sherlock, for gas leak and aerosol detection and imaging. The system is based on a patent technique that uses diffractive optics and image processing algorithms to detect spectral information about objects in the scene of the camera (IMSS Image Multi-spectral Sensing). This camera has been tested at Dugway Proving Ground and Dstl Porton Down facility looking at Chemical and Biological agent simulants. The camera has been used to investigate surfaces contaminated with chemical agent simulants. In addition to Chemical and Biological detection the camera has been used for environmental monitoring of green house gases and is currently undergoing extensive laboratory and field testing by the Gas Technology Institute, British Petroleum and Shell Oil for applications for gas leak detection and repair. The camera contains an embedded Power PC and a real time image processor for performing image processing algorithms to assist in the detection and identification of gas phase species in real time. In this paper we will present an over view of the technology and show how it has performed for different applications, such as gas leak detection, surface contamination, remote sensing and surveillance applications. In addition a sampling of the results form TRE field testing at Dugway in July of 2002 and Dstl at Porton Down in September of 2002 will be given.

  17. 3D surface scan of biological samples with a Push-broom Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Kincaid, Russell; Hruska, Zuzana; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2013-08-01

    The food industry is always on the lookout for sensing technologies for rapid and nondestructive inspection of food products. Hyperspectral imaging technology integrates both imaging and spectroscopy into unique imaging sensors. Its application for food safety and quality inspection has made significant progress in recent years. Specifically, hyperspectral imaging has shown its potential for surface contamination detection in many food related applications. Most existing hyperspectral imaging systems use pushbroom scanning which is generally used for flat surface inspection. In some applications it is desirable to be able to acquire hyperspectral images on circular objects such as corn ears, apples, and cucumbers. Past research describes inspection systems that examine all surfaces of individual objects. Most of these systems did not employ hyperspectral imaging. These systems typically utilized a roller to rotate an object, such as an apple. During apple rotation, the camera took multiple images in order to cover the complete surface of the apple. The acquired image data lacked the spectral component present in a hyperspectral image. This paper discusses the development of a hyperspectral imaging system for a 3-D surface scan of biological samples. The new instrument is based on a pushbroom hyperspectral line scanner using a rotational stage to turn the sample. The system is suitable for whole surface hyperspectral imaging of circular objects. In addition to its value to the food industry, the system could be useful for other applications involving 3-D surface inspection.

  18. Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery

    PubMed Central

    Isherwood, Beverley; Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I; Canel, Marta; Serrels, Alan; Brunton, Valerie G; Carragher, Neil O

    2011-01-01

    Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates. PMID:24310493

  19. Image processing techniques and applications to the Earth Resources Technology Satellite program

    NASA Technical Reports Server (NTRS)

    Polge, R. J.; Bhagavan, B. K.; Callas, L.

    1973-01-01

    The Earth Resources Technology Satellite system is studied, with emphasis on sensors, data processing requirements, and image data compression using the Fast Fourier and Hadamard transforms. The ERTS-A system and the fundamentals of remote sensing are discussed. Three user applications (forestry, crops, and rangelands) are selected and their spectral signatures are described. It is shown that additional sensors are needed for rangeland management. An on-board information processing system is recommended to reduce the amount of data transmitted.

  20. Research-grade CMOS image sensors for demanding space applications

    NASA Astrophysics Data System (ADS)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2004-06-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  1. Research-grade CMOS image sensors for demanding space applications

    NASA Astrophysics Data System (ADS)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2017-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid- 90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  2. Recent advances in the applications of vibrational spectroscopic imaging and mapping to pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    Ewing, Andrew V.; Kazarian, Sergei G.

    2018-05-01

    Vibrational spectroscopic imaging and mapping approaches have continued in their development and applications for the analysis of pharmaceutical formulations. Obtaining spatially resolved chemical information about the distribution of different components within pharmaceutical formulations is integral for improving the understanding and quality of final drug products. This review aims to summarise some key advances of these technologies over recent years, primarily since 2010. An overview of FTIR, NIR, terahertz spectroscopic imaging and Raman mapping will be presented to give a perspective of the current state-of-the-art of these techniques for studying pharmaceutical samples. This will include their application to reveal spatial information of components that reveals molecular insight of polymorphic or structural changes, behaviour of formulations during dissolution experiments, uniformity of materials and detection of counterfeit products. Furthermore, new advancements will be presented that demonstrate the continuing novel applications of spectroscopic imaging and mapping, namely in FTIR spectroscopy, for studies of microfluidic devices. Whilst much of the recently developed work has been reported by academic groups, examples of the potential impacts of utilising these imaging and mapping technologies to support industrial applications have also been reviewed.

  3. Single-Cell Analysis Using Hyperspectral Imaging Modalities.

    PubMed

    Mehta, Nishir; Shaik, Shahensha; Devireddy, Ram; Gartia, Manas Ranjan

    2018-02-01

    Almost a decade ago, hyperspectral imaging (HSI) was employed by the NASA in satellite imaging applications such as remote sensing technology. This technology has since been extensively used in the exploration of minerals, agricultural purposes, water resources, and urban development needs. Due to recent advancements in optical re-construction and imaging, HSI can now be applied down to micro- and nanometer scales possibly allowing for exquisite control and analysis of single cell to complex biological systems. This short review provides a description of the working principle of the HSI technology and how HSI can be used to assist, substitute, and validate traditional imaging technologies. This is followed by a description of the use of HSI for biological analysis and medical diagnostics with emphasis on single-cell analysis using HSI.

  4. Basic Principles of Magnetic Resonance Imaging—An Update

    PubMed Central

    Scherzinger, Ann L.; Hendee, William R.

    1985-01-01

    Magnetic resonance (MR) imaging technology has undergone many technologic advances over the past few years. Many of these advances were stimulated by the wealth of information emerging from nuclear magnetic resonance research in the areas of new and optimal scanning methods and radio-frequency coil design. Other changes arose from the desire to improve image quality, ease siting restrictions and generally facilitate the clinical use of MR equipment. Many questions, however, remain unanswered. Perhaps the most controversial technologic question involves the optimal field strength required for imaging or spectroscopic applications or both. Other issues include safety and clinical efficacy. Technologic issues affect all aspects of MR use including the choice of equipment, examination procedure and image interpretation. Thus, an understanding of recent changes and their theoretic basis is necessary. ImagesFigure 9. PMID:3911591

  5. Leveraging Information Technology. Track VII: Outstanding Applications.

    ERIC Educational Resources Information Center

    CAUSE, Boulder, CO.

    Eight papers from the 1987 CAUSE conference's Track VII, Outstanding Applications, are presented. They include: "Image Databases in the University" (Reid Kaplan and Gordon Mathieson); "Using Information Technology for Travel Management at the University of Michigan" (Robert E. Russell and John C. Hufziger); "On-Line Access…

  6. Medical hyperspectral imaging: a review

    PubMed Central

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:24441941

  7. Imaging with terahertz radiation

    NASA Astrophysics Data System (ADS)

    Chan, Wai Lam; Deibel, Jason; Mittleman, Daniel M.

    2007-08-01

    Within the last several years, the field of terahertz science and technology has changed dramatically. Many new advances in the technology for generation, manipulation, and detection of terahertz radiation have revolutionized the field. Much of this interest has been inspired by the promise of valuable new applications for terahertz imaging and sensing. Among a long list of proposed uses, one finds compelling needs such as security screening and quality control, as well as whimsical notions such as counting the almonds in a bar of chocolate. This list has grown in parallel with the development of new technologies and new paradigms for imaging and sensing. Many of these proposed applications exploit the unique capabilities of terahertz radiation to penetrate common packaging materials and provide spectroscopic information about the materials within. Several of the techniques used for terahertz imaging have been borrowed from other, more well established fields such as x-ray computed tomography and synthetic aperture radar. Others have been developed exclusively for the terahertz field, and have no analogies in other portions of the spectrum. This review provides a comprehensive description of the various techniques which have been employed for terahertz image formation, as well as discussing numerous examples which illustrate the many exciting potential uses for these emerging technologies.

  8. Digital Light Processing update: status and future applications

    NASA Astrophysics Data System (ADS)

    Hornbeck, Larry J.

    1999-05-01

    Digital Light Processing (DLP) projection displays based on the Digital Micromirror Device (DMD) were introduced to the market in 1996. Less than 3 years later, DLP-based projectors are found in such diverse applications as mobile, conference room, video wall, home theater, and large-venue. They provide high-quality, seamless, all-digital images that have exceptional stability as well as freedom from both flicker and image lag. Marked improvements have been made in the image quality of DLP-based projection display, including brightness, resolution, contrast ratio, and border image. DLP-based mobile projectors that weighted about 27 pounds in 1996 now weight only about 7 pounds. This weight reduction has been responsible for the definition of an entirely new projector class, the ultraportable. New applications are being developed for this important new projection display technology; these include digital photofinishing for high process speed minilab and maxilab applications and DLP Cinema for the digital delivery of films to audiences around the world. This paper describes the status of DLP-based projection display technology, including its manufacturing, performance improvements, and new applications, with emphasis on DLP Cinema.

  9. Review of optical coherence tomography in oncology

    NASA Astrophysics Data System (ADS)

    Wang, Jianfeng; Xu, Yang; Boppart, Stephen A.

    2017-12-01

    The application of optical coherence tomography (OCT) in the field of oncology has been prospering over the past decade. OCT imaging has been used to image a broad spectrum of malignancies, including those arising in the breast, brain, bladder, the gastrointestinal, respiratory, and reproductive tracts, the skin, and oral cavity, among others. OCT imaging has initially been applied for guiding biopsies, for intraoperatively evaluating tumor margins and lymph nodes, and for the early detection of small lesions that would often not be visible on gross examination, tasks that align well with the clinical emphasis on early detection and intervention. Recently, OCT imaging has been explored for imaging tumor cells and their dynamics, and for the monitoring of tumor responses to treatments. This paper reviews the evolution of OCT technologies for the clinical application of OCT in surgical and noninvasive interventional oncology procedures and concludes with a discussion of the future directions for OCT technologies, with particular emphasis on their applications in oncology.

  10. A CMOS-based large-area high-resolution imaging system for high-energy x-ray applications

    NASA Astrophysics Data System (ADS)

    Rodricks, Brian; Fowler, Boyd; Liu, Chiao; Lowes, John; Haeffner, Dean; Lienert, Ulrich; Almer, John

    2008-08-01

    CCDs have been the primary sensor in imaging systems for x-ray diffraction and imaging applications in recent years. CCDs have met the fundamental requirements of low noise, high-sensitivity, high dynamic range and spatial resolution necessary for these scientific applications. State-of-the-art CMOS image sensor (CIS) technology has experienced dramatic improvements recently and their performance is rivaling or surpassing that of most CCDs. The advancement of CIS technology is at an ever-accelerating pace and is driven by the multi-billion dollar consumer market. There are several advantages of CIS over traditional CCDs and other solid-state imaging devices; they include low power, high-speed operation, system-on-chip integration and lower manufacturing costs. The combination of superior imaging performance and system advantages makes CIS a good candidate for high-sensitivity imaging system development. This paper will describe a 1344 x 1212 CIS imaging system with a 19.5μm pitch optimized for x-ray scattering studies at high-energies. Fundamental metrics of linearity, dynamic range, spatial resolution, conversion gain, sensitivity are estimated. The Detective Quantum Efficiency (DQE) is also estimated. Representative x-ray diffraction images are presented. Diffraction images are compared against a CCD-based imaging system.

  11. Image intensification; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989

    NASA Astrophysics Data System (ADS)

    Csorba, Illes P.

    Various papers on image intensification are presented. Individual topics discussed include: status of high-speed optical detector technologies, super second generation imge intensifier, gated image intensifiers and applications, resistive-anode position-sensing photomultiplier tube operational modeling, undersea imaging and target detection with gated image intensifier tubes, image intensifier modules for use with commercially available solid state cameras, specifying the components of an intensified solid state television camera, superconducting IR focal plane arrays, one-inch TV camera tube with very high resolution capacity, CCD-Digicon detector system performance parameters, high-resolution X-ray imaging device, high-output technology microchannel plate, preconditioning of microchannel plate stacks, recent advances in small-pore microchannel plate technology, performance of long-life curved channel microchannel plates, low-noise microchannel plates, development of a quartz envelope heater.

  12. Commercial applications for optical data storage

    NASA Astrophysics Data System (ADS)

    Tas, Jeroen

    1991-03-01

    Optical data storage has spurred the market for document imaging systems. These systems are increasingly being used to electronically manage the processing, storage and retrieval of documents. Applications range from straightforward archives to sophisticated workflow management systems. The technology is developing rapidly and within a few years optical imaging facilities will be incorporated in most of the office information systems. This paper gives an overview of the status of the market, the applications and the trends of optical imaging systems.

  13. Digital imaging in dentistry.

    PubMed

    Essen, S Donovan

    2011-01-01

    Information technology is vital to operations, marketing, accounting, finance and administration. One of the most exciting and quickly evolving technologies in the modern dental office is digital applications. The dentist is often the business manager, information technology officer and strategic planning chief for his small business. The information systems triangle applies directly to this critical manager supported by properly trained ancillary staff and good equipment. With emerging technology driving all medical disciplines and the rapid pace at which it emerges, it is vital for the contemporary practitioner to keep abreast of the newest information technology developments. This article compares the strategic and operational advantages of digital applications, specifically imaging. The focus of this paper will be on digital radiography (DR), 3D computerized tomography, digital photography and digitally-driven CAD/CAM to what are now considered obsolescing modalities and contemplates what may arrive in the future. It is the purpose of this essay to succinctly evaluate the decisions involved in the role, application and implications of employing this tool in the dental environment

  14. Research on the system scheme and experiment for the active laser polarization imaging

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Duan, Jin; Zhao, Rui; Li, Zheng; Zhang, Su; Zhan, Juntong; Zhu, Yong; Jiang, Hui-Lin

    2015-10-01

    The polarization imaging detection technology increased the polarization information on the basis of the intensity imaging, which is extensive application in the military and civil and other fields. The research present and development trend of polarization imaging detection technology was introduce, the system scheme of the active polarization imaging detection was put forward, and the key technologies such as the polarization information detection, optical system design, polarization radiation calibration and image fusion approach was analyzed. On this basis, detection system by existing equipment of laboratory was set up, and on the different materials such as wood, metal, plastic and goal was detected by polarization imaging to realize the active polarization imaging detection. The results show that image contrast of the metal and man-made objects is higher, the polarization effect is better, which provided the basis on the better performance of the polarization imaging instruments.

  15. Ames Lab 101: Real-Time 3D Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Song

    2010-08-02

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  16. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema

    Zhang, Song

    2017-12-22

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  17. Review of ultrasound image guidance in external beam radiotherapy: I. Treatment planning and inter-fraction motion management

    NASA Astrophysics Data System (ADS)

    Fontanarosa, Davide; van der Meer, Skadi; Bamber, Jeffrey; Harris, Emma; O'Shea, Tuathan; Verhaegen, Frank

    2015-02-01

    In modern radiotherapy, verification of the treatment to ensure the target receives the prescribed dose and normal tissues are optimally spared has become essential. Several forms of image guidance are available for this purpose. The most commonly used forms of image guidance are based on kilovolt or megavolt x-ray imaging. Image guidance can also be performed with non-harmful ultrasound (US) waves. This increasingly used technique has the potential to offer both anatomical and functional information. This review presents an overview of the historical and current use of two-dimensional and three-dimensional US imaging for treatment verification in radiotherapy. The US technology and the implementation in the radiotherapy workflow are described. The use of US guidance in the treatment planning process is discussed. The role of US technology in inter-fraction motion monitoring and management is explained, and clinical studies of applications in areas such as the pelvis, abdomen and breast are reviewed. A companion review paper (O’Shea et al 2015 Phys. Med. Biol. submitted) will extensively discuss the use of US imaging for intra-fraction motion quantification and novel applications of US technology to RT.

  18. Review of ultrasound image guidance in external beam radiotherapy: I. Treatment planning and inter-fraction motion management.

    PubMed

    Fontanarosa, Davide; van der Meer, Skadi; Bamber, Jeffrey; Harris, Emma; O'Shea, Tuathan; Verhaegen, Frank

    2015-02-07

    In modern radiotherapy, verification of the treatment to ensure the target receives the prescribed dose and normal tissues are optimally spared has become essential. Several forms of image guidance are available for this purpose. The most commonly used forms of image guidance are based on kilovolt or megavolt x-ray imaging. Image guidance can also be performed with non-harmful ultrasound (US) waves. This increasingly used technique has the potential to offer both anatomical and functional information.This review presents an overview of the historical and current use of two-dimensional and three-dimensional US imaging for treatment verification in radiotherapy. The US technology and the implementation in the radiotherapy workflow are described. The use of US guidance in the treatment planning process is discussed. The role of US technology in inter-fraction motion monitoring and management is explained, and clinical studies of applications in areas such as the pelvis, abdomen and breast are reviewed. A companion review paper (O'Shea et al 2015 Phys. Med. Biol. submitted) will extensively discuss the use of US imaging for intra-fraction motion quantification and novel applications of US technology to RT.

  19. Segmenting Images for a Better Diagnosis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Hierarchical Segmentation (HSEG) software has been adapted by Bartron Medical Imaging, LLC, for use in segmentation feature extraction, pattern recognition, and classification of medical images. Bartron acquired licenses from NASA Goddard Space Flight Center for application of the HSEG concept to medical imaging, from the California Institute of Technology/Jet Propulsion Laboratory to incorporate pattern-matching software, and from Kennedy Space Center for data-mining and edge-detection programs. The Med-Seg[TM] united developed by Bartron provides improved diagnoses for a wide range of medical images, including computed tomography scans, positron emission tomography scans, magnetic resonance imaging, ultrasound, digitized Z-ray, digitized mammography, dental X-ray, soft tissue analysis, and moving object analysis. It also can be used in analysis of soft-tissue slides. Bartron's future plans include the application of HSEG technology to drug development. NASA is advancing it's HSEG software to learn more about the Earth's magnetosphere.

  20. Histopathological Image Analysis: A Review

    PubMed Central

    Gurcan, Metin N.; Boucheron, Laura; Can, Ali; Madabhushi, Anant; Rajpoot, Nasir; Yener, Bulent

    2010-01-01

    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement to the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe. PMID:20671804

  1. Materials, devices, techniques, and applications for Z-plane focal plane array technology II; Proceedings of the Meeting, San Diego, CA, July 12, 13, 1990

    NASA Astrophysics Data System (ADS)

    Carson, John C.

    1990-11-01

    Various papers on materials, devices, techniques, and applications for X-plane focal plane array technology are presented. Individual topics addressed include: application of Z-plane technology to the remote sensing of the earth from GEO, applications of smart neuromorphic focal planes, image-processing of Z-plane technology, neural network Z-plane implementation with very high interconnection rates, using a small IR surveillance satellite for tactical applications, establishing requirements for homing applications, Z-plane technology. Also discussed are: on-array spike suppression signal processing, algorithms for on-focal-plane gamma circumvention and time-delay integration, current HYMOSS Z-technology, packaging of electrons for on- and off-FPA signal processing, space/performance qualification of tape automated bonded devices, automation in tape automated bonding, high-speed/high-volume radiometric testing of Z-technology focal planes, 128-layer HYMOSS-module fabrication issues, automation of IRFPA production processes.

  2. [Advances in automatic detection technology for images of thin blood film of malaria parasite].

    PubMed

    Juan-Sheng, Zhang; Di-Qiang, Zhang; Wei, Wang; Xiao-Guang, Wei; Zeng-Guo, Wang

    2017-05-05

    This paper reviews the computer vision and image analysis studies aiming at automated diagnosis or screening of malaria in microscope images of thin blood film smears. On the basis of introducing the background and significance of automatic detection technology, the existing detection technologies are summarized and divided into several steps, including image acquisition, pre-processing, morphological analysis, segmentation, count, and pattern classification components. Then, the principles and implementation methods of each step are given in detail. In addition, the promotion and application in automatic detection technology of thick blood film smears are put forwarded as questions worthy of study, and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.

  3. Deployable Laboratory Applications of Nano- and Bio-Technology (Applications de nanotechnologie et biotechnologie destinees a un laboratoire deployable)

    DTIC Science & Technology

    2014-10-01

    applications of present nano-/ bio -technology include advanced health and fitness monitoring, high-resolution imaging, new environmental sensor platforms...others areas where nano-/ bio -technology development is needed: • Sensors : Diagnostic and detection kits (gene-chips, protein-chips, lab-on-chips, etc...studies on chemo- bio nano- sensors , ultra-sensitive biochips (“lab-on-a-chip” and “cells-on-chips” devices) have been prepared for routine medical

  4. Technology study of quantum remote sensing imaging

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang

    2016-02-01

    According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.

  5. Polarimetric signature imaging of anisotropic bio-medical tissues

    NASA Astrophysics Data System (ADS)

    Wu, Stewart H.; Yang, De-Ming; Chiou, Arthur; Nee, Soe-Mie F.; Nee, Tsu-Wei

    2010-02-01

    Polarimetric imaging of Stokes vector (I, Q, U, V) can provide 4 independent signatures showing the linear and circular polarizations of biological tissues and cells. Using a recently developed Stokes digital imaging system, we measured the Stokes vector images of tissue samples from sections of rat livers containing normal portions and hematomas. The derived Mueller matrix elements can quantitatively provide multi-signature data of the bio-sample. This polarimetric optical technology is a new option of biosensing technology to inspect the structures of tissue samples, particularly for discriminating tumor and non-tumor biopsy. This technology is useful for critical disease discrimination and medical diagnostics applications.

  6. Development and Current Status of Skull-Image Superimposition - Methodology and Instrumentation.

    PubMed

    Lan, Y

    1992-12-01

    This article presents a review of the literature and an evaluation on the development and application of skull-image superimposition technology - both instrumentation and methodology - contributed by a number of scholars since 1935. Along with a comparison of the methodologies involved in the two superimposition techniques - photographic and video - the author characterized the techniques in action and the recent advances in computer image superimposition processing technology. The major disadvantage of conventional approaches is its relying on subjective interpretation. Through painstaking comparison and analysis, computer image processing technology can make more conclusive identifications by direct testing and evaluating the various programmed indices. Copyright © 1992 Central Police University.

  7. "The swarming of life": moving images, education, and views through the microscope.

    PubMed

    Gaycken, Oliver

    2011-09-01

    Discussions of the scientific uses of moving-image technologies have emphasized applications that culminated in static images, such as the chronophotographic decomposition of movement into discrete and measurable instants. The projection of movement, however, was also an important capability of moving-image technologies that scientists employed in a variety of ways. Views through the microscope provide a particularly sustained and prominent instance of the scientific uses of the moving image. The category of "education" subsumes theses various scientific uses, providing a means by which to bridge the cultures of scientific and popular scientific moving images.

  8. A discussion on the use of X-band SAR images in marine applications

    NASA Astrophysics Data System (ADS)

    Schiavulli, D.; Sorrentino, A.; Migliaccio, M.

    2012-10-01

    The Synthetic Aperture Radar (SAR) is able to generate images of the sea surface that can be exploited to extract geophysical information of environmental interest. In order to enhance the operational use of these data in the marine applications the revisit time is to be improved. This goal can be achieved by using SAR virtual or real constellations and/or exploiting new antenna technologies that allow huge swath and fine resolution. Within this framework, the presence of the Italian and German X-band SAR constellations is of special interest while the new SAR technologies are not nowadays operated. Although SAR images are considered to be independent of weather conditions, this is only partially true at higher frequencies, e.g. X-band. In fact, observations can present signature corresponding to high intensity precipitating clouds, i.e. rain cells. Further, ScanSAR images may be characterized by the presence of processing artifacts, called scalloping, that corrupt image interpretation. In this paper we review these key facts that are at the basis of an effective use of X-band SAR images for marine applications.

  9. A Plane Target Detection Algorithm in Remote Sensing Images based on Deep Learning Network Technology

    NASA Astrophysics Data System (ADS)

    Shuxin, Li; Zhilong, Zhang; Biao, Li

    2018-01-01

    Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.

  10. Carnegie Mellon University bioimaging day 2014: Challenges and opportunities in digital pathology

    PubMed Central

    Rohde, Gustavo K.; Ozolek, John A.; Parwani, Anil V.; Pantanowitz, Liron

    2014-01-01

    Recent advances in digital imaging is impacting the practice of pathology. One of the key enabling technologies that is leading the way towards this transformation is the use of whole slide imaging (WSI) which allows glass slides to be converted into large image files that can be shared, stored, and analyzed rapidly. Many applications around this novel technology have evolved in the last decade including education, research and clinical applications. This publication highlights a collection of abstracts, each corresponding to a talk given at Carnegie Mellon University's (CMU) Bioimaging Day 2014 co-sponsored by the Biomedical Engineering and Lane Center for Computational Biology Departments at CMU. Topics related specifically to digital pathology are presented in this collection of abstracts. These include topics related to digital workflow implementation, imaging and artifacts, storage demands, and automated image analysis algorithms. PMID:25250190

  11. Carnegie Mellon University bioimaging day 2014: Challenges and opportunities in digital pathology.

    PubMed

    Rohde, Gustavo K; Ozolek, John A; Parwani, Anil V; Pantanowitz, Liron

    2014-01-01

    Recent advances in digital imaging is impacting the practice of pathology. One of the key enabling technologies that is leading the way towards this transformation is the use of whole slide imaging (WSI) which allows glass slides to be converted into large image files that can be shared, stored, and analyzed rapidly. Many applications around this novel technology have evolved in the last decade including education, research and clinical applications. This publication highlights a collection of abstracts, each corresponding to a talk given at Carnegie Mellon University's (CMU) Bioimaging Day 2014 co-sponsored by the Biomedical Engineering and Lane Center for Computational Biology Departments at CMU. Topics related specifically to digital pathology are presented in this collection of abstracts. These include topics related to digital workflow implementation, imaging and artifacts, storage demands, and automated image analysis algorithms.

  12. Extending the imaging volume for biometric iris recognition.

    PubMed

    Narayanswamy, Ramkumar; Johnson, Gregory E; Silveira, Paulo E X; Wach, Hans B

    2005-02-10

    The use of the human iris as a biometric has recently attracted significant interest in the area of security applications. The need to capture an iris without active user cooperation places demands on the optical system. Unlike a traditional optical design, in which a large imaging volume is traded off for diminished imaging resolution and capacity for collecting light, Wavefront Coded imaging is a computational imaging technology capable of expanding the imaging volume while maintaining an accurate and robust iris identification capability. We apply Wavefront Coded imaging to extend the imaging volume of the iris recognition application.

  13. A Review of Indocyanine Green Fluorescent Imaging in Surgery

    PubMed Central

    Alander, Jarmo T.; Kaartinen, Ilkka; Laakso, Aki; Pätilä, Tommi; Spillmann, Thomas; Tuchin, Valery V.; Venermo, Maarit; Välisuo, Petri

    2012-01-01

    The purpose of this paper is to give an overview of the recent surgical intraoperational applications of indocyanine green fluorescence imaging methods, the basics of the technology, and instrumentation used. Well over 200 papers describing this technique in clinical setting are reviewed. In addition to the surgical applications, other recent medical applications of ICG are briefly examined. PMID:22577366

  14. Electric Potential and Electric Field Imaging with Dynamic Applications: 2017 Research Award Innovation

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  15. CMEIAS color segmentation: an improved computing technology to process color images for quantitative microbial ecology studies at single-cell resolution.

    PubMed

    Gross, Colin A; Reddy, Chandan K; Dazzo, Frank B

    2010-02-01

    Quantitative microscopy and digital image analysis are underutilized in microbial ecology largely because of the laborious task to segment foreground object pixels from background, especially in complex color micrographs of environmental samples. In this paper, we describe an improved computing technology developed to alleviate this limitation. The system's uniqueness is its ability to edit digital images accurately when presented with the difficult yet commonplace challenge of removing background pixels whose three-dimensional color space overlaps the range that defines foreground objects. Image segmentation is accomplished by utilizing algorithms that address color and spatial relationships of user-selected foreground object pixels. Performance of the color segmentation algorithm evaluated on 26 complex micrographs at single pixel resolution had an overall pixel classification accuracy of 99+%. Several applications illustrate how this improved computing technology can successfully resolve numerous challenges of complex color segmentation in order to produce images from which quantitative information can be accurately extracted, thereby gain new perspectives on the in situ ecology of microorganisms. Examples include improvements in the quantitative analysis of (1) microbial abundance and phylotype diversity of single cells classified by their discriminating color within heterogeneous communities, (2) cell viability, (3) spatial relationships and intensity of bacterial gene expression involved in cellular communication between individual cells within rhizoplane biofilms, and (4) biofilm ecophysiology based on ribotype-differentiated radioactive substrate utilization. The stand-alone executable file plus user manual and tutorial images for this color segmentation computing application are freely available at http://cme.msu.edu/cmeias/ . This improved computing technology opens new opportunities of imaging applications where discriminating colors really matter most, thereby strengthening quantitative microscopy-based approaches to advance microbial ecology in situ at individual single-cell resolution.

  16. An HDR imaging method with DTDI technology for push-broom cameras

    NASA Astrophysics Data System (ADS)

    Sun, Wu; Han, Chengshan; Xue, Xucheng; Lv, Hengyi; Shi, Junxia; Hu, Changhong; Li, Xiangzhi; Fu, Yao; Jiang, Xiaonan; Huang, Liang; Han, Hongyin

    2018-03-01

    Conventionally, high dynamic-range (HDR) imaging is based on taking two or more pictures of the same scene with different exposure. However, due to a high-speed relative motion between the camera and the scene, it is hard for this technique to be applied to push-broom remote sensing cameras. For the sake of HDR imaging in push-broom remote sensing applications, the present paper proposes an innovative method which can generate HDR images without redundant image sensors or optical components. Specifically, this paper adopts an area array CMOS (complementary metal oxide semiconductor) with the digital domain time-delay-integration (DTDI) technology for imaging, instead of adopting more than one row of image sensors, thereby taking more than one picture with different exposure. And then a new HDR image by fusing two original images with a simple algorithm can be achieved. By conducting the experiment, the dynamic range (DR) of the image increases by 26.02 dB. The proposed method is proved to be effective and has potential in other imaging applications where there is a relative motion between the cameras and scenes.

  17. Conference on Charge-Coupled Device Technology and Applications

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers were presented from the conference on charge coupled device technology and applications. The following topics were investigated: data processing; infrared; devices and testing; electron-in, x-ray, radiation; and applications. The emphasis was on the advances of mutual relevance and potential significance both to industry and NASA's current and future requirements in all fields of imaging, signal processing and memory.

  18. Target Detection Using an AOTF Hyperspectral Imager

    NASA Technical Reports Server (NTRS)

    Cheng, L-J.; Mahoney, J.; Reyes, F.; Suiter, H.

    1994-01-01

    This paper reports results of a recent field experiment using a prototype system to evaluate the acousto-optic tunable filter polarimetric hyperspectral imaging technology for target detection applications.

  19. Augmented reality technology for preoperative planning and intraoperative navigation during hepatobiliary surgery: A review of current methods.

    PubMed

    Tang, Rui; Ma, Long-Fei; Rong, Zhi-Xia; Li, Mo-Dan; Zeng, Jian-Ping; Wang, Xue-Dong; Liao, Hong-En; Dong, Jia-Hong

    2018-04-01

    Augmented reality (AR) technology is used to reconstruct three-dimensional (3D) images of hepatic and biliary structures from computed tomography and magnetic resonance imaging data, and to superimpose the virtual images onto a view of the surgical field. In liver surgery, these superimposed virtual images help the surgeon to visualize intrahepatic structures and therefore, to operate precisely and to improve clinical outcomes. The keywords "augmented reality", "liver", "laparoscopic" and "hepatectomy" were used for searching publications in the PubMed database. The primary source of literatures was from peer-reviewed journals up to December 2016. Additional articles were identified by manual search of references found in the key articles. In general, AR technology mainly includes 3D reconstruction, display, registration as well as tracking techniques and has recently been adopted gradually for liver surgeries including laparoscopy and laparotomy with video-based AR assisted laparoscopic resection as the main technical application. By applying AR technology, blood vessels and tumor structures in the liver can be displayed during surgery, which permits precise navigation during complex surgical procedures. Liver transformation and registration errors during surgery were the main factors that limit the application of AR technology. With recent advances, AR technologies have the potential to improve hepatobiliary surgical procedures. However, additional clinical studies will be required to evaluate AR as a tool for reducing postoperative morbidity and mortality and for the improvement of long-term clinical outcomes. Future research is needed in the fusion of multiple imaging modalities, improving biomechanical liver modeling, and enhancing image data processing and tracking technologies to increase the accuracy of current AR methods. Copyright © 2018 First Affiliated Hospital, Zhejiang University School of Medicine in China. Published by Elsevier B.V. All rights reserved.

  20. A Vision of Quantitative Imaging Technology for Validation of Advanced Flight Technologies

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Kerns, Robert V.; Jones, Kenneth M.; Grinstead, Jay H.; Schwartz, Richard J.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Dantowitz, Ronald F.

    2011-01-01

    Flight-testing is traditionally an expensive but critical element in the development and ultimate validation and certification of technologies destined for future operational capabilities. Measurements obtained in relevant flight environments also provide unique opportunities to observe flow phenomenon that are often beyond the capabilities of ground testing facilities and computational tools to simulate or duplicate. However, the challenges of minimizing vehicle weight and internal complexity as well as instrumentation bandwidth limitations often restrict the ability to make high-density, in-situ measurements with discrete sensors. Remote imaging offers a potential opportunity to noninvasively obtain such flight data in a complementary fashion. The NASA Hypersonic Thermodynamic Infrared Measurements Project has demonstrated such a capability to obtain calibrated thermal imagery on a hypersonic vehicle in flight. Through the application of existing and accessible technologies, the acreage surface temperature of the Shuttle lower surface was measured during reentry. Future hypersonic cruise vehicles, launcher configurations and reentry vehicles will, however, challenge current remote imaging capability. As NASA embarks on the design and deployment of a new Space Launch System architecture for access beyond earth orbit (and the commercial sector focused on low earth orbit), an opportunity exists to implement an imagery system and its supporting infrastructure that provides sufficient flexibility to incorporate changing technology to address the future needs of the flight test community. A long term vision is offered that supports the application of advanced multi-waveband sensing technology to aid in the development of future aerospace systems and critical technologies to enable highly responsive vehicle operations across the aerospace continuum, spanning launch, reusable space access and global reach. Motivations for development of an Agency level imagery-based measurement capability to support cross cutting applications that span the Agency mission directorates as well as meeting potential needs of the commercial sector and national interests of the Intelligence, Surveillance and Reconnaissance community are explored. A recommendation is made for an assessment study to baseline current imaging technology including the identification of future mission requirements. Development of requirements fostered by the applications suggested in this paper would be used to identify technology gaps and direct roadmapping for implementation of an affordable and sustainable next generation sensor/platform system.

  1. The history of MR imaging as seen through the pages of radiology.

    PubMed

    Edelman, Robert R

    2014-11-01

    The first reports in Radiology pertaining to magnetic resonance (MR) imaging were published in 1980, 7 years after Paul Lauterbur pioneered the first MR images and 9 years after the first human computed tomographic images were obtained. Historical advances in the research and clinical applications of MR imaging very much parallel the remarkable advances in MR imaging technology. These advances can be roughly classified into hardware (eg, magnets, gradients, radiofrequency [RF] coils, RF transmitter and receiver, MR imaging-compatible biopsy devices) and imaging techniques (eg, pulse sequences, parallel imaging, and so forth). Image quality has been dramatically improved with the introduction of high-field-strength superconducting magnets, digital RF systems, and phased-array coils. Hybrid systems, such as MR/positron emission tomography (PET), combine the superb anatomic and functional imaging capabilities of MR imaging with the unsurpassed capability of PET to demonstrate tissue metabolism. Supported by the improvements in hardware, advances in pulse sequence design and image reconstruction techniques have spurred dramatic improvements in imaging speed and the capability for studying tissue function. In this historical review, the history of MR imaging technology and developing research and clinical applications, as seen through the pages of Radiology, will be considered.

  2. MALDI mass spectrometry imaging, from its origins up to today: the state of the art.

    PubMed

    Francese, Simona; Dani, Francesca R; Traldi, Pietro; Mastrobuoni, Guido; Pieraccini, Giuseppe; Moneti, Gloriano

    2009-02-01

    Mass Spectrometry (MS) has a number of features namely sensitivity, high dynamic range, high resolution, and versatility which make it a very powerful analytical tool for a wide spectrum of applications spanning all the life science fields. Among all the MS techniques, MALDI Imaging mass spectrometry (MALDI MSI) is currently one of the most exciting both for its rapid technological improvements, and for its great potential in high impact bioscience fields. Here, MALDI MSI general principles are described along with technical and instrumental details as well as application examples. Imaging MS instruments and imaging mass spectrometric techniques other than MALDI, are presented along with examples of their use. As well as reporting MSI successes in several bioscience fields, an attempt is made to take stock of what has been achieved so far with this technology and to discuss the analytical and technological advances required for MSI to be applied as a routine technique in clinical diagnostics, clinical monitoring and in drug discovery.

  3. Anterior Eye Imaging with Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Huang, David; Li, Yan; Tang, Maolong

    The development of corneal and anterior segment optical coherence tomography (OCT) technology has advanced rapidly in recently years. The scan geometry and imaging wavelength are both important choices to make in designing anterior segment OCT systems. Rectangular scan geometry offers the least image distortion and is now used in most anterior OCT systems. The wavelength of OCT light source affects resolution and penetration. An optimal choice of the OCT imaging wavelength (840, 1,050, or 1,310 nm) depends on the application of interest. Newer generation Fourier-domain OCT technology can provide scan speed 100-1000 times faster than the time-domain technology. Various commercial anterior OCT systems are available on the market. A wide spectrum of diagnostic and surgical applications using anterior segment OCT had been investigated, including mapping of corneal and epithelial thicknesses, keratoconus screening, measuring corneal refractive power, corneal surgery planning and evaluation in LASIK, intracorneal ring implantation, assessment of angle closure glaucoma, anterior chamber biometry and intraocular lens implants, intraocular lens power calculation, and eye bank donor cornea screening.

  4. Ultrahigh- and high-speed photography, videography, and photonics '91; Proceedings of the Meeting, San Diego, CA, July 24-26, 1991

    NASA Astrophysics Data System (ADS)

    Jaanimagi, Paul A.

    1992-01-01

    This volume presents papers grouped under the topics on advances in streak and framing camera technology, applications of ultrahigh-speed photography, characterizing high-speed instrumentation, high-speed electronic imaging technology and applications, new technology for high-speed photography, high-speed imaging and photonics in detonics, and high-speed velocimetry. The papers presented include those on a subpicosecond X-ray streak camera, photocathodes for ultrasoft X-ray region, streak tube dynamic range, high-speed TV cameras for streak tube readout, femtosecond light-in-flight holography, and electrooptical systems characterization techniques. Attention is also given to high-speed electronic memory video recording techniques, high-speed IR imaging of repetitive events using a standard RS-170 imager, use of a CCD array as a medium-speed streak camera, the photography of shock waves in explosive crystals, a single-frame camera based on the type LD-S-10 intensifier tube, and jitter diagnosis for pico- and femtosecond sources.

  5. Integrating medical imaging analyses through a high-throughput bundled resource imaging system

    NASA Astrophysics Data System (ADS)

    Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.

    2011-03-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists.

  6. Preclinical Whole-body Fluorescence Imaging: Review of Instruments, Methods and Applications

    PubMed Central

    Leblond, Frederic; Davis, Scott C.; Valdés, Pablo A.; Pogue, Brain W.

    2013-01-01

    Fluorescence sampling of cellular function is widely used in all aspects of biology, allowing the visualization of cellular and sub-cellular biological processes with spatial resolutions in the range from nanometers up to centimeters. Imaging of fluorescence in vivo has become the most commonly used radiological tool in all pre-clinical work. In the last decade, full-body pre-clinical imaging systems have emerged with a wide range of utilities and niche application areas. The range of fluorescent probes that can be excited in the visible to near-infrared part of the electromagnetic spectrum continues to expand, with the most value for in vivo use being beyond the 630 nm wavelength, because the absorption of light sharply decreases. Whole-body in vivo fluorescence imaging has not yet reached a state of maturity that allows its routine use in the scope of large-scale pre-clinical studies. This is in part due to an incomplete understanding of what the actual fundamental capabilities and limitations of this imaging modality are. However, progress is continuously being made in research laboratories pushing the limits of the approach to consistently improve its performance in terms of spatial resolution, sensitivity and quantification. This paper reviews this imaging technology with a particular emphasis on its potential uses and limitations, the required instrumentation, and the possible imaging geometries and applications. A detailed account of the main commercially available systems is provided as well as some perspective relating to the future of the technology development. Although the vast majority of applications of in vivo small animal imaging are based on epi-illumination planar imaging, the future success of the method relies heavily on the design of novel imaging systems based on state-of-the-art optical technology used in conjunction with high spatial resolution structural modalities such as MRI, CT or ultra-sound. PMID:20031443

  7. The Multispectral Imaging Science Working Group. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Cox, S. C. (Editor)

    1982-01-01

    The status and technology requirements for using multispectral sensor imagery in geographic, hydrologic, and geologic applications are examined. Critical issues in image and information science are identified.

  8. High-density Schottky barrier IRCCD sensors for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Elabd, H.; Tower, J. R.; McCarthy, B. M.

    1983-01-01

    It is pointed out that the ambitious goals envisaged for the next generation of space-borne sensors challenge the state-of-the-art in solid-state imaging technology. Studies are being conducted with the aim to provide focal plane array technology suitable for use in future Multispectral Linear Array (MLA) earth resource instruments. An important new technology for IR-image sensors involves the use of monolithic Schottky barrier infrared charge-coupled device arrays. This technology is suitable for earth sensing applications in which moderate quantum efficiency and intermediate operating temperatures are required. This IR sensor can be fabricated by using standard integrated circuit (IC) processing techniques, and it is possible to employ commercial IC grade silicon. For this reason, it is feasible to construct Schottky barrier area and line arrays with large numbers of elements and high-density designs. A Pd2Si Schottky barrier sensor for multispectral imaging in the 1 to 3.5 micron band is under development.

  9. Specialized CCDs for high-frame-rate visible imaging and UV imaging applications

    NASA Astrophysics Data System (ADS)

    Levine, Peter A.; Taylor, Gordon C.; Shallcross, Frank V.; Tower, John R.; Lawler, William B.; Harrison, Lorna J.; Socker, Dennis G.; Marchywka, Mike

    1993-11-01

    This paper reports recent progress by the authors in two distinct charge coupled device (CCD) technology areas. The first technology area is high frame rate, multi-port, frame transfer imagers. A 16-port, 512 X 512, split frame transfer imager and a 32-port, 1024 X 1024, split frame transfer imager are described. The thinned, backside illuminated devices feature on-chip correlated double sampling, buried blooming drains, and a room temperature dark current of less than 50 pA/cm2, without surface accumulation. The second technology area is vacuum ultraviolet (UV) frame transfer imagers. A developmental 1024 X 640 frame transfer imager with 20% quantum efficiency at 140 nm is described. The device is fabricated in a p-channel CCD process, thinned for backside illumination, and utilizes special packaging to achieve stable UV response.

  10. Nano-Computed Tomography: Technique and Applications.

    PubMed

    Kampschulte, M; Langheinirch, A C; Sender, J; Litzlbauer, H D; Althöhn, U; Schwab, J D; Alejandre-Lafont, E; Martels, G; Krombach, G A

    2016-02-01

    Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE (-/-)/LDLR(-/-) double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques. Nano-computed tomography is a high resolution CT-technology for 3D imaging at sub-micrometer resolution. The technical concept bases on a further development of the established ex-vivo-micro-CT technology. By improvement of the spatial resolution, structures at a cellular level become visible (e.g. osteocyte lacunae). © Georg Thieme Verlag KG Stuttgart · New York.

  11. Spatial information technologies for remote sensing today and tomorrow; Proceedings of the Ninth Pecora Symposium, Sioux Falls, SD, October 2-4, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics discussed at the symposium include hardware, geographic information system (GIS) implementation, processing remotely sensed data, spatial data structures, and NASA programs in remote sensing information systems. Attention is also given GIS applications, advanced techniques, artificial intelligence, graphics, spatial navigation, and classification. Papers are included on the design of computer software for geographic image processing, concepts for a global resource information system, algorithm development for spatial operators, and an application of expert systems technology to remotely sensed image analysis.

  12. Space Images for NASA JPL Android Version

    NASA Technical Reports Server (NTRS)

    Nelson, Jon D.; Gutheinz, Sandy C.; Strom, Joshua R.; Arca, Jeremy M.; Perez, Martin; Boggs, Karen; Stanboli, Alice

    2013-01-01

    This software addresses the demand for easily accessible NASA JPL images and videos by providing a user friendly and simple graphical user interface that can be run via the Android platform from any location where Internet connection is available. This app is complementary to the iPhone version of the application. A backend infrastructure stores, tracks, and retrieves space images from the JPL Photojournal and Institutional Communications Web server, and catalogs the information into a streamlined rating infrastructure. This system consists of four distinguishing components: image repository, database, server-side logic, and Android mobile application. The image repository contains images from various JPL flight projects. The database stores the image information as well as the user rating. The server-side logic retrieves the image information from the database and categorizes each image for display. The Android mobile application is an interfacing delivery system that retrieves the image information from the server for each Android mobile device user. Also created is a reporting and tracking system for charting and monitoring usage. Unlike other Android mobile image applications, this system uses the latest emerging technologies to produce image listings based directly on user input. This allows for countless combinations of images returned. The backend infrastructure uses industry-standard coding and database methods, enabling future software improvement and technology updates. The flexibility of the system design framework permits multiple levels of display possibilities and provides integration capabilities. Unique features of the software include image/video retrieval from a selected set of categories, image Web links that can be shared among e-mail users, sharing to Facebook/Twitter, marking as user's favorites, and image metadata searchable for instant results.

  13. Dicoogle Mobile: a medical imaging platform for Android.

    PubMed

    Viana-Ferreira, Carlos; Ferreira, Daniel; Valente, Frederico; Monteiro, Eriksson; Costa, Carlos; Oliveira, José Luís

    2012-01-01

    Mobile computing technologies are increasingly becoming a valuable asset in healthcare information systems. The adoption of these technologies helps to assist in improving quality of care, increasing productivity and facilitating clinical decision support. They provide practitioners with ubiquitous access to patient records, being actually an important component in telemedicine and tele-work environments. We have developed Dicoogle Mobile, an Android application that provides remote access to distributed medical imaging data through a cloud relay service. Besides, this application has the capability to store and index local imaging data, so that they can also be searched and visualized. In this paper, we will describe Dicoogle Mobile concept as well the architecture of the whole system that makes it running.

  14. From Mars to man - Biomedical research at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Beckenbach, E. S.

    1984-01-01

    In the course of the unmanned exploration of the solar system, which the California Institute of Technology's Jet Propulsion Laboratory has managed for NASA, major advances in computerized image processing, materials research, and miniature electronics design have been accomplished. This presentation shows some of the imaging results from space exploration missions, as well as biomedical research tasks based in these technologies. Among other topics, the use of polymeric microspheres in cancer therapy is discussed. Also included are ceramic applications to prosthesis development, laser applications in the treatment of coronary artery disease, multispectral imaging as used in the diagnosis of thermal burn injury, and some examples of telemetry systems as they can be involved in biological systems.

  15. Aerospace Technology Innovation. Volume 10

    NASA Technical Reports Server (NTRS)

    Turner, Janelle (Editor); Cousins, Liz (Editor); Bennett, Evonne (Editor); Vendette, Joel (Editor); West, Kenyon (Editor)

    2002-01-01

    Whether finding new applications for existing NASA technologies or developing unique marketing strategies to demonstrate them, NASA's offices are committed to identifying unique partnering opportunities. Through their efforts NASA leverages resources through joint research and development, and gains new insight into the core areas relevant to all NASA field centers. One of the most satisfying aspects of my job comes when I learn of a mission-driven technology that can be spun-off to touch the lives of everyday people. NASA's New Partnerships in Medical Diagnostic Imaging is one such initiative. Not only does it promise to provide greater dividends for the country's investment in aerospace research, but also to enhance the American quality of life. This issue of Innovation highlights the new NASA-sponsored initiative in medical imaging. Early in 2001, NASA announced the launch of the New Partnerships in Medical Diagnostic Imaging initiative to promote the partnership and commercialization of NASA technologies in the medical imaging industry. NASA and the medical imaging industry share a number of crosscutting technologies in areas such as high-performance detectors and image-processing tools. Many of the opportunities for joint development and technology transfer to the medical imaging market also hold the promise for future spin back to NASA.

  16. Custom large scale integrated circuits for spaceborne SAR processors

    NASA Technical Reports Server (NTRS)

    Tyree, V. C.

    1978-01-01

    The application of modern LSI technology to the development of a time-domain azimuth correlator for SAR processing is discussed. General design requirements for azimuth correlators for missions such as SEASAT-A, Venus orbital imaging radar (VOIR), and shuttle imaging radar (SIR) are summarized. Several azimuth correlator architectures that are suitable for implementation using custom LSI devices are described. Technical factors pertaining to selection of appropriate LSI technologies are discussed, and the maturity of alternative technologies for spacecraft applications are reported in the context of expected space mission launch dates. The preliminary design of a custom LSI time-domain azimuth correlator device (ACD) being developed for use in future SAR processors is detailed.

  17. Application of multimedia image technology in engineering report demonstration system

    NASA Astrophysics Data System (ADS)

    Lili, Jiang

    2018-03-01

    With the rapid development of global economic integration, people’s strong desire for a wide range of global exchanges and interactions has been promoted, and there are more unprecedented convenient means for people to know the world and even to transform the world. At this stage, we realize that the traditional mode of work has become difficult to adapt to the changing trends of the world and informatization, multimedia, science and technology have become the mainstream of the times. Therefore, this paper will mainly analyze the present situation of the project report demonstration system and the key points of the work and put forward with pertinence specific application strategy of the integration with multimedia image technology.

  18. [Progress in Application of Measuring Skeleton by CT in Forensic Anthropology Research].

    PubMed

    Miao, C Y; Xu, L; Wang, N; Zhang, M; Li, Y S; Lü, J X

    2017-02-01

    Individual identification by measuring the human skeleton is an important research in the field of forensic anthropology. Computed tomography (CT) technology can provide high-resolution image of skeleton. Skeleton image can be reformed by software in the post-processing workstation. Different skeleton measurement indexes of anthropology, such as diameter, angle, area and volume, can be measured on section and reformative images. Measurement process is barely affected by human factors. This paper reviews the literatures at home and abroad about the application of measuring skeleton by CT in forensic anthropology research for individual identification in four aspects, including sex determination, height infer, facial soft tissue thickness measurement and age estimation. The major technology and the application of CT in forensic anthropology research are compared and discussed, respectively. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  19. [Medical imaging in tumor precision medicine: opportunities and challenges].

    PubMed

    Xu, Jingjing; Tan, Yanbin; Zhang, Minming

    2017-05-25

    Tumor precision medicine is an emerging approach for tumor diagnosis, treatment and prevention, which takes account of individual variability of environment, lifestyle and genetic information. Tumor precision medicine is built up on the medical imaging innovations developed during the past decades, including the new hardware, new imaging agents, standardized protocols, image analysis and multimodal imaging fusion technology. Also the development of automated and reproducible analysis algorithm has extracted large amount of information from image-based features. With the continuous development and mining of tumor clinical and imaging databases, the radiogenomics, radiomics and artificial intelligence have been flourishing. Therefore, these new technological advances bring new opportunities and challenges to the application of imaging in tumor precision medicine.

  20. What does voice-processing technology support today?

    PubMed Central

    Nakatsu, R; Suzuki, Y

    1995-01-01

    This paper describes the state of the art in applications of voice-processing technologies. In the first part, technologies concerning the implementation of speech recognition and synthesis algorithms are described. Hardware technologies such as microprocessors and DSPs (digital signal processors) are discussed. Software development environment, which is a key technology in developing applications software, ranging from DSP software to support software also is described. In the second part, the state of the art of algorithms from the standpoint of applications is discussed. Several issues concerning evaluation of speech recognition/synthesis algorithms are covered, as well as issues concerning the robustness of algorithms in adverse conditions. Images Fig. 3 PMID:7479720

  1. Synthetic Aperture Radar (SAR) data processing

    NASA Technical Reports Server (NTRS)

    Beckner, F. L.; Ahr, H. A.; Ausherman, D. A.; Cutrona, L. J.; Francisco, S.; Harrison, R. E.; Heuser, J. S.; Jordan, R. L.; Justus, J.; Manning, B.

    1978-01-01

    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed.

  2. Advanced electro-optical imaging techniques. [conference papers on sensor technology applicable to Large Space Telescope program

    NASA Technical Reports Server (NTRS)

    Sobieski, S. (Editor); Wampler, E. J. (Editor)

    1973-01-01

    The papers presented at the symposium are given which deal with the present state of sensors, as may be applicable to the Large Space Telescope (LST) program. Several aspects of sensors are covered including a discussion of the properties of photocathodes and the operational imaging camera tubes.

  3. Enhanced Images for Checked and Carry-on Baggage and Cargo Screening

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Rahman, Zia-ur; Jobson, Daniel J.; Hines, Glenn

    2004-01-01

    The current X-ray systems used by airport security personnel for the detection of contraband, and objects such as knives and guns that can impact the security of a flight, have limited effect because of the limited display quality of the X-ray images. Since the displayed images do not possess optimal contrast and sharpness, it is possible for the security personnel to miss potentially hazardous objects. This problem is also common to other disciplines such as medical Xrays, and can be mitigated, to a large extent, by the use of state-of-the-art image processing techniques to enhance the contrast and sharpness of the displayed image. The NASA Langley Research Center's Visual Information Processing Group has developed an image enhancement technology that has direct applications to this problem of inadequate display quality. Airport security X-ray imaging systems would benefit considerably by using this novel technology, making the task of the personnel who have to interpret the X-ray images considerably easier, faster, and more reliable. This improvement would translate into more accurate screening as well as minimizing the screening time delays to airline passengers. This technology, Retinex, has been optimized for consumer applications but has been applied to medical X-rays on a very preliminary basis. The resultant technology could be incorporated into a new breed of commercial x-ray imaging systems which would be transparent to the screener yet allow them to see subtle detail much more easily, reducing the amount of time needed for screening while greatly increasing the effectiveness of contraband detection and thus public safety.

  4. Enhanced Images for Checked and Carry-on Baggage and Cargo Screening

    NASA Technical Reports Server (NTRS)

    Woodell, Glen; Rahman, Zia-ur; Jobson, Daniel J.; Hines, Glenn

    2004-01-01

    The current X-ray systems used by airport security personnel for the detection of contraband, and objects such as knives and guns that can impact the security of a flight, have limited effect because of the limited display quality of the X-ray images. Since the displayed images do not possess optimal contrast and sharpness, it is possible for the security personnel to miss potentially hazardous objects. This problem is also common to other disciplines such as medical X-rays, and can be mitigated, to a large extent, by the use of state-of-the-art image processing techniques to enhance the contrast and sharpness of the displayed image. The NASA Langley Research Centers Visual Information Processing Group has developed an image enhancement technology that has direct applications to this problem of inadequate display quality. Airport security X-ray imaging systems would benefit considerably by using this novel technology, making the task of the personnel who have to interpret the X-ray images considerably easier, faster, and more reliable. This improvement would translate into more accurate screening as well as minimizing the screening time delays to airline passengers. This technology, Retinex, has been optimized for consumer applications but has been applied to medical X-rays on a very preliminary basis. The resultant technology could be incorporated into a new breed of commercial x-ray imaging systems which would be transparent to the screener yet allow them to see subtle detail much more easily, reducing the amount of time needed for screening while greatly increasing the effectiveness of contraband detection and thus public safety.

  5. Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer

    PubMed Central

    2014-01-01

    This review article is meant to help biomedical engineers and nonphysical scientists better understand the principles of, and the main trends in modern scanning and imaging modalities used in ophthalmology. It is intended to ease the communication between physicists, medical doctors and engineers, and hopefully encourage “classical” biomedical engineers to generate new ideas and to initiate projects in an area which has traditionally been dominated by optical physics. Most of the methods involved are applicable to other areas of biomedical optics and optoelectronics, such as microscopic imaging, spectroscopy, spectral imaging, opto-acoustic tomography, fluorescence imaging etc., all of which are with potential biomedical application. Although all described methods are novel and important, the emphasis of this review has been placed on three technologies introduced in the 1990’s and still undergoing vigorous development: Confocal Scanning Laser Ophthalmoscopy, Optical Coherence Tomography, and polarization-sensitive retinal scanning. PMID:24779618

  6. Optical coherence tomography – current and future applications

    PubMed Central

    Adhi, Mehreen; Duker, Jay S.

    2013-01-01

    Purpose of review Optical coherence tomography (OCT) has revolutionized the clinical practice of ophthalmology. It is a noninvasive imaging technique that provides high-resolution, cross-sectional images of the retina, retinal nerve fiber layer and the optic nerve head. This review discusses the present applications of the commercially available spectral-domain OCT (SD-OCT) systems in the diagnosis and management of retinal diseases, with particular emphasis on choroidal imaging. Future directions of OCT technology and their potential clinical uses are discussed. Recent findings Analysis of the choroidal thickness in healthy eyes and disease states such as age-related macular degeneration, central serous chorioretinopathy, diabetic retinopathy and inherited retinal dystrophies has been successfully achieved using SD-OCT devices with software improvements. Future OCT innovations such as longer-wavelength OCT systems including the swept-source technology, along with Doppler OCT and en-face imaging, may improve the detection of subtle microstructural changes in chorioretinal diseases by improving imaging of the choroid. Summary Advances in OCT technology provide for better understanding of pathogenesis, improved monitoring of progression and assistance in quantifying response to treatment modalities in diseases of the posterior segment of the eye. Further improvements in both hardware and software technologies should further advance the clinician’s ability to assess and manage chorioretinal diseases. PMID:23429598

  7. Portable Hyperspectral Imaging Broadens Sensing Horizons

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Broadband multispectral imaging can be very helpful in showing differences in energy being radiated and is often employed by NASA satellites to monitor temperature and climate changes. In addition, hyperspectral imaging is ideal for advanced laboratory uses, biomedical imaging, forensics, counter-terrorism, skin health, food safety, and Earth imaging. Lextel Intelligence Systems, LLC, of Jackson, Mississippi purchased Photon Industries Inc., a spinoff company of NASA's Stennis Space Center and the Institute for Technology Development dedicated to developing new hyperspectral imaging technologies. Lextel has added new features to and expanded the applicability of the hyperspectral imaging systems. It has made advances in the size, usability, and cost of the instruments. The company now offers a suite of turnkey hyperspectral imaging systems based on the original NASA groundwork. It currently has four lines of hyperspectral imaging products: the EagleEye VNIR 100E, the EagleEye SWIR 100E, the EagleEye SWIR 200E, and the EagleEye UV 100E. These Lextel instruments are used worldwide for a wide variety of applications including medical, military, forensics, and food safety.

  8. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    PubMed

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  9. Inflection Points in Magnetic Resonance Imaging Technology-35 Years of Collaborative Research and Development.

    PubMed

    Wood, Michael L; Griswold, Mark A; Henkelman, Mark; Hennig, Jürgen

    2015-09-01

    The technology for clinical magnetic resonance imaging (MRI) has advanced with remarkable speed and in such a manner reflecting the influence of 3 forces-collaboration between disciplines, collaboration between academia and industry, and the enabling of software applications by hardware. The forces are evident in the key developments from the past and emerging trends for the future highlighted in this review article. These developments are associated with MRI system attributes, such as wider, shorter, and stronger magnets; specialty magnets and hybrid devices; k space; and the notion that magnetic field gradients perform a Fourier transform on the spatial distribution of magnetization, phased-array coils and parallel imaging, the user interface, the wide range of contrast possible, and applications that exploit motion-induced phase shifts. An attempt is made to show connections between these developments and how the 3 forces mentioned previously will continue to shape the technology used so productively in clinical MRI.

  10. Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)

    NASA Technical Reports Server (NTRS)

    Morris, G. Michael; Michaels, Robert L.; Faklis, Dean

    1992-01-01

    Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.

    Pacific Northwest National Laboratory researchers have been at the forefront of developing innovative screening systems to enhance security and a novel imaging system to provide custom-fit clothing using holographic radar imaging techniques. First-of-a-kind cylindrical holographic imaging systems have been developed to screen people at security checkpoints for the detection of concealed, body worn, non-metallic threats such as plastic and liquid explosives, knifes and contraband. Another embodiment of this technology is capable of obtaining full sized body measurements in near real time without the person under surveillance removing their outer garments. Radar signals readily penetrate clothing and reflect off the watermore » in skin. This full body measurement system is commercially available for best fitting ready to wear clothing, which was the first “biometric” application for this technology. One compelling feature of this technology for security biometric applications is that it can see effectively through disguises, appliances and body hair.« less

  12. The review on infrared image restoration techniques

    NASA Astrophysics Data System (ADS)

    Li, Sijian; Fan, Xiang; Zhu, Bin Cheng; Zheng, Dong

    2016-11-01

    The goal of infrared image restoration is to reconstruct an original scene from a degraded observation. The restoration process in the application of infrared wavelengths, however, still has numerous research possibilities. In order to give people a comprehensive knowledge of infrared image restoration, the degradation factors divided into two major categories of noise and blur. Many kinds of infrared image restoration method were overviewed. Mathematical background and theoretical basis of infrared image restoration technology, and the limitations or insufficiency of existing methods were discussed. After the survey, the direction and prospects of infrared image restoration technology for the future development were forecast and put forward.

  13. Image processing applications: From particle physics to society

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, C.-L.; Luciano, P.; Gkaitatzis, S.; Citraro, S.; Giannetti, P.; Dell'Orso, M.

    2017-01-01

    We present an embedded system for extremely efficient real-time pattern recognition execution, enabling technological advancements with both scientific and social impact. It is a compact, fast, low consumption processing unit (PU) based on a combination of Field Programmable Gate Arrays (FPGAs) and the full custom associative memory chip. The PU has been developed for real time tracking in particle physics experiments, but delivers flexible features for potential application in a wide range of fields. It has been proposed to be used in accelerated pattern matching execution for Magnetic Resonance Fingerprinting (biomedical applications), in real time detection of space debris trails in astronomical images (space applications) and in brain emulation for image processing (cognitive image processing). We illustrate the potentiality of the PU for the new applications.

  14. Analysis on the application of background parameters on remote sensing classification

    NASA Astrophysics Data System (ADS)

    Qiao, Y.

    Drawing accurate crop cultivation acreage, dynamic monitoring of crops growing and yield forecast are some important applications of remote sensing to agriculture. During the 8th 5-Year Plan period, the task of yield estimation using remote sensing technology for the main crops in major production regions in China once was a subtopic to the national research task titled "Study on Application of Remote sensing Technology". In 21 century in a movement launched by Chinese Ministry of Agriculture to combine high technology to farming production, remote sensing has given full play to farm crops' growth monitoring and yield forecast. And later in 2001 Chinese Ministry of Agriculture entrusted the Northern China Center of Agricultural Remote Sensing to forecast yield of some main crops like wheat, maize and rice in rather short time to supply information for the government decision maker. Present paper is a report for this task. It describes the application of background parameters in image recognition, classification and mapping with focuses on plan of the geo-science's theory, ecological feature and its cartographical objects or scale, the study of phrenology for image optimal time for classification of the ground objects, the analysis of optimal waveband composition and the application of background data base to spatial information recognition ;The research based on the knowledge of background parameters is indispensable for improving the accuracy of image classification and mapping quality and won a secondary reward of tech-science achievement from Chinese Ministry of Agriculture. Keywords: Spatial image; Classification; Background parameter

  15. Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, weather prediction, earth quake prediction, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  16. Cardiac radiology: centenary review.

    PubMed

    de Roos, Albert; Higgins, Charles B

    2014-11-01

    During the past century, cardiac imaging technologies have revolutionized the diagnosis and treatment of acquired and congenital heart disease. Many important contributions to the field of cardiac imaging were initially reported in Radiology. The field developed from the early stages of cardiac imaging, including the use of coronary x-ray angiography and roentgen kymography, to nowadays the widely used echocardiographic, nuclear medicine, cardiac computed tomographic (CT), and magnetic resonance (MR) applications. It is surprising how many of these techniques were not recognized for their potential during their early inception. Some techniques were described in the literature but required many years to enter the clinical arena and presently continue to expand in terms of clinical application. The application of various CT and MR contrast agents for the diagnosis of myocardial ischemia is a case in point, as the utility of contrast agents continues to expand the noninvasive characterization of myocardium. The history of cardiac imaging has included a continuous process of advances in our understanding of the anatomy and physiology of the cardiovascular system, along with advances in imaging technology that continue to the present day.

  17. Application of optical coherence tomography based microangiography for cerebral imaging

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Wang, Ruikang K.

    2016-03-01

    Requirements of in vivo rodent brain imaging are hard to satisfy using traditional technologies such as magnetic resonance imaging and two-photon microscopy. Optical coherence tomography (OCT) is an emerging tool that can easily reach at high speeds and provide high resolution volumetric images with a relatively large field of view for rodent brain imaging. Here, we provide the overview of recent developments of functional OCT based imaging techniques for neuroscience applications on rodents. Moreover, a summary of OCT-based microangiography (OMAG) studies for stroke and traumatic brain injury cases on rodents are provided.

  18. Wide area detection system: Conceptual design study. [using television and microelectronic technology

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Carl, C.; Goss, W.; Hansen, G. R.; Olsasky, M. J.; Johnston, A. R.

    1978-01-01

    An integrated sensor for traffic surveillance on mainline sections of urban freeways is described. Applicable imaging and processor technology is surveyed and the functional requirements for the sensors and the conceptual design of the breadboard sensors are given. Parameters measured by the sensors include lane density, speed, and volume. The freeway image is also used for incident diagnosis.

  19. Current developments and clinical applications of bubble technology in Japan: a report from 85th Annual Scientific Meeting of The Japan Society of Ultrasonic in Medicine, Tokyo, 25-27 May, 2012.

    PubMed

    Achmad, Arifudin; Taketomi-Takahashi, Ayako; Tsushima, Yoshito

    2013-06-01

    The potentials of bubble technology in ultrasound has been investigated thoroughly in the last decade. Japan has entered as one of the leaders in bubble technology in ultrasound since Sonazoid (Daiichi Sankyo & GE Healthcare) was marketed in 2007. The 85th Annual Scientific Meeting of The Japan Society of Ultrasonics in Medicine held in Tokyo from May 25 to 27, 2012 is where researchers and clinicians from all over Japan presented recent advances and new developments in ultrasound in both the medical and the engineering aspects of this science. Even though bubble technology was originally developed simply to improve the conventional ultrasound imaging, recent discoveries have opened up powerful emerging applications. Bubble technology is the particular topic to be reviewed in this report, including its mechanical advances for molecular imaging, drug/gene delivery device and sonoporation up to its current clinical application for liver cancers and other liver, gastrointestinal, kidney and breast diseases.

  20. Technical advances of interventional fluoroscopy and flat panel image receptor.

    PubMed

    Lin, Pei-Jan Paul

    2008-11-01

    In the past decade, various radiation reducing devices and control circuits have been implemented on fluoroscopic imaging equipment. Because of the potential for lengthy fluoroscopic procedures in interventional cardiovascular angiography, these devices and control circuits have been developed for the cardiac catheterization laboratories and interventional angiography suites. Additionally, fluoroscopic systems equipped with image intensifiers have benefited from technological advances in x-ray tube, x-ray generator, and spectral shaping filter technologies. The high heat capacity x-ray tube, the medium frequency inverter generator with high performance switching capability, and the patient dose reduction spectral shaping filter had already been implemented on the image intensified fluoroscopy systems. These three underlying technologies together with the automatic dose rate and image quality (ADRIQ) control logic allow patients undergoing cardiovascular angiography procedures to benefit from "lower patient dose" with "high image quality." While photoconductor (or phosphor plate) x-ray detectors and signal capture thin film transistor (TFT) and charge coupled device (CCD) arrays are analog in nature, the advent of the flat panel image receptor allowed for fluoroscopy procedures to become more streamlined. With the analog-to-digital converter built into the data lines, the flat panel image receptor appears to become a digital device. While the transition from image intensified fluoroscopy systems to flat panel image receptor fluoroscopy systems is part of the on-going "digitization of imaging," the value of a flat panel image receptor may have to be evaluated with respect to patient dose, image quality, and clinical application capabilities. The advantage of flat panel image receptors has yet to be fully explored. For instance, the flat panel image receptor has its disadvantages as compared to the image intensifiers; the cost of the equipment is probably the most obvious. On the other hand, due to its wide dynamic range and linearity, lowering of patient dose beyond current practice could be achieved through the calibration process of the flat panel input dose rate being set to, for example, one half or less of current values. In this article various radiation saving devices and control circuits are briefly described. This includes various types of fluoroscopic systems designed to strive for reduction of patient exposure with the application of spectral shaping filters. The main thrust is to understand the ADRIQ control logic, through equipment testing, as it relates to clinical applications, and to show how this ADRIQ control logic "ties" those three technological advancements together to provide low radiation dose to the patient with high quality fluoroscopic images. Finally, rotational angiography with computed tomography (CT) and three dimensional (3-D) images utilizing flat panel technology will be reviewed as they pertain to diagnostic imaging in cardiovascular disease.

  1. MCT (HgCdTe) IR detectors: latest developments in France

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Rubaldo, Laurent; Vaz, Cedric; Tribolet, Philippe; Baier, Nicolas; Destefanis, Gérard

    2010-10-01

    This paper presents an overview of the very recent developments of the MCT infrared detector technology developed by CEA-LETI and Sofradir in France. New applications require high sensitivity, higher operating temperature and dual band detectors. The standard n on p technology in production at Sofradir for 25 years is well mastered with an extremely robust and reliable process. Sofradir's interest in p on n technology opens the perspective of reducing dark current of diodes so detectors could operate in lower flux or higher operating temperature. In parallel, MCT Avalanche Photo Diodes (APD) have demonstrated ideal performances for low flux and high speed application like laser gated imaging during the last few years. This technology also opens new prospects on next generation of imaging detectors for compact, low flux and low power applications. Regarding 3rd Gen IR detectors, the development of dual-band infrared detectors has been the core of intense research and technological improvements for the last ten years. New TV (640 x 512 pixels) format MWIR/LWIR detectors on 20μm pixel pitch, made from Molecular Beam Epitaxy, has been developed with dedicated Read-Out Integrated Circuit (ROIC) for real simultaneous detection and maximum SNR. Technological and products achievements, as well as latest results and performances are presented outlining the availability of p/n, avalanche photodiodes and dual band technologies for new applications at system level.

  2. Applications of iQID cameras

    NASA Astrophysics Data System (ADS)

    Han, Ling; Miller, Brian W.; Barrett, Harrison H.; Barber, H. Bradford; Furenlid, Lars R.

    2017-09-01

    iQID is an intensified quantum imaging detector developed in the Center for Gamma-Ray Imaging (CGRI). Originally called BazookaSPECT, iQID was designed for high-resolution gamma-ray imaging and preclinical gamma-ray single-photon emission computed tomography (SPECT). With the use of a columnar scintillator, an image intensifier and modern CCD/CMOS sensors, iQID cameras features outstanding intrinsic spatial resolution. In recent years, many advances have been achieved that greatly boost the performance of iQID, broadening its applications to cover nuclear and particle imaging for preclinical, clinical and homeland security settings. This paper presents an overview of the recent advances of iQID technology and its applications in preclinical and clinical scintigraphy, preclinical SPECT, particle imaging (alpha, neutron, beta, and fission fragment), and digital autoradiography.

  3. Reflectometric measurement of plasma imaging and applications

    NASA Astrophysics Data System (ADS)

    Mase, A.; Ito, N.; Oda, M.; Komada, Y.; Nagae, D.; Zhang, D.; Kogi, Y.; Tobimatsu, S.; Maruyama, T.; Shimazu, H.; Sakata, E.; Sakai, F.; Kuwahara, D.; Yoshinaga, T.; Tokuzawa, T.; Nagayama, Y.; Kawahata, K.; Yamaguchi, S.; Tsuji-Iio, S.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Yun, G.; Lee, W.; Padhi, S.; Kim, K. W.

    2012-01-01

    Progress in microwave and millimeter-wave technologies has made possible advanced diagnostics for application to various fields, such as, plasma diagnostics, radio astronomy, alien substance detection, airborne and spaceborne imaging radars called as synthetic aperture radars, living body measurements. Transmission, reflection, scattering, and radiation processes of electromagnetic waves are utilized as diagnostic tools. In this report we focus on the reflectometric measurements and applications to biological signals (vital signal detection and breast cancer detection) as well as plasma diagnostics, specifically by use of imaging technique and ultra-wideband radar technique.

  4. International Symposium on Applications of Ferroelectrics

    DTIC Science & Technology

    1993-02-01

    neighborhood of the Curie point. A high dielectric constant The technology of producing monolithic IR detectors using is also useful in many imaging applications...a linear array of sensors. Eacha detector (pixel) or group of Work on new infrared (IR) sensors is at present them, can thus produce a signal ... recorded . The signal beam , was expanded to certain input image (or a partial one) is illuminated only with the 15mm to carry images and was then

  5. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  6. Advanced imaging techniques II: using a compound microscope for photographing point-mount specimens

    USDA-ARS?s Scientific Manuscript database

    Digital imaging technology has revolutionized the practice photographing insects for scientific study. Herein described are lighting and mounting techniques designed for imaging micro Hymenoptera. Techniques described here are applicable to all small insects, as well as other invertebrates. The ke...

  7. The Power of Imaging.

    ERIC Educational Resources Information Center

    Haapaniemi, Peter

    1990-01-01

    Describes imaging technology, which allows huge numbers of words and illustrations to be reduced to tiny fraction of space required by originals and discusses current applications. Highlights include image processing system at National Archives; use by banks for high-speed check processing; engineering document management systems (EDMS); folder…

  8. MPGD for breast cancer prevention: a high resolution and low dose radiation medical imaging

    NASA Astrophysics Data System (ADS)

    Gutierrez, R. M.; Cerquera, E. A.; Mañana, G.

    2012-07-01

    Early detection of small calcifications in mammograms is considered the best preventive tool of breast cancer. However, existing digital mammography with relatively low radiation skin exposure has limited accessibility and insufficient spatial resolution for small calcification detection. Micro Pattern Gaseous Detectors (MPGD) and associated technologies, increasingly provide new information useful to generate images of microscopic structures and make more accessible cutting edge technology for medical imaging and many other applications. In this work we foresee and develop an application for the new information provided by a MPGD camera in the form of highly controlled images with high dynamical resolution. We present a new Super Detail Image (S-DI) that efficiently profits of this new information provided by the MPGD camera to obtain very high spatial resolution images. Therefore, the method presented in this work shows that the MPGD camera with SD-I, can produce mammograms with the necessary spatial resolution to detect microcalcifications. It would substantially increase efficiency and accessibility of screening mammography to highly improve breast cancer prevention.

  9. Towards a semantic PACS: Using Semantic Web technology to represent imaging data.

    PubMed

    Van Soest, Johan; Lustberg, Tim; Grittner, Detlef; Marshall, M Scott; Persoon, Lucas; Nijsten, Bas; Feltens, Peter; Dekker, Andre

    2014-01-01

    The DICOM standard is ubiquitous within medicine. However, improved DICOM semantics would significantly enhance search operations. Furthermore, databases of current PACS systems are not flexible enough for the demands within image analysis research. In this paper, we investigated if we can use Semantic Web technology, to store and represent metadata of DICOM image files, as well as linking additional computational results to image metadata. Therefore, we developed a proof of concept containing two applications: one to store commonly used DICOM metadata in an RDF repository, and one to calculate imaging biomarkers based on DICOM images, and store the biomarker values in an RDF repository. This enabled us to search for all patients with a gross tumor volume calculated to be larger than 50 cc. We have shown that we can successfully store the DICOM metadata in an RDF repository and are refining our proof of concept with regards to volume naming, value representation, and the applications themselves.

  10. Medical Imaging Field of Magnetic Resonance Imaging: Identification of Specialties within the Field

    ERIC Educational Resources Information Center

    Grey, Michael L.

    2009-01-01

    This study was conducted to determine if specialty areas are emerging in the magnetic resonance imaging (MRI) profession due to advancements made in the medical sciences, imaging technology, and clinical applications used in MRI that would require new developments in education/training programs and national registry examinations. In this…

  11. Fitting-free algorithm for efficient quantification of collagen fiber alignment in SHG imaging applications.

    PubMed

    Hall, Gunnsteinn; Liang, Wenxuan; Li, Xingde

    2017-10-01

    Collagen fiber alignment derived from second harmonic generation (SHG) microscopy images can be important for disease diagnostics. Image processing algorithms are needed to robustly quantify the alignment in images with high sensitivity and reliability. Fourier transform (FT) magnitude, 2D power spectrum, and image autocorrelation have previously been used to extract fiber information from images by assuming a certain mathematical model (e.g. Gaussian distribution of the fiber-related parameters) and fitting. The fitting process is slow and fails to converge when the data is not Gaussian. Herein we present an efficient constant-time deterministic algorithm which characterizes the symmetricity of the FT magnitude image in terms of a single parameter, named the fiber alignment anisotropy R ranging from 0 (randomized fibers) to 1 (perfect alignment). This represents an important improvement of the technology and may bring us one step closer to utilizing the technology for various applications in real time. In addition, we present a digital image phantom-based framework for characterizing and validating the algorithm, as well as assessing the robustness of the algorithm against different perturbations.

  12. Visidep (TM): A Three-Dimensional Imaging System For The Unaided Eye

    NASA Astrophysics Data System (ADS)

    McLaurin, A. Porter; Jones, Edwin R.; Cathey, LeConte

    1984-05-01

    The VISIDEP process for creating images in three dimensions on flat screens is suitable for photographic, electrographic and computer generated imaging systems. Procedures for generating these images vary from medium to medium due to the specific requirements of each technology. Imaging requirements for photographic and electrographic media are more directly tied to the hardware than are computer based systems. Applications of these technologies are not limited to entertainment, but have implications for training, interactive computer/video systems, medical imaging, and inspection equipment. Through minor modification the system can provide three-dimensional images with accurately measureable relationships for robotics and adds this factor for future developments in artificial intelligence. In almost any area requiring image analysis or critical review, VISIDEP provides the added advantage of three-dimensionality. All of this is readily accomplished without aids to the human eye. The system can be viewed in full color, false-color infra-red, and monochromatic modalities from any angle and is also viewable with a single eye. Thus, the potential of application for this developing system is extensive and covers the broad spectrum of human endeavor from entertainment to scientific study.

  13. New Researches and Application Progress of Commonly Used Optical Molecular Imaging Technology

    PubMed Central

    Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging. PMID:24696850

  14. PAT: From Western solid dosage forms to Chinese materia medica preparations using NIR-CI.

    PubMed

    Zhou, Luwei; Xu, Manfei; Wu, Zhisheng; Shi, Xinyuan; Qiao, Yanjiang

    2016-01-01

    Near-infrared chemical imaging (NIR-CI) is an emerging technology that combines traditional near-infrared spectroscopy with chemical imaging. Therefore, NIR-CI can extract spectral information from pharmaceutical products and simultaneously visualize the spatial distribution of chemical components. The rapid and non-destructive features of NIR-CI make it an attractive process analytical technology (PAT) for identifying and monitoring critical control parameters during the pharmaceutical manufacturing process. This review mainly focuses on the pharmaceutical applications of NIR-CI in each unit operation during the manufacturing processes, from the Western solid dosage forms to the Chinese materia medica preparations. Finally, future applications of chemical imaging in the pharmaceutical industry are discussed. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Deep Learning in Medical Imaging: General Overview

    PubMed Central

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae

    2017-01-01

    The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging. PMID:28670152

  16. Deep Learning in Medical Imaging: General Overview.

    PubMed

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae; Seo, Joon Beom; Kim, Namkug

    2017-01-01

    The artificial neural network (ANN)-a machine learning technique inspired by the human neuronal synapse system-was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging.

  17. SEM image quality enhancement technology for bright field mask

    NASA Astrophysics Data System (ADS)

    Fukuda, Naoki; Chihara, Yuta; Shida, Soichi; Ito, Keisuke

    2013-09-01

    Bright-field photomasks are used to print small contact holes via ArF immersion multiple patterning lithography. There are some technical difficulties when small floating dots are to be measured by SEM tools because of a false imaging shadow. However, a new scan technology of Multi Vision Metrology SEMTM E3630 presents a solution for this issue. The combination of new scan technology and the other MVM-SEM® functions can provide further extended applications with more accurate measurement results.

  18. Infrared Technology Trends and Implications to Home and Building Energy Use Efficiency

    NASA Astrophysics Data System (ADS)

    Woolaway, James T.

    2008-09-01

    It has long been realized that infrared technology would have applicability in improving the energy efficiency of homes and buildings. Walls that are missing or are poorly insulated can be quickly evaluated by looking at the thermal images of these surfaces. Similarly, air infiltration leaks under doors and around windows leave a telltale thermal signature easily seen in the infrared. The ability to view, evaluate and quickly respond to these images has immediate benefits in addressing and correcting situations where these types of losses are occurring. The principle issue that has been limiting the use of infrared technology in these applications has been the lack of availability and accessibility of infrared technology at a cost point suited to this market. The emergence of low cost microbolometer based infrared cameras, not needing sensor cooling, will greatly increase the accessibility and use of infrared technology for House Doctor inspections. The technology cost for this use is projected to be less than 1 per inspection.

  19. Review of an assortment of IR materials-devices technologies used for imaging in spectral bands ranging from the visible to very long wavelengths

    NASA Astrophysics Data System (ADS)

    DeWames, Roger E.

    2016-05-01

    In this paper we review the intrinsic and extrinsic technological properties of the incumbent technology, InP/In0.53Ga0.47As/InP, for imaging in the visible- short wavelength spectral band, InSb and HgCdTe for imaging in the mid-wavelength spectral band and HgCdTe for imaging in the long wavelength spectral band. These material systems are in use for a wide range of applications addressing compelling needs in night vision imaging, low light level astronomical applications and defense strategic satellite sensing. These materials systems are direct band gap energy semiconductors hence the internal quantum efficiency η, is near unity over a wide spectral band pass. A key system figure of merit of a shot noise limited detector technology is given by the equation (1+Jdark. /Jphoton), where Jdark is the dark current density and Jphoton ~qηΦ is the photocurrent density; Φ is the photon flux incident on the detector and q is the electronic charge. The capability to maintain this factor for a specific spectral band close to unity for low illumination conditions and low temperature onset of non-ideal dark current components, basically intrinsic diffusion limited performance all the way, is a marker of quality and versatility of a semiconductor detector technology. It also enables the highest temperature of operation for tactical illumination conditions. A purpose of the work reported in this paper is to explore the focal plane array data sets of photodiode detector technologies widely used to bench mark their fundamental and technology properties and identify paths for improvements.

  20. The infrared imaging radiometer for PICASSO-CENA

    NASA Astrophysics Data System (ADS)

    Corlay, Gilles; Arnolfo, Marie-Christine; Bret-Dibat, Thierry; Lifferman, Anne; Pelon, Jacques

    2017-11-01

    Microbolometers are infrared detectors of an emerging technology mainly developed in US and few other countries for few years. The main targets of these developments are low performing and low cost military and civilian applications like survey cameras. Applications in space are now arising thanks to the design simplification and the associated cost reduction allowed by this new technology. Among the four instruments of the payload of PICASSO-CENA, the Imaging Infrared Radiometer (IIR) is based on the microbolometer technology. An infrared camera in development for the IASI instrument is the core of the IIR. The aim of the paper is to recall the PICASSO-CENA mission goal, to describe the IIR instrument architecture and highlight its main features and performances and to give the its development status.

  1. Clinical applications of cone beam computed tomography in endodontics: A comprehensive review.

    PubMed

    Cohenca, Nestor; Shemesh, Hagay

    2015-06-01

    Cone beam computed tomography (CBCT) is a new technology that produces three-dimensional (3D) digital imaging at reduced cost and less radiation for the patient than traditional CT scans. It also delivers faster and easier image acquisition. By providing a 3D representation of the maxillofacial tissues in a cost- and dose-efficient manner, a better preoperative assessment can be obtained for diagnosis and treatment. This comprehensive review presents current applications of CBCT in endodontics. Specific case examples illustrate the difference in treatment planning with traditional periapical radiography versus CBCT technology.

  2. EDITORIAL: Molecular Imaging Technology

    NASA Astrophysics Data System (ADS)

    Asai, Keisuke; Okamoto, Koji

    2006-06-01

    'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.

  3. Desktop Cloud Visualization: the new technology to remote access 3D interactive applications in the Cloud.

    PubMed

    Torterolo, Livia; Ruffino, Francesco

    2012-01-01

    In the proposed demonstration we will present DCV (Desktop Cloud Visualization): a unique technology that allows users to remote access 2D and 3D interactive applications over a standard network. This allows geographically dispersed doctors work collaboratively and to acquire anatomical or pathological images and visualize them for further investigations.

  4. Examples of Current and Future Uses of Neural-Net Image Processing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    Feed forward artificial neural networks are very convenient for performing correlated interpolation of pairs of complex noisy data sets as well as detecting small changes in image data. Image-to-image, image-to-variable and image-to-index applications have been tested at Glenn. Early demonstration applications are summarized including image-directed alignment of optics, tomography, flow-visualization control of wind-tunnel operations and structural-model-trained neural networks. A practical application is reviewed that employs neural-net detection of structural damage from interference fringe patterns. Both sensor-based and optics-only calibration procedures are available for this technique. These accomplishments have generated the knowledge necessary to suggest some other applications for NASA and Government programs. A tomography application is discussed to support Glenn's Icing Research tomography effort. The self-regularizing capability of a neural net is shown to predict the expected performance of the tomography geometry and to augment fast data processing. Other potential applications involve the quantum technologies. It may be possible to use a neural net as an image-to-image controller of an optical tweezers being used for diagnostics of isolated nano structures. The image-to-image transformation properties also offer the potential for simulating quantum computing. Computer resources are detailed for implementing the black box calibration features of the neural nets.

  5. Quantum technology and its applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boshier, Malcolm; Berkeland, Dana; Govindan, Tr

    Quantum states of matter can be exploited as high performance sensors for measuring time, gravity, rotation, and electromagnetic fields, and quantum states of light provide powerful new tools for imaging and communication. Much attention is being paid to the ultimate limits of this quantum technology. For example, it has already been shown that exotic quantum states can be used to measure or image with higher precision or higher resolution or lower radiated power than any conventional technologies, and proof-of-principle experiments demonstrating measurement precision below the standard quantum limit (shot noise) are just starting to appear. However, quantum technologies have anothermore » powerful advantage beyond pure sensing performance that may turn out to be more important in practical applications: the potential for building devices with lower size/weight/power (SWaP) and cost requirements than existing instruments. The organizers of Quantum Technology Applications Workshop (QTAW) have several goals: (1) Bring together sponsors, researchers, engineers and end users to help build a stronger quantum technology community; (2) Identify how quantum systems might improve the performance of practical devices in the near- to mid-term; and (3) Identify applications for which more long term investment is necessary to realize improved performance for realistic applications. To realize these goals, the QTAW II workshop included fifty scientists, engineers, managers and sponsors from academia, national laboratories, government and the private-sector. The agenda included twelve presentations, a panel discussion, several breaks for informal exchanges, and a written survey of participants. Topics included photon sources, optics and detectors, squeezed light, matter waves, atomic clocks and atom magnetometry. Corresponding applications included communication, imaging, optical interferometry, navigation, gravimetry, geodesy, biomagnetism, and explosives detection. Participants considered the physics and engineering of quantum and conventional technologies, and how quantum techniques could (or could not) overcome limitations of conventional systems. They identified several auxiliary technologies that needed to be further developed in order to make quantum technology more accessible. Much of the discussion also focused on specific applications of quantum technology and how to push the technology into broader communities, which would in turn identify new uses of the technology. Since our main interest is practical improvement of devices and techniques, we take a liberal definition of 'quantum technology': a system that utilizes preparation and measurement of a well-defined coherent quantum state. This nomenclature encompasses features broader than entanglement, squeezing or quantum correlations, which are often more difficult to utilize outside of a laboratory environment. Still, some applications discussed in the workshop do take advantage of these 'quantum-enhanced' features. They build on the more established quantum technologies that are amenable to manipulation at the quantum level, such as atom magnetometers and atomic clocks. Understanding and developing those technologies through traditional engineering will clarify where quantum-enhanced features can be used most effectively, in addition to providing end users with improved devices in the near-term.« less

  6. C-arm Cone Beam Computed Tomography: A New Tool in the Interventional Suite.

    PubMed

    Raj, Santhosh; Irani, Farah Gillan; Tay, Kiang Hiong; Tan, Bien Soo

    2013-11-01

    C-arm Cone Beam CT (CBCT) is a technology that is being integrated into many of the newer angiography systems in the interventional suite. Due to its ability to provide cross sectional imaging, it has opened a myriad of opportunities for creating new clinical applications. We review the technical aspects, current reported clinical applications and potential benefits of this technology. Searches were made via PubMed using the string "CBCT", "Cone Beam CT", "Cone Beam Computed Tomography" and "C-arm Cone Beam Computed Tomography". All relevant articles in the results were reviewed. CBCT clinical applications have been reported in both vascular and non-vascular interventions. They encompass many aspects of a procedure including preprocedural planning, intraprocedural guidance and postprocedural assessment. As a result, they have allowed the interventionalist to be safer and more accurate in performing image guided procedures. There are however several technical limitations. The quality of images produced is not comparable to conventional computed tomography (CT). Radiation doses are also difficult to quantify when compared to CT and fluoroscopy. CBCT technology in the interventional suite has contributed significant benefits to the patient despite its current limitations. It is a tool that will evolve and potentially become an integral part of imaging guidance for intervention.

  7. A historical overview of magnetic resonance imaging, focusing on technological innovations.

    PubMed

    Ai, Tao; Morelli, John N; Hu, Xuemei; Hao, Dapeng; Goerner, Frank L; Ager, Bryan; Runge, Val M

    2012-12-01

    Magnetic resonance imaging (MRI) has now been used clinically for more than 30 years. Today, MRI serves as the primary diagnostic modality for many clinical problems. In this article, historical developments in the field of MRI will be discussed with a focus on technological innovations. Topics include the initial discoveries in nuclear magnetic resonance that allowed for the advent of MRI as well as the development of whole-body, high field strength, and open MRI systems. Dedicated imaging coils, basic pulse sequences, contrast-enhanced, and functional imaging techniques will also be discussed in a historical context. This article describes important technological innovations in the field of MRI, together with their clinical applicability today, providing critical insights into future developments.

  8. Advancement of X-Ray Microscopy Technology and its Application to Metal Solidification Studies

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Curreri, Peter A.

    1996-01-01

    The technique of x-ray projection microscopy is being used to view, in real time, the structures and dynamics of the solid-liquid interface during solidification. By employing a hard x-ray source with sub-micron dimensions, resolutions of 2 micrometers can be obtained with magnifications of over 800 X. Specimen growth conditions need to be optimized and the best imaging technologies applied to maintain x-ray image resolution, contrast and sensitivity. It turns out that no single imaging technology offers the best solution and traditional methods like radiographic film cannot be used due to specimen motion (solidification). In addition, a special furnace design is required to permit controlled growth conditions and still offer maximum resolution and image contrast.

  9. Design and Applications of Rapid Image Tile Producing Software Based on Mosaic Dataset

    NASA Astrophysics Data System (ADS)

    Zha, Z.; Huang, W.; Wang, C.; Tang, D.; Zhu, L.

    2018-04-01

    Map tile technology is widely used in web geographic information services. How to efficiently produce map tiles is key technology for rapid service of images on web. In this paper, a rapid producing software for image tile data based on mosaic dataset is designed, meanwhile, the flow of tile producing is given. Key technologies such as cluster processing, map representation, tile checking, tile conversion and compression in memory are discussed. Accomplished by software development and tested by actual image data, the results show that this software has a high degree of automation, would be able to effectively reducing the number of IO and improve the tile producing efficiency. Moreover, the manual operations would be reduced significantly.

  10. Line-scan hyperspectral imaging techniques for food and agricultural applications

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral imaging technologies in the food and agricultural area have been evolved rapidly during the past 15 years owing to tremendous interest from both academic and industrial fields. Line-scan hyperspectral imaging is a major method that has been intensively researched and developed in diffe...

  11. Autonomous vision networking: miniature wireless sensor networks with imaging technology

    NASA Astrophysics Data System (ADS)

    Messinger, Gioia; Goldberg, Giora

    2006-09-01

    The recent emergence of integrated PicoRadio technology, the rise of low power, low cost, System-On-Chip (SOC) CMOS imagers, coupled with the fast evolution of networking protocols and digital signal processing (DSP), created a unique opportunity to achieve the goal of deploying large-scale, low cost, intelligent, ultra-low power distributed wireless sensor networks for the visualization of the environment. Of all sensors, vision is the most desired, but its applications in distributed sensor networks have been elusive so far. Not any more. The practicality and viability of ultra-low power vision networking has been proven and its applications are countless, from security, and chemical analysis to industrial monitoring, asset tracking and visual recognition, vision networking represents a truly disruptive technology applicable to many industries. The presentation discusses some of the critical components and technologies necessary to make these networks and products affordable and ubiquitous - specifically PicoRadios, CMOS imagers, imaging DSP, networking and overall wireless sensor network (WSN) system concepts. The paradigm shift, from large, centralized and expensive sensor platforms, to small, low cost, distributed, sensor networks, is possible due to the emergence and convergence of a few innovative technologies. Avaak has developed a vision network that is aided by other sensors such as motion, acoustic and magnetic, and plans to deploy it for use in military and commercial applications. In comparison to other sensors, imagers produce large data files that require pre-processing and a certain level of compression before these are transmitted to a network server, in order to minimize the load on the network. Some of the most innovative chemical detectors currently in development are based on sensors that change color or pattern in the presence of the desired analytes. These changes are easily recorded and analyzed by a CMOS imager and an on-board DSP processor. Image processing at the sensor node level may also be required for applications in security, asset management and process control. Due to the data bandwidth requirements posed on the network by video sensors, new networking protocols or video extensions to existing standards (e.g. Zigbee) are required. To this end, Avaak has designed and implemented an ultra-low power networking protocol designed to carry large volumes of data through the network. The low power wireless sensor nodes that will be discussed include a chemical sensor integrated with a CMOS digital camera, a controller, a DSP processor and a radio communication transceiver, which enables relaying of an alarm or image message, to a central station. In addition to the communications, identification is very desirable; hence location awareness will be later incorporated to the system in the form of Time-Of-Arrival triangulation, via wide band signaling. While the wireless imaging kernel already exists specific applications for surveillance and chemical detection are under development by Avaak, as part of a co-founded program from ONR and DARPA. Avaak is also designing vision networks for commercial applications - some of which are undergoing initial field tests.

  12. Formulation of coarse integral imaging and its applications

    NASA Astrophysics Data System (ADS)

    Kakeya, Hideki

    2008-02-01

    This paper formulates the notion of coarse integral imaging and applies it to practical designs of 3D displays for the purposes of robot teleoperation and automobile HUDs. 3D display technologies are demanded in the applications where real-time and precise depth perception is required, such as teleoperation of robot manipulators and HUDs for automobiles. 3D displays for these applications, however, have not been realized so far. In the conventional 3D display technologies, the eyes are usually induced to focus on the screen, which is not suitable for the above purposes. To overcome this problem the author adopts the coarse integral imaging system, where each component lens is large enough to cover pixels dozens of times more than the number of views. The merit of this system is that it can induce the viewer's focus on the planes of various depths by generating a real image or a virtual image off the screen. This system, however, has major disadvantages in the quality of image, which is caused by aberration of lenses and discontinuity at the joints of component lenses. In this paper the author proposes practical optical designs for 3D monitors for robot teleoperation and 3D HUDs for automobiles by overcoming the problems of aberration and discontinuity of images.

  13. Digital Imaging

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Digital Imaging is the computer processed numerical representation of physical images. Enhancement of images results in easier interpretation. Quantitative digital image analysis by Perceptive Scientific Instruments, locates objects within an image and measures them to extract quantitative information. Applications are CAT scanners, radiography, microscopy in medicine as well as various industrial and manufacturing uses. The PSICOM 327 performs all digital image analysis functions. It is based on Jet Propulsion Laboratory technology, is accurate and cost efficient.

  14. Prestructural cartilage assessment using MRI.

    PubMed

    Link, Thomas M; Neumann, Jan; Li, Xiaojuan

    2017-04-01

    Cartilage loss is irreversible, and to date, no effective pharmacotherapies are available to protect or regenerate cartilage. Quantitative prestructural/compositional MR imaging techniques have been developed to characterize the cartilage matrix quality at a stage where abnormal findings are early and potentially reversible, allowing intervention to halt disease progression. The goal of this article is to critically review currently available technologies, present the basic concept behind these techniques, but also to investigate their suitability as imaging biomarkers including their validity, reproducibility, risk prediction and monitoring of therapy. Moreover, we highlighted important clinical applications. This review article focuses on the currently most relevant and clinically applicable technologies, such as T2 mapping, T2*, T1ρ, delayed gadolinium enhanced MRI of cartilage (dGEMRIC), sodium imaging and glycosaminoglycan chemical exchange saturation transfer (gagCEST). To date, most information is available for T2 and T1ρ mapping. dGEMRIC has also been used in multiple clinical studies, although it requires Gd contrast administration. Sodium imaging and gagCEST are promising technologies but are dependent on high field strength and sophisticated software and hardware. 5 J. Magn. Reson. Imaging 2017;45:949-965. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Applications of Space-Age Technology in Anthropology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The papers in this volume were presented at a conference entitled, 'Applications of Space-Age Technology in Anthropology,' held November 28, 1990, at NASA's Science and Technology Laboratory. One reason for this conference was to facilitate information exchange among a diverse group of anthropologists. Much of the research in anthropology that has made use of satellite image processing, geographical information systems, and global positioning systems has been known to only a small group of practitioners. A second reason for this conference was to promote scientific dialogue between anthropologists and professionals outside of anthropology. It is certain that both the development and proper application of new technologies will only result from greater cooperation between technicians and 'end-users.' Anthropologists can provide many useful applications to justify the costs of new technological development.

  16. Verification technology of remote sensing camera satellite imaging simulation based on ray tracing

    NASA Astrophysics Data System (ADS)

    Gu, Qiongqiong; Chen, Xiaomei; Yang, Deyun

    2017-08-01

    Remote sensing satellite camera imaging simulation technology is broadly used to evaluate the satellite imaging quality and to test the data application system. But the simulation precision is hard to examine. In this paper, we propose an experimental simulation verification method, which is based on the test parameter variation comparison. According to the simulation model based on ray-tracing, the experiment is to verify the model precision by changing the types of devices, which are corresponding the parameters of the model. The experimental results show that the similarity between the imaging model based on ray tracing and the experimental image is 91.4%, which can simulate the remote sensing satellite imaging system very well.

  17. Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging.

    PubMed

    Combs, Stephanie E; Nüsslin, Fridtjof; Wilkens, Jan J

    2016-04-01

    Image-guided radiotherapy (IGRT) has been integrated into daily clinical routine and can today be considered the standard especially with high-dose radiotherapy. Currently imaging is based on MV- or kV-CT, which has clear limitations especially in soft-tissue contrast. Thus, combination of magnetic resonance (MR) imaging and high-end radiotherapy opens a new horizon. The intricate technical properties of MR imagers pose a challenge to technology when combined with radiation technology. Several solutions that are almost ready for routine clinical application have been developed. The clinical questions include dose-escalation strategies, monitoring of changes during treatment as well as imaging without additional radiation exposure during treatment.

  18. Visual Communications and Image Processing

    NASA Astrophysics Data System (ADS)

    Hsing, T. Russell

    1987-07-01

    This special issue of Optical Engineering is concerned with visual communications and image processing. The increase in communication of visual information over the past several decades has resulted in many new image processing and visual communication systems being put into service. The growth of this field has been rapid in both commercial and military applications. The objective of this special issue is to intermix advent technology in visual communications and image processing with ideas generated from industry, universities, and users through both invited and contributed papers. The 15 papers of this issue are organized into four different categories: image compression and transmission, image enhancement, image analysis and pattern recognition, and image processing in medical applications.

  19. Basic principles of cone beam computed tomography.

    PubMed

    Abramovitch, Kenneth; Rice, Dwight D

    2014-07-01

    At the end of the millennium, cone-beam computed tomography (CBCT) heralded a new dental technology for the next century. Owing to the dramatic and positive impact of CBCT on implant dentistry and orthognathic/orthodontic patient care, additional applications for this technology soon evolved. New software programs were developed to improve the applicability of, and access to, CBCT for dental patients. Improved, rapid, and cost-effective computer technology, combined with the ability of software engineers to develop multiple dental imaging applications for CBCT with broad diagnostic capability, have played a large part in the rapid incorporation of CBCT technology into dentistry. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. All-CMOS night vision viewer with integrated microdisplay

    NASA Astrophysics Data System (ADS)

    Goosen, Marius E.; Venter, Petrus J.; du Plessis, Monuko; Faure, Nicolaas M.; Janse van Rensburg, Christo; Rademeyer, Pieter

    2014-02-01

    The unrivalled integration potential of CMOS has made it the dominant technology for digital integrated circuits. With the advent of visible light emission from silicon through hot carrier electroluminescence, several applications arose, all of which rely upon the advantages of mature CMOS technologies for a competitive edge in a very active and attractive market. In this paper we present a low-cost night vision viewer which employs only standard CMOS technologies. A commercial CMOS imager is utilized for near infrared image capturing with a 128x96 pixel all-CMOS microdisplay implemented to convey the image to the user. The display is implemented in a standard 0.35 μm CMOS process, with no process alterations or post processing. The display features a 25 μm pixel pitch and a 3.2 mm x 2.4 mm active area, which through magnification presents the virtual image to the user equivalent of a 19-inch display viewed from a distance of 3 meters. This work represents the first application of a CMOS microdisplay in a low-cost consumer product.

  1. Vascular applications of contrast-enhanced ultrasound imaging.

    PubMed

    Mehta, Kunal S; Lee, Jake J; Taha, Ashraf G; Avgerinos, Efthymios; Chaer, Rabih A

    2017-07-01

    Contrast-enhanced ultrasound (CEUS) imaging is a powerful noninvasive modality offering numerous potential diagnostic and therapeutic applications in vascular medicine. CEUS imaging uses microbubble contrast agents composed of an encapsulating shell surrounding a gaseous core. These microbubbles act as nearly perfect intravascular reflectors of ultrasound energy and may be used to enhance the overall contrast and quality of ultrasound images. The purpose of this narrative review is to survey the current literature regarding CEUS imaging and discuss its diagnostic and therapeutic roles in current vascular and selected nonvascular applications. The PubMed, MEDLINE, and Embase databases were searched until July 2016 using the PubMed and Ovid Web-based search engines. The search terms used included contrast-enhanced, microbubble, ultrasound, carotid, aneurysm, and arterial. The diagnostic and therapeutic utility of CEUS imaging has grown exponentially, particularly in the realms of extracranial carotid arterial disease, aortic disease, and peripheral arterial disease. Studies have demonstrated that CEUS imaging is diagnostically superior to conventional ultrasound imaging in identifying vessel irregularities and measuring neovascularization to assess plaque vulnerability and end-muscle perfusion. Groups have begun to use microbubbles as agents in therapeutic applications for targeted drug and gene therapy delivery as well as for the enhancement of sonothrombolysis. The emerging technology of microbubbles and CEUS imaging holds considerable promise for cardiovascular medicine and cancer therapy given its diagnostic and therapeutic utility. Overall, with proper training and credentialing of technicians, the clinical implications are innumerable as microbubble technology is rapidly bursting onto the scene of cardiovascular medicine. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  2. Image Sensors Enhance Camera Technologies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  3. Imaging detectors and electronics—a view of the future

    NASA Astrophysics Data System (ADS)

    Spieler, Helmuth

    2004-09-01

    Imaging sensors and readout electronics have made tremendous strides in the past two decades. The application of modern semiconductor fabrication techniques and the introduction of customized monolithic integrated circuits have made large-scale imaging systems routine in high-energy physics. This technology is now finding its way into other areas, such as space missions, synchrotron light sources, and medical imaging. I review current developments and discuss the promise and limits of new technologies. Several detector systems are described as examples of future trends. The discussion emphasizes semiconductor detector systems, but I also include recent developments for large-scale superconducting detector arrays.

  4. Vision 20/20: Single photon counting x-ray detectors in medical imaging

    PubMed Central

    Taguchi, Katsuyuki; Iwanczyk, Jan S.

    2013-01-01

    Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs. PMID:24089889

  5. Cone beam computed tomography in veterinary dentistry.

    PubMed

    Van Thielen, Bert; Siguenza, Francis; Hassan, Bassam

    2012-01-01

    The purpose of this study was to assess the feasibility of cone beam computed tomography (CBCT) in imaging dogs and cats for diagnostic dental veterinary applications. CBCT scans of heads of six dogs and two cats were made. Dental panoramic and multi-planar reformatted (MPR) para-sagittal reconstructions were created using specialized software. Image quality and visibility of anatomical landmarks were subjectively assessed by two observers. Good image quality was obtained for the MPR para-sagittal reconstructions through multiple teeth. The image quality of the panoramic reconstructions of dogs was moderate while the panoramic reconstructions of cats were poor since the images were associated with an increased noise level. Segmental panoramic reconstructions of the mouth seem to be useful for studying the dental anatomy especially in dogs. The results of this study using human dental CBCT technology demonstrate the potential of this scanning technology in veterinary medicine. Unfortunately, the moderate image quality obtained with the CBCT technique reported here seems to be inferior to the diagnostic image quality obtained from 2-dimensional dental radiographs. Further research is required to optimize scanning and reconstruction protocols for veterinary applications.

  6. Multispectral image enhancement processing for microsat-borne imager

    NASA Astrophysics Data System (ADS)

    Sun, Jianying; Tan, Zheng; Lv, Qunbo; Pei, Linlin

    2017-10-01

    With the rapid development of remote sensing imaging technology, the micro satellite, one kind of tiny spacecraft, appears during the past few years. A good many studies contribute to dwarfing satellites for imaging purpose. Generally speaking, micro satellites weigh less than 100 kilograms, even less than 50 kilograms, which are slightly larger or smaller than the common miniature refrigerators. However, the optical system design is hard to be perfect due to the satellite room and weight limitation. In most cases, the unprocessed data captured by the imager on the microsatellite cannot meet the application need. Spatial resolution is the key problem. As for remote sensing applications, the higher spatial resolution of images we gain, the wider fields we can apply them. Consequently, how to utilize super resolution (SR) and image fusion to enhance the quality of imagery deserves studying. Our team, the Key Laboratory of Computational Optical Imaging Technology, Academy Opto-Electronics, is devoted to designing high-performance microsat-borne imagers and high-efficiency image processing algorithms. This paper addresses a multispectral image enhancement framework for space-borne imagery, jointing the pan-sharpening and super resolution techniques to deal with the spatial resolution shortcoming of microsatellites. We test the remote sensing images acquired by CX6-02 satellite and give the SR performance. The experiments illustrate the proposed approach provides high-quality images.

  7. Superpixel-based spectral classification for the detection of head and neck cancer with hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Chung, Hyunkoo; Lu, Guolan; Tian, Zhiqiang; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2016-03-01

    Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications. HSI acquires two dimensional images at various wavelengths. The combination of both spectral and spatial information provides quantitative information for cancer detection and diagnosis. This paper proposes using superpixels, principal component analysis (PCA), and support vector machine (SVM) to distinguish regions of tumor from healthy tissue. The classification method uses 2 principal components decomposed from hyperspectral images and obtains an average sensitivity of 93% and an average specificity of 85% for 11 mice. The hyperspectral imaging technology and classification method can have various applications in cancer research and management.

  8. Developing stereo image based robot control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suprijadi,; Pambudi, I. R.; Woran, M.

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based onmore » stereovision captures.« less

  9. Quantitative imaging of volcanic plumes — Results, needs, and future trends

    USGS Publications Warehouse

    Platt, Ulrich; Lübcke, Peter; Kuhn, Jonas; Bobrowski, Nicole; Prata, Fred; Burton, Mike; Kern, Christoph

    2015-01-01

    Recent technology allows two-dimensional “imaging” of trace gas distributions in plumes. In contrast to older, one-dimensional remote sensing techniques, that are only capable of measuring total column densities, the new imaging methods give insight into details of transport and mixing processes as well as chemical transformation within plumes. We give an overview of gas imaging techniques already being applied at volcanoes (SO2cameras, imaging DOAS, FT-IR imaging), present techniques where first field experiments were conducted (LED-LIDAR, tomographic mapping), and describe some techniques where only theoretical studies with application to volcanology exist (e.g. Fabry–Pérot Imaging, Gas Correlation Spectroscopy, bi-static LIDAR). Finally, we discuss current needs and future trends in imaging technology.

  10. Application of Polarimetric-Interferometric Phase Coherence Optimization (PIPCO) Procedure to SIR-C/X-SAR Tien-Shan Tracks 122.20(94 Oct. 08)/154.20(94 Oct. 09) Repeat-Orbit C/L-Band Pol-D-InSAR Imag

    NASA Technical Reports Server (NTRS)

    Boerner, W. M.; Mott, H.; Verdi, J.; Darizhapov, D.; Dorjiev, B.; Tsybjito, T.; Korsunov, V.; Tatchkov, G.; Bashkuyev, Y.; Cloude, S.; hide

    1998-01-01

    During the past decade, Radar Polarimetry has established itself as a mature science and advanced technology in high resolution POL-SAR imaging, image target characterization and selective image feature extraction.

  11. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambhir, Sanjiv; Pritha, Ray

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  12. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOEpatents

    Gambhir, Sanjiv; Pritha, Ray

    2015-07-14

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  13. Scanning fiber endoscopy with highly flexible, 1-mm catheterscopes for wide-field, full-color imaging

    PubMed Central

    Lee, Cameron M.; Engelbrecht, Christoph J.; Soper, Timothy D.; Helmchen, Fritjof; Seibel, Eric J.

    2011-01-01

    In modern endoscopy, wide field of view and full color are considered necessary for navigating inside the body, inspecting tissue for disease and guiding interventions such as biopsy or surgery. Current flexible endoscope technologies suffer from reduced resolution when device diameter shrinks. Endoscopic procedures today using coherent fiber bundle technology, on the scale of 1 mm, are performed with such poor image quality that the clinician’s vision meets the criteria for legal blindness. Here, we review a new and versatile scanning fiber imaging technology and describe its implementation for ultrathin and flexible endoscopy. This scanning fiber endoscope (SFE) or catheterscope enables high quality, laser-based, video imaging for ultrathin clinical applications while also providing new options for in vivo biological research of subsurface tissue and high resolution fluorescence imaging. PMID:20336702

  14. State-of-the-art MS technology applications in lung disease.

    PubMed

    Végvári, Ákos; Döme, Balázs

    2011-12-01

    Two frontline MS technologies, which have recently gained much attention, are discussed within the scope of this review. Besides a brief summary on the contemporary state of lung cancer and chronic obstructive pulmonary disease, the principles of multiple reaction monitoring and matrix assisted laser desorption ionization (MALDI) MS imaging are presented. A comprehensive overview of quantitative mass spectrometry applications is provided, covering multiple reaction monitoring assay developments for analysis of proteins (biomarkers) and low-molecular-weight compounds (drugs) with a special focus on the disease areas of lung cancer and chronic obstructive pulmonary disease. The MALDI-MS imaging applications are discussed similarly, providing references to studies conducted on lung tissues in order to localize drug compounds and protein biomarkers.

  15. [Development and evaluation of the medical imaging distribution system with dynamic web application and clustering technology].

    PubMed

    Yokohama, Noriya; Tsuchimoto, Tadashi; Oishi, Masamichi; Itou, Katsuya

    2007-01-20

    It has been noted that the downtime of medical informatics systems is often long. Many systems encounter downtimes of hours or even days, which can have a critical effect on daily operations. Such systems remain especially weak in the areas of database and medical imaging data. The scheme design shows the three-layer architecture of the system: application, database, and storage layers. The application layer uses the DICOM protocol (Digital Imaging and Communication in Medicine) and HTTP (Hyper Text Transport Protocol) with AJAX (Asynchronous JavaScript+XML). The database is designed to decentralize in parallel using cluster technology. Consequently, restoration of the database can be done not only with ease but also with improved retrieval speed. In the storage layer, a network RAID (Redundant Array of Independent Disks) system, it is possible to construct exabyte-scale parallel file systems that exploit storage spread. Development and evaluation of the test-bed has been successful in medical information data backup and recovery in a network environment. This paper presents a schematic design of the new medical informatics system that can be accommodated from a recovery and the dynamic Web application for medical imaging distribution using AJAX.

  16. MULTIPLE IMAGING TECHNIQUES DEMONSTRATE THE MANIPULATION OF SURFACES TO REDUCE BACTERIAL CONTAMINATION

    EPA Science Inventory

    Surface imaging techniques were combined to determine appropriate manipulation of technologically important surfaces for commercial applications. Stainless steel surfaces were engineered to reduce bacterial contamination, biofilm formation, and corrosion during product processing...

  17. Amorphous Silicon: Flexible Backplane and Display Application

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.

    Advances in the science and technology of hydrogenated amorphous silicon (a-Si:H, also referred to as a-Si) and the associated devices including thin-film transistors (TFT) during the past three decades have had a profound impact on the development and commercialization of major applications such as thin-film solar cells, digital image scanners and X-ray imagers and active matrix liquid crystal displays (AMLCDs). Particularly, during approximately the past 15 years, a-Si TFT-based flat panel AMLCDs have been a huge commercial success. a-Si TFT-LCD has enabled the note book PCs, and is now rapidly replacing the venerable CRT in the desktop monitor and home TV applications. a-Si TFT-LCD is now the dominant technology in use for applications ranging from small displays such as in mobile phones to large displays such as in home TV, as well-specialized applications such as industrial and avionics displays.

  18. Design considerations for imaging charge-coupled device

    NASA Astrophysics Data System (ADS)

    1981-04-01

    The image dissector tube, which was formerly used as detector in star trackers, will be replaced by solid state imaging devices. The technology advances of charge transfer devices, like the charge-coupled device (CCD) and the charge-injection device (CID) have made their application to star trackers an immediate reality. The Air Force in 1979 funded an American Aerospace company to develop an imaging CCD (ICCD) star sensor for the Multimission Attitude Determination and Autonomous Navigation (MADAN) system. The MADAN system is a technology development for a strapdown attitude and navigation system which can be used on all Air Force 3-axis stabilized satellites. The system will be autonomous and will provide real-time satellite attitude and position information. The star sensor accuracy provides an overall MADAN attitude accuracy of 2 arcsec for star rates up to 300 arcsec/sec. The ICCD is basically an integrating device. Its pixel resolution in not yet satisfactory for precision applications.

  19. Diagnostic and interventional musculoskeletal ultrasound: part 2. Clinical applications.

    PubMed

    Smith, Jay; Finnoff, Jonathan T

    2009-02-01

    Musculoskeletal ultrasound involves the use of high-frequency sound waves to image soft tissues and bony structures in the body for the purposes of diagnosing pathology or guiding real-time interventional procedures. Recently, an increasing number of physicians have integrated musculoskeletal ultrasound into their practices to facilitate patient care. Technological advancements, improved portability, and reduced costs continue to drive the proliferation of ultrasound in clinical medicine. This increased interest creates a need for education pertaining to all aspects of musculoskeletal ultrasound. The primary purpose of this article is to review diagnostic ultrasound technology and its potential clinical applications in the evaluation and treatment of patients with neurological and musculoskeletal disorders. After reviewing this article, physicians should be able to (1) list the advantages and disadvantages of ultrasound compared to other available imaging modalities; (2) describe how ultrasound machines produce images using sound waves; (3) discuss the steps necessary to acquire and optimize an ultrasound image; (4) understand the difference ultrasound appearances of tendons, nerves, muscles, ligaments, blood vessels, and bones; and (5) identify multiple applications for diagnostic and interventional musculoskeletal ultrasound. Part 2 of this 2-part article will focus on the clinical applications of musculoskeletal ultrasound in clinical practice, including the ultrasonographic appearance of normal and abnormal tissues as well as specific diagnostic and interventional applications in major body regions.

  20. Magnetic particle imaging: from proof of principle to preclinical applications

    NASA Astrophysics Data System (ADS)

    Knopp, T.; Gdaniec, N.; Möddel, M.

    2017-07-01

    Tomographic imaging has become a mandatory tool for the diagnosis of a majority of diseases in clinical routine. Since each method has its pros and cons, a variety of them is regularly used in clinics to satisfy all application needs. Magnetic particle imaging (MPI) is a relatively new tomographic imaging technique that images magnetic nanoparticles with a high spatiotemporal resolution in a quantitative way, and in turn is highly suited for vascular and targeted imaging. MPI was introduced in 2005 and now enters the preclinical research phase, where medical researchers get access to this new technology and exploit its potential under physiological conditions. Within this paper, we review the development of MPI since its introduction in 2005. Besides an in-depth description of the basic principles, we provide detailed discussions on imaging sequences, reconstruction algorithms, scanner instrumentation and potential medical applications.

  1. Flexible digital x-ray technology for far-forward remote diagnostic and conformal x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David

    2013-05-01

    Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.

  2. Image Processing Software

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Ames digital image velocimetry technology has been incorporated in a commercially available image processing software package that allows motion measurement of images on a PC alone. The software, manufactured by Werner Frei Associates, is IMAGELAB FFT. IMAGELAB FFT is a general purpose image processing system with a variety of other applications, among them image enhancement of fingerprints and use by banks and law enforcement agencies for analysis of videos run during robberies.

  3. Novel instrumentation of multispectral imaging technology for detecting tissue abnormity

    NASA Astrophysics Data System (ADS)

    Yi, Dingrong; Kong, Linghua

    2012-10-01

    Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.

  4. Applications of Molecular Imaging

    PubMed Central

    Galbán, Craig; Galbán, Stefanie; Van Dort, Marcian; Luker, Gary D.; Bhojani, Mahaveer S.; Rehemtualla, Alnawaz; Ross, Brian D.

    2015-01-01

    Today molecular imaging technologies play a central role in clinical oncology. The use of imaging techniques in early cancer detection, treatment response and new therapy development is steadily growing and has already significantly impacted clinical management of cancer. In this chapter we will overview three different molecular imaging technologies used for the understanding of disease biomarkers, drug development, or monitoring therapeutic outcome. They are (1) optical imaging (bioluminescence and fluorescence imaging) (2) magnetic resonance imaging (MRI), and (3) nuclear imaging (e.g, single photon emission computed tomography (SPECT) and positron emission tomography (PET)). We will review the use of molecular reporters of biological processes (e.g. apoptosis and protein kinase activity) for high throughput drug screening and new cancer therapies, diffusion MRI as a biomarker for early treatment response and PET and SPECT radioligands in oncology. PMID:21075334

  5. Multispectral THz-VIS passive imaging system for hidden threats visualization

    NASA Astrophysics Data System (ADS)

    Kowalski, Marcin; Palka, Norbert; Szustakowski, Mieczyslaw

    2013-10-01

    Terahertz imaging, is the latest entry into the crowded field of imaging technologies. Many applications are emerging for the relatively new technology. THz radiation penetrates deep into nonpolar and nonmetallic materials such as paper, plastic, clothes, wood, and ceramics that are usually opaque at optical wavelengths. The T-rays have large potential in the field of hidden objects detection because it is not harmful to humans. The main difficulty in the THz imaging systems is low image quality thus it is justified to combine THz images with the high-resolution images from a visible camera. An imaging system is usually composed of various subsystems. Many of the imaging systems use imaging devices working in various spectral ranges. Our goal is to build a system harmless to humans for screening and detection of hidden objects using a THz and VIS cameras.

  6. Commercialization of Australian advanced infrared technology

    NASA Astrophysics Data System (ADS)

    Redpath, John; Brown, Allen; Woods, William F.

    1995-09-01

    For several decades, the main thrust in infrared technology developments in Australia has been in two main sensor technologies: uncooled silicon chip printed bolometric sensors pioneered by DSTO's Kevin Liddiard, and precision engineered high quality Cadmium Mercury Telluride developed at DSTO under the guidance of Dr. Richard Hartley. In late 1993 a low cost infrared imaging device was developed at DSTO as a sensor for guided missiles. The combination of these three innovations made up a unique package that enabled Australian industry to break through the barriers of commercializing infrared technology. The privately owned company, R.J. Optronics Pty Ltd undertook the process of re-engineering a selection of these DSTO developments to be applicable to a wide range of infrared products. The first project was a novel infrared imager based on a Palmer scan (translated circle) mechanism. This device applies a spinning wedge and a single detector, it uses a video processor to convert the image into a standard rectangular format. Originally developed as an imaging seeker for a stand-off weapon, it is producing such high quality images at such a low cost that it is now also being adapted for a wide variety of other military and commercial applications. A technique for electronically stabilizing it has been developed which uses the inertial signals from co-mounted sensors to compensate for platform motions. This enables it to meet the requirements of aircraft, marine vessels and masthead sight applications without the use of gimbals. After tests on a three-axis motion table, several system configurations have now been successfully operated on a number of lightweight platforms, including a Cessna 172 and the Australian made Seabird Seeker aircraft.

  7. Computational Modeling for Enhancing Soft Tissue Image Guided Surgery: An Application in Neurosurgery.

    PubMed

    Miga, Michael I

    2016-01-01

    With the recent advances in computing, the opportunities to translate computational models to more integrated roles in patient treatment are expanding at an exciting rate. One area of considerable development has been directed towards correcting soft tissue deformation within image guided neurosurgery applications. This review captures the efforts that have been undertaken towards enhancing neuronavigation by the integration of soft tissue biomechanical models, imaging and sensing technologies, and algorithmic developments. In addition, the review speaks to the evolving role of modeling frameworks within surgery and concludes with some future directions beyond neurosurgical applications.

  8. Thermal Writing 1987

    NASA Astrophysics Data System (ADS)

    Peckham, Robert F.

    1987-04-01

    The creating of intelligent marks on a substrate by means of thermal energy has been in use for thousands of years, e.g., branding of livestock and burning images onto wood. During the past 30 years, this type of imaging has been significantly refined. Recent advances allow the creation of color images, 16 shades of gray and letter quality printing on white substrates. Permanent images are now being written with direct thermal processes. The foregoing make thermal writing very attractive for numerous applications. The general technology of how thermal writing is accomplished today, its applications, and why society should use thermal writing are the topics of this paper. To attempt to cover in great technical detail all of the current advancements in thermal writing is beyond our scope here. What is intended is the proposition that THERMAL WRITING is a superior form of creating images on paper substrates for Society's on demand hard copy requirements. First let's look at how thermal writing is being accomplished with today's technologies.

  9. Micro-ultrasound for preclinical imaging

    PubMed Central

    Foster, F. Stuart; Hossack, John; Adamson, S. Lee

    2011-01-01

    Over the past decade, non-invasive preclinical imaging has emerged as an important tool to facilitate biomedical discovery. Not only have the markets for these tools accelerated, but the numbers of peer-reviewed papers in which imaging end points and biomarkers have been used have grown dramatically. High frequency ‘micro-ultrasound’ has steadily evolved in the post-genomic era as a rapid, comparatively inexpensive imaging tool for studying normal development and models of human disease in small animals. One of the fundamental barriers to this development was the technological hurdle associated with high-frequency array transducers. Recently, new approaches have enabled the upper limits of linear and phased arrays to be pushed from about 20 to over 50 MHz enabling a broad range of new applications. The innovations leading to the new transducer technology and scanner architecture are reviewed. Applications of preclinical micro-ultrasound are explored for developmental biology, cancer, and cardiovascular disease. With respect to the future, the latest developments in high-frequency ultrasound imaging are described. PMID:22866232

  10. Spectral Imaging from Uavs Under Varying Illumination Conditions

    NASA Astrophysics Data System (ADS)

    Hakala, T.; Honkavaara, E.; Saari, H.; Mäkynen, J.; Kaivosoja, J.; Pesonen, L.; Pölönen, I.

    2013-08-01

    Rapidly developing unmanned aerial vehicles (UAV) have provided the remote sensing community with a new rapidly deployable tool for small area monitoring. The progress of small payload UAVs has introduced greater demand for light weight aerial payloads. For applications requiring aerial images, a simple consumer camera provides acceptable data. For applications requiring more detailed spectral information about the surface, a new Fabry-Perot interferometer based spectral imaging technology has been developed. This new technology produces tens of successive images of the scene at different wavelength bands in very short time. These images can be assembled in spectral data cubes with stereoscopic overlaps. On field the weather conditions vary and the UAV operator often has to decide between flight in sub optimal conditions and no flight. Our objective was to investigate methods for quantitative radiometric processing of images taken under varying illumination conditions, thus expanding the range of weather conditions during which successful imaging flights can be made. A new method that is based on insitu measurement of irradiance either in UAV platform or in ground was developed. We tested the methods in a precision agriculture application using realistic data collected in difficult illumination conditions. Internal homogeneity of the original image data (average coefficient of variation in overlapping images) was 0.14-0.18. In the corrected data, the homogeneity was 0.10-0.12 with a correction based on broadband irradiance measured in UAV, 0.07-0.09 with a correction based on spectral irradiance measurement on ground, and 0.05-0.08 with a radiometric block adjustment based on image data. Our results were very promising, indicating that quantitative UAV based remote sensing could be operational in diverse conditions, which is prerequisite for many environmental remote sensing applications.

  11. Review of the potential of optical technologies for cancer diagnosis in neurosurgery: a step toward intraoperative neurophotonics

    PubMed Central

    Vasefi, Fartash; MacKinnon, Nicholas; Farkas, Daniel L.; Kateb, Babak

    2016-01-01

    Abstract. Advances in image-guided therapy enable physicians to obtain real-time information on neurological disorders such as brain tumors to improve resection accuracy. Image guidance data include the location, size, shape, type, and extent of tumors. Recent technological advances in neurophotonic engineering have enabled the development of techniques for minimally invasive neurosurgery. Incorporation of these methods in intraoperative imaging decreases surgical procedure time and allows neurosurgeons to find remaining or hidden tumor or epileptic lesions. This facilitates more complete resection and improved topology information for postsurgical therapy (i.e., radiation). We review the clinical application of recent advances in neurophotonic technologies including Raman spectroscopy, thermal imaging, optical coherence tomography, and fluorescence spectroscopy, highlighting the importance of these technologies in live intraoperative tissue mapping during neurosurgery. While these technologies need further validation in larger clinical trials, they show remarkable promise in their ability to help surgeons to better visualize the areas of abnormality and enable safe and successful removal of malignancies. PMID:28042588

  12. Analysis and design of the ultraviolet warning optical system based on interference imaging

    NASA Astrophysics Data System (ADS)

    Wang, Wen-cong; Hu, Hui-jun; Jin, Dong-dong; Chu, Xin-bo; Shi, Yu-feng; Song, Juan; Liu, Jin-sheng; Xiao, Ting; Shao, Si-pei

    2017-10-01

    Ultraviolet warning technology is one of the important methods for missile warning. It provides a very effective way to detect the target for missile approaching alarm. With the development of modern technology, especially the development of information technology at high speed, the ultraviolet early warning system plays an increasingly important role. Compared to infrared warning, the ultraviolet warning has high efficiency and low false alarm rate. In the modern warfare, how to detect the threats earlier, prevent and reduce the attack of precision-guided missile has become a new challenge of missile warning technology. Because the ultraviolet warning technology has high environmental adaptability, the low false alarm rate, small volume and other advantages, in the military field applications it has been developed rapidly. For the ultraviolet warning system, the optimal working waveband is 250 nm 280 nm (Solar Blind UV) due to the strong absorption of ozone layer. According to current application demands for solar blind ultraviolet detection and warning, this paper proposes ultraviolet warning optical system based on interference imaging, which covers solar blind ultraviolet (250nm-280nm) and dual field. This structure includes a primary optical system, an ultraviolet reflector array, an ultraviolet imaging system and an ultraviolet interference imaging system. It makes use of an ultraviolet beam-splitter to achieve the separation of two optical systems. According to the detector and the corresponding application needs of two visual field of the optical system, the calculation and optical system design were completed. After the design, the MTF of the two optical system is more than 0.8@39lp/mm.A single pixel energy concentration is greater than 80%.

  13. High speed color imaging through scattering media with a large field of view

    NASA Astrophysics Data System (ADS)

    Zhuang, Huichang; He, Hexiang; Xie, Xiangsheng; Zhou, Jianying

    2016-09-01

    Optical imaging through complex media has many important applications. Although research progresses have been made to recover optical image through various turbid media, the widespread application of the technology is hampered by the recovery speed, requirement on specific illumination, poor image quality and limited field of view. Here we demonstrate that above-mentioned drawbacks can be essentially overcome. The realization of high speed color imaging through turbid media is successfully carried out by taking into account the media memory effect, the point spread function, the exit pupil of the optical system, and the optimized signal to noise ratio. By retrieving selected speckles with enlarged field of view, high quality image is recovered with a responding speed only determined by the frame rates of the image capturing devices. The immediate application of the technique is expected to register static and dynamic imaging under human skin to recover information with a wearable device.

  14. Heterodyne range imaging as an alternative to photogrammetry

    NASA Astrophysics Data System (ADS)

    Dorrington, Adrian; Cree, Michael; Carnegie, Dale; Payne, Andrew; Conroy, Richard

    2007-01-01

    Solid-state full-field range imaging technology, capable of determining the distance to objects in a scene simultaneously for every pixel in an image, has recently achieved sub-millimeter distance measurement precision. With this level of precision, it is becoming practical to use this technology for high precision three-dimensional metrology applications. Compared to photogrammetry, range imaging has the advantages of requiring only one viewing angle, a relatively short measurement time, and simplistic fast data processing. In this paper we fist review the range imaging technology, then describe an experiment comparing both photogrammetric and range imaging measurements of a calibration block with attached retro-reflective targets. The results show that the range imaging approach exhibits errors of approximately 0.5 mm in-plane and almost 5 mm out-of-plane; however, these errors appear to be mostly systematic. We then proceed to examine the physical nature and characteristics of the image ranging technology and discuss the possible causes of these systematic errors. Also discussed is the potential for further system characterization and calibration to compensate for the range determination and other errors, which could possibly lead to three-dimensional measurement precision approaching that of photogrammetry.

  15. Computer-Aided Detection of Prostate Cancer with MRI: Technology and Applications

    PubMed Central

    Liu, Lizhi; Tian, Zhiqiang; Zhang, Zhenfeng; Fei, Baowei

    2016-01-01

    One in six men will develop prostate cancer in his life time. Early detection and accurate diagnosis of the disease can improve cancer survival and reduce treatment costs. Recently, imaging of prostate cancer has greatly advanced since the introduction of multi-parametric magnetic resonance imaging (mp-MRI). Mp-MRI consists of T2-weighted sequences combined with functional sequences including dynamic contrast-enhanced MRI, diffusion-weighted MRI, and MR spectroscopy imaging. Due to the big data and variations in imaging sequences, detection can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. In order to improve quantitative assessment of the disease, various computer-aided detection systems have been designed to help radiologists in their clinical practice. This review paper presents an overview of literatures on computer-aided detection of prostate cancer with mp-MRI, which include the technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:27133005

  16. Label-free optical imaging technologies for rapid translation and use during intraoperative surgical and tumor margin assessment

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.; Brown, J. Quincy; Farah, Camile S.; Kho, Esther; Marcu, Laura; Saunders, Christobel M.; Sterenborg, Henricus J. C. M.

    2018-02-01

    The biannual International Conference on Biophotonics was recently held on April 30 to May 1, 2017, in Fremantle, Western Australia. This continuing conference series brought together key opinion leaders in biophotonics to present their latest results and, importantly, to participate in discussions on the future of the field and what opportunities exist when we collectively work together for using biophotonics for biological discovery and medical applications. One session in this conference, entitled "Tumor Margin Identification: Critiquing Technologies," challenged invited speakers and attendees to review and critique representative label-free optical imaging technologies and their application for intraoperative assessment and guidance in surgical oncology. We are pleased to share a summary in this outlook paper, with the intent to motivate more research inquiry and investigations, to challenge these and other optical imaging modalities to evaluate and improve performance, to spur translation and adoption, and ultimately, to improve the care and outcomes of patients.

  17. Emerging Technologies: Something Borrowed, Something New

    NASA Astrophysics Data System (ADS)

    Heinhorst, Sabine; Cannon, Gordon

    1999-04-01

    The cover of the July 16, 1998 issue of Nature features a remarkable new "smart material" that can be used to print electronically on a variety of surfaces, including paper, plastic, and metal. The electrophoretic ink developed in J. Jacobson's lab at the Massachusetts Institute of Technology consists of liquid with dispersed, oppositely charged black and white microparticles that are contained in microcapsules. Application of a potential results in migration of the microparticles to opposite sides of the microcapsule, thereby generating either a white or black image that depends on the direction of the potential. Unlike liquid crystal displays, the image generated with electrophoretic ink is stable even after the power has been turned off. Cost and resolution of this new technology compare favorably with most other electronic image display systems currently in use or under development. Promising applications for electrophoretic ink in the future may range from street signs to electronic books (Comiskey et al., Vol. 394, pp 253-255; "News and Views" commentary by R. Wisnieff on pp 225-227).

  18. Retinal imaging using adaptive optics technology☆

    PubMed Central

    Kozak, Igor

    2014-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started. PMID:24843304

  19. Updates to the QBIC system

    NASA Astrophysics Data System (ADS)

    Niblack, Carlton W.; Zhu, Xiaoming; Hafner, James L.; Breuel, Tom; Ponceleon, Dulce B.; Petkovic, Dragutin; Flickner, Myron D.; Upfal, Eli; Nin, Sigfredo I.; Sull, Sanghoon; Dom, Byron E.; Yeo, Boon-Lock; Srinivasan, Savitha; Zivkovic, Dan; Penner, Mike

    1997-12-01

    QBICTM (Query By Image Content) is a set of technologies and associated software that allows a user to search, browse, and retrieve image, graphic, and video data from large on-line collections. This paper discusses current research directions of the QBIC project such as indexing for high-dimensional multimedia data, retrieval of gray level images, and storyboard generation suitable for video. It describes aspects of QBIC software including scripting tools, application interfaces, and available GUIs, and gives examples of applications and demonstration systems using it.

  20. Frontal view reconstruction for iris recognition

    DOEpatents

    Santos-Villalobos, Hector J; Bolme, David S; Boehnen, Chris Bensing

    2015-02-17

    Iris recognition can be accomplished for a wide variety of eye images by correcting input images with an off-angle gaze. A variety of techniques, from limbus modeling, corneal refraction modeling, optical flows, and genetic algorithms can be used. A variety of techniques, including aspherical eye modeling, corneal refraction modeling, ray tracing, and the like can be employed. Precomputed transforms can enhance performance for use in commercial applications. With application of the technologies, images with significantly unfavorable gaze angles can be successfully recognized.

  1. Mapping invasive weeds and their control with spatial information technologies

    USDA-ARS?s Scientific Manuscript database

    We discuss applications of airborne multispectral digital imaging systems, imaging processing techniques, global positioning systems (GPS), and geographic information systems (GIS) for mapping the invasive weeds giant salvinia (Salvinia molesta) and Brazilian pepper (Schinus terebinthifolius) and fo...

  2. Performance assessment of 3D surface imaging technique for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Recent development in optical 3D surface imaging technologies provide better ways to digitalize the 3D surface and its motion in real-time. The non-invasive 3D surface imaging approach has great potential for many medical imaging applications, such as motion monitoring of radiotherapy, pre/post evaluation of plastic surgery and dermatology, to name a few. Various commercial 3D surface imaging systems have appeared on the market with different dimension, speed and accuracy. For clinical applications, the accuracy, reproducibility and robustness across the widely heterogeneous skin color, tone, texture, shape properties, and ambient lighting is very crucial. Till now, a systematic approach for evaluating the performance of different 3D surface imaging systems still yet exist. In this paper, we present a systematic performance assessment approach to 3D surface imaging system assessment for medical applications. We use this assessment approach to exam a new real-time surface imaging system we developed, dubbed "Neo3D Camera", for image-guided radiotherapy (IGRT). The assessments include accuracy, field of view, coverage, repeatability, speed and sensitivity to environment, texture and color.

  3. Optical medical imaging: from glass to man

    NASA Astrophysics Data System (ADS)

    Bradley, Mark

    2016-11-01

    A formidable challenge in modern respiratory healthcare is the accurate and timely diagnosis of lung infection and inflammation. The EPSRC Interdisciplinary Research Collaboration (IRC) `Proteus' seeks to address this challenge by developing an optical fibre based healthcare technology platform that combines physiological sensing with multiplexed optical molecular imaging. This technology will enable in situ measurements deep in the human lung allowing the assessment of tissue function and characterization of the unique signatures of pulmonary disease and is illustrated here with our in-man application of Optical Imaging SmartProbes and our first device Versicolour.

  4. Active polarization imaging system based on optical heterodyne balanced receiver

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Sun, Jianfeng; Lu, Zhiyong; Zhou, Yu; Luan, Zhu; Hou, Peipei; Liu, liren

    2017-08-01

    Active polarization imaging technology has recently become the hot research field all over the world, which has great potential application value in the military and civil area. By introducing active light source, the Mueller matrix of the target can be calculated according to the incident light and the emitted or reflected light. Compared with conventional direct detection technology, optical heterodyne detection technology have higher receiving sensitivities, which can obtain the whole amplitude, frequency and phase information of the signal light. In this paper, an active polarization imaging system will be designed. Based on optical heterodyne balanced receiver, the system can acquire the horizontal and vertical polarization of reflected optical field simultaneously, which contain the polarization characteristic of the target. Besides, signal to noise ratio and imaging distance can be greatly improved.

  5. [Application Progress of Three-dimensional Laser Scanning Technology in Medical Surface Mapping].

    PubMed

    Zhang, Yonghong; Hou, He; Han, Yuchuan; Wang, Ning; Zhang, Ying; Zhu, Xianfeng; Wang, Mingshi

    2016-04-01

    The booming three-dimensional laser scanning technology can efficiently and effectively get spatial three-dimensional coordinates of the detected object surface and reconstruct the image at high speed,high precision and large capacity of information.Non-radiation,non-contact and the ability of visualization make it increasingly popular in three-dimensional surface medical mapping.This paper reviews the applications and developments of three-dimensional laser scanning technology in medical field,especially in stomatology,plastic surgery and orthopedics.Furthermore,the paper also discusses the application prospects in the future as well as the biomedical engineering problems it would encounter with.

  6. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    NASA Technical Reports Server (NTRS)

    Sanders, Yvonne D. (Editor); Freeman, Yvonne B. (Editor); George, M. C. (Editor)

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements).

  7. Scanning tunneling microscopy and atomic force microscopy: application to biology and technology.

    PubMed

    Hansma, P K; Elings, V B; Marti, O; Bracker, C E

    1988-10-14

    The scanning tunneling microscope (STM) and the atomic force microscope (AFM) are scanning probe microscopes capable of resolving surface detail down to the atomic level. The potential of these microscopes for revealing subtle details of structure is illustrated by atomic resolution images including graphite, an organic conductor, an insulating layered compound, and individual adsorbed oxygen atoms on a semiconductor. Application of the STM for imaging biological materials directly has been hampered by the poor electron conductivity of most biological samples. The use of thin conductive metal coatings and replicas has made it possible to image some biological samples, as indicated by recently obtained images of a recA-DNA complex, a phospholipid bilayer, and an enzyme crystal. The potential of the AFM, which does not require a conductive sample, is shown with molecular resolution images of a nonconducting organic monolayer and an amino acid crystal that reveals individual methyl groups on the ends of the amino acids. Applications of these new microscopes to technology are demonstrated with images of an optical disk stamper, a diffraction grating, a thin-film magnetic recording head, and a diamond cutting tool. The STM has even been used to improve the quality of diffraction gratings and magnetic recording heads.

  8. Real-time image processing for non-contact monitoring of dynamic displacements using smartphone technologies

    NASA Astrophysics Data System (ADS)

    Min, Jae-Hong; Gelo, Nikolas J.; Jo, Hongki

    2016-04-01

    The newly developed smartphone application, named RINO, in this study allows measuring absolute dynamic displacements and processing them in real time using state-of-the-art smartphone technologies, such as high-performance graphics processing unit (GPU), in addition to already powerful CPU and memories, embedded high-speed/ resolution camera, and open-source computer vision libraries. A carefully designed color-patterned target and user-adjustable crop filter enable accurate and fast image processing, allowing up to 240fps for complete displacement calculation and real-time display. The performances of the developed smartphone application are experimentally validated, showing comparable accuracy with those of conventional laser displacement sensor.

  9. Multi-technique hybrid imaging in PET/CT and PET/MR: what does the future hold?

    PubMed

    de Galiza Barbosa, F; Delso, G; Ter Voert, E E G W; Huellner, M W; Herrmann, K; Veit-Haibach, P

    2016-07-01

    Integrated positron-emission tomography and computed tomography (PET/CT) is one of the most important imaging techniques to have emerged in oncological practice in the last decade. Hybrid imaging, in general, remains a rapidly growing field, not only in developing countries, but also in western industrialised healthcare systems. A great deal of technological development and research is focused on improving hybrid imaging technology further and introducing new techniques, e.g., integrated PET and magnetic resonance imaging (PET/MRI). Additionally, there are several new PET tracers on the horizon, which have the potential to broaden clinical applications in hybrid imaging for diagnosis as well as therapy. This article aims to highlight some of the major technical and clinical advances that are currently taking place in PET/CT and PET/MRI that will potentially maintain the position of hybrid techniques at the forefront of medical imaging technologies. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  10. An application of digital network technology to medical image management.

    PubMed

    Chu, W K; Smith, C L; Wobig, R K; Hahn, F A

    1997-01-01

    With the advent of network technology, there is considerable interest within the medical community to manage the storage and distribution of medical images by digital means. Higher workflow efficiency leading to better patient care is one of the commonly cited outcomes [1,2]. However, due to the size of medical image files and the unique requirements in detail and resolution, medical image management poses special challenges. Storage requirements are usually large, which implies expenses or investment costs make digital networking projects financially out of reach for many clinical institutions. New advances in network technology and telecommunication, in conjunction with the decreasing cost in computer devices, have made digital image management achievable. In our institution, we have recently completed a pilot project to distribute medical images both within the physical confines of the clinical enterprise as well as outside the medical center campus. The design concept and the configuration of a comprehensive digital image network is described in this report.

  11. Creating 3D models of historical buildings using geospatial data

    NASA Astrophysics Data System (ADS)

    Alionescu, Adrian; Bǎlǎ, Alina Corina; Brebu, Floarea Maria; Moscovici, Anca-Maria

    2017-07-01

    Recently, a lot of interest has been shown to understand a real world object by acquiring its 3D images of using laser scanning technology and panoramic images. A realistic impression of geometric 3D data can be generated by draping real colour textures simultaneously captured by a colour camera images. In this context, a new concept of geospatial data acquisition has rapidly revolutionized the method of determining the spatial position of objects, which is based on panoramic images. This article describes an approach that comprises inusing terrestrial laser scanning and panoramic images captured with Trimble V10 Imaging Rover technology to enlarge the details and realism of the geospatial data set, in order to obtain 3D urban plans and virtual reality applications.

  12. MO-DE-202-00: Image-Guided Interventions: Advances in Intraoperative Imaging, Guidance, and An Emerging Role for Medical Physics in Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less

  13. MO-DE-202-03: Image-Guided Surgery and Interventions in the Advanced Multimodality Image-Guided Operating (AMIGO) Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapur, T.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less

  14. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siewerdsen, J.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less

  15. Basics of identification measurement technology

    NASA Astrophysics Data System (ADS)

    Klikushin, Yu N.; Kobenko, V. Yu; Stepanov, P. P.

    2018-01-01

    All available algorithms and suitable for pattern recognition do not give 100% guarantee, therefore there is a field of scientific night activity in this direction, studies are relevant. It is proposed to develop existing technologies for pattern recognition in the form of application of identification measurements. The purpose of the study is to identify the possibility of recognizing images using identification measurement technologies. In solving problems of pattern recognition, neural networks and hidden Markov models are mainly used. A fundamentally new approach to the solution of problems of pattern recognition based on the technology of identification signal measurements (IIS) is proposed. The essence of IIS technology is the quantitative evaluation of the shape of images using special tools and algorithms.

  16. Wireless technologies for robotic endoscope in gastrointestinal tract.

    PubMed

    Gao, P; Yan, G; Wang, Z; Liu, H

    2012-07-01

    This paper introduces wireless technologies for use with robotic endoscopes in the gastrointestinal tract. The technologies include wireless power transmission (WPT), wireless remote control (WRC), and wireless image transmission (WIT). WPT, based on the electromagnetic coupling principle, powers active locomotion actuators and other peripherals in large air gaps. WRC, based on real-time bidirectional communication, has a multikernel frame in vivo to realize real-time multitasking. WIT provides a continuous dynamic image with a revolution of 320 × 240 pixel at 30 fps for in vitro diagnosis. To test these wireless technologies, three robotic endoscope prototypes were fabricated and equipped with the customized modules. The experimental results show that the wireless technologies have value for clinical applications.

  17. Fusion Imaging for Procedural Guidance.

    PubMed

    Wiley, Brandon M; Eleid, Mackram F; Thaden, Jeremy J

    2018-05-01

    The field of percutaneous structural heart interventions has grown tremendously in recent years. This growth has fueled the development of new imaging protocols and technologies in parallel to help facilitate these minimally-invasive procedures. Fusion imaging is an exciting new technology that combines the strength of 2 imaging modalities and has the potential to improve procedural planning and the safety of many commonly performed transcatheter procedures. In this review we discuss the basic concepts of fusion imaging along with the relative strengths and weaknesses of static vs dynamic fusion imaging modalities. This review will focus primarily on echocardiographic-fluoroscopic fusion imaging and its application in commonly performed transcatheter structural heart procedures. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  18. JPEG2000 and dissemination of cultural heritage over the Internet.

    PubMed

    Politou, Eugenia A; Pavlidis, George P; Chamzas, Christodoulos

    2004-03-01

    By applying the latest technologies in image compression for managing the storage of massive image data within cultural heritage databases and by exploiting the universality of the Internet we are now able not only to effectively digitize, record and preserve, but also to promote the dissemination of cultural heritage. In this work we present an application of the latest image compression standard JPEG2000 in managing and browsing image databases, focusing on the image transmission aspect rather than database management and indexing. We combine the technologies of JPEG2000 image compression with client-server socket connections and client browser plug-in, as to provide with an all-in-one package for remote browsing of JPEG2000 compressed image databases, suitable for the effective dissemination of cultural heritage.

  19. Liver CT image processing: a short introduction of the technical elements.

    PubMed

    Masutani, Y; Uozumi, K; Akahane, Masaaki; Ohtomo, Kuni

    2006-05-01

    In this paper, we describe the technical aspects of image analysis for liver diagnosis and treatment, including the state-of-the-art of liver image analysis and its applications. After discussion on modalities for liver image analysis, various technical elements for liver image analysis such as registration, segmentation, modeling, and computer-assisted detection are covered with examples performed with clinical data sets. Perspective in the imaging technologies is also reviewed and discussed.

  20. Light-Field Imaging Toolkit

    NASA Astrophysics Data System (ADS)

    Bolan, Jeffrey; Hall, Elise; Clifford, Chris; Thurow, Brian

    The Light-Field Imaging Toolkit (LFIT) is a collection of MATLAB functions designed to facilitate the rapid processing of raw light field images captured by a plenoptic camera. An included graphical user interface streamlines the necessary post-processing steps associated with plenoptic images. The generation of perspective shifted views and computationally refocused images is supported, in both single image and animated formats. LFIT performs necessary calibration, interpolation, and structuring steps to enable future applications of this technology.

  1. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  2. Update on wide- and ultra-widefield retinal imaging

    PubMed Central

    Shoughy, Samir S; Arevalo, J Fernando; Kozak, Igor

    2015-01-01

    The peripheral retina is the site of pathology in many ocular diseases and ultra-widefield (UWF) imaging is one of the new technologies available to ophthalmologists to manage some of these diseases. Currently, there are several imaging systems used in practice for the purpose of diagnostic, monitoring disease progression or response to therapy, and telemedicine. These include modalities for both adults and pediatric patients. The current systems are capable of producing wide- and UWF color fundus photographs, fluorescein and indocyanine green angiograms, and autofluorescence images. Using this technology, important clinical observations have been made in diseases such as diabetic retinopathy, uveitides, retinal vascular occlusions and tumors, intraocular tumors, retinopathy of prematurity, and age-related macular degeneration. Widefield imaging offers excellent postoperative documentation of retinal detachment surgery. New applications will soon be available to integrate this technology into large volume routine clinical practice. PMID:26458474

  3. Thermal Transfer Compared To The Fourteen Other Imaging Technologies

    NASA Astrophysics Data System (ADS)

    O'Leary, John W.

    1989-07-01

    A quiet revolution in the world of imaging has been underway for the past few years. The older technologies of dot matrix, daisy wheel, thermal paper and pen plotters have been increasingly displaced by laser, ink jet and thermal transfer. The net result of this revolution is improved technologies that afford superior imaging, quiet operation, plain paper usage, instant operation, and solid state components. Thermal transfer is one of the processes that incorporates these benefits. Among the imaging application for thermal transfer are: 1. Bar code labeling and scanning. 2. New systems for airline ticketing, boarding passes, reservations, etc. 3. Color computer graphics and imaging. 4. Copying machines that copy in color. 5. Fast growing communications media such as facsimile. 6. Low cost word processors and computer printers. 7. New devices that print pictures from video cameras or television sets. 8. Cameras utilizing computer chips in place of film.

  4. Optical coherence tomography-current technology and applications in clinical and biomedical research.

    PubMed

    Marschall, Sebastian; Sander, Birgit; Mogensen, Mette; Jørgensen, Thomas M; Andersen, Peter E

    2011-07-01

    Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. By mapping the local reflectivity, OCT visualizes the morphology of the sample. In addition, functional properties such as birefringence, motion, or the distributions of certain substances can be detected with high spatial resolution. Its main field of application is biomedical imaging and diagnostics. In ophthalmology, OCT is accepted as a clinical standard for diagnosing and monitoring the treatment of a number of retinal diseases, and OCT is becoming an important instrument for clinical cardiology. New applications are emerging in various medical fields, such as early-stage cancer detection, surgical guidance, and the early diagnosis of musculoskeletal diseases. OCT has also proven its value as a tool for developmental biology. The number of companies involved in manufacturing OCT systems has increased substantially during the last few years (especially due to its success in opthalmology), and this technology can be expected to continue to spread into various fields of application.

  5. Micro-CT of rodents: state-of-the-art and future perspectives

    PubMed Central

    Clark, D. P.; Badea, C. T.

    2014-01-01

    Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g. measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality. PMID:24974176

  6. Functional imaging for regenerative medicine.

    PubMed

    Leahy, Martin; Thompson, Kerry; Zafar, Haroon; Alexandrov, Sergey; Foley, Mark; O'Flatharta, Cathal; Dockery, Peter

    2016-04-19

    In vivo imaging is a platform technology with the power to put function in its natural structural context. With the drive to translate stem cell therapies into pre-clinical and clinical trials, early selection of the right imaging techniques is paramount to success. There are many instances in regenerative medicine where the biological, biochemical, and biomechanical mechanisms behind the proposed function of stem cell therapies can be elucidated by appropriate imaging. Imaging techniques can be divided according to whether labels are used and as to whether the imaging can be done in vivo. In vivo human imaging places additional restrictions on the imaging tools that can be used. Microscopies and nanoscopies, especially those requiring fluorescent markers, have made an extraordinary impact on discovery at the molecular and cellular level, but due to their very limited ability to focus in the scattering tissues encountered for in vivo applications they are largely confined to superficial imaging applications in research laboratories. Nanoscopy, which has tremendous benefits in resolution, is limited to the near-field (e.g. near-field scanning optical microscope (NSNOM)) or to very high light intensity (e.g. stimulated emission depletion (STED)) or to slow stochastic events (photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM)). In all cases, nanoscopy is limited to very superficial applications. Imaging depth may be increased using multiphoton or coherence gating tricks. Scattering dominates the limitation on imaging depth in most tissues and this can be mitigated by the application of optical clearing techniques that can impose mild (e.g. topical application of glycerol) or severe (e.g. CLARITY) changes to the tissue to be imaged. Progression of therapies through to clinical trials requires some thought as to the imaging and sensing modalities that should be used. Smoother progression is facilitated by the use of comparable imaging modalities throughout the discovery and trial phases, giving label-free techniques an advantage wherever they can be used, although this is seldom considered in the early stages. In this paper, we will explore the techniques that have found success in aiding discovery in stem cell therapies and try to predict the likely technologies best suited to translation and future directions.

  7. In vivo imaging of neural activity

    PubMed Central

    Yang, Weijian; Yuste, Rafael

    2017-01-01

    Since the introduction of calcium imaging to monitor neuronal activity with single-cell resolution, optical imaging methods have revolutionized neuroscience by enabling systematic recordings of neuronal circuits in living animals. The plethora of methods for functional neural imaging can be daunting to the nonexpert to navigate. Here we review advanced microscopy techniques for in vivo functional imaging and offer guidelines for which technologies are best suited for particular applications. PMID:28362436

  8. A digital data acquisition scheme for SPECT and PET small animal imaging detectors for Theranostic applications

    NASA Astrophysics Data System (ADS)

    Georgiou, M.; Fysikopoulos, E.; Loudos, G.

    2017-11-01

    Nanoparticle based drug delivery is considered as a new, promising technology for the efficient treatment of various diseases. When nanoparticles are radiolabelled it is possible to image them, using molecular imaging techniques. The use of magnetic nanoparticles in hyperthermia is one of the most promising nanomedicine directions and requires the accurate, non-invasive, monitoring of temperature increase and drug release. The combination of imaging and therapy has opened the very promising Theranostics domain. In this work, we present a digital data acquisition scheme for nuclear medicine dedicated detectors for Theranostic applications.

  9. Intelligent content fitting for digital publishing

    NASA Astrophysics Data System (ADS)

    Lin, Xiaofan

    2006-02-01

    One recurring problem in Variable Data Printing (VDP) is that the existing contents cannot satisfy the VDP task as-is. So there is a strong need for content fitting technologies to support high-value digital publishing applications, in which text and image are the two major types of contents. This paper presents meta-Autocrop framework for image fitting and TextFlex technology for text fitting. The meta-Autocrop framework supports multiple modes: fixed aspect-ratio mode, advice mode, and verification mode. The TextFlex technology supports non-rectangular text wrapping and paragraph-based line breaking. We also demonstrate how these content fitting technologies are utilized in the overall automated composition and layout system.

  10. Application of the Digital Image Technology in the Visual Monitoring and Prediction of Shuttering Construction Safety

    NASA Astrophysics Data System (ADS)

    Ummin, Okumura; Tian, Han; Zhu, Haiyu; Liu, Fuqiang

    2018-03-01

    Construction safety has always been the first priority in construction process. The common safety problem is the instability of the template support. In order to solve this problem, the digital image measurement technology has been contrived to support real-time monitoring system which can be triggered if the deformation value exceed the specified range. Thus the economic loss could be reduced to the lowest level.

  11. Fundamental Concepts of Digital Image Processing

    DOE R&D Accomplishments Database

    Twogood, R. E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  12. MO-DE-202-01: Image-Guided Focused Ultrasound Surgery and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahani, K.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less

  13. MO-DE-202-04: Multimodality Image-Guided Surgery and Intervention: For the Rest of Us

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekhar, R.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less

  14. Robust reflective pupil slicing technology

    NASA Astrophysics Data System (ADS)

    Meade, Jeffrey T.; Behr, Bradford B.; Cenko, Andrew T.; Hajian, Arsen R.

    2014-07-01

    Tornado Spectral Systems (TSS) has developed the High Throughput Virtual Slit (HTVSTM), robust all-reflective pupil slicing technology capable of replacing the slit in research-, commercial- and MIL-SPEC-grade spectrometer systems. In the simplest configuration, the HTVS allows optical designers to remove the lossy slit from pointsource spectrometers and widen the input slit of long-slit spectrometers, greatly increasing throughput without loss of spectral resolution or cross-dispersion information. The HTVS works by transferring etendue between image plane axes but operating in the pupil domain rather than at a focal plane. While useful for other technologies, this is especially relevant for spectroscopic applications by performing the same spectral narrowing as a slit without throwing away light on the slit aperture. HTVS can be implemented in all-reflective designs and only requires a small number of reflections for significant spectral resolution enhancement-HTVS systems can be efficiently implemented in most wavelength regions. The etendueshifting operation also provides smooth scaling with input spot/image size without requiring reconfiguration for different targets (such as different seeing disk diameters or different fiber core sizes). Like most slicing technologies, HTVS provides throughput increases of several times without resolution loss over equivalent slitbased designs. HTVS technology enables robust slit replacement in point-source spectrometer systems. By virtue of pupilspace operation this technology has several advantages over comparable image-space slicer technology, including the ability to adapt gracefully and linearly to changing source size and better vertical packing of the flux distribution. Additionally, this technology can be implemented with large slicing factors in both fast and slow beams and can easily scale from large, room-sized spectrometers through to small, telescope-mounted devices. Finally, this same technology is directly applicable to multi-fiber spectrometers to achieve similar enhancement. HTVS also provides the ability to anamorphically "stretch" the slit image in long-slit spectrometers, allowing the instrument designer to optimize the plate scale in the dispersion axis and cross-dispersion axes independently without sacrificing spatial information. This allows users to widen the input slit, with the associated gain of throughput and loss of spatial selectivity, while maintaining the spectral resolution of the spectrometer system. This "stretching" places increased requirements on detector focal plane height, as with image slicing techniques, but provides additional degrees of freedom to instrument designers to build the best possible spectrometer systems. We discuss the details of this technology for an astronomical context, covering the applicability from small telescope mounted spectrometers through long-slit imagers and radial-velocity engines. This powerful tool provides additional degrees of freedom when designing a spectrometer, enabling instrument designers to further optimize systems for the required scientific goals.

  15. Application of virtual surgical planning with computer assisted design and manufacturing technology to cranio-maxillofacial surgery.

    PubMed

    Zhao, Linping; Patel, Pravin K; Cohen, Mimis

    2012-07-01

    Computer aided design and manufacturing (CAD/CAM) technology today is the standard in manufacturing industry. The application of the CAD/CAM technology, together with the emerging 3D medical images based virtual surgical planning (VSP) technology, to craniomaxillofacial reconstruction has been gaining increasing attention to reconstructive surgeons. This article illustrates the components, system and clinical management of the VSP and CAD/CAM technology including: data acquisition, virtual surgical and treatment planning, individual implant design and fabrication, and outcome assessment. It focuses primarily on the technical aspects of the VSP and CAD/CAM system to improve the predictability of the planning and outcome.

  16. Research and technology annual report, FY 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Given here is the annual report of the John C. Stennis Space Center (SSC), a NASA center responsible for testing NASA's large propulsion systems, developing supporting test technologies, conducting research in a variety of earth science disciplines, and facilitating the commercial uses of NASA-developed technologies. Described here are activities of the Earth Sciences Research Program, the Technology Development Program, commercial programs, the Technology Utilization Program, and the Information Systems Program. Work is described in such areas as forest ecosystems, land-sea interface, wetland biochemical flux, thermal imaging of crops, gas detectors, plume analysis, synthetic aperture radar, forest resource management, applications engineering, and the Earth Observations Commercial Applications Program.

  17. A new compact, cost-efficient concept for underwater range-gated imaging: the UTOFIA project

    NASA Astrophysics Data System (ADS)

    Mariani, Patrizio; Quincoces, Iñaki; Galparsoro, Ibon; Bald, Juan; Gabiña, Gorka; Visser, Andy; Jónasdóttir, Sigrun; Haugholt, Karl Henrik; Thorstensen, Jostein; Risholm, Petter; Thielemann, Jens

    2017-04-01

    Underwater Time Of Flight Image Acquisition system (UTOFIA) is a recently launched H2020 project (H2020 - 633098) to develop a compact and cost-effective underwater imaging system especially suited for observations in turbid environments. The UTOFIA project targets technology that can overcome the limitations created by scattering, by introducing cost-efficient range-gated imaging for underwater applications. This technology relies on a image acquisition principle that can extends the imaging range of the cameras 2-3 times respect to other cameras. Moreover, the system will simultaneously capture 3D information of the observed objects. Today range-gated imaging is not widely used, as it relies on specialised optical components making systems large and costly. Recent technology developments have made it possible a significant (2-3 times) reduction in size, complexity and cost of underwater imaging systems, whilst addressing the scattering issues at the same time. By acquiring simultaneous 3D data, the system allows to accurately measure the absolute size of marine life and their spatial relationship to their habitat, enhancing the precision of fish stock monitoring and ecology assessment, hence supporting proper management of marine resources. Additionally, the larger observed volume and the improved image quality make the system suitable for cost-effective underwater surveillance operations in e.g. fish farms, underwater infrastructures. The system can be integrated into existing ocean observatories for real time acquisition and can greatly advance present efforts in developing species recognition algorithms, given the additional features provided, the improved image quality and the independent illumination source based on laser. First applications of the most recent prototype of the imaging system will be provided including inspection of underwater infrastructures and observations of marine life under different environmental conditions.

  18. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology

    PubMed Central

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-01-01

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress. PMID:29271905

  19. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology.

    PubMed

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-12-22

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress.

  20. Earth Resources Technology Satellite data collection project, ERTS - Bolivia. [thematic mapping

    NASA Technical Reports Server (NTRS)

    Brockmann, C. E.

    1974-01-01

    The Earth Resources Technology Satellite program of Bolivia has developed a multidisciplinary project to carry out investigations in cartography and to prepare various thematic maps. In cartography, investigations are being carried out with the ERTS-1 images and with existing maps, to determine their application to the preparation of new cartographic products on one hand and on the other to map those regions where the cartography is still deficient. The application of the MSS images to the geological mapping has given more than satisfactory results. Working with conventional photointerpretation, it has been possible to prepare regional geological maps, tectonic maps, studies relative to mining, geomorphological maps, studies relative to petroleum exploration, volcanological maps and maps of hydrologic basins. In agriculture, the ERTS images are used to study land classification and forest and soils mapping.

  1. Proceedings of the NASA Workshop on Registration and Rectification

    NASA Technical Reports Server (NTRS)

    Bryant, N. A. (Editor)

    1982-01-01

    Issues associated with the registration and rectification of remotely sensed data. Near and long range applications research tasks and some medium range technology augmentation research areas are recommended. Image sharpness, feature extraction, inter-image mapping, error analysis, and verification methods are addressed.

  2. Nested Focusing Optics for Compact Neutron Sources

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center, the Massachusetts Institute of Technology (MIT), and the University of Alabama Huntsville (UAH) have developed novel neutron grazing incidence optics for use with small-scale portable neutron generators. The technology was developed to enable the use of commercially available neutron generators for applications requiring high flux densities, including high performance imaging and analysis. Nested grazing incidence mirror optics, with high collection efficiency, are used to produce divergent, parallel, or convergent neutron beams. Ray tracing simulations of the system (with source-object separation of 10m for 5 meV neutrons) show nearly an order of magnitude neutron flux increase on a 1-mm diameter object. The technology is a result of joint development efforts between NASA and MIT researchers seeking to maximize neutron flux from diffuse sources for imaging and testing applications.

  3. PET and MR imaging: the odd couple or a match made in heaven?

    PubMed

    Catana, Ciprian; Guimaraes, Alexander R; Rosen, Bruce R

    2013-05-01

    PET and MR imaging are modalities routinely used for clinical and research applications. Integrated scanners capable of acquiring PET and MR imaging data in the same session, sequentially or simultaneously, have recently become available for human use. In this article, we describe some of the technical advances that allowed the development of human PET/MR scanners; briefly discuss methodologic challenges and opportunities provided by this novel technology; and present potential oncologic, cardiac, and neuropsychiatric applications. These examples range from studies that might immediately benefit from PET/MR to more advanced applications on which future development might have an even broader impact.

  4. Lipid-polymer hybrid nanoparticle-mediated therapeutics delivery: advances and challenges.

    PubMed

    Bose, Rajendran J C; Ravikumar, Rramaswamy; Karuppagounder, Vengadeshprabu; Bennet, Devasier; Rangasamy, Sabarinathan; Thandavarayan, Rajarajan A

    2017-08-01

    With rapid advances in nanomedicine, lipid-polymer hybrid nanoparticles (LPHNPs) have emerged as promising nanocarriers for several biomedical applications, including therapeutics delivery and biomedical imaging. Significant research has been dedicated to biomimetic or targeting functionalization, as well as controlled and image-guided drug-release capabilities. Despite this research, the clinical translation of LPHNP-mediated therapeutics delivery has progressed incrementally. In this review, we discuss the recent advances in and challenges to the development and application of LPHNPs, present examples to demonstrate the advantages of LPHNPs in therapeutics delivery and imaging applications, and discuss the translational obstacles to LPHNP technology. Copyright © 2017. Published by Elsevier Ltd.

  5. Imaging: Guiding the Clinical Translation of Cardiac Stem Cell Therapy

    PubMed Central

    Nguyen, Patricia K.; Lan, Feng; Wang, Yongming; Wu, Joseph C.

    2011-01-01

    Stem cells have been touted as the holy grail of medical therapy with promises to regenerate cardiac tissue, but it appears the jury is still out on this novel therapy. Using advanced imaging technology, scientists have discovered that these cells do not survive nor engraft long-term. In addition, only marginal benefit has been observed in large animal studies and human trials. However, all is not lost. Further application of advanced imaging technology will help scientists unravel the mysteries of stem cell therapy and address the clinical hurdles facing its routine implementation. In this review, we will discuss how advanced imaging technology will help investigators better define the optimal delivery method, improve survival and engraftment, and evaluate efficacy and safety. Insights gained from this review may direct the development of future preclinical investigations and clinical trials. PMID:21960727

  6. Image Registration of High-Resolution Uav Data: the New Hypare Algorithm

    NASA Astrophysics Data System (ADS)

    Bahr, T.; Jin, X.; Lasica, R.; Giessel, D.

    2013-08-01

    Unmanned aerial vehicles play an important role in the present-day civilian and military intelligence. Equipped with a variety of sensors, such as SAR imaging modes, E/O- and IR sensor technology, they are due to their agility suitable for many applications. Hence, the necessity arises to use fusion technologies and to develop them continuously. Here an exact image-to-image registration is essential. It serves as the basis for important image processing operations such as georeferencing, change detection, and data fusion. Therefore we developed the Hybrid Powered Auto-Registration Engine (HyPARE). HyPARE combines all available spatial reference information with a number of image registration approaches to improve the accuracy, performance, and automation of tie point generation and image registration. We demonstrate this approach by the registration of 39 still images from a high-resolution image stream, acquired with a Aeryon Photo3S™ camera on an Aeryon Scout micro-UAV™.

  7. Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in Musculoskeletal Imaging (Part 1).

    PubMed

    Omoumi, Patrick; Becce, Fabio; Racine, Damien; Ott, Julien G; Andreisek, Gustav; Verdun, Francis R

    2015-12-01

    In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been used successfully in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits; to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in Musculoskeletal Imaging (Part 2).

    PubMed

    Omoumi, Patrick; Verdun, Francis R; Guggenberger, Roman; Andreisek, Gustav; Becce, Fabio

    2015-12-01

    In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been successfully used in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits, to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Resourcesat-1: A global multi-observation mission for resources monitoring

    NASA Astrophysics Data System (ADS)

    Seshadri, K. S. V.; Rao, Mukund; Jayaraman, V.; Thyagarajan, K.; Sridhara Murthi, K. R.

    2005-07-01

    With an array of Indian Remote Sensing Satellites (IRS), a wide variety of national applications have been developed as an inter-agency effort over the past 20 years. Now, the capacity of the programme has been extended into the global arena and IRS is providing operational data services to the global user community. The recently launched IRS satellite, Resourcesat-1, was placed into perfect orbit by India's PSLV and is providing valuable imaging services. Resourcesat-1 is actually like 3 satellites "rolled" into one, imaging a wide field of 710 km area at ˜55 m resolution in multispectral bands from the AWiFS, 23 m resolution in a systematic 142 km swath from four bands of the LISS-3 and the 5.8 m multi-spectral images from the most advanced sensor—LISS-4. Yet another aspect of Resourcesat-1 is it that it marks a "watershed" in terms of a quantum jump in technological capability that India has achieved compared to past missions. The mission has many newer features—the advanced imaging sensors, the more precise attitude and orbit determination systems, the satellite positioning system onboard, the mass storage devices and many other features. This mission has led IRS into a new technological era, and when combined with the technological capability of the forthcoming Cartosat missions, India would have developed technologies that will take us into the new generation of EO satellites for the coming years. This paper provides a detailed description of the Resourcesat-1 mission. From the applications point of view, Resourcesat-1 will open up new avenues for environmental monitoring and resources management—especially for vegetation assessment and disaster management support. The monitoring capability of this mission is also extremely important for a number of applications. The mission has global imaging and servicing capabilities and could be received through the Antrix-Space Imaging network, which markets Resourcesat-1 data worldwide. This paper also describes the applications potentials and global capabilities of the mission. Resourcesat-1 will have continuity and after that a new generation system will provide enhanced and more unique imaging services. Actually, India has a 25 years strategy for EO and a perspective of the same is also described in this paper.

  10. MoDOT pavement preservation research program volume V, site-specific pavement condition assessment.

    DOT National Transportation Integrated Search

    2015-11-01

    The overall objective of Task 4 was to thoroughly assess the cost-effectiveness and utility of selected non-invasive technologies as : applicable to MoDOT roadways. Non-invasive imaging technologies investigated in this project were Ultrasonic Surfac...

  11. Image Segmentation Using Minimum Spanning Tree

    NASA Astrophysics Data System (ADS)

    Dewi, M. P.; Armiati, A.; Alvini, S.

    2018-04-01

    This research aim to segmented the digital image. The process of segmentation is to separate the object from the background. So the main object can be processed for the other purposes. Along with the development of technology in digital image processing application, the segmentation process becomes increasingly necessary. The segmented image which is the result of the segmentation process should accurate due to the next process need the interpretation of the information on the image. This article discussed the application of minimum spanning tree on graph in segmentation process of digital image. This method is able to separate an object from the background and the image will change to be the binary images. In this case, the object that being the focus is set in white, while the background is black or otherwise.

  12. Design of UAV high resolution image transmission system

    NASA Astrophysics Data System (ADS)

    Gao, Qiang; Ji, Ming; Pang, Lan; Jiang, Wen-tao; Fan, Pengcheng; Zhang, Xingcheng

    2017-02-01

    In order to solve the problem of the bandwidth limitation of the image transmission system on UAV, a scheme with image compression technology for mini UAV is proposed, based on the requirements of High-definition image transmission system of UAV. The video codec standard H.264 coding module and key technology was analyzed and studied for UAV area video communication. Based on the research of high-resolution image encoding and decoding technique and wireless transmit method, The high-resolution image transmission system was designed on architecture of Android and video codec chip; the constructed system was confirmed by experimentation in laboratory, the bit-rate could be controlled easily, QoS is stable, the low latency could meets most applied requirement not only for military use but also for industrial applications.

  13. [The use of open source software in graphic anatomic reconstructions and in biomechanic simulations].

    PubMed

    Ciobanu, O

    2009-01-01

    The objective of this study was to obtain three-dimensional (3D) images and to perform biomechanical simulations starting from DICOM images obtained by computed tomography (CT). Open source software were used to prepare digitized 2D images of tissue sections and to create 3D reconstruction from the segmented structures. Finally, 3D images were used in open source software in order to perform biomechanic simulations. This study demonstrates the applicability and feasibility of open source software developed in our days for the 3D reconstruction and biomechanic simulation. The use of open source software may improve the efficiency of investments in imaging technologies and in CAD/CAM technologies for implants and prosthesis fabrication which need expensive specialized software.

  14. Ethics in electronic image manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weckert, J.; Adeney, D.

    1994-12-31

    It is commonplace now to store images digitally on disk. What does this have to do with ethics? Quite a lot, because digitally stored images can be copied and altered with an ease that has not previously been possible. The moral issues raised by this new technology are nto new in themselves, but are given new urgency by both the ease and the undetectability afforded by this digital storage. It would be silly to argue that all uses of digital technology for image storage give cause for concern, but not all applications are beneficial or even benign. Two categories ofmore » potential moral problems will be outlined here: questions of ownership, and questions of the uses to which manipualted images are put.« less

  15. Generating land cover boundaries from remotely sensed data using object-based image analysis: overview and epidemiological application

    PubMed Central

    Maxwell, Susan K.

    2010-01-01

    Satellite imagery and aerial photography represent a vast resource to significantly enhance environmental mapping and modeling applications for use in understanding spatio-temporal relationships between environment and health. Deriving boundaries of land cover objects, such as trees, buildings, and crop fields, from image data has traditionally been performed manually using a very time consuming process of hand digitizing. Boundary detection algorithms are increasingly being applied using object-based image analysis (OBIA) technology to automate the process. The purpose of this paper is to present an overview and demonstrate the application of OBIA for delineating land cover features at multiple scales using a high resolution aerial photograph (1 m) and a medium resolution Landsat image (30 m) time series in the context of a pesticide spray drift exposure application. PMID:21135917

  16. Camera-on-a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.

  17. Massively parallel information processing systems for space applications

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.

    1979-01-01

    NASA is developing massively parallel systems for ultra high speed processing of digital image data collected by satellite borne instrumentation. Such systems contain thousands of processing elements. Work is underway on the design and fabrication of the 'Massively Parallel Processor', a ground computer containing 16,384 processing elements arranged in a 128 x 128 array. This computer uses existing technology. Advanced work includes the development of semiconductor chips containing thousands of feedthrough paths. Massively parallel image analog to digital conversion technology is also being developed. The goal is to provide compact computers suitable for real-time onboard processing of images.

  18. Intellectual system for images restoration

    NASA Astrophysics Data System (ADS)

    Mardare, Igor

    2005-02-01

    Intelligence systems on basis of artificial neural networks and associative memory allow to solve effectively problems of recognition and restoration of images. However, within analytical technologies there are no dominating approaches of deciding of intellectual problems. Choice of the best technology depends on nature of problem, features of objects, volume of represented information about the object, number of classes of objects, etc. It is required to determine opportunities, preconditions and field of application of neural networks and associative memory for decision of problem of restoration of images and to use their supplementary benefits for further development of intelligence systems.

  19. The application of UV multispectral technology in extract trace evdidence

    NASA Astrophysics Data System (ADS)

    Guo, Jingjing; Xu, Xiaojing; Li, Zhihui; Xu, Lei; Xie, Lanchi

    2015-11-01

    Multispectral imaging is becoming more and more important in the field of examination of material evidence, especially the ultraviolet spectral imaging. Fingerprints development, questioned document detection, trace evidence examination-all can used of it. This paper introduce a UV multispectral equipment which was developed by BITU & IFSC, it can extract trace evidence-extract fingerprints. The result showed that this technology can develop latent sweat-sebum mixed fingerprint on photo and ID card blood fingerprint on steel hold. We used the UV spectrum data analysis system to make the UV spectral image clear to identify and analyse.

  20. Applications based on restored satellite images

    NASA Astrophysics Data System (ADS)

    Arbel, D.; Levin, S.; Nir, M.; Bhasteker, I.

    2005-08-01

    Satellites orbit the earth and obtain imagery of the ground below. The quality of satellite images is affected by the properties of the atmospheric imaging path, which degrade the image by blurring it and reducing its contrast. Applications involving satellite images are many and varied. Imaging systems are also different technologically and in their physical and optical characteristics such as sensor types, resolution, field of view (FOV), spectral range of the acquiring channels - from the visible to the thermal IR (TIR), platforms (mobilization facilities; aircrafts and/or spacecrafts), altitude above ground surface etc. It is important to obtain good quality satellite images because of the variety of applications based on them. The more qualitative is the recorded image, the more information is yielded from the image. The restoration process is conditioned by gathering much data about the atmospheric medium and its characterization. In return, there is a contribution to the applications based on those restorations i.e., satellite communication, warfare against long distance missiles, geographical aspects, agricultural aspects, economical aspects, intelligence, security, military, etc. Several manners to use restored Landsat 7 enhanced thematic mapper plus (ETM+) satellite images are suggested and presented here. In particular, using the restoration results for few potential geographical applications such as color classification and mapping (roads and streets localization) methods.

  1. Optical coherence tomography in gastroenterology: a review and future outlook

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han; Leggett, Cadman L.; Trindade, Arvind J.; Sethi, Amrita; Swager, Anne-Fré; Joshi, Virendra; Bergman, Jacques J.; Mashimo, Hiroshi; Nishioka, Norman S.; Namati, Eman

    2017-12-01

    Optical coherence tomography (OCT) is an imaging technique optically analogous to ultrasound that can generate depth-resolved images with micrometer-scale resolution. Advances in fiber optics and miniaturized actuation technologies allow OCT imaging of the human body and further expand OCT utilization in applications including but not limited to cardiology and gastroenterology. This review article provides an overview of current OCT development and its clinical utility in the gastrointestinal tract, including disease detection/differentiation and endoscopic therapy guidance, as well as a discussion of its future applications.

  2. Cancer Imaging Phenomics Software Suite: Application to Brain and Breast Cancer | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    The transition of oncologic imaging from its “industrial era” to it is “information era” demands analytical methods that 1) extract information from this data that is clinically and biologically relevant; 2) integrate imaging, clinical, and genomic data via rigorous statistical and computational methodologies in order to derive models valuable for understanding cancer mechanisms, diagnosis, prognostic assessment, response evaluation, and personalized treatment management; 3) are available to the biomedical community for easy use and application, with the aim of understanding, diagnosing, an

  3. Industrial application of thermal image processing and thermal control

    NASA Astrophysics Data System (ADS)

    Kong, Lingxue

    2001-09-01

    Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.

  4. Image degradation characteristics and restoration based on regularization for diffractive imaging

    NASA Astrophysics Data System (ADS)

    Zhi, Xiyang; Jiang, Shikai; Zhang, Wei; Wang, Dawei; Li, Yun

    2017-11-01

    The diffractive membrane optical imaging system is an important development trend of ultra large aperture and lightweight space camera. However, related investigations on physics-based diffractive imaging degradation characteristics and corresponding image restoration methods are less studied. In this paper, the model of image quality degradation for the diffraction imaging system is first deduced mathematically based on diffraction theory and then the degradation characteristics are analyzed. On this basis, a novel regularization model of image restoration that contains multiple prior constraints is established. After that, the solving approach of the equation with the multi-norm coexistence and multi-regularization parameters (prior's parameters) is presented. Subsequently, the space-variant PSF image restoration method for large aperture diffractive imaging system is proposed combined with block idea of isoplanatic region. Experimentally, the proposed algorithm demonstrates its capacity to achieve multi-objective improvement including MTF enhancing, dispersion correcting, noise and artifact suppressing as well as image's detail preserving, and produce satisfactory visual quality. This can provide scientific basis for applications and possesses potential application prospects on future space applications of diffractive membrane imaging technology.

  5. Applications of Ultrasound in the Resection of Brain Tumors

    PubMed Central

    Sastry, Rahul; Bi, Wenya Linda; Pieper, Steve; Frisken, Sarah; Kapur, Tina; Wells, William; Golby, Alexandra J.

    2016-01-01

    Neurosurgery makes use of pre-operative imaging to visualize pathology, inform surgical planning, and evaluate the safety of selected approaches. The utility of pre-operative imaging for neuronavigation, however, is diminished by the well characterized phenomenon of brain shift, in which the brain deforms intraoperatively as a result of craniotomy, swelling, gravity, tumor resection, cerebrospinal fluid (CSF) drainage, and many other factors. As such, there is a need for updated intraoperative information that accurately reflects intraoperative conditions. Since 1982, intraoperative ultrasound has allowed neurosurgeons to craft and update operative plans without ionizing radiation exposure or major workflow interruption. Continued evolution of ultrasound technology since its introduction has resulted in superior imaging quality, smaller probes, and more seamless integration with neuronavigation systems. Furthermore, the introduction of related imaging modalities, such as 3-dimensional ultrasound, contrast-enhanced ultrasound, high-frequency ultrasound, and ultrasound elastography have dramatically expanded the options available to the neurosurgeon intraoperatively. In the context of these advances, we review the current state, potential, and challenges of intraoperative ultrasound for brain tumor resection. We begin by evaluating these ultrasound technologies and their relative advantages and disadvantages. We then review three specific applications of these ultrasound technologies to brain tumor resection: (1) intraoperative navigation, (2) assessment of extent of resection, and (3) brain shift monitoring and compensation. We conclude by identifying opportunities for future directions in the development of ultrasound technologies. PMID:27541694

  6. Integration of modern remote sensing technologies for faster utility mapping and data extraction

    NASA Astrophysics Data System (ADS)

    Ristic, Aleksandar; Govedarica, Miro; Vrtunski, Milan; Petrovacki, Dusan

    2015-04-01

    Analysis of the application of modern remote sensing technologies in current research shows a significant increase in interest in fast and efficient detection of underground installations. The most important reasons of the said application are preventing damage during excavation works, as well as the formation of the cadastre of underground utilities suitable for operating and maintaining of such resources. Given the wide area of application in the detection of underground installations, ground penetrating radar scanning technology (GPR), in this instance, is used as prevalent method for the purpose of the acquisition radargram of pipelines and the comparison with the results of the acquisition of Unmanned Aerial Vehicle - UAV drone Aibot X6 equipped with Optris PI Lightweight Kit (which consists of a miniaturized lightweight PC and a weight-optimized PI450 Optris LW infrared camera). The aim of the research presented in the this paper is to analyze the benefits of integrating a mobile system capable of very fast, reliable and relatively inexpensive detection of heating pipelines using thermal imaging aerial inspection and GPR technology for control sampling of radargrams on specific locations of routes in order to achieve following: a simple identification of the characteristics of heating pipelines, prevention and registration of damage, as well as automated data extraction. The results of integrated application of the above-mentioned remote sensing technologies have shown that, within 10min of planned flight, it is possible to detect and georeference routes of heating pipelines in the area of 50.000m2 by application of thermal imaging inspection that assigns an adequate temperature value to each pixel in an image. The experiment showed that the registration is also possible in the case of pre-insulated and conventionally insulated heating pipes, and the difference in temperature measurements above the routes and the environment was up to 4 degrees. It should be noted that it is necessary to perform imaging in the working period, which is when the water is heated in the heating pipelines. Analysis of the efficiently defined heating pipeline routes defined by using thermal imaging inspection shows the point of temperature anomalies where it is necessary to perform control measurements using GPR technology. The control radargrams are further interpreted by applying realized automatic identification strategies software. Since the heating pipes are characterized by a distinctive method of installation (two pipes within or without concrete channels), they form a characteristic reflection in radargram, from which it is possible to identify the dimensions of the heating pipes. The dimensions of heating pipes are determined either based on estimation of standard dimensions of a concrete channel of heating pipes or based on hyperbolic reflections of the two pipes. The research results show that by using integrated application of the above-mentioned technologies it is possible to achieve efficient and high-quality inspection of heating pipeline system with estimation of the most relevant parameters. This abstract is a contribution to the 2015 EGU GA Session GI3.1 "Civil Engineering Applications of Ground Penetrating Radar," organised by the COST Action TU1208

  7. A promising diagnostic method: Terahertz pulsed imaging and spectroscopy

    PubMed Central

    Sun, Yiwen; Sy, Ming Yiu; Wang, Yi-Xiang J; Ahuja, Anil T; Zhang, Yuan-Ting; Pickwell-MacPherson, Emma

    2011-01-01

    The terahertz band lies between the microwave and infrared regions of the electromagnetic spectrum. This radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. It is strongly attenuated by water and very sensitive to water content. Unique absorption spectra due to intermolecular vibrations in this region have been found in different biological materials. These unique features make terahertz imaging very attractive for medical applications in order to provide complimentary information to existing imaging techniques. There has been an increasing interest in terahertz imaging and spectroscopy of biologically related applications within the last few years and more and more terahertz spectra are being reported. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques, and a number of applications such as molecular spectroscopy, tissue characterization and skin imaging are discussed. PMID:21512652

  8. A Review of Optical NDT Technologies

    PubMed Central

    Zhu, Yong-Kai; Tian, Gui-Yun; Lu, Rong-Sheng; Zhang, Hong

    2011-01-01

    Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress. PMID:22164045

  9. Confocal Endomicroscopy: Instrumentation and Medical Applications

    PubMed Central

    Jabbour, Joey M.; Saldua, Meagan A.; Bixler, Joel N.; Maitland, Kristen C.

    2013-01-01

    Advances in fiber optic technology and miniaturized optics and mechanics have propelled confocal endomicroscopy into the clinical realm. This high resolution, non-invasive imaging technology provides the ability to microscopically evaluate cellular and sub-cellular features in tissue in vivo by optical sectioning. Because many cancers originate in epithelial tissues accessible by endoscopes, confocal endomicroscopy has been explored to detect regions of possible neoplasia at an earlier stage by imaging morphological features in vivo that are significant in histopathologic evaluation. This technique allows real-time assessment of tissue which may improve diagnostic yield by guiding biopsy. Research and development continues to reduce the overall size of the imaging probe, increase the image acquisition speed, and improve resolution and field of view of confocal endomicroscopes. Technical advances will continue to enable application to less accessible organs and more complex systems in the body. Lateral and axial resolutions down to 0.5 μm and 3 μm, respectively, field of view as large as 800×450 μm, and objective lens and total probe outer diameters down to 350 μm and 1.25 mm, respectively, have been achieved. We provide a review of the historical developments of confocal imaging in vivo, the evolution of endomicroscope instrumentation, and the medical applications of confocal endomicroscopy. PMID:21994069

  10. MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform.

    PubMed

    Robichaud, Guillaume; Garrard, Kenneth P; Barry, Jeremy A; Muddiman, David C

    2013-05-01

    During the past decade, the field of mass spectrometry imaging (MSI) has greatly evolved, to a point where it has now been fully integrated by most vendors as an optional or dedicated platform that can be purchased with their instruments. However, the technology is not mature and multiple research groups in both academia and industry are still very actively studying the fundamentals of imaging techniques, adapting the technology to new ionization sources, and developing new applications. As a result, there important varieties of data file formats used to store mass spectrometry imaging data and, concurrent to the development of MSi, collaborative efforts have been undertaken to introduce common imaging data file formats. However, few free software packages to read and analyze files of these different formats are readily available. We introduce here MSiReader, a free open source application to read and analyze high resolution MSI data from the most common MSi data formats. The application is built on the Matlab platform (Mathworks, Natick, MA, USA) and includes a large selection of data analysis tools and features. People who are unfamiliar with the Matlab language will have little difficult navigating the user-friendly interface, and users with Matlab programming experience can adapt and customize MSiReader for their own needs.

  11. MSiReader: An Open-Source Interface to View and Analyze High Resolving Power MS Imaging Files on Matlab Platform

    NASA Astrophysics Data System (ADS)

    Robichaud, Guillaume; Garrard, Kenneth P.; Barry, Jeremy A.; Muddiman, David C.

    2013-05-01

    During the past decade, the field of mass spectrometry imaging (MSI) has greatly evolved, to a point where it has now been fully integrated by most vendors as an optional or dedicated platform that can be purchased with their instruments. However, the technology is not mature and multiple research groups in both academia and industry are still very actively studying the fundamentals of imaging techniques, adapting the technology to new ionization sources, and developing new applications. As a result, there important varieties of data file formats used to store mass spectrometry imaging data and, concurrent to the development of MSi, collaborative efforts have been undertaken to introduce common imaging data file formats. However, few free software packages to read and analyze files of these different formats are readily available. We introduce here MSiReader, a free open source application to read and analyze high resolution MSI data from the most common MSi data formats. The application is built on the Matlab platform (Mathworks, Natick, MA, USA) and includes a large selection of data analysis tools and features. People who are unfamiliar with the Matlab language will have little difficult navigating the user-friendly interface, and users with Matlab programming experience can adapt and customize MSiReader for their own needs.

  12. Detection of wheat powdery mildew by differentiating background factors using hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    Accurate assessment of crop disease severities is the key for precision application of pesticides to prevent disease infestation. In-situ hyperspectral imaging technology can provide high-resolution imagery with spectra for rapid identification of crop disease and determining disease infestation pat...

  13. Scientific instrument engineering at Japanese congresses devoted to high-speed imaging

    NASA Astrophysics Data System (ADS)

    Shchelev, Mikhail Ya

    2011-06-01

    The information about the congresses held in Japan and devoted to fast imaging processes and photonics is presented. Reports devoted to the technique and the results of applications of superhigh-speed recording instrumentation in different fields of science and technology are considered.

  14. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  15. Quantitative comparison of PZT and CMUT probes for photoacoustic imaging: Experimental validation.

    PubMed

    Vallet, Maëva; Varray, François; Boutet, Jérôme; Dinten, Jean-Marc; Caliano, Giosuè; Savoia, Alessandro Stuart; Vray, Didier

    2017-12-01

    Photoacoustic (PA) signals are short ultrasound (US) pulses typically characterized by a single-cycle shape, often referred to as N-shape. The spectral content of such wideband signals ranges from a few hundred kilohertz to several tens of megahertz. Typical reception frequency responses of classical piezoelectric US imaging transducers, based on PZT technology, are not sufficiently broadband to fully preserve the entire information contained in PA signals, which are then filtered, thus limiting PA imaging performance. Capacitive micromachined ultrasonic transducers (CMUT) are rapidly emerging as a valid alternative to conventional PZT transducers in several medical ultrasound imaging applications. As compared to PZT transducers, CMUTs exhibit both higher sensitivity and significantly broader frequency response in reception, making their use attractive in PA imaging applications. This paper explores the advantages of the CMUT larger bandwidth in PA imaging by carrying out an experimental comparative study using various CMUT and PZT probes from different research laboratories and manufacturers. PA acquisitions are performed on a suture wire and on several home-made bimodal phantoms with both PZT and CMUT probes. Three criteria, based on the evaluation of pure receive impulse response, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) respectively, have been used for a quantitative comparison of imaging results. The measured fractional bandwidths of the CMUT arrays are larger compared to PZT probes. Moreover, both SNR and CNR are enhanced by at least 6 dB with CMUT technology. This work highlights the potential of CMUT technology for PA imaging through qualitative and quantitative parameters.

  16. Tunable thin-film optical filters for hyperspectral microscopy

    NASA Astrophysics Data System (ADS)

    Favreau, Peter F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2013-02-01

    Hyperspectral imaging was originally developed for use in remote sensing applications. More recently, it has been applied to biological imaging systems, such as fluorescence microscopes. The ability to distinguish molecules based on spectral differences has been especially advantageous for identifying fluorophores in highly autofluorescent tissues. A key component of hyperspectral imaging systems is wavelength filtering. Each filtering technology used for hyperspectral imaging has corresponding advantages and disadvantages. Recently, a new optical filtering technology has been developed that uses multi-layered thin-film optical filters that can be rotated, with respect to incident light, to control the center wavelength of the pass-band. Compared to the majority of tunable filter technologies, these filters have superior optical performance including greater than 90% transmission, steep spectral edges and high out-of-band blocking. Hence, tunable thin-film optical filters present optical characteristics that may make them well-suited for many biological spectral imaging applications. An array of tunable thin-film filters was implemented on an inverted fluorescence microscope (TE 2000, Nikon Instruments) to cover the full visible wavelength range. Images of a previously published model, GFP-expressing endothelial cells in the lung, were acquired using a charge-coupled device camera (Rolera EM-C2, Q-Imaging). This model sample presents fluorescently-labeled cells in a highly autofluorescent environment. Linear unmixing of hyperspectral images indicates that thin-film tunable filters provide equivalent spectral discrimination to our previous acousto-optic tunable filter-based approach, with increased signal-to-noise characteristics. Hence, tunable multi-layered thin film optical filters may provide greatly improved spectral filtering characteristics and therefore enable wider acceptance of hyperspectral widefield microscopy.

  17. Military and government applications of human-machine communication by voice.

    PubMed Central

    Weinstein, C J

    1995-01-01

    This paper describes a range of opportunities for military and government applications of human-machine communication by voice, based on visits and contacts with numerous user organizations in the United States. The applications include some that appear to be feasible by careful integration of current state-of-the-art technology and others that will require a varying mix of advances in speech technology and in integration of the technology into applications environments. Applications that are described include (1) speech recognition and synthesis for mobile command and control; (2) speech processing for a portable multifunction soldier's computer; (3) speech- and language-based technology for naval combat team tactical training; (4) speech technology for command and control on a carrier flight deck; (5) control of auxiliary systems, and alert and warning generation, in fighter aircraft and helicopters; and (6) voice check-in, report entry, and communication for law enforcement agents or special forces. A phased approach for transfer of the technology into applications is advocated, where integration of applications systems is pursued in parallel with advanced research to meet future needs. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7479718

  18. Optical Coherence Microscopy

    NASA Astrophysics Data System (ADS)

    Aguirre, Aaron D.; Zhou, Chao; Lee, Hsiang-Chieh; Ahsen, Osman O.; Fujimoto, James G.

    Cellular imaging of human tissues remains an important advance for many clinical applications of optical coherence tomography (OCT). Imaging cells with traditional OCT systems has not been possible due to the limited transverse resolution of such techniques. Optical coherence microscopy (OCM) refers to OCT methods that achieve high transverse resolution to visualize cells and subcellular features. This chapter provides a comprehensive discussion of the rationale for cellular imaging in human tissues as well as a review of the key technological advances required to achieve it. Time domain and Fourier domain OCM approaches are described with an emphasis on state of the art system designs, including miniaturized endoscopic imaging probes. Clinical applications are discussed and multiple examples of cellular imaging in human tissues are provided.

  19. Big Data Application in Biomedical Research and Health Care: A Literature Review.

    PubMed

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care.

  20. Big Data Application in Biomedical Research and Health Care: A Literature Review

    PubMed Central

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care. PMID:26843812

  1. Performance modeling of terahertz (THz) and millimeter waves (mmW) pupil plane imaging

    NASA Astrophysics Data System (ADS)

    Mohammadian, Nafiseh; Furxhi, Orges; Zhang, Lei; Offermans, Peter; Ghazi, Galia; Driggers, Ronald

    2018-05-01

    Terahertz- (THz) and millimeter-wave sensors are becoming more important in industrial, security, medical, and defense applications. A major problem in these sensing areas is the resolution, sensitivity, and visual acuity of the imaging systems. There are different fundamental parameters in designing a system that have significant effects on the imaging performance. The performance of THz systems can be discussed in terms of two characteristics: sensitivity and spatial resolution. New approaches for design and manufacturing of THz imagers are a vital basis for developing future applications. Photonics solutions have been at the technological forefront in THz band applications. A single scan antenna does not provide reasonable resolution, sensitivity, and speed. An effective approach to imaging is placing a high-performance antenna in a two-dimensional antenna array to achieve higher radiation efficiency and higher resolution in the imaging systems. Here, we present the performance modeling of a pupil plane imaging system to find the resolution and sensitivity efficiency of the imaging system.

  2. Beyond the margins: real-time detection of cancer using targeted fluorophores

    PubMed Central

    Zhang, Ray R.; Schroeder, Alexandra B.; Grudzinski, Joseph J.; Rosenthal, Eben L.; Warram, Jason M.; Pinchuk, Anatoly N.; Eliceiri, Kevin W.; Kuo, John S.; Weichert, Jamey P.

    2017-01-01

    Over the past two decades, synergistic innovations in imaging technology have resulted in a revolution in which a range of biomedical applications are now benefiting from fluorescence imaging. Specifically, advances in fluorophore chemistry and imaging hardware, and the identification of targetable biomarkers have now positioned intraoperative fluorescence as a highly specific real-time detection modality for surgeons in oncology. In particular, the deeper tissue penetration and limited autofluorescence of near-infrared (NIR) fluorescence imaging improves the translational potential of this modality over visible-light fluorescence imaging. Rapid developments in fluorophores with improved characteristics, detection instrumentation, and targeting strategies led to the clinical testing in the early 2010s of the first targeted NIR fluorophores for intraoperative cancer detection. The foundations for the advances that underline this technology continue to be nurtured by the multidisciplinary collaboration of chemists, biologists, engineers, and clinicians. In this Review, we highlight the latest developments in NIR fluorophores, cancer-targeting strategies, and detection instrumentation for intraoperative cancer detection, and consider the unique challenges associated with their effective application in clinical settings. PMID:28094261

  3. Cost-effective forensic image enhancement

    NASA Astrophysics Data System (ADS)

    Dalrymple, Brian E.

    1998-12-01

    In 1977, a paper was presented at the SPIE conference in Reston, Virginia, detailing the computer enhancement of the Zapruder film. The forensic value of this examination in a major homicide investigation was apparent to the viewer. Equally clear was the potential for extracting evidence which is beyond the reach of conventional detection techniques. The cost of this technology in 1976, however, was prohibitive, and well beyond the means of most police agencies. Twenty-two years later, a highly efficient means of image enhancement is easily within the grasp of most police agencies, not only for homicides but for any case application. A PC workstation combined with an enhancement software package allows a forensic investigator to fully exploit digital technology. The goal of this approach is the optimization of the signal to noise ratio in images. Obstructive backgrounds may be diminished or eliminated while weak signals are optimized by the use of algorithms including Fast Fourier Transform, Histogram Equalization and Image Subtraction. An added benefit is the speed with which these processes are completed and the results known. The efficacy of forensic image enhancement is illustrated through case applications.

  4. PET/MRI in Oncological Imaging: State of the Art

    PubMed Central

    Bashir, Usman; Mallia, Andrew; Stirling, James; Joemon, John; MacKewn, Jane; Charles-Edwards, Geoff; Goh, Vicky; Cook, Gary J.

    2015-01-01

    Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging. PMID:26854157

  5. Dental digital radiographic imaging.

    PubMed

    Mauriello, S M; Platin, E

    2001-01-01

    Radiographs are an important adjunct to providing oral health care for the total patient. Historically, radiographic images have been produced using film-based systems. However, in recent years, with the arrival of new technologies, many practitioners have begun to incorporate digital radiographic imaging into their practices. Since dental hygienists are primarily responsible for exposing and processing radiographs in the provision of dental hygiene care, it is imperative that they become knowledgeable on the use and application of digital imaging in patient care and record keeping. The purpose of this course is to provide a comprehensive overview of digital radiography in dentistry. Specific components addressed are technological features, diagnostic software, advantages and disadvantages, technique procedures, and legal implications.

  6. Emerging Computer Media: On Image Interaction

    NASA Astrophysics Data System (ADS)

    Lippman, Andrew B.

    1982-01-01

    Emerging technologies such as inexpensive, powerful local computing, optical digital videodiscs, and the technologies of human-machine interaction are initiating a revolution in both image storage systems and image interaction systems. This paper will present a review of new approaches to computer media predicated upon three dimensional position sensing, speech recognition, and high density image storage. Examples will be shown such as the Spatial Data Management Systems wherein the free use of place results in intuitively clear retrieval systems and potentials for image association; the Movie-Map, wherein inherently static media generate dynamic views of data, and conferencing work-in-progress wherein joint processing is stressed. Application to medical imaging will be suggested, but the primary emphasis is on the general direction of imaging and reference systems. We are passing the age of simple possibility of computer graphics and image porcessing and entering the age of ready usability.

  7. Display challenges resulting from the use of wide field of view imaging devices

    NASA Astrophysics Data System (ADS)

    Petty, Gregory J.; Fulton, Jack; Nicholson, Gail; Seals, Ean

    2012-06-01

    As focal plane array technologies advance and imagers increase in resolution, display technology must outpace the imaging improvements in order to adequately represent the complete data collection. Typical display devices tend to have an aspect ratio similar to 4:3 or 16:9, however a breed of Wide Field of View (WFOV) imaging devices exist that skew from the norm with aspect ratios as high as 5:1. This particular quality, when coupled with a high spatial resolution, presents a unique challenge for display devices. Standard display devices must choose between resizing the image data to fit the display and displaying the image data in native resolution and truncating potentially important information. The problem compounds when considering the applications; WFOV high-situationalawareness imagers are sought for space-limited military vehicles. Tradeoffs between these issues are assessed to the image quality of the WFOV sensor.

  8. Computer-aided Detection of Prostate Cancer with MRI: Technology and Applications.

    PubMed

    Liu, Lizhi; Tian, Zhiqiang; Zhang, Zhenfeng; Fei, Baowei

    2016-08-01

    One in six men will develop prostate cancer in his lifetime. Early detection and accurate diagnosis of the disease can improve cancer survival and reduce treatment costs. Recently, imaging of prostate cancer has greatly advanced since the introduction of multiparametric magnetic resonance imaging (mp-MRI). Mp-MRI consists of T2-weighted sequences combined with functional sequences including dynamic contrast-enhanced MRI, diffusion-weighted MRI, and magnetic resonance spectroscopy imaging. Because of the big data and variations in imaging sequences, detection can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. To improve quantitative assessment of the disease, various computer-aided detection systems have been designed to help radiologists in their clinical practice. This review paper presents an overview of literatures on computer-aided detection of prostate cancer with mp-MRI, which include the technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  9. Clinical oncologic applications of PET/MRI: a new horizon

    PubMed Central

    Partovi, Sasan; Kohan, Andres; Rubbert, Christian; Vercher-Conejero, Jose Luis; Gaeta, Chiara; Yuh, Roger; Zipp, Lisa; Herrmann, Karin A; Robbin, Mark R; Lee, Zhenghong; Muzic, Raymond F; Faulhaber, Peter; Ros, Pablo R

    2014-01-01

    Positron emission tomography/magnetic resonance imaging (PET/MRI) leverages the high soft-tissue contrast and the functional sequences of MR with the molecular information of PET in one single, hybrid imaging technology. This technology, which was recently introduced into the clinical arena in a few medical centers worldwide, provides information about tumor biology and microenvironment. Studies on indirect PET/MRI (use of positron emission tomography/computed tomography (PET/CT) images software fused with MRI images) have already generated interesting preliminary data to pave the ground for potential applications of PET/MRI. These initial data convey that PET/MRI is promising in neuro-oncology and head & neck cancer applications as well as neoplasms in the abdomen and pelvis. The pediatric and young adult oncology population requiring frequent follow-up studies as well as pregnant woman might benefit from PET/MRI due to its lower ionizing radiation dose. The indication and planning of therapeutic interventions and specifically radiation therapy in individual patients could be and to a certain extent are already facilitated by performing PET/MRI. The objective of this article is to discuss potential clinical oncology indications of PET/MRI. PMID:24753986

  10. Phage display and molecular imaging: expanding fields of vision in living subjects.

    PubMed

    Cochran, R; Cochran, Frank

    2010-01-01

    In vivo molecular imaging enables non-invasive visualization of biological processes within living subjects, and holds great promise for diagnosis and monitoring of disease. The ability to create new agents that bind to molecular targets and deliver imaging probes to desired locations in the body is critically important to further advance this field. To address this need, phage display, an established technology for the discovery and development of novel binding agents, is increasingly becoming a key component of many molecular imaging research programs. This review discusses the expanding role played by phage display in the field of molecular imaging with a focus on in vivo applications. Furthermore, new methodological advances in phage display that can be directly applied to the discovery and development of molecular imaging agents are described. Various phage library selection strategies are summarized and compared, including selections against purified target, intact cells, and ex vivo tissue, plus in vivo homing strategies. An outline of the process for converting polypeptides obtained from phage display library selections into successful in vivo imaging agents is provided, including strategies to optimize in vivo performance. Additionally, the use of phage particles as imaging agents is also described. In the latter part of the review, a survey of phage-derived in vivo imaging agents is presented, and important recent examples are highlighted. Other imaging applications are also discussed, such as the development of peptide tags for site-specific protein labeling and the use of phage as delivery agents for reporter genes. The review concludes with a discussion of how phage display technology will continue to impact both basic science and clinical applications in the field of molecular imaging.

  11. Nonimaging detectors in drug development and approval.

    PubMed

    Wagner, H N

    2001-07-01

    Regulatory applications for imaging biomarkers will expand in proportion to the validation of specific parameters as they apply to individual questions in the management of disease. This validation is likely to be applicable only to a particular class of drug or a single mechanism of action. Awareness among the world's regulatory authorities of the potential for these emerging technologies is high, but so is the cost to the sponsor (including the logistics of including images in a dossier), and therefore the pharmaceutical industry must evaluate carefully the potential benefit of each technology for its drug development programs, just as the authorities must consider carefully the extent to which the method is valid for the use to which the applicant has put it. For well-characterized tracer systems, it may be possible to design inexpensive cameras that make rapid assessments.

  12. The evolving role of new imaging methods in breast screening.

    PubMed

    Houssami, Nehmat; Ciatto, Stefano

    2011-09-01

    The potential to avert breast cancer deaths through screening means that efforts continue to identify methods which may enhance early detection. While the role of most new imaging technologies remains in adjunct screening or in the work-up of mammography-detected abnormalities, some of the new breast imaging tests (such as MRI) have roles in screening groups of women defined by increased cancer risk. This paper highlights the evidence and the current role of new breast imaging technologies in screening, focusing on those that have broader application in population screening, including digital mammography, breast ultrasound in women with dense breasts, and computer-aided detection. It highlights that evidence on new imaging in screening comes mostly from non-randomised studies that have quantified test detection capability as adjunct to mammography, or have compared measures of screening performance for new technologies with that of conventional mammography. Two RCTs have provided high-quality evidence on the equivalence of digital and conventional mammography and on outcomes of screen-reading complemented by CAD. Many of these imaging technologies enhance cancer detection but also increase recall and false positives in screening. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Novel snapshot hyperspectral imager for fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Chandler, Lynn; Chandler, Andrea; Periasamy, Ammasi

    2018-02-01

    Hyperspectral imaging has emerged as a new technique for the identification and classification of biological tissue1. Benefitting recent developments in sensor technology, the new class of hyperspectral imagers can capture entire hypercubes with single shot operation and it shows great potential for real-time imaging in biomedical sciences. This paper explores the use of a SnapShot imager in fluorescence imaging via microscope for the very first time. Utilizing the latest imaging sensor, the Snapshot imager is both compact and attachable via C-mount to any commercially available light microscope. Using this setup, fluorescence hypercubes of several cells were generated, containing both spatial and spectral information. The fluorescence images were acquired with one shot operation for all the emission range from visible to near infrared (VIS-IR). The paper will present the hypercubes obtained images from example tissues (475-630nm). This study demonstrates the potential of application in cell biology or biomedical applications for real time monitoring.

  14. Image standards in tissue-based diagnosis (diagnostic surgical pathology).

    PubMed

    Kayser, Klaus; Görtler, Jürgen; Goldmann, Torsten; Vollmer, Ekkehard; Hufnagl, Peter; Kayser, Gian

    2008-04-18

    Progress in automated image analysis, virtual microscopy, hospital information systems, and interdisciplinary data exchange require image standards to be applied in tissue-based diagnosis. To describe the theoretical background, practical experiences and comparable solutions in other medical fields to promote image standards applicable for diagnostic pathology. THEORY AND EXPERIENCES: Images used in tissue-based diagnosis present with pathology-specific characteristics. It seems appropriate to discuss their characteristics and potential standardization in relation to the levels of hierarchy in which they appear. All levels can be divided into legal, medical, and technological properties. Standards applied to the first level include regulations or aims to be fulfilled. In legal properties, they have to regulate features of privacy, image documentation, transmission, and presentation; in medical properties, features of disease-image combination, human-diagnostics, automated information extraction, archive retrieval and access; and in technological properties features of image acquisition, display, formats, transfer speed, safety, and system dynamics. The next lower second level has to implement the prescriptions of the upper one, i.e. describe how they are implemented. Legal aspects should demand secure encryption for privacy of all patient related data, image archives that include all images used for diagnostics for a period of 10 years at minimum, accurate annotations of dates and viewing, and precise hardware and software information. Medical aspects should demand standardized patients' files such as DICOM 3 or HL 7 including history and previous examinations, information of image display hardware and software, of image resolution and fields of view, of relation between sizes of biological objects and image sizes, and of access to archives and retrieval. Technological aspects should deal with image acquisition systems (resolution, colour temperature, focus, brightness, and quality evaluation procedures), display resolution data, implemented image formats, storage, cycle frequency, backup procedures, operation system, and external system accessibility. The lowest third level describes the permitted limits and threshold in detail. At present, an applicable standard including all mentioned features does not exist to our knowledge; some aspects can be taken from radiological standards (PACS, DICOM 3); others require specific solutions or are not covered yet. The progress in virtual microscopy and application of artificial intelligence (AI) in tissue-based diagnosis demands fast preparation and implementation of an internationally acceptable standard. The described hierarchic order as well as analytic investigation in all potentially necessary aspects and details offers an appropriate tool to specifically determine standardized requirements.

  15. The application of digital image plane holography technology to identify Chinese herbal medicine

    NASA Astrophysics Data System (ADS)

    Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui

    2012-03-01

    In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.

  16. MOSES: a modular sensor electronics system for space science and commercial applications

    NASA Astrophysics Data System (ADS)

    Michaelis, Harald; Behnke, Thomas; Tschentscher, Matthias; Mottola, Stefano; Neukum, Gerhard

    1999-10-01

    The camera group of the DLR--Institute of Space Sensor Technology and Planetary Exploration is developing imaging instruments for scientific and space applications. One example is the ROLIS imaging system of the ESA scientific space mission `Rosetta', which consists of a descent/downlooking and a close-up imager. Both are parts of the Rosetta-Lander payload and will operate in the extreme environment of a cometary nucleus. The Rosetta Lander Imaging System (ROLIS) will introduce a new concept for the sensor electronics, which is referred to as MOSES (Modula Sensor Electronics System). MOSES is a 3D miniaturized CCD- sensor-electronics which is based on single modules. Each of the modules has some flexibility and enables a simple adaptation to specific application requirements. MOSES is mainly designed for space applications where high performance and high reliability are required. This concept, however, can also be used in other science or commercial applications. This paper describes the concept of MOSES, its characteristics, performance and applications.

  17. Polarized Heliospheric Imaging: Lessons, Benefits, Challenges, and Status (Invited)

    NASA Astrophysics Data System (ADS)

    DeForest, C. E.; Howard, T. A.

    2013-12-01

    STEREO has delivered on the promise of continuous, photometric imaging of coronal and heliospheric transients from Sun to Earth. It is time to explore polarized heliospheric imaging. Applications include 3-D location of individual features and improved separation of signal from background. These scientific applications have different advantages and challenges in the heliosphere than the corona. We present analytical and numerical results on 3-D location of features both large and small with polarized heliospheric imaging; describe advantages to polarimetry for both in-ecliptic and out-of-ecliptic missions; and discuss some of the design considerations for PHI-C, our proposed mission to prototype this technology from LEO.

  18. Dual-Energy Computed Tomography in Cardiothoracic Vascular Imaging.

    PubMed

    De Santis, Domenico; Eid, Marwen; De Cecco, Carlo N; Jacobs, Brian E; Albrecht, Moritz H; Varga-Szemes, Akos; Tesche, Christian; Caruso, Damiano; Laghi, Andrea; Schoepf, Uwe Joseph

    2018-07-01

    Dual energy computed tomography is becoming increasingly widespread in clinical practice. It can expand on the traditional density-based data achievable with single energy computed tomography by adding novel applications to help reach a more accurate diagnosis. The implementation of this technology in cardiothoracic vascular imaging allows for improved image contrast, metal artifact reduction, generation of virtual unenhanced images, virtual calcium subtraction techniques, cardiac and pulmonary perfusion evaluation, and plaque characterization. The improved diagnostic performance afforded by dual energy computed tomography is not associated with an increased radiation dose. This review provides an overview of dual energy computed tomography cardiothoracic vascular applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. The Earth Observation Technology Cluster

    NASA Astrophysics Data System (ADS)

    Aplin, P.; Boyd, D. S.; Danson, F. M.; Donoghue, D. N. M.; Ferrier, G.; Galiatsatos, N.; Marsh, A.; Pope, A.; Ramirez, F. A.; Tate, N. J.

    2012-07-01

    The Earth Observation Technology Cluster is a knowledge exchange initiative, promoting development, understanding and communication about innovative technology used in remote sensing of the terrestrial or land surface. This initiative provides an opportunity for presentation of novel developments from, and cross-fertilisation of ideas between, the many and diverse members of the terrestrial remote sensing community. The Earth Observation Technology Cluster involves a range of knowledge exchange activities, including organisation of technical events, delivery of educational materials, publication of scientific findings and development of a coherent terrestrial EO community. The initiative as a whole covers the full range of remote sensing operation, from new platform and sensor development, through image retrieval and analysis, to data applications and environmental modelling. However, certain topical and strategic themes have been selected for detailed investigation: (1) Unpiloted Aerial Vehicles, (2) Terrestrial Laser Scanning, (3) Field-Based Fourier Transform Infra-Red Spectroscopy, (4) Hypertemporal Image Analysis, and (5) Circumpolar and Cryospheric Application. This paper presents general activities and achievements of the Earth Observation Technology Cluster, and reviews state-of-the-art developments in the five specific thematic areas.

  20. Thermal imaging as a smartphone application: exploring and implementing a new concept

    NASA Astrophysics Data System (ADS)

    Yanai, Omer

    2014-06-01

    Today's world is going mobile. Smartphone devices have become an important part of everyday life for billions of people around the globe. Thermal imaging cameras have been around for half a century and are now making their way into our daily lives. Originally built for military applications, thermal cameras are starting to be considered for personal use, enabling enhanced vision and temperature mapping for different groups of professional individuals. Through a revolutionary concept that turns smartphones into fully functional thermal cameras, we have explored how these two worlds can converge by utilizing the best of each technology. We will present the thought process, design considerations and outcome of our development process, resulting in a low-power, high resolution, lightweight USB thermal imaging device that turns Android smartphones into thermal cameras. We will discuss the technological challenges that we faced during the development of the product, and what are the system design decisions taken during the implementation. We will provide some insights we came across during this development process. Finally, we will discuss the opportunities that this innovative technology brings to the market.

  1. The New Realm of 3-D Vision

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.

  2. Computer-Based Technologies in Dentistry: Types and Applications

    PubMed Central

    Albuha Al-Mussawi, Raja’a M.; Farid, Farzaneh

    2016-01-01

    During dental education, dental students learn how to examine patients, make diagnosis, plan treatment and perform dental procedures perfectly and efficiently. However, progresses in computer-based technologies including virtual reality (VR) simulators, augmented reality (AR) and computer aided design/computer aided manufacturing (CAD/CAM) systems have resulted in new modalities for instruction and practice of dentistry. Virtual reality dental simulators enable repeated, objective and assessable practice in various controlled situations. Superimposition of three-dimensional (3D) virtual images on actual images in AR allows surgeons to simultaneously visualize the surgical site and superimpose informative 3D images of invisible regions on the surgical site to serve as a guide. The use of CAD/CAM systems for designing and manufacturing of dental appliances and prostheses has been well established. This article reviews computer-based technologies, their application in dentistry and their potentials and limitations in promoting dental education, training and practice. Practitioners will be able to choose from a broader spectrum of options in their field of practice by becoming familiar with new modalities of training and practice. PMID:28392819

  3. Computer-Based Technologies in Dentistry: Types and Applications.

    PubMed

    Albuha Al-Mussawi, Raja'a M; Farid, Farzaneh

    2016-06-01

    During dental education, dental students learn how to examine patients, make diagnosis, plan treatment and perform dental procedures perfectly and efficiently. However, progresses in computer-based technologies including virtual reality (VR) simulators, augmented reality (AR) and computer aided design/computer aided manufacturing (CAD/CAM) systems have resulted in new modalities for instruction and practice of dentistry. Virtual reality dental simulators enable repeated, objective and assessable practice in various controlled situations. Superimposition of three-dimensional (3D) virtual images on actual images in AR allows surgeons to simultaneously visualize the surgical site and superimpose informative 3D images of invisible regions on the surgical site to serve as a guide. The use of CAD/CAM systems for designing and manufacturing of dental appliances and prostheses has been well established. This article reviews computer-based technologies, their application in dentistry and their potentials and limitations in promoting dental education, training and practice. Practitioners will be able to choose from a broader spectrum of options in their field of practice by becoming familiar with new modalities of training and practice.

  4. NASA spinoffs to bioengineering and medicine

    NASA Technical Reports Server (NTRS)

    Rouse, D. J.; Winfield, D. L.; Canada, S. C.

    1991-01-01

    Through the active transfer of technology, the National Aeronautics and Space Administration (NASA) Technology Utilization (TU) Program assists private companies, associations, and government agencies to make effective use of NASA's technological resources to improve U.S. economic competitiveness and to provide societal benefit. Aerospace technology from areas such as digital image processing, space medicine and biology, microelectronics, optics and electrooptics, and ultrasonic imaging have found many secondary applications in medicine. Examples of technology spinoffs are briefly discussed to illustrate the benefits realized through adaptation of aerospace technology to solve health care problems. Successful implementation of new technologies increasingly requires the collaboration of industry, universities, and government, and the TU Program serves as the liaison to establish such collaborations with NASA. NASA technology is an important resource to support the development of new medical products and techniques that will further advance the quality of health care available in the U.S. and worldwide.

  5. Pre-Hardware Optimization of Spacecraft Image Processing Software Algorithms and Hardware Implementation

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Flatley, Thomas P.; Hestnes, Phyllis; Jentoft-Nilsen, Marit; Petrick, David J.; Day, John H. (Technical Monitor)

    2001-01-01

    Spacecraft telemetry rates have steadily increased over the last decade presenting a problem for real-time processing by ground facilities. This paper proposes a solution to a related problem for the Geostationary Operational Environmental Spacecraft (GOES-8) image processing application. Although large super-computer facilities are the obvious heritage solution, they are very costly, making it imperative to seek a feasible alternative engineering solution at a fraction of the cost. The solution is based on a Personal Computer (PC) platform and synergy of optimized software algorithms and re-configurable computing hardware technologies, such as Field Programmable Gate Arrays (FPGA) and Digital Signal Processing (DSP). It has been shown in [1] and [2] that this configuration can provide superior inexpensive performance for a chosen application on the ground station or on-board a spacecraft. However, since this technology is still maturing, intensive pre-hardware steps are necessary to achieve the benefits of hardware implementation. This paper describes these steps for the GOES-8 application, a software project developed using Interactive Data Language (IDL) (Trademark of Research Systems, Inc.) on a Workstation/UNIX platform. The solution involves converting the application to a PC/Windows/RC platform, selected mainly by the availability of low cost, adaptable high-speed RC hardware. In order for the hybrid system to run, the IDL software was modified to account for platform differences. It was interesting to examine the gains and losses in performance on the new platform, as well as unexpected observations before implementing hardware. After substantial pre-hardware optimization steps, the necessity of hardware implementation for bottleneck code in the PC environment became evident and solvable beginning with the methodology described in [1], [2], and implementing a novel methodology for this specific application [6]. The PC-RC interface bandwidth problem for the class of applications with moderate input-output data rates but large intermediate multi-thread data streams has been addressed and mitigated. This opens a new class of satellite image processing applications for bottleneck problems solution using RC technologies. The issue of a science algorithm level of abstraction necessary for RC hardware implementation is also described. Selected Matlab functions already implemented in hardware were investigated for their direct applicability to the GOES-8 application with the intent to create a library of Matlab and IDL RC functions for ongoing work. A complete class of spacecraft image processing applications using embedded re-configurable computing technology to meet real-time requirements, including performance results and comparison with the existing system, is described in this paper.

  6. NIST biometric evaluations and developments

    NASA Astrophysics Data System (ADS)

    Garris, Michael D.; Wilson, Charles L.

    2005-05-01

    This paper presents an R&D framework used by the National Institute of Standards and Technology (NIST) for biometric technology testing and evaluation. The focus of this paper is on fingerprint-based verification and identification. Since 9-11 the NIST Image Group has been mandated by Congress to run a program for biometric technology assessment and biometric systems certification. Four essential areas of activity are discussed: 1) developing test datasets, 2) conducting performance assessment; 3) technology development; and 4) standards participation. A description of activities and accomplishments are provided for each of these areas. In the process, methods of performance testing are described and results from specific biometric technology evaluations are presented. This framework is anticipated to have broad applicability to other technology and application domains.

  7. Image Analysis via Fuzzy-Reasoning Approach: Prototype Applications at NASA

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steven J.

    2004-01-01

    A set of imaging techniques based on Fuzzy Reasoning (FR) approach was built for NASA at Kennedy Space Center (KSC) to perform complex real-time visual-related safety prototype tasks, such as detection and tracking of moving Foreign Objects Debris (FOD) during the NASA Space Shuttle liftoff and visual anomaly detection on slidewires used in the emergency egress system for Space Shuttle at the launch pad. The system has also proved its prospective in enhancing X-ray images used to screen hard-covered items leading to a better visualization. The system capability was used as well during the imaging analysis of the Space Shuttle Columbia accident. These FR-based imaging techniques include novel proprietary adaptive image segmentation, image edge extraction, and image enhancement. Probabilistic Neural Network (PNN) scheme available from NeuroShell(TM) Classifier and optimized via Genetic Algorithm (GA) was also used along with this set of novel imaging techniques to add powerful learning and image classification capabilities. Prototype applications built using these techniques have received NASA Space Awards, including a Board Action Award, and are currently being filed for patents by NASA; they are being offered for commercialization through the Research Triangle Institute (RTI), an internationally recognized corporation in scientific research and technology development. Companies from different fields, including security, medical, text digitalization, and aerospace, are currently in the process of licensing these technologies from NASA.

  8. Chromosome Analysis

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Perceptive Scientific Instruments, Inc., provides the foundation for the Powergene line of chromosome analysis and molecular genetic instrumentation. This product employs image processing technology from NASA's Jet Propulsion Laboratory and image enhancement techniques from Johnson Space Center. Originally developed to send pictures back to earth from space probes, digital imaging techniques have been developed and refined for use in a variety of medical applications, including diagnosis of disease.

  9. Image Analysis and Modeling

    DTIC Science & Technology

    1975-08-01

    image analysis and processing tasks such as information extraction, image enhancement and restoration, coding, etc. The ultimate objective of this research is to form a basis for the development of technology relevant to military applications of machine extraction of information from aircraft and satellite imagery of the earth’s surface. This report discusses research activities during the three month period February 1 - April 30,

  10. Image processing system design for microcantilever-based optical readout infrared arrays

    NASA Astrophysics Data System (ADS)

    Tong, Qiang; Dong, Liquan; Zhao, Yuejin; Gong, Cheng; Liu, Xiaohua; Yu, Xiaomei; Yang, Lei; Liu, Weiyu

    2012-12-01

    Compared with the traditional infrared imaging technology, the new type of optical-readout uncooled infrared imaging technology based on MEMS has many advantages, such as low cost, small size, producing simple. In addition, the theory proves that the technology's high thermal detection sensitivity. So it has a very broad application prospects in the field of high performance infrared detection. The paper mainly focuses on an image capturing and processing system in the new type of optical-readout uncooled infrared imaging technology based on MEMS. The image capturing and processing system consists of software and hardware. We build our image processing core hardware platform based on TI's high performance DSP chip which is the TMS320DM642, and then design our image capturing board based on the MT9P031. MT9P031 is Micron's company high frame rate, low power consumption CMOS chip. Last we use Intel's company network transceiver devices-LXT971A to design the network output board. The software system is built on the real-time operating system DSP/BIOS. We design our video capture driver program based on TI's class-mini driver and network output program based on the NDK kit for image capturing and processing and transmitting. The experiment shows that the system has the advantages of high capturing resolution and fast processing speed. The speed of the network transmission is up to 100Mbps.

  11. Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives

    PubMed Central

    Doradla, Pallavi; Joseph, Cecil; Giles, Robert H

    2017-01-01

    Terahertz (THz) imaging is progressing as a robust platform for myriad applications in the field of security, health, and material science. The THz regime, which comprises wavelengths spanning from microns to millimeters, is non-ionizing and has very low photon energy: Making it inherently safe for biological imaging. Colorectal cancer is one of the most common causes of death in the world, while the conventional screening and standard of care yet relies exclusively on the physician’s experience. Researchers have been working on the development of a flexible THz endoscope, as a potential tool to aid in colorectal cancer screening. This involves building a single-channel THz endoscope, and profiling the THz response from colorectal tissue, and demonstrating endogenous contrast levels between normal and diseased tissue when imaging in reflection modality. The current level of contrast provided by the prototype THz endoscopic system represents a significant step towards clinical endoscopic application of THz technology for in-vivo colorectal cancer screening. The aim of this paper is to provide a short review of the recent advances in THz endoscopic technology and cancer imaging. In particular, the potential of single-channel THz endoscopic imaging for colonic cancer screening will be highlighted. PMID:28874955

  12. Advances in three-dimensional integral imaging: sensing, display, and applications [Invited].

    PubMed

    Xiao, Xiao; Javidi, Bahram; Martinez-Corral, Manuel; Stern, Adrian

    2013-02-01

    Three-dimensional (3D) sensing and imaging technologies have been extensively researched for many applications in the fields of entertainment, medicine, robotics, manufacturing, industrial inspection, security, surveillance, and defense due to their diverse and significant benefits. Integral imaging is a passive multiperspective imaging technique, which records multiple two-dimensional images of a scene from different perspectives. Unlike holography, it can capture a scene such as outdoor events with incoherent or ambient light. Integral imaging can display a true 3D color image with full parallax and continuous viewing angles by incoherent light; thus it does not suffer from speckle degradation. Because of its unique properties, integral imaging has been revived over the past decade or so as a promising approach for massive 3D commercialization. A series of key articles on this topic have appeared in the OSA journals, including Applied Optics. Thus, it is fitting that this Commemorative Review presents an overview of literature on physical principles and applications of integral imaging. Several data capture configurations, reconstruction, and display methods are overviewed. In addition, applications including 3D underwater imaging, 3D imaging in photon-starved environments, 3D tracking of occluded objects, 3D optical microscopy, and 3D polarimetric imaging are reviewed.

  13. Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications.

    PubMed

    Longo, Dario Livio; Stefania, Rachele; Aime, Silvio; Oraevsky, Alexander

    2017-08-07

    Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents.

  14. Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications

    PubMed Central

    Longo, Dario Livio; Aime, Silvio

    2017-01-01

    Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents. PMID:28783106

  15. Miniaturisation of Pressure-Sensitive Paint Measurement Systems Using Low-Cost, Miniaturised Machine Vision Cameras.

    PubMed

    Quinn, Mark Kenneth; Spinosa, Emanuele; Roberts, David A

    2017-07-25

    Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access.

  16. Miniaturisation of Pressure-Sensitive Paint Measurement Systems Using Low-Cost, Miniaturised Machine Vision Cameras

    PubMed Central

    Spinosa, Emanuele; Roberts, David A.

    2017-01-01

    Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access. PMID:28757553

  17. Optimizing technology development and adoption in medical imaging using the principles of innovation diffusion, part II: practical applications.

    PubMed

    Reiner, Bruce I

    2012-02-01

    Successful adoption of new technology development can be accentuated by learning and applying the scientific principles of innovation diffusion. This is of particular importance to areas within the medical imaging practice which have lagged in innovation; perhaps, the most notable of which is reporting which has remained relatively stagnant for over a century. While the theoretical advantages of structured reporting have been well documented throughout the medical imaging community, adoption to date has been tepid and largely relegated to the academic and breast imaging communities. Widespread adoption will likely require an alternative approach to innovation, which addresses the heterogeneity and diversity of the practicing radiologist community along with the ever-changing expectations in service delivery. The challenges and strategies for reporting innovation and adoption are discussed, with the goal of adapting and customizing new technology to the preferences and needs of individual end-users.

  18. Terahertz: the Far-Ir Challenge

    NASA Astrophysics Data System (ADS)

    Dispenza, Massimiliano; Fiorello, Annamaria; Secchi, Alberto; Varasi, Mauro

    This chapter is an overview on terahertz technologies and applications for sensing. The most advanced imaging and spectroscopy techniques are described, considering current opportunities and limitations in comparison to probes in the adjacent regions of the e.m. spectrum. Potential applications are highlighted, with a specific focus on security for detection of illicit substances and revealing of hidden objects. The technological status and current bottlenecks on sources and detectors are reviewed and future trends discussed.

  19. Resonance Raman spectroscopy in malaria research.

    PubMed

    Wood, Bayden R; McNaughton, Don

    2006-10-01

    In recent years, the field of Raman spectroscopy has witnessed a surge in technological development, with the incorporation of ultrasensitive, charge-coupled devices, improved laser sources and precision Rayleigh-filter systems. This has led to the development of sensitive confocal micro-Raman spectrometers and imaging spectrometers that are capable of obtaining high spatial-resolution spectra and images of subcellular components within single living cells. This review reports on the application of resonance micro-Raman spectroscopy to the study of malaria pigment (hemozoin), a by-product of hemoglobin catabolization by the malaria parasite, which is an important target site for antimalarial drugs. The review aims to briefly describe recent studies on the application of this technology, elucidate molecular and electronic properties of the malaria pigment and its synthetic analog beta-hematin, provide insight into the mechanism of hemozoin formation within the food vacuole of the parasite, and comment on developing strategies for using this technology in drug-screening protocols.

  20. Terahertz Real-Time Imaging Uncooled Arrays Based on Antenna-Coupled Bolometers or FET Developed at CEA-Leti

    NASA Astrophysics Data System (ADS)

    Simoens, François; Meilhan, Jérôme; Nicolas, Jean-Alain

    2015-10-01

    Sensitive and large-format terahertz focal plane arrays (FPAs) integrated in compact and hand-held cameras that deliver real-time terahertz (THz) imaging are required for many application fields, such as non-destructive testing (NDT), security, quality control of food, and agricultural products industry. Two technologies of uncooled THz arrays that are being studied at CEA-Leti, i.e., bolometer and complementary metal oxide semiconductor (CMOS) field effect transistors (FET), are able to meet these requirements. This paper reminds the followed technological approaches and focuses on the latest modeling and performance analysis. The capabilities of application of these arrays to NDT and security are then demonstrated with experimental tests. In particular, high technological maturity of the THz bolometer camera is illustrated with fast scanning of large field of view of opaque scenes achieved in a complete body scanner prototype.

  1. Spherical Camera

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Developed largely through a Small Business Innovation Research contract through Langley Research Center, Interactive Picture Corporation's IPIX technology provides spherical photography, a panoramic 360-degrees. NASA found the technology appropriate for use in guiding space robots, in the space shuttle and space station programs, as well as research in cryogenic wind tunnels and for remote docking of spacecraft. Images of any location are captured in their entirety in a 360-degree immersive digital representation. The viewer can navigate to any desired direction within the image. Several car manufacturers already use IPIX to give viewers a look at their latest line-up of automobiles. Another application is for non-invasive surgeries. By using OmniScope, surgeons can look more closely at various parts of an organ with medical viewing instruments now in use. Potential applications of IPIX technology include viewing of homes for sale, hotel accommodations, museum sites, news events, and sports stadiums.

  2. Any Way You Slice It—A Comparison of Confocal Microscopy Techniques

    PubMed Central

    Jonkman, James

    2015-01-01

    The confocal fluorescence microscope has become a popular tool for life sciences researchers, primarily because of its ability to remove blur from outside of the focal plane of the image. Several different kinds of confocal microscopes have been developed, each with advantages and disadvantages. This article will cover the grid confocal, classic confocal laser-scanning microscope (CLSM), the resonant scanning-CLSM, and the spinning-disk confocal microscope. The way each microscope technique works, the best applications the technique is suited for, the limitations of the technique, and new developments for each technology will be presented. Researchers who have access to a range of different confocal microscopes (e.g., through a local core facility) should find this paper helpful for choosing the best confocal technology for specific imaging applications. Others with funding to purchase an instrument should find the article helpful in deciding which technology is ideal for their area of research. PMID:25802490

  3. Three-Dimensional Printing in Orthopedic Surgery.

    PubMed

    Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H

    2015-11-01

    Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. Copyright 2015, SLACK Incorporated.

  4. Optical coherent tomography and fluorescent microscopy for the study of meningeal lymphatic systems

    NASA Astrophysics Data System (ADS)

    Semyachkina-Glushkovskaya, O.; Abdurashitov, A.; Namykin, A.; Fedosov, I.; Pavlov, A.; Karavaev, A.; Sindeeva, O.; Shirokov, A.; Ulanova, M.; Shushunova, N.; Khorovodov, A.; Agranovich, I.; Bodrova, A.; Sagatova, M.; Shareef, Ali Esmat; Saranceva, E.; Dvoryatkina, M.; Tuchin, V.

    2018-04-01

    The development of novel technologies for the imaging of meningeal lymphatic vessels is one of the amazing trends of biophotonics thanks to discovery of brain lymphatics over several years ago. However, there is the limited technologies exist for the study of lymphatics in vivo because lymphatic vessels are transparent with a low speed flow of lymph. Here we demonstrate the successful application of fluorescent microscopy for the imaging of lymphatic system in the mouse brain in vivo.

  5. Applications in Digital Image Processing

    ERIC Educational Resources Information Center

    Silverman, Jason; Rosen, Gail L.; Essinger, Steve

    2013-01-01

    Students are immersed in a mathematically intensive, technological world. They engage daily with iPods, HDTVs, and smartphones--technological devices that rely on sophisticated but accessible mathematical ideas. In this article, the authors provide an overview of four lab-type activities that have been used successfully in high school mathematics…

  6. Liquid crystal light valve technologies for display applications

    NASA Astrophysics Data System (ADS)

    Kikuchi, Hiroshi; Takizawa, Kuniharu

    2001-11-01

    The liquid crystal (LC) light valve, which is a spatial light modulator that uses LC material, is a very important device in the area of display development, image processing, optical computing, holograms, etc. In particular, there have been dramatic developments in the past few years in the application of the LC light valve to projectors and other display technologies. Various LC operating modes have been developed, including thin film transistors, MOS-FETs and other active matrix drive techniques to meet the requirements for higher resolution, and substantial improvements have been achieved in the performance of optical systems, resulting in brighter display images. Given this background, the number of applications for the LC light valve has greatly increased. The resolution has increased from QVGA (320 x 240) to QXGA (2048 x 1536) or even super- high resolution of eight million pixels. In the area of optical output, projectors of 600 to 13,000 lm are now available, and they are used for presentations, home theatres, electronic cinema and other diverse applications. Projectors using the LC light valve can display high- resolution images on large screens. They are now expected to be developed further as part of hyper-reality visual systems. This paper provides an overview of the needs for large-screen displays, human factors related to visual effects, the way in which LC light valves are applied to projectors, improvements in moving picture quality, and the results of the latest studies that have been made to increase the quality of images and moving images or pictures.

  7. A New Vegetation Segmentation Approach for Cropped Fields Based on Threshold Detection from Hue Histograms

    PubMed Central

    Hassanein, Mohamed; El-Sheimy, Naser

    2018-01-01

    Over the last decade, the use of unmanned aerial vehicle (UAV) technology has evolved significantly in different applications as it provides a special platform capable of combining the benefits of terrestrial and aerial remote sensing. Therefore, such technology has been established as an important source of data collection for different precision agriculture (PA) applications such as crop health monitoring and weed management. Generally, these PA applications depend on performing a vegetation segmentation process as an initial step, which aims to detect the vegetation objects in collected agriculture fields’ images. The main result of the vegetation segmentation process is a binary image, where vegetations are presented in white color and the remaining objects are presented in black. Such process could easily be performed using different vegetation indexes derived from multispectral imagery. Recently, to expand the use of UAV imagery systems for PA applications, it was important to reduce the cost of such systems through using low-cost RGB cameras Thus, developing vegetation segmentation techniques for RGB images is a challenging problem. The proposed paper introduces a new vegetation segmentation methodology for low-cost UAV RGB images, which depends on using Hue color channel. The proposed methodology follows the assumption that the colors in any agriculture field image can be distributed into vegetation and non-vegetations colors. Therefore, four main steps are developed to detect five different threshold values using the hue histogram of the RGB image, these thresholds are capable to discriminate the dominant color, either vegetation or non-vegetation, within the agriculture field image. The achieved results for implementing the proposed methodology showed its ability to generate accurate and stable vegetation segmentation performance with mean accuracy equal to 87.29% and standard deviation as 12.5%. PMID:29670055

  8. Thematic Conference on Remote Sensing for Exploration Geology, 6th, Houston, TX, May 16-19, 1988, Proceedings. Volumes 1 & 2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Papers concerning remote sensing applications for exploration geology are presented, covering topics such as remote sensing technology, data availability, frontier exploration, and exploration in mature basins. Other topics include offshore applications, geobotany, mineral exploration, engineering and environmental applications, image processing, and prospects for future developments in remote sensing for exploration geology. Consideration is given to the use of data from Landsat, MSS, TM, SAR, short wavelength IR, the Geophysical Environmental Research Airborne Scanner, gas chromatography, sonar imaging, the Airborne Visible-IR Imaging Spectrometer, field spectrometry, airborne thermal IR scanners, SPOT, AVHRR, SIR, the Large Format camera, and multitimephase satellite photographs.

  9. PET and MRI: The Odd Couple or a Match Made in Heaven?

    PubMed Central

    Catana, Ciprian; Guimaraes, Alexander R.; Rosen, Bruce R.

    2013-01-01

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are imaging modalities routinely used for clinical and research applications. Integrated scanners capable of acquiring PET and MRI data in the same imaging session, sequentially or simultaneously, have recently become available for human use. In this manuscript, we describe some of the technical advances that allowed the development of human PET/MR scanners, briefly discuss methodological challenges and opportunities provided by this novel technology and present potential oncologic, cardiac, and neuro-psychiatric applications. These examples range from studies that might immediately benefit from PET/MR to more advanced applications where future development might have an even broader impact. PMID:23492887

  10. An update on clinical applications of magnetic nanoparticles for increasing the resolution of magnetic resonance imaging.

    PubMed

    Zeinali Sehrig, Fatemeh; Majidi, Sima; Asvadi, Sahar; Hsanzadeh, Arash; Rasta, Seyed Hossein; Emamverdy, Masumeh; Akbarzadeh, Jamshid; Jahangiri, Sahar; Farahkhiz, Shahrzad; Akbarzadeh, Abolfazl

    2016-11-01

    Today, technologies based on magnetic nanoparticles (MNPs) are regularly applied to biological systems with diagnostic or therapeutic aims. Nanoparticles made of the elements iron (Fe), gadolinium (Gd) or manganese (Mn) are generally used in many diagnostic applications performed under magnetic resonance imaging (MRI). Similar to molecular-based contrast agents, nanoparticles can be used to increase the resolution of imaging while offering well biocompatibility, poisonousness and biodistribution. Application of MNPs enhanced MRI sensitivity due to the accumulation of iron in the liver caused by discriminating action of the hepatobiliary system. The aim of this study is about the use, properties and advantages of MNPs in MRI.

  11. Technology for detecting spectral radiance by a snapshot multi-imaging spectroradiometer

    NASA Astrophysics Data System (ADS)

    Zuber, Ralf; Stührmann, Ansgar; Gugg-Helminger, Anton; Seckmeyer, Gunther

    2017-12-01

    Technologies to determine spectral sky radiance distributions have evolved in recent years and have enabled new applications in remote sensing, for sky radiance measurements, in biological/diagnostic applications and luminance measurements. Most classical spectral imaging radiance technologies are based on mechanical and/or spectral scans. However, these methods require scanning time in which the spectral radiance distribution might change. To overcome this limitation, different so-called snapshot spectral imaging technologies have been developed that enable spectral and spatial non-scanning measurements. We present a new setup based on a facet mirror that is already used in imaging slicing spectrometers. By duplicating the input image instead of slicing it and using a specially designed entrance slit, we are able to select nearly 200 (14 × 14) channels within the field of view (FOV) for detecting spectral radiance in different directions. In addition, a megapixel image of the FOV is captured by an additional RGB camera. This image can be mapped onto the snapshot spectral image. In this paper, the mechanical setup, technical design considerations and first measurement results of a prototype are presented. For a proof of concept, the device is radiometrically calibrated and a 10 mm × 10 mm test pattern measured within a spectral range of 380 nm-800 nm with an optical bandwidth of 10 nm (full width at half maximum or FWHM). To show its potential in the UV spectral region, zenith sky radiance measurements in the UV of a clear sky were performed. Hence, the prototype was equipped with an entrance optic with a FOV of 0.5° and modified to obtain a radiometrically calibrated spectral range of 280 nm-470 nm with a FWHM of 3 nm. The measurement results have been compared to modeled data processed by UVSPEC, which showed deviations of less than 30%. This is far from being ideal, but an acceptable result with respect to available state-of-the-art intercomparisons.

  12. Design of a sustainable prepolarizing magnetic resonance imaging system for infant hydrocephalus.

    PubMed

    Obungoloch, Johnes; Harper, Joshua R; Consevage, Steven; Savukov, Igor M; Neuberger, Thomas; Tadigadapa, Srinivas; Schiff, Steven J

    2018-04-11

    The need for affordable and appropriate medical technologies for developing countries continues to rise as challenges such as inadequate energy supply, limited technical expertise, and poor infrastructure persist. Low-field magnetic resonance imaging (LF MRI) is a technology that can be tailored to meet specific imaging needs within such countries. Its low power requirements and the possibility of operating in minimally shielded or unshielded environments make it especially attractive. Although the technology has been widely demonstrated over several decades, it is yet to be shown that it can be diagnostic and improve patient outcomes in clinical applications. We here demonstrate the robustness of prepolarizing MRI (PMRI) technology for assembly and deployment in developing countries for the specific application to infant hydrocephalus. Hydrocephalus treatment planning and management requires only modest spatial resolution, such that the brain can be distinguished from fluid-tissue contrast detail within the brain parenchyma is not essential. We constructed an internally shielded PMRI system based on the Lee-Whiting coil system with a 22-cm diameter of spherical volume. In an unshielded room, projection phantom images were acquired at 113 kHz with in-plane resolution of 3 mm × 3 mm, by introducing gradient fields of sufficient magnitude to dominate the 5000 ppm inhomogeneity of the readout field. The low cost, straightforward assembly, deployment potential, and maintenance requirements demonstrate the suitability of our PMRI system for developing countries. Further improvement in image spatial resolution and contrast of LF MRI will broaden its potential clinical utility beyond hydrocephalus.

  13. Application of narrow-band television to industrial and commercial communications

    NASA Technical Reports Server (NTRS)

    Embrey, B. C., Jr.; Southworth, G. R.

    1974-01-01

    The development of narrow-band systems for use in space systems is presented. Applications of the technology to future spacecraft requirements are discussed along with narrow-band television's influence in stimulating development within the industry. The transferral of the technology into industrial and commercial communications is described. Major areas included are: (1) medicine; (2) education; (3) remote sensing for traffic control; and (5) weather observation. Applications in data processing, image enhancement, and information retrieval are provided by the combination of the TV camera and the computer.

  14. Generating land cover boundaries from remotely sensed data using object-based image analysis: overview and epidemiological application.

    PubMed

    Maxwell, Susan K

    2010-12-01

    Satellite imagery and aerial photography represent a vast resource to significantly enhance environmental mapping and modeling applications for use in understanding spatio-temporal relationships between environment and health. Deriving boundaries of land cover objects, such as trees, buildings, and crop fields, from image data has traditionally been performed manually using a very time consuming process of hand digitizing. Boundary detection algorithms are increasingly being applied using object-based image analysis (OBIA) technology to automate the process. The purpose of this paper is to present an overview and demonstrate the application of OBIA for delineating land cover features at multiple scales using a high resolution aerial photograph (1 m) and a medium resolution Landsat image (30 m) time series in the context of a pesticide spray drift exposure application. Copyright © 2010. Published by Elsevier Ltd.

  15. Better Pictures in a Snap

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Retinex Imaging Processing, winner of NASA's 1999 Space Act Award, is commercially available through TruView Imaging Company. With this technology, amateur photographers use their personal computers to improve the brightness, scene contrast, detail, and overall sharpness of images with increased ease. The process was originally developed for remote sensing of the Earth by researchers at Langley Research Center and Science and Technology Corporation (STC). It automatically enhances a digital image in terms of dynamic range compression, color independence from the spectral distribution of the scene illuminant, and color/lightness rendition. As a result, the enhanced digital image is much closer to the scene perceived by the human visual system, under all kinds and levels of lighting variations. TruView believes there are other applications for the software in medical imaging, forensics, security, recognizance, mining, assembly, and other industrial areas.

  16. Handheld hyperspectral imager for standoff detection of chemical and biological aerosols

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Jensen, James O.; McAnally, Gerard

    2004-08-01

    Pacific Advanced Technology has developed a small hand held imaging spectrometer, Sherlock, for gas leak and aerosol detection and imaging. The system is based on a patented technique, (IMSS Image Multi-spectral Sensing), that uses diffractive optics and image processing algorithms to detect spectral information about objects in the scene of the camera. This cameras technology has been tested at Dugway Proving Ground and Dstl Porton Down facilities looking at Chemical and Biological agent simulants. In addition to Chemical and Biological detection, the camera has been used for environmental monitoring of green house gases and is currently undergoing extensive laboratory and field testing by the Gas Technology Institute, British Petroleum and Shell Oil for applications for gas leak detection and repair. In this paper we will present some of the results from the data collection at the TRE test at Dugway Proving Ground during the summer of 2002 and laboratory testing at the Dstl facility at Porton Down in the UK in the fall of 2002.

  17. Research and application on imaging technology of line structure light based on confocal microscopy

    NASA Astrophysics Data System (ADS)

    Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen

    2009-11-01

    In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.

  18. Application of real-time single camera SLAM technology for image-guided targeting in neurosurgery

    NASA Astrophysics Data System (ADS)

    Chang, Yau-Zen; Hou, Jung-Fu; Tsao, Yi Hsiang; Lee, Shih-Tseng

    2012-10-01

    In this paper, we propose an application of augmented reality technology for targeting tumors or anatomical structures inside the skull. The application is a combination of the technologies of MonoSLAM (Single Camera Simultaneous Localization and Mapping) and computer graphics. A stereo vision system is developed to construct geometric data of human face for registration with CT images. Reliability and accuracy of the application is enhanced by the use of fiduciary markers fixed to the skull. The MonoSLAM keeps track of the current location of the camera with respect to an augmented reality (AR) marker using the extended Kalman filter. The fiduciary markers provide reference when the AR marker is invisible to the camera. Relationship between the markers on the face and the augmented reality marker is obtained by a registration procedure by the stereo vision system and is updated on-line. A commercially available Android based tablet PC equipped with a 320×240 front-facing camera was used for implementation. The system is able to provide a live view of the patient overlaid by the solid models of tumors or anatomical structures, as well as the missing part of the tool inside the skull.

  19. Recent progress in understanding the imaging and metrology using the helium ion microscope

    NASA Astrophysics Data System (ADS)

    Postek, Michael T.; Vladar, Andras E.; Ming, Bin

    2009-05-01

    Nanotechnology is pushing imaging and measurement instrument technology to high levels of required performance. As this continues, new barriers confronting innovation in this field are encountered. Particle beam instrument resolution remains one of these barriers. A new tool for imaging and metrology for nanotechnology is the scanning Helium Ion Microscope (HIM). The HIM is a new approach to imaging and metrology for nanotechnology which may be able to push this barrier lower. As a new methodology, it is just beginning to show promise and the number of potentially advantageous applications for nanotechnology and nanometrology has yet to be fully exploited. This presentation will discuss some of the progress made at NIST in collaboration with the manufacturing community in understanding the imaging and metrology for this new technology.

  20. Spectral-spatial classification using tensor modeling for cancer detection with hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Halig, Luma; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2014-03-01

    As an emerging technology, hyperspectral imaging (HSI) combines both the chemical specificity of spectroscopy and the spatial resolution of imaging, which may provide a non-invasive tool for cancer detection and diagnosis. Early detection of malignant lesions could improve both survival and quality of life of cancer patients. In this paper, we introduce a tensor-based computation and modeling framework for the analysis of hyperspectral images to detect head and neck cancer. The proposed classification method can distinguish between malignant tissue and healthy tissue with an average sensitivity of 96.97% and an average specificity of 91.42% in tumor-bearing mice. The hyperspectral imaging and classification technology has been demonstrated in animal models and can have many potential applications in cancer research and management.

  1. The application of surgical navigation system using optical molecular imaging technology in orthotopic breast cancer and metastasis studies

    NASA Astrophysics Data System (ADS)

    Chi, Chongwei; Zhang, Qian; Kou, Deqiang; Ye, Jinzuo; Mao, Yamin; Qiu, Jingdan; Wang, Jiandong; Yang, Xin; Du, Yang; Tian, Jie

    2014-02-01

    Currently, it has been an international focus on intraoperative precise positioning and accurate resection of tumor and metastases. The methods such as X-rays, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role in preoperative accurate diagnosis. However, most of them are inapplicable for intraoperative surgery. We have proposed a surgical navigation system based on optical molecular imaging technology for intraoperative detection of tumors and metastasis. This system collects images from two CCD cameras for real-time fluorescent and color imaging. For image processing, the template matching algorithm is used for multispectral image fusion. For the application of tumor detection, the mouse breast cancer cell line 4T1-luc, which shows highly metastasis, was used for tumor model establishment and a model of matrix metalloproteinase (MMP) expressing breast cancer. The tumor-bearing nude mice were given tail vein injection of MMP 750FAST (PerkinElmer, Inc. USA) probe and imaged with both bioluminescence and fluorescence to assess in vivo binding of the probe to the tumor and metastases sites. Hematoxylin and eosin (H&E) staining was performed to confirm the presence of tumor and metastasis. As a result, one tumor can be observed visually in vivo. However liver metastasis has been detected under surgical navigation system and all were confirmed by histology. This approach helps surgeons to find orthotopic tumors and metastasis during intraoperative resection and visualize tumor borders for precise positioning. Further investigation is needed for future application in clinics.

  2. Imaging flow cytometry for phytoplankton analysis.

    PubMed

    Dashkova, Veronika; Malashenkov, Dmitry; Poulton, Nicole; Vorobjev, Ivan; Barteneva, Natasha S

    2017-01-01

    This review highlights the concepts and instrumentation of imaging flow cytometry technology and in particular its use for phytoplankton analysis. Imaging flow cytometry, a hybrid technology combining speed and statistical capabilities of flow cytometry with imaging features of microscopy, is rapidly advancing as a cell imaging platform that overcomes many of the limitations of current techniques and contributed significantly to the advancement of phytoplankton analysis in recent years. This review presents the various instrumentation relevant to the field and currently used for assessment of complex phytoplankton communities' composition and abundance, size structure determination, biovolume estimation, detection of harmful algal bloom species, evaluation of viability and metabolic activity and other applications. Also we present our data on viability and metabolic assessment of Aphanizomenon sp. cyanobacteria using Imagestream X Mark II imaging cytometer. Herein, we highlight the immense potential of imaging flow cytometry for microalgal research, but also discuss limitations and future developments. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. THz time-domain spectroscopy imaging for mail inspection

    NASA Astrophysics Data System (ADS)

    Zhang, Liquan; Wang, Zhongdong; Ma, Yanmei; Hao, Erjuan

    2011-08-01

    Acquiring messages from the mail but not destroying the envelope is a big challenge in the war of intelligence. If one can read the message of the mail when the envelope is closed, he will benefit from the message asymmetry and be on a good wicket in the competition. In this paper, we presented a transmitted imaging system using THz time-domain spectroscopy technology. We applied the system to image the mail inside an envelope by step-scanning imaging technology. The experimental results show that the THz spectroscopy can image the mail in an envelope. The words in the paper can be identified easily from the background. We also present the THz image of a metal blade in the envelope, in which we can see the metal blade clearly. The results show that it is feasible of THz Time-Domain Spectroscopy Imaging for mail inspection applications.

  4. Emerging fiber optic endomicroscopy technologies towards noninvasive real-time visualization of histology in situ

    NASA Astrophysics Data System (ADS)

    Xi, Jiefeng; Zhang, Yuying; Huo, Li; Chen, Yongping; Jabbour, Toufic; Li, Ming-Jun; Li, Xingde

    2010-09-01

    This paper reviews our recent developments of ultrathin fiber-optic endomicroscopy technologies for transforming high-resolution noninvasive optical imaging techniques to in vivo and clinical applications such as early disease detection and guidance of interventions. Specifically we describe an all-fiber-optic scanning endomicroscopy technology, which miniaturizes a conventional bench-top scanning laser microscope down to a flexible fiber-optic probe of a small footprint (i.e. ~2-2.5 mm in diameter), capable of performing two-photon fluorescence and second harmonic generation microscopy in real time. This technology aims to enable realtime visualization of histology in situ without the need for tissue removal. We will also present a balloon OCT endoscopy technology which permits high-resolution 3D imaging of the entire esophagus for detection of neoplasia, guidance of biopsy and assessment of therapeutic outcome. In addition we will discuss the development of functional polymeric fluorescent nanocapsules, which use only FAD approved materials and potentially enable fast track clinical translation of optical molecular imaging and targeted therapy.

  5. Real-time optical fiber digital speckle pattern interferometry for industrial applications

    NASA Astrophysics Data System (ADS)

    Chan, Robert K.; Cheung, Y. M.; Lo, C. H.; Tam, T. K.

    1997-03-01

    There is current interest, especially in the industrial sector, to use the digital speckle pattern interferometry (DSPI) technique to measure surface stress. Indeed, many publications in the subject are evident of the growing interests in the field. However, to bring the technology to industrial use requires the integration of several emerging technologies, viz. optics, feedback control, electronics, imaging processing and digital signal processing. Due to the highly interdisciplinary nature of the technique, successful implementation and development require expertise in all of the fields. At Baptist University, under the funding of a major industrial grant, we are developing the technology for the industrial sector. Our system fully exploits optical fibers and diode lasers in the design to enable practical and rugged systems suited for industrial applications. Besides the development in optics, we have broken away from the reliance of a microcomputer PC platform for both image capture and processing, and have developed a digital signal processing array system that can handle simultaneous and independent image capture/processing with feedback control. The system, named CASPA for 'cascadable architecture signal processing array,' is a third generation development system that utilizes up to 7 digital signal processors has proved to be a very powerful system. With our CASPA we are now in a better position to developing novel optical measurement systems for industrial application that may require different measurement systems to operate concurrently and requiring information exchange between the systems. Applications in mind such as simultaneous in-plane and out-of-plane DSPI image capture/process, vibrational analysis with interactive DSPI and phase shifting control of optical systems are a few good examples of the potentials.

  6. Moon Technology for Skin Care

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Estee Lauder uses digital image analyzer and software based on NASA lunar research in evaluation of cosmetic products for skincare. Digital image processing brings out subtleties otherwise undetectable, and allows better determination of product's effectiveness. Technique allows Estee Lauder to quantify changes in skin surface form and structure caused by application of cosmetic preparations.

  7. Line-scan hyperspectral imaging platform for agro-food safety and quality evaluation: System enhancement and characterization

    USDA-ARS?s Scientific Manuscript database

    Line-scan-based hyperspectral imaging techniques have often served as a research tool to develop rapid multispectral methods based on only a few spectral bands for rapid online applications. With continuing technological advances and greater accessibility to and availability of optoelectronic imagin...

  8. Application of Image Intensifier Technology to the Military, Scientific, Industrial, Educational, and Medical Communities.

    DTIC Science & Technology

    1980-05-30

    afflicted with Retinitis Pigmentosa , commonly called night blindness. People who suffer from this are virtually blind in absence of normal room light...image intensification 5. Low light ophthalmological surgery 6. Retinitis Pigmentosa patients 7. Mine rescue and first aid 8. TV microscopy 9

  9. Panoramic thermal imaging: challenges and tradeoffs

    NASA Astrophysics Data System (ADS)

    Aburmad, Shimon

    2014-06-01

    Over the past decade, we have witnessed a growing demand for electro-optical systems that can provide continuous 3600 coverage. Applications such as perimeter security, autonomous vehicles, and military warning systems are a few of the most common applications for panoramic imaging. There are several different technological approaches for achieving panoramic imaging. Solutions based on rotating elements do not provide continuous coverage as there is a time lag between updates. Continuous panoramic solutions either use "stitched" images from multiple adjacent sensors, or sophisticated optical designs which warp a panoramic view onto a single sensor. When dealing with panoramic imaging in the visible spectrum, high volume production and advancement of semiconductor technology has enabled the use of CMOS/CCD image sensors with a huge number of pixels, small pixel dimensions, and low cost devices. However, in the infrared spectrum, the growth of detector pixel counts, pixel size reduction, and cost reduction is taking place at a slower rate due to the complexity of the technology and limitations caused by the laws of physics. In this work, we will explore the challenges involved in achieving 3600 panoramic thermal imaging, and will analyze aspects such as spatial resolution, FOV, data complexity, FPA utilization, system complexity, coverage and cost of the different solutions. We will provide illustrations, calculations, and tradeoffs between three solutions evaluated by Opgal: A unique 3600 lens design using an LWIR XGA detector, stitching of three adjacent LWIR sensors equipped with a low distortion 1200 lens, and a fisheye lens with a HFOV of 180º and an XGA sensor.

  10. The design and application of a multi-band IR imager

    NASA Astrophysics Data System (ADS)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  11. Tissue Engineering Applications of Three-Dimensional Bioprinting.

    PubMed

    Zhang, Xiaoying; Zhang, Yangde

    2015-07-01

    Recent advances in tissue engineering have adapted the additive manufacturing technology, also known as three-dimensional printing, which is used in several industrial applications, for the fabrication of bioscaffolds and viable tissue and/or organs to overcome the limitations of other in vitro conventional methods. 3D bioprinting technology has gained enormous attention as it enabled 3D printing of a multitude of biocompatible materials, different types of cells and other supporting growth factors into complex functional living tissues in a 3D format. A major advantage of this technology is its ability for simultaneously 3D printing various cell types in defined spatial locations, which makes this technology applicable to regenerative medicine to meet the need for suitable for transplantation suitable organs and tissues. 3D bioprinting is yet to successfully overcome the many challenges related to building 3D structures that closely resemble native organs and tissues, which are complex structures with defined microarchitecture and a variety of cell types in a confined area. An integrated approach with a combination of technologies from the fields of engineering, biomaterials science, cell biology, physics, and medicine is required to address these complexities. Meeting this challenge is being made possible by directing the 3D bioprinting to manufacture biomimetic-shaped 3D structures, using organ/tissue images, obtained from magnetic resonance imaging and computerized tomography, and employing computer-aided design and manufacturing technologies. Applications of 3D bioprinting include the generation of multilayered skin, bone, vascular grafts, heart valves, etc. The current 3D bioprinting technologies need to be improved with respect to the mechanical strength and integrity in the manufactured constructs as the presently used biomaterials are not of optimal viscosity. A better understanding of the tissue/organ microenvironment, which consists of multiple types of cells, is imperative for successful 3D bioprinting.

  12. Taking digital imaging to the next level: challenges and opportunities.

    PubMed

    Hobbs, W Cecyl

    2004-01-01

    New medical imaging technology, such as multi-detector computed tomography (CT) scanners and positron emission tomography (PET) scanners, are creating new possibilities for non-invasive diagnosis that are leading providers to invest heavily in these new technologies. The volume of data produced by such technology is so large that it cannot be "read" using traditional film-based methods, and once in digital form, it creates a massive data integration and archiving challenge. Despite the benefits of digital imaging and archiving, there are several key challenges that healthcare organizations should consider in planning, selecting, and implementing the information technology (IT) infrastructure to support digital imaging. Decisions about storage and image distribution are essentially questions of "where" and "how fast." When planning the digital archiving infrastructure, organizations should think about where they want to store and distribute their images. This is similar to decisions that organizations have to make in regard to physical film storage and distribution, except the portability of images is even greater in a digital environment. The principle of "network effects" seems like a simple concept, yet the effect is not always considered when implementing a technology plan. To fully realize the benefits of digital imaging, the radiology department must integrate the archiving solutions throughout the department and, ultimately, with applications across other departments and enterprises. Medical institutions can derive a number of benefits from implementing digital imaging and archiving solutions like PACS. Hospitals and imaging centers can use the transition from film-based imaging as a foundational opportunity to reduce costs, increase competitive advantage, attract talent, and improve service to patients. The key factors in achieving these goals include attention to the means of data storage, distribution and protection.

  13. A Convex Formulation for Magnetic Particle Imaging X-Space Reconstruction.

    PubMed

    Konkle, Justin J; Goodwill, Patrick W; Hensley, Daniel W; Orendorff, Ryan D; Lustig, Michael; Conolly, Steven M

    2015-01-01

    Magnetic Particle Imaging (mpi) is an emerging imaging modality with exceptional promise for clinical applications in rapid angiography, cell therapy tracking, cancer imaging, and inflammation imaging. Recent publications have demonstrated quantitative mpi across rat sized fields of view with x-space reconstruction methods. Critical to any medical imaging technology is the reliability and accuracy of image reconstruction. Because the average value of the mpi signal is lost during direct-feedthrough signal filtering, mpi reconstruction algorithms must recover this zero-frequency value. Prior x-space mpi recovery techniques were limited to 1d approaches which could introduce artifacts when reconstructing a 3d image. In this paper, we formulate x-space reconstruction as a 3d convex optimization problem and apply robust a priori knowledge of image smoothness and non-negativity to reduce non-physical banding and haze artifacts. We conclude with a discussion of the powerful extensibility of the presented formulation for future applications.

  14. Dosimetry in radiotherapy using a-Si EPIDs: Systems, methods, and applications focusing on 3D patient dose estimation

    NASA Astrophysics Data System (ADS)

    McCurdy, B. M. C.

    2013-06-01

    An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.

  15. Simultaneous in vivo positron emission tomography and magnetic resonance imaging.

    PubMed

    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R

    2008-03-11

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.

  16. Hyperspectral imaging for non-contact analysis of forensic traces.

    PubMed

    Edelman, G J; Gaston, E; van Leeuwen, T G; Cullen, P J; Aalders, M C G

    2012-11-30

    Hyperspectral imaging (HSI) integrates conventional imaging and spectroscopy, to obtain both spatial and spectral information from a specimen. This technique enables investigators to analyze the chemical composition of traces and simultaneously visualize their spatial distribution. HSI offers significant potential for the detection, visualization, identification and age estimation of forensic traces. The rapid, non-destructive and non-contact features of HSI mark its suitability as an analytical tool for forensic science. This paper provides an overview of the principles, instrumentation and analytical techniques involved in hyperspectral imaging. We describe recent advances in HSI technology motivating forensic science applications, e.g. the development of portable and fast image acquisition systems. Reported forensic science applications are reviewed. Challenges are addressed, such as the analysis of traces on backgrounds encountered in casework, concluded by a summary of possible future applications. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Positron Emission Tomography: Principles, Technology, and Recent Developments

    NASA Astrophysics Data System (ADS)

    Ziegler, Sibylle I.

    2005-04-01

    Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.

  18. An Overview of the Technological and Scientific Achievements of the Terahertz

    NASA Astrophysics Data System (ADS)

    Rostami, Ali; Rasooli, Hassan; Baghban, Hamed

    2011-01-01

    Due to the importance of terahertz radiation in the past several years in spectroscopy, astrophysics, and imaging techniques namely for biomedical applications (its low interference and non-ionizing characteristics, has been made to be a good candidate to be used as a powerful technique for safe, in vivo medical imaging), we decided to review of the terahertz technology and its associated science achievements. The review consists of terahertz terminology, different applications, and main components which are used for detection and generation of terahertz radiation. Also a brief theoretical study of generation and detection of terahertz pulses will be considered. Finally, the chapter will be ended by providing the usage of organic materials for generation and detection of terahertz radiation.

  19. Design of a Borescope for Extravehicular Non-Destructive Applications

    NASA Technical Reports Server (NTRS)

    Bachnak, Rafic

    2003-01-01

    Anomalies such as corrosion, structural damage, misalignment, cracking, stress fiactures, pitting, or wear can be detected and monitored by the aid of a borescope. A borescope requires a source of light for proper operation. Today s current lighting technology market consists of incandescent lamps, fluorescent lamps and other types of electric arc and electric discharge vapor lamp. Recent advances in LED technology have made LEDs viable for a number of applications, including vehicle stoplights, traffic lights, machine-vision-inspection, illumination, and street signs. LEDs promise significant reduction in power consumption compared to other sources of light. This project focused on comparing images taken by the Olympus IPLEX, using two different light sources. One of the sources is the 50-W internal metal halide lamp and the other is a 1 W LED placed at the tip of the insertion tube. Images acquired using these two light sources were quantitatively compared using their histogram, intensity profile along a line segment, and edge detection. Also, images were qualitatively compared using image registration and transformation [l]. The gray-level histogram, edge detection, image profile and image registration do not offer conclusive results. The LED light source, however, produces good images for visual inspection by an operator. Analysis using pattern recognition using Eigenfaces and Gaussian Pyramid in face recognition may be more useful.

  20. Sapc - Application for Adapting Scanned Analogue Photographs to Use Them in Structure from Motion Technology

    NASA Astrophysics Data System (ADS)

    Salach, A.

    2017-05-01

    The documentary value of analogue scanned photographs is invaluable. A large and rich collection of archival photographs is often the only source of information about past of the selected area. This paper presents a method of adaptation of scanned, analogue photographs to suitable form allowing to use them in Structure from Motion technology. For this purpose, an automatic algorithm, implemented in the application called SAPC (Scanned Aerial Photographs Correction), which transforms scans to a form, which characteristic similar to the images captured by a digital camera, was invented. Images, which are created in the applied program as output data, are characterized by the same principal point position in each photo and the same resolution through cutting out the black photo frame. Additionally, SAPC generates a binary image file, which can mask areas of fiducial marks. In the experimental section, scanned, analogue photographs of Warsaw, which had been captured in 1986, were used in two variants: unprocessed and processed in SAPC application. An insightful analysis was conducted on the influence of transformation in SAPC on quality of spatial orientation of photographs. Block adjustment through aerial triangulation was calculated using two SfM software products: Agisoft PhotoScan and Pix4d and their results were compared with results obtained from professional photogrammetric software - Trimble Inpho. The author concluded that pre-processing in SAPC application had a positive impact on a quality of block orientation of scanned, analogue photographs, using SfM technology.

  1. NanoLuc: A Small Luciferase is Brightening up the Field of Bioluminescence

    PubMed Central

    Cai, Weibo

    2016-01-01

    The biomedical field has greatly benefited from the discovery of bioluminescent proteins. Currently, scientists employ bioluminescent systems for numerous biomedical applications, ranging from highly sensitive cellular assays to bioluminescence-based molecular imaging. Traditionally, these systems are based on Firefly and Renilla luciferases; however, the applicability of these enzymes is limited by their size, stability, and luminescence efficiency. NanoLuc (NLuc), a novel bioluminescence platform, offers several advantages over established systems, including enhanced stability, smaller size, and >150-fold increase in luminescence. In addition, the substrate for NLuc displays enhanced stability and lower background activity, opening up new possibilities in the field of bioluminescence imaging. The NLuc system is incredibly versatile and may be utilized for a wide array of applications. The increased sensitivity, high stability, and small size of the NLuc system have the potential to drastically change the field of reporter assays in the future. However, as with all such technology, NLuc has limitations (including a non-ideal emission for in vivo applications and its unique substrate) which may cause it to find restricted use in certain areas of molecular biology. As this unique technology continues to broaden, NLuc may have a significant impact in both preclinical and clinical fields, with potential roles in disease detection, molecular imaging, and therapeutic monitoring. This review will present the NLuc technology to the scientific community in a non-biased manner, allowing the audience to adopt their own views of this novel system. PMID:27045664

  2. Surprising Beauty in Technical Photography

    ERIC Educational Resources Information Center

    Davidhazy, Andrew

    2009-01-01

    The Imaging and Photographic Technology area, in which the author teaches, is an applications- and technology-oriented photography program designed to prepare students for work in technical, corporate, industrial, and scientific environments. One day, the author received an e-mail message from an editor who had found his Web site and thought he…

  3. Dance Technology. Current Applications and Future Trends.

    ERIC Educational Resources Information Center

    Gray, Judith A., Ed.

    Original research is reported on image digitizing, robot choreography, movement analysis, databases for dance, computerized dance notation, and computerized lightboards for dance performance. Articles in this publication are as follows: (1) "The Evolution of Dance Technology" (Judith A. Gray); (2) "Toward a Language for Human Movement" (Thomas W.…

  4. Improving physics education in radiology.

    PubMed

    Hendee, William R

    2007-08-01

    Concern is growing that the physics education of radiologists is flawed and that without knowledge of physics principles and applications, mastery of the technology of medical imaging is impaired. Furthermore, it is proposed that a mastery of imaging technology is necessary to perfect the clinical acumen of radiologists and to preserve the quality, safety, and cost-effectiveness of imaging procedures. These issues were the focus of a multiorganizational educational summit on physics education of radiologists held in January 2006 in Atlanta. Recommendations for improving the physics education and knowledge of radiologists that evolved from this summit are presented here, together with progress made to date on their fulfillment.

  5. Mass Spectrometry Imaging, an Emerging Technology in Neuropsychopharmacology

    PubMed Central

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience. PMID:23966069

  6. Mass spectrometry imaging, an emerging technology in neuropsychopharmacology.

    PubMed

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience.

  7. New solutions and applications of 3D computer tomography image processing

    NASA Astrophysics Data System (ADS)

    Effenberger, Ira; Kroll, Julia; Verl, Alexander

    2008-02-01

    As nowadays the industry aims at fast and high quality product development and manufacturing processes a modern and efficient quality inspection is essential. Compared to conventional measurement technologies, industrial computer tomography (CT) is a non-destructive technology for 3D-image data acquisition which helps to overcome their disadvantages by offering the possibility to scan complex parts with all outer and inner geometric features. In this paper new and optimized methods for 3D image processing, including innovative ways of surface reconstruction and automatic geometric feature detection of complex components, are presented, especially our work of developing smart online data processing and data handling methods, with an integrated intelligent online mesh reduction. Hereby the processing of huge and high resolution data sets is guaranteed. Besides, new approaches for surface reconstruction and segmentation based on statistical methods are demonstrated. On the extracted 3D point cloud or surface triangulation automated and precise algorithms for geometric inspection are deployed. All algorithms are applied to different real data sets generated by computer tomography in order to demonstrate the capabilities of the new tools. Since CT is an emerging technology for non-destructive testing and inspection more and more industrial application fields will use and profit from this new technology.

  8. In vivo preclinical cancer and tissue engineering applications of absolute oxygen imaging using pulse EPR

    NASA Astrophysics Data System (ADS)

    Epel, Boris; Kotecha, Mrignayani; Halpern, Howard J.

    2017-07-01

    The value of any measurement and a fortiori any measurement technology is defined by the reproducibility and the accuracy of the measurements. This implies a relative freedom of the measurement from factors confounding its accuracy. In the past, one of the reasons for the loss of focus on the importance of imaging oxygen in vivo was the difficulty in obtaining reproducible oxygen or pO2 images free from confounding variation. This review will briefly consider principles of electron paramagnetic oxygen imaging and describe how it achieves absolute oxygen measurements. We will provide a summary review of the progress in biomedical EPR imaging, predominantly in cancer biology research, discuss EPR oxygen imaging for cancer treatment and tissue graft assessment for regenerative medicine applications.

  9. Magnetic nanoparticles as contrast agents for molecular imaging in medicine

    NASA Astrophysics Data System (ADS)

    O'Donnell, Matthew

    2018-05-01

    For over twenty years, superparamagnetic nanoparticles have been developed for a number of medical applications ranging from bioseparations, magnetic drug targeting, hyperthermia and imaging. Recent studies have shown that they can be functionalized for in vivo biological targeting, potentially enabling nanoagents for molecular imaging and site-localized drug delivery. Here we review several imaging technologies developed using functionalized superparamagnetic iron oxide nanoparticles (SPIONs) as targeted molecular agents. Several imaging modalities have exploited the large induced magnetic moment of SPIONs to create local mechanical force. Magnetic force microscopy can probe nanoparticle uptake in single cells. For in vivo applications, magnetomotive modulation of primary images in ultrasound (US), photoacoustics (PA), and optical coherence tomography (OCT) can help identify very small concentrations of nanoagents while simultaneously suppressing intrinsic background signals from tissue.

  10. Aptamer-Targeted Magnetic Resonance Imaging Contrast Agents and Their Applications.

    PubMed

    Zhang, Yajie; Zhang, Tingting; Liu, Min; Kuang, Ye; Zu, Guangyue; Zhang, Kunchi; Cao, Yi; Pei, Renjun

    2018-06-01

    Magnetic resonance imaging is a powerful diagnostic technology with high spatial resolution and non-invasion. The contrast agents have significant effect on the resolution of the MR imaging. However, the commercial contrast agents (CAs) usually consist of individual Gd3+ chelated with a low molecular weight acyclic or cyclic ligand, and these small-molecule CAs are usually subjected to nonspecificity, thus leading to rapid renal clearance and modest contrast enhancement for tumor imaging. In recent years, the nanostructured materials conjugated with aptamers were widely used and opened a new door in biomedical imaging due to excellent specificity, non-immunogenicity, easily synthesis and chemical modification of aptamers. This review summarizes all kinds of aptamertargeted MRI CAs and their applications.

  11. Recent developments in photodetection for medical applications

    NASA Astrophysics Data System (ADS)

    Llosá, Gabriela

    2015-07-01

    The use of the most advanced technology in medical imaging results in the development of high performance detectors that can significantly improve the performance of the medical devices employed in hospitals. Scintillator crystals coupled to photodetectors remain to be essential detectors in terms of performance and cost for medical imaging applications in different imaging modalities. Recent advances in photodetectors result in an increase of the performance of the medical scanners. Solid state detectors can provide substantial performance improvement, but are more complex to integrate into clinical detectors due mainly to their higher cost. Solid state photodetectors (APDs, SiPMs) have made new detector concepts possible and have led to improvements in different imaging modalities. Recent advances in detectors for medical imaging are revised.

  12. Simulation of millimeter-wave body images and its application to biometric recognition

    NASA Astrophysics Data System (ADS)

    Moreno-Moreno, Miriam; Fierrez, Julian; Vera-Rodriguez, Ruben; Parron, Josep

    2012-06-01

    One of the emerging applications of the millimeter-wave imaging technology is its use in biometric recognition. This is mainly due to some properties of the millimeter-waves such as their ability to penetrate through clothing and other occlusions, their low obtrusiveness when collecting the image and the fact that they are harmless to health. In this work we first describe the generation of a database comprising 1200 synthetic images at 94 GHz obtained from the body of 50 people. Then we extract a small set of distance-based features from each image and select the best feature subsets for person recognition using the SFFS feature selection algorithm. Finally these features are used in body geometry authentication obtaining promising results.

  13. The use of a computed tomographic application for mobile devices in the diagnosis of oral and maxillofacial surgery.

    PubMed

    Aoki, Eduardo Massaharu; Cortes, Arthur Rodriguez Gonzalez; Arita, Emiko Saito

    2015-01-01

    The aim of the current technical report was to introduce a computed tomographic (CT) application for mobile devices as a diagnostic tool for analyzing CT images. An iPad and an iPhone (Apple, Cuppertino, CA) were used to navigate through multiplanar reconstructions of cone beam CT scans, using an application derived from the OsiriX CT software. Tools and advantages of this method were recorded. In addition, images rendered in the iPad were manipulated during dental implant placement and grafting procedures to follow up and confirm the implant digital planning in real time. The study population consisted of 10 patients. In all cases, it was possible to use image manipulation tools, such as changing contrast and brightness, zooming, rotating, panning, performing both linear and area measurements, and analyzing gray-scale values of a region of interest. Furthermore, it was possible to use the OsiriX application in the dental clinic where the study was conducted, to follow-up the analyzed implant placement and grafting procedures at the chairside. The current findings suggest that technological and practical methods to visualize radiographic images are invaluable resources to improve training, teaching, networking, and the performance of real-time follow-up of oral and maxillofacial surgical procedures. This article discusses the advantages and disadvantages of introducing this new technology in the clinical routine.

  14. Coherent imaging at the diffraction limit

    PubMed Central

    Thibault, Pierre; Guizar-Sicairos, Manuel; Menzel, Andreas

    2014-01-01

    X-ray ptychography, a scanning coherent diffractive imaging technique, holds promise for imaging with dose-limited resolution and sensitivity. If the foreseen increase of coherent flux by orders of magnitude can be matched by additional technological and analytical advances, ptychography may approach imaging speeds familiar from full-field methods while retaining its inherently quantitative nature and metrological versatility. Beyond promises of high throughput, spectroscopic applications in three dimensions become feasible, as do measurements of sample dynamics through time-resolved imaging or careful characterization of decoherence effects. PMID:25177990

  15. Coherent imaging at the diffraction limit.

    PubMed

    Thibault, Pierre; Guizar-Sicairos, Manuel; Menzel, Andreas

    2014-09-01

    X-ray ptychography, a scanning coherent diffractive imaging technique, holds promise for imaging with dose-limited resolution and sensitivity. If the foreseen increase of coherent flux by orders of magnitude can be matched by additional technological and analytical advances, ptychography may approach imaging speeds familiar from full-field methods while retaining its inherently quantitative nature and metrological versatility. Beyond promises of high throughput, spectroscopic applications in three dimensions become feasible, as do measurements of sample dynamics through time-resolved imaging or careful characterization of decoherence effects.

  16. Fundamentals of Materials, Techniques, and Instrumentation for OSL and FNTD Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akselrod, M. S.

    The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al{sub 2}O{sub 3}:C as a material of choice for many dosimetric applications. Different aspects of OSL theory, materials optical and dosimetric properties,more » instrumentation, and data processing algorithms are described. The next technological breakthrough was done with Fluorescent Nuclear Track Detectors (FNTD) that have some important advantages in measuring fast neutron and high energy heavy charge particles that have become the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology are discussed with regard to application in mixed neutron-gamma fields, medical dosimetry and radiobiological research.« less

  17. Fundamentals of Materials, Techniques, and Instrumentation for OSL and FNTD Dosimetry

    NASA Astrophysics Data System (ADS)

    Akselrod, M. S.

    2011-05-01

    The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al2O3:C as a material of choice for many dosimetric applications. Different aspects of OSL theory, materials optical and dosimetric properties, instrumentation, and data processing algorithms are described. The next technological breakthrough was done with Fluorescent Nuclear Track Detectors (FNTD) that have some important advantages in measuring fast neutron and high energy heavy charge particles that have become the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology are discussed with regard to application in mixed neutron-gamma fields, medical dosimetry and radiobiological research.

  18. [A skin cell segregating control system based on PC].

    PubMed

    Liu, Wen-zhong; Zhou, Ming; Zhang, Hong-bing

    2005-11-01

    A skin cell segregating control system based on PC (personal computer) is presented in this paper. Its front controller is a single-chip microcomputer which enables the manipulation for 6 patients simultaneously, and thus provides a great convenience for clinical treatments for vitiligo. With the use of serial port communication technology, it's possible to monitor and control the front controller in a PC terminal. And the application of computer image acquisition technology realizes the synchronous acquisition of pathologic shin cell images pre/after the operation and a case history. Clinical tests prove its conformity with national standards and the pre-set technological requirements.

  19. BCB Bonding Technology of Back-Side Illuminated COMS Device

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Jiang, G. Q.; Jia, S. X.; Shi, Y. M.

    2018-03-01

    Back-side illuminated CMOS(BSI) sensor is a key device in spaceborne hyperspectral imaging technology. Compared with traditional devices, the path of incident light is simplified and the spectral response is planarized by BSI sensors, which meets the requirements of quantitative hyperspectral imaging applications. Wafer bonding is the basic technology and key process of the fabrication of BSI sensors. 6 inch bonding of CMOS wafer and glass wafer was fabricated based on the low bonding temperature and high stability of BCB. The influence of different thickness of BCB on bonding strength was studied. Wafer bonding with high strength, high stability and no bubbles was fabricated by changing bonding conditions.

  20. Experimental study of an off-axis three mirror anastigmatic system with wavefront coding technology.

    PubMed

    Yan, Feng; Tao, Xiaoping

    2012-04-10

    Wavefront coding (WFC) is a kind of computational imaging technique that controls defocus and defocus related aberrations of optical systems by introducing a specially designed phase distribution to the pupil function. This technology has been applied in many imaging systems to improve performance and/or reduce cost. The application of WFC technology in an off-axis three mirror anastigmatic (TMA) system has been proposed, and the design and optimization of optics, the restoration of degraded images, and the manufacturing of wavefront coded elements have been researched in our previous work. In this paper, we describe the alignment, the imaging experiment, and the image restoration of the off-axis TMA system with WFC technology. The ideal wavefront map is set to be the system error of the interferometer to simplify the assembly, and the coefficients of certain Zernike polynomials are monitored to verify the result in the alignment process. A pinhole of 20 μm diameter and the third plate of WT1005-62 resolution patterns are selected as the targets in the imaging experiment. The comparison of the tail lengths of point spread functions is represented to show the invariance of the image quality in the extended depth of focus. The structure similarity is applied to estimate the relationship among the captured images with varying defocus. We conclude that the experiment results agree with the earlier theoretical analysis.

  1. Machine Learning and Radiology

    PubMed Central

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  2. Magnetic Levitation Coupled with Portable Imaging and Analysis for Disease Diagnostics.

    PubMed

    Knowlton, Stephanie M; Yenilmez, Bekir; Amin, Reza; Tasoglu, Savas

    2017-02-19

    Currently, many clinical diagnostic procedures are complex, costly, inefficient, and inaccessible to a large population in the world. The requirements for specialized equipment and trained personnel require that many diagnostic tests be performed at remote, centralized clinical laboratories. Magnetic levitation is a simple yet powerful technique and can be applied to levitate cells, which are suspended in a paramagnetic solution and placed in a magnetic field, at a position determined by equilibrium between a magnetic force and a buoyancy force. Here, we present a versatile platform technology designed for point-of-care diagnostics which uses magnetic levitation coupled to microscopic imaging and automated analysis to determine the density distribution of a patient's cells as a useful diagnostic indicator. We present two platforms operating on this principle: (i) a smartphone-compatible version of the technology, where the built-in smartphone camera is used to image cells in the magnetic field and a smartphone application processes the images and to measures the density distribution of the cells and (ii) a self-contained version where a camera board is used to capture images and an embedded processing unit with attached thin-film-transistor (TFT) screen measures and displays the results. Demonstrated applications include: (i) measuring the altered distribution of a cell population with a disease phenotype compared to a healthy phenotype, which is applied to sickle cell disease diagnosis, and (ii) separation of different cell types based on their characteristic densities, which is applied to separate white blood cells from red blood cells for white blood cell cytometry. These applications, as well as future extensions of the essential density-based measurements enabled by this portable, user-friendly platform technology, will significantly enhance disease diagnostic capabilities at the point of care.

  3. Optical imaging of architecture and function in the living brain sheds new light on cortical mechanisms underlying visual perception.

    PubMed

    Grinvald, A

    1992-01-01

    Long standing questions related to brain mechanisms underlying perception can finally be resolved by direct visualization of the architecture and function of mammalian cortex. This advance has been accomplished with the aid of two optical imaging techniques with which one can literally see how the brain functions. The upbringing of this technology required a multi-disciplinary approach integrating brain research with organic chemistry, spectroscopy, biophysics, computer sciences, optics and image processing. Beyond the technological ramifications, recent research shed new light on cortical mechanisms underlying sensory perception. Clinical applications of this technology for precise mapping of the cortical surface of patients during neurosurgery have begun. Below is a brief summary of our own research and a description of the technical specifications of the two optical imaging techniques. Like every technique, optical imaging also suffers from severe limitations. Here we mostly emphasize some of its advantages relative to all alternative imaging techniques currently in use. The limitations are critically discussed in our recent reviews. For a series of other reviews, see Cohen (1989).

  4. Collaborative learning using Internet2 and remote collections of stereo dissection images.

    PubMed

    Dev, Parvati; Srivastava, Sakti; Senger, Steven

    2006-04-01

    We have investigated collaborative learning of anatomy over Internet2, using an application called remote stereo viewer (RSV). This application offers a unique method of teaching anatomy, using high-resolution stereoscopic images, in a client-server architecture. Rotated sequences of stereo image pairs were produced by volumetric rendering of the Visible female and by dissecting and photographing a cadaveric hand. A client-server application (RSV) was created to provide access to these image sets, using a highly interactive interface. The RSV system was used to provide a "virtual anatomy" session for students in the Stanford Medical School Gross Anatomy course. The RSV application allows both independent and collaborative modes of viewing. The most appealing aspects of the RSV application were the capacity for stereoscopic viewing and the potential to access the content remotely within a flexible temporal framework. The RSV technology, used over Internet2, thus serves as an effective complement to traditional methods of teaching gross anatomy. (c) 2006 Wiley-Liss, Inc.

  5. Matrix-Assisted Laser Desorption Ionization Imaging Mass Spectrometry: In Situ Molecular Mapping

    PubMed Central

    Angel, Peggi M.; Caprioli, Richard M.

    2013-01-01

    Matrix-assisted laser desorption ionization imaging mass spectrometry (IMS) is a relatively new imaging modality that allows mapping of a wide range of biomolecules within a thin tissue section. The technology uses a laser beam to directly desorb and ionize molecules from discrete locations on the tissue that are subsequently recorded in a mass spectrometer. IMS is distinguished by the ability to directly measure molecules in situ ranging from small metabolites to proteins, reporting hundreds to thousands of expression patterns from a single imaging experiment. This article reviews recent advances in IMS technology, applications, and experimental strategies that allow it to significantly aid in the discovery and understanding of molecular processes in biological and clinical samples. PMID:23259809

  6. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.

    PubMed

    Dazzi, Alexandre; Prater, Craig B

    2016-12-13

    Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.

  7. Nucleic Acid-Based Nanodevices in Biological Imaging.

    PubMed

    Chakraborty, Kasturi; Veetil, Aneesh T; Jaffrey, Samie R; Krishnan, Yamuna

    2016-06-02

    The nanoscale engineering of nucleic acids has led to exciting molecular technologies for high-end biological imaging. The predictable base pairing, high programmability, and superior new chemical and biological methods used to access nucleic acids with diverse lengths and in high purity, coupled with computational tools for their design, have allowed the creation of a stunning diversity of nucleic acid-based nanodevices. Given their biological origin, such synthetic devices have a tremendous capacity to interface with the biological world, and this capacity lies at the heart of several nucleic acid-based technologies that are finding applications in biological systems. We discuss these diverse applications and emphasize the advantage, in terms of physicochemical properties, that the nucleic acid scaffold brings to these contexts. As our ability to engineer this versatile scaffold increases, its applications in structural, cellular, and organismal biology are clearly poised to massively expand.

  8. The Research on Application of Information Technology in sports Stadiums

    NASA Astrophysics Data System (ADS)

    Can, Han; Lu, Ma; Gan, Luying

    With the Olympic glory in the national fitness program planning and the smooth development of China, the public's concern for the sport continues to grow, while their physical health is also increasingly fervent desired, the country launched a modern technological construction of sports facilities. Information technology applications in the sports venues in the increasingly wide range of modern venues and facilities, including not only the intelligent application of office automation systems, intelligent systems and sports facilities, communication systems for event management, ticket access control system, contest information systems, television systems, Command and Control System, but also in action including the use of computer technology, image analysis, computer-aided training athletes, sports training system and related data entry systems, decision support systems.Using documentary data method, this paper focuses on the research on application of information technology in Sports Stadiums, and try to explore its future trends.With a view to promote the growth of China's national economyand,so as to improve the students'quality and promote the cause of Chinese sports.

  9. Photo acoustic imaging: technology, systems and market trends

    NASA Astrophysics Data System (ADS)

    Faucheux, Marc; d'Humières, Benoît; Cochard, Jacques

    2017-03-01

    Although the Photo Acoustic effect was observed by Graham Bell in 1880, the first applications (gas analysis) occurred in 1970's using the required energetic light pulses from lasers. During mid 1990's medical imaging research begun to use Photo Acoustic effect and in vivo images were obtained in mid-2000. Since 2009, the number of patent related to Photo Acoustic Imaging (PAI) has dramatically increased. PAI machines for pre-clinical and small animal imaging have been being used in a routine way for several years. Based on its very interesting features (non-ionizing radiation, noninvasive, high depth resolution ratio, scalability, moderate price) and because it is able to deliver not only anatomical, but functional and molecular information, PAI is a very promising clinical imaging modality. It penetrates deeper into tissue than OCT (Optical Coherence Tomography) and provides a higher resolution than ultrasounds. The PAI is one of the most growing imaging modality and some innovative clinical systems are planned to be on market in 2017. Our study analyzes the different approaches such as photoacoustic computed tomography, 3D photoacoustic microscopy, multispectral photoacoustic tomography and endoscopy with the recent and tremendous technological progress over the past decade: advances in image reconstruction algorithms, laser technology, ultrasound detectors and miniaturization. We analyze which medical domains and applications are the most concerned and explain what should be the forthcoming medical system in the near future. We segment the market in four parts: Components and R&D, pre-clinical, analytics, clinical. We analyzed what should be, quantitatively and qualitatively, the PAI medical markets in each segment and its main trends. We point out the market accessibility (patents, regulations, clinical evaluations, clinical acceptance, funding). In conclusion, we explain the main market drivers and challenges to overcome and give a road map for medical approved PAI products.

  10. Microchannel Plate Imaging Detectors for the Ultraviolet

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Gummin, M. A.; Stock, J.; Marsh, D.

    1992-01-01

    There has been significant progress over the last few years in the development of technologies for microchannel plate imaging detectors in the Ultraviolet (UV). Areas where significant developments have occurred include enhancements of quantum detection efficiency through improved photocathodes, advances in microchannel plate performance characteristics, and development of high performance image readout techniques. The current developments in these areas are summarized, with their applications in astrophysical instrumentation.

  11. Image processing of angiograms: A pilot study

    NASA Technical Reports Server (NTRS)

    Larsen, L. E.; Evans, R. A.; Roehm, J. O., Jr.

    1974-01-01

    The technology transfer application this report describes is the result of a pilot study of image-processing methods applied to the image enhancement, coding, and analysis of arteriograms. Angiography is a subspecialty of radiology that employs the introduction of media with high X-ray absorption into arteries in order to study vessel pathology as well as to infer disease of the organs supplied by the vessel in question.

  12. Analysis and Application of an Underwater Optical-Ranging System

    DTIC Science & Technology

    1992-09-01

    sin 20 (3.2) 0 2 2 The direction in which this is maximized or minimized is found by differentiating with respect to 0 and setting to zero _ = 0 (3.3...H.O. Torsen , K. Thoresen, "Laser Imaging Technology for Subsea Inspection: Principles and Applications," IRMI/ROV90 Coiference, November 1990. [6...J.O. Klepsvik, H.O. Torsen , "Recent Advances in Accurate Underwater Mapping and Inspection Techniques," International Ocean Technology Congress, January

  13. Organ motion due to respiration: the state of the art and applications in interventional radiology and radiation oncology

    NASA Astrophysics Data System (ADS)

    Cleary, Kevin R.; Mulcahy, Maureen; Piyasena, Rohan; Zhou, Tong; Dieterich, Sonja; Xu, Sheng; Banovac, Filip; Wong, Kenneth H.

    2005-04-01

    Tracking organ motion due to respiration is important for precision treatments in interventional radiology and radiation oncology, among other areas. In interventional radiology, the ability to track and compensate for organ motion could lead to more precise biopsies for applications such as lung cancer screening. In radiation oncology, image-guided treatment of tumors is becoming technically possible, and the management of organ motion then becomes a major issue. This paper will review the state-of-the-art in respiratory motion and present two related clinical applications. Respiratory motion is an important topic for future work in image-guided surgery and medical robotics. Issues include how organs move due to respiration, how much they move, how the motion can be compensated for, and what clinical applications can benefit from respiratory motion compensation. Technology that can be applied for this purpose is now becoming available, and as that technology evolves, the subject will become an increasingly interesting and clinically valuable topic of research.

  14. Polycrystalline lead selenide: the resurgence of an old infrared detector

    NASA Astrophysics Data System (ADS)

    Vergara, G.; Montojo, M. T.; Torquemada, M. C.; Rodrigo, M. T.; Sánchez, F. J.; Gómez, L. J.; Almazán, R. M.; Verdú, M.; Rodríguez, P.; Villamayor, V.; Álvarez, M.; Diezhandino, J.; Plaza, J.; Catalán, I.

    2007-06-01

    The existing technology for uncooled MWIR photon detectors based on polycrystalline lead salts is stigmatized for being a 50-year-old technology. It has been traditionally relegated to single-element detectors and relatively small linear arrays due to the limitations imposed by its standard manufacture process based on a chemical bath deposition technique (CBD) developed more than 40 years ago. Recently, an innovative method for processing detectors, based on a vapour phase deposition (VPD) technique, has allowed manufacturing the first 2D array of polycrystalline PbSe with good electro optical characteristics. The new method of processing PbSe is an all silicon technology and it is compatible with standard CMOS circuitry. In addition to its affordability, VPD PbSe constitutes a perfect candidate to fill the existing gap in the photonic and uncooled IR imaging detectors sensitive to the MWIR photons. The perspectives opened are numerous and very important, converting the old PbSe detector in a serious alternative to others uncooled technologies in the low cost IR detection market. The number of potential applications is huge, some of them with high commercial impact such as personal IR imagers, enhanced vision systems for automotive applications and other not less important in the security/defence domain such as sensors for active protection systems (APS) or low cost seekers. Despite the fact, unanimously accepted, that uncooled will dominate the majority of the future IR detection applications, today, thermal detectors are the unique plausible alternative. There is plenty of room for photonic uncooled and complementary alternatives are needed. This work allocates polycrystalline PbSe in the current panorama of the uncooled IR detectors, underlining its potentiality in two areas of interest, i.e., very low cost imaging IR detectors and MWIR fast uncooled detectors for security and defence applications. The new method of processing again converts PbSe into an emerging technology.

  15. A New Class of Stable Heptamethine Cyanine Fluorophores and Biomedical Applications Thereof | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute (NCI) have developed an improved class of heptamethine cyanine fluorophore dyes useful for imaging applications in the near-IR range (750-850 nm). A new chemical reaction has been developed that provides easy access to novel molecules with improved properties. Specifically, the dyes display greater resistance to thiol nucleophiles, and are more robust while maintaining excellent optical properties. The dyes have been successfully employed in various in vivo imaging applications and in vitro labeling and microscopy applications. The NCI seek co-development or licensees to develop them as targetable agents for optical-guided surgical interventions.

  16. New chemical probe technologies: applications to imaging and drug discovery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bogyo, Matthew

    2017-02-01

    Proteases are enzymes that play pathogenic roles in many common human diseases such as cancer, asthma, arthritis, atherosclerosis and infection by pathogens. Tools to dynamically monitor their activity can be used as diagnostic agents, as imaging contrast agents for intra-operative image guidance and for the identification of novel classes of protease-targeted drugs. I will describe our efforts to design and synthesize small molecule probes that produce a fluorescent signal upon binding to a protease target. We have identified probes that show tumor-specific retention, fast activation kinetics, and rapid systemic distribution making them useful for real-time fluorescence guided tumor resection and other diagnostic imaging applications.

  17. Application of visual cryptography for learning in optics and photonics

    NASA Astrophysics Data System (ADS)

    Mandal, Avikarsha; Wozniak, Peter; Vauderwange, Oliver; Curticapean, Dan

    2016-09-01

    In the age data digitalization, important applications of optics and photonics based sensors and technology lie in the field of biometrics and image processing. Protecting user data in a safe and secure way is an essential task in this area. However, traditional cryptographic protocols rely heavily on computer aided computation. Secure protocols which rely only on human interactions are usually simpler to understand. In many scenarios development of such protocols are also important for ease of implementation and deployment. Visual cryptography (VC) is an encryption technique on images (or text) in which decryption is done by human visual system. In this technique, an image is encrypted into number of pieces (known as shares). When the printed shares are physically superimposed together, the image can be decrypted with human vision. Modern digital watermarking technologies can be combined with VC for image copyright protection where the shares can be watermarks (small identification) embedded in the image. Similarly, VC can be used for improving security of biometric authentication. This paper presents about design and implementation of a practical laboratory experiment based on the concept of VC for a course in media engineering. Specifically, our contribution deals with integration of VC in different schemes for applications like digital watermarking and biometric authentication in the field of optics and photonics. We describe theoretical concepts and propose our infrastructure for the experiment. Finally, we will evaluate the learning outcome of the experiment, performed by the students.

  18. Nanotechnology: emerging tool for diagnostics and therapeutics.

    PubMed

    Chakraborty, Mainak; Jain, Surangna; Rani, Vibha

    2011-11-01

    Nanotechnology is an emerging technology which is an amalgamation of different aspects of science and technology that includes disciplines such as electrical engineering, mechanical engineering, biology, physics, chemistry, and material science. It has potential in the fields of information and communication technology, biotechnology, and medicinal technology. It involves manipulating the dimensions of nanoparticles at an atomic scale to make use of its physical and chemical properties. All these properties are responsible for the wide application of nanoparticles in the field of human health care. Promising new technologies based on nanotechnology are being utilized to improve diverse aspects of medical treatments like diagnostics, imaging, and gene and drug delivery. This review summarizes the most promising nanomaterials and their application in human health.

  19. Image fusion based on millimeter-wave for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Zhu, Weiwen; Zhao, Yuejin; Deng, Chao; Zhang, Cunlin; Zhang, Yalin; Zhang, Jingshui

    2010-11-01

    This paper describes a novel multi sensors image fusion technology which is presented for concealed weapon detection (CWD). It is known to all, because of the good transparency of the clothes at millimeter wave band, a millimeter wave radiometer can be used to image and distinguish concealed contraband beneath clothes, for example guns, knives, detonator and so on. As a result, we adopt the passive millimeter wave (PMMW) imaging technology for airport security. However, in consideration of the wavelength of millimeter wave and the single channel mechanical scanning, the millimeter wave image has law optical resolution, which can't meet the need of practical application. Therefore, visible image (VI), which has higher resolution, is proposed for the image fusion with the millimeter wave image to enhance the readability. Before the image fusion, a novel image pre-processing which specifics to the fusion of millimeter wave imaging and visible image is adopted. And in the process of image fusion, multi resolution analysis (MRA) based on Wavelet Transform (WT) is adopted. In this way, the experiment result shows that this method has advantages in concealed weapon detection and has practical significance.

  20. The combination design for open and endoscopic surgery using fluorescence molecular imaging technology

    NASA Astrophysics Data System (ADS)

    Mao, Yamin; Jiang, Shixin; Ye, Jinzuo; An, Yu; Yang, Xin; Chi, Chongwei; Tian, Jie

    2015-03-01

    For clinical surgery, it is still a challenge to objectively determine tumor margins during surgery. With the development of medical imaging technology, fluorescence molecular imaging (FMI) method can provide real-time intraoperative tumor margin information. Furthermore, surgical navigation system based on FMI technology plays an important role for the aid of surgeons' precise tumor margin decision. However, detection depth is the most limitation exists in the FMI technique and the method convenient for either macro superficial detection or micro deep tissue detection is needed. In this study, we combined advantages of both open surgery and endoscopic imaging systems with FMI technology. Indocyanine green (ICG) experiments were performed to confirm the feasibility of fluorescence detection in our system. Then, the ICG signal was photographed in the detection area with our system. When the system connected with endoscope lens, the minimum quantity of ICG detected by our system was 0.195 ug. For aspect of C mount lens, the sensitivity of ICG detection with our system was 0.195ug. Our experiments results proved that it was feasible to detect fluorescence images with this combination method. Our system shows great potential in the clinical applications of precise dissection of various tumors

Top