Science.gov

Sample records for imf clock angle

  1. Magnetospheric sash dependence on IMF direction

    NASA Astrophysics Data System (ADS)

    Siscoe, G. L.; Erickson, G. M.; Ö Sonnerup, B. U.; Maynard, N. C.; Siebert, K. D.; Weimer, D. R.; White, W. W.

    The magnetospheric sash is a ribbon of weak field shaped like a horseshoe with its open ends adjacent to the north and south dayside, magnetopause cusps and its closed end forming the cross-tail current sheet. The clock angle of the sash in the dawn-dusk meridian plane (as seen from the sun) rotates from 0° to 90° as the clock angle of the interplanetary magnetic field (IMF) rotates from 0° to 180°. We use a global MHD simulation to obtain the sash clock angles for IMF clock angles of 45°, 90°, and 135°. Remarkably, the results are very close to the clock angle of the magnetic null points obtained by superposing a uniform field representing the IMF on a dipole field representing the earth. Contours of magnetic field strength on cross sections perpendicular to the solar wind flow direction show how the sash evolves tailward from the dayside cusps.

  2. IMF dependence of high-latitude thermospheric wind pattern derived from CHAMP cross-track measurements

    NASA Astrophysics Data System (ADS)

    Förster, M.; Rentz, S.; Köhler, W.; Liu, H.; Haaland, S. E.

    2008-06-01

    Neutral thermospheric wind pattern at high latitudes obtained from cross-track acceleration measurements of the CHAMP satellite above both North and South polar regions are statistically analyzed in their dependence on the Interplanetary Magnetic Field (IMF) direction in the GSM y-z plane (clock angle). We compare this dependency with magnetospheric convection pattern obtained from the Cluster EDI plasma drift measurements under the same sorting conditions. The IMF-dependency shows some similarity with the corresponding high-latitude plasma convection insofar that the larger-scale convection cells, in particular the round-shaped dusk cell for ByIMF+ (ByIMF-) conditions at the Northern (Southern) Hemisphere, leave their marks on the dominant general transpolar wind circulation from the dayside to the nightside. The direction of the transpolar circulation is generally deflected toward a duskward flow, in particular in the evening to nighttime sector. The degree of deflection correlates with the IMF clock angle. It is larger for ByIMF+ than for ByIMF- and is systematically larger (~5°) and appear less structured at the Southern Hemisphere compared with the Northern. Thermospheric cross-polar wind amplitudes are largest for BzIMF-/ByIMF- conditions at the Northern Hemisphere, but for BzIMF-/ByIMF+ conditions at the Southern because the magnetospheric convection is in favour of largest wind accelerations over the polar cap under these conditions. The overall variance of the thermospheric wind magnitude at Southern high latitudes is larger than for the Northern. This is probably due to a larger "stirring effect" at the Southern Hemisphere because of the larger distance between the geographic and geomagnetic frameworks.

  3. IMF Dependence of High-Latitude Thermospheric Wind Pattern Derived from CHAMP Cross-Track Accelerometer Data and the Corresponding Magnetospheric Convection from Cluster EDI Measurements

    NASA Astrophysics Data System (ADS)

    Foerster, Matthias; Haaland, Stein E.; Rentz, Stefanie; Liu, Huixin

    Neutral thermospheric wind pattern at high latitudes obtained from cross-track acceleration measurements of the CHAMP satellite above both North and South polar regions are statistically analyzed in their dependence on the Interplanetary Magnetic Field (IMF) direction in the GSM y-z plane (clock angle). We compare this dependency with magnetospheric convection pattern using 1-min-averages of Cluster/EDI electric drift observations and the same IMF and solar wind sorting conditions. The spatially distributed Cluster/EDI measurements are mapped to a the common reference level at ionospheric F-region heights in a magnetic latitude/MLT grid. We obtained both regular thermospheric wind and plasma drift pattern according to the various IMF conditions. The IMF-dependency shows some similarity with the corresponding high-latitude plasma convection insofar that the larger-scale convection cells, in particular the round-shaped dusk cell for IMF By+ (By-) conditions at the Northern (Southern) Hemisphere, leave their marks on the dominant general transpolar wind circulation from the dayside to the nightside. The direction of the transpolar circulation is generally deflected toward a duskward flow, in particular in the evening to nighttime sector. The degree of deflection correlates with the IMF clock angle. It is larger for IMF By+ than for Byand is systematically larger (about 5 deg) and appear less structured at the Southern Hemisphere compared with the Northern. Thermospheric cross-polar wind amplitudes are largest for IMF Bz-/Byconditions (corresponding to sector 5) at the Northern Hemisphere, but for IMF Bz-/By+ conditions (sector 3) at the Southern because the magnetospheric convection is in favour of largest wind accelerations over the polar cap under these conditions. The overall variance of the thermospheric wind magnitude at Southern high latitudes is larger than for the Northern. This is probably due to a larger "stirring effect" at the Southern Hemisphere because

  4. Statistical Comparison of a Southern Auroral Electrojet Index with Northern Hemisphere AE Indices as a Function of Solar Wind and IMF

    NASA Astrophysics Data System (ADS)

    Boudouridis, A.; Weygand, J. M.; Zesta, E.

    2014-12-01

    A Southern Auroral Electrojet (SAE) index has been recently constructed using seven Antarctica magnetometer stations. It has been compared for case studies with the standard Auroral Electrojet (AE) index, and a near-conjugate to the southern stations Northern Auroral Electrojet (NAE) index. Both similarities and differences with the Northern Hemisphere indices have been detected, and they reveal information about the conjugacy of geomagnetic disturbances. In this work we compare the three indices statistically as a function of the accompanying solar wind (SW) and Interplanetary Magnetic Field (IMF) conditions to further explore conjugacy issues. We use 274 days of common north/south data presence between December 2005 and August 2010. We calculate the cross correlation coefficients and differences between all three pairs, AE-SAE, NAE-SAE, and AE-NAE. We estimate the effect of the SW/IMF conditions on the index correlations and differences using three groups of data: 1) the entire data set, 2) periods when there is no station in the Southern Hemisphere located within the 20-02 Magnetic Local Time (MLT) sector where substorms occur, and 3) separately for the four different seasons. We consider the following SW/IMF quantities: IMF By, Bz, clock angle θ = tan-1(|By|/Bz), coupling parameter sin2(θ/2), SW dynamic pressure, density, velocity, and electric field. We find that high north-south correlation coefficients are more common during strong SW/IMF driving, e.g., southward IMF, high IMF |By|, high SW dynamic pressure, high SW electric field, and high θ and sin2(θ/2). All the above studies are also conducted for the index differences instead of their correlations. We find that the index differences are higher for higher SW/IMF driving, suggesting that the SAE index follows the northern indices trend, but has in general lower values than either the standard AE or the conjugate NAE index. The MLT study shows that the number of high AE/SAE correlations is slightly

  5. Separator reconnection at the magnetopause for predominantly northward and southward IMF: Techniques and results

    NASA Astrophysics Data System (ADS)

    Glocer, A.; Dorelli, J.; Toth, G.; Komar, C. M.; Cassak, P. A.

    2016-01-01

    In this work, we demonstrate how to track magnetic separators in three-dimensional simulated magnetic fields with or without magnetic nulls, apply these techniques to enhance our understanding of reconnection at the magnetopause. We present three methods for locating magnetic separators and apply them to 3-D resistive MHD simulations of the Earth's magnetosphere using the Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme code. The techniques for finding separators and determining the reconnection rate are insensitive to interplanetary magnetic field (IMF) clock angle and can in principle be applied to any magnetospheric model. Moreover, the techniques have a number of advantages over prior separator finding techniques applied to the magnetosphere. The present work examines cases of high and low resistivity for two clock angles. We go beyond previous work examine the separator during Flux Transfer Events (FTEs). Our analysis of reconnection on the magnetopause yields a number of interesting conclusions: Reconnection occurs all along the separator even during predominately northward IMF cases. Multiple separators form in low-resistivity conditions, and in the region of an FTE the separator splits into distinct branches. Moreover, the local contribution to the reconnection rate, as determined by the local parallel electric field, drops in the vicinity of the FTE with respect to the value when there are none.

  6. The Influence of Clocking Angle of the Projectile on the Simulated Impact Response of a Shuttle Leading Edge Wing Panel

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.

    2005-01-01

    An analytical study was conducted to determine the influence of clocking angle of a foam projectile impacting a space shuttle leading edge wing panel. Four simulations were performed using LS-DYNA. The leading edge panels are fabricated of multiple layers of reinforced carbon-carbon (RCC) material. The RCC material was represented using Mat 58, which is a material property that can be used for laminated composite fabrics. Simulations were performed of a rectangular-shaped foam block, weighing 0.23-lb., impacting RCC Panel 9 on the top surface. The material properties of the foam were input using Mat 83. The impact velocity was 1,000 ft/s along the Orbiter X-axis. In two models, the foam impacted on a corner, in one model the foam impacted the panel initially on the 2-in.-long edge, and in the last model the foam impacted the panel on the 7-in.- long edge. The simulation results are presented as contour plots of first principal infinitesimal strain and time history plots of contact force and internal and kinetic energy of the foam and RCC panel.

  7. The Myth of the IMF

    NASA Astrophysics Data System (ADS)

    Melnick, J.

    2009-11-01

    The Myth of Science is the idea that complex phenomena in Nature can be reduced to a set of equations based on the fundamental laws of physics. The Myth of the IMF is the notion that the observed distribution of stellar masses at birth (the IMF) can and must be explained by any successful theory of star formation. In this contribution I argue that the IMF is the result of the complex evolution of the interstellar medium in galaxies, and that as such the IMF preserves very little information, if any, about the detailed physics of star formation. Trying to infer the physics of star formation from the IMF is like trying to understand the personality of Beethoven from the power-spectrum of the Ninth Symphony!

  8. Structural characterization of the circadian clock protein complex composed of KaiB and KaiC by inverse contrast-matching small-angle neutron scattering

    PubMed Central

    Sugiyama, Masaaki; Yagi, Hirokazu; Ishii, Kentaro; Porcar, Lionel; Martel, Anne; Oyama, Katsuaki; Noda, Masanori; Yunoki, Yasuhiro; Murakami, Reiko; Inoue, Rintaro; Sato, Nobuhiro; Oba, Yojiro; Terauchi, Kazuki; Uchiyama, Susumu; Kato, Koichi

    2016-01-01

    The molecular machinery of the cyanobacterial circadian clock consists of three proteins: KaiA, KaiB, and KaiC. Through interactions among the three Kai proteins, the phosphorylation states of KaiC generate circadian oscillations in vitro in the presence of ATP. Here, we characterized the complex formation between KaiB and KaiC using a phospho-mimicking mutant of KaiC, which had an aspartate substitution at the Ser431 phosphorylation site and exhibited optimal binding to KaiB. Mass-spectrometric titration data showed that the proteins formed a complex exclusively in a 6:6 stoichiometry, indicating that KaiB bound to the KaiC hexamer with strong positive cooperativity. The inverse contrast-matching technique of small-angle neutron scattering enabled selective observation of KaiB in complex with the KaiC mutant with partial deuteration. It revealed a disk-shaped arrangement of the KaiB subunits on the outer surface of the KaiC C1 ring, which also serves as the interaction site for SasA, a histidine kinase that operates as a clock-output protein in the regulation of circadian transcription. These data suggest that cooperatively binding KaiB competes with SasA with respect to interaction with KaiC, thereby promoting the synergistic release of this clock-output protein from the circadian oscillator complex. PMID:27752127

  9. Polar, Cluster and SuperDARN Evidence for High-Latitude Merging during Southward IMF: Temporal/Spatial Evolution

    NASA Technical Reports Server (NTRS)

    Maynard, N. C.; Ober, D. M.; Burke, W. J.; Scudder, J. D.; Lester, M.; Dunlap, M.; Wild, J. A.; Grocott, A.; Farrugia, C. J.; Lund, E. J.; Russell, C. T.

    2003-01-01

    Magnetic merging on the dayside magnetopause often occurs at high latitudes. Polar measured fluxes of accelerated ions and wave Poynting vectors while skimming the subsolar magnetopause. The measurements indicate that their source was located to the north of the spacecraft, well removed from expected component merging sites. This represents the first use of wave Poynting flux as a merging discriminator at the magnetopause. We argue that wave Poynting vectors, like accelerated particle fluxes and the Walen tests, are necessary, but not sufficient, conditions, for identifying merging events. The Polar data are complemented with nearly simultaneous measurements from Cluster in the northern cusp, with correlated observations from the SuperDARN radar, to show that the locations and rates of merging vary. Magnetohydrodynamic (MHD) simulations are used to place the measurements into a global context. The MHD simulations confirm the existence of a high-latitude merging site and suggest that Polar and SuperDARN observed effects are attributable to both exhaust regions of a temporally varying X-line. A survey of 13 merging events places the location at high latitudes whenever the interplanetary magnetic field (IMF) clock angle is less than approximately 150 degrees. While inferred high-latitude merging sites favor the antiparallel merging hypothesis, our data alone cannot exclude the possible existence of a guide field. Merging can even move away from equatorial latitudes when the IMF has a strong southward component. MHD simulations suggest that this happens when the dipole tilt angle increases or when IMF B(sub X) increases the effective dipole tilt.

  10. IMF Prediction with Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Bieber, J. W.; Evenson, P. A.; Kuwabara, T.; Pei, C.

    2013-12-01

    Cosmic rays impacting Earth have passed through and interacted with the interplanetary magnetic field (IMF) surrounding Earth, and in some sense they carry information on the three-dimensional structure of that field. This work uses neutron monitor data in an effort to extract that information and use it to predict the future behavior of the IMF, especially the north-south component (Bz) which is so crucial in determining geomagnetic activity. We consider 161 events from a published list of interplanetary coronal mass ejections and compare hourly averages of the predicted field with the actual field measured later. We find that the percentage of events with 'good' predictions of Bz (in the sense of having a positive correlation between the prediction and the subsequent measurement) varies from about 85% for predictions 1 hour into the future to about 60% for predictions 4 hours into the future. We present several ideas for how the method might be improved in future implementations. Supported by NASA grant NNX08AQ01G and NSF grant ANT-0739620.

  11. IMF-lending programs and suicide mortality.

    PubMed

    Goulas, Eleftherios; Zervoyianni, Athina

    2016-03-01

    While the economic consequences of IMF programs have been extensively analyzed in the literature, much less is known about how key welfare indicators, including suicide-mortality rates, correlate with countries' participation in such programs. This paper examines the impact of IMF lending on suicide mortality, using data from 30 developing and transition countries that received non-concessionary IMF loans during 1991-2008. Our results support the hypothesis of a positive causal relationship between suicide mortality and participation in IMF programs but reveal no systematic suicide-increasing effect from the size of IMF loans. This holds after accounting for self-selection into programs, resulting from the endogeneity of a country's decision to resort to the IMF for funding, and after controlling for standard socio-economic influences on suicidal behaviour. In particular, we find a positive aggregate suicide-mortality differential due to IMF-program participation of between 4 and 14 percentage points. We also find that the positive association between suicides and program participation is stronger and more robust among males. Comparing age groups, individuals belonging to the age group 45-to-64 exhibit the highest increase in suicide due to program-participation, which amounts to over 18 percentage points. Overall, our results imply that when countries are exposed to IMF programs in an attempt to resolve their economic problems, social-safety nets need to be designed to protect the adversely-affected part of the population. PMID:26874823

  12. Relation of PC index to magnetic disturbances developing under conditions of northward IMF

    NASA Astrophysics Data System (ADS)

    Podorozhkina, N.; Sormakov, D.; Troshichev, O.

    2012-04-01

    Substorms and storms occurring under conditions of northward IMF (BZN) are commonly examined as "extraordinary events" since they are developed when the efficiency of the interplanetary electric field EY = vBZS (Reiff and Luhmann, 1986) falls to zero. Examination of these events demonstrates that all of them occur, like to ordinary substorms and storms, under conditions that are necessary and sufficient for development of substorms (PC ≥ 1.5 mV/m) and storms ( >2 mV/m). The specified values of the PC index testify that the magnetosphere is affected by the intense interplanetary electric field EKL=vBTsin2θ/2 (Kan and Lee, 1979), where BT is the IMF tangential component and θ is an angle between BT component and the geomagnetic Z-axis. The principal difference between coupling functions EY and EKL lies in the fact that EKL function includes the IMF azimuthal (BY) component. As BY increases relative to BZ, the difference between electric fields EY and EKL quickly grows, and the value of EKL field can be as large as 5-10 mV/m even under conditions of northward IMF orientation, when EY reaches to zero. The same situation is valid for substorms triggered by sharp northward turning of the IMF BZ component following the prolonged period of southward IMF influence. Examination of these substorms demonstrates that they are initiated by increase of coupling function EKL and that the substorm sudden onsets were preceded by the PC index growth. Consistency between the IMF northward turning and substorm sudden onset in these cases is coincidence that explains why substorm are only occasionally initiated by the IMF northward turning. Thus, the "extraordinary" storms and substorms occurring under conditions of ineffective northward IMF component turned out to be events nothing out of the ordinary, if examining them in relation to proper coupling function (EKL) and monitoring them by the PC index.

  13. Auroral Substorms during Prolonged Northward IMF

    NASA Astrophysics Data System (ADS)

    Du, Aimin

    Multiple observations by satellites and ground-based magnetometers identify the occurrence of substorm events during prolonged northward interplanetary magnetic field (IMF). The func-tion, as an expression of the solar wind energy flow, and the energy dissipation in the ionosphere (UI) are calculated during substorm periods. The delay time of the UI to the function and UI for seven substorm events with AL values of -231 -1500 nT under northward IMF condition are 45 95 min with a mean value of 70.86 min. For comparison, 23 substorm events with the AL index of -316 -1685 nT under southward IMF condition are detected to have the delay time of 21 66 min with a mean value of 42.04 min. The longer delay time for substorms during northward IMF can be presumably attributed to the contribution of IMF By component to merging between IMF and the Earth's magnetic field. A tendency of the decrease of the delay time with increasing absolute values of IMF By is noted. Acknowledgement: This work is supported by NSFC(40774086).

  14. Latitudinal electron precipitation patterns during large and small IMF magnitudes for northward IMF conditions

    NASA Technical Reports Server (NTRS)

    Makita, K.; Meng, C.-I.; Akasofu, S.-I.

    1988-01-01

    It is demonstrated that there are distinct differences in the electron precipitation patterns (or the polar cap size), geomagnetic activity, and field-aligned currents in the highest-latitude region for small and large IMF B(z) values when the IMF B(z) component is positive. First, during periods of weakly northward IMF, there is a distinct area in the highest-latitude region in which the electron precipitation is absent except for the polar rain. By contrast, during strongly northward IMF, the entire polar region is often filled with burst-type soft electron precipitations. Second, geomagnetic disturbances and field-aligned-current intensities in the highest-latitude region are less during a weak IMF B(z) condition than those during a strongly northward IMF B(z) condition. Geomagnetic activity in the auroral zone for both conditions is absent or very weak.

  15. The IMF of Globular Clusters

    NASA Astrophysics Data System (ADS)

    De Marchi, G.; Paresce, F.

    1999-12-01

    Accurate luminosity functions (LF) for a dozen globular clusters have now been measured at or just beyond their half-light radius using HST. They span almost the entire cluster main sequence below 0.75 MO. All these clusters exhibit LF that rise continuously from an absolute I magnitude MI 6 to a peak at MI 8.5-9 and then drop with increasing MI. Transformation of the LF into mass functions (MF) by means of the most recent mass luminosity relations that are consistent with all presently available data on the physical properties of low mass, low metallicity stars shows that all the LF observed so far can be obtained from MF having the shape of a log-normal distribution with characteristic mass mc=0.33 +/- 0.03 MO and standard deviation sigma =1.81 +/- 0.19. In particular, the LF of the four clusters in the sample that extend well beyond the peak luminosity down to close to the Hydrogen burning limit (NGC6341, NGC6397, NGC6752, and NGC6809) can only be reproduced by such distributions and not by a single power-law in the 0.1 - 0.6 MO range. After correction for the effects of mass segregation, the variation of the ratio of the number of higher to lower mass stars with cluster mass or any simple orbital parameter or the expected time to disruption recently computed for these clusters shows no statistically significant trend over a range of this last parameter of more than a factor of 100. We conclude that the global MF of these clusters have not been measurably modified by evaporation and tidal interactions with the Galaxy and, thus, should reflect the initial distribution of stellar masses. Since the log-normal function that we find is also very similar to the one obtained independently for much younger clusters and to the form expected theoretically, the implication seems to be unavoidable that it represents the true stellar IMF for this type of stars in this mass range.

  16. Clock Works.

    ERIC Educational Resources Information Center

    Markle, Sandra

    1988-01-01

    A science unit on clocks demonstrates the need to control variables to obtain reliable results from an experiment. Two activities, one for beginners and one for advanced students, are included. Directions for making a sundial are offered. (MT)

  17. Magnetic substorms and northward IMF turning

    NASA Astrophysics Data System (ADS)

    Troshichev, Oleg; Podorozhkina, Nataly

    To determine the relation of the northward IMF turnings to substorm sudden onsets, we separated all events with sharp northward IMF turnings observed in years of solar maximum (1999-2002) and solar minimum (2007-2008). The events (N=261) have been classified in 5 groups in accordance with average magnetic activity in auroral zone (low, moderate or high levels of AL index) at unchanged or slightly changed PC index and with dynamics of PC (steady distinct growth or distinct decline) at arbitrary values of AL index. Statistical analysis of relationships between the IMF turning and changes of PC and AL indices has been fulfilled separately for each of 5 classes. Results of the analysis showed that, irrespective of geophysical conditions and solar activity epoch, the magnetic activity in the polar caps and in the auroral zone demonstrate no response to the sudden northward IMF turning, if the moment of northward turning is taken as a key date. Sharp increases of magnetic disturbance in the auroral zone are observed only under conditions of the growing PC index and statistically they are related to moment of the PC index exceeding the threshold level (~1.5 mV/m), not to northward turnings timed, as a rule, after the moment of sudden onset. Magnetic disturbances observed in these cases in the auroral zone (magnetic substorms) are guided by behavior of the PC index, like to ordinary magnetic substorms or substorms developed under conditions of the prolonged northward IMF impact on the magnetosphere. The evident inconsistency between the sharp IMF changes measured outside of the magnetosphere and behavior of the ground-based PC index, the latter determining the substorm development, provides an additional argument in favor of the PC index as a ground-based proxy of the solar wind energy that entered into magnetosphere.

  18. The Square Light Clock and Special Relativity

    ERIC Educational Resources Information Center

    Galli, J. Ronald; Amiri, Farhang

    2012-01-01

    A thought experiment that includes a square light clock is similar to the traditional vertical light beam and mirror clock, except it is made up of four mirrors placed at a 45[degree] angle at each corner of a square of length L[subscript 0], shown in Fig. 1. Here we have shown the events as measured in the rest frame of the square light clock. By…

  19. Angles, Time, and Proportion

    ERIC Educational Resources Information Center

    Pagni, David L.

    2005-01-01

    This article describes an investigation making connections between the time on an analog clock and the angle between the minute hand and the hour hand. It was posed by a middle school mathematics teacher. (Contains 8 tables and 6 figures.)

  20. Simulating Future GPS Clock Scenarios with Two Composite Clock Algorithms

    NASA Technical Reports Server (NTRS)

    Suess, Matthias; Matsakis, Demetrios; Greenhall, Charles A.

    2010-01-01

    Using the GPS Toolkit, the GPS constellation is simulated using 31 satellites (SV) and a ground network of 17 monitor stations (MS). At every 15-minutes measurement epoch, the monitor stations measure the time signals of all satellites above a parameterized elevation angle. Once a day, the satellite clock estimates the station and satellite clocks. The first composite clock (B) is based on the Brown algorithm, and is now used by GPS. The second one (G) is based on the Greenhall algorithm. The composite clock of G and B performance are investigated using three ground-clock models. Model C simulates the current GPS configuration, in which all stations are equipped with cesium clocks, except for masers at USNO and Alternate Master Clock (AMC) sites. Model M is an improved situation in which every station is equipped with active hydrogen masers. Finally, Models F and O are future scenarios in which the USNO and AMC stations are equipped with fountain clocks instead of masers. Model F is a rubidium fountain, while Model O is more precise but futuristic Optical Fountain. Each model is evaluated using three performance metrics. The timing-related user range error having all satellites available is the first performance index (PI1). The second performance index (PI2) relates to the stability of the broadcast GPS system time itself. The third performance index (PI3) evaluates the stability of the time scales computed by the two composite clocks. A distinction is made between the "Signal-in-Space" accuracy and that available through a GNSS receiver.

  1. Association of consecutive Pi2-Ps6 band pulsations with earthward fast flows in the plasma sheet in response to IMF variations

    NASA Astrophysics Data System (ADS)

    Cheng, Ching-Chang; Mann, Ian R.; Baumjohann, Wolfgang

    2014-05-01

    On 11 March 2009, the H component had four consecutive bay-like variations accompanied by positive and negative deflections in the D component across the Atlantic like those affected by the substorm current wedge formation. A train of pulsations with a frequency range 2-10 mHz (referred to as Pi2-Ps6 band), sensed by Time History of Events and Macroscale Interactions during Substorms (THEMIS)/Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) magnetometers, had clearly three consecutive Pi2s followed by a Ps6 at low latitudes, but first Pi2 and then Ps6 at high latitudes mixed with large-amplitude Ps6 at midlatitudes. The geostationary orbit magnetometers sensed similar magnetic perturbations. THEMIS probes first observed earthward fast flows, magnetic dipolarizations, and modulated energetic particle fluxes at ~ XGSM -9.2 RE, then at ~ XGSM -7.5 RE for Pi2 and at ~ XGSM -18.0 RE only for Ps6. They appeared during a very quiet period for northward interplanetary magnetic field (IMF) with a clock angle variation of low to high and then low. The H spectrum shows two harmonic frequencies ~2-4 mHz and ~8-10 mHz but the D spectrum one dominant frequency ~2-4 mHz. Pi2 can result from a combination of fast magnetospheric and plasmaspheric cavity resonances and Ps6 from a fast magnetospheric cavity resonance. The surface waves at the interface separating braking earthward fast flows from the ambient plasma convection region could lead to large-amplitude Ps6 at midlatitudes. Hence, consecutive Pi2-Ps6 band pulsations can be associated with earthward fast flows in the plasma sheet, expectedly driven by magnetotail reconnection, respectively, in the near-Earth region and the distant Earth one in response to IMF variations as in the two-neutral-point model.

  2. Molecular clocks.

    PubMed

    Lee, Michael S Y; Ho, Simon Y W

    2016-05-23

    In the 1960s, several groups of scientists, including Emile Zuckerkandl and Linus Pauling, had noted that proteins experience amino acid replacements at a surprisingly consistent rate across very different species. This presumed single, uniform rate of genetic evolution was subsequently described using the term 'molecular clock'. Biologists quickly realised that such a universal pacemaker could be used as a yardstick for measuring the timescale of evolutionary divergences: estimating the rate of amino acid exchanges per unit of time and applying it to protein differences across a range of organisms would allow deduction of the divergence times of their respective lineages (Figure 1). PMID:27218841

  3. IMF draping around the geotail - IMP 8 observations

    NASA Technical Reports Server (NTRS)

    Kaymaz, Zerefsan; Siscoe, George; Luhmann, Janet G.

    1992-01-01

    The draping pattern for the full range of IMF directions is mapped in the GSM yz-plane using a large data set for studying magnetic field draping around the tail. Based on the maps, it is concluded that the dominant pattern is draping as found by Ohtani and Kokubun (1991) and Sanchez and Siscoe (1990). A new finding is that the draping pattern is rotated relative to the plane formed by the IMF and the aberrated x-axis, with the degree of rotation varying from zero for strongly northward and southward IMF to a peak of 17 deg for moderately southward IMF. It is also found that the tail radius is bigger for southward IMF than for northward IMF.

  4. The IMF at intermediate masses from Galactic Cepheids

    NASA Astrophysics Data System (ADS)

    Mor, R.; Robin, A. C.; Figueras, F.; Lemasle, B.

    2014-07-01

    Aims: To constrain the Initial Mass Function (IMF) of the Galactic young (<1 Gyr) thin Disc population using Cepheids. Methods: We have optimized the flexibility of the new Besançon Galaxy Model (Czekaj 2014) to simulate magnitude and distance complete samples of young intermediate mass stars assuming different IMFs and Star Formation Histories (SFH). Comparing the simulated synthetic catalogues with the observational data we studied which IMF reproduces better the observational number of Cepheids in the Galactic thin Disc. We analysed three different IMF: (1) Salpeter, (2) Kroupa-Haywood and (3) Haywood-Robin IMFs with a decreasing SFH from Aumer & Binney (2009). Results: For the first time the Besançon Galaxy Model is used to characterize the galactic Cepheids. We found that for most of the cases the Salpeter IMF overestimates the number of observed Cepheids and Haywood-Robin IMF underestimates it. The Kroupa-Haywood IMF, with a slope α = 3.2, is the one that best reproduces the observed Cepheids. From the comparison of the predicted and observed number of Cepheids up to V = 12, we point that the model might underestimate the scale height of the young population. Conclusions: In agreement with Kroupa & Weidner (2003) our study shows that the Salpeter IMF (α = 2.35) overestimates the star counts in the range 4 ≤ M/M⊙≤ 10 and supports the idea that the slope of the intermediate and massive stars IMF is steeper than the Salpeter IMF. The poster can be found online at: https://gaia.ub.edu/Twiki/pub/GREATITNFC/ProgramFinalconference/Poster_R._Mor_Great.pdf.

  5. Precise clock synchronization protocol

    NASA Astrophysics Data System (ADS)

    Luit, E. J.; Martin, J. M. M.

    1993-12-01

    A distributed clock synchronization protocol is presented which achieves a very high precision without the need for very frequent resynchronizations. The protocol tolerates failures of the clocks: clocks may be too slow or too fast, exhibit omission failures and report inconsistent values. Synchronization takes place in synchronization rounds as in many other synchronization protocols. At the end of each round, clock times are exchanged between the clocks. Each clock applies a convergence function (CF) to the values obtained. This function estimates the difference between its clock and an average clock and corrects its clock accordingly. Clocks are corrected for drift relative to this average clock during the next synchronization round. The protocol is based on the assumption that clock reading errors are small with respect to the required precision of synchronization. It is shown that the CF resynchronizes the clocks with high precision even when relatively large clock drifts are possible. It is also shown that the drift-corrected clocks remain synchronized until the end of the next synchronization round. The stability of the protocol is proven.

  6. Thermospheric Neutral Density Responses to Changes in IMF Sector Polarity

    NASA Astrophysics Data System (ADS)

    Kwak, Y.; Kim, K.; Forbes, J.; Lee, S.

    2008-12-01

    The thermospheric density is important not only for satellite orbital tracking, but also in understanding the thermosphere-ionosphere coupling process as well. Thermospheric density variations are controlled by various sources such as Joule/particle heating, Lorentz force, thermal expansion, upwelling and horizontal wind circulation. These sources are directly or indirectly associated with the direction and/or strength of the interplanetary magnetic field (IMF). That is, there is an intimate relationship between IMF variation and thermospheric density variation. In order to examine how thermospheric density variations are influenced on the orientation and/or strength of the IMF, we used total mass density around 400 km, derived from the high- accuracy accelerometer on board the Challenging Minisatellite Payload (CHAMP) spacecraft, in 2003 when the IMF exhibited a well-defined sector polarity change with a ~27-day periodicity; directed toward the Sun (i.e., +Bx and -By) and away the Sun (-Bx and +By). It has been known that the IMF By in GSE coordinates makes a positive or negative IMF Bz offset in GSM coordinate. We discuss whether the thermospheric total mass density from CHAMP changes with the IMF sector polarity.

  7. The Pendulum Clock.

    ERIC Educational Resources Information Center

    Carlson, John E.

    1991-01-01

    The development and function of the pendulum clock is discussed from a historical perspective. Computations for the period of and forces acting on a pendulum are presented. The remarkable workmanship of early clock makers is described. (CW)

  8. VLBI clock synchronization. [for atomic clock rate

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Shapiro, I. I.; Rogers, A. E. E.; Hinteregger, H. F.; Knight, C. A.; Whitney, A. R.; Clark, T. A.

    1977-01-01

    The potential accuracy of VLBI (very long baseline interferometry) for clock epoch and rate comparisons was demonstrated by results from long- and short-baseline experiments. It was found that atomic clocks at widely separated sites (several thousand kilometers apart) can be synchronized to within several nanoseconds from a few minutes of VLBI observations and to within one nanosecond from several hours of observations.

  9. Hanle detection for optical clocks.

    PubMed

    Zhang, Xiaogang; Zhang, Shengnan; Pan, Duo; Chen, Peipei; Xue, Xiaobo; Zhuang, Wei; Chen, Jingbiao

    2015-01-01

    Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard.

  10. Hanle detection for optical clocks.

    PubMed

    Zhang, Xiaogang; Zhang, Shengnan; Pan, Duo; Chen, Peipei; Xue, Xiaobo; Zhuang, Wei; Chen, Jingbiao

    2015-01-01

    Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard. PMID:25734183

  11. IMF polarity effects on the equatorial ionospheric F-region

    SciTech Connect

    Sastri, J.H.

    1985-01-01

    An exploratory study is made of the influence, during the equinoxes, of the interplanetary magnetic field (IMF) sector structure on the ionospheric F-region using ionosonde data from several equatorial stations for a 3-yr period around the 19th sunspot cycle maximum. It is found that, compared with days having positive IMF polarity, the post-sunset increase of h'F near the dip equator and the depth of the equatorial ionization anomaly (EIA) are reduced during the vernal equinox and enhanced during the autumnal equinox on days with negative IMF polarity. Similar trends are also noted in the data for the 20th sunspot cycle maximum, but with reduced amplitude. The systematic changes in the F-region characteristics suggest a modification of the equatorial zonal electric fields in association with the IMF polarity-related changes in the semi-annual variation of geomagnetic activity. 24 references.

  12. Atomic clocks for astrophysical measurements

    NASA Technical Reports Server (NTRS)

    Vessot, R. F. C.; Mattison, E. M.

    1982-01-01

    It is noted that recently developed atomic hydrogen masers have achieved stability well into the 10 to the -16th domain for averaging time intervals beyond 1000 sec and that further improvements are in prospect. These devices are highly adaptable for space use in very high precision measurements of angle through Very Long Baseline Interferometry (VLBI) and of range and range-rate through Doppler techniques. Space missions that will use these clocks for measuring the sun's gravity field distribution and for testing gravitation and relativity (a project that will include a search for pulsed low-frequency gravitational waves) are discussed. Estimates are made of system performance capability, and the accuracy capability of relativistic measurements is evaluated in terms of the results from the 1976 NASA/SAO spaceborne clock test of the Einstein Equivalence Principle.

  13. Response of the Reverse Convection to Sharp IMF Turnings

    NASA Astrophysics Data System (ADS)

    Taguchi, S.; Tawara, A.; Hairston, M. R.; Slavin, J. A.; Le, G.; Matzka, J.; Stolle, C.

    2014-12-01

    How strongly the dayside high-latitude convection is controlled by the orientation of the IMF for periods of the steady IMF is well established. However, the nature of the transition that the convection makes when the IMF changes sharply is still not fully understood. In the present paper, we report the characteristics of the transient nature of the reverse convection on the basis of observations from multi-spacecraft and ground magnetometer stations. During a period of northward IMF on 22 April 2006 the magnetic field observations from three ST-5 spacecraft identified distribution change in the polar cap field-aligned current which responds to a quick IMF turning from the purely northward orientation to the duskward orientation. At this time ST-5 flew over one of the Greenland magnetometer stations located near 1200 MLT. The analysis of the ground magnetic perturbations shows that the field-aligned current distribution, which is closely related to the reverse convection pattern, was changing gradually during about 10 min before reaching a steady state. When the steady state was going on, the IMF changed sharply from the duskward orientation to the dawnward orientation. Immediately after this IMF turning, three DMSP spacecraft (F13, F15, and F16) traversed the dayside polar cap in the northern hemisphere. The ion drift observation indicates that the polar cap convection changed from the clockwise circulation to the counter-clockwise circulation during about 10 min. The data from the Greenland magnetometer stations show that a transient state, i.e., deformation or reduction of the clockwise circulation started in the near-noon and postnoon sectors almost simultaneously when the ion drift consisting of the clockwise circulation is still seen in the prenoon polar cap by the DMSP spacecraft. We discuss the changing global patterns that occurred over the whole dayside polar cap during the course of the 10-min transient state for both cases.

  14. Variation in the statistical properties of IMF direction fluctuations during the 22-year solar magnetic cycle

    NASA Astrophysics Data System (ADS)

    Erofeev, D. V.

    2014-12-01

    The variation in the IMF direction distribution during the 22-year solar magnetic cycle has been studied. Data obtained in near-Earth orbits and measurements in the heliospheric regions located far from the Earth, performed with the Helios and Ulysses spacecraft devices, have been analyzed. It has been found that the correlation between the azimuth and magnetic field fluctuations is statistically significant in the low-latitude heliospheric region at heliocentric distances of 0.3-5.4 AU, and the sign of this correlation reverses at a change in the polar solar magnetic field orientation. In the polar zones of the heliosphere outside the latitudinal extension of the heliospheric current sheet, the angle correlation coefficient rapidly decreases with increasing heliographic latitude. The angle correlation sign reversal during the 22-year cycle is accompanied by a change of the asymmetry sign of the magnetic field inclination distribution.

  15. High-Latitude Ionospheric Dynamics During Conditions of Northward IMF

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.

    1996-01-01

    In order to better understand the physical processes operating during conditions of northward interplanetary magnetic field (IMF), in situ measurements from the Dynamics Explorer-2 (low altitude) polar satellite and simultaneous observations from the auroral imager on the Dynamics Explorer-1 (high altitude) satellite were used to investigate the relationships between optical emissions, particle precipitation, and convective flows in the high-latitude ionosphere. Field aligned current and convective flow patterns during IMF north include polar cap arcs, the theta aurora or transpolar arc, and the 'horse-collar' aurora. The initial part of the study concentrated on the electrodynamics of auroral features in the horse-collar aurora, a contracted but thickened emission region in which the dawn and dusk portions can spread to very high latitudes, while the latter part focused on the evolution of one type of IMF north auroral pattern to another, specifically the quiet-time horse-collar pattern to a theta aurora.

  16. Clock genes and cancer.

    PubMed

    Wood, Patricia A; Yang, Xiaoming; Hrushesky, William J M

    2009-12-01

    Period genes ( Per2, Per1) are essential circadian clock genes. They also function as negative growth regulators. Per2 mutant mice show de novo and radiation-induced epithelial hyperplasia, tumors, and an abnormal DNA damage response. Human tumors show Period gene mutations or decreased expression. Other murine clock gene mutations are not associated with a tumor prone phenotype. Shift work and nocturnal light exposure are associated with circadian clock disruption and with increased cancer risk. The mechanisms responsible for the connection between the circadian clock and cancer are not well defined. We propose that circadian disruption per se is not uniformly tumor promoting and the mechanisms for tumor promotion by specific circadian clock disturbances will differ dependent upon the genes and pathways involved. We propose that Period clock gene mutations promote tumorigenesis by unique molecular pathways. Per2 and Per1 modulate beta-catenin and cell proliferation in colon and non-colon cancer cells. Per2 mutation increases intestinal beta-catenin levels and colon polyp formation. Per2 mutation also increases Apc(Min/+)-mediated intestinal and colonic polyp formation. Intestinal tumorigenesis per se may also alter clock function as a result of increased beta-catenin destabilizing PER2 protein. Levels and circadian rhythm of PER2 in Apc(Min/+) mouse intestine are markedly decreased, and selective abnormalities in intestinal clock gene and clock-controlled gene expression are seen. We propose that tumor promotion by loss of PERIOD clock proteins is unique to these clock genes as a result of altered beta-catenin signaling and DNA damage response. PERIOD proteins may offer new targets for cancer prevention and control.

  17. The IMF as a function of supersonic turbulence

    NASA Astrophysics Data System (ADS)

    Bertelli Motta, C.; Clark, P. C.; Glover, S. C. O.; Klessen, R. S.; Pasquali, A.

    2016-08-01

    Recent studies seem to suggest that the stellar initial mass function (IMF) in early-type galaxies might be different from a classical Kroupa or Chabrier IMF, i.e. contain a larger fraction of the total mass in low-mass stars. From a theoretical point of view, supersonic turbulence has been the subject of interest in many analytical theories proposing a strong correlation with the characteristic mass of the core mass function (CMF) in star forming regions, and as a consequence with the stellar IMF. Performing two suites of smoothed particles hydrodynamics (SPH) simulations with different mass resolutions, we aim at testing the effects of variations in the turbulent properties of a dense, star forming molecular cloud on the shape of the system mass function in different density regimes. While analytical theories predict a shift of the peak of the CMF towards lower masses with increasing velocity dispersion of the cloud, we observe in the low-density regime the opposite trend, with high Mach numbers giving rise to a top-heavy mass distribution. For the high-density regime we do not find any trend correlating the Mach number with the characteristic mass of the resulting IMF, implying that the dynamics of protostellar accretion discs and fragmentation on small scales is not strongly affected by turbulence driven at the scale of the cloud. Furthermore, we suggest that a significant fraction of dense cores are disrupted by turbulence before stars can be formed in their interior through gravitational collapse. Although this particular study has limitations in its numerical resolution, we suggest that our results, along with those from other studies, cast doubt on the turbulent fragmentation models on the IMF that simply map the CMF to the IMF.

  18. The IMF as a function of supersonic turbulence

    NASA Astrophysics Data System (ADS)

    Bertelli Motta, C.; Clark, P. C.; Glover, S. C. O.; Klessen, R. S.; Pasquali, A.

    2016-11-01

    Recent studies seem to suggest that the stellar initial mass function (IMF) in early-type galaxies might be different from a classical Kroupa or Chabrier IMF, i.e. contain a larger fraction of the total mass in low-mass stars. From a theoretical point of view, supersonic turbulence has been the subject of interest in many analytical theories proposing a strong correlation with the characteristic mass of the core mass function (CMF) in star-forming regions, and as a consequence with the stellar IMF. Performing two suites of smoothed particle hydrodynamics (SPH) simulations with different mass resolutions, we aim at testing the effects of variations in the turbulent properties of a dense, star-forming molecular cloud on the shape of the system mass function in different density regimes. While analytical theories predict a shift of the peak of the CMF towards lower masses with increasing velocity dispersion of the cloud, we observe in the low-density regime the opposite trend, with high Mach numbers giving rise to a top-heavy mass distribution. For the high-density regime we do not find any trend correlating the Mach number with the characteristic mass of the resulting IMF, implying that the dynamics of protostellar accretion discs and fragmentation on small scales is not strongly affected by turbulence driven at the scale of the cloud. Furthermore, we suggest that a significant fraction of dense cores are disrupted by turbulence before stars can be formed in their interior through gravitational collapse. Although this particular study has limitations in its numerical resolution, we suggest that our results, along with those from other studies, cast doubt on the turbulent fragmentation models on the IMF that simply map the CMF to the IMF.

  19. Feeding and circadian clocks.

    PubMed

    Pardini, Lissia; Kaeffer, Bertrand

    2006-01-01

    The mammalian genome encodes at least a dozen of genes directly involved in the regulation of the feedback loops constituting the circadian clock. The circadian system is built up on a multitude of oscillators organized according to a hierarchical model in which neurons of the suprachiasmatic nuclei of the hypothalamus may drive the central circadian clock and all the other somatic cells may possess the molecular components allowing tissues and organs to constitute peripheral clocks. Suprachiasmatic neurons are driving the central circadian clock which is reset by lighting cues captured and integrated by the melanopsin cells of the retina and define the daily rhythms of locomotor activity and associated physiological regulatory pathways like feeding and metabolism. This central clock entrains peripheral clocks which can be synchronized by non-photic environmental cues and uncoupled from the central one depending on the nature and the strength of the circadian signal. The human circadian clock and its functioning in central or peripheral tissues are currently being explored to increase the therapeutic efficacy of timed administration of drugs or radiation, and to offer better advice on lighting and meal timing useful for frequent travelers suffering from jet lag and for night workers' comfort. However, the molecular mechanism driving and coordinating the central and peripheral clocks through a wide range of synchronizers (lighting, feeding, physical or social activities) remains a mystery.

  20. Biological Clocks & Circadian Rhythms

    ERIC Educational Resources Information Center

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  1. BUGS system clock distributor

    NASA Astrophysics Data System (ADS)

    Dietrich, Thomas M.

    1991-11-01

    A printed circuit board which will provide external clocks and precisely measure the time at which events take place was designed for the Bristol University Gas Spectrometer (BUGS). The board, which was designed to interface both mechanically and electrically to the Computer Automated Measurement and Control (CAMAC) system, has been named the BUGS system clock control. The board's design and use are described.

  2. Egyptian "Star Clocks"

    NASA Astrophysics Data System (ADS)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  3. BUGS system clock distributor

    NASA Technical Reports Server (NTRS)

    Dietrich, Thomas M.

    1991-01-01

    A printed circuit board which will provide external clocks and precisely measure the time at which events take place was designed for the Bristol University Gas Spectrometer (BUGS). The board, which was designed to interface both mechanically and electrically to the Computer Automated Measurement and Control (CAMAC) system, has been named the BUGS system clock control. The board's design and use are described.

  4. ULF foreshock under radial IMF: THEMIS observations and global kinetic simulation Vlasiator results compared

    NASA Astrophysics Data System (ADS)

    Palmroth, Minna; Rami, Vainio; Archer, Martin; Hietala, Heli; Afanasiev, Alexandr; Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2015-04-01

    For decades, a certain type of ultra low frequency waves with a period of about 30 seconds have been observed in the Earth's quasi-parallel foreshock. These waves, with a wavelength of about an Earth radius, are compressive and propagate with an average angle of 20 degrees with respect of the interplanetary magnetic field (IMF). The latter property has caused trouble to scientists as the growth rate for the instability causing the waves is maximized along the magnetic field. So far, these waves have been characterized by single or multi-spacecraft methods and 2-dimensional hybrid-PIC simulations, which have not fully reproduced the wave properties. Vlasiator is a newly developed, global hybrid-Vlasov simulation, which solves the six-dimensional phase space utilising the Vlasov equation for protons, while electrons are a charge-neutralising fluid. The outcome of the simulation is a global reproduction of ion-scale physics in a holistic manner where the generation of physical features can be followed in time and their consequences can be quantitatively characterised. Vlasiator produces the ion distribution functions and the related kinetic physics in unprecedented detail, in the global scale magnetospheric scale with a resolution of a couple of hundred kilometres in the ordinary space and 20 km/s in the velocity space. We run Vlasiator under a radial IMF in five dimensions consisting of the three-dimensional velocity space embedded in the ecliptic plane. We observe the generation of the 30-second ULF waves, and characterize their evolution and physical properties in time. We compare the results both to THEMIS observations and to the quasi-linear theory. We find that Vlasiator reproduces the foreshock ULF waves in all reported observational aspects, i.e., they are of the observed size in wavelength and period, they are compressive and propagate obliquely to the IMF. In particular, we discuss the issues related to the long-standing question of oblique propagation.

  5. Possible density dependent local variations in the IMF

    NASA Astrophysics Data System (ADS)

    Kavila, Indulekha; George, Babitha

    2015-08-01

    Variations in the IMF have been reported within open clusters (signifying mass segregation), between globular clusters, within galaxies and between galaxies. Most stars are considered to form in a clustered mode. However, the surface density of YSO's shows a wide range and it is also considered that stars form in the clustered mode only at the peaks of the surface density. The bound cluster formation efficiency in galaxies is observed to be correlated with the Star Formation Rate density which itself is seen to be correlated with the gas surface density by the Kennicutt Schmidt law.Observationally, dense cores in molecular clouds - which go on to produce stars - have a mass spectrum that is broadly consistent with a Salpeter slope of -1.35 at the high mass end. In simulations of clouds with Gaussian fluctuations it is seen that the mass spectrum of peaks which collapse are approximately log-normal, peaking roughly at the average Jeans' mass in the cloud. We explore a possible way in which the IMF could depend on the local gas density. The extent of the variations that can be caused by such a dependence is explored. The IMFs of the sample clusters that are generated are compared with the IMFs of observed clusters and also against radial trends reported in galaxies.

  6. ON THE IMF IN A TRIGGERED STAR FORMATION CONTEXT

    SciTech Connect

    Zhou, Tingtao; Huang, Chelsea X.; Lin, D. N. C.; Gritschneder, Matthias

    2015-07-20

    The origin of the stellar initial mass function (IMF) is a fundamental issue in the theory of star formation. It is generally fit with a composite power law. Some clues on the progenitors can be found in dense starless cores that have a core mass function (CMF) with a similar shape. In the low-mass end, these mass functions increase with mass, albeit the sample may be somewhat incomplete; in the high-mass end, the mass functions decrease with mass. There is an offset in the turn-over mass between the two mass distributions. The stellar mass for the IMF peak is lower than the corresponding core mass for the CMF peak in the Pipe Nebula by about a factor of three. Smaller offsets are found between the IMF and the CMFs in other nebulae. We suggest that the offset is likely induced during a starburst episode of global star formation which is triggered by the formation of a few O/B stars in the multi-phase media, which naturally emerged through the onset of thermal instability in the cloud-core formation process. We consider the scenario that the ignition of a few massive stars photoionizes the warm medium between the cores, increases the external pressure, reduces their Bonnor–Ebert mass, and triggers the collapse of some previously stable cores. We quantitatively reproduce the IMF in the low-mass end with the assumption of additional rotational fragmentation.

  7. Modern yields per stellar generation: the effect of the IMF

    NASA Astrophysics Data System (ADS)

    Vincenzo, F.; Matteucci, F.; Belfiore, F.; Maiolino, R.

    2016-02-01

    Gaseous and stellar metallicities in galaxies are nowadays routinely used to constrain the evolutionary processes in galaxies. This requires the knowledge of the average yield per stellar generation, yZ, i.e. the quantity of metals that a stellar population releases into the interstellar medium (ISM), which is generally assumed to be a fixed fiducial value. Deviations of the observed metallicity from the expected value of yZ are used to quantify the effect of outflows or inflows of gas, or even as evidence for biased metallicity calibrations or inaccurate metallicity diagnostics. Here, we show that y_{Z} depends significantly on the initial mass function (IMF), varying by up to a factor larger than three, for the range of IMFs typically adopted in various studies. Varying the upper mass cutoff of the IMF implies a further variation of yZ by an additional factor that can be larger than two. These effects, along with the variation of the gas mass fraction restored into the ISM by supernovae (R, which also depends on the IMF), may yield to deceiving results, if not properly taken into account. In particular, metallicities that are often considered unusually high can actually be explained in terms of yield associated with commonly adopted IMFs such as the Kroupa or Chabrier. We provide our results for two different sets of stellar yields (both affected by specific limitations) finding that the uncertainty introduced by this assumption can be as large as ˜0.2 dex. Finally, we show that yZ is not substantially affected by the initial stellar metallicity as long as Z > 10-3 Z⊙.

  8. Optical clocks and relativity.

    PubMed

    Chou, C W; Hume, D B; Rosenband, T; Wineland, D J

    2010-09-24

    Observers in relative motion or at different gravitational potentials measure disparate clock rates. These predictions of relativity have previously been observed with atomic clocks at high velocities and with large changes in elevation. We observed time dilation from relative speeds of less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter length of optical fiber. We can now also detect time dilation due to a change in height near Earth's surface of less than 1 meter. This technique may be extended to the field of geodesy, with applications in geophysics and hydrology as well as in space-based tests of fundamental physics.

  9. Circadian Clocks and Metabolism

    PubMed Central

    Marcheva, Biliana; Ramsey, Kathryn M.; Peek, Clara B.; Affinati, Alison; Maury, Eleonore; Bass, Joseph

    2014-01-01

    Circadian clocks maintain periodicity in internal cycles of behavior, physiology, and metabolism, enabling organisms to anticipate the 24-h rotation of the Earth. In mammals, circadian integration of metabolic systems optimizes energy harvesting and utilization across the light/dark cycle. Disruption of clock genes has recently been linked to sleep disorders and to the development of cardiometabolic disease. Conversely, aberrant nutrient signaling affects circadian rhythms of behavior. This chapter reviews the emerging relationship between the molecular clock and metabolic systems and examines evidence that circadian disruption exerts deleterious consequences on human health. PMID:23604478

  10. Investigating the low-mass slope and possible turnover in the LMC IMF

    NASA Astrophysics Data System (ADS)

    Gennaro, Mario

    2014-10-01

    We propose to derive the Initial Mass Function (IMF) of the field population of the Large Magellanic Cloud (LMC) down to 0.2 solar masses, probing the mass regime where the characteristic IMF turnover is observed in our Galaxy. The power of the HST, using the WFC3 IR channel, is necessary to obtain photometric mass estimates for the faint, cool, dwarf stars with masses below the expected IMF turnover point. Only by probing the IMF down to such masses, it will be possible to clearly distinguish between a bottom-heavy or bottom-light IMF in the LMC. Recent studies, using the deepest available observations for the Small Magellanic Cloud, cannot find clear evidence of a turnover in the IMF for this galaxy, suggesting a bottom-heavy IMF in contrast to the Milky Way. A similar study of the LMC is needed to confirm a possible dependence of the low-mass IMF with galactic environment. Studies of giant ellipticals have recently challenged the picture of a universal IMF, and suggest an enviromental dependence of the IMF, with the most massive galaxies having a larger fraction of low mass stars and no IMF turnover. A study of possible IMF variations from resolved stellar populations in nearby galaxies is of great importance in sheding light on this issue. Our simple approach, using direct evidence from basic star counts, is much less prone to systematic errors with respect to studies of more distant objects which have to rely on the observations of integrated properties.

  11. Iodine Clock Reaction.

    ERIC Educational Resources Information Center

    Mitchell, Richard S.

    1996-01-01

    Describes a combination of solutions that can be used in the study of kinetics using the iodine clock reaction. The combination slows down degradation of the prepared solutions and can be used successfully for several weeks. (JRH)

  12. Resetting Biological Clocks

    ERIC Educational Resources Information Center

    Winfree, Arthur T.

    1975-01-01

    Reports on experiments conducted on two biological clocks, in organisms in the plant and animal kingdoms, which indicate that biological oscillation can be arrested by a single stimulus of a definite strength delivered at the proper time. (GS)

  13. Atomic and gravitational clocks

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity, respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous - whose rates are related by a non-constant function beta sub a - is demonstrated. The cosmological character of beta sub a is also discussed.

  14. Real-time simulation clock

    NASA Technical Reports Server (NTRS)

    Bennington, Donald R. (Inventor); Crawford, Daniel J. (Inventor)

    1990-01-01

    The invention is a clock for synchronizing operations within a high-speed, distributed data processing network. The clock is actually a distributed system comprising a central clock and multiple site clock interface units (SCIUs) which are connected by means of a fiber optic star network and which operate under control of separate clock software. The presently preferred embodiment is a part of the flight simulation system now in current use at the NASA Langley Research Center.

  15. Real-time simulation clock

    NASA Astrophysics Data System (ADS)

    Bennington, Donald R.; Crawford, Daniel J.

    1990-04-01

    The invention is a clock for synchronizing operations within a high-speed, distributed data processing network. The clock is actually a distributed system comprising a central clock and multiple site clock interface units (SCIUs) which are connected by means of a fiber optic star network and which operate under control of separate clock software. The presently preferred embodiment is a part of the flight simulation system now in current use at the NASA Langley Research Center.

  16. Auroral Substorm Time Scales: Seasonal and IMF Variations

    NASA Technical Reports Server (NTRS)

    Chua, D.; Parks, G. K.; Brittnacher, M.; Germany, G. A.; Spann, J. F.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The time scales and phases of auroral substorm, activity are quantied in this study using the hemispheric power computed from Polar Ultraviolet Imager (UVI) images. We have applied this technique to several hundred substorm events and we are able to quantify how the characterist act, of substorms vary with season and IMF Bz orientation. We show that substorm time scales vary more strongly with season than with IMF Bz orientation. The recovery time for substorm. activity is well ordered by whether or not the nightside oral zone is sunlit. The recovery time scales for substorms occurring in the winter and equinox periods are similar and are both roughly a factor of two longer than in summer when the auroral oval is sunlit. Our results support the hypothesis that the ionosphere plays an active role in governing the dynamics of the aurora.

  17. How Radiation Feedback Affects Fragmentation and the IMF

    NASA Astrophysics Data System (ADS)

    Krumholz, M. R.

    2011-06-01

    The stellar initial mass function (IMF) is determined by a process of fragmentation and accretion in the opaque, dense center of a giant molecular cloud. This environment effectively traps radiation from newborn stars, and the interaction between the gas and the radiation is the dominant feature controlling the thermodynamics and in some extreme cases the bulk motion of the gas. Not surprisingly, radiation feedback therefore plays a dominant role in determining how gas fragments to produce the IMF. In this contribution I focus on simulations exploring two radiative effects particularly relevant to the formation of massive stars: suppression of fragmentation by radiative heating, and interruption of accretion by radiation pressure. Contrary to past theoretical expectations, simulations show that the former is a dominant effect that may ultimately control when and where massive stars form, while the latter does not appear to have a significant effect on stellar masses.

  18. Variable frequency microprocessor clock generator

    SciTech Connect

    Branson, C.N.

    1989-04-04

    A microprocessor-based system is described comprising: a digital central microprocessor provided with a clock input and having a rate of operation determined by the frequency of a clock signal input thereto; memory means operably coupled to the central microprocessor for storing programs respectively including a plurality of instructions and addressable by the central microprocessor; peripheral device operably connected to the central microprocessor, the first peripheral device being addressable by the central microprocessor for control thereby; a system clock generator for generating a digital reference clock signal having a reference frequency rate; and frequency rate reduction circuit means connected between the clock generator and the clock input of the central microprocessor for selectively dividing the reference clock signal to generate a microprocessor clock signal as an input to the central microprocessor for clocking the central microprocessor.

  19. ZFIRE Survey: Studying the IMF at z~2

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Themiya

    2015-08-01

    The development of sensitive Near Infra-Red instruments has made it possible to study the galaxy properties at z~2, just 3Gy after the Big Bang. This is expected to be the time period where galaxies are actively star forming and evolving rapidly to form the massive galaxies that are observed in our local neighborhood.As a part of the ZFIRE survey we used the MOSFIRE on Keck to study environment, metallicity and ISM properties of galaxies at these redshifts. This allowed us to spectroscopically confirm the highest redshift cluster found so far.In my talk I will present results of the first ever attempt to constrain the Initial Mass Function (IMF) of galaxies at these redshifts using a cluster and a field sample. We have investigated the degeneracy between the star formation histories and the IMF to make strong constrains on the stellar mass distribution of these galaxies using synthetic stellar spectra. Our results will demonstrate the possibility of the universality of the IMF as a function of time and environment.

  20. Quantum primordial standard clocks

    NASA Astrophysics Data System (ADS)

    Chen, Xingang; Namjoo, Mohammad Hossein; Wang, Yi

    2016-02-01

    In this paper, we point out and study a generic type of signals existing in the primordial universe models, which can be used to model-independently distinguish the inflation scenario from alternatives. These signals are generated by massive fields that function as standard clocks. The role of massive fields as standard clocks has been realized in previous works. Although the existence of such massive fields is generic, the previous realizations require sharp features to classically excite the oscillations of the massive clock fields. Here, we point out that the quantum fluctuations of massive fields can actually serve the same purpose as the standard clocks. We show that they are also able to directly record the defining property of the scenario type, namely, the scale factor of the primordial universe as a function of time a(t), but through shape-dependent oscillatory features in non-Gaussianities. Since quantum fluctuating massive fields exist in any realistic primordial universe models, these quantum primordial standard clock signals are present in any inflation models, and should exist quite generally in alternative-to-inflation scenarios as well. However, the amplitude of such signals is very model-dependent.

  1. Strong IMF By-Related Plasma Convection in the Ionosphere and Cusp Field-Aligned Currents Under Northward IMF Conditions

    NASA Technical Reports Server (NTRS)

    Le, G.; Lu, G.; Strangeway, R. J.; Pfaff, R. F., Jr.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    We present in this paper an investigation of IMF-By related plasma convection and cusp field-aligned currents using FAST data and AMIE model during a prolonged interval with large positive IMF By and northward Bz conditions (By/Bz much greater than 1). Using the FAST single trajectory observations to validate the global convection patterns at key times and key locations, we have demonstrated that the AMIE procedure provides a reasonably good description of plasma circulations in the ionosphere during this interval. Our results show that the plasma convection in the ionosphere is consistent with the anti-parallel merging model. When the IMF has a strongly positive By component under northward conditions, we find that the global plasma convection forms two cells oriented nearly along the Sun-earth line in the ionosphere. In the northern hemisphere, the dayside cell has clockwise convection mainly circulating within the polar cap on open field lines. A second cell with counterclockwise convection is located in the nightside circulating across the polar cap boundary, The observed two-cell convection pattern appears to be driven by the reconnection along the anti-parallel merging lines poleward of the cusp extending toward the dusk side when IMF By/Bz much greater than 1. The magnetic tension force on the newly reconnected field lines drives the plasma to move from dusk to dawn in the polar cusp region near the polar cap boundary. The field-aligned currents in the cusp region flow downward into the ionosphere. The return field-aligned currents extend into the polar cap in the center of the dayside convection cell. The field-aligned currents are closed through the Peterson currents in the ionosphere, which flow poleward from the polar cap boundary along the electric field direction.

  2. Room 103, transom woodwork and original clock. All clocks are ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Room 103, transom woodwork and original clock. All clocks are driven by a common signal. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  3. Optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Poli, N.; Oates, C. W.; Gill, P.; Tino, G. M.

    2013-12-01

    In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femtosecond optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in 1018. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.

  4. Simulation of the geospace response to a sudden change in IMF orientation.

    NASA Astrophysics Data System (ADS)

    Lopez, R. E.; Pham, K. H.; Wiltberger, M. J.

    2015-12-01

    We have conducted simulations of the response of the geospace system to a sudden change in the orientation of the interplanetary magnetic field (IMF) using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic code. Specifically, we have explored a sudden change in the IMF orientation from an extended period during which it was steady northward, to a steady southward IMF. The change in the IMF orientation first causes a reversal in the direction of the bow shock current, which launches a fast mode wave that propagates through the system, causing changes in the overall current pattern even before the southward IMF arrives at the dayside magnetopause to initiate low latitude merging. When the southward IMF does arrive at the magnetopause, the preceding northward IMF in the solar wind flow is still driving high latitude merging poleward of the cusp. Even when the two-cell convection pattern in the ionosphere becomes the dominant convection, the LFM results show that there is still some remnant of the high latitude reverse cell convection that is associated with northward IMF that had previously merged with the geomagnetic field and which takes some time to be cleared out of the system. We will present a detailed account of the timescales and changes in the magnetic topologies, current systems, magnetospheric plasma flows, and ionospheric potential patterns associated with the transition from northward to southward IMF. We will also discuss the implications of these findings for understanding the effect of transient changes in IMF orientations.

  5. Tutorial: Clock and Clock Systems Performance Measures

    NASA Technical Reports Server (NTRS)

    Allan, David W.

    1996-01-01

    This tutorial contains basic material - familiar to many. This will be used as a foundation upon which we will build - bringing forth some new material and equations that have been developed especially for this tutorial. These will provide increased understanding toward parameter estimation of clock and clock system's performance. There is a very important International Telecommunications Union (ITU) handbook being prepared at this time which goes much further than this tutorial has time to do. I highly recommend it as an excellent resource document. The final draft is just now being completed, and it should be ready late in 1996. It is an outstanding handbook; Dr. Sydnor proposed to the ITU-R several years ago, and is the editor with my assistance. We have some of the best contributors in the community from around the world who have written the ten chapters in this handbook. The title of the handbook is 'Selection and use of Precise Frequency and Time Systems'. It will be available from the ITU secretariat in Geneva, Switzerland, but NAVTEC Seminars also plans to be a distributor.

  6. The Two Sides of the Mental Clock: The Imaginal Hemispatial Effect in the Healthy Brain

    ERIC Educational Resources Information Center

    Conson, Massimiliano; Cinque, Fausta; Trojano, Luigi

    2008-01-01

    When subjects are asked to compare the mental images of two analog clocks telling different times (the mental clock test), they are faster to process angles formed by hands located in the right than in the left half of the dial. In the present paper, we demonstrate that this Imaginal HemiSpatial Effect (IHSE) can be also observed in two modified…

  7. Clock Reaction: Outreach Attraction

    ERIC Educational Resources Information Center

    Carpenter, Yuen-ying; Phillips, Heather A.; Jakubinek, Michael B.

    2010-01-01

    Chemistry students are often introduced to the concept of reaction rates through demonstrations or laboratory activities involving the well-known iodine clock reaction. For example, a laboratory experiment involving thiosulfate as an iodine scavenger is part of the first-year general chemistry laboratory curriculum at Dalhousie University. With…

  8. IMF sector behavior estimated from geomagnetic data at South Pole

    SciTech Connect

    Matsushita, S.; Xu, W.h.

    1981-05-01

    IMF sector behavior which has previously been estimated from the geomagnetic data at Godhavn is confirmed by study of the data at South Pole for 1959--1970 with the same estimation technique, taking the difference between northern and southern hemispheres into consideration. A method to improve (about 18%) the agreement between assigned and actual sector structures by study of the data at the two stations is suggested. Geomagnetic disturbance effects on sector estimation are discussed, and reversed sector effects in winter are given special emphasis.

  9. Statistical study of influence of the IMF cone angle on foreshock processes

    NASA Astrophysics Data System (ADS)

    Urbar, Jaroslav; Nemecek, Zdenek; Safrankova, Jana; Prech, Lubomir

    2016-07-01

    The parameters of the solar wind plasma are modified upstream the Earth's bow shock, in the ion foreshock region, which is typically observed at quasi-parallel bow shock. Associated ULF waves are created due to the interaction of the solar wind plasma with the ions reflected at the bow shock where they generate fast magnetosonic waves with an in-phase relationship between the ion flux and magnetic field fluctuations. Using multipoint observations from the THEMIS spacecraft located in the vicinity of the bow shock or in the foreshock, we present statistical maps of a modification of solar wind parameters due to foreshock processes (solar wind heating and deceleration, enhancements of electric and magnetic field fluctuation levels, etc.). At the paper, a special attention is devoted to intervals of the radial interplanetary magnetic field that creates the foreshock upstream of a whole dayside bow shock.

  10. Pulsed Optically Pumped Rb clock

    NASA Astrophysics Data System (ADS)

    Micalizio, S.; Levi, F.; Godone, A.; Calosso, C. E.; François, B.; Boudot, R.; Affolderbach, C.; Kang, S.; Gharavipour, M.; Gruet, F.; Mileti, G.

    2016-06-01

    INRIM demonstrated a Rb vapour cell clock based on pulsed optical pumping (POP) with unprecedented frequency stability performances, both in the short and in the medium-long term period. In the frame of a EMRP project, we are developing a new clock based on the same POP principle but adopting solutions aimed at reducing the noise sources affecting the INRIM clock. At the same time, concerning possible technological applications, particular care are devoted in the project to reduce the size and the weight of the clock, still keeping the excellent stability of the INRIM clock. The paper resumes the main results of this activity.

  11. Strong gravitational lensing and the stellar IMF of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Leier, Dominik; Ferreras, Ignacio; Saha, Prasenjit; Charlot, Stéphane; Bruzual, Gustavo; La Barbera, Francesco

    2016-07-01

    Systematic variations of the initial mass function (IMF) in early-type galaxies, and their connection with possible drivers such as velocity dispersion or metallicity, have been much debated in recent years. Strong lensing over galaxy scales combined with photometric and spectroscopic data provides a powerful method to constrain the stellar mass-to-light ratio and hence the functional form of the IMF. We combine photometric and spectroscopic constraints from the latest set of population synthesis models of Charlot & Bruzual, including a varying IMF, with a non-parametric analysis of the lens masses of 18 ETGs from the SLACS survey, with velocity dispersions in the range 200-300 km s-1. We find that very bottom-heavy IMFs are excluded. However, the upper limit to the bimodal IMF slope (μ ≲ 2.2, accounting for a dark matter fraction of 20-30 per cent, where μ = 1.3 corresponds to a Kroupa-like IMF) is compatible at the 1σ level with constraints imposed by gravity-sensitive line strengths. A two-segment power-law parametrization of the IMF (Salpeter-like for high masses) is more constrained (Γ ≲ 1.5, where Γ is the power index at low masses) but requires a dark matter contribution of ≳25 per cent to reconcile the results with a Salpeter IMF. For a standard Milky Way-like IMF to be applicable, a significant dark matter contribution is required within 1Re. Our results reveal a large range of allowed IMF slopes, which, when interpreted as intrinsic scatter in the IMF properties of ETGs, could explain the recent results of Smith et al., who find Milky Way-like IMF normalizations in a few massive lensing ETGs.

  12. Photic resetting and entrainment in CLOCK-deficient mice.

    PubMed

    Dallmann, Robert; DeBruyne, Jason P; Weaver, David R

    2011-10-01

    Mice lacking the CLOCK protein have a relatively subtle circadian phenotype, including a slightly shorter period in constant darkness, differences in phase resetting after 4-hour light pulses in the early and late night, and a variably advanced phase angle of entrainment in a light-dark (LD) cycle. The present series of experiments was conducted to more fully characterize the circadian phenotype of Clock(-/-) mice under various lighting conditions. A phase-response curve (PRC) to 4-hour light pulses in free-running mice was conducted; the results confirm that Clock(-/-) mice exhibit very large phase advances after 4-hour light pulses in the late subjective night but have relatively normal responses to light at other phases. The abnormal shape of the PRC to light may explain the tendency of CLOCK-deficient mice to begin activity before lights-out when housed in a 12-hour light:12-hour dark lighting schedule. To assess this relationship further, Clock(-/-) and wild-type control mice were entrained to skeleton lighting cycles (1L:23D and 1L:10D:1L:12D). Comparing entrainment under the 2 types of skeleton photoperiods revealed that exposure to 1-hour light in the morning leads to a phase advance of activity onset (expressed the following afternoon) in Clock(-/-) mice but not in the controls. Constant light typically causes an intensity-dependent increase in circadian period in mice, but this did not occur in CLOCK-deficient mice. The failure of Clock(-/-) mice to respond to the period-lengthening effect of constant light likely results from the increased functional impact of light falling in the phase advance zone of the PRC. Collectively, these experiments reveal that alterations in the response of CLOCK-deficient mice to light in several paradigms are likely due to an imbalance in the shape of the PRC to light.

  13. Clocks in algae.

    PubMed

    Noordally, Zeenat B; Millar, Andrew J

    2015-01-20

    As major contributors to global oxygen levels and producers of fatty acids, carotenoids, sterols, and phycocolloids, algae have significant ecological and commercial roles. Early algal models have contributed much to our understanding of circadian clocks at physiological and biochemical levels. The genetic and molecular approaches that identified clock components in other taxa have not been as widely applied to algae. We review results from seven species: the chlorophytes Chlamydomonas reinhardtii, Ostreococcus tauri, and Acetabularia spp.; the dinoflagellates Lingulodinium polyedrum and Symbiodinium spp.; the euglenozoa Euglena gracilis; and the red alga Cyanidioschyzon merolae. The relative simplicity, experimental tractability, and ecological and evolutionary diversity of algal systems may now make them particularly useful in integrating quantitative data from "omic" technologies (e.g., genomics, transcriptomics, metabolomics, and proteomics) with computational and mathematical methods.

  14. Synchronization of clocks

    NASA Astrophysics Data System (ADS)

    Kapitaniak, Marcin; Czolczynski, Krzysztof; Perlikowski, Przemysław; Stefanski, Andrzej; Kapitaniak, Tomasz

    2012-08-01

    In this report we recall the famous Huygens’ experiment which gave the first evidence of the synchronization phenomenon. We consider the synchronization of two clocks which are accurate (show the same time) but have pendula with different masses. It has been shown that such clocks hanging on the same beam can show the almost complete (in-phase) and almost antiphase synchronizations. By almost complete and almost antiphase synchronization we defined the periodic motion of the pendula in which the phase shift between the displacements of the pendula is respectively close (but not equal) to 0 or π. We give evidence that almost antiphase synchronization was the phenomenon observed by Huygens in XVII century. We support our numerical studies by considering the energy balance in the system and showing how the energy is transferred between the pendula via oscillating beam allowing the pendula’s synchronization. Additionally we discuss the synchronization of a number of different pendulum clocks hanging from a horizontal beam which can roll on the parallel surface. It has been shown that after a transient, different types of synchronization between pendula can be observed; (i) the complete synchronization in which all pendula behave identically, (ii) pendula create three or five clusters of synchronized pendula. We derive the equations for the estimation of the phase differences between phase synchronized clusters. The evidence, why other configurations with a different number of clusters are not observed, is given.

  15. Foucault pendulum ``wall clock''

    NASA Astrophysics Data System (ADS)

    Crane, H. Richard

    1995-01-01

    Details are given for the construction of a 70-cm-long Foucault pendulum to be mounted on the wall, and for a simple modification that will make it display local clock time. The possibility of having a Foucault pendulum of such short length is the result of finding new or improved ways of reducing four perturbing effects that become more severe as the length is decreased. They relate to: precession due to ellipticity in the motion, the drive system for maintaining the amplitude, the means of limiting the growth of ellipticity, and the method of gripping the suspending wire at the top. With those improvements, successful Foucault operation was attained in pendulums as short as 15 cm, support to center of bob. Following that severe test, the length for the ``wall clock'' was set at a conservative 70 cm. At that length it is highly reliable, and accurate to within 2% when timed for the full revolution. Uniformity in rate when comparing different intervals of azimuth is of course less. A simple method of making the pendulum read local time is described. Two clocks, one in the author's office and one at home, have been in continuous operation for more than ten years.

  16. How chemistry influences cloud structure, star formation, and the IMF

    NASA Astrophysics Data System (ADS)

    Hocuk, S.; Cazaux, S.; Spaans, M.; Caselli, P.

    2016-03-01

    In the earliest phases of star-forming clouds, stable molecular species, such as CO, are important coolants in the gas phase. Depletion of these molecules on dust surfaces affects the thermal balance of molecular clouds and with that their whole evolution. For the first time, we study the effect of grain surface chemistry (GSC) on star formation and its impact on the initial mass function (IMF). We follow a contracting translucent cloud in which we treat the gas-grain chemical interplay in detail, including the process of freeze-out. We perform 3D hydrodynamical simulations under three different conditions, a pure gas-phase model, a freeze-out model, and a complete chemistry model. The models display different thermal evolution during cloud collapse as also indicated in Hocuk, Cazaux & Spaans, but to a lesser degree because of a different dust temperature treatment, which is more accurate for cloud cores. The equation of state (EOS) of the gas becomes softer with CO freeze-out and the results show that at the onset of star formation, the cloud retains its evolution history such that the number of formed stars differ (by 7 per cent) between the three models. While the stellar mass distribution results in a different IMF when we consider pure freeze-out, with the complete treatment of the GSC, the divergence from a pure gas-phase model is minimal. We find that the impact of freeze-out is balanced by the non-thermal processes; chemical and photodesorption. We also find an average filament width of 0.12 pc (±0.03 pc), and speculate that this may be a result from the changes in the EOS caused by the gas-dust thermal coupling. We conclude that GSC plays a big role in the chemical composition of molecular clouds and that surface processes are needed to accurately interpret observations, however, that GSC does not have a significant impact as far as star formation and the IMF is concerned.

  17. The financial crisis and global health: the International Monetary Fund's (IMF) policy response.

    PubMed

    Ruckert, Arne; Labonté, Ronald

    2013-09-01

    In this article, we interrogate the policy response of the International Monetary Fund (IMF) to the global financial crisis, and discuss the likely global health implications, especially in low-income countries. In doing so, we ask if the IMF has meaningfully loosened its fiscal deficit targets in light of the economic challenges posed by the financial crisis and adjusted its macro-economic policy advice to this new reality; or has the rhetoric of counter-cyclical spending failed to translate into additional fiscal space for IMF loan-recipient countries, with negative health consequences? To answer these questions, we assess several post-crisis IMF lending agreements with countries requiring financial assistance, and draw upon recent academic studies and civil society reports examining policy conditionalities still being prescribed by the IMF. We also reference recent studies examining the health impacts of these conditionalities. We demonstrate that while the IMF has been somewhat more flexible in its crisis response than in previous episodes of financial upheaval, there has been no meaningful rethinking in the application of dominant neoliberal macro-economic policies. After showing some flexibility in the initial crisis response, the IMF is pushing for excessive contraction in most low and middle-income countries. We conclude that there remains a wide gap between the rhetoric and the reality of the IMF's policy and programming advice, with negative implications for global health. PMID:22504946

  18. The financial crisis and global health: the International Monetary Fund's (IMF) policy response.

    PubMed

    Ruckert, Arne; Labonté, Ronald

    2013-09-01

    In this article, we interrogate the policy response of the International Monetary Fund (IMF) to the global financial crisis, and discuss the likely global health implications, especially in low-income countries. In doing so, we ask if the IMF has meaningfully loosened its fiscal deficit targets in light of the economic challenges posed by the financial crisis and adjusted its macro-economic policy advice to this new reality; or has the rhetoric of counter-cyclical spending failed to translate into additional fiscal space for IMF loan-recipient countries, with negative health consequences? To answer these questions, we assess several post-crisis IMF lending agreements with countries requiring financial assistance, and draw upon recent academic studies and civil society reports examining policy conditionalities still being prescribed by the IMF. We also reference recent studies examining the health impacts of these conditionalities. We demonstrate that while the IMF has been somewhat more flexible in its crisis response than in previous episodes of financial upheaval, there has been no meaningful rethinking in the application of dominant neoliberal macro-economic policies. After showing some flexibility in the initial crisis response, the IMF is pushing for excessive contraction in most low and middle-income countries. We conclude that there remains a wide gap between the rhetoric and the reality of the IMF's policy and programming advice, with negative implications for global health.

  19. Circadian clocks in the ovary.

    PubMed

    Sellix, Michael T; Menaker, Michael

    2010-10-01

    Clock gene expression has been observed in tissues of the hypothalamic-pituitary-gonadal (HPG) axis. Whereas the contribution of hypothalamic oscillators to the timing of reproductive biology is well known, the role of peripheral oscillators like those in the ovary is less clear. Circadian clocks in the ovary might play a role in the timing of ovulation. Disruption of the clock in ovarian cells or desynchrony between ovarian clocks and circadian oscillators elsewhere in the body may contribute to the onset and progression of various reproductive pathologies. In this paper, we review evidence for clock function in the ovary across a number of species and offer a novel perspective into the role of this clock in normal ovarian physiology and in diseases that negatively affect fertility.

  20. Circadian Clock, Cancer, and Chemotherapy

    PubMed Central

    2015-01-01

    The circadian clock is a global regulatory system that interfaces with most other regulatory systems and pathways in mammalian organisms. Investigations of the circadian clock–DNA damage response connections have revealed that nucleotide excision repair, DNA damage checkpoints, and apoptosis are appreciably influenced by the clock. Although several epidemiological studies in humans and a limited number of genetic studies in mouse model systems have indicated that clock disruption may predispose mammals to cancer, well-controlled genetic studies in mice have not supported the commonly held view that circadian clock disruption is a cancer risk factor. In fact, in the appropriate genetic background, clock disruption may instead aid in cancer regression by promoting intrinsic and extrinsic apoptosis. Finally, the clock may affect the efficacy of cancer treatment (chronochemotherapy) by modulating the pharmacokinetics and pharmacodynamics of chemotherapeutic drugs as well as the activity of the DNA repair enzymes that repair the DNA damage caused by anticancer drugs. PMID:25302769

  1. A mixed relaxed clock model.

    PubMed

    Lartillot, Nicolas; Phillips, Matthew J; Ronquist, Fredrik

    2016-07-19

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.

  2. Incentive theory III: Adaptive clocks.

    PubMed

    Killeen, P R

    1984-01-01

    Incentive theory is extended to address the phenomenon of autoshaping. To do so, it is necessary to permit the speed of the animal's internal clock to vary with rates of reinforcement; clock speed is the basis for the animal's calculations of reinforcement densities. This notion of an "adaptive clock" is consistent with other effects, such as the partial-reinforcement extinction effect, and permits us to deal with the various experimental manipulations that are found in autoshaping experiments from a unified perspective.

  3. The Vitamin C Clock Reaction

    NASA Astrophysics Data System (ADS)

    Wright, Stephen W.

    2002-01-01

    An iodine clock reaction that gives a colorless to black result similar to that of the familiar Landolt iodate-bisulfite clock reaction is described. The vitamin C clock reaction uses chemicals that are readily available on the retail market: vitamin C, tincture of iodine, 3% hydrogen peroxide, and laundry starch. Orange juice may be used as the vitamin C source to give an orange to black reaction.

  4. Response of reverse convection to fast IMF transitions

    NASA Astrophysics Data System (ADS)

    Taguchi, S.; Tawara, A.; Hairston, M. R.; Slavin, J. A.; Le, G.; Matzka, J.; Stolle, C.

    2015-05-01

    The nature of the transition that high-latitude reverse convection makes in response to fast interplanetary magnetic field (IMF) changes is investigated using observations from multiple spacecraft and a ground magnetometer array. We focused on two fast IMF-transition events on 22 April 2006. Immediately after the first event, three ST5 spacecraft identified a clear change in the distribution of the polar cap field-aligned current. Coordinate observations with the Greenland magnetometer chain showed that the near-noon Hall current distribution, which is closely related to the polar cap field-aligned current or reverse convection, was in a transition state for about 10 min. For the second event, the Greenland magnetic perturbations also showed that a transition state occurred in the near-noon sector for 10-15 min. Three DMSP spacecraft that traversed the polar cap provided evidence showing that variations of the ground magnetic perturbations were produced by the transition from clockwise plasma circulation to the anticlockwise circulation over the polar cap. A simple calculation based on the Biot-Savart law shows that the near-noon transition state is consistent with the approach of a new convection region to the near-noon sector at the speed of 0.5-1 km s-1, which is coupled with the moving away of the old convection region at a similar speed. For the higher-latitude sunward flow region, it is found that the convection takes a transition state almost simultaneously (within 1 min) with that in the near-noon sector, i.e., quasi-instantaneous response.

  5. A Light Clock Satisfying the Clock Hypothesis of Special Relativity

    ERIC Educational Resources Information Center

    West, Joseph

    2007-01-01

    The design of the FMEL, a floor-mirrored Einstein-Langevin "light clock", is introduced. The clock provides a physically intuitive manner to calculate and visualize the time dilation effects for a spatially extended set of observers (an accelerated "frame") undergoing unidirectional acceleration or observers on a rotating cylinder of constant…

  6. Master/slave clock arrangement for providing reliable clock signal

    NASA Technical Reports Server (NTRS)

    Abbey, Duane L. (Inventor)

    1977-01-01

    The outputs of two like frequency oscillators are combined to form a single reliable clock signal, with one oscillator functioning as a slave under the control of the other to achieve phase coincidence when the master is operative and in a free-running mode when the master is inoperative so that failure of either oscillator produces no effect on the clock signal.

  7. Digital processing clock

    NASA Technical Reports Server (NTRS)

    Phillips, D. H.

    1982-01-01

    Tthe digital processing clock SG 1157/U is described. It is compatible with the PTTI world where it can be driven by an external cesium source. Built-in test equipment shows synchronization with cesium through 1 pulse per second. It is built to be expandable to accommodate future time-keeping needs of the Navy as well as any other time ordered functions. Examples of this expandibility are the inclusion of an unmodulated XR3 time code and the 2137 modulate time code (XR3 with 1 kHz carrier).

  8. Biological switches and clocks

    PubMed Central

    Tyson, John J.; Albert, Reka; Goldbeter, Albert; Ruoff, Peter; Sible, Jill

    2008-01-01

    To introduce this special issue on biological switches and clocks, we review the historical development of mathematical models of bistability and oscillations in chemical reaction networks. In the 1960s and 1970s, these models were limited to well-studied biochemical examples, such as glycolytic oscillations and cyclic AMP signalling. After the molecular genetics revolution of the 1980s, the field of molecular cell biology was thrown wide open to mathematical modellers. We review recent advances in modelling the gene–protein interaction networks that control circadian rhythms, cell cycle progression, signal processing and the design of synthetic gene networks. PMID:18522926

  9. Einstein’s Clocks

    SciTech Connect

    Lincoln, Don

    2015-09-09

    One of the most non-intuitive physics theories ever devised is Einstein’s Theory of Special Relativity, which claim such crazy-sounding things as two people disagreeing on such familiar concepts as length and time. In this video, Fermilab’s Dr. Don Lincoln shows that every single day particle physicists prove that moving clocks tick more slowly than stationary ones. He uses an easy to understand example of particles that move for far longer distances than you would expect from combining their velocity and stationary lifetime.

  10. Clocks and cardiovascular function

    PubMed Central

    McLoughlin, Sarah C.; Haines, Philip; FitzGerald, Garret A.

    2016-01-01

    Circadian clocks in central and peripheral tissues enable the temporal synchronization and organization of molecular and physiological processes of rhythmic animals, allowing optimum functioning of cells and organisms at the most appropriate time of day. Disruption of circadian rhythms, from external or internal forces, leads to widespread biological disruption and is postulated to underlie many human conditions, such as the incidence and timing of cardiovascular disease. Here, we describe in vivo and in vitro methodology relevant to studying the role of circadian rhythms in cardiovascular function and dysfunction PMID:25707279

  11. A mixed relaxed clock model

    PubMed Central

    2016-01-01

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829

  12. The Vitamin C Clock Reaction.

    ERIC Educational Resources Information Center

    Wright, Stephen W.

    2002-01-01

    Describes an iodine clock reaction that produces an effect similar to the Landolt clock reaction. This reaction uses supermarket chemicals and avoids iodate, bisulfite, and mercury compounds. Ascorbic acid and tincture of iodine are the main reactants with alternate procedures provided for vitamin C tablets and orange juice. (DDR)

  13. North-south asymmetry of the high-latitude thermospheric density: IMF BY effect

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yosuke; Kosch, Michael J.; Sutton, Eric K.

    2015-01-01

    Previous studies have established that the y component of the interplanetary magnetic field (IMF By) plays a role in the north-south asymmetry of the high-latitude plasma convection and wind. The effect of the positive/negative IMF By in the Northern Hemisphere resembles the effect that the negative/positive IMF By would have in the Southern Hemisphere. In this study, we demonstrate that the IMF By effect can also contribute to the hemispheric asymmetry of the thermospheric density. We use high-accuracy air drag measurements from the CHAllenging Minisatellite Payload (CHAMP) satellite and SuperMAG AE index during the period 2001-2006 to examine the response of the high-latitude thermospheric density to geomagnetic activity. Our statistical analysis reveals that the density response at 400 km is greater in the Southern Hemisphere under positive IMF By conditions, and greater in the Northern Hemisphere under negative IMF By conditions. The results suggest that the IMF By effect needs to be taken into account in upper atmospheric modeling for an accurate description of high-latitude densities during periods of enhanced geomagnetic activity.

  14. Circadian clocks: lessons from fish.

    PubMed

    Idda, M Laura; Bertolucci, Cristiano; Vallone, Daniela; Gothilf, Yoav; Sánchez-Vázquez, Francisco Javier; Foulkes, Nicholas S

    2012-01-01

    Our understanding of the molecular and cellular organization of the circadian timing system in vertebrates has increased enormously over the past decade. In large part, progress has been based on genetic studies in the mouse as well as on fundamental similarities between vertebrate and Drosophila clocks. The zebrafish was initially considered as a potentially attractive genetic model for identifying vertebrate clock genes. However, instead, fish have ultimately proven to be valuable complementary models for studying various aspects of clock biology. For example, many fish can shift from diurnal to nocturnal activity implying specific flexibility in their clock function. We have learned much about the function of light input pathways, and the ontogeny and function of the pineal organ, the fish central pacemaker. Finally, blind cavefish have also provided new insight into the evolution of the circadian clock under extreme environmental conditions. PMID:22877658

  15. Gradient in the IMF slope and Sodium abundance of M87 with MUSE

    NASA Astrophysics Data System (ADS)

    Spiniello, C.; Sarzi, M.; Krajnovic, D.

    2016-06-01

    We present evidence for a radial variation of the stellar initial mass function IMF) in the giant elliptical NGC~4486 based on integral-field MUSE data acquired during the first Science Verification run for this instrument. A steepening of the low-mass end of the IMF towards the centre of this galaxy is necessary to explain the increasing strength of several of the optical IMF sensitive features introduced by Spiniello et al., which we observe in high-quality spectra extracted in annular apertures. The need for a varying slope of the IMF emerges when the strength of these IMF-sensitive features, together with that other classical Lick indices mostly sensitive to stellar metallicity and the bundance of α-elements, are fitted with the state-of-the-art stellar population models from Conroy & van Dokkum and Vazdekis et al., which we modified in order to allow variations in IMF slope, metallicity and α-elements abundance. More specifically, adopting 13-Gyr-old, single-age stellar population models and an unimodal IMF we find that the slope of the latter increases from x=1.8 to x=2.6 in the central 25 arcsec of NGC~4486. Varying IMF accompanied by a metallicity gradient, whereas the abundance of α-element appears constant throughout the MUSE field of view. We found metallicity and α-element abundance gradients perfectly consistent with the literature. A sodium over-abundance is necessary (according to CvD12 models) at all the distances (for all the apertures) and a slight gradient of increasing [Na/Fe] ratio towards the center can be inferred. However, in order to completely break the degeneracies between Na-abundance, total metallicity and IMF variation a more detailed investigation that includes the redder NaI line is required.

  16. Clock controls angiogenesis

    PubMed Central

    Jensen, Lasse Dahl; Cao, Yihai

    2013-01-01

    Circadian rhythms control multiple physiological and pathological processes, including embryonic development in mammals and development of various human diseases. We have recently, in a developing zebrafish embryonic model, discovered that the circadian oscillation controls developmental angiogenesis. Disruption of crucial circadian regulatory genes, including Bmal1 and Period2, results in marked impairment or enhancement of vascular development in zebrafish. At the molecular level, we show that the circadian regulator Bmal1 directly targets the promoter region of the vegf gene in zebrafish, leading to an elevated expression of VEGF. These findings can reasonably be extended to developmental angiogenesis in mammals and even pathological angiogenesis in humans. Thus, our findings, for the first time, shed new light on mechanisms that underlie circadian clock-regulated angiogenesis. PMID:23324349

  17. A Superfluid Clock

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin

    2004-01-01

    The performance of clocks is limited by the characteristics of the underlying oscillator. Both the quality factor of the oscillator and the signal-to-noise ratio for the resonator state measurement are important. A superfluid helium Helmholtz resonator operating at approx.100mK temperatures has the potential of maintaining frequency stability of 5x10(exp -15)/t(exp 1/2) on the time scale of a few months. The high dynamic range of lossless SQUID position displacement measurement, and low losses associated with the superfluid flow, combined with high mechanical stability of cryogenic assemblies, contribute to the projected stability. Low overall mass of the assembly allows for multiple stages of vibration isolation.

  18. Clock Genes in Glia Cells

    PubMed Central

    Chi-Castañeda, Donají

    2016-01-01

    Circadian rhythms are periodic patterns in biological processes that allow the organisms to anticipate changes in the environment. These rhythms are driven by the suprachiasmatic nucleus (SCN), the master circadian clock in vertebrates. At a molecular level, circadian rhythms are regulated by the so-called clock genes, which oscillate in a periodic manner. The protein products of clock genes are transcription factors that control their own and other genes’ transcription, collectively known as “clock-controlled genes.” Several brain regions other than the SCN express circadian rhythms of clock genes, including the amygdala, the olfactory bulb, the retina, and the cerebellum. Glia cells in these structures are expected to participate in rhythmicity. However, only certain types of glia cells may be called “glial clocks,” since they express PER-based circadian oscillators, which depend of the SCN for their synchronization. This contribution summarizes the current information about clock genes in glia cells, their plausible role as oscillators and their medical implications. PMID:27666286

  19. Circadian clocks and breast cancer.

    PubMed

    Blakeman, Victoria; Williams, Jack L; Meng, Qing-Jun; Streuli, Charles H

    2016-01-01

    Circadian clocks respond to environmental time cues to coordinate 24-hour oscillations in almost every tissue of the body. In the breast, circadian clocks regulate the rhythmic expression of numerous genes. Disrupted expression of circadian genes can alter breast biology and may promote cancer. Here we overview circadian mechanisms, and the connection between the molecular clock and breast biology. We describe how disruption of circadian genes contributes to cancer via multiple mechanisms, and link this to increased tumour risk in women who work irregular shift patterns. Understanding the influence of circadian rhythms on breast cancer could lead to more efficacious therapies, reformed public health policy and improved patient outcome. PMID:27590298

  20. Dark matter and IMF normalization in Virgo dwarf early-type galaxies

    NASA Astrophysics Data System (ADS)

    Tortora, C.; La Barbera, F.; Napolitano, N. R.

    2016-01-01

    In this work, we analyse the dark matter (DM) fraction, fDM, and mass-to-light ratio mismatch parameter, δIMF (computed with respect to a Milky Way-like initial mass function), for a sample of 39 dwarf early-type galaxies in the Virgo cluster. Both fDM and δIMF are estimated within the central (one effective radius) galaxy regions, with a Jeans dynamical analysis that relies on galaxy velocity dispersions, structural parameters, and stellar mass-to-light ratios from the SMAKCED survey. In this first attempt to constrain, simultaneously, the initial mass function (IMF) normalization and the DM content, we explore the impact of different assumptions on the DM model profile. On average, for an Navarro, Frenk & White (NFW) profile, the δIMF is consistent with a Chabrier-like normalization ({δ _IMF}˜ 1), with {f_DM}˜ 0.35. One of the main results of this work is that for at least a few systems the δIMF are heavier than the Milky Way-like value (i.e. either top- or bottom-heavy). When introducing tangential anisotropy, larger δIMF and smaller fDM are derived. Adopting a steeper concentration-mass relation than that from simulations, we find lower δIMF ( ≲ 1) and larger fDM. A constant M/L profile with null fDM gives the heaviest δIMF (˜2). In the MONDian framework, we find consistent results to those for our reference NFW model. If confirmed, the large scatter of δIMF for dEs would provide (further) evidence for a non-universal IMF in early-type systems. On average, our reference fDM estimates are consistent with those found for low-σe (˜ 100 km s^{-1}) early-type galaxies (ETGs). Furthermore, we find fDM consistent with values from the SMAKCED survey, and find a double-value behaviour of fDM with stellar mass, which mirrors the trend of dynamical M/L and global star formation efficiency (from abundance matching estimates) with mass.

  1. Implications of a variable IMF for the interpretation of observations of galaxy populations

    NASA Astrophysics Data System (ADS)

    Clauwens, Bart; Schaye, Joop; Franx, Marijn

    2016-11-01

    We investigate the effect of a metallicity-dependent stellar initial mass function (IMF), as deduced observationally by Martín-Navarro et al., on the inferred stellar masses and star formation rates (SFRs) of a representative sample of 186 886 SDSS galaxies. Relative to a Chabrier IMF, for which we show the implied masses to be close to minimal, the inferred masses increase in both the low- and high-metallicity regimes due to the addition of stellar remnants and dwarf stars, respectively. The resulting galaxy stellar mass function (GSMF) shifts towards higher masses by 0.5 dex, without affecting the high-mass slope (and thus the need for effective quenching). The implied low-redshift SFR density increases by an order of magnitude. However, these results depend strongly on the assumed IMF parametrization, which is not directly constrained by the observations. Varying the low-end IMF slope instead of the high-end IMF slope, while maintaining the same dwarf-to-giant ratio, results in a much more modest GSMF shift of 0.2 dex and a 10 per cent increase in the SFR density relative to the Chabrier IMF. A bottom-heavy IMF during the late, metal-rich evolutionary stage of a galaxy would help explain the rapid quenching and the bimodality in the galaxy population by on the one hand making galaxies less quenched (due to the continued formation of dwarf stars) and on the other hand reducing the gas consumption time-scale. We conclude that the implications of the observational evidence for a variable IMF could vary from absolutely dramatic to mild but significant.

  2. The influence of IMF on the lower ionosphere plasma in high and middle latitudes

    NASA Technical Reports Server (NTRS)

    Bremer, J.

    1989-01-01

    As shown by ground-based absorption measurements, the lower ionospheric plasma is markedly controlled by the structure of the IMF. Whereas in high auroral and subauroral latitudes this effect is very pronounced, in midlatitudes its influence is less important. A comparison of these results with satellite data of the IMF and the solar wind speed confirms the important role of these components, not only during special events but also for the normal state of the ionospheric D region plasma.

  3. Proton Aurora Dynamics in Response to the IMF and Solar Wind Variations

    NASA Technical Reports Server (NTRS)

    Chang, S.; Mende, S.; Frey, H.; Gallagher, D. L.; Lepping, R. P.; Six, N. Frank (Technical Monitor)

    2002-01-01

    On May 23, 2000, proton auroras observed by IMAGE (Imager for Magnetopause to Aurora Global Exploration) FUV (Far Ultraviolet) on the dayside were very dynamic. Auroral pattern in the cusp is well correlated with Interplanetary Magnetic Field (IMF) and solar wind parameters. When IMF were northward, cusp proton aurora appeared at high latitude poleward from the auroral oval. A high-latitude proton aurora brightened after solar wind ion temperature increased and it disappeared after IMF turned southward. Under the southward IMF condition, auroral activity occurred only in the dayside auroral oval. As IMF $B_z$ reverted to northward, cusp proton aurora reappeared at high latitude. The magnetic local time of the cusp proton aurora changes with the IMF $B_y$ polarity, consistent with previous reports. These results suggest an upstream source of the high-latitude cusp proton aurora for this event. One possible explanation is that bow shock energetic ions are transported into the cusp via the high-latitude magnetic merging process to induce optical emissions in the ionosphere.

  4. Circadian Clocks, Stress, and Immunity

    PubMed Central

    Dumbell, Rebecca; Matveeva, Olga; Oster, Henrik

    2016-01-01

    In mammals, molecular circadian clocks are present in most cells of the body, and this circadian network plays an important role in synchronizing physiological processes and behaviors to the appropriate time of day. The hypothalamic–pituitary–adrenal endocrine axis regulates the response to acute and chronic stress, acting through its final effectors – glucocorticoids – released from the adrenal cortex. Glucocorticoid secretion, characterized by its circadian rhythm, has an important role in synchronizing peripheral clocks and rhythms downstream of the master circadian pacemaker in the suprachiasmatic nucleus. Finally, glucocorticoids are powerfully anti-inflammatory, and recent work has implicated the circadian clock in various aspects and cells of the immune system, suggesting a tight interplay of stress and circadian systems in the regulation of immunity. This mini-review summarizes our current understanding of the role of the circadian clock network in both the HPA axis and the immune system, and discusses their interactions. PMID:27199894

  5. A transportable optical lattice clock

    NASA Astrophysics Data System (ADS)

    Vogt, Stefan; Häfner, Sebastian; Grotti, Jacopo; Koller, Silvio; Al-Masoudi, Ali; Sterr, Uwe; Lisdat, Christian

    2016-06-01

    We present the experimental setup and first results of PTB's transportable 87Sr clock. It consists of a physics package, several compact laser breadboards, and a transportable high finesse cavity for the clock laser. A comparison of the transportable system with our stationary optical lattice clock yields an instability of 2.2 x 10-15 √s/τ for the transportable clock. The current fractional uncertainty of 1 × 10-15 is still limited by the not yet fully evaluated light shift from the free running optical lattice laser operated near the magic wavelength. We are currently improving our transportable system to reach an uncertainty at or below the 10-17 level, which will finaly be limited by the uncertainty in blackbody radiation shift correction.

  6. The cyanobacterial clock and metabolism.

    PubMed

    Pattanayak, Gopal; Rust, Michael J

    2014-04-01

    Cyanobacteria possess the simplest known circadian clock, which presents a unique opportunity to study how rhythms are generated and how input signals from the environment reset the clock time. The kaiABC locus forms the core of the oscillator, and the remarkable ability to reconstitute oscillations using purified KaiABC proteins has allowed researchers to study mechanism using the tools of quantitative biochemistry. Autotrophic cyanobacteria experience major shifts in metabolism following a light-dark transition, and recent work suggests that input mechanisms that couple the day-night cycle to the clock involve energy and redox metabolites acting directly on clock proteins. We offer a summary of the current state of knowledge in this system and present a perspective for future lines of investigation.

  7. High-altitude Cusp Precipitation for Different IMF Orientations

    NASA Astrophysics Data System (ADS)

    Nemecek, Z.; Safrankova, J.; Simunek, J.

    2005-12-01

    Reconnection is the most important process in the magnetospheric physics. Dayside reconnection of interplanetary and terrestrial magnetic fields supplies the magnetosphere with a huge amount of the solar wind plasma that is then released due to reconnection occurring in the tail. In spite of its principal importance, reconnection is still understood insufficiently. The main problem is probably connected with the fact that both MHD and kinetic processes are equally important for its initialization and further development. Experimental investigations are difficult because reconnection spots are limited in space and time and a probability that a spacecraft is located in appropriate time at a right position is very low. However, all possible places where magnetopause reconnection can occur are magnetically connected to the cusp and thus the plasma proceeding along reconnected magnetic field lines brings information on reconnection. As observed by the various spacecraft at both low and high altitudes, a cusp precipitation is often characterized by ion energy dispersion. During southward IMF, ion energy falls with increasing magnetic latitudes due to the convection electric field operating as a velocity filter on particles from the injection point to the observation point. The high-energy ions rapidly reach lower latitudes and the lower-energy ions appear later at higher latitudes. By contrast, if reconnection takes place in the tail lobes, the high-energy ions quickly reach higher latitudes, whereas the low-energy ions are convected to lower latitudes and thus the ion energy-latitude dispersion signifies the boundary of open and closed magnetic field lines. We are presenting case studies of crossings of the cusp region at high altitudes which reveal that both spatial and temporal changes should be taken into account for an explanation of the observed features. Moreover, our study shows that the cusp can be supplied from two simultaneously operating reconnection sites

  8. Physical Time and Thermal Clocks

    NASA Astrophysics Data System (ADS)

    Borghi, Claudio

    2016-10-01

    In this paper I discuss the concept of time in physics. I consider the thermal time hypothesis and I claim that thermal clocks and atomic clocks measure different physical times, whereby thermal time and relativistic time are not compatible with each other. This hypothesis opens the possibility of a new foundation of the theory of physical time, and new perspectives in theoretical and philosophical researches.

  9. Stochastic models for atomic clocks

    NASA Technical Reports Server (NTRS)

    Barnes, J. A.; Jones, R. H.; Tryon, P. V.; Allan, D. W.

    1983-01-01

    For the atomic clocks used in the National Bureau of Standards Time Scales, an adequate model is the superposition of white FM, random walk FM, and linear frequency drift for times longer than about one minute. The model was tested on several clocks using maximum likelihood techniques for parameter estimation and the residuals were acceptably random. Conventional diagnostics indicate that additional model elements contribute no significant improvement to the model even at the expense of the added model complexity.

  10. Physical Time and Thermal Clocks

    NASA Astrophysics Data System (ADS)

    Borghi, Claudio

    2016-07-01

    In this paper I discuss the concept of time in physics. I consider the thermal time hypothesis and I claim that thermal clocks and atomic clocks measure different physical times, whereby thermal time and relativistic time are not compatible with each other. This hypothesis opens the possibility of a new foundation of the theory of physical time, and new perspectives in theoretical and philosophical researches.

  11. Circadian clock proteins and immunity.

    PubMed

    Curtis, Anne M; Bellet, Marina M; Sassone-Corsi, Paolo; O'Neill, Luke A J

    2014-02-20

    Immune parameters change with time of day and disruption of circadian rhythms has been linked to inflammatory pathologies. A circadian-clock-controlled immune system might allow an organism to anticipate daily changes in activity and feeding and the associated risk of infection or tissue damage to the host. Responses to bacteria have been shown to vary depending on time of infection, with mice being more at risk of sepsis when challenged ahead of their activity phase. Studies highlight the extent to which the molecular clock, most notably the core clock proteins BMAL1, CLOCK, and REV-ERBα, control fundamental aspects of the immune response. Examples include the BMAL1:CLOCK heterodimer regulating toll-like receptor 9 (TLR9) expression and repressing expression of the inflammatory monocyte chemokine ligand (CCL2) as well as REV-ERBα suppressing the induction of interleukin-6. Understanding the daily rhythm of the immune system could have implications for vaccinations and how we manage infectious and inflammatory diseases.

  12. Biological clocks: mechanisms and developments.

    PubMed

    Nongkynrih, P; Sharma, V K

    1992-05-15

    Almost all organisms ranging from unicellular protists to mammals were found to show biological rhythms. Many workers have performed various kinds of experiment to understand the mechanism as well as to find the origin of the clock responsible for these rhythms. However, there is no doubt about the existence of a biologically controlled clock in almost all organisms; yet its origin and mechanism still remain a mystery. Many theories have been put forward to explain the mechanism of these biological clocks and it seems that the cell membrane may play a key role. The existence of a very high electric field of the order of 10(5) V cm-1 across the cell membrane may have some role in the mechanism of the biological clock. Of all the factors which have the effects on biological rhythms, light and temperature are found to be the most common. Also, the study of these biological clocks can help to solve the sleeping problems of international travellers and shift workers as well as to improve diagnosis, cure and prevention from diseases.

  13. A tale of a clock

    NASA Astrophysics Data System (ADS)

    Crook, A. W.

    2001-09-01

    A computer model has been constructed of a long case clock standing on a resilient surface, or within a case of impaired shear stiffness, whereby the head of the clock rocks in response to the swinging of its pendulum. The equations of motion are written in matrix form, and are solved by matrix inversion. The model accounts for the tendency of such a clock to stop when its driving weight has descended to about the level of the bob of the pendulum. The model predicts that the lengthening of the suspension of the weight by insertion of a link would permit the clock to run on until the weight becomes grounded. It also predicts that use of the chiming weight as a resonant absorber, by hanging it from a tuned suspension of fixed length, not only allows such a clock to run for the full term of a wind, but improves the constancy of its rate. The effects of a link, and of the resonant absorber, have been verified experimentally.

  14. Sr+ single-ion clock

    NASA Astrophysics Data System (ADS)

    Dubé, P.; Madej, A. A.; Jian, B.

    2016-06-01

    The evaluated uncertainty of the 88Sr+ ion optical clock has decreased by several orders of magnitude during the last 15 years, currently reaching a level of 1.2 x 10-17. In this paper, we review the methods developed to control very effectively the largest frequency shifts that once were the main sources of uncertainty for the 88Sr+ single-ion clock. These shifts are the micromotion shifts, the electric quadrupole shift and the blackbody radiation shift. With further improvements to the evaluation of the systematic shifts, especially the blackbody radiation shift, it is expected that the total uncertainty of the single-ion clock transition frequency will reach the low 10-18 level in the near future.

  15. Synchronous clock stopper for microprocessor

    NASA Technical Reports Server (NTRS)

    Kitchin, David A. (Inventor)

    1985-01-01

    A synchronous clock stopper circuit for inhibiting clock pulses to a microprocessor in response to a stop request signal, and for reinstating the clock pulses in response to a start request signal thereby to conserve power consumption of the microprocessor when used in an environment of limited power. The stopping and starting of the microprocessor is synchronized, by a phase tracker, with the occurrences of a predetermined phase in the instruction cycle of the microprocessor in which the I/O data and address lines of the microprocessor are of high impedance so that a shared memory connected to the I/O lines may be accessed by other peripheral devices. The starting and stopping occur when the microprocessor initiates and completes, respectively, an instruction, as well as before and after transferring data with a memory. Also, the phase tracker transmits phase information signals over a bus to other peripheral devices which signals identify the current operational phase of the microprocessor.

  16. Clocks, Metabolism, and the Epigenome

    PubMed Central

    Feng, Dan; Lazar, Mitchell A.

    2012-01-01

    Many behaviors and physiological activities in living organisms display circadian rhythms, allowing them to anticipate and prepare for the diurnal changes in the living environment. In this way, metabolic processes are aligned with the periodic environmental changes and behavioral cycles, such as the sleep/wake and fasting/feeding cycles. Disturbances of this alignment significantly increase the risk of metabolic diseases. Meanwhile, the circadian clock receives signals from the environment and feedback from metabolic pathways, and adjusts its activity and function. Growing evidence connects the circadian clock with epigenomic regulators. Here we review the recent advances in understanding the crosstalk between the circadian clock and energy metabolism through epigenomic programming and transcriptional regulation. PMID:22841001

  17. Circadian clocks and cell division

    PubMed Central

    2010-01-01

    Evolution has selected a system of two intertwined cell cycles: the cell division cycle (CDC) and the daily (circadian) biological clock. The circadian clock keeps track of solar time and programs biological processes to occur at environmentally appropriate times. One of these processes is the CDC, which is often gated by the circadian clock. The intermeshing of these two cell cycles is probably responsible for the observation that disruption of the circadian system enhances susceptibility to some kinds of cancer. The core mechanism underlying the circadian clockwork has been thought to be a transcription and translation feedback loop (TTFL), but recent evidence from studies with cyanobacteria, synthetic oscillators and immortalized cell lines suggests that the core circadian pacemaking mechanism that gates cell division in mammalian cells could be a post-translational oscillator (PTO). PMID:20890114

  18. Primary Atomic Clock Reference System

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An artist's concept of the Primary Atomic Clock Reference System (PARCS) plarned to fly on the International Space Station (ISS). PARCS will make even more accurate atomic time available to everyone, from physicists testing Einstein's Theory of Relativity, to hikers using the Global Positioning System to find their way. In ground-based atomic clocks, lasers are used to cool and nearly stop atoms of cesium whose vibrations are used as the time base. The microgravity of space will allow the atoms to be suspended in the clock rather than circulated in an atomic fountain, as required on Earth. PARCS is being developed by the Jet Propulsion Laboratory with principal investigators at the National Institutes of Standards and Technology and the University of Colorado, Boulder. See also No. 0103191

  19. Primary Atomic Clock Reference System

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An artist's concept of the Primary Atomic Clock Reference System (PARCS) plarned to fly on the International Space Station (ISS). PARCS will make even more accurate atomic time available to everyone, from physicists testing Einstein's Theory of Relativity, to hikers using the Global Positioning System to find their way. In ground-based atomic clocks, lasers are used to cool and nearly stop atoms of cesium whose vibrations are used as the time base. The microgravity of space will allow the atoms to be suspended in the clock rather than circulated in an atomic fountain, as required on Earth. PARCS is being developed by the Jet Propulsion Laboratory with principal investigators at the National Institutes of Standards and Technology and the University of Colorado, Boulder. See also No. 0100120.

  20. Circadian molecular clocks and cancer.

    PubMed

    Kelleher, Fergal C; Rao, Aparna; Maguire, Anne

    2014-01-01

    Physiological processes such as the sleep-wake cycle, metabolism and hormone secretion are controlled by a circadian rhythm adapted to 24h day-night periodicity. This circadian synchronisation is in part controlled by ambient light decreasing melatonin secretion by the pineal gland and co-ordinated by the suprachiasmatic nucleus of the hypothalamus. Peripheral cell autonomous circadian clocks controlled by the suprachiasmatic nucleus, the master regulator, exist within every cell of the body and are comprised of at least twelve genes. These include the basic helix-loop-helix/PAS domain containing transcription factors; Clock, BMal1 and Npas2 which activate transcription of the periodic genes (Per1 and Per2) and cryptochrome genes (Cry1 and Cry2). Points of coupling exist between the cellular clock and the cell cycle. Cell cycle genes which are affected by the molecular circadian clock include c-Myc, Wee1, cyclin D and p21. Therefore the rhythm of the circadian clock and cancer are interlinked. Molecular examples exist including activation of Per2 leads to c-myc overexpression and an increased tumor incidence. Mice with mutations in Cryptochrome 1 and 2 are arrhythmic (lack a circadian rhythm) and arrhythmic mice have a faster rate of growth of implanted tumors. Epidemiological finding of relevance include 'The Nurses' Health Study' where it was established that women working rotational night shifts have an increased incidence of breast cancer. Compounds that affect circadian rhythm exist with attendant future therapeutic possibilities. These include casein kinase I inhibitors and a candidate small molecule KL001 that affects the degradation of cryptochrome. Theoretically the cell cycle and malignant disease may be targeted vicariously by selective alteration of the cellular molecular clock. PMID:24099911

  1. Optimized multiparty quantum clock synchronization

    SciTech Connect

    Ben-Av, Radel; Exman, Iaakov

    2011-07-15

    A multiparty protocol for distributed quantum clock synchronization has been claimed to provide universal limits on the clock accuracy, viz., that accuracy monotonically decreases with the number n of party members. But this is only true for synchronization when one limits oneself to W states. This work shows that the usage of Z (Symmetric Dicke) states, a generalization of W states, results in improved accuracy, having a maximum when Left-Floor n/2 Right-Floor of its members have their qubits with a |1> eigenstate.

  2. Colloquium: Physics of optical lattice clocks

    SciTech Connect

    Derevianko, Andrei; Katori, Hidetoshi

    2011-04-01

    Recently invented and demonstrated optical lattice clocks hold great promise for improving the precision of modern time keeping. These clocks aim at the 10{sup -18} fractional accuracy, which translates into a clock that would neither lose nor gain a fraction of a second over an estimated age of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously, dramatically improving clock stability. Here the principles of operation of these clocks are discussed and, in particular, a novel concept of magic trapping of atoms in optical lattices. Recently proposed microwave lattice clocks are also highlights and several applications that employ the optical lattice clocks as a platform for precision measurements and quantum information processing.

  3. Acting with the Clock: Clocking Practices in Early Childhood

    ERIC Educational Resources Information Center

    Pacini-Ketchabaw, Veronica

    2012-01-01

    In this article, the author addresses intra-actions that take place among humans and non-human others--the physical world, the materials--in early childhood education's everyday practices. Her object of study is the clock. Specifically, she provides an example of what it might mean to account for the intra-activity of the material-discursive…

  4. Single-transistor-clocked flip-flop

    DOEpatents

    Zhao, Peiyi; Darwish, Tarek; Bayoumi, Magdy

    2005-08-30

    The invention provides a low power, high performance flip-flop. The flip-flop uses only one clocked transistor. The single clocked transistor is shared by the first and second branches of the device. A pulse generator produces a clock pulse to trigger the flip-flop. In one preferred embodiment the device can be made as a static explicit pulsed flip-flop which employs only two clocked transistors.

  5. Spin squeezing in a Rydberg lattice clock.

    PubMed

    Gil, L I R; Mukherjee, R; Bridge, E M; Jones, M P A; Pohl, T

    2014-03-14

    We theoretically demonstrate a viable approach to spin squeezing in optical lattice clocks via optical dressing of one clock state to a highly excited Rydberg state, generating switchable atomic interactions. For realistic experimental parameters, these interactions are shown to generate over 10 dB of squeezing in large ensembles within a few microseconds and without degrading the subsequent clock interrogation. PMID:24679291

  6. Microwave Cavity Clocks On Space Station

    NASA Technical Reports Server (NTRS)

    Lipa, J. a.; Nissen, J. A.; Wang, S.; Stricker, D. A.; Avaloff, D.

    2003-01-01

    We describe the status of a microwave cavity clock experiment to perform improved tests of Local Position Invariance and Lorentz Invariance on the International Space Station in conjunction with atomic clocks. Significant improvements over present bounds are expected in both cases. The oscillators can also be used to enhance the performance of atomic clocks at short time scales for other experiments.

  7. Quasars as very-accurate clock synchronizers

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Goldstein, R. M.

    1975-01-01

    Quasars can be employed to synchronize global data communications, geophysical measurements, and atomic clocks. It is potentially two to three orders of magnitude better than presently-used Moon-bounce system. Comparisons between quasar and clock pulses are used to develop correction or synchronization factors for station clocks.

  8. Biological clocks: riding the tides.

    PubMed

    de la Iglesia, Horacio O; Johnson, Carl Hirschie

    2013-10-21

    Animals with habitats in the intertidal zone often display biological rhythms that coordinate with both the tidal and the daily environmental cycles. Two recent studies show that the molecular components of the biological clocks mediating tidal rhythms are likely different from the phylogenetically conserved components that mediate circadian (daily) rhythms.

  9. Cannabinoids excite circadian clock neurons.

    PubMed

    Acuna-Goycolea, Claudio; Obrietan, Karl; van den Pol, Anthony N

    2010-07-28

    Cannabinoids, the primary active agent in drugs of abuse such as marijuana and hashish, tend to generate a distorted sense of time. Here we study the effect of cannabinoids on the brain's circadian clock, the suprachiasmatic nucleus (SCN), using patch clamp and cell-attached electrophysiological recordings, RT-PCR, immunocytochemistry, and behavioral analysis. The SCN showed strong expression of the cannabinoid receptor CB1R, as detected with RT-PCR. SCN neurons, including those using GABA as a transmitter, and axons within the SCN, expressed CB1R immunoreactivity. Behaviorally, cannabinoids did not alter the endogenous free-running circadian rhythm in the mouse brain, but did attenuate the ability of the circadian clock to entrain to light zeitgebers. In the absence of light, infusion of the CB1R antagonist AM251 caused a modest phase shift, suggesting endocannabinoid modulation of clock timing. Interestingly, cannabinoids had no effect on glutamate release from the retinohypothalamic projection, suggesting a direct action of cannabinoids on the retinohypothalamic tract was unlikely to explain the inhibition of the phase shift. Within the SCN, cannabinoids were excitatory by a mechanism based on presynaptic CB1R attenuation of axonal GABA release. These data raise the possibility that the time dissociation described by cannabinoid users may result in part from altered circadian clock function and/or entrainment to environmental time cues. PMID:20668190

  10. Biological Clocks: Riding the Tides

    PubMed Central

    de la Iglesia, Horacio O.; Johnson, Carl Hirschie

    2015-01-01

    Animals with habitats in the intertidal zone often display biological rhythms that coordinate with both the tidal and the daily environmental cycles. Two recent studies show that the molecular components of the biological clocks mediating tidal rhythms are likely different from the phylogenetically conserved components that mediate circadian (daily) rhythms. PMID:24156810

  11. VCSEL polarization control for chip-scale atomic clocks.

    SciTech Connect

    Geib, Kent Martin; Peake, Gregory Merwin; Wendt, Joel Robert; Serkland, Darwin Keith; Keeler, Gordon Arthur

    2007-01-01

    Sandia National Laboratories and Mytek, LLC have collaborated to develop a monolithically-integrated vertical-cavity surface-emitting laser (VCSEL) assembly with controllable polarization states suitable for use in chip-scale atomic clocks. During the course of this work, a robust technique to provide polarization control was modeled and demonstrated. The technique uses deeply-etched surface gratings oriented at several different rotational angles to provide VCSEL polarization stability. A rigorous coupled-wave analysis (RCWA) model was used to optimize the design for high polarization selectivity and fabrication tolerance. The new approach to VCSEL polarization control may be useful in a number of defense and commercial applications, including chip-scale atomic clocks and other low-power atomic sensors.

  12. Spatially resolved variations of the IMF mass normalisation in early-type galaxies as probed by molecular gas kinematics

    NASA Astrophysics Data System (ADS)

    Davis, Timothy A.; McDermid, Richard M.

    2016-09-01

    We here present the first spatially-resolved study of the IMF in external galaxies derived using a dynamical tracer of the mass-to-light ratio. We use the kinematics of relaxed molecular gas discs in seven early-type galaxies (ETGs) selected from the ATLAS3D survey to dynamically determine mass-to-light ratio (M/L) gradients. These M/L gradients are not very strong in the inner parts of these objects, and galaxies that do show variations are those with the highest specific star formation rates. Stellar population parameters derived from star formation histories are then used in order to estimate the stellar initial mass function function (IMF) mismatch parameter, and shed light on its variation within ETGs. Some of our target objects require a light IMF, otherwise their stellar population masses would be greater than their dynamical masses. In contrast, other systems seem to require heavier IMFs to explain their gas kinematics. Our analysis again confirms that IMF variation seems to be occurring within massive ETGs. We find good agreement between our IMF normalisations derived using molecular gas kinematics and those derived using other techniques. Despite this, we do not see find any correlation between the IMF normalisation and galaxy dynamical properties or stellar population parameters, either locally or globally. In the future larger studies which use molecules as tracers of galaxy dynamics can be used to help us disentangle the root cause of IMF variation.

  13. Analysis of a magnetically trapped atom clock

    SciTech Connect

    Kadio, D.; Band, Y. B.

    2006-11-15

    We consider optimization of a rubidium atom clock that uses magnetically trapped Bose condensed atoms in a highly elongated trap, and determine the optimal conditions for minimum Allan variance of the clock using microwave Ramsey fringe spectroscopy. Elimination of magnetic field shifts and collisional shifts are considered. The effects of spin-dipolar relaxation are addressed in the optimization of the clock. We find that for the interstate interaction strength equal to or larger than the intrastate interaction strengths, a modulational instability results in phase separation and symmetry breaking of the two-component condensate composed of the ground and excited hyperfine clock levels, and this mechanism limits the clock accuracy.

  14. Automatic control of clock duty cycle

    NASA Technical Reports Server (NTRS)

    Feng, Xiaoxin (Inventor); Roper, Weston (Inventor); Seefeldt, James D. (Inventor)

    2010-01-01

    In general, this disclosure is directed to a duty cycle correction (DCC) circuit that adjusts a falling edge of a clock signal to achieve a desired duty cycle. In some examples, the DCC circuit may generate a pulse in response to a falling edge of an input clock signal, delay the pulse based on a control voltage, adjust the falling edge of the input clock signal based on the delayed pulse to produce an output clock signal, and adjust the control voltage based on the difference between a duty cycle of the output clock signal and a desired duty cycle. Since the DCC circuit adjusts the falling edge of the clock cycle to achieve a desired duty cycle, the DCC may be incorporated into existing PLL control loops that adjust the rising edge of a clock signal without interfering with the operation of such PLL control loops.

  15. Unraveling the circadian clock in Arabidopsis

    PubMed Central

    Wang, Xiaoxue; Ma, Ligeng

    2013-01-01

    The circadian clock is an endogenous timing system responsible for coordinating an organism’s biological processes with its environment. Interlocked transcriptional feedback loops constitute the fundamental architecture of the circadian clock. In Arabidopsis, three feedback loops, the core loop, morning loop and evening loop, comprise a network that is the basis of the circadian clock. The components of these three loops are regulated in distinct ways, including transcriptional, post-transcriptional and posttranslational mechanisms. The discovery of the DNA-binding and repressive activities of TOC1 has overturned our initial concept of its function in the circadian clock. The alternative splicing of circadian clock-related genes plays an essential role in normal functioning of the clock and enables organisms to sense environmental changes. In this review, we describe the regulatory mechanisms of the circadian clock that have been identified in Arabidopsis. PMID:23221775

  16. Non Equilibrated IMF Emission in Heavy Ion Collisions around the Fermi Energy

    NASA Astrophysics Data System (ADS)

    Piantelli, S.; Bidini, L.; Bini, M.; Casini, G.; Maurenzig, P. R.; Olmi, A.; Pasquali, G.; Poggi, G.; Poggi, S.; Stefanini, A. A.; Taccetti, N.

    2001-11-01

    The first experimental data obtained with the FIASCO setup for the reaction 116Sn+93Nb at 29.5AMeV confirm the existence of a midvelocity emission of LCPs and IMFs that may come from the neck rupture during the first phase of the reaction

  17. Impact of the uncertainties of the ISM when studying the IMF at intermediate masses

    NASA Astrophysics Data System (ADS)

    Mor, R.; Robin, A. C.; Lemasle, B.; Figueras, F.

    We evaluate the impact of the uncertainties in the 3D structure of the Interstellar Medium (ISM) when studying the Initial Mass Function (IMF) at intermediate masses using classical Galactic Cepheids. For that we use the Besan\\c{c}on Galaxy Model (BGM, \\citealt{Robin2003} and \\citealt{Czekaj2014}) and assume different IMFs and different interstellar structure maps to simulate magnitude limited samples of young intermediate mass stars. As our strategy to derive the IMF is based on star counts (in proceedings \\cite{Mor2015} and Mor et al. 2016 in prep.), we quantify the differences in star counts by comparing the whole-sky simulations with Tycho-2 catalogue up to V_T=11 and using Healpix maps. Moreover we compare simulations with different extinction models up to Gaia magnitude G=20. As expected, larger discrepancies between simulations and observations are found in the Galactic Plane, showing that the interstellar extinction in the plane is one of the major source of uncertainty in our study. We show how even with the uncertainties due to the ISM we are able to distinguish between different IMFs.

  18. Transpolar auroras, their particle precipitation, and IMF B sub y component

    SciTech Connect

    Makita, K. ); Meng, C.I. ); Akasofu, S.I. )

    1991-08-01

    Transpolar auroras, their associated particle precipitation, and their occurrence with respect to the IMF B{sub y} polarity are examined on the basis of DMSP F6 auroral images and the corresponding particle data. It is found that the transpolar arcs are located in the poleward edge of the soft particle precipitation region extending from either the dawn or dusk part of the auroral oval precipitation; they are not embedded in the polar rain region. This finding suggests that the transpolar arcs are located along the poleward boundary of the closed field line region (or the equatorward boundary of the open region) as suggested by Meng. Further, the appearance of the extended precipitation region from the oval depends on the polarity of the IMF B{sub y}, in the northern hemisphere morning sector for IMF B{sub y} < 0 or in the evening sector for IMF B{sub y} > 0. In general, the precipitating particle flux in the extended precipitation region is not high enough to produce appreciable luminosity. Thus only the transpolar arcs (associated with relatively intense precipitation) near the poleward boundary tend to become much more luminous, forming the so-called theta aurora.

  19. MOND and IMF variations in early-type galaxies from ATLAS3D

    NASA Astrophysics Data System (ADS)

    Tortora, C.; Romanowsky, A. J.; Cardone, V. F.; Napolitano, N. R.; Jetzer, Ph.

    2014-02-01

    Modified Newtonian Dynamics (MOND) represents a phenomenological alternative to dark matter (DM) for the missing mass problem in galaxies and clusters of galaxies. We analyse the central regions of a local sample of ˜220 early-type galaxies from the ATLAS3D survey, to see if the data can be reproduced without recourse to DM. We estimate dynamical masses in the MOND context through Jeans analysis and compare to ATLAS3D stellar masses from stellar population synthesis. We find that the observed stellar mass-velocity dispersion relation is steeper than expected assuming MOND with a fixed stellar initial mass function (IMF) and a standard value for the acceleration parameter a0. Turning from the space of observables to model space (a) fixing the IMF, a universal value for a0 cannot be fitted, while, (b) fixing a0 and leaving the IMF free to vary, we find that it is `lighter' (Chabrier like) for low-dispersion galaxies and `heavier' (Salpeter like) for high dispersions. This MOND-based trend matches inferences from Newtonian dynamics with DM and from the detailed analysis of spectral absorption lines, adding to the converging lines of evidence for a systematically varying IMF.

  20. A tunable artificial circadian clock in clock-defective mice

    PubMed Central

    D'Alessandro, Matthew; Beesley, Stephen; Kim, Jae Kyoung; Chen, Rongmin; Abich, Estela; Cheng, Wayne; Yi, Paul; Takahashi, Joseph S.; Lee, Choogon

    2015-01-01

    Self-sustaining oscillations are essential for diverse physiological functions such as the cell cycle, insulin secretion and circadian rhythms. Synthetic oscillators using biochemical feedback circuits have been generated in cell culture. These synthetic systems provide important insight into design principles for biological oscillators, but have limited similarity to physiological pathways. Here we report the generation of an artificial, mammalian circadian clock in vivo, capable of generating robust, tunable circadian rhythms. In mice deficient in Per1 and Per2 genes (thus lacking circadian rhythms), we artificially generate PER2 rhythms and restore circadian sleep/wake cycles with an inducible Per2 transgene. Our artificial clock is tunable as the period and phase of the rhythms can be modulated predictably. This feature, and other design principles of our work, might enhance the study and treatment of circadian dysfunction and broader aspects of physiology involving biological oscillators. PMID:26617050

  1. A tunable artificial circadian clock in clock-defective mice.

    PubMed

    D'Alessandro, Matthew; Beesley, Stephen; Kim, Jae Kyoung; Chen, Rongmin; Abich, Estela; Cheng, Wayne; Yi, Paul; Takahashi, Joseph S; Lee, Choogon

    2015-11-30

    Self-sustaining oscillations are essential for diverse physiological functions such as the cell cycle, insulin secretion and circadian rhythms. Synthetic oscillators using biochemical feedback circuits have been generated in cell culture. These synthetic systems provide important insight into design principles for biological oscillators, but have limited similarity to physiological pathways. Here we report the generation of an artificial, mammalian circadian clock in vivo, capable of generating robust, tunable circadian rhythms. In mice deficient in Per1 and Per2 genes (thus lacking circadian rhythms), we artificially generate PER2 rhythms and restore circadian sleep/wake cycles with an inducible Per2 transgene. Our artificial clock is tunable as the period and phase of the rhythms can be modulated predictably. This feature, and other design principles of our work, might enhance the study and treatment of circadian dysfunction and broader aspects of physiology involving biological oscillators.

  2. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  3. Asymmetrical response of dayside ion precipitation to a large rotation of the IMF

    NASA Astrophysics Data System (ADS)

    Berchem, J.; Richard, R. L.; Escoubet, C. P.; Wing, S.; Pitout, F.

    2016-01-01

    We have carried out global magnetohydrodynamics (MHD) simulations together with large-scale kinetic simulations to investigate the response of the dayside magnetospheric ion precipitation to a large rotation (135°) of the interplanetary magnetic field (IMF). The study uses simplified global MHD model (no dipole tilt and constant ionospheric conductance) and idealized solar wind conditions where the IMF rotates smoothly from a southward toward a northward direction (BX = 0) to clearly identify the effects of the impact of the discontinuity on the magnetopause. Results of the global simulations reveal that a strong north-south asymmetry develops in the pattern of precipitating ions during the interaction of the IMF rotation with the magnetopause. For a counterclockwise IMF rotation from its original southward direction (BY < 0), a spot of high-energy particle injections occurs in the Northern Hemisphere but not in the Southern Hemisphere. The spot moves poleward and dawnward as the interacting field rotates. In that case, reconnection is found close to the poleward edge of the northern cusp, while it occurs farther tailward in the Southern Hemisphere. Tracing magnetic field lines shows an asymmetry in the tilt of the cusps and indicates that the draping and subsequent double reconnection of newly opened field lines from the Southern Hemisphere over the dayside magnetosphere cause the symmetry breaking. The reverse north-south asymmetry is found for a clockwise IMF rotation from its original southward direction (BY > 0). Trends observed in the ion dispersions predicted from the simulations are in good agreement with Cluster observations of the midaltitude northern cusp, which motivated the study.

  4. Genomic clocks and evolutionary timescales

    NASA Technical Reports Server (NTRS)

    Blair Hedges, S.; Kumar, Sudhir

    2003-01-01

    For decades, molecular clocks have helped to illuminate the evolutionary timescale of life, but now genomic data pose a challenge for time estimation methods. It is unclear how to integrate data from many genes, each potentially evolving under a different model of substitution and at a different rate. Current methods can be grouped by the way the data are handled (genes considered separately or combined into a 'supergene') and the way gene-specific rate models are applied (global versus local clock). There are advantages and disadvantages to each of these approaches, and the optimal method has not yet emerged. Fortunately, time estimates inferred using many genes or proteins have greater precision and appear to be robust to different approaches.

  5. Conveyor-belt clock synchronization

    SciTech Connect

    Giovannetti, Vittorio; Maccone, Lorenzo; Shapiro, Jeffrey H.; Wong, Franco N.C.; Lloyd, Seth

    2004-10-01

    A protocol for synchronizing distant clocks is proposed that does not rely on the arrival times of the signals which are exchanged, and an optical implementation based on coherent-state pulses is described. This protocol is not limited by any dispersion that may be present in the propagation medium through which the light signals are exchanged. Possible improvements deriving from the use of quantum-mechanical effects are also addressed.

  6. The LASSO experiment. [clock synchronization

    NASA Technical Reports Server (NTRS)

    Serene, B.

    1979-01-01

    An international coordinated experimental assessment of a system which promises to provide a synchronization of clocks bound to time and frequency standard laboratories, with an accuracy of one nanosecond using existing or near ground-based laser stations via a geostationary satellite (SIRIO-2) is detailed. The system performance and the technical details concerning the on-board equiment, the ground segment, and the operational configuration are discussed. Finally, the future prospects of the LASSO experiment and possible implementations are examined together.

  7. An epigenetic clock controls aging.

    PubMed

    Mitteldorf, Josh

    2016-02-01

    We are accustomed to treating aging as a set of things that go wrong with the body. But for more than twenty years, there has been accumulating evidence that much of the process takes place under genetic control. We have seen that signaling chemistry can make dramatic differences in life span, and that single molecules can significantly affect longevity. We are frequently confronted with puzzling choices the body makes which benefit neither present health nor fertility nor long-term survival. If we permit ourselves a shift of reference frame and regard aging as a programmed biological function like growth and development, then these observations fall into place and make sense. This perspective suggests that aging proceeds under control of a master clock, or several redundant clocks. If this is so, we may learn to reset the clocks with biochemical interventions and make an old body behave like a young body, including repair of many of the modes of damage that we are accustomed to regard as independent symptoms of the senescent phenotype, and for which we have assumed that the body has no remedy.

  8. What starts an internal clock?

    PubMed

    Roberts, S; Holder, M D

    1984-07-01

    Five experiments with rats investigated under what conditions a stimulus is timed by the internal clock used in time-discrimination procedures. In Experiments 1-4, we trained rats to time one stimulus (e.g., light) and then asked whether they timed a stimulus from another modality (e.g., sound). The second stimulus was treated in three ways: exposed (presented alone), paired with food, and extinguished. Experiments 1 and 2 used the peak procedure, similar to a discrete-trial fixed-interval schedule, and paired the treated stimulus with food using instrumental training; Experiments 3 and 4 used a psychophysical choice procedure and paired the treated stimulus with food using classical conditioning. All four experiments found that there was cross-modal transfer of the time discrimination after pairing, but not after exposure or extinction. This suggests that the rat's internal clock timed the treated stimulus after pairing, but not after exposure or extinction. Experiment 5 tested a theory of extinction based on the results of Experiments 1-4; the results suggested that the decline of responding observed in extinction is not due to changes in timing. The main conclusion is that the internal clock apparently times stimuli with signal value (associative strength) and does not time stimuli without signal value.

  9. An epigenetic clock controls aging.

    PubMed

    Mitteldorf, Josh

    2016-02-01

    We are accustomed to treating aging as a set of things that go wrong with the body. But for more than twenty years, there has been accumulating evidence that much of the process takes place under genetic control. We have seen that signaling chemistry can make dramatic differences in life span, and that single molecules can significantly affect longevity. We are frequently confronted with puzzling choices the body makes which benefit neither present health nor fertility nor long-term survival. If we permit ourselves a shift of reference frame and regard aging as a programmed biological function like growth and development, then these observations fall into place and make sense. This perspective suggests that aging proceeds under control of a master clock, or several redundant clocks. If this is so, we may learn to reset the clocks with biochemical interventions and make an old body behave like a young body, including repair of many of the modes of damage that we are accustomed to regard as independent symptoms of the senescent phenotype, and for which we have assumed that the body has no remedy. PMID:26608516

  10. Design principles underlying circadian clocks.

    PubMed Central

    Rand, D. A.; Shulgin, B. V.; Salazar, D.; Millar, A. J.

    2004-01-01

    A fundamental problem for regulatory networks is to understand the relation between form and function: to uncover the underlying design principles of the network. Circadian clocks present a particularly interesting instance, as recent work has shown that they have complex structures involving multiple interconnected feedback loops with both positive and negative feedback. While several authors have speculated on the reasons for this, a convincing explanation is still lacking.We analyse both the flexibility of clock networks and the relationships between various desirable properties such as robust entrainment, temperature compensation, and stability to environmental variations and parameter fluctuations. We use this to argue that the complexity provides the flexibility necessary to simultaneously attain multiple key properties of circadian clocks. As part of our analysis we show how to quantify the key evolutionary aims using infinitesimal response curves, a tool that we believe will be of general utility in the analysis of regulatory networks. Our results suggest that regulatory and signalling networks might be much less flexible and of lower dimension than their apparent complexity would suggest. PMID:16849158

  11. The Sr optical lattice clock at JILA: A new record in atomic clock performance

    NASA Astrophysics Data System (ADS)

    Nicholson, Travis; Bloom, Benjamin; Williams, Jason; Campbell, Sara; Bishof, Michael; Zhang, Xibo; Zhang, Wei; Bromley, Sarah; Hutson, Ross; McNally, Rees; Ye, Jun

    2014-05-01

    The exquisite control exhibited over quantum states of individual particles has revolutionized the field of precision measurement, as exemplified by highly accurate atomic clocks. Optical clocks have been the most accurate frequency standards for the better part of a decade, surpassing even the cesium microwave fountains upon which the SI second is based. Two classes of optical clocks have outperformed cesium: single-ion clocks and optical lattice clocks. Historically ion clocks have always been more accurate, and the precision of ion clocks and lattice clocks has been comparable. For years it has been unclear if lattice clocks can overcome key systematics and become more accurate than ion clocks. In this presentation I report the first lattice clock that has surpassed ion clocks in both precision and accuracy. These measurements represent a tenfold improvement in precision and a factor of 20 improvement in accuracy over the previous best lattice clock results. This work paves the way for a better realization of SI units, the development of more sophisticated quantum sensors, and precision tests of the fundamental laws of nature.

  12. Impact of the IMF rotation on the cusp dynamics on the dayside: Global 3D PIC simulations

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Cai, D.; Lembege, B.; Nishikawa, K.-I.

    The dynamics of the cusp region is analyzed with a new version of a global three-dimensional full particle simulation with changing the interplanetary magnetic field IMF direction progressively from northward to duskward then duskward to southward With the initial northward IMF bands of weak magnetic field sash form poleward of the cusp at high latitudes in each hemisphere and at high altitudes these sashes are located approximately around the pole axis As the IMF rotates duskward these sashes move toward the equator within opposite quadrants Then as the duskward-oriented IMF continue to rotate toward southward these sashes move further and reach the dayside magnetopause at the equator During the progressive rotation of the IMF from northward to duskward i the sash region widens towards lower latitudes banana-shape and with the duskward IMF ii the size of the banana-shape region becomes minimum and its location stops around a maximum deviation of 45degree from the polar axis It should be noted that the sashes are extended from the dayside to the nightside tailward The motion of the sashes is also analyzed during the IMF rotation form duskward to southward

  13. Structure of the Outer Cusp and Sources of the Cusp Precipitation during Intervals of a Horizontal IMF

    NASA Technical Reports Server (NTRS)

    Nemecek, Z.; Safrankova, J.; Prech, L.; Simunek, J.; Sauvaud, J.-A.; Fedorov, A.; Stenuit, H.; Fuselier, S. A.; Savin, S.; Zelenyi, L.

    2003-01-01

    The cusp represents a place where the magnetosheath plasma can directly penetrate into the magnetosphere. Since the main transport processes are connected with merging of the interplanetary and magnetospheric field lines, the interplanetary magnetic field (IMF) Orientation plays a decisive role in the formation of the high-altitude cusp. The importance of the sign of the IMF Bz component for this process was suggested about 40 years ago and later it was documented by many experimental investigations. However, situations when IMF Bz is the major IMF component are rather rare. The structure of the cusp during periods of a small IMF BZ is generally unknown, probably due to the fully 3-D nature of the interaction. The present case study reveals the importance of horizontal IMF components on the global magnetospheric configuration as well as on small-scale processes at the cusp-magnetosheath interface. We have used simultaneous measurements of several spacecraft (ISTP program) operating in different regions of interplanetary space and two closely spaced satellites (INTERBALL-1/MAGION- 4) crossing the cusp-magnetosheath boundary to show the connection between the short- and large-scale phenomena. In the northern hemisphere, observations suggest a presence of two spots of cusp-like precipitation supplied by reconnection occurring simultaneously in both hemispheres. A source of this bifurcation is the positive IMF By component further enhanced by the field draping in the magnetosheath. This magnetic field component shifts the entry point far away from the local noon but in opposite sense in either hemisphere.

  14. Multi-Fault Detection of Rolling Element Bearings under Harsh Working Condition Using IMF-Based Adaptive Envelope Order Analysis

    PubMed Central

    Zhao, Ming; Lin, Jing; Xu, Xiaoqiang; Li, Xuejun

    2014-01-01

    When operating under harsh condition (e.g., time-varying speed and load, large shocks), the vibration signals of rolling element bearings are always manifested as low signal noise ratio, non-stationary statistical parameters, which cause difficulties for current diagnostic methods. As such, an IMF-based adaptive envelope order analysis (IMF-AEOA) is proposed for bearing fault detection under such conditions. This approach is established through combining the ensemble empirical mode decomposition (EEMD), envelope order tracking and fault sensitive analysis. In this scheme, EEMD provides an effective way to adaptively decompose the raw vibration signal into IMFs with different frequency bands. The envelope order tracking is further employed to transform the envelope of each IMF to angular domain to eliminate the spectral smearing induced by speed variation, which makes the bearing characteristic frequencies more clear and discernible in the envelope order spectrum. Finally, a fault sensitive matrix is established to select the optimal IMF containing the richest diagnostic information for final decision making. The effectiveness of IMF-AEOA is validated by simulated signal and experimental data from locomotive bearings. The result shows that IMF-AEOA could accurately identify both single and multiple faults of bearing even under time-varying rotating speed and large extraneous shocks. PMID:25353982

  15. EVIDENCE FOR A CONSTANT IMF IN EARLY-TYPE GALAXIES BASED ON THEIR X-RAY BINARY POPULATIONS

    NASA Astrophysics Data System (ADS)

    Zepf, Stephen E.; Maccarone, T. J.; Kundu, A.; Gonzalez, A. H.; Lehmer, B.; Maraston, C.

    2014-01-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having steeper IMFs. These steeper IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars and black holes. In this paper, we specifically predict the variation in the number of black holes and neutron stars in early type galaxies based on the IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary populations (LMXBs) of nearby early-type galaxies. These binaries are field neutron stars or black holes accreting from a low-mass donor star. We specifically compare the number of field LMXBs per K-band light in a well-studied sample of elliptical galaxies, and use this result to distinguish between an invariant IMF and one that is Kroupa/Chabrier-like at low masses and steeper at high masses. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF.

  16. The NIM Sr Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Wang, Q.; Li, Y.; Meng, F.; Lin, B.; Zang, E.; Sun, Z.; Fang, F.; Li, T.; Fang, Z.

    2016-06-01

    A 87Sr optical lattice clock is built at the National Institute of Metrology (NIM) of China. The atoms undergo two stages of laser cooling before being loaded into a horizontal optical lattice at the magic wavelength of 813 nm. After being interrogated by a narrow linewidth 698 nm clock laser pulse, the normalized excitation rate is measured to get the frequency error, which is then used to lock the clock laser to the ultra-narrow 1S0-3P0 clock transition. The total systematic uncertainty of the clock is evaluated to be 2.3 × 10-16, and the absolute frequency of the clock is measured to be 429 228 004 229 873.7(1.4) Hz with reference to the NIM5 cesium fountain.

  17. Diversity of Human Clock Genotypes and Consequences

    PubMed Central

    Zhang, Luoying; Ptáček, Louis J.; Fu, Ying-Hui

    2014-01-01

    The molecular clock consists of a number of genes that form transcriptional and post-transcriptional feedback loops, which function together to generate circadian oscillations that give rise to circadian rhythms of our behavioral and physiological processes. Genetic variations in these clock genes have been shown to be associated with phenotypic effects in a repertoire of biological processes, such as diurnal preference, sleep, metabolism, mood regulation, addiction, and fertility. Consistently, rodent models carrying mutations in clock genes also demonstrate similar phenotypes. Taken together, these studies suggest that human clock-gene variants contribute to the phenotypic differences observed in various behavioral and physiological processes, although to validate this requires further characterization of the molecular consequences of these polymorphisms. Investigating the diversity of human genotypes and the phenotypic effects of these genetic variations shall advance our understanding of the function of the circadian clock and how we can employ the clock to improve our overall health. PMID:23899594

  18. Precise time dissemination via portable atomic clocks

    NASA Technical Reports Server (NTRS)

    Putkovich, K.

    1982-01-01

    The most precise operational method of time dissemination over long distances presently available to the Precise Time and Time Interval (PTTI) community of users is by means of portable atomic clocks. The Global Positioning System (GPS), the latest system showing promise of replacing portable clocks for global PTTI dissemination, was evaluated. Although GPS has the technical capability of providing superior world-wide dissemination, the question of present cost and future accessibility may require a continued reliance on portable clocks for a number of years. For these reasons a study of portable clock operations as they are carried out today was made. The portable clock system that was utilized by the U.S. Naval Observatory (NAVOBSY) in the global synchronization of clocks over the past 17 years is described and the concepts on which it is based are explained. Some of its capabilities and limitations are also discussed.

  19. Future Laser-Cooled Microwave Clock Performance

    NASA Technical Reports Server (NTRS)

    Gibble, Kurt

    1997-01-01

    Limitations to the performance of laser-cooled earth and space-based Cs clocks will be critically discussed. The most significant limitation to the stability and accuracy of laser-cooled atomic clocks is the frequency shift due to cold collisions. Because of it, laser-cooled Cs clocks must be operated at low density and this implies that space based Cs clock performance will not be significantly better than earth based. To regain some of the high accuracy and stability lost to the low density, clocks can be designed to multiply launch (or juggle) atoms. Clocks based on other atoms, in particular Rb-87 or possibly Rb-85, may have much smaller cold collision frequency shifts and therefore be capable of higher stability and accuracy, especially in a space environment.

  20. 29 CFR 785.48 - Use of time clocks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., that they do not engage in any work. Their early or late clock punching may be disregarded. Minor... 29 Labor 3 2014-07-01 2014-07-01 false Use of time clocks. 785.48 Section 785.48 Labor Regulations... clocks. (a) Differences between clock records and actual hours worked. Time clocks are not required....

  1. 29 CFR 785.48 - Use of time clocks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., that they do not engage in any work. Their early or late clock punching may be disregarded. Minor... 29 Labor 3 2010-07-01 2010-07-01 false Use of time clocks. 785.48 Section 785.48 Labor Regulations... clocks. (a) Differences between clock records and actual hours worked. Time clocks are not required....

  2. 29 CFR 785.48 - Use of time clocks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., that they do not engage in any work. Their early or late clock punching may be disregarded. Minor... 29 Labor 3 2011-07-01 2011-07-01 false Use of time clocks. 785.48 Section 785.48 Labor Regulations... clocks. (a) Differences between clock records and actual hours worked. Time clocks are not required....

  3. 29 CFR 785.48 - Use of time clocks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., that they do not engage in any work. Their early or late clock punching may be disregarded. Minor... 29 Labor 3 2013-07-01 2013-07-01 false Use of time clocks. 785.48 Section 785.48 Labor Regulations... clocks. (a) Differences between clock records and actual hours worked. Time clocks are not required....

  4. 29 CFR 785.48 - Use of time clocks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., that they do not engage in any work. Their early or late clock punching may be disregarded. Minor... 29 Labor 3 2012-07-01 2012-07-01 false Use of time clocks. 785.48 Section 785.48 Labor Regulations... clocks. (a) Differences between clock records and actual hours worked. Time clocks are not required....

  5. Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock

    NASA Astrophysics Data System (ADS)

    Lodewyck, Jérôme; Bilicki, Sławomir; Bookjans, Eva; Robyr, Jean-Luc; Shi, Chunyan; Vallet, Grégoire; Le Targat, Rodolphe; Nicolodi, Daniele; Le Coq, Yann; Guéna, Jocelyne; Abgrall, Michel; Rosenbusch, Peter; Bize, Sébastien

    2016-08-01

    Optical lattice clocks are at the forefront of frequency metrology. Both the instability and systematic uncertainty of these clocks have been reported to be two orders of magnitude smaller than the best microwave clocks. For this reason, a redefinition of the SI second based on optical clocks seems possible in the near future. However, the operation of optical lattice clocks has not yet reached the reliability that microwave clocks have achieved so far. In this paper, we report on the operation of a strontium optical lattice clock that spans several weeks, with more than 80% uptime. We make use of this long integration time to demonstrate a reproducible measurement of frequency ratios between the strontium clock transition and microwave Cs primary and Rb secondary frequency standards.

  6. The plant circadian clock looks like a traditional Japanese clock rather than a modern Western clock

    PubMed Central

    Mizuno, Takeshi; Yamashino, Takafumi

    2015-01-01

    Life cycle adaptation to seasonal changes in photoperiod and ambient temperature is a major determinant of the ecological success behind the widespread domestication of flowering plants. The circadian clock plays a role in the underlying mechanism for adaptation through generating endogenous rhythms that allow plants to adapt and adjust to both the 24 h diurnal rotation and 365 d seasonal revolution. Nevertheless, the mechanism by which the circadian clock tracks seasonal changes in photoperiod and temperature is a longstanding subject in the field. Recently, we have begun to understand the question of how the light and ambient temperature signals feed into the circadian clock transcriptional circuitry in day-night cycles in order to track seasonal changes in photoperiod and ambient temperature.1-4 Our results collectively indicate that the evening complex (EC) nighttime repressor consisting of LUX-ELF3-ELF4 plays a crucial role in this respect. Here, we discuss about these recent studies to add further implications. PMID:26382718

  7. The chlorate-iodine clock reaction.

    PubMed

    Oliveira, André P; Faria, Roberto B

    2005-12-28

    A clock reaction produced by mixing chlorate and iodine solutions in perchloric acid media is reported. This is the first example of a clock reaction using chlorate as a reagent. Increasing chlorate and acid concentration reduces the induction period. Changing the initial iodine concentration does not affect the length of the induction period. The discovery of this clock reaction opens the possibility that a new family of oscillation reactions can be built using chlorate as reagent. PMID:16366551

  8. Collisionally induced atomic clock shifts and correlations

    SciTech Connect

    Band, Y. B.; Osherov, I.

    2011-07-15

    We develop a formalism to incorporate exchange symmetry considerations into the calculation of collisional frequency shifts for atomic clocks using a density-matrix formalism. The formalism is developed for both fermionic and bosonic atomic clocks. Numerical results for a finite-temperature {sup 87}Sr {sup 1}S{sub 0} (F=9/2) atomic clock in a magic wavelength optical lattice are presented.

  9. Experimental validation of clock synchronization algorithms

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Graham, R. Lynn

    1992-01-01

    The objective of this work is to validate mathematically derived clock synchronization theories and their associated algorithms through experiment. Two theories are considered, the Interactive Convergence Clock Synchronization Algorithm and the Midpoint Algorithm. Special clock circuitry was designed and built so that several operating conditions and failure modes (including malicious failures) could be tested. Both theories are shown to predict conservative upper bounds (i.e., measured values of clock skew were always less than the theory prediction). Insight gained during experimentation led to alternative derivations of the theories. These new theories accurately predict the behavior of the clock system. It is found that a 100 percent penalty is paid to tolerate worst-case failures. It is also shown that under optimal conditions (with minimum error and no failures) the clock skew can be as much as three clock ticks. Clock skew grows to six clock ticks when failures are present. Finally, it is concluded that one cannot rely solely on test procedures or theoretical analysis to predict worst-case conditions.

  10. Song I-Yeong's Armillary Clock

    NASA Astrophysics Data System (ADS)

    Kim, Sang Hyuk; Lee, Yong Sam

    In 1669 (the 10th year of the reign of King Hyeonjong), Song I-Yeong (宋以穎, 1619-1692), who was a professor of astronomy at Gwansanggam (Bureau of Astronomy), developed the armillary clock which uses the weight power system of an alarm clock. The armillary clock is a unique astronomical clock that combines the traditional armillary sphere of Joseon and the principle of a Western alarm clock. Song I-Yeong's armillary clock was repaired in 1687-1688 according to the records, and since then not much is known about the history of the armillary clock. After many years, in the early 1930s which was the Japanese colonial era, Inchon (仁村) Kim Seong-Su (金性洙, 1891-1955) purchased the armillary clock at the Insa-dong antique street and donated to the Korea University Museum of the present time (designated as National Treasure No. 230 in 1985). Currently, the armillary clock is not in operation because some of the parts are damaged or lost.

  11. Longitude and IMF By Effects on Stormtime Low-Latitude Prompt-Penetration Electric Fields

    NASA Astrophysics Data System (ADS)

    Spiro, R. W.; Sazykin, S.; Song, Y.; Toffoletto, F.; Wolf, R. A.

    2010-12-01

    During geomagnetically disturbed periods, transient large-scale electric fields of magnetospheric origin, known as prompt penetration electric fields, are known to strongly affect ionospheric dynamics. We examine storm-associated prompt-penetration electric fields in the low-latitude ionosphere using a recently reformulated version of the Rice Convection Model (RCM), a numerical model of the inner magnetosphere and its coupling to the ionosphere. This reformulated version of the RCM was designed to accept an arbitrary intrinsic geomagnetic field and to represent the lack of symmetry in the magnetospheric magnetic field due to the partial penetration of IMF By. In this study we assume an IGRF internal magnetic field together with an event-driven storm-time Tsyganenko external field to investigate the longitudinal dependence of the prompt penetration electric field pattern and the effects of IMF By penetration.

  12. The effects of IMF sector boundary crossings on the induced magnetosphere of Venus

    NASA Astrophysics Data System (ADS)

    Vech, D.; Stenberg, G.; Nilsson, H.; Edberg, N. J. T.; Opitz, A.; Szegő, K.; Zhang, T. L.; Futaana, Y.

    2015-10-01

    The induced planetary magnetosphere is the result of the interaction between the streaming solar wind plasma and an unmagnetized planetary body with an ionosphere acting as an obstacle. The structure of the induced magnetosphere highly depends on the upstream solar wind parameters including the direction and magnitude of the Interplanetary Magnetic Field (IMF). (e.g. Zhang et al., 2009; Masunaga et al., 2011). Not only the upstream conditions but also temporal variations of the upstream conditions are expected to cause changes in the structure of induced magnetospheres. For example, Niedner and Brandt [1978] reported that the cometary ion tail was lost due to reconnection after an IMF sector boundary crossing. Edberg et al. [2011] studied the effects of Interplanetary Coronal Mass Ejections (ICME) and Co-rotating Interaction Regions (CIR) at Venus. They suggested that the change in the magnetic field polarity during IMF sector boundary crossings contribute to an increased ion outflow. In addition, they speculated that this might be due to dayside magnetic reconnection. In this study we aim to understand the effects of the varying upstream conditions on the Venusian induced magnetosphere. Using the entire Venus Express/ASPERA-4 and MAG datasets, we first produce the spatial distribution of ions in the plasma environment of Venus during ICME and CIR passages together with that during the average condition. In addition to ICME/CIR passages, we focus on the Heliospheric Current Sheet (HCS) crossings, which can also change the polarity of the induced magnetosphere. By comparing HCS events and ICME/CIR events, we may be able to distinguish the contribution of IMF polarity change on the Venusian induced magnetosphere, because the solar wind is less disturbed during HCS events. We will compare the signatures associated with the sector boundary crossings found at the magnetotail of Venus with that is previously reported from comet studies.

  13. The Distant Magnetotail Under Long Duration, Very Northward IMF Conditions: October 22-24, 2003

    NASA Technical Reports Server (NTRS)

    Fairfield, Donald H.; Oieroset, M.; Raeder, J.; Lepping, R. P.; Newell, P. T.; Wind, S.

    2006-01-01

    A unique 32 hour interval of very northward Interplanetary Magnetic Field (IMF) on October 22-24, 2003 created a exceptionally thick cold dense magnetotail plasma sheet, a small polar cap and accompanying small tail lobe. These features were detected by the Cluster DMSP and FAST spacecraft and modeled by a global simulation as described in papers by Oieroset et al. (2005) and Li et al. (2005). During the same interval the Wind spacecraft was passing through the center of the magnetotail about 130 Re downstream of Earth. Wind results will be described that reveal a very unusual magnetotail characterized by (1) continual tailward flow of 200-400 km/s with densities in the range 0.2-3/cc, both of whch are clearly less than those expected in the magnetosheath, (2) a mostly northward Bz but with a predominant Bx field component with sign reversals indicating crossings between the two hemispheres of the tail, and (3) velocity waves superposed on the downstream flow with peak-to-peak amplitudes of 100 to 200 km/s, periods of 10 to 20 minutes and clockwise polarization. Low altitude DMSP and Fast measurements reveal an auroral oval with enhanced latitudinal thickness and a small polar cap filled with structured precipitzting electrons and few ions. A new global MHD simulation of the event exhibits a highly elliptical tail of diminished cross-section at 130 Re with major axis aligned with the northward IMF. The tail current sheet also tends to be aligned in a north-south direction with the two tail hemispheres to the east and west with their polarities depending on prior history of the IMF. The simulation appears to be consistent with many, but not all, of the observations. High latitude cusp reconnection and subsequent downtail flow of closed field lines may explain the tail structure, but the waves are more likely due to the Kelvin-Helmholtz instability often thought to occur during northward IMF conditions.

  14. Is coverage a factor in non-Gaussianity of IMF parameters?

    SciTech Connect

    Ahluwalia, H.S.; Fikani, M.M.

    1995-06-01

    Recently, Feynman and Ruzmaikin showed that IMF parameters for the 1973 to 1990 period are not log-normally distributed as previously suggested by Burlaga and King for the data obtained over a shorter time period (1963-75). They studied the first four moments, namely: mean, variance, skewness, and kurtosis. For a Gaussian distribution, moments higher than the variance should vanish. In particular, Feynman and Ruzmaikin obtained very high values of kurtosis during some periods of their analysis. The authors note that the coverage for IMF parameters is very uneven for the period analyzed by them, ranging from less than 40% to greater than 80%. So a question arises as to whether the amount of coverage is a factor in their analysis. The authors decided to test this for the B{sub z} component of IMF, since it is an effective geoactive parameter for short term disturbances. Like them, the authors used 1-hour averaged data available on the Omnitape. They studied the scatter plots of the annual mean values of B{sub z}(nT) and its kurtosis versus the percent coverage for the year. They obtain a correlation coefficient of 0.48 and 0.42 respectively for the 1973-90 period. The probability for a chance occurrence of these correlation coefficients for 18 pair of points is less than 8%. As a rough measure of skewness, the authors determined the percent asymmetry between the areas of the histograms representing the distributions of the positive and the negative values of B{sub z} and studied its correlation with the coverage for the year. This analysis yields a correlation coefficient of 0.41. When they extended the analysis for the whole period for which IMF data are available (1963-93) the corresponding correlation coefficients are 0.59, 0.14, and 0.42. These findings will be presented and discussed.

  15. Is coverage a factor in non-Gaussianity of IMF parameters?

    NASA Technical Reports Server (NTRS)

    Ahluwalia, H. S.; Fikani, M. M.

    1995-01-01

    Recently, Feynman and Ruzmaikin (1994) showed that IMF parameters for the 1973 to 1990 period are not log-normally distributed as previously suggested by Burlaga and King (1979) for the data obtained over a shorter time period (1963-75). They studied the first four moments, namely: mean, variance, skewness, and kurtosis. For a Gaussian distribution, moments higher than the variance should vanish. In particular, Feynman and Ruzmaikin obtained very high values of kurtosis during some periods of their analysis. We note that the coverage for IMF parameters is very uneven for the period analyzed by them, ranging from less than 40% to greater than 80%. So a question arises as to whether the amount of coverage is a factor in their analysis. We decided to test this for the B(sub z) component of IMF, since it is an effective geoactive parameter for short term disturbances. Like them, we used 1-hour averaged data available on the Omnitape. We studied the scatter plots of the annual mean values of B(sub z)(nT) and its kurtosis versus the percent coverage for the year. We obtain a correlation coefficient of 0.48 and 0.42 respectively for the 1973-90 period. The probability for a chance occurrence of these correlation coefficients for 18 pair of points is less than 8%. As a rough measure of skewness, we determined the percent asymmetry between the areas of the histograms representing the distributions of the positive and the negative values of B(sub z) and studied its correlation with the coverage for the year. This analysis yields a correlation coefficient of 0.41 When we extended the analysis for the whole period for which IMF data are available (1963-93) the corresponding correlation coefficients are 0.59, 0.14, and 0.42. Our findings will be presented and discussed

  16. Abundance ratios and IMF slopes in the dwarf elliptical galaxy NGC 1396 with MUSE

    NASA Astrophysics Data System (ADS)

    Mentz, J. J.; La Barbera, F.; Peletier, R. F.; Falcón-Barroso, J.; Lisker, T.; van de Ven, G.; Loubser, S. I.; Hilker, M.; Sánchez-Janssen, R.; Napolitano, N.; Cantiello, M.; Capaccioli, M.; Norris, M.; Paolillo, M.; Smith, R.; Beasley, M. A.; Lyubenova, M.; Munoz, R.; Puzia, T.

    2016-08-01

    Deep observations of the dwarf elliptical (dE) galaxy NGC 1396 (MV = -16.60, Mass ˜4 × 108 M⊙), located in the Fornax cluster, have been performed with the VLT/ MUSE spectrograph in the wavelength region from 4750 - 9350 Å. In this paper we present a stellar population analysis studying chemical abundances, the star formation history (SFH) and the stellar initial mass function (IMF) as a function of galacto-centric distance. Different, independent ways to analyse the stellar populations result in a luminosity-weighted age of ˜ 6 Gyr and a metallicity [Fe/H]˜ -0.4, similar to other dEs of similar mass. We find unusually overabundant values of [Ca/Fe] ˜+0.1, and under-abundant Sodium, with [Na/Fe] values around -0.1, while [Mg/Fe] is overabundant at all radii, increasing from ˜+0.1 in the centre to ˜+0.2 dex. We notice a significant metallicity and age gradient within this dwarf galaxy. To constrain the stellar IMF of NGC 1396, we find that the IMF of NGC 1396 is consistent with either a Kroupa-like or a top-heavy distribution, while a bottom-heavy IMF is firmly ruled out. An analysis of the abundance ratios, and a comparison with galaxies in the Local Group, shows that the chemical enrichment history of NGC 1396 is similar to the Galactic disc, with an extended star formation history. This would be the case if the galaxy originated from a LMC-sized dwarf galaxy progenitor, which would lose its gas while falling into the Fornax cluster.

  17. Influence of Geomagnetic and IMF conditions on High Latitude Upper Atmospheric winds and Temperatures

    NASA Astrophysics Data System (ADS)

    Dhadly, M. S.; Conde, M.; Emmert, J. T.

    2015-12-01

    We analyzed the climatological behavior of upper atmospheric winds (horizontal and vertical) and temperatures above Alaska by combining line-of-sight Doppler shifts of 630 nm optical emissions recorded during the 2011 and 2012 winters using a ground based all-sky wavelength scanning Doppler Fabry-Perot interferometer (SDI) located at Poker Flat (65.12N, 147.47W). The wide field of view covered a large geographic region above Alaska. This field was divided in software into multiple zones (115 used here), allowing independent spectra to be sampled from many directions simultaneously. As a result, it is capable of recording the wind field's spatial variations over a wide geographic region with high spatial resolution, and to resolve these variations over time. Although such climatological studies have been performed previously using satellites, models, and narrow field Fabry-Perot interferometers, there are no published climatological studies of thermospheric winds and temperatures using either SDI data or any other technique with comparable geographic coverage and resolution. Wind summary dial plots were produced to depict the climatology of the horizontal winds and temperatures for different geomagnetic conditions and orientation of interplanetary magnetic field (IMF). Results show that horizontal winds and temperatures had a strong dependence on geospace activity and orientation of IMF. The latitudinal shears in horizontal winds were stronger when geomagnetic conditions were active compared to the latitudinal shears for quiet conditions. Also, shears appeared earlier over Poker Flat when geomagnetic conditions were active. The latitudinal shears showed more dependence on IMF when geomagnetic conditions were active than they did during quieter conditions. F-region temperatures were higher under active geomagnetic conditions than during quiet conditions. They were also observed to be higher in pre-magnetic midnight sector (duskside) than they were post

  18. Acceleration and injection of particles inside the magnetosphere changes during duskward IMF By: statistical approach

    NASA Astrophysics Data System (ADS)

    Yan, X.; Cai, D.; Lembege, B.; Nishikawa, K.

    2005-12-01

    The change of the interplanetary magnetic field (IMF) direction from northward to duskward has an important impact on the inner magnetosphere as analyzed in a recent paper [Yan et al, GRL, to appear] . This impact is analyzed with the help of a new parallel version of the global three-dimensional full particle simulation. As the newly duskward-oriented IMF interacts with the magnetosphere, bands of weak magnetic field (sash) move to the equator (within opposite quadrants), reach lower latitude and merge into each other to form characteristic ``Crosstail-S" structures within the neutral sheet of the magnetotail. The analysis of particle fluxes shows that ``sashs" and ``Crosstail-S" act as magnetic groove to facilitate the entry and injection of magnetosheath particles into the inner magnetosphere. Injected particles are accelerated after the IMF changes its direction from northward to duskward. Characteristic times associated to the changes of the particle dynamics are estimated from the simulations. These informations are thought to be helpful as pre-signatures announcing the triggering of magnetic substorms.

  19. Extreme Poynting Flux Depostion in the Polar Cap and Polar Cap Boundary Regions During Northward IMF

    NASA Astrophysics Data System (ADS)

    Knipp, D.; Kilcommons, L. M.; Cook, M. R.; Larson, T.; Redmon, R. J.

    2015-12-01

    We investigate several intervals of prolonged northward Interplanetary Magnetic Field (IMF) and describe the correlation between strong Poynting flux and the transverse components of the IMF. We primarily focus on Summer events in each hemisphere when the polar regions are sunlit. During northward IMF the magnetic reconnection regions can form tailward of the magnetic cusp. Using data from the Defense Meteorological Satellite Program (DMSP) F13, F15 and F16 spacecraft we looked for and found areas of strong Poynting flux over the magnetic polar cap regions. Values ranging from 20 mW/m^2 to 140 mW/m^2 were measured in narrow channels, showing that there can be significant energy transport to small concentrated regions at very high latitudes. An example of an event from 2001 is shown in the attached image. We also show where these events occur with respect to the dynamic polar cap boundary and discuss the implications of this extreme Poynting flux for other aspects of polar thermodynamics and electrodynamics.

  20. Structural adjustment and public spending on health: evidence from IMF programs in low-income countries.

    PubMed

    Kentikelenis, Alexander E; Stubbs, Thomas H; King, Lawrence P

    2015-02-01

    The relationship between health policy in low-income countries (LICs) and structural adjustment programs devised by the International Monetary Fund (IMF) has been the subject of intense controversy over past decades. While the influence of the IMF on health policy can operate through various pathways, one main link is via public spending on health. The IMF has claimed that its programs enhance government spending for health, and that a number of innovations have been introduced to enable borrowing countries to protect health spending from broader austerity measures. Critics have pointed to adverse effects of Fund programs on health spending or to systematic underfunding that does not allow LICs to address health needs. We examine the effects of Fund programs on government expenditures on health in low-income countries using data for the period 1985-2009. We find that Fund programs are associated with higher health expenditures only in Sub-Saharan African LICs, which historically spent less than any other region. This relationship turns negative in LICs in other regions. We outline the implications of these findings for health policy in a development context. PMID:25576997

  1. The IMF in galaxy clusters: What is needed to account for high metal production?

    NASA Astrophysics Data System (ADS)

    Morsony, Brian; Heath, Caitlin; Workman, Jared

    2015-08-01

    The gas in galaxy clusters is enriched in metal, typically to about 30% of solar metallicity. However, stars a relatively rare in clusters, meaning that the amount of metal produced per star is about 3 times as much as in the Milky Way. We set out to determine what changes to standard star formation are needed to reproduce the observed metal enhancement. Modifications include expanding the IMF to high mass (>130 M_sun) stars and including metal production from pair-instability supernovae, using an enhanced type-Ia SN rate, and using various modifications of the IMF to make it more top-heavy. For each set of assumptions, we use theoretical nucleosynthesis models to calculate the expected total metal yield per mass of star formation, and to predict the relative abundances of different elements. Including pair-instability supernovae will dramatically increase the amount of metal produced, and, combined with a slightly flatter IMF, can lead to 3 times the metal production per solar mass of star formation, along with an increase abundance of intermediate-mass elements.

  2. Cloning and Expression of SFRP5 in Tibetan Chicken and its Relationship with IMF Deposition.

    PubMed

    Li, Qian; Zuo, Lu-Lu; Lin, Ya-Qiu; Xu, Ya-Ou; Zhu, Jiang-Jiang; Liao, Hong-Hai; Lin, Sen; Xiong, Xian-Rong; Wang, Yong

    2016-10-01

    Secreted frizzled related protein 5 (SFRP5), an anti-inflammatory adipokine, is relevant to the adipocyte differentiation. In order to clarify its role in regulating intramuscular fat (IMF) deposition in Tibetan chicken, the full-length sequence of the Tibetan chicken SFRP5 gene was cloned. The relative expression of SFRP5 gene was detected using quantitative RT-PCR in various tissues of 154 days old Tibetan chicken, as well as in breast muscle, thigh muscle, and adipose tissue at different growth stages. The results showed that SFRP5 gene was expressed in all examined tissues but highly enriched in adipose tissue. Temporal expression profile showed that the expression of SFRP5 was gradually decreased in breast muscle, but was fluctuated in thigh muscle and adipose tissue with the growth of Tibetan chicken. Furthermore, correlation analysis demonstrated that the expression of SFRP5 in breast muscle, thigh muscle and adipose tissue was correlated with IMF content at different levels. The results indicated that Tibetan chicken SFRP5 is involved in IMF deposition.

  3. Cloning and Expression of SFRP5 in Tibetan Chicken and its Relationship with IMF Deposition.

    PubMed

    Li, Qian; Zuo, Lu-Lu; Lin, Ya-Qiu; Xu, Ya-Ou; Zhu, Jiang-Jiang; Liao, Hong-Hai; Lin, Sen; Xiong, Xian-Rong; Wang, Yong

    2016-10-01

    Secreted frizzled related protein 5 (SFRP5), an anti-inflammatory adipokine, is relevant to the adipocyte differentiation. In order to clarify its role in regulating intramuscular fat (IMF) deposition in Tibetan chicken, the full-length sequence of the Tibetan chicken SFRP5 gene was cloned. The relative expression of SFRP5 gene was detected using quantitative RT-PCR in various tissues of 154 days old Tibetan chicken, as well as in breast muscle, thigh muscle, and adipose tissue at different growth stages. The results showed that SFRP5 gene was expressed in all examined tissues but highly enriched in adipose tissue. Temporal expression profile showed that the expression of SFRP5 was gradually decreased in breast muscle, but was fluctuated in thigh muscle and adipose tissue with the growth of Tibetan chicken. Furthermore, correlation analysis demonstrated that the expression of SFRP5 in breast muscle, thigh muscle and adipose tissue was correlated with IMF content at different levels. The results indicated that Tibetan chicken SFRP5 is involved in IMF deposition. PMID:27565866

  4. Simulated orbits of heavy planetary ions at Mars for different IMF configurations

    NASA Astrophysics Data System (ADS)

    Curry, Shannon; Luhmann, Janet; Livi, Roberto; Hara, Takuya; Dong, Chuanfei; Ma, Yingjuan; McFadden, James; Bougher, Stephen

    2014-11-01

    We present simulated detections of O+, O2+ and CO2+ ions at Mars along a virtual orbit in the Mars space environment. Planetary pick-up ions are formed through the direct interaction of the solar wind with the neutral upper atmosphere, causing the newly created ions to be picked up and accelerated by the background convective electric field. Because previous missions such as Mars Global Surveyor (MGS) and Mars Express (MEX) have not been able to measure the interplanetary magnetic field (IMF) components simultaneously with plasma measurements, the response of heavy planetary pick-up ions to changes in the IMF has not been well characterized. Using a steady-state multi-species MHD model to provide the background electric and magnetic fields, the Mars Test Particle (MTP) simulation can trace each of these particles along field lines in near-Mars space and construct virtual ion detections from a spacecraft orbit. Specifically, we will present energy-time spectrograms and velocity space distributions (VSDs) for a selection of orbits during different IMF configurations and solar cycle conditions. These simulated orbits have broader implications for how to measure ion escape. Using individual particle traces, the origin and trajectories of different ion populations can be analyzed in order to assess how and where they contribute to the total atmospheric escape rate, which is a major objective of the upcoming MAVEN mission.

  5. Structural adjustment and public spending on health: evidence from IMF programs in low-income countries.

    PubMed

    Kentikelenis, Alexander E; Stubbs, Thomas H; King, Lawrence P

    2015-02-01

    The relationship between health policy in low-income countries (LICs) and structural adjustment programs devised by the International Monetary Fund (IMF) has been the subject of intense controversy over past decades. While the influence of the IMF on health policy can operate through various pathways, one main link is via public spending on health. The IMF has claimed that its programs enhance government spending for health, and that a number of innovations have been introduced to enable borrowing countries to protect health spending from broader austerity measures. Critics have pointed to adverse effects of Fund programs on health spending or to systematic underfunding that does not allow LICs to address health needs. We examine the effects of Fund programs on government expenditures on health in low-income countries using data for the period 1985-2009. We find that Fund programs are associated with higher health expenditures only in Sub-Saharan African LICs, which historically spent less than any other region. This relationship turns negative in LICs in other regions. We outline the implications of these findings for health policy in a development context.

  6. On the Effect of IMF Turning on Ion Dynamics at Mercury

    NASA Technical Reports Server (NTRS)

    Delcourt, D. C.; Moore, T. E.; Fok, M.-C. H.

    2011-01-01

    We investigate the effect of a rotation of the Interplanetary Magnetic Field (IMF) on the transport of magnetospheric ion populations at Mercury. We focus on ions of planetary origin and investigate their large-scale circulation using three-dimensional single-particle simulations. We show that a nonzero Bx component of the IMF leads to a pronounced asymmetry in the overall circulation pattern . In particular, we demonstrate that the centrifugal acceleration due to curvature of the E x B drift paths is more pronounced in one hemisphere than the other, leading to filling of the magnetospheric lobes and plasma sheet with more or less energetic material depending upon the hemisphere of origin. Using a time-varying electric and magnetic field model, we investigate the response of ions to rapid (a few tens of seconds) re-orientation of the IMF. We show that, for ions with gyroperiods comparable to the field variation time scale, the inductive electric field should lead to significant nonadiabatic energization, up to several hundreds of eVs or a few keVs. It thus appears that IMP turning at Mercury should lead to localized loading of the magnetosphere with energetic material of planetary origin (e.g., Na+).

  7. Circadian molecular clock in lung pathophysiology.

    PubMed

    Sundar, Isaac K; Yao, Hongwei; Sellix, Michael T; Rahman, Irfan

    2015-11-15

    Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology.

  8. Gigabit Ethernet Asynchronous Clock Compensation FIFO

    NASA Technical Reports Server (NTRS)

    Duhachek, Jeff

    2012-01-01

    Clock compensation for Gigabit Ethernet is necessary because the clock recovered from the 1.25 Gb/s serial data stream has the potential to be 200 ppm slower or faster than the system clock. The serial data is converted to 10-bit parallel data at a 125 MHz rate on a clock recovered from the serial data stream. This recovered data needs to be processed by a system clock that is also running at a nominal rate of 125 MHz, but not synchronous to the recovered clock. To cross clock domains, an asynchronous FIFO (first-in-first-out) is used, with the write pointer (wprt) in the recovered clock domain and the read pointer (rptr) in the system clock domain. Because the clocks are generated from separate sources, there is potential for FIFO overflow or underflow. Clock compensation in Gigabit Ethernet is possible by taking advantage of the protocol data stream features. There are two distinct data streams that occur in Gigabit Ethernet where identical data is transmitted for a period of time. The first is configuration, which happens during auto-negotiation. The second is idle, which occurs at the end of auto-negotiation and between every packet. The identical data in the FIFO can be repeated by decrementing the read pointer, thus compensating for a FIFO that is draining too fast. The identical data in the FIFO can also be skipped by incrementing the read pointer, which compensates for a FIFO draining too slowly. The unique and novel features of this FIFO are that it works in both the idle stream and the configuration streams. The increment or decrement of the read pointer is different in the idle and compensation streams to preserve disparity. Another unique feature is that the read pointer to write pointer difference range changes between compensation and idle to minimize FIFO latency during packet transmission.

  9. Simultaneous conjugate observations of dynamic variations in high-latitude dayside convection due to changes in IMF By

    NASA Technical Reports Server (NTRS)

    Greenwald, R. A.; Baker, K. B.; Ruohoniemi, J. M.; Dudeney, J. R.; Pinnock, M.; Mattin, N.; Leonard, J. M.; Lepping, R. P.

    1990-01-01

    Data from two conjugate HF radars currently operating at Goose Bay (Labrador) and the Halley Station (Antarctica), obtained for a single 45-min period about local noon on April 22, 1988, were used to study the near-instantaneous conjugate two-dimensional patterns of plasma convection in the vicinity of the cusp. In particular, the response of these plasma convection patterns to changes in the By component of the IMF was examined. Results indicate that, under quasi-stationary IMF conditions, the conjugate convection patterns are quite similar to the synthesized patterns of Heppner and Maynard (1987) and that the patterns respond rapidly to changes in the IMF By component. Results also show that transitions between convection states begin to occur within minutes of the time that an IMF state change is incident on the magnetospheric boundary, and that the convection reconfigurations expand poleward, completely filling the field of view of an HF radar within 6 min of the time of onset.

  10. Deregulation of the circadian clock constitutes a significant factor in tumorigenesis: a clockwork cancer. Part I: clocks and clocking machinery

    PubMed Central

    Uth, Kristin; Sleigh, Roger

    2014-01-01

    Many physiological processes occur in a rhythmic fashion, consistent with a 24-h cycle. The central timing of the day/night rhythm is set by a master clock, located in the suprachiasmatic nucleus (a tiny region in the hypothalamus), but peripheral clocks exist in different tissues, adjustable by cues other than light (temperature, food, hormone stimulation, etc.), functioning autonomously to the master clock. Presence of unrepaired DNA damage may adjust the circadian clock so that the phase in which checking for damage and DNA repair normally occurs is advanced or extended. The expression of many of the genes coding for proteins functioning in DNA damage-associated response pathways and DNA repair is directly or indirectly regulated by the core clock proteins. Setting up the normal rhythm of the circadian cycle also involves oscillating changes in the chromatin structure, allowing differential activation of various chromatin domains within the 24-h cycle. PMID:26019503

  11. Anterior chamber angle in the exfoliation syndrome.

    PubMed Central

    Wishart, P K; Spaeth, G L; Poryzees, E M

    1985-01-01

    The gonioscopic findings of 76 patients with the exfoliation syndrome were reviewed. A high frequency of narrowness of the anterior chamber (AC) angle was found (32%). 18% had angles considered occludable, and 14% had obvious angle-closure glaucoma as shown by the presence of peripheral anterior synechias (PAS). Increased pigmentation of the posterior trabecular meshwork (PTM) was noted in all cases. When this pigmentation was markedly asymmetrical, unilateral exfoliation with glaucoma was common in the more pigmented eye. In addition heavy angle pigmentation in the absence of exfoliation was noted in the fellow eye of patients with characteristic exfoliated material in the other eye. Increased pigmentation of the PTM may be the earliest detectable sign of the exfoliation syndrome (ES). The clinical significance of our estimating PTM pigmentation at the 12 o'clock position is discussed. In view of the accelerated optic nerve damage associated with the development of glaucoma secondary to ES, routine estimation of the pigmentation of the PTM at 12 o'clock is recommended in the hope of early detection of cases of otherwise inapparent ES. Images PMID:3966996

  12. Measurement of the tensor differential polarizability between Rb clock states

    NASA Astrophysics Data System (ADS)

    Dallal, Yehonatan; Ozeri, Roee

    2014-05-01

    Atoms subjected to intense electric fields experience a shift in their energy levels. This shift, due to the polarizability of atomic states, enables the trapping of atoms in the focus an intense laser beam. Due to the hyperfine interaction the polarizabilities of the two hyperfine levels of 87Rb differ on the 10-5 level. In general the atomic polarizability can be decomposed into a scalar and a traceless symmetric tensor parts, the latter being 10-2 that of the former. Any anisotropy of the polarizability is due to its tensor part and the shift depends on the relative angle between the electric field and the quantizing magnetic field. In our experiment we trapped 87Rb atoms in an intense quasi-electrostatic field of a, linearly polarized, focused CO2 laser beam and measured the shift in the microwave clock transition frequency using Ramsey spectroscopy. By changing the angle between the electric field of the laser and the magnetic field providing a quantization axis, we were able to isolate the 1 Hz fractional shift caused by the, previously unmeasured, tensor polarizability. The exact knowledge of the scalar and tensor parts of the polarizability are important in order to determine the black body shift of Rb clocks; an important secondary time standard; and can be compared with state-of-the-art atomic structure calculations.

  13. Tectonic blocks and molecular clocks

    PubMed Central

    2016-01-01

    Evolutionary timescales have mainly used fossils for calibrating molecular clocks, though fossils only really provide minimum clade age constraints. In their place, phylogenetic trees can be calibrated by precisely dated geological events that have shaped biogeography. However, tectonic episodes are protracted, their role in vicariance is rarely justified, the biogeography of living clades and their antecedents may differ, and the impact of such events is contingent on ecology. Biogeographic calibrations are no panacea for the shortcomings of fossil calibrations, but their associated uncertainties can be accommodated. We provide examples of how biogeographic calibrations based on geological data can be established for the fragmentation of the Pangaean supercontinent: (i) for the uplift of the Isthmus of Panama, (ii) the separation of New Zealand from Gondwana, and (iii) for the opening of the Atlantic Ocean. Biogeographic and fossil calibrations are complementary, not competing, approaches to constraining molecular clock analyses, providing alternative constraints on the age of clades that are vital to avoiding circularity in investigating the role of biogeographic mechanisms in shaping modern biodiversity. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325840

  14. Single electron relativistic clock interferometer

    NASA Astrophysics Data System (ADS)

    Bushev, P. A.; Cole, J. H.; Sholokhov, D.; Kukharchyk, N.; Zych, M.

    2016-09-01

    Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.

  15. Temperature influences in receiver clock modelling

    NASA Astrophysics Data System (ADS)

    Wang, Kan; Meindl, Michael; Rothacher, Markus; Schoenemann, Erik; Enderle, Werner

    2016-04-01

    In Precise Point Positioning (PPP), hardware delays at the receiver site (receiver, cables, antenna, …) are always difficult to be separated from the estimated receiver clock parameters. As a result, they are partially or fully contained in the estimated "apparent" clocks and will influence the deterministic and stochastic modelling of the receiver clock behaviour. In this contribution, using three years of data, the receiver clock corrections of a set of high-precision Hydrogen Masers (H-Masers) connected to stations of the ESA/ESOC network and the International GNSS Service (IGS) are firstly characterized concerning clock offsets, drifts, modified Allan deviations and stochastic parameters. In a second step, the apparent behaviour of the clocks is modelled with the help of a low-order polynomial and a known temperature coefficient (Weinbach, 2013). The correlations between the temperature and the hardware delays generated by different types of antennae are then analysed looking at daily, 3-day and weekly time intervals. The outcome of these analyses is crucial, if we intend to model the receiver clocks in the ground station network to improve the estimation of station-related parameters like coordinates, troposphere zenith delays and ambiguities. References: Weinbach, U. (2013) Feasibility and impact of receiver clock modeling in precise GPS data analysis. Dissertation, Leibniz Universität Hannover, Germany.

  16. Systematic Effects in Atomic Fountain Clocks

    NASA Astrophysics Data System (ADS)

    Gibble, Kurt

    2016-06-01

    We describe recent advances in the accuracies of atomic fountain clocks. New rigorous treatments of the previously large systematic uncertainties, distributed cavity phase, microwave lensing, and background gas collisions, enabled these advances. We also discuss background gas collisions of optical lattice and ion clocks and derive the smooth transition of the microwave lensing frequency shift to photon recoil shifts for large atomic wave packets.

  17. "Molecular Clock" Analogs: A Relative Rates Exercise

    ERIC Educational Resources Information Center

    Wares, John P.

    2008-01-01

    Although molecular clock theory is a commonly discussed facet of evolutionary biology, undergraduates are rarely presented with the underlying information of how this theory is examined relative to empirical data. Here a simple contextual exercise is presented that not only provides insight into molecular clocks, but is also a useful exercise for…

  18. Fast Clock Recovery for Digital Communications

    NASA Technical Reports Server (NTRS)

    Tell, R. G.

    1985-01-01

    Circuit extracts clock signal from random non-return-to-zero data stream, locking onto clock within one bit period at 1-gigabitper-second data rate. Circuit used for synchronization in opticalfiber communications. Derives speed from very short response time of gallium arsenide metal/semiconductor field-effect transistors (MESFET's).

  19. Global synchronization of parallel processors using clock pulse width modulation

    DOEpatents

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  20. A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception.

    PubMed

    Cavallari, Nicola; Frigato, Elena; Vallone, Daniela; Fröhlich, Nadine; Lopez-Olmeda, Jose Fernando; Foà, Augusto; Berti, Roberto; Sánchez-Vázquez, Francisco Javier; Bertolucci, Cristiano; Foulkes, Nicholas S

    2011-09-01

    The circadian clock is synchronized with the day-night cycle primarily by light. Fish represent fascinating models for deciphering the light input pathway to the vertebrate clock since fish cell clocks are regulated by direct light exposure. Here we have performed a comparative, functional analysis of the circadian clock involving the zebrafish that is normally exposed to the day-night cycle and a cavefish species that has evolved in perpetual darkness. Our results reveal that the cavefish retains a food-entrainable clock that oscillates with an infradian period. Importantly, however, this clock is not regulated by light. This comparative study pinpoints the two extra-retinal photoreceptors Melanopsin (Opn4m2) and TMT-opsin as essential upstream elements of the peripheral clock light input pathway. PMID:21909239

  1. The Ozone-Iodine-Chlorate Clock Reaction

    PubMed Central

    Sant'Anna, Rafaela T. P.; Monteiro, Emily V.; Pereira, Juliano R. T.; Faria, Roberto B.

    2013-01-01

    This work presents a new clock reaction based on ozone, iodine, and chlorate that differs from the known chlorate-iodine clock reaction because it does not require UV light. The induction period for this new clock reaction depends inversely on the initial concentrations of ozone, chlorate, and perchloric acid but is independent of the initial iodine concentration. The proposed mechanism considers the reaction of ozone and iodide to form HOI, which is a key species for producing non-linear autocatalytic behavior. The novelty of this system lies in the presence of ozone, whose participation has never been observed in complex systems such as clock or oscillating reactions. Thus, the autocatalysis demonstrated in this new clock reaction should open the possibility for a new family of oscillating reactions. PMID:24386257

  2. The ozone-iodine-chlorate clock reaction.

    PubMed

    Sant'Anna, Rafaela T P; Monteiro, Emily V; Pereira, Juliano R T; Faria, Roberto B

    2013-01-01

    This work presents a new clock reaction based on ozone, iodine, and chlorate that differs from the known chlorate-iodine clock reaction because it does not require UV light. The induction period for this new clock reaction depends inversely on the initial concentrations of ozone, chlorate, and perchloric acid but is independent of the initial iodine concentration. The proposed mechanism considers the reaction of ozone and iodide to form HOI, which is a key species for producing non-linear autocatalytic behavior. The novelty of this system lies in the presence of ozone, whose participation has never been observed in complex systems such as clock or oscillating reactions. Thus, the autocatalysis demonstrated in this new clock reaction should open the possibility for a new family of oscillating reactions. PMID:24386257

  3. Double-modulation CPT cesium compact clock

    NASA Astrophysics Data System (ADS)

    Yun, Peter; Mejri, Sinda; Tricot, Francois; Abdel Hafiz, Moustafa; Boudot, Rodolphe; de Clercq, Emeric; Guérandel, Stéphane

    2016-06-01

    Double-modulation coherent population trapping (CPT) is based on a synchronous modulation of Raman phase and laser polarization, which allows the atomic population to accumulate in a common dark state. The high contrast signal obtained on the clock transition with a relative compact and robust laser system is interesting as basis of a high performance microwave clock. Here we study the parameters of a double-modulation CPT Cs clock working in cw mode. The optimal polarization modulation frequency and cell temperature for maximum contrast of clock transition are investigated. The parameters of the detection are also studied. With the optimal parameters, we observe a CPT signal with contrast of 10% and linewidth of 492 Hz, which is well suited for implementing a cw atomic clock.

  4. Measurement of time by quantum clocks

    NASA Astrophysics Data System (ADS)

    Peres, Asher

    1980-07-01

    A clock is a dynamical system which passes through a succession of states at constant time intervals. If coupled to another system, it can measure the duration of a physical process and even keep a permanent record of it, such as in a time-of-flight experiment or in observing the lifetime of an unstable atom. A clock can also be used to control the duration of a process, e.g., the precession of a spin in a magnetic field which is turned on and off at prescribed times. This article shows how to construct time-independent Hamiltonians describing these possible uses of a quantum clock. As expected, a good time resolution entails a large energy exchange between the clock and the other system, thereby modifying the evolution of the latter. This evolution may even be halted by using a clock which is too precise (this is the quantum analog of Zeno's paradox).

  5. The ozone-iodine-chlorate clock reaction.

    PubMed

    Sant'Anna, Rafaela T P; Monteiro, Emily V; Pereira, Juliano R T; Faria, Roberto B

    2013-01-01

    This work presents a new clock reaction based on ozone, iodine, and chlorate that differs from the known chlorate-iodine clock reaction because it does not require UV light. The induction period for this new clock reaction depends inversely on the initial concentrations of ozone, chlorate, and perchloric acid but is independent of the initial iodine concentration. The proposed mechanism considers the reaction of ozone and iodide to form HOI, which is a key species for producing non-linear autocatalytic behavior. The novelty of this system lies in the presence of ozone, whose participation has never been observed in complex systems such as clock or oscillating reactions. Thus, the autocatalysis demonstrated in this new clock reaction should open the possibility for a new family of oscillating reactions.

  6. Expression of clock proteins in developing tooth.

    PubMed

    Zheng, Li; Papagerakis, Silvana; Schnell, Santiago D; Hoogerwerf, Willemijntje A; Papagerakis, Petros

    2011-01-01

    Morphological and functional changes during ameloblast and odontoblast differentiation suggest that enamel and dentin formation is under circadian control. Circadian rhythms are endogenous self-sustained oscillations with periods of 24h that control diverse physiological and metabolic processes. Mammalian clock genes play a key role in synchronizing circadian functions in many organs. However, close to nothing is known on clock genes expression during tooth development. In this work, we investigated the expression of four clock genes during tooth development. Our results showed that circadian clock genes Bmal1, clock, per1, and per2 mRNAs were detected in teeth by RT-PCR. Immunohistochemistry showed that clock protein expression was first detected in teeth at the bell stage (E17), being expressed in EOE and dental papilla cells. At post-natal day four (PN4), all four clock proteins continued to be expressed in teeth but with different intensities, being strongly expressed within the nucleus of ameloblasts and odontoblasts and down-regulated in dental pulp cells. Interestingly, at PN21 incisor, expression of clock proteins was down-regulated in odontoblasts of the crown-analogue side but expression was persisting in root-analogue side odontoblasts. In contrast, both crown and root odontoblasts were strongly stained for all four clock proteins in first molars at PN21. Within the periodontal ligament (PDL) space, epithelial rests of Malassez (ERM) showed the strongest expression among other PDL cells. Our data suggests that clock genes might be involved in the regulation of ameloblast and odontoblast functions, such as enamel and dentin protein secretion and matrix mineralization.

  7. Lutetium +: A better clock candidate

    NASA Astrophysics Data System (ADS)

    Arnold, Kyle; Paez, Eduardo; Haciyev, Elnur; Arifin, Arifin; Cazan, Radu; Barrett, Murray

    2015-05-01

    With the extreme precision now reached by optical clocks it is reasonable to consider redefinition of the frequency standard. In doing so it is important to look beyond the current best-case efforts and have an eye on future possibilities. We will argue that singly ionized Lutetium is a strong candidate for the next generation of optical frequency standards. Lu + has a particularly narrow optical transition in combination with several advantageous properties for managing systematic uncertainties compared to the other atomic species. We summarize these properties and our specific strategies for managing the uncertainties due to external perturbations. Finally, we present the status of our ongoing experiments with trapped Lu +, including the results of precision measurements of its atomic structure.

  8. Time clock requirements for hospital physicians.

    PubMed

    Shapira, Chen; Vilnai-Yavetz, Iris; Rafaeli, Anat; Zemel, Moran

    2016-06-01

    An agreement negotiated following a doctors' strike in 2011 introduced a requirement that physicians in Israel's public hospitals clock in and out when starting and leaving work. The press reported strong negative reactions to this policy and predicted doctors deserting hospitals en masse. This study examines physicians' reactions toward the clock-in/clock-out policy 6 months after its implementation, and assesses the relationship between these reactions and aspects of their employment context. 676 physicians in 42 hospitals responded to a survey assessing doctor's reactions toward the clock, hospital policy makers, and aspects of their work. Reactions to the clock were generally negative. Sense of calling correlated positively with negative reactions to the clock, and the latter correlated positively with quit intentions. However, overall, respondents reported a high sense of calling and low quit intentions. We suggest that sense of calling buffers and protects physicians from quit intentions. Differences in reactions to the clock were associated with different employment characteristics, but sense of calling did not vary by hospital size or type or by physicians' specialty. The findings offer insights into how physicians' working environment affects their reactions to regulatory interventions, and highlight medical professionalism as buffering reactions to unpopular regulatory policies. PMID:27142179

  9. The circadian clock regulates inflammatory arthritis

    PubMed Central

    Hand, Laura E.; Hopwood, Thomas W.; Dickson, Suzanna H.; Walker, Amy L.; Loudon, Andrew S. I.; Ray, David W.; Bechtold, David A.; Gibbs, Julie E.

    2016-01-01

    There is strong diurnal variation in the symptoms and severity of chronic inflammatory diseases, such as rheumatoid arthritis. In addition, disruption of the circadian clock is an aggravating factor associated with a range of human inflammatory diseases. To investigate mechanistic links between the biological clock and pathways underlying inflammatory arthritis, mice were administered collagen (or saline as a control) to induce arthritis. The treatment provoked an inflammatory response within the limbs, which showed robust daily variation in paw swelling and inflammatory cytokine expression. Inflammatory markers were significantly repressed during the dark phase. Further work demonstrated an active molecular clock within the inflamed limbs and highlighted the resident inflammatory cells, fibroblast-like synoviocytes (FLSs), as a potential source of the rhythmic inflammatory signal. Exposure of mice to constant light disrupted the clock in peripheral tissues, causing loss of the nighttime repression of local inflammation. Finally, the results show that the core clock proteins cryptochrome (CRY) 1 and 2 repressed inflammation within the FLSs, and provide novel evidence that a CRY activator has anti-inflammatory properties in human cells. We conclude that under chronic inflammatory conditions, the clock actively represses inflammatory pathways during the dark phase. This interaction has exciting potential as a therapeutic avenue for treatment of inflammatory disease.—Hand, L. E., Hopwood, T. W., Dickson, S. H., Walker, A. L., Loudon, A. S. I., Ray, D. W., Bechtold, D. A., Gibbs, J. E. The circadian clock regulates inflammatory arthritis. PMID:27488122

  10. Circadian clock system in the pineal gland.

    PubMed

    Fukada, Yoshitaka; Okano, Toshiyuki

    2002-02-01

    The pineal gland is a neuroendocrine organ that functions as a central circadian oscillator in a variety of nonmammalian vertebrates. In many cases, the pineal gland retains photic input and endocrinal-output pathways both linked tightly to the oscillator. This contrasts well with the mammalian pineal gland equipped only with the output of melatonin production that is subject to neuronal regulation by central circadian oscillator located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Molecular studies on animal clock genes were performed first in Drosophila and later developed in rodents. More recently, clock genes such as Per, Cry, Clock, and Bmal have been found in a variety of vertebrate clock structures including the avian pineal gland. The profiles of the temporal change of the clock gene expression in the avian pineal gland are more similar to those in the mammalian SCN rather than to those in the mammalian pineal gland. Avian pineal gland and mammalian SCN seem to share a fundamental molecular framework of the clock oscillator composed of a transcription/translation-based autoregulatory feedback loop. The circadian time-keeping mechanism also requires several post-translational events, such as protein translocation and degradation processes, in which protein phosphorylation plays a very important role for the stable 24-h cycling of the oscillator and/or the photic-input pathway for entrainment of the clock. PMID:11890455

  11. THE MOLECULAR CLOCK AS A METABOLIC RHEOSTAT

    PubMed Central

    Perelis, Mark; Ramsey, Kathryn Moynihan; Bass, Joseph

    2015-01-01

    Circadian clocks are biologic oscillators present in all photosensitive species that produce 24-hour cycles in the transcription of rate-limiting metabolic enzymes in anticipation of the light-dark cycle. In mammals, the clock drives energetic cycles to maintain physiologic constancy during the daily switch in behavioral (sleep/wake) and nutritional (fasting/feeding) states. A molecular connection between circadian clocks and tissue metabolism was first established with the discovery that 24-hour transcriptional rhythms are cell-autonomous and self-sustained in most tissues and comprise a robust temporal network throughout the body. A major window in understanding how the clock is coupled to metabolism was opened with discovery of metabolic syndrome pathologies in multi-tissue circadian mutant mice including susceptibility to diet-induced obesity and diabetes. Using conditional transgenesis and dynamic metabolic testing we have pinpointed tissue-specific roles of the clock in energy and glucose homeostasis, with our most detailed understanding of this process in endocrine pancreas. Here we review evidence for dynamic regulation of insulin secretion and oxidative metabolic functions by the clock transcription pathway to regulate homeostatic responses to feeding and fasting. These studies indicate that clock transcription is a determinant of tissue function and provide a reference for understanding molecular pathologies linking circadian desynchrony to metabolic disease. PMID:26332974

  12. [Molecular mechanisms of circadian clock functioning].

    PubMed

    Karbovskyĭ, L L; Minchenko, D O; Garmash, Ia A; Minchenko, O G

    2011-01-01

    Most physiological processes of all organisms are rhythmic with a period of about 24 h and are generated by an endogenous biological CLOCK present in all cells. However, there is also a central CLOCK--the primary circadian pacemaker which is localized in the suprachiasmatic nuclei of the mammalian hypothalamus. Factors of groups Period (PER1, PER2 and PER3), BMAL (BMAL1 and BMAL2), CRYptochromes (CRY1 and CRY2) as well as some other factors are the components of this circadian CLOCK system. Some of these genes contain E-box sequences and their expression is regulated by a transcription factor complex CLOCK-BMAL1. The enzymes responsible for the post-translational modification of circadian gene products are also the components of circadian CLOCK system. These enzymes define CLOCK's work and determine the duration of circadian biorhythm and functional state of the whole organism. The most important of these enzymes are casein kinase-1epsilon and -1delta. We have analysed data about the interconnection between the circadian CLOCK system, cell cycle, and cancerogenesis as well as about the sensitivity of circadian gene expression to the action of toxic agents and nanomaterials.

  13. Time clock requirements for hospital physicians.

    PubMed

    Shapira, Chen; Vilnai-Yavetz, Iris; Rafaeli, Anat; Zemel, Moran

    2016-06-01

    An agreement negotiated following a doctors' strike in 2011 introduced a requirement that physicians in Israel's public hospitals clock in and out when starting and leaving work. The press reported strong negative reactions to this policy and predicted doctors deserting hospitals en masse. This study examines physicians' reactions toward the clock-in/clock-out policy 6 months after its implementation, and assesses the relationship between these reactions and aspects of their employment context. 676 physicians in 42 hospitals responded to a survey assessing doctor's reactions toward the clock, hospital policy makers, and aspects of their work. Reactions to the clock were generally negative. Sense of calling correlated positively with negative reactions to the clock, and the latter correlated positively with quit intentions. However, overall, respondents reported a high sense of calling and low quit intentions. We suggest that sense of calling buffers and protects physicians from quit intentions. Differences in reactions to the clock were associated with different employment characteristics, but sense of calling did not vary by hospital size or type or by physicians' specialty. The findings offer insights into how physicians' working environment affects their reactions to regulatory interventions, and highlight medical professionalism as buffering reactions to unpopular regulatory policies.

  14. The molecular clock as a metabolic rheostat.

    PubMed

    Perelis, M; Ramsey, K M; Bass, J

    2015-09-01

    Circadian clocks are biologic oscillators present in all photosensitive species that produce 24-h cycles in the transcription of rate-limiting metabolic enzymes in anticipation of the light-dark cycle. In mammals, the clock drives energetic cycles to maintain physiologic constancy during the daily switch in behavioural (sleep/wake) and nutritional (fasting/feeding) states. A molecular connection between circadian clocks and tissue metabolism was first established with the discovery that 24-h transcriptional rhythms are cell-autonomous and self-sustained in most tissues and comprise a robust temporal network throughout the body. A major window in understanding how the clock is coupled to metabolism was opened with discovery of metabolic syndrome pathologies in multi-tissue circadian mutant mice including susceptibility to diet-induced obesity and diabetes. Using conditional transgenesis and dynamic metabolic testing, we have pinpointed tissue-specific roles of the clock in energy and glucose homeostasis, with our most detailed understanding of this process in endocrine pancreas. Here, we review evidence for dynamic regulation of insulin secretion and oxidative metabolic functions by the clock transcription pathway to regulate homeostatic responses to feeding and fasting. These studies indicate that clock transcription is a determinant of tissue function and provide a reference for understanding molecular pathologies linking circadian desynchrony to metabolic disease.

  15. Particle entry through "Sash" groove simulated by Global 3D Electromagnetic Particle code with duskward IMF By

    NASA Astrophysics Data System (ADS)

    Yan, X.; Cai, D.; Nishikawa, K.; Lembege, B.

    2004-12-01

    We made our efforts to parallelize the global 3D HPF Electromagnetic particle model (EMPM) for several years and have also reported our meaningful simulation results that revealed the essential physics involved in interaction of the solar wind with the Earth's magnetosphere using this EMPM (Nishikawa et al., 1995; Nishikawa, 1997, 1998a, b, 2001, 2002) in our PC cluster and supercomputer(D.S. Cai et al., 2001, 2003). Sash patterns and related phenomena have been observed and reported in some satellite observations (Fujumoto et al. 1997; Maynard, 2001), and have motivated 3D MHD simulations (White and al., 1998). We also investigated it with our global 3D parallelized HPF EMPM with dawnward IMF By (K.-I. Nishikawa, 1998) and recently new simulation with dusk-ward IMF By was accomplished in the new VPP5000 supercomputer. In the new simulations performed on the new VPP5000 supercomputer of Tsukuba University, we used larger domain size, 305×205×205, smaller grid size (Δ ), 0.5R E(the radium of the Earth), more total particle number, 220,000,000 (about 8 pairs per cell). At first, we run this code until we get the so-called quasi-stationary status; After the quasi-stationary status was established, we applied a northward IMF (B z=0.2), and then wait until the IMF arrives around the magnetopuase. After the arrival of IMF, we begin to change the IMF from northward to duskward (IMF B y=-0.2). The results revealed that the groove structure at the day-side magnetopause, that causes particle entry into inner magnetosphere and the cross structure or S-structure at near magneto-tail are formed. Moreover, in contrast with MHD simulations, kinetic characteristic of this event is also analyzed self-consistently with this simulation. The new simulation provides new and more detailed insights for the observed sash event.

  16. Structure of the Outer Cusp and Sources of the Cusp Precipitation during Intervals of a Horizontal IMF

    NASA Technical Reports Server (NTRS)

    Berchem, Jean; Nemecek, Z.; Safrankova, J.; Prech, L.; Simunek, J.; Sauvaud, J.-A.; Fedorov, A.; Stenuit, H.; Fuselier, S. A.; Savin, S.; Zelenyi, L.

    2003-01-01

    The cusp represents a place where the magnetosheath plasma can directly penetrate into the magnetosphere. Since the main transport processes are connected with merging of the interplanetary and magnetospheric field lines: the interplanetary magnetic field (IMF) Orientation plays a decisive role in the formation of the high-altitude cusp. The importance of the sign of the IMF B(sub Z) component for this process was suggested about 40 years ago and later it was documented by many experimental investigations. However, situations when IMF Bz is the major IMF component are rather rare. The structure of the cusp during periods of a small IMF B(sub Z) is generally unknown, probably due to the fully 3-D nature of the interaction. The present case study reveals the importance of horizontal IMF components on the global magnetospheric configuration as well as on small-scale processes at the cusp-magnetosheath interface. We have used simultaneous measurements of several spacecraft (ISTP program) operating in different regions of interplanetary space and two closely spaced satellites (INTERBALL-1/MAGION-4) crossing the cusp-magnetosheath boundary to show the connection between the short- and large-scale phenomena. In the northern hemisphere, observations suggest a presence of two spots of cusp-like precipitation supplied by reconnection occurring simultaneously in both hemispheres. A source of this bifurcation is the positive IMF B(sub y) component further enhanced by the field draping in the magnetosheath. This magnetic field component shifts the entry point far away from the local noon but in opposite sense in either hemisphere. The cusp represents a place where the magnetosheath plasma can directly

  17. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  18. Magic wavelengths for terahertz clock transitions

    SciTech Connect

    Zhou Xiaoji; Xu Xia; Chen Xuzong; Chen Jingbiao

    2010-01-15

    Magic wavelengths for laser trapping of boson isotopes of alkaline-earth metal atoms Sr, Ca, and Mg are investigated while considering terahertz clock transitions between the {sup 3}P{sub 0}, {sup 3}P{sub 1}, and {sup 3}P{sub 2} metastable triplet states. Our calculation shows that magic wavelengths for laser trapping do exist. This result is important because those metastable states have already been used to make accurate clocks in the terahertz frequency domain. Detailed discussions for magic wavelengths for terahertz clock transitions are given in this article.

  19. Linear unbiased prediction of clock errors.

    PubMed

    Shmaliy, Yuriy S

    2009-09-01

    In this paper, we propose a new formula for linear unbiased prediction of the local clock timescales. To predict future errors over all the measurement data, a new gain is derived for the p-step ramp unbiased finite impulse response (FIR) predictor. We then show that this gain gives the best linear unbiased fit suitable for forming the prediction vector. The predictor proposed is consistent with linear regression and best linear unbiased estimator. Applications are given for a crystal clock and the USNO Master Clock.

  20. Model of a mechanical clock escapement

    NASA Astrophysics Data System (ADS)

    Moline, David; Wagner, John; Volk, Eugene

    2012-07-01

    The mechanical tower clock originated in Europe during the 14th century to sound hourly bells and later display hands on a dial. An important innovation was the escapement mechanism, which converts stored energy into oscillatory motion for fixed time intervals through the pendulum swing. Previous work has modeled the escapement mechanism in terms of inelastic and elastic collisions. We derive and experimentally verify a theoretical model in terms of impulsive differential equations for the Graham escapement mechanism in a Seth Thomas tower clock. The model offers insight into the clock's mechanical behavior and the functionality of the deadbeat escapement mechanism.

  1. Atomic Clock Based On Linear Ion Trap

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Dick, G. John

    1992-01-01

    Highly stable atomic clock based on excitation and measurement of hyperfine transition in 199Hg+ ions confined in linear quadrupole trap by radio-frequency and static electric fields. Configuration increases stability of clock by enabling use of enough ions to obtain adequate signal while reducing non-thermal component of motion of ions in trapping field, reducing second-order Doppler shift of hyperfine transition. Features described in NPO-17758 "Linear Ion Trap for Atomic Clock." Frequency standard based on hyperfine transition described in NPO-17456, "Trapped-Mercury-Ion Frequency Standard."

  2. Zero-dead-time operation of interleaved atomic clocks.

    PubMed

    Biedermann, G W; Takase, K; Wu, X; Deslauriers, L; Roy, S; Kasevich, M A

    2013-10-25

    We demonstrate a zero-dead-time operation of atomic clocks. This clock reduces sensitivity to local oscillator noise, integrating as nearly 1/τ whereas a clock with dead time integrates as 1/τ(1/2) under identical conditions. We contend that a similar scheme may be applied to improve the stability of optical clocks.

  3. Zero-dead-time operation of interleaved atomic clocks.

    PubMed

    Biedermann, G W; Takase, K; Wu, X; Deslauriers, L; Roy, S; Kasevich, M A

    2013-10-25

    We demonstrate a zero-dead-time operation of atomic clocks. This clock reduces sensitivity to local oscillator noise, integrating as nearly 1/τ whereas a clock with dead time integrates as 1/τ(1/2) under identical conditions. We contend that a similar scheme may be applied to improve the stability of optical clocks. PMID:24206471

  4. The circadian clock in cancer development and therapy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The...

  5. Mutations in the circadian gene CLOCK in colorectal cancer.

    PubMed

    Alhopuro, Pia; Björklund, Mikael; Sammalkorpi, Heli; Turunen, Mikko; Tuupanen, Sari; Biström, Mia; Niittymäki, Iina; Lehtonen, Heli J; Kivioja, Teemu; Launonen, Virpi; Saharinen, Juha; Nousiainen, Kari; Hautaniemi, Sampsa; Nuorva, Kyösti; Mecklin, Jukka-Pekka; Järvinen, Heikki; Orntoft, Torben; Arango, Diego; Lehtonen, Rainer; Karhu, Auli; Taipale, Jussi; Aaltonen, Lauri A

    2010-07-01

    The circadian clock regulates daily variations in physiologic processes. CLOCK acts as a regulator in the circadian apparatus controlling the expression of other clock genes, including PER1. Clock genes have been implicated in cancer-related functions; in this work, we investigated CLOCK as a possible target of somatic mutations in microsatellite unstable colorectal cancers. Combining microarray gene expression data and public gene sequence information, we identified CLOCK as 1 of 790 putative novel microsatellite instability (MSI) target genes. A total of 101 MSI colorectal carcinomas (CRC) were sequenced for a coding microsatellite in CLOCK. The effect of restoring CLOCK expression was studied in LS180 cells lacking wild-type CLOCK by stably expressing GST-CLOCK or glutathione S-transferase empty vector and testing the effects of UV-induced apoptosis and radiation by DNA content analysis using flow cytometry. Putative novel CLOCK target genes were searched by using ChIP-seq. CLOCK mutations occurred in 53% of MSI CRCs. Restoring CLOCK expression in cells with biallelic CLOCK inactivation resulted in protection against UV-induced apoptosis and decreased G(2)-M arrest in response to ionizing radiation. Using ChIP-Seq, novel CLOCK-binding elements were identified near DNA damage genes p21, NBR1, BRCA1, and RAD50. CLOCK is shown to be mutated in cancer, and altered response to DNA damage provides one plausible mechanism of tumorigenesis.

  6. Relationship between the IMF magnitude and Pc 3 magnetic pulsations in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Yumoto, K.; Saito, T.; Tsurutani, B. T.; Smith, E. J.; Akasofu, S.-I.

    1984-01-01

    The relationships between the IMF magnitude and pulsation frequencies in the Pc 3-4 range simultaneously observed both at synchronous orbit and at low latitudes on the ground are statistically described. A theoretical discussion is given on how these observations can be interpreted in terms of the characteristic frequency of compressional Pc 3-4 magnetic pulsations in the magnetosphere, based on the well-established ion cyclotron resonance mechanism between magnetosonic mode of low-frequency upstream waves and narrowly reflected ion beams in the earth's foreshock.

  7. The dynamic Allan Variance IV: characterization of atomic clock anomalies.

    PubMed

    Galleani, Lorenzo; Tavella, Patrizia

    2015-05-01

    The number of applications where precise clocks play a key role is steadily increasing, satellite navigation being the main example. Precise clock anomalies are hence critical events, and their characterization is a fundamental problem. When an anomaly occurs, the clock stability changes with time, and this variation can be characterized with the dynamic Allan variance (DAVAR). We obtain the DAVAR for a series of common clock anomalies, namely, a sinusoidal term, a phase jump, a frequency jump, and a sudden change in the clock noise variance. These anomalies are particularly common in space clocks. Our analytic results clarify how the clock stability changes during these anomalies.

  8. The dynamic Allan Variance IV: characterization of atomic clock anomalies.

    PubMed

    Galleani, Lorenzo; Tavella, Patrizia

    2015-05-01

    The number of applications where precise clocks play a key role is steadily increasing, satellite navigation being the main example. Precise clock anomalies are hence critical events, and their characterization is a fundamental problem. When an anomaly occurs, the clock stability changes with time, and this variation can be characterized with the dynamic Allan variance (DAVAR). We obtain the DAVAR for a series of common clock anomalies, namely, a sinusoidal term, a phase jump, a frequency jump, and a sudden change in the clock noise variance. These anomalies are particularly common in space clocks. Our analytic results clarify how the clock stability changes during these anomalies. PMID:25965674

  9. Circadian and Circalunar Clock Interactions in a Marine Annelid

    PubMed Central

    Zantke, Juliane; Ishikawa-Fujiwara, Tomoko; Arboleda, Enrique; Lohs, Claudia; Schipany, Katharina; Hallay, Natalia; Straw, Andrew D.; Todo, Takeshi; Tessmar-Raible, Kristin

    2013-01-01

    Summary Life is controlled by multiple rhythms. Although the interaction of the daily (circadian) clock with environmental stimuli, such as light, is well documented, its relationship to endogenous clocks with other periods is little understood. We establish that the marine worm Platynereis dumerilii possesses endogenous circadian and circalunar (monthly) clocks and characterize their interactions. The RNAs of likely core circadian oscillator genes localize to a distinct nucleus of the worm’s forebrain. The worm’s forebrain also harbors a circalunar clock entrained by nocturnal light. This monthly clock regulates maturation and persists even when circadian clock oscillations are disrupted by the inhibition of casein kinase 1δ/ε. Both circadian and circalunar clocks converge on the regulation of transcript levels. Furthermore, the circalunar clock changes the period and power of circadian behavior, although the period length of the daily transcriptional oscillations remains unaltered. We conclude that a second endogenous noncircadian clock can influence circadian clock function. PMID:24075994

  10. A global MHD simulation study of the vortices at the magnetosphere boundary under the southward IMF condition

    NASA Astrophysics Data System (ADS)

    Park, K.; Ogino, T.; Lee, D.; Walker, R. J.; Kim, K.

    2013-12-01

    One of the significant problems in magnetospheric physics concerns the nature and properties of the processes which occur at the magnetopause boundary; in particular how energy, momentum, and plasma the magnetosphere receives from the solar wind. Basic processes are magnetic reconnection [Dungey, 1961] and viscouslike interaction, such as Kelvin-Helmholtz instability [Dungey 1955, Miura, 1984] and pressure-pulse driven [Sibeck et al. 1989]. In generally, magnetic reconnection occurs efficiently when the IMF is southward and the rate is largest where the magnetosheath magnetic field is antiparallel to the geomagnetic field. [Sonnerup, 1974; Crooker, 1979; Luhmann et al., 1984; Park et al., 2006, 2009]. The Kelvin-Helmholtz instability is driven by the velocity shear at the boundary, which occur frequently when the IMF is northward. Also variation of the magnetic field and the plasma properties is reported to be quasi-periodic with 2-3min [Otto and Fairfield, 2000] and period of vortex train with 3 to 4 minutes by global MHD simulation [Ogino, 2011]. The pressure-pulse is driven by the solar wind. And the observations of the magnetospheric magnetic field response show quasi-periodic with a period of 8 minutes [Sibeck et al., 1989; Kivelson and Chen, 1995]. There have been few studies of the vortices in the magnetospheric boundary under southward IMF condition. However it is not easy to find the generation mechanism and characteristic for vortices in complicated 3-dimensional space. Thus we have performed global MHD simulation for the steady solar wind and southward IMF conditions. From the simulation results, we find that the vortex occurs at R= 11.7Re (IMF Bz = -2 nT) and R= 10.2Re (IMF Bz = -10 nT) in the dayside magnetopause boundary. Also the vortex rotates counterclockwise in duskside magnetopause (clockwise in dawnside) and propagates tailward. Across the vortex, magnetic field and plasma properties clearly show quasi-periodic fluctuations with a period of 8

  11. THE STELLAR INITIAL MASS FUNCTION OF ULTRA-FAINT DWARF GALAXIES: EVIDENCE FOR IMF VARIATIONS WITH GALACTIC ENVIRONMENT

    SciTech Connect

    Geha, Marla; Brown, Thomas M.; Tumlinson, Jason; Kalirai, Jason S.; Avila, Roberto J.; Ferguson, Henry C.; Simon, Joshua D.; Kirby, Evan N.; VandenBerg, Don A.; Munoz, Ricardo R.; Guhathakurta, Puragra E-mail: tbrown@stsci.edu

    2013-07-01

    We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M{sub V} = -6.2, -5.5), metal-poor (([Fe/H]) = -2.4, -2.5) systems that have old stellar populations (>11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52-0.77 M{sub Sun }, the IMF is best fit by a power-law slope of {alpha}= 1.2{sub -0.5}{sup +0.4} for Hercules and {alpha} = 1.3 {+-} 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter ({alpha} = 2.35) IMF at the 5.8{sigma} level, and a Kroupa ({alpha} = 2.3 above 0.5 M{sub Sun }) IMF slope at 5.4{sigma} level. We simultaneously fit for the binary fraction, f{sub binary}, finding f{sub binary}= 0.47{sup +0.16}{sub -0.14} for Hercules, and 0.47{sup +0.37}{sub -0.17} for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5-0.8 M{sub Sun }, we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.

  12. The epigenetic language of circadian clocks.

    PubMed

    Sahar, Saurabh; Sassone-Corsi, Paolo

    2013-01-01

    Epigenetic control, which includes DNA methylation and histone modifications, leads to chromatin remodeling and regulated gene expression. Remodeling of chromatin constitutes a critical interface of transducing signals, such as light or nutrient availability, and how these are interpreted by the cell to generate permissive or silenced states for transcription. CLOCK-BMAL1-mediated activation of clock-controlled genes (CCGs) is coupled to circadian changes in histone modification at their promoters. Several chromatin modifiers, such as the deacetylases SIRT1 and HDAC3 or methyltransferase MLL1, have been shown to be recruited to the promoters of the CCGs in a circadian manner. Interestingly, the central element of the core clock machinery, the transcription factor CLOCK, also possesses histone acetyltransferase activity. Rhythmic expression of the CCGs is abolished in the absence of these chromatin modifiers. Here we will discuss the evidence demonstrating that chromatin remodeling is at the crossroads of circadian rhythms and regulation of metabolism and cellular proliferation. PMID:23604474

  13. Spacetime and Quantum Propagation From Digital Clocks

    NASA Astrophysics Data System (ADS)

    Ord, Garnet. N.

    2013-09-01

    Minkowski spacetime predates quantum mechanics and is frequently regarded as an extension of the classical paradigm of Newtonian physics, rather than a harbinger of quantum mechanics. By inspecting how discrete clocks operate in a relativistic world we show that this view is misleading. Discrete relativistic clocks implicate classical spacetime provided a continuum limit is taken in such a way that successive ticks of the clock yield a smooth worldline. The classical picture emerges but does so by confining unitary propagation into spacetime regions between ticks that have zero area in the continuum limit. Clocks allowed a continuum limit that does not force inter-event intervals to zero, satisfy the Dirac equation. This strongly suggests that the origin of quantum propagation is to be found in the shift from Newton's absolute time to Minkowski's frame dependent time and is ultimately relativistic in origin.

  14. Biological clocks and the practice of psychiatry

    PubMed Central

    Schulz, Pierre

    2007-01-01

    Endogenous biological clocks enable living species to acquire some independence in relation to time. They improve the efficiency of biological systems, by allowing them to anticipate future constraints on major physyological systems and cell energy metabolism. The temporal organization of a giwen biological function can be impaired in its coordination with astronomical time or with other biological function. There are also external conditions that influence biological clocks. This temporal organization is complex, and it is possible that a series of psychiatric disorders and syndromes involve primary or secondary changes in biological clocks: seasonal and other mood disorders, premenstrual syndromes, social jet lag, free-running rhythms, and several sleep disorders are among them. In this review, we describe the main concepts relevant to chronobiology and explore the relevance of knowledge about biological clocks to the clinical practice of psychiatry PMID:17969862

  15. Phase measurement system using a dithered clock

    DOEpatents

    Fairley, C.R.; Patterson, S.R.

    1991-05-28

    A phase measurement system is disclosed which measures the phase shift between two signals by dithering a clock signal and averaging a plurality of measurements of the phase differences between the two signals. 8 figures.

  16. Avian circadian organization: a chorus of clocks.

    PubMed

    Cassone, Vincent M

    2014-01-01

    In birds, biological clock function pervades all aspects of biology, controlling daily changes in sleep: wake, visual function, song, migratory patterns and orientation, as well as seasonal patterns of reproduction, song and migration. The molecular bases for circadian clocks are highly conserved, and it is likely the avian molecular mechanisms are similar to those expressed in mammals, including humans. The central pacemakers in the avian pineal gland, retinae and SCN dynamically interact to maintain stable phase relationships and then influence downstream rhythms through entrainment of peripheral oscillators in the brain controlling behavior and peripheral tissues. Birds represent an excellent model for the role played by biological clocks in human neurobiology; unlike most rodent models, they are diurnal, they exhibit cognitively complex social interactions, and their circadian clocks are more sensitive to the hormone melatonin than are those of nocturnal rodents. PMID:24157655

  17. Clock jitter generator with picoseconds resolution

    NASA Astrophysics Data System (ADS)

    Jovanović, Goran; Stojčev, Mile; Nikolić, Tatjana

    2013-06-01

    The clock is one of the most critical signals in any synchronous system. As CMOS technology has scaled, supply voltages have dropped chip power consumption has increased and the effects of jitter due to clock frequency increase have become critical and jitter budget has become tighter. This article describes design and development of low-cost mixed-signal programmable jitter generator with high resolution. The digital technique is used for coarse-grain and an analogue technique for fine-grain clock phase shifting. Its structure allows injection of various random and deterministic jitter components in a controllable and programmable fashion. Each jitter component can be switched on or off. The jitter generator can be used in jitter tolerance test and jitter transfer function measurement of high-speed synchronous digital circuits. At operating system clock frequency of 220 MHz, a jitter with 4 ps resolution can be injected.

  18. Thermoplasticity in the plant circadian clock

    PubMed Central

    James, Allan B.; Syed, Naeem Hasan; Brown, John W. S.; Nimmo, Hugh G.

    2012-01-01

    In the March 2012 issue of The Plant Cell we describe extensive alternative splicing (AS) of Arabidopsis circadian clock genes. Notably these distinct post-transcriptional events associate with different steady-state temperatures and also with plants undergoing temperature transitions leading us to propose that temperature-associated AS is an additional mechanism involved in the operation and control of the plant circadian clock. Here we show that temperature associated AS also extends to REVEILLE 8 (RVE8), demonstrating a hitherto unrecognized link between the expression of this clock associated gene and temperature. Finally we discuss our observations of the plastic nature of clock gene expression at the post-transcriptional level in the context of the ongoing fascination of how plants respond to temperature. PMID:22902701

  19. Avian Circadian Organization: A Chorus of Clocks

    PubMed Central

    Cassone, Vincent M

    2013-01-01

    In birds, biological clock function pervades all aspects of biology, controlling daily changes in sleep: wake, visual function, song, migratory patterns and orientation, as well as seasonal patterns of reproduction, song and migration. The molecular bases for circadian clocks are highly conserved, and it is likely the avian molecular mechanisms are similar to those expressed in mammals, including humans. The central pacemakers in the avian pineal gland, retinae and SCN dynamically interact to maintain stable phase relationships and then influence downstream rhythms through entrainment of peripheral oscillators in the brain controlling behavior and peripheral tissues. Birds represent an excellent model for the role played by biological clocks in human neurobiology; unlike most rodent models, they are diurnal, they exhibit cognitively complex social interactions, and their circadian clocks are more sensitive to the hormone melatonin than are those of nocturnal rodents. PMID:24157655

  20. Deep Space Atomic Clock Ticks Toward Success

    NASA Video Gallery

    Dr. Todd Ely, principal investigator for NASA's Deep Space Atomic Clock at the Jet Propulsion Laboratory in Pasadena, Calif., spotlights the paradigm-busting innovations now in development to revol...

  1. Method and system for downhole clock synchronization

    DOEpatents

    Hall, David R.; Bartholomew, David B.; Johnson, Monte; Moon, Justin; Koehler, Roger O.

    2006-11-28

    A method and system for use in synchronizing at least two clocks in a downhole network are disclosed. The method comprises determining a total signal latency between a controlling processing element and at least one downhole processing element in a downhole network and sending a synchronizing time over the downhole network to the at least one downhole processing element adjusted for the signal latency. Electronic time stamps may be used to measure latency between processing elements. A system for electrically synchronizing at least two clocks connected to a downhole network comprises a controlling processing element connected to a synchronizing clock in communication over a downhole network with at least one downhole processing element comprising at least one downhole clock. Preferably, the downhole network is integrated into a downhole tool string.

  2. Cesium clocks keep the world on time

    SciTech Connect

    Hellwig, H.

    1985-09-01

    The development of timekeeping systems based on the natural resonance of cesium atoms is reviewed. The design of a typical cesium clock using a frequency lock servo is described. Some common applications of cesium beam frequency and time reference systems are discussed, including Navstar GPS navigation referencing; military satellite communications; and measurements of relative gravitational effects. The possibility of increasing timekeeping accuracies using improved cesium clock designs is evaluated.

  3. Clock gene variation in Tachycineta swallows.

    PubMed

    Dor, Roi; Cooper, Caren B; Lovette, Irby J; Massoni, Viviana; Bulit, Flor; Liljesthrom, Marcela; Winkler, David W

    2012-01-01

    Many animals use photoperiod cues to synchronize reproduction with environmental conditions and thereby improve their reproductive success. The circadian clock, which creates endogenous behavioral and physiological rhythms typically entrained to photoperiod, is well characterized at the molecular level. Recent work provided evidence for an association between Clock poly-Q length polymorphism and latitude and, within a population, an association with the date of laying and the length of the incubation period. Despite relatively high overall breeding synchrony, the timing of clutch initiation has a large impact on the fitness of swallows in the genus Tachycineta. We compared length polymorphism in the Clock poly-Q region among five populations from five different Tachycineta species that breed across a hemisphere-wide latitudinal gradient (Fig. 1). Clock poly-Q variation was not associated with latitude; however, there was an association between Clock poly-Q allele diversity and the degree of clutch size decline within breeding seasons. We did not find evidence for an association between Clock poly-Q variation and date of clutch initiation in for any of the five Tachycineta species, nor did we found a relationship between incubation duration and Clock genotype. Thus, there is no general association between latitude, breeding phenology, and Clock polymorphism in this clade of closely related birds.Figure 1Photos of Tachycineta swallows that were used in this study: A) T. bicolor from Ithaca, New York, B) T. leucorrhoa from Chascomús, Argentina, C) T. albilinea from Hill Bank, Belize, D) T. meyeni from Puerto Varas, Chile, and E) T. thalassina from Mono Lake, California, Photographers: B: Valentina Ferretti; A, C-E: David Winkler.

  4. Reduced Kalman Filters for Clock Ensembles

    NASA Technical Reports Server (NTRS)

    Greenhall, Charles A.

    2011-01-01

    This paper summarizes the author's work ontimescales based on Kalman filters that act upon the clock comparisons. The natural Kalman timescale algorithm tends to optimize long-term timescale stability at the expense of short-term stability. By subjecting each post-measurement error covariance matrix to a non-transparent reduction operation, one obtains corrected clocks with improved short-term stability and little sacrifice of long-term stability.

  5. Solar Flare and IMF Sector Structure Effects in the Lower Ionosphere

    NASA Technical Reports Server (NTRS)

    Lastovicka, J.

    1984-01-01

    About 1% of all sudden ionospheric disturbances (SIDs) observed at the Panska Ves Observatory (Czechoslovakia), were found to be not of solar-XUV origin. Among them, the very rare SWF events (observed at L = 2.4) of corpuscular origin are the most interesting. The IMF sector structure effects in the midlatitude lower ionosphere are minor in comparison with effects of solar flares, geomagnetic storms, etc. There are two basic types of effects. The first type is a disturbance, best developed in geomagnetic activity, and observed in the night-time ionosphere. It can be interpreted as a response to sector structure related changes of geomagnetic (= magnetospheric) activity. The other type is best developed in the tropospheric vorticity area index and is also observed in the day-time ionosphere in winter. This effect is quietening in the ionosphere as well as troposphere. While the occurrence of the former type is persistent in time, the latter is severely diminished in some periods. All the stratosphere, the 10-mb level temperature and height above Berlin-Tempelhof do not display any observable IMF section structure effect.

  6. Observations of magnetospheric substorms occurring with no apparent solar wind/IMF trigger

    SciTech Connect

    Henderson, M.G.; Reeves, G.D.; Belian, R.D.; Murphree, J.S.

    1996-03-01

    An outstanding topic in magnetospheric physics is whether substorms are always externally triggered by disturbances in either the interplanetary magnetic field or solar wind, or whether they can also occur solely as the result of an internal magnetospheric instability. Over the past decade, arguments have been made on both sides of this issue. Horwitz and McPherron have shown examples of substorm onsets which they claimed were not externally triggered. However, as pointed out by Lyons, there are several problems associated with these studies that make their results somewhat inconclusive. In particular, in the McPherron et al. study, fluctuations in the B{sub y} component were not considered as possible triggers. Furthermore, Lyons suggests that the sharp decreases in the AL index during intervals of steady IMF/solar wind, are not substorms at all but rather that they are just enhancements of the convection driven DP2 current system that are often observed to occur during steady magnetospheric convection events. In the present study, we utilize a much more comprehensive dataset (consisting of particle data from the Los Alamos energetic particle detectors at geosynchronous orbit, IMP 8 magnetometer and plasma data, Viking UV auroral imager data, mid-latitude Pi2 pulsation data, ground magnetometer data and ISEE1 magnetic field and energetic particle data) to show as unambiguously as possible that typical substorms can indeed occur in the absence of an identifiable trigger in the solar wind/IMF.

  7. Solar flare and IMF sector structure effects in the lower ionosphere

    SciTech Connect

    Lastovicka, J.

    1984-05-01

    About 1% of all sudden ionospheric disturbances (SIDs) observed at the Panska Ves Observatory (Czechoslovakia), were found to be not of solar-XUV origin. Among them, the very rare SWF events (observed at L 2.4) of corpuscular origin are the most interesting. The IMF sector structure effects in the midlatitude lower ionosphere are minor in comparison with effects of solar flares, geomagnetic storms, etc. There are two basic types of effects. The first type is a disturbance, best developed in geomagnetic activity, and observed in the night-time ionosphere. It can be interpreted as a response to sector structure related changes of geomagnetic (magnetospheric) activity. The other type is best developed in the tropospheric vorticity area index and is also observed in the day-time ionosphere in winter. This effect is quietening in the ionosphere as well as troposphere. While the occurrence of the former type is persistent in time, the latter is severely diminished in some periods. All the stratosphere, the 10-mb level temperature and height above Berlin-Tempelhof do not display any observable IMF section structure effect.

  8. On the IMF BY dependence on polar cap patch exits at night

    NASA Astrophysics Data System (ADS)

    Moen, J.; Hosokawa, K.; Gulbrandsen, N.

    2012-04-01

    Polar cap patches are islands of enhanced F-region electron density within the polar cap. They form near the cusp inflow region at day, transit the polar cap when frozen into twin-cell convection, and finally exit the polar cap at night into the night time auroras. When exiting they change status from patches to blobs. Monitoring the presence of F-region plasma structures and their travel path is essential in order to develop reliable space weather forecasts for the high latitude ionosphere in future. This paper presents a comprehensive study of a sequence of polar cap patches that exit the polar cap. Superimposing satellite images of the auroral oval and all-sky camera observations of airglow patches onto SuperDARN convection maps for an extended time period around magnetic midnight, provides an unparalleled opportunity to examine how plasma exits the polar cap. Under conditions of IMF BY predominantly positive (+5nT) we find that the patches exit both into the oval on the dusk cell pre midnight and on the dusk cell post midnight. This event study concurs with a statistical result also presented. The statistics show that the MLT distribution of patch exits, which is a ~10 hours broad bell shaped function cantered on ~23:30 MLT, is just marginally sensitive to the IMF BY polarity. This makes us conclude that the patches do not memorize on which cell they entered the polar cap.

  9. Impact of Magnetic Draping, Convection, and Field Line Tying on Magnetopause Reconnection Under Northward IMF

    NASA Technical Reports Server (NTRS)

    Wendel, Deirdre E.; Reiff, Patricia H.; Goldstein, Melvyn L.

    2010-01-01

    We simulate a northward IMF cusp reconnection event at the magnetopause using the OpenGGCM resistive MHD code. The ACE input data, solar wind parameters, and dipole tilt belong to a 2002 reconnection event observed by IMAGE and Cluster. Based on a fully three-dimensional skeleton separators, nulls, and parallel electric fields, we show magnetic draping, convection, ionospheric field line tying play a role in producing a series of locally reconnecting nulls with flux ropes. The flux ropes in the cusp along the global separator line of symmetry. In 2D projection, the flux ropes the appearance of a tearing mode with a series of 'x's' and 'o's' but bearing a kind of 'guide field' that exists only within the magnetopause. The reconnecting field lines in the string of ropes involve IMF and both open and closed Earth magnetic field lines. The observed magnetic geometry reproduces the findings of a superposed epoch impact parameter study derived from the Cluster magnetometer data for the same event. The observed geometry has repercussions for spacecraft observations of cusp reconnection and for the imposed boundary conditions reconnection simulations.

  10. Observations of draping plasma accelerations in the magnetosheath under IMF Bz North

    NASA Astrophysics Data System (ADS)

    Harris, B. S.; Farrugia, C. J.

    2011-12-01

    Accelerations in the magnetosheath due to draping of the Interplanetary Magnetic Field (IMF) around the magnetosphere is a rich topic of renewed interest. Here, we study these draping events in the first statistical study of draping related accelerations in the magnetosheath. We present a methodology to unambiguously identify draping related accelerations from reconnection, and present several case studies of 34 identified events. To discourage reconnection, we focus on the IMF Bz northward phase of ICMEs identified by Cane and Richardson [2010] from 1997-2010, and spacecraft that are low in the ecliptic plane to avoid reconnection at high latitudes. We study the effect of upstream MA and Magnetic Local Time (MLT) on the ratio at which the magnetosheath speeds exceed the speed of the solar wind, and compare with theory. We find that the ratio of magnetosheath speed to speed of the solar wind increases with decreasing MA, and show the suggested positional dependance along the magnetopause of this ratio with respect to the east-west terminator as well as global trends.

  11. The Turbulent ISM of Galaxies 10 Gyrs ago: Star Formation, Gas Accretion, and IMF

    NASA Astrophysics Data System (ADS)

    Le Tiran, Loïc; Lehnert, Matthew D.

    2011-12-01

    The utilization of integral-field spectroscopy has led us to a new understanding of the physical conditions in galaxies within the first few billion years after the Big Bang. In this proceedings, we analyze observations of ~50 massive galaxies as seen as they were 10 Gyrs ago using SINFONI from the ESO-VLT. We show that the large line width they exhibit can be explained by the intense mechanical energy output from the young stars. We also study the influence of cold gas accretion upon these galaxies: We show that an unrealistic amount of shocked gas would be needed in order to explain the Hα emission from these galaxies through shocks from gas accretion with velocity about the Hα line widths of these galaxies. We also use DEEP2 photometric measurements for a sub-sample of 10 of these galaxies to evaluate their ratio of Hα to FUV flux as a function of their Hα and R-band luminosity surface brightnesses. Our data suggests that perhaps their initial mass function (IMF) is flatter than Salpeter at the high mass end, as has been suggested recently for some local galaxies. It may be that high turbulence is responsible for skewing the IMF towards more massive stars as suggested by some theories of star-formation. Much work is however needed to accredit this hypothesis.

  12. Observations of IMF and seasonal effects in high-latitude convection

    NASA Technical Reports Server (NTRS)

    Ruohoniemi, J. M.; Greenwald, R. A.

    1995-01-01

    Strong interplanetary magnetic field (IMF) and seasonal effects in the convection of nightside ionospheric plasma are described. The findings are based on a statistical analysis of observations made with the Johns Hopkins University/ Applied Physics Lab (JHU/APL) HF radar located at Goose Bay, Labrador. For positive sign of the IMF dusk-dawn component, By greater than 0 the dawn cell is more crescent shaped and the dusk cell more round while for BY less than 0 these pairings of size and shape are reversed. The more extreme crescent /round cell dichotomy is obtained for BY greater than 0. The return flows associated with the crescent-shaped cell dominate at midnight MLT (magnetic local time); the reversal in the zonal velocity in the 67 deg-69 deg lambda (magnetic latitude) interval occurs 2.5 hr earlier in summer than in winter. The maximum effects are obtained on the nightside for the pairings By greater than 0, summer and BY less than 0, winter; the first produces the more structured cell in the morning, the second in the evening, and this cell dominates the return flow at midnight. The difference in the zonal flow reversals for these pairings exceeds 4 hr in MLT.

  13. Coupling governs entrainment range of circadian clocks

    PubMed Central

    Abraham, Ute; Granada, Adrián E; Westermark, Pål O; Heine, Markus; Kramer, Achim; Herzel, Hanspeter

    2010-01-01

    Circadian clocks are endogenous oscillators driving daily rhythms in physiology and behavior. Synchronization of these timers to environmental light–dark cycles (‘entrainment') is crucial for an organism's fitness. Little is known about which oscillator qualities determine entrainment, i.e., entrainment range, phase and amplitude. In a systematic theoretical and experimental study, we uncovered these qualities for circadian oscillators in the suprachiasmatic nucleus (SCN—the master clock in mammals) and the lung (a peripheral clock): (i) the ratio between stimulus (zeitgeber) strength and oscillator amplitude and (ii) the rigidity of the oscillatory system (relaxation rate upon perturbation) determine entrainment properties. Coupling among oscillators affects both qualities resulting in increased amplitude and rigidity. These principles explain our experimental findings that lung clocks entrain to extreme zeitgeber cycles, whereas SCN clocks do not. We confirmed our theoretical predictions by showing that pharmacological inhibition of coupling in the SCN leads to larger ranges of entrainment. These differences between master and the peripheral clocks suggest that coupling-induced rigidity in the SCN filters environmental noise to create a robust circadian system. PMID:21119632

  14. Do Caucasian and Asian clocks tick differently?

    PubMed

    Barbosa, A A; Pedrazzoli, M; Koike, B D V; Tufik, S

    2010-01-01

    The Period 3 and Clock genes are important components of the mammalian molecular circadian system. Studies have shown association between polymorphisms in these clock genes and circadian phenotypes in different populations. Nevertheless, differences in the pattern of allele frequency and genotyping distribution are systematically observed in studies with different ethnic groups. To investigate and compare the pattern of distribution in a sample of Asian and Caucasian populations living in Brazil, we evaluated two well-studied polymorphisms in the clock genes: a variable number of tandem repeats (VNTR) in PER3 and a single nucleotide polymorphism (SNP) in CLOCK. The aim of this investigation was to search for clues about human evolutionary processes related to circadian rhythms. We selected 109 Asian and 135 Caucasian descendants. The frequencies of the shorter allele (4 repeats) in the PER3 gene and the T allele in the CLOCK gene among Asians (0.86 and 0.84, respectively) were significantly higher than among Caucasians (0.69 and 0.71, respectively). Our results directly confirmed the different distribution of these polymorphisms between the Asian and Caucasian ethnic groups. Given the genetic differences found between groups, two points became evident: first, ethnic variations may have implications for the interpretation of results in circadian rhythm association studies, and second, the question may be raised about which evolutionary conditions shaped these genetic clock variations.

  15. Towards Self-Clocked Gated OCDMA Receiver

    NASA Astrophysics Data System (ADS)

    Idris, S.; Osadola, T.; Glesk, I.

    2013-02-01

    A novel incoherent OCDMA receiver with incorporated all-optical clock recovery for self-synchronization of a time gate for the multi access interferences (MAI) suppression and minimizing the effect of data time jitter in incoherent OCDMA system was successfully developed and demonstrated. The solution was implemented and tested in a multiuser environment in an out of the laboratory OCDMA testbed with two-dimensional wavelength-hopping time-spreading coding scheme and OC-48 (2.5 Gbp/s) data rate. The self-clocked all-optical time gate uses SOA-based fibre ring laser optical clock, recovered all-optically from the received OCDMA traffic to control its switching window for cleaning the autocorrelation peak from the surrounding MAI. A wider eye opening was achieved when the all-optically recovered clock from received data was used for synchronization if compared to a static approach with the RF clock being generated by a RF synthesizer. Clean eye diagram was also achieved when recovered clock is used to drive time gating.

  16. Nuclear spin effects in optical lattice clocks

    SciTech Connect

    Boyd, Martin M.; Zelevinsky, Tanya; Ludlow, Andrew D.; Blatt, Sebastian; Zanon-Willette, Thomas; Foreman, Seth M.; Ye Jun

    2007-08-15

    We present a detailed experimental and theoretical study of the effect of nuclear spin on the performance of optical lattice clocks. With a state-mixing theory including spin-orbit and hyperfine interactions, we describe the origin of the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition and the differential g factor between the two clock states for alkaline-earth-metal(-like) atoms, using {sup 87}Sr as an example. Clock frequency shifts due to magnetic and optical fields are discussed with an emphasis on those relating to nuclear structure. An experimental determination of the differential g factor in {sup 87}Sr is performed and is in good agreement with theory. The magnitude of the tensor light shift on the clock states is also explored experimentally. State specific measurements with controlled nuclear spin polarization are discussed as a method to reduce the nuclear spin-related systematic effects to below 10{sup -17} in lattice clocks.

  17. Adipose Clocks: Burning the Midnight Oil.

    PubMed

    Henriksson, Emma; Lamia, Katja A

    2015-10-01

    Circadian clocks optimize the timing of physiological processes in synchrony with daily recurring and therefore predictable changes in the environment. Until the late 1990s, circadian clocks were thought to exist only in the central nervous systems of animals; elegant studies in cultured fibroblasts and using genetically encoded reporters in Drosophila melanogaster and in mice showed that clocks are ubiquitous and cell autonomous. These findings inspired investigations of the advantages construed by enabling each organ to independently adjust its function to the time of day. Studies of rhythmic gene expression in several organs suggested that peripheral organ clocks might play an important role in optimizing metabolic physiology by synchronizing tissue-intrinsic metabolic processes to cycles of nutrient availability and energy requirements. The effects of clock disruption in liver, pancreas, muscle, and adipose tissues support that hypothesis. Adipose tissues coordinate energy storage and utilization and modulate behavior and the physiology of other organs by secreting hormones known as "adipokines." Due to behavior- and environment-driven diurnal variations in supply and demand for chemical and thermal energy, adipose tissues might represent an important peripheral location for coordinating circadian energy balance (intake, storage, and utilization) over the whole organism. Given the complexity of adipose cell types and depots, the sensitivity of adipose tissue biology to age and diet composition, and the plethora of known and yet-to-be-discovered adipokines and lipokines, we have just begun to scratch the surface of understanding the role of circadian clocks in adipose tissues.

  18. The Neurospora circadian clock: simple or complex?

    PubMed Central

    Bell-Pedersen, D; Crosthwaite, S K; Lakin-Thomas, P L; Merrow, M; Økland, M

    2001-01-01

    The fungus Neurospora crassa is being used by a number of research groups as a model organism to investigate circadian (daily) rhythmicity. In this review we concentrate on recent work relating to the complexity of the circadian system in this organism. We discuss: the advantages of Neurospora as a model system for clock studies; the frequency (frq), white collar-1 and white collar-2 genes and their roles in rhythmicity; the phenomenon of rhythmicity in null frq mutants and its implications for clock mechanisms; the study of output pathways using clock-controlled genes; other rhythms in fungi; mathematical modelling of the Neurospora circadian system; and the application of new technologies to the study of Neurospora rhythmicity. We conclude that there may be many gene products involved in the clock mechanism, there may be multiple interacting oscillators comprising the clock mechanism, there may be feedback from output pathways onto the oscillator(s) and from the oscillator(s) onto input pathways, and there may be several independent clocks coexisting in one organism. Thus even a relatively simple lower eukaryote can be used to address questions about a complex, networked circadian system. PMID:11710976

  19. The aging biological clock in Neurospora crassa

    PubMed Central

    Case, Mary E; Griffith, James; Dong, Wubei; Tigner, Ira L; Gaines, Kimberly; Jiang, James C; Jazwinski, S Michal; Arnold, Jonathan

    2014-01-01

    The biological clock affects aging through ras-1 (bd) and lag-1, and these two longevity genes together affect a clock phenotype and the clock oscillator in Neurospora crassa. Using an automated cell-counting technique for measuring conidial longevity, we show that the clock-associated genes lag-1 and ras-1 (bd) are true chronological longevity genes. For example, wild type (WT) has an estimated median life span of 24 days, while the double mutant lag-1, ras-1 (bd) has an estimated median life span of 120 days for macroconidia. We establish the biochemical function of lag-1 by complementing LAG1 and LAC1 in Saccharomyces cerevisiae with lag-1 in N. crassa. Longevity genes can affect the clock as well in that, the double mutant lag-1, ras-1 (bd) can stop the circadian rhythm in asexual reproduction (i.e., banding in race tubes) and lengthen the period of the frequency oscillator to 41 h. In contrast to the ras-1 (bd), lag-1 effects on chronological longevity, we find that this double mutant undergoes replicative senescence (i.e., the loss of replication function with time), unlike WT or the single mutants, lag-1 and ras-1 (bd). These results support the hypothesis that sphingolipid metabolism links aging and the biological clock through a common stress response PMID:25535564

  20. N+CPT clock resonance

    SciTech Connect

    Crescimanno, M.; Hohensee, M.

    2008-12-15

    In a typical compact atomic time standard a current modulated semiconductor laser is used to create the optical fields that interrogate the atomic hyperfine transition. A pair of optical sidebands created by modulating the diode laser become the coherent population trapping (CPT) fields. At the same time, other pairs of optical sidebands may contribute to other multiphoton resonances, such as three-photon N-resonance [Phys. Rev. A 65, 043817 (2002)]. We analyze the resulting joint CPT and N-resonance (hereafter N+CPT) analytically and numerically. Analytically we solve a four-level quantum optics model for this joint resonance and perturbatively include the leading ac Stark effects from the five largest optical fields in the laser's modulation comb. Numerically we use a truncated Floquet solving routine that first symbolically develops the optical Bloch equations to a prescribed order of perturbation theory before evaluating. This numerical approach has, as input, the complete physical details of the first two excited-state manifolds of {sup 87}Rb. We test these theoretical approaches with experiments by characterizing the optimal clock operating regimes.

  1. Signal processing in cellular clocks.

    PubMed

    Forger, Daniel B

    2011-03-15

    Many biochemical events within a cell need to be timed properly to occur at specific times of day, after other events have happened within the cell or in response to environmental signals. The cellular biochemical feedback loops that time these events have already received much recent attention in the experimental and modeling communities. Here, we show how ideas from signal processing can be applied to understand the function of these clocks. Consider two signals from the network s(t) and r(t), either two variables of a model or two experimentally measured time courses. We show how s(t) can be decomposed into two parts, the first being a function of r(t), and the second the derivative of a function of r(t). Geometric principles are then derived that can be used to understand when oscillations appear in biochemical feedback loops, the period of these oscillations, and their time course. Specific examples of this theory are provided that show how certain networks are prone or not prone to oscillate, how individual biochemical processes affect the period, and how oscillations in one chemical species can be deduced from oscillations in other parts of the network.

  2. Hydrogen Maser Clock (HMC) Experiment

    NASA Technical Reports Server (NTRS)

    Vessot, Robert F. C.; Mattison, Edward M.

    1997-01-01

    The Hydrogen Maser Clock (HMC) project was originally conceived to fly on a reflight of the European Space Agency (ESA) free flying platform, the European Recoverable Carrier (EURECA) that had been launched into space and recovered by NASA's Space Transportation System (STS). A Phase B study for operation of HMC as one of the twelve EURECA payload components was begun in July 1991, and completed a year later. Phase C/D of HMC began in August 1992 and continued into early 1995. At that time ESA decided not to refly EURECA, leaving HMC without access to space. Approximately 80% of the flight support electronics are presently operating the HMC's physics package in a vacuum tank at the Smithsonian Astrophysical Observatory, and are now considered to be well-tested flight electronics. The package will continue to be operated until the end of 1997 or until a flight opportunity becomes avaiable. Appendices: letters and trip report; proceedings of the symposium on frequency standards and metrology; milli-celsius-stability thermal control for an orbiting frequency standard.

  3. Does the IMF vary with galaxy mass? The X-ray binary population of a key galaxy, NGC7457

    NASA Astrophysics Data System (ADS)

    Peacock, Mark

    2014-09-01

    We propose a 100ksec observation of NGC7457. The primary goal of this observation is to test for variations in the initial mass function (IMF). Many recent studies have proposed that the IMF varies systematically as a function of early-type galaxy mass. This has potentially dramatic consequences and must to be confirmed. The number of LMXBs in a galaxy (per stellar luminosity) can be used to provide an independent test of this hypothesis (see Peacock et al. 2014). Unfortunately, only galaxies with intermediate to high masses currently have the data needed to perform this test. The proposed observation of the elliptical galaxy NGC7457 will detect an order of magnitude more LMXBs in a low mass galaxy - hence providing the crucial constraint needed to significantly test for a variable IMF.

  4. Photic Resetting and Entrainment in CLOCK-Deficient Mice

    PubMed Central

    Dallmann, Robert; DeBruyne, Jason P.; Weaver, David R.

    2012-01-01

    Mice lacking CLOCK protein have a relatively subtle circadian phenotype, including a slightly shorter period in constant darkness, differences in phase resetting after 4-hr light pulses in the early and late night, and a variably advanced phase angle of entrainment in a light-dark (LD) cycle (DeBruyne et al., Neuron 50:465–477, 2006). The present series of experiments was conducted to more fully characterize the circadian phenotype of Clock−/− mice under various lighting conditions. A phase-response curve (PRC) to 4-hour light pulses in free-running mice was conducted; the results confirm that Clock−/− mice exhibit very large phase advances after 4 hrs light pulses in the late subjective night, but have relatively normal responses to light at other phases. The abnormal shape of the PRC to light may explain the tendency of CLOCK-deficient mice to begin activity before lights-out when housed in a 12 hrs light: 12 hrs dark lighting schedule. To assess this relationship further, Clock−/− and wild-type control mice were entrained to skeleton lighting cycles (1L:23D, and 1L:10D:1L:12D). Comparing entrainment under the two types of skeleton photoperiods revealed that exposure to 1 hr light in the morning leads to a phase advance of activity onset (expressed the following afternoon) in Clock−/− mice, but not in the controls. Constant light typically causes an intensity-dependent increase in circadian period in mice, but this did not occur in CLOCK-deficient mice. The failure of Clock−/− mice to respond to the period-lengthening effect of constant light likely results from the increased functional impact of light falling in the phase advance zone of the PRC. Collectively, these experiments reveal that alterations in the response of CLOCK-deficient mice to light in several paradigms are likely due to an imbalance in the shape of the PRC to light. PMID:21921293

  5. Simultaneous single epoch satellite clock modelling in Global Navigation Satellite Systems

    NASA Astrophysics Data System (ADS)

    Thongtan, Thayathip

    In order to obtain high quality positions from navigation satellites, range errors have to be identified and either modelled or estimated. This thesis focuses on satellite clock errors, which are needed to be known because satellite clocks are not perfectly synchronised with navigation system time. A new approach, invented at UCL, for the simultaneous estimation, in a single epoch, of all satellite clock offsets within a Global Navigation Satellite System (GNSS) from range data collected at a large number of globally distributed ground stations is presented. The method was originally tested using only data from a limited number of GPS satellites and ground stations. In this work a total of 50 globally distributed stations and the whole GPS constellation are used in order to investigate more fully the capabilities of the method, in terms of both accuracy and reliability. A number of different estimation models have been tested. These include those with different weighting schemes, those with and without tropospheric bias parameters and those that include assumptions regarding prior knowledge of satellite orbits. In all cases conclusions have been drawn based on formal error propagation theory. Accuracy has been assessed largely through the sizes of the predicted satellite clock standard deviations and, in the case of simultaneously estimating satellite positions, their error ellipsoids. Both internal and external reliability have been assessed as these are important contributors to integrity, something that is essential for many practical applications. It has been found that the accuracy and reliability of satellite clock offsets are functions of the number of known ground station clocks and distance from them, quality of orbits and quality of range measurement. Also the introduction of tropospheric zenith delay parameters into the model reduces both accuracy and reliability by amounts depending on satellite elevation angles. (Abstract shortened by UMI.)

  6. Clocking Surface Reaction by In-Plane Product Rotation.

    PubMed

    Anggara, Kelvin; Huang, Kai; Leung, Lydie; Chatterjee, Avisek; Cheng, Fang; Polanyi, John C

    2016-06-15

    Electron-induced reaction of physisorbed meta-diiodobenzene (mDIB) on Cu(110) at 4.6 K was studied by Scanning Tunneling Microscopy and molecular dynamics theory. Single-electron dissociation of the first C-I bond led to in-plane rotation of an iodophenyl (IPh) intermediate, whose motion could be treated as a "clock" of the reaction dynamics. Alternative reaction mechanisms, successive and concerted, were observed giving different product distributions. In the successive mechanism, two electrons successively broke single C-I bonds; the first C-I bond breaking yielded IPh that rotated directionally by three different angles, with the second C-I bond breaking giving chemisorbed I atoms (#2) at three preferred locations corresponding to the C-I bond alignments in the prior rotated IPh configurations. In the concerted mechanism a single electron broke two C-I bonds, giving two chemisorbed I atoms; significantly these were found at angles corresponding to the C-I bond direction for unrotated mDIB. Molecular dynamics accounted for the difference in reaction outcomes between the successive and the concerted mechanisms in terms of the time required for the IPh to rotate in-plane; in successive reaction the time delay between first and second C-I bond-breaking events allowed the IPh to rotate, whereas in concerted reaction the computed delay between excitation and reaction (∼1 ps) was too short for molecular rotation before the second C-I bond broke. The dependence of the extent of motion at a surface on the delay between first and second bond breaking suggested a novel means to "clock" sub-picosecond dynamics by imaging the products arising from varying time delays between impacting pairs of electrons.

  7. The dependence of the IMF on the density- temperature relation of pre-stellar gas

    NASA Astrophysics Data System (ADS)

    Kitsionas, S.; Whitworth, A. P.; Klessen, R. S.; Jappsen, A.-K.

    It has been recently shown by several authors that fragmentation of pre-stellar gas (i.e. at densities from 10^4 to 10^10 particles cm^-3 and temperatures of order 10-30K) depends on the gas thermodynamics much more than it was anticipated in earlier studies, in which only an isothermal behaviour has been assumed for the gas. We shall review the results of a number of numerical hydrodynamic simulations (e.g. Li et al. 2003, Jappsen et al. 2005, Bonnell et al. 2006) in which departure from isothermality has been attempted by employing a polytropic equation of state (eos) with exponent different from unity. In particular, in these studies it has been shown that the dominant fragmentation scale of pre-stellar gas, and hence the peak of the initial mass function (IMF), depends on a polytropic exponent that changes value at a critical density. Furthermore, this critical density depends on the gas metallicity and fundamental constants rather than on initial conditions, thus allowing for the first time to infer theoretically the notion of a universal IMF (at least for its low-mass end). We shall subsequently present two test cases in which such an equation of state has been used in the context of smoothed particle hydrodynamic (SPH) numerical simulations. In the first case star formation is triggered by means of low-mass clump collisions. These calculations have shown that clump collisions can be a relatively efficient mechanism for the formation of solar mass protostars and their lower mass companions (efficiency greater or of order 20%; Kitsionas & Whitworth 2006). In the second case, the use of a polytropic eos with an exponent varying according to the metallicity of starburst regions (Spaans & Silk 2000, 2005) is shown to be sufficient to obtain a top heavy IMF similar to that observed e.g. in the Galactic centre (Klessen, Spaans & Jappsen 2006). These are preliminary results in the direction of revisiting earlier calculations that were resolving the opacity limit for

  8. A high-speed photonic clock and carrier regenerator

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Lutes, G.

    1995-01-01

    As data communications rates climb toward 10 Gbits/s, clock recovery and synchronization become more difficult, if not impossible, using conventional electronic circuits. The high-speed photonic clock regenerator described in this article may be more suitable for such use. This photonic regenerator is based on a previously reported photonic oscillator capable of fast acquisition and synchronization. With both electrical and optical clock inputs and outputs, the device is easily interfaced with fiber-optic systems. The recovered electrical clock can be used locally and the optical clock can be used anywhere within a several kilometer radius of the clock/carrier regenerator.

  9. Compact, Highly Stable Ion Atomic Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John

    2008-01-01

    A mercury-ion clock now at the breadboard stage of development (see figure) has a stability comparable to that of a hydrogen-maser clock: In tests, the clock exhibited an Allan deviation of between 2 x 10(exp -13) and 3 x 10(exp -13) at a measurement time of 1 second, averaging to about 10(exp -15) at 1 day. However, the clock occupies a volume of only about 2 liters . about a hundredth of the volume of a hydrogen-maser clock. The ion-handling parts of the apparatus are housed in a sealed vacuum tube, wherein only a getter pump is used to maintain the vacuum. Hence, this apparatus is a prototype of a generation of small, potentially portable high-precision clocks for diverse ground- and space-based navigation and radio science applications. Furthermore, this new ion-clock technology is about 100 times more stable and precise than the rubidium atomic clocks currently in use in the NAV STAR GPS Earth-orbiting satellites. In this clock, mercury ions are shuttled between a quadrupole and a 16-pole linear radio-frequency trap. In the quadrupole trap, the ions are tightly confined and optical state selection from a Hg-202 radio-frequency-discharge ultraviolet lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions resonant at frequency of about 40.507 GHz are interrogated by use of a microwave beam at that frequency. The trapping of ions effectively eliminates the frequency pulling caused by wall collisions inherent to gas-cell clocks. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave- resonance process, so that each of these processes can be optimized independently of the other. The basic ion-shuttling, two-trap scheme as described thus far is not new: it has been the basis of designs of prior larger clocks. The novelty of the present development lies in major redesigns of its physics package (the ion traps and the vacuum and optical subsystems) to effect

  10. [The biological clock in health and illness].

    PubMed

    El-Ad, Baruch

    2006-06-01

    The biological clock in mammals is located in the suprachiasmatic nuclei of the hypothalamus. The combined output of multiple neuronal cellular oscillators determines the master circadian rhythm, which paces the myriad periodic functions of the organism, including, to a certain degree, the sleep-wake rhythm. The intrinsic master circadian rhythm, which is slightly longer than 24 hours, is synchronized daily to the extrinsic 24-hour day by the entrainment process, governed mainly by exposure to the environmental light at specific times. The pineal hormone melatonin is a specific and sensitive marker of the circadian clock activity, and its secretion is tightly coupled to the output of the biological clock and the circadian phase. Chronobiology is a young scientific discipline which deals with research of the biological clocks and its implication to the clinical medicine. Circadian rhythm disorders are manifest mainly as inappropriate sleep-wake timing, and patients complain about various combinations of insomnia or excessive sleepiness at inappropriate times. Treatment of circadian rhythm disorders by sleeping pills or wake-promoting agents, without taking chronobiological considerations into account, may be futile, or even detrimental to a patient's well-being. The current issue of "Harefuah" includes a review by Doljansky and Dagan, which exemplifies the chronobiological approach to sleep-wake rhythm disturbances in patients with Alzheimer's disease. Adoption of this approach to other disorders of the circadian clock may benefit care of patients. PMID:16838899

  11. Circadian Clock Control of Liver Metabolic Functions.

    PubMed

    Reinke, Hans; Asher, Gad

    2016-03-01

    The circadian clock is an endogenous biological timekeeping system that synchronizes physiology and behavior to day/night cycles. A wide variety of processes throughout the entire gastrointestinal tract and notably the liver appear to be under circadian control. These include various metabolic functions such as nutrient uptake, processing, and detoxification, which align organ function to cycle with nutrient supply and demand. Remarkably, genetic or environmental disruption of the circadian clock can cause metabolic diseases or exacerbate pathological states. In addition, modern lifestyles force more and more people worldwide into asynchrony between the external time and their circadian clock, resulting in a constant state of social jetlag. Recent evidence indicates that interactions between altered energy metabolism and disruptions in the circadian clock create a downward spiral that can lead to diabetes and other metabolic diseases. In this review, we provide an overview of rhythmic processes in the liver and highlight the functions of circadian clock genes under physiological and pathological conditions; we focus on their roles in regulation of hepatic glucose as well as lipid and bile acid metabolism and detoxification and their potential effects on the development of fatty liver and nonalcoholic steatohepatitis.

  12. Body weight, metabolism and clock genes

    PubMed Central

    2010-01-01

    Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity. PMID:20712885

  13. Body weight, metabolism and clock genes.

    PubMed

    Zanquetta, Melissa M; Corrêa-Giannella, Maria Lúcia; Monteiro, Maria Beatriz; Villares, Sandra Mf

    2010-08-16

    Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity.

  14. Global Auroral Energy Deposition during Substorm Onset Compared with Local Time and Solar Wind IMF Conditions

    NASA Technical Reports Server (NTRS)

    Spann, J. F.; Brittnacher, M.; Fillingim, M. O.; Germany, G. A.; Parks, G. K.

    1998-01-01

    The global images made by the Ultraviolet Imager (UVI) aboard the IASTP/Polar Satellite are used to derive the global auroral energy deposited in the ionosphere resulting from electron precipitation. During a substorm onset, the energy deposited and its location in local time are compared to the solar wind IMF conditions. Previously, insitu measurements of low orbiting satellites have made precipitating particle measurements along the spacecraft track and global images of the auroral zone, without the ability to quantify energy parameters, have been available. However, usage of the high temporal, spatial, and spectral resolution of consecutive UVI images enables quantitative measurement of the energy deposited in the ionosphere not previously available on a global scale. Data over an extended period beginning in January 1997 will be presented.

  15. Statistical Properties of the Solar Wind and IMF at 1 AU

    NASA Astrophysics Data System (ADS)

    McPherron, R. L.

    2006-12-01

    During the declining phase of the solar cycle the evolution of the solar magnetic field produces large regions of unipolar magnetic field that create coronal holes and are the sources of high speed solar wind streams. These streams overtake and interact with slow solar wind emitted from the equatorial belt of closed magnetic field lines. These interaction regions corotate (CIR) with the Sun and sweep across the Earth once per solar rotation. Inside a CIR the properties of the solar wind are well organized by time relative to the interface between the two streams (epoch time). We have compiled lists of stream interfaces in solar cycle #22 (1994- 1996) and in cycle #23 (2003-2005) and used them to study the systematic properties of the solar wind and interplanetary magnetic field at 1 AU. We present the results as dynamic cumulative probability distributions (cdf) for different variables and as traces of the quartiles of these distributions as function of epoch time. We find that the solar wind is highly organized relative to the stream interface and therefore that geomagnetic activity driven by this wind is organized as well. This systematic behavior provides the basis for probabilistic forecasting by air mass climatology. If one can predict the arrival of a stream interface then within certain limits one can predict the probability that various measures of geomagnetic activity will lie within a given range. We also find that the climatology of the solar wind as measured at the Earth has a semiannual variation as a consequence of two different effects: the axial effect that causes the Earth to be at high or low heliographic latitude near equinoxes and the Rosenberg-Coleman (R-C) effect which states that the fraction of time the Earth samples a particular polarity of the IMF is dominated by the polar magnetic field of the Sun emanating from the hemisphere in which the Earth is located. A third phenomenon the Russell-McPherron (R-M) effect is important for the Earth

  16. Influence of IMF Rotation on the Magnetic Field Depression in the Magnetosheath: A Kinetic View

    NASA Astrophysics Data System (ADS)

    Tsubouchi, K.; Terasawa, T.

    2001-12-01

    Numerical simulations using a one-dimensional hybrid code are performed to investigate how the particle kinetic process determines the magnetosheath structure when the upstream solar wind carries the IMF rotation. It is known from the conventional MHD theory that the interaction of such an IMF disturbance with the bow shock leads to the formation of the diamagnetic structure (density enhancement and magnetic field depression) in the downstream, the edges of which correspond to the excited slow, or intermediate, shock waves. However, the downstream plasma has strong anisotropy (energy imbalance between the component parallel and perpendicular to the magnetic field) in the quasi-perpendicular shock regime; which enables the mirror instability to grow, for instance. Thus the present kinetic approach is essential for the precise understanding of the resultant magnetosheath structure. The most significant result (different from MHD view) is that the rotating magnetic field which passes through the shock rapidly modifies the directional energy distribution of ions in the downstream. Stronger energy of the perpendicular component turns to contribute to the substantial parallel heating in the field rotation. Such ion isotropization shows the net increase of the total thermal pressure which makes the reduction of the magnetic field to maintain the pressure balance. Inside this field rotation region, a large amount of particles with v∥ ~ 0 are accumulated. This process can be considered as an analogy of the physics in the mirror instability. However, the condition for the instability is immediately suppressed when particles experience the field rotation, so that the resultant structure is stably convected in the downstream. Geotail magnetosheath observation is compared to the simulation results.

  17. Case Study of Solar Wind and IMF Influence on Ionospheric Outflow

    NASA Technical Reports Server (NTRS)

    Elliott, H. A.; Comfort, R. H.; Craven, P. D.; Chandler, M. O.; Moore, T. E.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We examine ionospheric outflows in the high attitude magnetospheric polar cap during the POLAR satellite's apogee on 04/19/96 using the TIDE instrument. The pass has a fairly constant flux of H+ which is similar to many other passes, but there is a large amount of O+ present. The elevated levels of O+ may be due both to the geophysical conditions during the apogee pass (Kp=5) and prior to the pass. When the outflows for many high altitude polar cap passes are analyzed the O+ density correlates well with the dynamic pressure. There are several aspects of this pass which are interesting besides the abundance of O+ relative to H+. In this pass both the H+ and O+ outflow velocity correlate with both the solar wind speed and Interplanetary Magnetic Field (IMF) Bx. The geophysical conditions are such that the solar wind speed and IMF Bx are highly correlated with each other. For this case the dynamic pressure of the solar wind is fairly constant and has an average value of about 2.5 nPa which is typical for the solar wind, but the average solar wind speed is about 695 km/s which is greater than 450 km/s which is typical for the solar wind at I AU. The ion outflow measurements themselves are interrelated. The H+ density and parallel speed are anticorrelated which results in the constant flux. The 0+ density does not have as large of a anticorrelation with its parallel speed as H+ does with its parallel speed.

  18. Investigating [X/Fe], IMF, and compositeness in integrated-light models

    NASA Astrophysics Data System (ADS)

    Tang, Baitian; Worthey, Guy

    2015-01-01

    Modelling elliptical galaxy integrated-light characteristics with old, metal-rich stellar populations is a common and promising way to study these distant objects. However, different model parameters may change the characteristics in a similar way, causing degeneracy, e.g., the age-metallicity degeneracy. Here, we investigate several under-appreciated effects with the evolving Worthey models, and discuss their detectabilities.We model composite stellar populations with realistic abundance distribution functions (ADFs), tracking the trends of individual elements as a function of overall heavy element abundance as observed in MW bulge stars in addition to solar neighborhood stars. Comparing bulge versus elliptical galaxies, Fe, Ti, and Mg trend about the same for both but C, Na, and Ca seem irreconcilably different.Exploring the behavior of abundance compositeness leads to the concepts of ``red lean'' where a narrower ADF appears more metal rich than a wide one, and ``red spread'' where the spectral difference between wide and narrow ADFs increases as the ADF peak is moved to more metal-rich values. The prospects of measuring the width of the ADF of an old stellar population were investigated and seem bright using UV to IR photometry.Next, we try to disentangle the effects of 1) low-mass cut-off; 2) IMF slope; and 3) AGB strength in several IMF-sensitive indices and NIR colors. In most of the NIR-optical colors, varying low-mass cut-off and AGB strength leads to about 0.03 mag drift, which is comparable to the observable limits. Using a mix of photometric and spectral absorption indices (e.g. [MgFe], Wing-Ford, V-K, and B-V) degeneracy can be lifted, although at an observationally challenging amplitude. We go on to include ADF width and abundance ratio effects, and discuss the accuracy of disentangling multiple effects from integrated-light measurements.

  19. Observations of IMF and seasonal effects in high-latitude convection

    SciTech Connect

    Ruohoniemi, J.M.; Greenwald, R.A.

    1995-05-01

    The authors describe strong interplanetary magnetic field (IMF) and seasonal effects in the convection of nightside ionospheric plasma. The findings are based on a statistical analysis of observations made with the JHU/APL HF radar located at Goose Bay, Labrador. For positive sign of the IMF dawn-dusk component, i.e., B{sub y}>0, the dawn cell is more crescent-shaped and the dusk cell more round while for B{sub y}<0 these pairings of size and shape are reversed. The more extreme crescent/round cell dichotomy is obtained for B{sub y}>0. The return flows associated with the crescent-shaped cell dominate at midnight MLT (Magnetic Local Time); the reversal in the zonal velocity in the 67{degrees}-69{degrees}{Lambda} (magnetic latitude) interval occurs 2 1/2 hr earlier for B{sub y}>0. The seasonal dependence of nightside convection resembles in important respects the B{sub y} dependence. Greater latitudinal velocity shears occur in the morning/afternoon sector for summer/winter and the return flow of this sector dominates at midnight. The zonal flow reversal occurs 2 1/2 hr earlier in summer than in winter. The maximum effects are obtained on the nightside for the pairings [B{sub y}>0, summer] and [B{sub y}<0, winter]; the first produces the more structured cell in the morning, the second in the evening, and this cell dominates the return flow at midnight. The difference in the zonal flow reversals for these pairings exceeds 4 hr in MLT. 15 refs., 4 figs.

  20. Evolutionary links between circadian clocks and photoperiodic diapause in insects.

    PubMed

    Meuti, Megan E; Denlinger, David L

    2013-07-01

    In this article, we explore links between circadian clocks and the clock involved in photoperiodic regulation of diapause in insects. Classical resonance (Nanda-Hamner) and night interruption (Bünsow) experiments suggest a circadian basis for the diapause response in nearly all insects that have been studied. Neuroanatomical studies reveal physical connections between circadian clock cells and centers controlling the photoperiodic diapause response, and both mutations and knockdown of clock genes with RNA interference (RNAi) point to a connection between the clock genes and photoperiodic induction of diapause. We discuss the challenges of determining whether the clock, as a functioning module, or individual clock genes acting pleiotropically are responsible for the photoperiodic regulation of diapause, and how a stable, central circadian clock could be linked to plastic photoperiodic responses without compromising the clock's essential functions. Although we still lack an understanding of the exact mechanisms whereby insects measure day/night length, continued classical and neuroanatomical approaches, as well as forward and reverse genetic experiments, are highly complementary and should enable us to decipher the diverse ways in which circadian clocks have been involved in the evolution of photoperiodic induction of diapause in insects. The components of circadian clocks vary among insect species, and diapause appears to have evolved independently numerous times, thus, we anticipate that not all photoperiodic clocks of insects will interact with circadian clocks in the same fashion.

  1. Particle entry into the inner magnetosphere during duskward IMF By: Global three-dimensional electromagnetic full particle simulations

    NASA Astrophysics Data System (ADS)

    Cai, D.; Yan, X. Y.; Nishikawa, K.-I.; Lembege, B.

    2006-06-01

    The change of the interplanetary magnetic field (IMF) direction from northward to duskward has an important impact on the inner magnetosphere. This impact is analyzed with the help of a new parallel version of the global three-dimensional full particle simulation code. For northward IMF, bands of weak magnetic field (sash) form poleward of the cusp at high latitudes in each hemisphere. These sashes move to the equator (within opposite quadrants) as the IMF rotates duskward and merge into one another to form the characteristic ``Crosstail-S'' within the neutral sheet of the magnetotail. These macroscopic magnetic patterns (sashes and Crosstail-S) evidenced herein are in a good agreement with results of previous 3D MHD simulations and experimental observations. Moreover, the analysis of particle fluxes shows that ``sashes'' and ``Crosstail-S'' act as magnetic groove to facilitate the entry and injection of magnetosheath particles into the inner magnetosphere. Injected particles are accelerated after the IMF changes its direction from northward to duskward.

  2. Impact of the IMF rotation on the cusp dynamics on the dayside: Global 3D PIC simulations

    NASA Astrophysics Data System (ADS)

    Tao, W.; Cai, D.; Lembege, B.; Nishikawa, K.

    2005-12-01

    The dynamics of the cusp region as the interplanetary magnetic field (IMF) progressively changes its direction from northward to duskward is analysed with a new version of a global three-dimensional full particle simulation. For northward IMF, bands of weak magnetic field (sash) form poleward of the cusp at high latitudes in each hemisphere (and at high altitudes); these sashs are centered approximately around the pole axis. However, as the newly duskward-oriented IMF approaches and interacts with the magnetosphere, these sashs move to the equator (within opposite quadrants). During the progressive rotation of the IMF, this motion is decomposed in the plane perpendicular to the solar wind as follows: (i) the "sash" region widens towards lower latitudes ("banana-shape"), and (ii) the size of the "banana-shape" region strongly shrinks and its location stabilizes around a maximum deviation of 45?. In addition, this motion is observed both on the day and the night sides where sashs are simultaneously observed. Characteristic time and space scales of the cusp motion are indicated, in order to be compare with results deduced from previous MHD simulations. Changes of local reconnection in the cusp region are analysed.

  3. Fluctuation spectroscopy with the ACS ramp filters: a new way to measure the IMF in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter

    2014-10-01

    Images of old stellar populations show pixel-to-pixel fluctuations due to Poisson variations in the number of giant stars. These surface brightness fluctuations can be used to study the spectra of stars as a function of their luminosity, by obtaining differential spectroscopy of pixels with high and low fluctuations. If the average number of stars per pixel is sufficiently low, there will be individual pixels that have almost no light from luminous giants, providing sightlines that are dominated by main sequence stars. In this regime the observed spectral response is strongly dependent on the number of cool, low mass stars, and hence the stellar initial mass function (IMF). We propose to observe the nearest elliptical galaxy, Centaurus A, through four narrowband ACS ramp filters tuned to the 0.8 - 0.9 micron range. From the relation between ACS narrowband indices and the amplitude of the surface brightness fluctuation we will be able to obtain quantitative constraints on the IMF from 0.1-1 Solar masses, and distinguish between a Kroupa-like IMF or a bottom-heavy, Salpeter-like IMF, with ~5 sigma significance. We have demonstrated the feasibility of the technique used in this proposal in a Cycle 19 program, where we used the same observational strategy to measure the properties of luminous giants in the Virgo galaxy NGC 4472.

  4. Susceptibility of Redundant Versus Singular Clock Domains Implemented in SRAM-Based FPGA TMR Designs

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; LaBel, Kenneth A.; Pellish, Jonathan

    2016-01-01

    We present the challenges that arise when using redundant clock domains due to their clock-skew. Radiation data show that a singular clock domain (DTMR) provides an improved TMR methodology for SRAM-based FPGAs over redundant clocks.

  5. Models of the Primordial Standard Clock

    NASA Astrophysics Data System (ADS)

    Chen, Xingang; Namjoo, Mohammad Hossein; Wang, Yi

    2015-02-01

    Oscillating massive fields in the primordial universe can be used as Standard Clocks. The ticks of these oscillations induce features in the density perturbations, which directly record the time evolution of the scale factor of the primordial universe, thus if detected, provide a direct evidence for the inflation scenario or the alternatives. In this paper, we construct a full inflationary model of primordial Standard Clock and study its predictions on the density perturbations. This model provides a full realization of several key features proposed previously. We compare the theoretical predictions from inflation and alternative scenarios with the Planck 2013 temperature data on Cosmic Microwave Background (CMB), and identify a statistically marginal but interesting candidate. We discuss how future CMB temperature and polarization data, non-Gaussianity analysis and Large Scale Structure data may be used to further test or constrain the Standard Clock signals.

  6. Central and peripheral circadian clocks in mammals.

    PubMed

    Mohawk, Jennifer A; Green, Carla B; Takahashi, Joseph S

    2012-01-01

    The circadian system of mammals is composed of a hierarchy of oscillators that function at the cellular, tissue, and systems levels. A common molecular mechanism underlies the cell-autonomous circadian oscillator throughout the body, yet this clock system is adapted to different functional contexts. In the central suprachiasmatic nucleus (SCN) of the hypothalamus, a coupled population of neuronal circadian oscillators acts as a master pacemaker for the organism to drive rhythms in activity and rest, feeding, body temperature, and hormones. Coupling within the SCN network confers robustness to the SCN pacemaker, which in turn provides stability to the overall temporal architecture of the organism. Throughout the majority of the cells in the body, cell-autonomous circadian clocks are intimately enmeshed within metabolic pathways. Thus, an emerging view for the adaptive significance of circadian clocks is their fundamental role in orchestrating metabolism.

  7. The Deep Space Atomic Clock Mission

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Koch, Timothy; Kuang, Da; Lee, Karen; Murphy, David; Prestage, John; Tjoelker, Robert; Seubert, Jill

    2012-01-01

    The Deep Space Atomic Clock (DSAC) mission will demonstrate the space flight performance of a small, low-mass, high-stability mercury-ion atomic clock with long term stability and accuracy on par with that of the Deep Space Network. The timing stability introduced by DSAC allows for a 1-Way radiometric tracking paradigm for deep space navigation, with benefits including increased tracking via utilization of the DSN's Multiple Spacecraft Per Aperture (MSPA) capability and full ground station-spacecraft view periods, more accurate radio occultation signals, decreased single-frequency measurement noise, and the possibility for fully autonomous on-board navigation. Specific examples of navigation and radio science benefits to deep space missions are highlighted through simulations of Mars orbiter and Europa flyby missions. Additionally, this paper provides an overview of the mercury-ion trap technology behind DSAC, details of and options for the upcoming 2015/2016 space demonstration, and expected on-orbit clock performance.

  8. Biogeographic calibrations for the molecular clock

    PubMed Central

    Ho, Simon Y. W.; Tong, K. Jun; Foster, Charles S. P.; Ritchie, Andrew M.; Lo, Nathan; Crisp, Michael D.

    2015-01-01

    Molecular estimates of evolutionary timescales have an important role in a range of biological studies. Such estimates can be made using methods based on molecular clocks, including models that are able to account for rate variation across lineages. All clock models share a dependence on calibrations, which enable estimates to be given in absolute time units. There are many available methods for incorporating fossil calibrations, but geological and climatic data can also provide useful calibrations for molecular clocks. However, a number of strong assumptions need to be made when using these biogeographic calibrations, leading to wide variation in their reliability and precision. In this review, we describe the nature of biogeographic calibrations and the assumptions that they involve. We present an overview of the different geological and climatic events that can provide informative calibrations, and explain how such temporal information can be incorporated into dating analyses. PMID:26333662

  9. Intact Interval Timing in Circadian CLOCK Mutants

    PubMed Central

    Cordes, Sara; Gallistel, C. R.

    2008-01-01

    While progress has been made in determining the molecular basis for the circadian clock, the mechanism by which mammalian brains time intervals measured in seconds to minutes remains a mystery. An obvious question is whether the interval timing mechanism shares molecular machinery with the circadian timing mechanism. In the current study, we trained circadian CLOCK +/− and −/− mutant male mice in a peak-interval procedure with 10 and 20-s criteria. The mutant mice were more active than their wild-type littermates, but there were no reliable deficits in the accuracy or precision of their timing as compared with wild-type littermates. This suggests that expression of the CLOCK protein is not necessary for normal interval timing. PMID:18602902

  10. Circadian clock: linking epigenetics to aging.

    PubMed

    Orozco-Solis, Ricardo; Sassone-Corsi, Paolo

    2014-06-01

    Circadian rhythms are generated by an intrinsic cellular mechanism that controls a large array of physiological and metabolic processes. There is erosion in the robustness of circadian rhythms during aging, and disruption of the clock by genetic ablation of specific genes is associated with aging-related features. Importantly, environmental conditions are thought to modulate the aging process. For example, caloric restriction is a very strong environmental effector capable of delaying aging. Intracellular pathways implicating nutrient sensors, such as SIRTs and mTOR complexes, impinge on cellular and epigenetic mechanisms that control the aging process. Strikingly, accumulating evidences indicate that these pathways are involved in both the modulation of the aging process and the control of the clock. Hence, innovative therapeutic strategies focused at controlling the circadian clock and the nutrient sensing pathways might beneficially influence the negative effects of aging. PMID:25033025

  11. Quantum clock: A critical discussion on spacetime

    NASA Astrophysics Data System (ADS)

    Burderi, Luciano; Di Salvo, Tiziana; Iaria, Rosario

    2016-03-01

    We critically discuss the measure of very short time intervals. By means of a Gedankenexperiment, we describe an ideal clock based on the occurrence of completely random events. Many previous thought experiments have suggested fundamental Planck-scale limits on measurements of distance and time. Here we present a new type of thought experiment, based on a different type of clock, that provide further support for the existence of such limits. We show that the minimum time interval Δ t that this clock can measure scales as the inverse of its size Δ r . This implies an uncertainty relation between space and time: Δ r Δ t >G ℏ/c4, where G , ℏ, and c are the gravitational constant, the reduced Planck constant, and the speed of light, respectively. We outline and briefly discuss the implications of this uncertainty conjecture.

  12. Clock shifts in the Unitary Bose Gas

    NASA Astrophysics Data System (ADS)

    Fletcher, Richard; Man, Jay; Lopes, Raphael; Navon, Nir; Smith, Robert; Hadzibabic, Zoran

    2016-05-01

    Clock shifts are interaction-induced changes in the transition frequency between atomic spin states. So-called because of their importance as systematic errors in atomic clocks, they reveal details of both the interaction energy within a gas and the particle correlations. In this work, we employ a RF-injection technique to rapidly project a thermal Bose gas into the unitary regime on a timescale much shorter than three-body losses. Working with a two-state system, one of which exhibits strong intrastate interactions, we carry out Ramsey spectroscopy to extract the variation in the clock shift across a Feshbach resonance. Thanks to the relationship between these shifts and particle correlations, we use our measurements to infer the contact as a function of both interaction strength and degeneracy. This quantity plays a central role in the many-body physics of strongly correlated systems, offering a link between few-body and thermodynamic behaviour.

  13. Biogeographic calibrations for the molecular clock.

    PubMed

    Ho, Simon Y W; Tong, K Jun; Foster, Charles S P; Ritchie, Andrew M; Lo, Nathan; Crisp, Michael D

    2015-09-01

    Molecular estimates of evolutionary timescales have an important role in a range of biological studies. Such estimates can be made using methods based on molecular clocks, including models that are able to account for rate variation across lineages. All clock models share a dependence on calibrations, which enable estimates to be given in absolute time units. There are many available methods for incorporating fossil calibrations, but geological and climatic data can also provide useful calibrations for molecular clocks. However, a number of strong assumptions need to be made when using these biogeographic calibrations, leading to wide variation in their reliability and precision. In this review, we describe the nature of biogeographic calibrations and the assumptions that they involve. We present an overview of the different geological and climatic events that can provide informative calibrations, and explain how such temporal information can be incorporated into dating analyses.

  14. Sample-Clock Phase-Control Feedback

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    To demodulate a communication signal, a receiver must recover and synchronize to the symbol timing of a received waveform. In a system that utilizes digital sampling, the fidelity of synchronization is limited by the time between the symbol boundary and closest sample time location. To reduce this error, one typically uses a sample clock in excess of the symbol rate in order to provide multiple samples per symbol, thereby lowering the error limit to a fraction of a symbol time. For systems with a large modulation bandwidth, the required sample clock rate is prohibitive due to current technological barriers and processing complexity. With precise control of the phase of the sample clock, one can sample the received signal at times arbitrarily close to the symbol boundary, thus obviating the need, from a synchronization perspective, for multiple samples per symbol. Sample-clock phase-control feedback was developed for use in the demodulation of an optical communication signal, where multi-GHz modulation bandwidths would require prohibitively large sample clock frequencies for rates in excess of the symbol rate. A custom mixedsignal (RF/digital) offset phase-locked loop circuit was developed to control the phase of the 6.4-GHz clock that samples the photon-counting detector output. The offset phase-locked loop is driven by a feedback mechanism that continuously corrects for variation in the symbol time due to motion between the transmitter and receiver as well as oscillator instability. This innovation will allow significant improvements in receiver throughput; for example, the throughput of a pulse-position modulation (PPM) with 16 slots can increase from 188 Mb/s to 1.5 Gb/s.

  15. Rat retina shows robust circadian expression of clock and clock output genes in explant culture

    PubMed Central

    Buonfiglio, Daniella C.; Malan, André; Sandu, Cristina; Jaeger, Catherine; Cipolla-Neto, José; Hicks, David

    2014-01-01

    Purpose Circadian rhythms are central to vision and retinal physiology. A circadian clock located within the retina controls various rhythmic processes including melatonin synthesis in photoreceptors. In the present study, we evaluated the rhythmic expression of clock genes and clock output genes in retinal explants maintained for several days in darkness. Methods Retinas were dissected from Wistar rats, either wild-type or from the Per1-luciferase transgenic line housed under a daily 12 h:12 h light-dark cycle (LD12/12), and put in culture at zeitgeber time (ZT) 12 on semipermeable membranes. Explants from wild-type rats were collected every 4 h over 3 days, and total RNA was extracted, quantified, and reverse transcribed. Gene expression was assessed with quantitative PCR, and the periodicity of the relative mRNA amounts was assessed with nonlinear least squares fitting to sine wave functions. Bioluminescence in explants from Per1-luciferase rats was monitored for several days under three different culture protocols. Results Rhythmic expression was found for all studied clock genes and for clock downstream targets such as c-fos and arylalkylamine N-acetyltransferase (Aanat) genes. Clock and output genes cycled with relatively similar periods and acrophases (peaks of expression during subjective night, except c-fos, which peaked around the end of the subjective day). Data for Per1 were confirmed with bioluminescence monitoring, which also permitted culture conditions to be optimized to study the retina clock. Conclusions Our work shows the free-running expression profile of multiple clock genes and potential clock targets in mammalian retinal explants. This research further strengthens the notion that the retina contains a self-sustained oscillator that can be functionally characterized in organotypic culture. PMID:24940028

  16. Quantum Clock Synchronization with a Single Qudit

    PubMed Central

    Tavakoli, Armin; Cabello, Adán; Żukowski, Marek; Bourennane, Mohamed

    2015-01-01

    Clock synchronization for nonfaulty processes in multiprocess networks is indispensable for a variety of technologies. A reliable system must be able to resynchronize the nonfaulty processes upon some components failing causing the distribution of incorrect or conflicting information in the network. The task of synchronizing such networks is related to Byzantine agreement (BA), which can classically be solved using recursive algorithms if and only if less than one-third of the processes are faulty. Here we introduce a nonrecursive quantum algorithm, based on a quantum solution of the detectable BA, which achieves clock synchronization in the presence of arbitrary many faulty processes by using only a single quantum system. PMID:25613754

  17. Quantum clock synchronization with a single qudit.

    PubMed

    Tavakoli, Armin; Cabello, Adán; Żukowski, Marek; Bourennane, Mohamed

    2015-01-23

    Clock synchronization for nonfaulty processes in multiprocess networks is indispensable for a variety of technologies. A reliable system must be able to resynchronize the nonfaulty processes upon some components failing causing the distribution of incorrect or conflicting information in the network. The task of synchronizing such networks is related to Byzantine agreement (BA), which can classically be solved using recursive algorithms if and only if less than one-third of the processes are faulty. Here we introduce a nonrecursive quantum algorithm, based on a quantum solution of the detectable BA, which achieves clock synchronization in the presence of arbitrary many faulty processes by using only a single quantum system.

  18. Quantum Clock Synchronization with a Single Qudit

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Cabello, Adán; Żukowski, Marek; Bourennane, Mohamed

    2015-01-01

    Clock synchronization for nonfaulty processes in multiprocess networks is indispensable for a variety of technologies. A reliable system must be able to resynchronize the nonfaulty processes upon some components failing causing the distribution of incorrect or conflicting information in the network. The task of synchronizing such networks is related to Byzantine agreement (BA), which can classically be solved using recursive algorithms if and only if less than one-third of the processes are faulty. Here we introduce a nonrecursive quantum algorithm, based on a quantum solution of the detectable BA, which achieves clock synchronization in the presence of arbitrary many faulty processes by using only a single quantum system.

  19. The Large Water-Clock of Amphiaraeion

    NASA Astrophysics Data System (ADS)

    Theodossiou, E.; Manimanis, V. N.; Katsiotis, M.; Mantarakis, P.

    2010-07-01

    A very well preserved ancient water-clock exists at the Amphiaraeion, in Oropos, Greece. The Amphiaraeion, sanctuary of the mythical oracle and deified healer Amphiaraus, was active from the pre-classic period until the 5th Century A.D. In such a place the measurement of time, both day and night, was a necessity. Therefore, time was kept with both a conical sundial and a water-clock in the shape of a fountain, which, according to the archaeologists, dates to the 4th Century B.C.

  20. Real clocks and the Zeno effect

    SciTech Connect

    Egusquiza, Inigo L.; Garay, Luis J.

    2003-08-01

    Real clocks are not perfect. This must have an effect in our predictions for the behavior of a quantum system, an effect for which we present a unified description, encompassing several previous proposals. We study the relevance of clock errors in the Zeno effect and find that generically no Zeno effect can be present (in such a way that there is no contradiction with currently available experimental data). We further observe that, within the class of stochasticities in time addressed here, there is no modification in emission line shapes.

  1. Water-Powered Astronomical Clock Tower

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    The construction of water-powered astronomical instruments was a long tradition of instrument making that started in the second century AD with Zhang Heng's water-powered celestial globe. The technology reached a peak when, in the eleventh century, Su Song and his team constructed the Water-Powered Astronomical Clock Tower which combined the armillary sphere, the celestial globe, and the time-keeping mechanism into a large automatic structure. Su Song's instrument contained a mechanism for controlling the water-powered movements of its wheels that amounts to an "escapement mechanism" for a mechanical clock. A new reconstruction of the mechanism is introduced in this chapter.

  2. Using GLONASS signal for clock synchronization

    NASA Technical Reports Server (NTRS)

    Gouzhva, Yuri G.; Gevorkyan, Arvid G.; Bogdanov, Pyotr P.; Ovchinnikov, Vitaly V.

    1994-01-01

    Although in accuracy parameters GLONASS is correlated with GPS, using GLONASS signals for high-precision clock synchronization was, up to the recent time, of limited utility due to the lack of specialized time receivers. In order to improve this situation, in late 1992 the Russian Institute of Radionavigation and Time (RMT) began to develop a GLONASS time receiver using as a basis the airborne ASN-16 receiver. This paper presents results of estimating user clock synchronization accuracy via GLONASS signals using ASN-16 receiver in the direct synchronization and common-view modes.

  3. A relativistic analysis of clock synchronization

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1974-01-01

    The relativistic conversion between coordinate time and atomic time is reformulated to allow simpler time calculations relating analysis in solar-system barycentric coordinates (using coordinate time) with earth-fixed observations (measuring earth-bound proper time or atomic time.) After an interpretation of terms, this simplified formulation, which has a rate accuracy of about 10 to the minus 15th power, is used to explain the conventions required in the synchronization of a world wide clock network and to analyze two synchronization techniques-portable clocks and radio interferometry. Finally, pertinent experiment tests of relativity are briefly discussed in terms of the reformulated time conversion.

  4. The sympathy of two pendulum clocks: beyond Huygens' observations.

    PubMed

    Peña Ramirez, Jonatan; Olvera, Luis Alberto; Nijmeijer, Henk; Alvarez, Joaquin

    2016-03-29

    This paper introduces a modern version of the classical Huygens' experiment on synchronization of pendulum clocks. The version presented here consists of two monumental pendulum clocks--ad hoc designed and fabricated--which are coupled through a wooden structure. It is demonstrated that the coupled clocks exhibit 'sympathetic' motion, i.e. the pendula of the clocks oscillate in consonance and in the same direction. Interestingly, when the clocks are synchronized, the common oscillation frequency decreases, i.e. the clocks become slow and inaccurate. In order to rigorously explain these findings, a mathematical model for the coupled clocks is obtained by using well-established physical and mechanical laws and likewise, a theoretical analysis is conducted. Ultimately, the sympathy of two monumental pendulum clocks, interacting via a flexible coupling structure, is experimentally, numerically, and analytically demonstrated.

  5. Role of cardiomyocyte circadian clock in myocardial metabolic adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marked circadian rhythmicities in cardiovascular physiology and pathophysiology exist. The cardiomyocyte circadian clock has recently been linked to circadian rhythms in myocardial gene expression, metabolism, and contractile function. For instance, the cardiomyocyte circadian clock is essential f...

  6. The sympathy of two pendulum clocks: beyond Huygens' observations.

    PubMed

    Peña Ramirez, Jonatan; Olvera, Luis Alberto; Nijmeijer, Henk; Alvarez, Joaquin

    2016-01-01

    This paper introduces a modern version of the classical Huygens' experiment on synchronization of pendulum clocks. The version presented here consists of two monumental pendulum clocks--ad hoc designed and fabricated--which are coupled through a wooden structure. It is demonstrated that the coupled clocks exhibit 'sympathetic' motion, i.e. the pendula of the clocks oscillate in consonance and in the same direction. Interestingly, when the clocks are synchronized, the common oscillation frequency decreases, i.e. the clocks become slow and inaccurate. In order to rigorously explain these findings, a mathematical model for the coupled clocks is obtained by using well-established physical and mechanical laws and likewise, a theoretical analysis is conducted. Ultimately, the sympathy of two monumental pendulum clocks, interacting via a flexible coupling structure, is experimentally, numerically, and analytically demonstrated. PMID:27020903

  7. Radial Trends in IMF-sensitive Absorption Features in Two Early-type Galaxies: Evidence for Abundance-driven Gradients

    NASA Astrophysics Data System (ADS)

    McConnell, Nicholas J.; Lu, Jessica R.; Mann, Andrew W.

    2016-04-01

    Samples of early-type galaxies show a correlation between stellar velocity dispersion and the stellar initial mass function (IMF) as inferred from gravity-sensitive absorption lines in the galaxies’ central regions. To search for spatial variations in the IMF, we have observed two early-type galaxies with Keck/LRIS and measured radial gradients in the strengths of absorption features from 4000-5500 Å and 8000-10000 Å. We present spatially resolved measurements of the dwarf-sensitive spectral indices {Na} {{I}} (8190 Å) and Wing-Ford {{FeH}} (9915 Å), as well as indices for species of H, C2, CN, Mg, Ca, {{TiO}}, and Fe. Our measurements show a metallicity gradient in both objects, and Mg/Fe consistent with a shallow gradient in α-enhancement, matching widely observed trends for massive early-type galaxies. The {Na} {{I}} index and the CN1 index at 4160 Å exhibit significantly steeper gradients, with a break at r˜ 0.1 {r}{{eff}} (r˜ 300 pc). Inside this radius, {Na} {{I}} strength increases sharply toward the galaxy center, consistent with a rapid central rise in [Na/Fe]. In contrast, the ratio of the {{FeH}} to Fe index strength decreases toward the galaxy center. This behavior cannot be reproduced by a steepening IMF inside of 0.1 {r}{{eff}} if the IMF is a single power law. While gradients in the mass function above ˜ 0.4 {M}⊙ may occur, exceptional care is required to disentangle these IMF variations from the extreme variations in individual element abundances near the galaxies’ centers.

  8. Timescale algorithms combining cesium clocks and hydrogen masers

    NASA Technical Reports Server (NTRS)

    Breakiron, Lee A.

    1992-01-01

    The United States Naval Observatory (USNO) atomic timescale, formerly based on an ensemble of cesium clocks, is now produced by an ensemble of cesium clocks and hydrogen masers. In order to optimize stability and reliability, equal clock weighting has been replaced by a procedure reflecting the relative, time-varying noise characteristics of the two different types of clocks. Correlation of frequency drift is required, and residual drift is avoided by the eventual complete deweighting of the masers.

  9. Orientation-Dependent Entanglement Lifetime in a Squeezed Atomic Clock

    SciTech Connect

    Leroux, Ian D.; Schleier-Smith, Monika H.; Vuletic, Vladan

    2010-06-25

    We study experimentally the application of a class of entangled states, squeezed spin states, to the improvement of atomic-clock precision. In the presence of anisotropic noise, the entanglement lifetime is strongly dependent on squeezing orientation. We measure the Allan deviation spectrum of a clock operated with a phase-squeezed input state. For averaging times up to 50 s the squeezed clock achieves a given precision 2.8(3) times faster than a clock operating at the standard quantum limit.

  10. Navstar Global Positioning System (GPS) clock program: Present and future

    NASA Technical Reports Server (NTRS)

    Tennant, D. M.

    1981-01-01

    Global Positioning System (GPS) program status are discussed and plans for ensuring the long term continuation of the program are presented. Performance of GPS clocks is presented in terms of on orbit data as portrayed by GPS master control station kalman filter processing. The GPS Clock reliability program is reviewed in depth and future plans fo the overall clock program are published.

  11. Evolutionary Links Between Circadian Clocks and Photoperiodic Diapause in Insects

    PubMed Central

    Meuti, Megan E.; Denlinger, David L.

    2013-01-01

    In this article, we explore links between circadian clocks and the clock involved in photoperiodic regulation of diapause in insects. Classical resonance (Nanda–Hamner) and night interruption (Bünsow) experiments suggest a circadian basis for the diapause response in nearly all insects that have been studied. Neuroanatomical studies reveal physical connections between circadian clock cells and centers controlling the photoperiodic diapause response, and both mutations and knockdown of clock genes with RNA interference (RNAi) point to a connection between the clock genes and photoperiodic induction of diapause. We discuss the challenges of determining whether the clock, as a functioning module, or individual clock genes acting pleiotropically are responsible for the photoperiodic regulation of diapause, and how a stable, central circadian clock could be linked to plastic photoperiodic responses without compromising the clock’s essential functions. Although we still lack an understanding of the exact mechanisms whereby insects measure day/night length, continued classical and neuroanatomical approaches, as well as forward and reverse genetic experiments, are highly complementary and should enable us to decipher the diverse ways in which circadian clocks have been involved in the evolution of photoperiodic induction of diapause in insects. The components of circadian clocks vary among insect species, and diapause appears to have evolved independently numerous times, thus, we anticipate that not all photoperiodic clocks of insects will interact with circadian clocks in the same fashion. PMID:23615363

  12. Kinoform for VLSI clock distribution calculated by nonparaxial phase retrieval

    NASA Astrophysics Data System (ADS)

    Sikorski, Zbigniew

    1990-07-01

    Kinoform for irregular space-variant nonparaxial optical interconnection (01) was calculated by the generalized error-reduction algorithm (ERA). Diffraction limited spots easy to align for detectors of 10 im width and diffraction efficiency r 34 were obtained for the binary kmoform case. This approach is fast takes into account the incident beam intensity distribution and an equalization of the intensity between spots is easy. However the resulted surface relief is complicated. NONPARAXIAL KINOFORM SYNTHESIS Free-space Ols for clock distribution will require a low f-number (F/i) holograms due to expected detector sizes of 10 m x 10 im and typical laser diode (LD) light divergence angles of 30 and iS . Large field angles needed to obtain large fanouts and to deflect beams towards detectors located near the chip boundary also cause that paraxial conditions are not satisfied. Kinoforms which are computer generated phase holograms afford possibilities for Ols with complicated detector patterns and high . Free-space nonparaxial propagation can be described by the operator N FT QFI where Fr U f Uexp(-ikcxx1 ) dx1 U(x1) is the complex amplitude in the kinoform plane Q is the spectrum phase shift operator QFJ'' U exp ( ikz I 1 - 2 ) j''U k 2 vt/A X is the wavelength is the normalized spatial frequency and z is the separation between planes. N is an unitary transform because we may neglect evanescent waves in

  13. Circadian Clocks in the Immune System.

    PubMed

    Labrecque, Nathalie; Cermakian, Nicolas

    2015-08-01

    The immune system is a complex set of physiological mechanisms whose general aim is to defend the organism against non-self-bodies, such as pathogens (bacteria, viruses, parasites), as well as cancer cells. Circadian rhythms are endogenous 24-h variations found in virtually all physiological processes. These circadian rhythms are generated by circadian clocks, located in most cell types, including cells of the immune system. This review presents an overview of the clocks in the immune system and of the circadian regulation of the function of immune cells. Most immune cells express circadian clock genes and present a wide array of genes expressed with a 24-h rhythm. This has profound impacts on cellular functions, including a daily rhythm in the synthesis and release of cytokines, chemokines and cytolytic factors, the daily gating of the response occurring through pattern recognition receptors, circadian rhythms of cellular functions such as phagocytosis, migration to inflamed or infected tissue, cytolytic activity, and proliferative response to antigens. Consequently, alterations of circadian rhythms (e.g., clock gene mutation in mice or environmental disruption similar to shift work) lead to disturbed immune responses. We discuss the implications of these data for human health and the areas that future research should aim to address.

  14. Biochemical basis for the biological clock

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Chueh, Pin-Ju; Pletcher, Jake; Tang, Xiaoyu; Wu, Lian-Ying; Morre, Dorothy M.

    2002-01-01

    NADH oxidases at the external surface of plant and animal cells (ECTO-NOX proteins) exhibit stable and recurring patterns of oscillations with potentially clock-related, entrainable, and temperature-compensated period lengths of 24 min. To determine if ECTO-NOX proteins might represent the ultradian time keepers (pacemakers) of the biological clock, COS cells were transfected with cDNAs encoding tNOX proteins having a period length of 22 min or with C575A or C558A cysteine to alanine replacements having period lengths of 36 or 42 min. Here we demonstrate that such transfectants exhibited 22, 36, or 40 to 42 h circadian patterns in the activity of glyceraldehyde-3-phosphate dehydrogenase, a common clock-regulated protein, in addition to the endogenous 24 h circadian period length. The fact that the expression of a single oscillatory ECTO-NOX protein determines the period length of a circadian biochemical marker (60 X the ECTO-NOX period length) provides compelling evidence that ECTO-NOX proteins are the biochemical ultradian drivers of the cellular biological clock.

  15. The peripheral clock regulates human pigmentation.

    PubMed

    Hardman, Jonathan A; Tobin, Desmond J; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Al-Nuaimi, Yusur; Grimaldi, Benedetto; Paus, Ralf

    2015-04-01

    Although the regulation of pigmentation is well characterized, it remains unclear whether cell-autonomous controls regulate the cyclic on-off switching of pigmentation in the hair follicle (HF). As human HFs and epidermal melanocytes express clock genes and proteins, and given that core clock genes (PER1, BMAL1) modulate human HF cycling, we investigated whether peripheral clock activity influences human HF pigmentation. We found that silencing BMAL1 or PER1 in human HFs increased HF melanin content. Furthermore, tyrosinase expression and activity, as well as TYRP1 and TYRP2 mRNA levels, gp100 protein expression, melanocyte dendricity, and the number gp100+ HF melanocytes, were all significantly increased in BMAL1 and/or PER1-silenced HFs. BMAL1 or PER1 silencing also increased epidermal melanin content, gp100 protein expression, and tyrosinase activity in human skin. These effects reflect direct modulation of melanocytes, as BMAL1 and/or PER1 silencing in isolated melanocytes increased tyrosinase activity and TYRP1/2 expression. Mechanistically, BMAL1 knockdown reduces PER1 transcription, and PER1 silencing induces phosphorylation of the master regulator of melanogenesis, microphthalmia-associated transcription factor, thus stimulating human melanogenesis and melanocyte activity in situ and in vitro. Therefore, the molecular clock operates as a cell-autonomous modulator of human pigmentation and may be targeted for future therapeutic strategies. PMID:25310406

  16. An Iodine Fluorescence Quenching Clock Reaction

    ERIC Educational Resources Information Center

    Weinberg, Richard B.; Muyskens, Mark

    2007-01-01

    Clock reactions based upon competing oxidation and reduction reactions of iodine and starch as the most popular type of chemistry example is presented to illustrate the redox phenomena, reaction kinetics, and principles of chemical titration. The examination of the photophysical principles underlying the iodine fluorescence quenching clock…

  17. Blackbody radiation shifts in optical atomic clocks.

    PubMed

    Safronova, Marianna; Kozlov, Mikhail; Clark, Charles

    2012-03-01

    A review of recent theoretical calculations of blackbody radiation (BBR) shifts in optical atomic clocks is presented. We summarize previous results for monovalent ions that were obtained by a relativistic all-order single-double method, where all single and double excitations of the Dirac- Fock wave function are included to all orders of perturbation theory. A recently developed method for accurate calculations of BBR shifts in divalent atoms is then presented. This approach combines the relativistic all-order method and the configuration interaction method, which provides for accurate treatment of correlation corrections in atoms with two valence electrons. Calculations of the BBR shifts in B+, Al+, and In+ have enabled us to reduce the present fractional uncertainties in the frequencies of their clock transitions as measured at room temperature: to 4 × 10-19 for Al+ and 10-18 for B+ and In+. These uncertainties approach recent estimates of the limits of precision of currently proposed optical atomic clocks. We discuss directions of future theoretical developments for reducing clock uncertainties resulting from blackbody radiation shifts.

  18. Tick Tock, a Vitamin C Clock.

    ERIC Educational Resources Information Center

    Wright, Stephen W.

    2002-01-01

    Presents an activity that uses supermarket chemicals to perform a clock reaction in which the endpoint is signaled by an abrupt change in the appearance from colorless to blue-black. This activity can be used to explore reaction kinetics and the effect of reactant concentrations on the apparent rate of reaction. (DDR)

  19. European plans for new clocks in space

    NASA Technical Reports Server (NTRS)

    Leschiutta, Sigfrido M.; Tavella, Patrizia

    1995-01-01

    An outline of the future European space research program where precise clocks are necessary is presented, pointing out how space applications are posing impressive requirements as regards clock mass, power, ruggedness, long life, accuracy and, in some cases, spectral purity. The material presented was gathered in some laboratories; useful information was obtained from the Space Agencies of France (CNES), Germany (DARA) and Italy (ASI), but the bulk is coming from a recent exercise promoted inside ESA (the European Space Agency) and aimed to prefigure space research activities at the beginning of the next millennium. This exercise was called Horizon 2000 plus; the outcomings were summarized in two reports, presented by ESA in may 1994. Precise clocks and time measurements are needed not only for deep-space or out-ward space missions, but are essential tools also for Earth oriented activities. In this latter field, the European views and needs were discussed in October 1994, in a meeting organized by ESA and devoted to Earth Observation problems. By a scrutiny of these reports, an analysis was performed on the missions requiring a precise clock on board and the driving requirements were pointed out, leading to a survey of the necessary PTTI developments that, to some extent, are in the realm of possibility but that pose serious challenges. In this report the use of frequency standards in the satellite navigation systems is not considered.

  20. ^87Sr Clock Comparisons at JILA

    NASA Astrophysics Data System (ADS)

    Williams, Jason; Nicholson, Travis; Bloom, Benjamin; Campbell, Sara; Martin, Michael; Swallows, Matthew; Bishof, Michael; Ye, Jun

    2012-06-01

    Great advances are being realized with optical lattice clocks, where spectroscopy at optical frequencies and large ensembles of neutral atoms combine to offer extremely high frequency precision and stability. Recent results from the Strontium 87 optical atomic clock at JILA have demonstrated that strong interactions among fermions confined in a two-dimensional (2D) optical lattice suppress the collisional frequency shift and its uncertainty to the level of 10-17 [1]. We report on the progress of a second optical lattice clock at JILA, in which fermionic ^87Sr atoms are confined in a lattice potential derived from optical buildup cavities to provide strong confinement over a very large volume in one, two, and three dimensional lattices. Intercomparisons of the two clocks at JILA will be used to explore in greater detail the physics governing the transition shifts and uncertainties in our two ^87Sr optical lattice systems and will provide a significant improvement of our systematic errors.[4pt] [1] M D. Swallows et al. Science, 331, 1043 (2011)

  1. Blackbody radiation shifts in optical atomic clocks.

    PubMed

    Safronova, Marianna; Kozlov, Mikhail; Clark, Charles

    2012-03-01

    A review of recent theoretical calculations of blackbody radiation (BBR) shifts in optical atomic clocks is presented. We summarize previous results for monovalent ions that were obtained by a relativistic all-order single-double method, where all single and double excitations of the Dirac- Fock wave function are included to all orders of perturbation theory. A recently developed method for accurate calculations of BBR shifts in divalent atoms is then presented. This approach combines the relativistic all-order method and the configuration interaction method, which provides for accurate treatment of correlation corrections in atoms with two valence electrons. Calculations of the BBR shifts in B+, Al+, and In+ have enabled us to reduce the present fractional uncertainties in the frequencies of their clock transitions as measured at room temperature: to 4 × 10-19 for Al+ and 10-18 for B+ and In+. These uncertainties approach recent estimates of the limits of precision of currently proposed optical atomic clocks. We discuss directions of future theoretical developments for reducing clock uncertainties resulting from blackbody radiation shifts. PMID:22481777

  2. Clock Synchronization for Multihop Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  3. The mammalian retina as a clock

    NASA Technical Reports Server (NTRS)

    Tosini, Gianluca; Fukuhara, Chiaki

    2002-01-01

    Many physiological, cellular, and biochemical parameters in the retina of vertebrates show daily rhythms that, in many cases, also persist under constant conditions. This demonstrates that they are driven by a circadian pacemaker. The presence of an autonomous circadian clock in the retina of vertebrates was first demonstrated in Xenopus laevis and then, several years later, in mammals. In X. laevis and in chicken, the retinal circadian pacemaker has been localized in the photoreceptor layer, whereas in mammals, such information is not yet available. Recent advances in molecular techniques have led to the identification of a group of genes that are believed to constitute the molecular core of the circadian clock. These genes are expressed in the retina, although with a slightly different 24-h profile from that observed in the central circadian pacemaker. This result suggests that some difference (at the molecular level) may exist between the retinal clock and the clock located in the suprachiasmatic nuclei of hypothalamus. The present review will focus on the current knowledge of the retinal rhythmicity and the mechanisms responsible for its control.

  4. Current Status of the Molecular Clock Hypothesis

    ERIC Educational Resources Information Center

    Hermann, Gilbert

    2003-01-01

    Molecular genetics is a rapidly changing field with new developments almost from day to day. One interesting hypothesis that has come from everyone's ability to sequence proteins and/or genes is that of the molecular clock. This hypothesis postulates that homologous sequences of DNA and thus macro molecules evolve at a constant and invariable rate…

  5. The peripheral clock regulates human pigmentation.

    PubMed

    Hardman, Jonathan A; Tobin, Desmond J; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Al-Nuaimi, Yusur; Grimaldi, Benedetto; Paus, Ralf

    2015-04-01

    Although the regulation of pigmentation is well characterized, it remains unclear whether cell-autonomous controls regulate the cyclic on-off switching of pigmentation in the hair follicle (HF). As human HFs and epidermal melanocytes express clock genes and proteins, and given that core clock genes (PER1, BMAL1) modulate human HF cycling, we investigated whether peripheral clock activity influences human HF pigmentation. We found that silencing BMAL1 or PER1 in human HFs increased HF melanin content. Furthermore, tyrosinase expression and activity, as well as TYRP1 and TYRP2 mRNA levels, gp100 protein expression, melanocyte dendricity, and the number gp100+ HF melanocytes, were all significantly increased in BMAL1 and/or PER1-silenced HFs. BMAL1 or PER1 silencing also increased epidermal melanin content, gp100 protein expression, and tyrosinase activity in human skin. These effects reflect direct modulation of melanocytes, as BMAL1 and/or PER1 silencing in isolated melanocytes increased tyrosinase activity and TYRP1/2 expression. Mechanistically, BMAL1 knockdown reduces PER1 transcription, and PER1 silencing induces phosphorylation of the master regulator of melanogenesis, microphthalmia-associated transcription factor, thus stimulating human melanogenesis and melanocyte activity in situ and in vitro. Therefore, the molecular clock operates as a cell-autonomous modulator of human pigmentation and may be targeted for future therapeutic strategies.

  6. Compact microwave cavity for hydrogen atomic clock

    NASA Technical Reports Server (NTRS)

    Zhang, Dejun; Zhang, Yan; Fu, Yigen; Zhang, Yanjun

    1992-01-01

    A summary is presented that introduces the compact microwave cavity used in the hydrogen atomic clock. Special emphasis is placed on derivation of theoretical calculating equations of main parameters of the microwave cavity. A brief description is given of several methods for discriminating the oscillating modes. Experimental data and respective calculated values are also presented.

  7. Perception of Perspective Angles.

    PubMed

    Erkelens, Casper J

    2015-06-01

    We perceive perspective angles, that is, angles that have an orientation in depth, differently from what they are in physical space. Extreme examples are angles between rails of a railway line or between lane dividers of a long and straight road. In this study, subjects judged perspective angles between bars lying on the floor of the laboratory. Perspective angles were also estimated from pictures taken from the same point of view. Converging and diverging angles were judged to test three models of visual space. Four subjects evaluated the perspective angles by matching them to nonperspective angles, that is, angles between the legs of a compass oriented in the frontal plane. All subjects judged both converging and diverging angles larger than the physical angle and smaller than the angles in the proximal stimuli. A model of shallow visual space describes the results. According to the model, lines parallel to visual lines, vanishing at infinity in physical space, converge to visual lines in visual space. The perceived shape of perspective angles is incompatible with the perceived length and width of the bars. The results have significance for models of visual perception and practical implications for driving and flying in poor visibility conditions. PMID:27433312

  8. Influence of satellite geometry, range, clock, and altimeter errors on two-satellite GPS navigation

    NASA Astrophysics Data System (ADS)

    Bridges, Philip D.

    Flight tests were conducted at Yuma Proving Grounds, Yuma, AZ, to determine the performance of a navigation system capable of using only two GPS satellites. The effect of satellite geometry, range error, and altimeter error on the horizontal position solution were analyzed for time and altitude aided GPS navigation (two satellites + altimeter + clock). The east and north position errors were expressed as a function of satellite range error, altimeter error, and east and north Dilution of Precision. The equations for the Dilution of Precision were derived as a function of satellite azimuth and elevation angles for the two satellite case. The expressions for the position error were then used to analyze the flight test data. The results showed the correlation between satellite geometry and position error, the increase in range error due to clock drift, and the impact of range and altimeter error on the east and north position error.

  9. A network of (autonomic) clock outputs.

    PubMed

    Kalsbeek, A; Perreau-Lenz, S; Buijs, R M

    2006-01-01

    The circadian clock in the suprachiasmatic nuclei (SCN) is composed of thousands of oscillator neurons, each of which is dependent on the cell-autonomous action of a defined set of circadian clock genes. A major question is still how these individual oscillators are organized into a biological clock producing a coherent output that is able to time all the different daily changes in behavior and physiology. We investigated which anatomical connections and neurotransmitters are used by the biological clock to control the daily release pattern of a number of hormones. The picture that emerged shows projections contacting target neurons in the medial hypothalamus surrounding the SCN. The activity of these pre-autonomic and neuro-endocrine target neurons is controlled by differentially timed waves of, among others, vasopressin, GABA, and glutamate release from SCN terminals. Together our data indicate that, with regard to the timing of their main release period within the light-dark (LD) cycle, at least 4 subpopulations of SCN neurons should be discerned. The different subgroups do not necessarily follow the phenotypic differences among SCN neurons. Thus, different subgroups can be found within neuron populations containing the same neurotransmitter. Remarkably, a similar distinction of 4 differentially timed subpopulations of SCN neurons was recently also discovered in experiments determining the temporal patterns of rhythmicity in individual SCN neurons by way of the electrophysiology or clock gene expression. Moreover, the specialization of the SCN may go as far as a single body structure; i.e., the SCN seems to contain neurons that specifically target the liver, pineal, and adrenal. PMID:16687294

  10. Clock gene variants differentiate mood disorders.

    PubMed

    Dmitrzak-Weglarz, Monika Paulina; Pawlak, Joanna Maria; Maciukiewicz, Malgorzata; Moczko, Jerzy; Wilkosc, Monika; Leszczynska-Rodziewicz, Anna; Zaremba, Dorota; Hauser, Joanna

    2015-01-01

    Genetic variations in clock-related genes were hypothesized to be involved to in the susceptibility of mood disorders MD (both unipolar (UPD) and bipolar (BPD) disorders). In our work we investigated role of gene variants form four core period proteins: CLOCK, ARNTL, TIM and PER3. The total sample comprised from 744 mood disorders inpatients (UPD = 229, BPD = 515) and 635 healthy voluntary controls. The 42 SNPs from four genes of interest were genotyped. We used single polymorphisms, haplotypes, SNPs interactions and prediction analysis using classical statistical and machine learning methods. We observed association between two polymorphisms of CLOCK (rs1801260 and rs11932595) with BPDII and two polymorphisms of TIM (rs2291739, rs11171856) with UPD. We also detected ARNTL haplotype variant (rs1160996C/rs11022779G/rs1122780T) to be associated with increased risk of MD, BPD (both types). We established significant epistatic interaction between PER3 (rs2172563) and ARNTL (rs4146388 and rs7107287) in case of BPD. Additionally relation between PER3 (rs2172563) and CLOCK (rs1268271 and rs3805148) appeared in case of UPD. Classification and Regression Trees (C and RT) showed significant predictive value for 10 polymorphisms in all analyzed genes. However we failed to obtain model with sufficient predictive power. During analyses of sleep disturbances sample, we found carriers of homozygote variants (ARNTL: rs11022778 TT, rs1562438 TT, rs1982350 AA and PER3: rs836755 CC) showing more frequent falling asleep difficulties when compare to other genotypes carriers. Our study suggested a putative role of the CLOCK, TIM, ARNTL and PER3 and polymorphisms in MD susceptibility. In our analyses we showed association of specific gene variants with particular types of MD. We also confirmed necessity of performing separate analyzes for BPD and UPD patients. Comprehensive statistical approach is required even with individual symptoms analyses.

  11. Maximum likelihood molecular clock comb: analytic solutions.

    PubMed

    Chor, Benny; Khetan, Amit; Snir, Sagi

    2006-04-01

    Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM), are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model--three taxa, two state characters, under a molecular clock. Four taxa rooted trees have two topologies--the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). In a previous work, we devised a closed form analytic solution for the ML molecular clock fork. In this work, we extend the state of the art in the area of analytic solutions ML trees to the family of all four taxa trees under the molecular clock assumption. The change from the fork topology to the comb incurs a major increase in the complexity of the underlying algebraic system and requires novel techniques and approaches. We combine the ultrametric properties of molecular clock trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations. We finally use tools from algebraic geometry (e.g., Gröbner bases, ideal saturation, resultants) and employ symbolic algebra software to obtain analytic solutions for the comb. We show that in contrast to the fork, the comb has no closed form solutions (expressed by radicals in the input data). In general, four taxa trees can have multiple ML points. In contrast, we can now prove that under the molecular clock assumption, the comb has a unique (local and global) ML point. (Such uniqueness was previously shown for the fork.).

  12. Next Generation JPL Ultra-Stable Trapped Ion Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric; Tucker, Blake; Larsen, Kameron; Hamell, Robert; Tjoelker, Robert

    2013-01-01

    Over the past decade, trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on two directions: 1) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements, and 2) ultra-stable atomic clocks, usually for terrestrial applications emphasizing ultimate performance. In this paper we present a new ultra-stable trapped ion clock designed, built, and tested in the second category. The first new standard, L10, will be delivered to the Naval Research Laboratory for use in characterizing DoD space clocks.

  13. Field operations with cesium clocks in HF navigation systems

    NASA Technical Reports Server (NTRS)

    Christy, E. H.; Clayton, D. A.

    1982-01-01

    Networks of HF phase comparison marine navigation stations employing cesium clocks are discussed. The largest permanent network is in the Gulf of Mexico where some fourteen base stations are continuously active and others are activated as needed. These HF phase comparison systems, which operate on a single transmission path, require a clock on the mobile unit as well. Inventory consists of upwards of 70 clocks from two different manufacturers. The maintenance of this network as an operating system requires a coordinated effort involving clock preparation, clock environment control, station performance monitoring and field service.

  14. Suppression of Clock Shifts at Magnetic-Field-Insensitive Transitions

    NASA Astrophysics Data System (ADS)

    Arnold, K. J.; Barrett, M. D.

    2016-10-01

    We show that it is possible to significantly reduce rank 2 tensor shifts of a clock transition by operating at a judiciously chosen magnetic-field-insensitive point. In some cases shifts are almost completely eliminated making the transition an effective J =0 to J =0 candidate. This significantly improves the feasibility of a recent proposal for clock operation with large ion crystals. For such multi-ion clocks, geometric constraints and selection rules naturally divide clock operation into two categories based on the orientation of the magnetic field. We discuss the limitations imposed on each type and how calibrations might be carried out for clock operation.

  15. s-Wave collisional frequency shift of a fermion clock.

    PubMed

    Hazlett, Eric L; Zhang, Yi; Stites, Ronald W; Gibble, Kurt; O'Hara, Kenneth M

    2013-04-19

    We report an s-wave collisional frequency shift of an atomic clock based on fermions. In contrast to bosons, the fermion clock shift is insensitive to the population difference of the clock states, set by the first pulse area in Ramsey spectroscopy, θ(1). The fermion shift instead depends strongly on the second pulse area θ(2). It allows the shift to be canceled, nominally at θ(2)=π/2, but correlations perturb the null to slightly larger θ(2). The frequency shift is relevant for optical lattice clocks and increases with the spatial inhomogeneity of the clock excitation field, naturally larger at optical frequencies. PMID:23679589

  16. Sources of Electron Pitch Angle Anisotropy in the Magnetotail Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Walsh, A. P.; Fazakerley, A. N.; Forsyth, C.; Owen, C. J.; Taylor, M. G.; Rae, J.

    2013-12-01

    We survey the properties of electron pitch angle distributions in the magnetotail plasma sheet at a distance between 15 and 19 RE from the Earth, using data from the Cluster PEACE instrument. We limit our survey to those pitch angle distributions measured when the IMF had been steadily northward or steadily southward for the previous three hours. We find that, at sub- keV energies the plasma sheet electron pitch angle distribution has an anisotropy such that there is a higher differential energy flux of electrons in the (anti- ) field-aligned directions. Fitting the measured pitch angle distributions with both a single and two component kappa distribution reveals that this anisotropy is the result of the presence of a second, cold, component of electrons that is observed more often than not, and occurs during both the northward and southward IMF intervals. We present evidence that suggests the cold electron component has an ionospheric, rather than magnetosheath, source and is linked to the large scale field aligned current systems that couple the magnetosphere and ionosphere.

  17. Sources of electron pitch angle anisotropy in the magnetotail plasma sheet

    NASA Astrophysics Data System (ADS)

    Walsh, Andrew P.; Fazakerley, A. N.; Forsyth, C.; Owen, C. J.; Taylor, M. G. G. T.; Rae, I. J.

    2013-10-01

    We survey the properties of electron pitch angle distributions in the magnetotail plasma sheet at a distance between 15 and 19 RE from the Earth, using data from the Plasma Electron and Current Experiment (PEACE) instrument. We limit our survey to those pitch angle distributions measured when the interplanetary magnetic field (IMF) had been steadily northward or steadily southward for the previous 3 h. We find that, at sub-keV energies, the plasma sheet electron pitch angle distribution has an anisotropy such that there is a higher differential energy flux of electrons in the (anti-) field-aligned directions. Fitting the measured pitch angle distributions with both a single and two component kappa distribution reveals that this anisotropy is the result of the presence of a second, cold, component of electrons that is observed more often than not, and occurs during both the northward and southward IMF intervals. We present evidence that suggests the cold electron component has an ionospheric, rather than magnetosheath, source and is linked to the large-scale field-aligned current systems that couple the magnetosphere and ionosphere.

  18. Molecular-clock methods for estimating evolutionary rates and timescales.

    PubMed

    Ho, Simon Y W; Duchêne, Sebastián

    2014-12-01

    The molecular clock presents a means of estimating evolutionary rates and timescales using genetic data. These estimates can lead to important insights into evolutionary processes and mechanisms, as well as providing a framework for further biological analyses. To deal with rate variation among genes and among lineages, a diverse range of molecular-clock methods have been developed. These methods have been implemented in various software packages and differ in their statistical properties, ability to handle different models of rate variation, capacity to incorporate various forms of calibrating information and tractability for analysing large data sets. Choosing a suitable molecular-clock model can be a challenging exercise, but a number of model-selection techniques are available. In this review, we describe the different forms of evolutionary rate heterogeneity and explain how they can be accommodated in molecular-clock analyses. We provide an outline of the various clock methods and models that are available, including the strict clock, local clocks, discrete clocks and relaxed clocks. Techniques for calibration and clock-model selection are also described, along with methods for handling multilocus data sets. We conclude our review with some comments about the future of molecular clocks.

  19. The sympathy of two pendulum clocks: beyond Huygens’ observations

    NASA Astrophysics Data System (ADS)

    Peña Ramirez, Jonatan; Olvera, Luis Alberto; Nijmeijer, Henk; Alvarez, Joaquin

    2016-03-01

    This paper introduces a modern version of the classical Huygens’ experiment on synchronization of pendulum clocks. The version presented here consists of two monumental pendulum clocks—ad hoc designed and fabricated—which are coupled through a wooden structure. It is demonstrated that the coupled clocks exhibit ‘sympathetic’ motion, i.e. the pendula of the clocks oscillate in consonance and in the same direction. Interestingly, when the clocks are synchronized, the common oscillation frequency decreases, i.e. the clocks become slow and inaccurate. In order to rigorously explain these findings, a mathematical model for the coupled clocks is obtained by using well-established physical and mechanical laws and likewise, a theoretical analysis is conducted. Ultimately, the sympathy of two monumental pendulum clocks, interacting via a flexible coupling structure, is experimentally, numerically, and analytically demonstrated.

  20. Pressure sensitivity of the vapor-cell atomic clock.

    PubMed

    Iyanu, Gebriel; Wang, He; Camparo, James

    2009-06-01

    Although atomic clocks have very low levels of frequency instability, they are nonetheless sensitive (albeit slightly) to various environmental parameters, including temperature, power supply voltage, and dc magnetic fields. In the terrestrial environment, however, atmospheric pressure (i.e., the air's molecular density) is not generally included in this list, because the air's density variations near the surface of the earth will typically have a negligible effect on the clock's performance. The situation is different, however, for clocks onboard satellites like Galileo, where manufacturing and testing are done at atmospheric pressure, while operation is in vacuum. The pressure sensitivity of atomic clocks, in particular vapor-cell atomic clocks, can therefore be of significance. Here, we discuss some of the ways in which changes in atmospheric pressure affect vapor-cell atomic clocks, and we demonstrate that, for one device, the pressure-sensitivity traces back to a pressure-induced change in the temperature of the clock's filter and resonance cells.

  1. Entangling the lattice clock: Towards Heisenberg-limited timekeeping

    SciTech Connect

    Weinstein, Jonathan D.; Beloy, Kyle; Derevianko, Andrei

    2010-03-15

    A scheme is presented for entangling the atoms of an optical lattice to reduce the quantum projection noise of a clock measurement. The divalent clock atoms are held in a lattice at a 'magic' wavelength that does not perturb the clock frequency - to maintain clock accuracy - while an open-shell J=1/2 'head' atom is coherently transported between lattice sites via the lattice polarization. This polarization-dependent 'Archimedes' screw' transport at magic wavelength takes advantage of the vanishing vector polarizability of the scalar, J=0, clock states of bosonic isotopes of divalent atoms. The on-site interactions between the clock atoms and the head atom are used to engineer entanglement and for clock readout.

  2. The sympathy of two pendulum clocks: beyond Huygens’ observations

    PubMed Central

    Peña Ramirez, Jonatan; Olvera, Luis Alberto; Nijmeijer, Henk; Alvarez, Joaquin

    2016-01-01

    This paper introduces a modern version of the classical Huygens’ experiment on synchronization of pendulum clocks. The version presented here consists of two monumental pendulum clocks—ad hoc designed and fabricated—which are coupled through a wooden structure. It is demonstrated that the coupled clocks exhibit ‘sympathetic’ motion, i.e. the pendula of the clocks oscillate in consonance and in the same direction. Interestingly, when the clocks are synchronized, the common oscillation frequency decreases, i.e. the clocks become slow and inaccurate. In order to rigorously explain these findings, a mathematical model for the coupled clocks is obtained by using well-established physical and mechanical laws and likewise, a theoretical analysis is conducted. Ultimately, the sympathy of two monumental pendulum clocks, interacting via a flexible coupling structure, is experimentally, numerically, and analytically demonstrated. PMID:27020903

  3. Controlling the Cyanobacterial Clock by Synthetically Rewiring Metabolism

    PubMed Central

    Pattanayak, Gopal K.; Lambert, Guillaume; Bernat, Kevin; Rust, Michael J.

    2015-01-01

    Summary Circadian clocks are oscillatory systems and allow organisms to anticipate rhythmic changes in the environment. Several studies have shown that circadian clocks are connected to metabolism, but it is not generally clear whether metabolic signaling is one voice among many that influence the clock, or whether metabolic cycling is the major clock synchronizer. To address this question in cyanobacteria, we used a synthetic biology approach to make normally autotrophic cells capable of growth on exogenous sugar. This allowed us to manipulate metabolism independently from the light and dark. We found that feeding sugar to cultures blocked the clock-resetting effect of a dark pulse. Further, in the absence of light, the clock efficiently synchronizes to metabolic cycles driven by rhythmic feeding. We conclude that metabolic activity, independent of its source, is the primary clock driver in cyanobacteria. PMID:26686627

  4. Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish.

    PubMed

    Amaral, Ian P G; Johnston, Ian A

    2012-01-01

    To identify circadian patterns of gene expression in skeletal muscle, adult male zebrafish were acclimated for 2 wk to a 12:12-h light-dark photoperiod and then exposed to continuous darkness for 86 h with ad libitum feeding. The increase in gut food content associated with the subjective light period was much diminished by the third cycle, enabling feeding and circadian rhythms to be distinguished. Expression of zebrafish paralogs of mammalian transcriptional activators of the circadian mechanism (bmal1, clock1, and rora) followed a rhythmic pattern with a ∼24-h periodicity. Peak expression of rora paralogs occurred at the beginning of the subjective light period [Zeitgeber time (ZT)07 and ZT02 for roraa and rorab], whereas the highest expression of bmal1 and clock paralogs occurred 12 h later (ZT13-15 and ZT16 for bmal and clock paralogs). Expression of the transcriptional repressors cry1a, per1a/1b, per2, per3, nr1d2a/2b, and nr1d1 also followed a circadian pattern with peak expression at ZT0-02. Expression of the two paralogs of cry2 occurred in phase with clock1a/1b. Duplicated genes had a high correlation of expression except for paralogs of clock1, nr1d2, and per1, with cry1b showing no circadian pattern. The highest expression difference was 9.2-fold for the activator bmal1b and 51.7-fold for the repressor per1a. Out of 32 candidate clock-controlled genes, only myf6, igfbp3, igfbp5b, and hsf2 showed circadian expression patterns. Igfbp3, igfbp5b, and myf6 were expressed in phase with clock1a/1b and had an average of twofold change in expression from peak to trough, whereas hsf2 transcripts were expressed in phase with cry1a and had a 7.2-fold-change in expression. The changes in expression of clock and clock-controlled genes observed during continuous darkness were also observed at similar ZTs in fish exposed to a normal photoperiod in a separate control experiment. The role of circadian clocks in regulating muscle maintenance and growth are discussed

  5. Polar cap response to the solar wind density jump under constant southward IMF

    NASA Astrophysics Data System (ADS)

    Belenkaya, E. S.; Kalegaev, V. V.; Blokhina, M. S.

    2014-11-01

    Sharp changes of the solar wind parameters determining the dynamic pressure jump lead to strong magnetosphere-ionosphere disturbances. Here the effect on the Earth's ionospheric high latitudes of the solar wind dynamic pressure pulse caused only by the increase of the interplanetary plasma density under southward constant IMF is considered. We investigate reaction of the cross-polar cap potential on the increase of AL index and/or jump of the solar wind density. It is found that for the case of 10 January 1997 the main contribution to the polar cap potential drop increase gave the growth of AL index relative to the input of the solar wind density jump. We also study the influence of the solar wind density increase on the crosspolar cap potential for the quiet magnetospheric conditions. It occurred that the polar cap potential difference decreases with the great increase of the interplanetary plasma density. For the disturbed magnetosphere the main role in the polar cap potential drop increase plays increase of AL. Thus, we found the change of the cross-polar cap potential due to the AL index variations and/or the solar wind density drop even in a case when the interplanetary electric field is constant.

  6. The nonlinear response of the polar cap potential under southward IMF: A statistical view

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Clauer, C. R.; Baker, J. B. H.; Cousins, E. P.; Hairston, M. R.

    2011-12-01

    We report the results of an investigation into the effect of solar wind properties on the saturation of the polar cap potential (CPCP) during periods of strongly southward IMF. We use propagated solar wind data to search for periods between 1998 and 2007 when the interplanetary electric field is stable for more than 50 min and placed further conditions on the availability of SuperDARN and DMSP velocity data. CPCP values are calculated from these data sets and various fits of the polar cap potential to the interplanetary electric field (IEF) are compared. It is found that the trend is nonlinear, with a square root function fitting better than a straight line, and that the CPCP does not appear to exhibit asymptotic behavior. The nonlinearity of the CPCP is then correlated with various interplanetary parameters to test the various models of polar cap potential saturation. It is also found that the deviation of the CPCP from a linear fit has statistically significant correlation with solar wind Alfvènic Mach number and no significant correlation with solar wind dynamic pressure.

  7. Large-Scale Structures in Earth Foreshock Waves during Radial IMF

    NASA Astrophysics Data System (ADS)

    Ganse, Urs; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian; Palmroth, Minna; Vainio, Rami

    2016-04-01

    Wave instabilities in the foreshock region of Earth's bow shock lead to formation of magnetic field and density fluctuations, commonly observed by spacecraft as 30-second waves. These waves are oblique to the interplanetary magnetic field, with the mechanism leading to oblique propagation still under discussion. Using the VLASIATOR (http://vlasiator.fmi.fi) global hybrid-Vlasov simulation code, we performed runs of radial and near-radial IMF conditions and were able to reproduce the development of these oblique foreshock wave instabilities, revealing a peculiar global structure, in which waves with different wave-vector directions are arranged around central spines, which are spatially offset from the bow shock's nose. We present analysis of the waves' growth behaviour and combine them with artificial observations, comparing to in-situ spacecraft data. Furthermore, we employed a test particle approach to investigate the formation mechanism of the instabilities' large-scale structure, and found that a coupling between the microphysics of wave-particle interaction and global-scale shock and foreshock geometry is essential to explain them.

  8. Magnetospheric convection observed between 0600 and 2100 LT Solar wind and IMF dependence

    SciTech Connect

    Baumjohann, W.; Haerendel, G.

    1985-07-01

    Baumjohann et al. (1985) have used GEOS 2 electron gun data to construct average patterns of dayside magnetospheric convection for different levels of magnetic activity. It was found that the synchronous orbit electric field is influenced by both solar wind and ionospheric wind dynamo action. However, it was not possible to decide what fraction of the dawn-to-dusk electric field attributed to a solar wind source was caused by each of the two known solar wind dynamo processes, including viscous interaction and dayside merging. In the present investigation, the GEOS 2 electron gun measurements used in the earlier study are also employed. The data were averaged over one UT hour and combined with solar wind plasma (bulk velocity and proton density) and Interplanetary Magnetic Field (IMF) data. A regression analysis was conducted, taking into account viscous-like interaction, and dayside merging. It is concluded that weak merging electric fields of the order of 0.3 mV/m do exist at the dayside magnetopause even during very quiet times. 37 references.

  9. Observations of a transient event in the subsolar magnetosheath during strongly northward IMF

    NASA Astrophysics Data System (ADS)

    Dias Silveira, M. V.; Sibeck, D. G.; Gonzalez, W. D.; Koga, D.

    2013-12-01

    We present multipoint THEMIS observation of a transient event in the subsolar magnetosheath on July 10, 2007. The event exhibits some features of a flux transfer event, such as a bipolar variation in the magnetic field component normal to the nominal magnetopause centered on a peak in the total magnetic field strength. Four THEMIS spacecraft were in the magnetosheath and one in the magnetosphere. Timing analysis and the absence of flow perturbation suggest that the event is a small scale structure (~0.12 Re in the direction of the flow) moving with the background magnetosheath flow. Despite the inferred small size of the event, THC and THD both observed large amplitude (~40 nT) bipolar magnetic field signatures normal to the nominal magnetopause. Nearby spacecraft THE (only 0.2 Re further outward in the Xgsm direction) observed no significant magnetic field perturbation. Neither did THB or THA, located further away in the magnetosheath and magnetosphere, respectively. During the event, the IMF was strongly northward (approximately 20nT), which does not favor subsolar magnetic reconnection. Inside the structure, the magnetic field briefly rotates 90° away from northward to dawnward. Ions stream antiparallel to the magnetic field in the magnetosheath, parallel to the magnetic field in the event.

  10. VizieR Online Data Catalog: Gamma Vel cluster membership and IMF (Prisinzano+, 2016)

    NASA Astrophysics Data System (ADS)

    Prisinzano, L.; Damiani, F.; Micela, G.; Jeffries, R. D.; Franciosini, E.; Sacco, G. G.; Frasca, A.; Klutsch, A.; Lanzafame, A.; Alfaro, E. J.; Biazzo, K.; Bonito, R.; Bragaglia, A.; Caramazza, M.; Vallenari, A.; Carraro, G.; Costado, M. T.; Flaccomio, E.; Jofre, P.; Lardo, C.; Monaco, L.; Morbidelli, L.; Mowlavi, N.; Pancino, E.; Randich, S.; Zaggia, S.

    2016-04-01

    We derived a list as complete as possible of confirmed members of the young open cluster Gamma Velorum, with the aim of deriving general cluster properties such as the IMF. We used all available spectroscopic membership indicators within the Gaia-ESO public archive, based on spectra acquired with FLAMES a the VLT using the GIRAFFE intermediate-resolution spectrograph. In addition, we used literature photometry and X-ray data. For each membership criterion, we derived the most complete list of candidate cluster members. Then, we considered photometry, gravity, and radial velocities as necessary conditions for selecting a subsample of candidates whose membership was confirmed by using the lithium and Halpha lines and X-rays as youth indicators. Table 5 lists the fundamental parameters of the confirmed and possible members in Gamma Velorum, i.e. photometry, radial velocities, equivalent widths of the lithium line, the Halpha activity index, the X-ray flag, the gravity gamma index and the stellar masses. Finally the binarity and membership flags are given. (1 data file).

  11. The Turbulent ISM of Galaxies about 10 Gyrs Ago: An Impact on their IMF?

    NASA Astrophysics Data System (ADS)

    Le Tiran, L.; Lehnert, M. D.

    2011-06-01

    The utilization of integral-field spectroscopy has led us to a new understanding of the physical conditions in galaxies within the first few billion years after the Big Bang. The combination of the kinematics and emission line diagnostics is a powerful technique to discern the physical processes that are at work in distant galaxies. In these proceedings, we present observations of 10 massive galaxies as seen as they were 9 Gyrs ago using SINFONI from the ESO-VLT, combined with photometry from the DEEP2 Survey. We first portray a brief picture of the physical conditions in the warm ionized medium of these galaxies; they exhibit complex morphologies, high star formation and are so pressure dominated they are likely to drive winds and high turbulence. Moreover, their ratio of Hα to FUV flux to their R-band luminosity surface brightnesses indicates that perhaps their initial mass function is flatter than Salpeter at the high mass end, as has been suggested recently for some local galaxies. It may be that high turbulence is responsible for skewing the IMF towards more massive stars as suggested by some theories of star-formation.

  12. Atmospheric limitations to clock synchronization at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Resch, G. M.

    1984-01-01

    Clock synchronization schemes utilizing microwave signals that pass through the Earth's atmosphere are ultimately limited by our ability to correct for the variable delay imposed by the atmosphere. The atmosphere is non-dispersive at microwave frequencies and imposes a delay of roughly 8 nanosec times the cosecant of the elevation angle. This delay is composed of two parts, the delay due to water vapor molecules (i.e., the wet delay), and the delay due to all other atmospheric constituents (i.e., the dry delay). Water vapor contributes approximately 5 to 10% of the total atmospheric delay but is highly variable, not well mixed, and difficult to estimate from surface air measurements. However, the techniques of passive remote sensing using microwave radiometry can be used to estimate the line of sight delay due to water vapor with potential accuracies of 10 to 20 picosec. The devices that are used are called water vapor radiometers and simply measure the power emitted by the water vapor molecule at the 22.2 GHz spectral line. An additional power measurement is usually included at 31.4 GHz in order to compensate for the effect of liquid water (e.g., clouds). The dry atmosphere is generally in something close to hydrostatic equilibrium and its delay contribution at zenith can be estimated quite well from a simple barometric measurement. At low elevation angles one must compensate for refractive bending and possible variations in the vertical refractivity profile. With care these effects can be estimated with accuracies on the order of 30 picosec down to elevation angles of 10 degree.

  13. Network news: prime time for systems biology of the plant circadian clock truncated form of the title: Plant circadian clocks

    PubMed Central

    McClung, C. Robertson; Gutiérrez, Rodrigo A.

    2011-01-01

    Summary Whole-transcriptome analyses have established that the plant circadian clock regulates virtually every plant biological process and most prominently hormonal and stress response pathways. Systems biology efforts have successfully modeled the plant central clock machinery and an iterative process of model refinement and experimental validation has contributed significantly to the current view of the central clock machinery. The challenge now is to connect this central clock to the output pathways for understanding how the plant circadian clock contributes to plant growth and fitness in a changing environment. Undoubtedly, systems approaches will be needed to integrate and model the vastly increased volume of experimental data in order to extract meaningful biological information. Thus, we have entered an era of systems modeling, experimental testing, and refinement. This approach, coupled with advances from the genetic and biochemical analyses of clock function, is accelerating our progress towards a comprehensive understanding of the plant circadian clock network. PMID:20889330

  14. Relationship between the observed and modeled modulation of the dayside ionospheric convection by the IMF B{sub y} component

    SciTech Connect

    Papitashvili, V.O.; Clauer, C.R.; Levitin, A.E.

    1995-05-01

    The Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) electrodynamic model (IZMEM) provides global patterns of polar ionospheric potential and is parameterized by the interplanetary magnetic field (IMF). Given IMF conditions measured by an upstream satellite, the model yields a good global approximation to the polar ionospheric convection patterns assuming the proper time delay. While the model assumes static patterns and is based upon statistical regression analysis of high-latitude magnetometer data, it can furnish an appropriate global context within which to examine time-varying phenomena. The authors use the IZMEM model to further develop their understanding of the coordinated analysis of Greenland radar, riometer, and magnetometer data on August 2, 1991, which is one of the geospace environment modeling program intervals. The event is characterized by geomagnetic pulsations observed near local magnetic noon, having a 25-min period and poleward phase propagation. A modulation of the intensity and orientation of the convection electric field is observed by the Sondrestrom incoherent scatter radar. Modeled global convection patterns show striking agreement with observations in the area covered by the radar field of view. The authors interpret observed phenomena as a direct ground-based evidence of the IMF B{sub y} component reconnection at the dayside magnetopause. 31 refs., 6 figs.

  15. The IMF in NGC6611: the environmental influence on the formation of low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Oliveira, Joana

    2005-07-01

    We propose to use HST with ACS and NICMOS to survey the central area of the young {2 Myr} cluster NGC6611 in the Eagle Nebula, with the goal of constructing the low-mass and substellar Initial Mass Function {IMF}. We plan to obtain deep images in I {F775W} and Z {F850LP} with ACS/WFC, and deep images in J {F110W} and H {F160W} for 25 NICMOS/NIC2 fields within the 202" x 202" ACS/WFC field. Using a proven technique based on the use of IZJH color-magnitude and color-color diagrams to identify and determine the masses of the low-mass pre-main sequence cluster members, we are thus able to construct the IMF down to masses of 0.02-0.03 Msun. With an intense ionizing radiation field but a relatively low density, NGC6611 provides a unique laboratory in which to test the importance of photoevaporation and density on the formation of low-mass stars and brown dwarfs, through comparison with the IMFs determined for the different environments in the Orion Nebular Cluster, Taurus and IC348. This will not only offer substantial new insight into the physics of star formation, but also have important ramifications for estimating the global star formation rates at high redshift, the efficiency of galactic chemical evolution and the contribution of sub-stellar mass objects to the baryonic dark matter content of the Universe.

  16. Role of imf orientation in the precipitation of solar wind ions into the upper atmosphere of venus.

    NASA Astrophysics Data System (ADS)

    Talha, Madeeha; Stenberg, Gabriella

    2016-07-01

    Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) is used to study the precipitation of solar wind ions (H+ and He2+) into the upper atmosphere of Venus for the period of April 2006 to December 2007 as representative of solar minimum. Precipitation cases are selected and analyzed for the orbits having extreme Interplanetary Magnetic Field (IMF) orientations: IMF perpendicular to the solar wind direction (IMFperp) and IMF aligned with the solar wind direction (IMFpll ). Large number of precipitation behind terminator (nightside) is observed for IMFpll as compared to IMFperp while the reverse trend is noted for the precipitation into the dayside. This is turn favour the presence and absence of magnetic barrier (MB) for IMFperp and IMFpll respectively, as less transport to the nightside and more ions escape from dayside ionosphere during IMFperp contribute for the formation of MB. Contribution in the proton flux by both orientations in the ionosphere and in the transition region is same i.e., 104cm

  17. The relationship between the IMF B(y) and the distant tail (150-238 Re) lobe and plasmasheet B(y) fields

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Lepping, R. P.; Sibeck, D. G.

    1984-01-01

    The relationships between the Solar Magnetospheric (SM) y-component of the interplanetary magnetic field (IMF) and the lobe and plasmasheet magnetic fields have been studied for the two ISEE-3 deep tail passes. It is found that for positive sector IMFs, 13 percent of the interplanetary magnetic field penetrates into the aberrated north-dawn and south-dusk lobe quadrants, and about the same amount in the north-dusk and south-dawn lobe quadrants for negative sector IMFs. For the above cases, field penetration is significantly less for opposite polarity IMFs. The former results are generally consistent with open magnetospheric models, but the latter (the lack of response in certain quadrants) are unexplained by theory at this time. If the magnitude of the plasmasheet B(y) fields are related to plasma pressure anisotropies, very small anisotropies of about 1.01 are expected.

  18. Metabolism and the circadian clock converge.

    PubMed

    Eckel-Mahan, Kristin; Sassone-Corsi, Paolo

    2013-01-01

    Circadian rhythms occur in almost all species and control vital aspects of our physiology, from sleeping and waking to neurotransmitter secretion and cellular metabolism. Epidemiological studies from recent decades have supported a unique role for circadian rhythm in metabolism. As evidenced by individuals working night or rotating shifts, but also by rodent models of circadian arrhythmia, disruption of the circadian cycle is strongly associated with metabolic imbalance. Some genetically engineered mouse models of circadian rhythmicity are obese and show hallmark signs of the metabolic syndrome. Whether these phenotypes are due to the loss of distinct circadian clock genes within a specific tissue versus the disruption of rhythmic physiological activities (such as eating and sleeping) remains a cynosure within the fields of chronobiology and metabolism. Becoming more apparent is that from metabolites to transcription factors, the circadian clock interfaces with metabolism in numerous ways that are essential for maintaining metabolic homeostasis.

  19. Supporting Family Awareness with the Whereabouts Clock

    NASA Astrophysics Data System (ADS)

    Sellen, Abigail; Taylor, Alex S.; Kaye, Joseph ‘Jofish'; Brown, Barry; Izadi, Shahram

    We report the results of a field trial of a situated awareness device for families called the “Whereabouts Clock”. The Clock displays the location of family members using cellphone data as one of four privacy-preserving, deliberately coarse-grained categories ( HOME, WORK, SCHOOL or ELSEWHERE). The results show that awareness of others through the Clock supports not only family communication and coordination but also more emotive aspects of family life such as reassurance, connectedness, identity and social touch. We discuss how the term “awareness” means many things in practice and highlight the importance of designing not just for family activities, but in order to support the emotional, social and even moral aspects of family life.

  20. Millisecond pulsars - Nature's most stable clocks

    NASA Astrophysics Data System (ADS)

    Taylor, Joseph H., Jr.

    1991-07-01

    The author describes the role pulsars might play in time and frequency technology. Millisecond pulsars are rapidly rotating neutron stars: spherical flywheels some 20 km in diameter, 1.4 times as massive as the Sun, and spinning as fast as several thousand radians per second. Radio noise generated in a pulsar's magnetosphere by a highly beamed process is detectable over interstellar distances, as a periodic sequence of pulses similar to the ticks of an excellent clock. High-precision comparisons between pulsar time and terrestrial atomic time show that over intervals of several years, some millisecond pulsars have fractional stabilities comparable to those of the best atomic clocks. The author briefly reviews the physics of pulsars, discusses the techniques of pulsar timing measurements, and summarizes the results of careful studies of pulsar stabilities.

  1. The Large Built Water Clock Of Amphiaraeion.

    NASA Astrophysics Data System (ADS)

    Theodossiou, E.; Katsiotis, M.; Manimanis, V. N.; Mantarakis, P.

    A very well preserved ancient water clock was discovered during excavations at the Amphiaraeion, in Oropos, Greece. The Amphiaraeion, a famous religious and oracle center of the deified healer Amphiaraus, was active from the pre-classic period until the replacement of the ancient religion by Christianity in the 5th Century A.D.. The foretelling was supposedly done through dreams sent by the god to the believers sleeping in a special gallery. In these dreams the god suggesting to them the therapy for their illness or the solution to their problems. The patients, then threw coins into a spring of the sanctuary. In such a place, the measurement of time was a necessity. Therefore, time was kept with both a conical sundial and a water clock in the form of a fountain. According to archeologists, the large built structure that measured the time for the sanctuary dates from the 4th Century B.C.

  2. Epigenetic drift, epigenetic clocks and cancer risk.

    PubMed

    Zheng, Shijie C; Widschwendter, Martin; Teschendorff, Andrew E

    2016-05-01

    It is well-established that the DNA methylation landscape of normal cells undergoes a gradual modification with age, termed as 'epigenetic drift'. Here, we review the current state of knowledge of epigenetic drift and its potential role in cancer etiology. We propose a new terminology to help distinguish the different components of epigenetic drift, with the aim of clarifying the role of the epigenetic clock, mitotic clocks and active changes, which accumulate in response to environmental disease risk factors. We further highlight the growing evidence that epigenetic changes associated with cancer risk factors may play an important causal role in cancer development, and that monitoring these molecular changes in normal cells may offer novel risk prediction and disease prevention strategies.

  3. Sagnac Interferometry with a Single Atomic Clock.

    PubMed

    Stevenson, R; Hush, M R; Bishop, T; Lesanovsky, I; Fernholz, T

    2015-10-16

    The Sagnac effect enables interferometric measurements of rotation with high precision. Using matter waves instead of light promises resolution enhancement by orders of magnitude that scales with particle mass. So far, the paradigm for matter wave Sagnac interferometry relies on de Broglie waves and thus on free propagation of atoms either in free fall or within waveguides. However, the Sagnac effect can be expressed as a proper time difference experienced by two observers moving in opposite directions along closed paths and has indeed been measured with atomic clocks flown around Earth. Inspired by this, we investigate an interferometer comprised of a single atomic clock. The Sagnac effect manifests as a phase shift between trapped atoms in different internal states after transportation along closed paths in opposite directions, without any free propagation. With analytic models, we quantify limitations of the scheme arising from atomic dynamics and finite temperature. Furthermore, we suggest an implementation with previously demonstrated technology.

  4. An Iodine Fluorescence Quenching Clock Reaction

    NASA Astrophysics Data System (ADS)

    Weinberg, Richard B.

    2007-05-01

    A fluorescent clock reaction is described that is based on the principles of the Landolt iodine reaction but uses the potent fluorescence quenching properties of triiodide to abruptly extinguish the ultraviolet fluorescence of optical brighteners present in liquid laundry detergents. The reaction uses easily obtained household products. One variation illustrates the sequential steps and mechanisms of the reaction; other variations maximize the dramatic impact of the demonstration; and a variation that uses liquid detergent in the Briggs Rauscher reaction yields a striking oscillating luminescence. The iodine fluorescence quenching clock reaction can be used in the classroom to explore not only the principles of redox chemistry and reaction kinetics, but also the photophysics of fluorescent pH probes and optical quenching.

  5. Optimal Implementations for Reliable Circadian Clocks

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko; Arita, Masanori

    2014-09-01

    Circadian rhythms are acquired through evolution to increase the chances for survival through synchronizing with the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. We find by using a phase model with multiple inputs that achieving the maximal limit of regularity and entrainability entails many inherent features of the circadian mechanism. At the molecular level, we demonstrate the role sharing of two light inputs, phase advance and delay, as is well observed in mammals. At the behavioral level, the optimal phase-response curve inevitably contains a dead zone, a time during which light pulses neither advance nor delay the clock. We reproduce the results of phase-controlling experiments entrained by two types of periodic light pulses. Our results indicate that circadian clocks are designed optimally for reliable clockwork through evolution.

  6. Molecular Clocks and the Human Condition

    PubMed Central

    FitzGerald, G.A.; Yang, G; Paschos, G.K.; Liang, X.; Skarke, C.

    2015-01-01

    Molecular clockworks knit together diverse biological networks and compelling evidence from model systems infers their importance in metabolism, immunological and cardiovascular function. Despite this and the diurnal variation in many aspects of human physiology and the phenotypic expression of disease, our understanding of the role and importance of clock function and dysfunction in humans is modest. There are tantalizing hints of connection across the translational divide and some correlative evidence of gene variation and human disease but most of what we know derives from forced desynchrony protocols in controlled environments. We now have the ability to monitor quantitatively ex vivo or in vivo the genome, metabolome, proteome and microbiome of humans in the wild. Combining this capability, with the power of mobile telephony and the evolution of remote sensing affords a new opportunity for deep phenotyping, including the characterization of diurnal behavior and the assessment of the impact of the clock on approved drug function. PMID:26332979

  7. Population clocks: motor timing with neural dynamics

    PubMed Central

    Buonomano, Dean V.; Laje, Rodrigo

    2010-01-01

    An understanding of sensory and motor processing will require elucidation of the mechanisms by which the brain tells time. Open questions relate to whether timing relies on dedicated or intrinsic mechanisms and whether distinct mechanisms underlie timing across scales and modalities. Although experimental and theoretical studies support the notion that neural circuits are intrinsically capable of sensory timing on short scales, few general models of motor timing have been proposed. For one class of models, population clocks, it is proposed that time is encoded in the time-varying patterns of activity of a population of neurons. We argue that population clocks emerge from the internal dynamics of recurrently connected networks, are biologically realistic and account for many aspects of motor timing. PMID:20889368

  8. Sagnac Interferometry with a Single Atomic Clock.

    PubMed

    Stevenson, R; Hush, M R; Bishop, T; Lesanovsky, I; Fernholz, T

    2015-10-16

    The Sagnac effect enables interferometric measurements of rotation with high precision. Using matter waves instead of light promises resolution enhancement by orders of magnitude that scales with particle mass. So far, the paradigm for matter wave Sagnac interferometry relies on de Broglie waves and thus on free propagation of atoms either in free fall or within waveguides. However, the Sagnac effect can be expressed as a proper time difference experienced by two observers moving in opposite directions along closed paths and has indeed been measured with atomic clocks flown around Earth. Inspired by this, we investigate an interferometer comprised of a single atomic clock. The Sagnac effect manifests as a phase shift between trapped atoms in different internal states after transportation along closed paths in opposite directions, without any free propagation. With analytic models, we quantify limitations of the scheme arising from atomic dynamics and finite temperature. Furthermore, we suggest an implementation with previously demonstrated technology. PMID:26550871

  9. Developmental alcohol and circadian clock function.

    PubMed

    Earnest, D J; Chen, W J; West, J R

    2001-01-01

    Studies in rats found that alcohol exposure during the early postnatal period, particularly during the brain-growth-spurt period, can result in cell loss in various brain regions and persistent behavioral impairments. Some investigators have speculated that the body's internal clock, which is located in the suprachiasmatic nuclei (SCN) in the brain, may also be affected by developmental alcohol exposure. For example, alcohol-induced damage to the SCN cells and their function could result in disturbances of the circadian timekeeping function, and these disturbances might contribute to the behavioral impairments and affective disorders observed in people prenatally exposed to alcohol. Preliminary findings of studies conducted in rats suggest that developmental alcohol exposure may indeed interfere with circadian clock function as evidenced by a shortened circadian sleep-wake cycle and changes in the release of certain brain chemicals (i.e., neuropeptides) by SCN cells. PMID:11584552

  10. The suprachiasmatic nuclei as a seasonal clock.

    PubMed

    Coomans, Claudia P; Ramkisoensing, Ashna; Meijer, Johanna H

    2015-04-01

    In mammals, the suprachiasmatic nucleus (SCN) contains a central clock that synchronizes daily (i.e., 24-h) rhythms in physiology and behavior. SCN neurons are cell-autonomous oscillators that act synchronously to produce a coherent circadian rhythm. In addition, the SCN helps regulate seasonal rhythmicity. Photic information is perceived by the SCN and transmitted to the pineal gland, where it regulates melatonin production. Within the SCN, adaptations to changing photoperiod are reflected in changes in neurotransmitters and clock gene expression, resulting in waveform changes in rhythmic electrical activity, a major output of the SCN. Efferent pathways regulate the seasonal timing of breeding and hibernation. In humans, seasonal physiology and behavioral rhythms are also present, and the human SCN has seasonally rhythmic neurotransmitter levels and morphology. In summary, the SCN perceives and encodes changes in day length and drives seasonal changes in downstream pathways and structures in order to adapt to the changing seasons.

  11. Epigenetic drift, epigenetic clocks and cancer risk.

    PubMed

    Zheng, Shijie C; Widschwendter, Martin; Teschendorff, Andrew E

    2016-05-01

    It is well-established that the DNA methylation landscape of normal cells undergoes a gradual modification with age, termed as 'epigenetic drift'. Here, we review the current state of knowledge of epigenetic drift and its potential role in cancer etiology. We propose a new terminology to help distinguish the different components of epigenetic drift, with the aim of clarifying the role of the epigenetic clock, mitotic clocks and active changes, which accumulate in response to environmental disease risk factors. We further highlight the growing evidence that epigenetic changes associated with cancer risk factors may play an important causal role in cancer development, and that monitoring these molecular changes in normal cells may offer novel risk prediction and disease prevention strategies. PMID:27104983

  12. Molecular clock on a neutral network.

    PubMed

    Raval, Alpan

    2007-09-28

    The number of fixed mutations accumulated in an evolving population often displays a variance that is significantly larger than the mean (the overdispersed molecular clock). By examining a generic evolutionary process on a neutral network of high-fitness genotypes, we establish a formalism for computing all cumulants of the full probability distribution of accumulated mutations in terms of graph properties of the neutral network, and use the formalism to prove overdispersion of the molecular clock. We further show that significant overdispersion arises naturally in evolution when the neutral network is highly sparse, exhibits large global fluctuations in neutrality, and small local fluctuations in neutrality. The results are also relevant for elucidating aspects of neutral network topology from empirical measurements of the substitution process.

  13. Metabolic and Nontranscriptional Circadian Clocks: Eukaryotes

    PubMed Central

    Reddy, Akhilesh B.; Rey, Guillaume

    2016-01-01

    Circadian clocks are cellular timekeeping mechanisms that coordinate behavior and physiology around the 24-h day in most living organisms. Misalignment of an organism’s clock with its environment is associated with long-term adverse fitness consequences, as exemplified by the link between circadian disruption and various age-related diseases in humans. Current eukaryotic models of the circadian oscillator rely on transcription/translation feedback loop mechanisms, supplemented with accessory cytosolic loops that connect them to cellular physiology. However, there is mounting evidence questioning the absolute necessity of transcription-based oscillators for circadian rhythmicity, supported by the recent discovery of oxidation-reduction cycles of peroxiredoxin proteins, which persist even in the absence of transcription. A more fundamental mechanism based on metabolic cycles could thus underlie circadian transcriptional and cytosolic rhythms, thereby promoting circadian oscillations to integral properties of cellular metabolism. PMID:24606143

  14. Deregulated expression of circadian clock and clock-controlled cell cycle genes in chronic lymphocytic leukemia.

    PubMed

    Rana, Sobia; Munawar, Mustafa; Shahid, Adeela; Malik, Meera; Ullah, Hafeez; Fatima, Warda; Mohsin, Shahida; Mahmood, Saqib

    2014-01-01

    Circadian rhythms are endogenous and self-sustained oscillations of multiple biological processes with approximately 24-h rhythmicity. Circadian genes and their protein products constitute the molecular components of the circadian oscillator that form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends from core clock genes to various clock-controlled genes that include various cell cycle genes. Aberrant expression of circadian clock genes, therefore, may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. The current study encompasses the investigation of simultaneous expression of four circadian clock genes (Bmal1, Clock, Per1 and Per2) and three clock-controlled cell cycle genes (Myc, Cyclin D1 and Wee1) at mRNA level and determination of serum melatonin levels in peripheral blood samples of 37 CLL (chronic lymphocytic leukemia) patients and equal number of age- and sex-matched healthy controls in order to indicate association between deregulated circadian clock and manifestation of CLL. Results showed significantly down-regulated expression of Bmal1, Per1, Per2 and Wee1 and significantly up-regulated expression of Myc and Cyclin D1 (P < 0.0001) in CLL patients as compared to healthy controls. When expression of these genes was compared between shift-workers and non-shift-workers within the CLL group, the expression was found more aberrant in shift-workers as compared to non-shift-workers. However, this difference was found statistically significant for Myc and Cyclin D1 only (P < 0.05). Serum melatonin levels were found significantly low (P < 0.0001) in CLL subjects as compared to healthy controls whereas melatonin levels were found still lower in shift-workers as compared to non-shift-workers within CLL group (P < 0.01). Our results suggest that aberrant expression of circadian clock genes can lead to aberrant expression of their downstream targets that are

  15. Light and the human circadian clock.

    PubMed

    Roenneberg, Till; Kantermann, Thomas; Juda, Myriam; Vetter, Céline; Allebrandt, Karla V

    2013-01-01

    The circadian clock can only reliably fulfil its function if it is stably entrained. Most clocks use the light-dark cycle as environmental signal (zeitgeber) for this active synchronisation. How we think about clock function and entrainment has been strongly influenced by the early concepts of the field's pioneers, and the astonishing finding that circadian rhythms continue a self-sustained oscillation in constant conditions has become central to our understanding of entrainment.Here, we argue that we have to rethink these initial circadian dogmas to fully understand the circadian programme and how it entrains. Light is also the prominent zeitgeber for the human clock, as has been shown experimentally in the laboratory and in large-scale epidemiological studies in real life, and we hypothesise that social zeitgebers act through light entrainment via behavioural feedback loops (zeitnehmer). We show that human entrainment can be investigated in detail outside of the laboratory, by using the many 'experimental' conditions provided by the real world, such as daylight savings time, the 'forced synchrony' imposed by the introduction of time zones, or the fact that humans increasingly create their own light environment. The conditions of human entrainment have changed drastically over the past 100 years and have led to an increasing discrepancy between biological and social time (social jetlag). The increasing evidence that social jetlag has detrimental consequences for health suggests that shift-work is only an extreme form of circadian misalignment, and that the majority of the population in the industrialised world suffers from a similarly 'forced synchrony'.

  16. Orthometric height determination using optical clocks

    NASA Astrophysics Data System (ADS)

    Shen, WenBin

    2013-04-01

    General relativity theory predicts that there exists a gravity frequency shift (gravitational red shift) if an electromagnetic signal propagates from one point to another point, and the frequency shift depends on the geopotential difference between these two points. Inversely, by measuring the gravity frequency shift between arbitrary two points we may determine the geopotential and consequently the orthometric height difference between these two points. To improve our previous investigations (Shen and Peng 2012), the present study provides further foundation of the optical-fiber frequency transfer approach (OFTA; Shen and Peng 2012) and describes in details how to determine the orthometric height between two points using optical clocks via optical fiber. Optical clocks have achieved a stability of 10E-17 to 10E-18. In another aspect, remote optical fiber communication (e.g. Predehl et al. 2012) demonstrates a frequency comparison accuracy at the level of 10E-18 (or better), which is equivalent to a height variation of 1cm. The quick development of time-frequency science, including the high-precise optical clocks, provides potential of determining the orthometric height between arbitrary two points which are connected by optical fiber. This study suggests that determining the orthometric height difference between two points using optical clocks via optical fiber frequency transfer communication technique is prospective and potential. The realization of the OFTA may greatly contribute to the unification of the world height system (WHS). This work was supported partly by the NSFC (grant No. 41174011), National 973 Project China (grant No. 2013CB733305), NSFC (grant No. 41210006, 41128003, 41021061, 40974015).

  17. Geopotential measurements with synchronously linked optical lattice clocks

    NASA Astrophysics Data System (ADS)

    Takano, Tetsushi; Takamoto, Masao; Ushijima, Ichiro; Ohmae, Noriaki; Akatsuka, Tomoya; Yamaguchi, Atsushi; Kuroishi, Yuki; Munekane, Hiroshi; Miyahara, Basara; Katori, Hidetoshi

    2016-10-01

    According to Einstein's theory of relativity, the passage of time changes in a gravitational field. On Earth, raising a clock by 1 cm increases its apparent tick rate by 1.1 parts in 1018, allowing chronometric levelling through comparison of optical clocks. Here, we demonstrate such geopotential measurements by determining the height difference of master and slave clocks separated by 15 km with an uncertainty of 5 cm. A subharmonic of the master clock laser is delivered through a telecom fibre to synchronously operate the distant clocks. Clocks operated under such phase coherence reject clock laser noise and facilitate proposals for linking clocks and interferometers. Taken over half a year, 11 measurements determine the fractional frequency difference between the two clocks to be 1,652.9(5.9) × 10-18, consistent with an independent measurement by levelling and gravimetry. Our system demonstrates a building block for an internet of clocks, which may constitute ‘quantum benchmarks’, serving as height references with dynamic responses.

  18. Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy.

    PubMed

    Miller, Brooke H; Olson, Susan Losee; Turek, Fred W; Levine, Jon E; Horton, Teresa H; Takahashi, Joseph S

    2004-08-10

    Classic experiments have shown that ovulation and estrous cyclicity are under circadian control and that surgical ablation of the suprachiasmatic nuclei (SCN) results in estrous acyclicity in rats. Here, we characterized reproductive function in the circadian Clock mutant mouse and found that the circadian Clock mutation both disrupts estrous cyclicity and interferes with the maintenance of pregnancy. Clock mutant females have extended, irregular estrous cycles, lack a coordinated luteinizing hormone (LH) surge on the day of proestrus, exhibit increased fetal reabsorption during pregnancy, and have a high rate of full-term pregnancy failure. Clock mutants also show an unexpected decline in progesterone levels at midpregnancy and a shortened duration of pseudopregnancy, suggesting that maternal prolactin release may be abnormal. In a second set of experiments, we interrogated the function of each level of the hypothalamic-pituitary-gonadal (HPG) axis in order to determine how the Clock mutation disrupts estrous cyclicity. We report that Clock mutants fail to show an LH surge following estradiol priming in spite of the fact that hypothalamic levels of gonadotropin-releasing hormone (GnRH), pituitary release of LH, and serum levels of estradiol and progesterone are all normal in Clock/Clock females. These data suggest that Clock mutants lack an appropriate circadian daily-timing signal required to coordinate hypothalamic hormone secretion. Defining the mechanisms by which the Clock mutation disrupts reproductive function offers a model for understanding how circadian genes affect complex physiological systems.

  19. The regulation of central and peripheral circadian clocks in humans.

    PubMed

    Cermakian, N; Boivin, D B

    2009-11-01

    Many circadian rhythms are controlled by the central clock of the suprachiasmatic nucleus of the hypothalamus, as well as clocks located in other brain regions and most peripheral tissues. These central and peripheral clocks are based on clock genes and their protein products. In recent years, the expression of clock genes has started to be investigated in human samples, primarily white blood cells, but also skin, oral mucosa, colon cells, adipose tissue as well as post-mortem brain tissue. The expression of clock genes in those peripheral tissues offers a way to monitor human peripheral clocks and to compare their function and regulation with those of the central clock, which is followed by markers such as melatonin, cortisol and core body temperature. We have recently used such an approach to compare central and peripheral rhythms in subjects under different lighting conditions. In particular, we have monitored the entrainment of the clock of blood cells in subjects undergoing a simulated night shift protocol with bright light treatment, known to efficiently reset the central clock. This line of research will be helpful for learning more about the human circadian system and to find ways to alleviate health problems of shift workers, and other populations experiencing altered circadian rhythms. PMID:19849799

  20. A Compact Model for the Complex Plant Circadian Clock.

    PubMed

    De Caluwé, Joëlle; Xiao, Qiying; Hermans, Christian; Verbruggen, Nathalie; Leloup, Jean-Christophe; Gonze, Didier

    2016-01-01

    The circadian clock is an endogenous timekeeper that allows organisms to anticipate and adapt to the daily variations of their environment. The plant clock is an intricate network of interlocked feedback loops, in which transcription factors regulate each other to generate oscillations with expression peaks at specific times of the day. Over the last decade, mathematical modeling approaches have been used to understand the inner workings of the clock in the model plant Arabidopsis thaliana. Those efforts have produced a number of models of ever increasing complexity. Here, we present an alternative model that combines a low number of equations and parameters, similar to the very earliest models, with the complex network structure found in more recent ones. This simple model describes the temporal evolution of the abundance of eight clock gene mRNA/protein and captures key features of the clock on a qualitative level, namely the entrained and free-running behaviors of the wild type clock, as well as the defects found in knockout mutants (such as altered free-running periods, lack of entrainment, or changes in the expression of other clock genes). Additionally, our model produces complex responses to various light cues, such as extreme photoperiods and non-24 h environmental cycles, and can describe the control of hypocotyl growth by the clock. Our model constitutes a useful tool to probe dynamical properties of the core clock as well as clock-dependent processes. PMID:26904049

  1. A Compact Model for the Complex Plant Circadian Clock

    PubMed Central

    De Caluwé, Joëlle; Xiao, Qiying; Hermans, Christian; Verbruggen, Nathalie; Leloup, Jean-Christophe; Gonze, Didier

    2016-01-01

    The circadian clock is an endogenous timekeeper that allows organisms to anticipate and adapt to the daily variations of their environment. The plant clock is an intricate network of interlocked feedback loops, in which transcription factors regulate each other to generate oscillations with expression peaks at specific times of the day. Over the last decade, mathematical modeling approaches have been used to understand the inner workings of the clock in the model plant Arabidopsis thaliana. Those efforts have produced a number of models of ever increasing complexity. Here, we present an alternative model that combines a low number of equations and parameters, similar to the very earliest models, with the complex network structure found in more recent ones. This simple model describes the temporal evolution of the abundance of eight clock gene mRNA/protein and captures key features of the clock on a qualitative level, namely the entrained and free-running behaviors of the wild type clock, as well as the defects found in knockout mutants (such as altered free-running periods, lack of entrainment, or changes in the expression of other clock genes). Additionally, our model produces complex responses to various light cues, such as extreme photoperiods and non-24 h environmental cycles, and can describe the control of hypocotyl growth by the clock. Our model constitutes a useful tool to probe dynamical properties of the core clock as well as clock-dependent processes. PMID:26904049

  2. The Non-universality of the Low-mass End of the IMF is Robust against the Choice of SSP Model

    NASA Astrophysics Data System (ADS)

    Spiniello, C.; Trager, S. C.; Koopmans, L. V. E.

    2015-04-01

    We perform a direct comparison of two state-of-the art single stellar population (SSP) models that have been used to demonstrate the non-universality of the low-mass end of the initial mass function (IMF) slope. The two public versions of the SSP models are restricted to either solar abundance patterns or solar metallicity, too restrictive if one aims to disentangle elemental enhancements, metallicity changes, and IMF variations in massive early-type galaxies (ETGs) with star formation histories different from those in the solar neighborhood. We define response functions (to metallicity and α-abundance) to extend the parameter space for each set of models. We compare these extended models with a sample of Sloan Digital Sky Survey (SDSS) ETG spectra with varying velocity dispersions. We measure equivalent widths of optical IMF-sensitive stellar features to examine the effect of the underlying model assumptions and ingredients, such as stellar libraries or isochrones, on the inference of the IMF slope down to ∼0.1 M⊙. We demonstrate that the steepening of the low-mass end of the IMF based on a non-degenerate set of spectroscopic optical indicators is robust against the choice of the stellar population model. Although the models agree in a relative sense (i.e., both imply more bottom-heavy IMFs for more massive systems), we find non-negligible differences in the absolute values of the IMF slope inferred at each velocity dispersion by using the two different models. In particular, we find large inconsistencies in the quantitative predictions of the IMF slope variations and abundance patterns when sodium lines are used. We investigate the possible reasons for these inconsistencies.

  3. THE NON-UNIVERSALITY OF THE LOW-MASS END OF THE IMF IS ROBUST AGAINST THE CHOICE OF SSP MODEL

    SciTech Connect

    Spiniello, C.; Trager, S. C.; Koopmans, L. V. E.

    2015-04-20

    We perform a direct comparison of two state-of-the art single stellar population (SSP) models that have been used to demonstrate the non-universality of the low-mass end of the initial mass function (IMF) slope. The two public versions of the SSP models are restricted to either solar abundance patterns or solar metallicity, too restrictive if one aims to disentangle elemental enhancements, metallicity changes, and IMF variations in massive early-type galaxies (ETGs) with star formation histories different from those in the solar neighborhood. We define response functions (to metallicity and α-abundance) to extend the parameter space for each set of models. We compare these extended models with a sample of Sloan Digital Sky Survey (SDSS) ETG spectra with varying velocity dispersions. We measure equivalent widths of optical IMF-sensitive stellar features to examine the effect of the underlying model assumptions and ingredients, such as stellar libraries or isochrones, on the inference of the IMF slope down to ∼0.1 M{sub ⊙}. We demonstrate that the steepening of the low-mass end of the IMF based on a non-degenerate set of spectroscopic optical indicators is robust against the choice of the stellar population model. Although the models agree in a relative sense (i.e., both imply more bottom-heavy IMFs for more massive systems), we find non-negligible differences in the absolute values of the IMF slope inferred at each velocity dispersion by using the two different models. In particular, we find large inconsistencies in the quantitative predictions of the IMF slope variations and abundance patterns when sodium lines are used. We investigate the possible reasons for these inconsistencies.

  4. Clock distribution system for digital computers

    DOEpatents

    Wyman, Robert H.; Loomis, Jr., Herschel H.

    1981-01-01

    Apparatus for eliminating, in each clock distribution amplifier of a clock distribution system, sequential pulse catch-up error due to one pulse "overtaking" a prior clock pulse. The apparatus includes timing means to produce a periodic electromagnetic signal with a fundamental frequency having a fundamental frequency component V'.sub.01 (t); an array of N signal characteristic detector means, with detector means No. 1 receiving the timing means signal and producing a change-of-state signal V.sub.1 (t) in response to receipt of a signal above a predetermined threshold; N substantially identical filter means, one filter means being operatively associated with each detector means, for receiving the change-of-state signal V.sub.n (t) and producing a modified change-of-state signal V'.sub.n (t) (n=1, . . . , N) having a fundamental frequency component that is substantially proportional to V'.sub.01 (t-.theta..sub.n (t) with a cumulative phase shift .theta..sub.n (t) having a time derivative that may be made uniformly and arbitrarily small; and with the detector means n+1 (1.ltoreq.n

  5. Atomic clocks with suppressed blackbody radiation shift.

    PubMed

    Yudin, V I; Taichenachev, A V; Okhapkin, M V; Bagayev, S N; Tamm, Chr; Peik, E; Huntemann, N; Mehlstäubler, T E; Riehle, F

    2011-07-15

    We develop a concept of atomic clocks where the blackbody radiation shift and its fluctuations can be suppressed by 1-3 orders of magnitude independent of the environmental temperature. The suppression is based on the fact that in a system with two accessible clock transitions (with frequencies ν1 and ν2) which are exposed to the same thermal environment, there exists a "synthetic" frequency ν(syn) ∝ (ν1 - ε12ν2) largely immune to the blackbody radiation shift. For example, in the case of 171Yb+ it is possible to create a synthetic-frequency-based clock in which the fractional blackbody radiation shift can be suppressed to the level of 10(-18) in a broad interval near room temperature (300±15  K). We also propose a realization of our method with the use of an optical frequency comb generator stabilized to both frequencies ν1 and ν2, where the frequency ν(syn) is generated as one of the components of the comb spectrum.

  6. Clock gene evolution and functional divergence.

    PubMed

    Tauber, Eran; Last, Kim S; Olive, Peter J W; Kyriacou, C P

    2004-10-01

    In considering the impact of the earth's changing geophysical conditions during the history of life, it is surprising to learn that the earth's rotational period may have been as short as 4 h, as recently as 1900 million years ago (or 1.9 billion years ago). The implications of such figures for the origin and evolution of clocks are considerable, and the authors speculate on how this short rotational period might have influenced the development of the "protoclock" in early microorganisms, such as the Cyanobacteria, during the geological periodsin which they arose and flourished. They then discuss the subsequent duplication of clock genes that took place around and after the Cambrian period, 543 million years ago, and its consequences. They compare the relative divergences of the canonical clock genes, which reveal the Per family to be the most rapidly evolving. In addition, the authors use a statistical test to predict which residues within the PER and CRY families may have undergone functional specialization.

  7. Characteristics of penetration electric fields to the equatorial ionosphere during southward and northward IMF turnings

    NASA Astrophysics Data System (ADS)

    Bhaskar, Ankush; Vichare, Geeta

    2013-07-01

    The signatures of abrupt turnings of the vertical component of the interplanetary magnetic field (IMF), Bz, can be seen at equatorial latitudes through the prompt transmission of high-latitude electric fields to the lower latitudes, called as prompt penetration electric field (PPE). The present work studies the signatures of PPE in daytime equatorial electrojet (EEJ) index derived in the Indian sector during 2001-2005. The signatures are observed in polar (PCN index) and equatorial (EEJ index) ionosphere almost instantaneously (<1 min). The communication time of 12±6 min is observed between bow shock nose and the equatorial ionosphere, and it is found to have inverse relationship with radial component of solar wind velocity during southward and northward Bz turnings which might indicate magnetosphere crossing time scale by solar wind. Ionospheric reconfiguration time during southward turnings shows inverse relationship with solar wind flow in contrast to northward turnings with "no relationship," indicating differences in underlying physical mechanisms during both turnings. We observe no local time dependence (within 06-18 h) in conductivity-corrected EEJ signatures associated with Bz turnings. Regression analysis between conductivity-corrected EEJ and interplanetary electric field shows higher efficiency during northward turnings. However, further analysis investigating the effect of actual orientation of Bz indicates that the magnitude of northward Bz does not have influence on the ionospheric signatures. It is noticed that the response signatures are mainly controlled by the magnitudes of southward Bz. Thus, the present study signifies the role of inner magnetospheric shielding electric field in addition to ceasing of convection during northward turnings.

  8. Response of Saturn's Current Sheet Structure to Changes in the Solar Wind Dynamic Pressure and IMF

    NASA Astrophysics Data System (ADS)

    Hansen, K. C.; Jia, X.; Gombosi, T. I.

    2010-12-01

    Using our global MHD model of Saturn’s magnetosphere, we investigate the location, shape and motion of Saturn’s current sheet under a variety of situations. Our global MHD model self consistently treats the entire magnetosphere and includes magnetospheric plasma sources from a major disk-like source from Enceladus and the rings and a secondary toroidal plasma source from Titan. The model produces solutions which are not constrained to be symmetric therefore the results are quite useful in trying to extend previous models that have been generated using Cassini data. Because we can carefully control the inputs to our MHD model, we do not have to worry about separating variations due to local time, varying upstream conditions, spacecraft motion or changes in the mass loading rate that often make interpreting the data complicated. We will present results for both steady state, as well as time varying solar wind conditions. Simulations with constant solar wind conditions allow us to study the effect that upsteam dynamic pressure has on both the shape and size of the current sheet. In addition, we will present results from simulations that include sudden changes in the solar wind dynamics pressure as well as the IMF direction. These simulations will allow us to study the current sheet response and to look for features such as current sheet flapping. Our previous studies have shown that the current sheet in our model does in fact reproduce the “bowl-like” behavior expect at most local times. However, at dusk, the current sheet is often quite warped. We will examine the cause of this warping and under what conditions it occurs.

  9. SuperDARN Cross Polar Cap Potential: Correlation with the IMF and solar wind parameters

    NASA Astrophysics Data System (ADS)

    Mori, D.; Koustov, A. V.; Colville, K.; Jayachandran, P. T.

    2011-12-01

    Cross Polar Cap Potential (CPCP) is one of the core parameters provided by the SuperDARN network on a regular basis. The CPCP is estimated from individual convection maps built for every 1-2 min. We show that the SuperDARN CPCPs are highly "quantized" around values "prescribed" by the startup convection model and significantly depart from those values only if the number of convection vectors on a map exceeds 200-300. We show that with an increase of the plasma convection speed in the polar cap (as measured by the CADI ionosonde at Resolute Bay) the CPCP shows "saturation" effect for velocities above ~ 500 m/s. We relate the effect to progressively increased underestimation of the separation between the dawn and dusk convection foci in the process of CPCP derivation. We also show that, although the HF radar velocities are generally in agreement with CADI ExB measurements, significant mixed scatter on the dayside supplies low-velocity data (velocities well below the values given by the startup convection model) to the fitting procedure that might also affect the CPCP estimates. For densely enough convection maps and for weakly- or moderately-driven solar wind conditions, the SuperDARN data should be of satisfactory quality. By considering one full year of SuperDARN CPCP data (2000) and splitting them according to 3 seasons, we illustrate the CPCP almost linear dependence on the IMF Bz and By and the interplanetary electric field. Weak CPCP dependencies upon the solar wind pressure, Alfven Mach number and Alfven speed are found. The CPCP data show best correlation with coupling function introduced by Lyatsky et al. (2007) and they agree best with the recent theory by Kivelson and Ridley (2010), although discrepancies are significant.

  10. Oxygen abundance in local disk and bulge: chemical evolution with a strictly universal IMF

    NASA Astrophysics Data System (ADS)

    Caimmi, R.; Milanese, E.

    2009-09-01

    This paper has two parts: one about observational constraints related to the empirical differential oxygen abundance distribution (EDOD), and the other about inhomogeneous models of chemical evolution, in particular the theoretical differential oxygen abundance distribution (TDOD). In the first part, the EDOD is deduced from subsamples related to two different samples involving (i) N=532 solar neighbourhood (SN) stars within the range, -1.5<[Fe/H]<0.5, for which the oxygen abundance has been determined both in presence and in absence of the local thermodynamical equilibrium (LTE) approximation (Ramirez et al. in Astron. Astrophys. 465:271, 2007); and (ii) N=64 SN thick disk, SN thin disk, and bulge K-giant stars within the range, -1.7<[Fe/H]<0.5, for which the oxygen abundance has been determined (Melendez et al. in Astron. Astrophys. 484:L21, 2008). A comparison is made with previous results implying use of [O/H]-[Fe/H] empirical relations (Caimmi in Astron. Nachr. 322:241, 2001b; New Astron. 12:289, 2007) related to (iii) 372 SN halo subdwarfs (Ryan and Norris in Astron. J. 101:1865, 1991); and (iv) 268 K-giant bulge stars (Sadler et al. in Astron. J. 112:171, 1996). The EDOD of the SN thick + thin disk is determined by weighting the mass, for assumed SN thick to thin disk mass ratio within the range, 0.1-0.9. In the second part, inhomogeneous models of chemical evolution for the SN thick disk, the SN thin disk, the SN thick + thin disk, the SN halo, and the bulge, are computed assuming the instantaneous recycling approximation. The EDOD data are fitted, to an acceptable extent, by their TDOD counterparts with the exception of the thin or thick + thin disk, where two additional restrictions are needed: (i) still undetected, low-oxygen abundance thin disk stars exist, and (ii) a single oxygen overabundant star is removed from a thin disk subsample. In any case, the (assumed power-law) stellar initial mass function (IMF) is universal but gas can be inhibited from

  11. Estimating the stability of N clocks with correlations.

    PubMed

    Torcaso, F; Ekstrom, C R; Burt, E A; Matsakis, D N

    2000-01-01

    Estimation of an atomic clock's frequency stability, separate from its reference, is often done using a three-cornered hat procedure. A major requirement for the success of this method is that clocks be uncorrelated. If this requirement is not satisfied, the three-cornered hat procedure can lead to misleading or even negative variance estimates. Others have considered this problem and developed an analysis that allows for the possibility of cross correlation between clocks. We have extended and applied these ideas to obtain mathematically consistent frequency stability estimates on atomic clock data from the U.S. Naval Observatory. In addition, we derived an expression for the clock weights that produce a minimum variance combination of clocks in the presence of correlations.

  12. The Effects of Clock Drift on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Ali, Khaled S.; Vanelli, C. Anthony

    2012-01-01

    All clocks drift by some amount, and the mission clock on the Mars Exploration Rovers (MER) is no exception. The mission clock on both MER rovers drifted significantly since the rovers were launched, and it is still drifting on the Opportunity rover. The drift rate is temperature dependent. Clock drift causes problems for onboard behaviors and spacecraft operations, such as attitude estimation, driving, operation of the robotic arm, pointing for imaging, power analysis, and telecom analysis. The MER operations team has techniques to deal with some of these problems. There are a few techniques for reducing and eliminating the clock drift, but each has drawbacks. This paper presents an explanation of what is meant by clock drift on the rovers, its relationship to temperature, how we measure it, what problems it causes, how we deal with those problems, and techniques for reducing the drift.

  13. Synthetic Spin-Orbit Coupling in an Optical Lattice Clock.

    PubMed

    Wall, Michael L; Koller, Andrew P; Li, Shuming; Zhang, Xibo; Cooper, Nigel R; Ye, Jun; Rey, Ana Maria

    2016-01-22

    We propose the use of optical lattice clocks operated with fermionic alkaline-earth atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation, when atoms are allowed to tunnel and accumulate a phase set by the ratio of the "magic" lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers can perform momentum-resolved band tomography and determine SOC-induced s-wave collisions in nuclear-spin-polarized fermions. With the use of a second counterpropagating clock beam, we propose a method for engineering controlled atomic transport and study how it is modified by p- and s-wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures. PMID:26849600

  14. Synthetic Spin-Orbit Coupling in an Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Wall, Michael L.; Koller, Andrew P.; Li, Shuming; Zhang, Xibo; Cooper, Nigel R.; Ye, Jun; Rey, Ana Maria

    2016-01-01

    We propose the use of optical lattice clocks operated with fermionic alkaline-earth atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation, when atoms are allowed to tunnel and accumulate a phase set by the ratio of the "magic" lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers can perform momentum-resolved band tomography and determine SOC-induced s -wave collisions in nuclear-spin-polarized fermions. With the use of a second counterpropagating clock beam, we propose a method for engineering controlled atomic transport and study how it is modified by p - and s -wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures.

  15. Inexpensive programmable clock for a 12-bit computer

    NASA Technical Reports Server (NTRS)

    Vrancik, J. E.

    1972-01-01

    An inexpensive programmable clock was built for a digital PDP-12 computer. The instruction list includes skip on flag; clear the flag, clear the clock, and stop the clock; and preset the counter with the contents of the accumulator and start the clock. The clock counts at a rate determined by an external oscillator and causes an interrupt and sets a flag when a 12-bit overflow occurs. An overflow can occur after 1 to 4096 counts. The clock can be built for a total parts cost of less than $100 including power supply and I/O connector. Slight modification can be made to permit its use on larger machines (16 bit, 24 bit, etc.) and logic level shifting can be made to make it compatible with any computer.

  16. Clock genes in hypertension: novel insights from rodent models.

    PubMed

    Richards, Jacob; Diaz, Alexander N; Gumz, Michelle L

    2014-10-01

    The circadian clock plays an integral role in the regulation of physiological processes, including the regulation of blood pressure. However, deregulation of the clock can lead to pathophysiological states including hypertension. Recent work has implicated the circadian clock genes in the regulation of processes in the heart, kidney, vasculature, and the metabolic organs, which are all critical in the regulation of the blood pressure. The goal of this review is to provide an introduction and general overview into the role of circadian clock genes in the regulation of blood pressure with a focus on their deregulation in the etiology of hypertension. This review will focus on the core circadian clock genes CLOCK, BMAL1, Per, and Cry.

  17. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications.

    PubMed

    Chutani, Ravinder; Maurice, Vincent; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Abdel Hafiz, Moustafa; Abbé, Philippe; Galliou, Serge; Rauch, Jean-Yves; de Clercq, Emeric

    2015-09-14

    This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm.

  18. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications

    PubMed Central

    Chutani, Ravinder; Maurice, Vincent; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Abdel Hafiz, Moustafa; Abbé, Philippe; Galliou, Serge; Rauch, Jean-Yves; de Clercq, Emeric

    2015-01-01

    This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm. PMID:26365754

  19. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications

    NASA Astrophysics Data System (ADS)

    Chutani, Ravinder; Maurice, Vincent; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Abdel Hafiz, Moustafa; Abbé, Philippe; Galliou, Serge; Rauch, Jean-Yves; de Clercq, Emeric

    2015-09-01

    This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm.

  20. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications.

    PubMed

    Chutani, Ravinder; Maurice, Vincent; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Abdel Hafiz, Moustafa; Abbé, Philippe; Galliou, Serge; Rauch, Jean-Yves; de Clercq, Emeric

    2015-01-01

    This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm. PMID:26365754

  1. Micromagic Clock: Microwave Clock Based on Atoms in an Engineered Optical Lattice

    SciTech Connect

    Beloy, K.; Derevianko, A.; Dzuba, V. A.; Flambaum, V. V.

    2009-03-27

    We propose a new class of atomic microwave clocks based on the hyperfine transitions in the ground state of aluminum or gallium atoms trapped in optical lattices. For such elements magic wavelengths exist at which both levels of the hyperfine doublet are shifted at the same rate by the lattice laser field, canceling its effect on the clock transition. A similar mechanism for the magic wavelengths may work in microwave hyperfine transitions in other atoms which have the fine-structure multiplets in the ground state.

  2. A Novel Photonic Clock and Carrier Recovery Device

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve; Lutes, George; Maleki, Lute

    1996-01-01

    As data communication rates climb toward ten Gb/s, clock recovery and synchronization become more difficult, if not impossible, using conventional electronic circuits. We present in this article experimental results of a high speed clock and carrier recovery using a novel device called a photonic oscillator that we recently developed in our laboratory. This device is capable of recovering clock signals up to 70 GHz. To recover the clock, the incoming data is injected into the photonic oscillator either through the optical injection port or the electrical injection port. The free running photonic oscillator is tuned to oscillate at a nominal frequency equal to the clock frequency of the incoming data. With the injection of the data, the photonic oscillator will be quickly locked to clock frequency of the data stream while rejecting other frequency components associated with the data. Consequently, the output of the locked photonic oscillator is a continuous periodical wave synchronized with the incoming data or simply the recovered clock. We have demonstrated a clock to spur ratio of more than 60 dB of the recovered clock using this technique. Similar to the clock recovery, the photonic oscillator can be used to recover a high frequency carrier degraded by noise and an improvement of about 50 dB in signal-to-noise ratio was demonstrated. The photonic oscillator has both electrical and optical inputs and outputs and can be directly interfaced with a photonic system without signal conversion. In addition to clock and carrier recovery, the photonic oscillator can also be used for (1) stable high frequency clock signal generation, (2) frequency multiplication, (3) square wave and comb frequency generation, and (4) photonic phase locked loop.

  3. Higher Pole Linear Traps for Atomic Clock Applications

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2000-01-01

    We investigate experimentally and theoretically higher pole linear ion traps for frequency standard use. We have built a 12-pole trap and have successfully loaded ions into it from a linear quadrupole trap. By solving the Boltzmann equation describing large ion clouds where space charge interactions are important, we show that clock frequency changes due to ion number fluctuations are much smaller in ion clocks based multipole traps than comparable clocks based on quadrupole linear traps.

  4. System-wide power management control via clock distribution network

    DOEpatents

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  5. Relativity Theory and Time Perception: Single or Multiple Clocks?

    PubMed Central

    Buhusi, Catalin V.; Meck, Warren H.

    2009-01-01

    Background Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset) independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock. Methodology/Principal Findings Rats were trained to time three durations (e.g., 10, 30, and 90 s). When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the “short” duration, stopped the “medium” duration clock, and continued to run the “long” duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the “short”, then the “medium”, and finally the “long” clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results. Conclusions/Significance These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context. PMID:19623247

  6. Reading Angles in Maps

    ERIC Educational Resources Information Center

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  7. Climatology of Vertical Ion Velocity and its Relationship with Large-scale FAC Based on DMSP and CHAMP Observations: Seasonal and IMF By Dependence

    NASA Astrophysics Data System (ADS)

    Luhr, H.; Kervalishvili, G.

    2015-12-01

    In this study we present climatology of vertical ion drift and its relationship with large-scale field-aligned current (LSFAC) in the Northern Hemisphere cusp region using the superposed epoch analysis (SEA) method. The dependence on the interplanetary magnetic field (IMF) Bycomponent orientation and the local season is also investigated. The three local seasons of 130 days each are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32 days), and local summer (1 July ± 65 days). Our results are based on DMSP (F13 and F15) and CHAMP satellite observations and NASA/GSFC's OMNI online data set during the years 2001-2005. The time and location of the vertical ion velocity peaks (> 100 m/s for upflow and <-100 m/s for downflow) in the cusp region are used as reference parameters (time and location of the event) for the SEA method. Event number distribution based on the ion velocity peaks shows no significant variations for IMF By component orientation and local season. Corresponding averaged profiles of total magnetic field Bt and IMF components, taken for flow events from both DMSP satellites and all seasons together, also show no differences in temporal variations (only negligible changes in amplitude) between upflow and downflow events. There is no systematic sign change related to flow direction in any of the three IMF components and IMF Bz is always negative. IMF By and Bz components are peaking about half an hour before the event for all considered cases. The main findings of our SEA analysis, can be summarized as follows: Vertical plasma flow, taken for both DMSP satellites together, shows no dependence on IMF By component orientation. Its amplitude is increasing towards local summer. Vertical plasma velocity is much higher in winter than during combined equinox or summer. It seems the ion density is low in winter and increases towards local summer. The plasma upflow is generally stronger than the downflow in

  8. Derivation and experimental verification of clock synchronization theory

    NASA Astrophysics Data System (ADS)

    Palumbo, Daniel L.

    1994-06-01

    The objective of this work is to validate mathematically derived clock synchronization theories and their associated algorithms through experiment. Two theories are considered, the Interactive Convergence Clock Synchronization Algorithm and the Mid-Point Algorithm. Special clock circuitry was designed and built so that several operating conditions and failure modes (including malicious failures) could be tested. Both theories are shown to predict conservative upper bounds (i.e., measured values of clock skew were always less than the theory prediction). Insight gained during experimentation led to alternative derivations of the theories. These new theories accurately predict the clock system's behavior. It is found that a 100% penalty is paid to tolerate worst case failures. It is also shown that under optimal conditions (with minimum error and no failures) the clock skew can be as much as 3 clock ticks. Clock skew grows to 6 clock ticks when failures are present. Finally, it is concluded that one cannot rely solely on test procedures or theoretical analysis to predict worst case conditions. conditions.

  9. Hypothermia modulates circadian clock gene expression in lizard peripheral tissues.

    PubMed

    Vallone, Daniela; Frigato, Elena; Vernesi, Cristiano; Foà, Augusto; Foulkes, Nicholas S; Bertolucci, Cristiano

    2007-01-01

    The molecular mechanisms whereby the circadian clock responds to temperature changes are poorly understood. The ruin lizard Podarcis sicula has historically proven to be a valuable vertebrate model for exploring the influence of temperature on circadian physiology. It is an ectotherm that naturally experiences an impressive range of temperatures during the course of the year. However, no tools have been available to dissect the molecular basis of the clock in this organism. Here, we report the cloning of three lizard clock gene homologs (Period2, Cryptochrome1, and Clock) that have a close phylogenetic relationship with avian clock genes. These genes are expressed in many tissues and show a rhythmic expression profile at 29 degrees C in light-dark and constant darkness lighting conditions, with phases comparable to their mammalian and avian counterparts. Interestingly, we show that at low temperatures (6 degrees C), cycling clock gene expression is attenuated in peripheral clocks with a characteristic increase in basal expression levels. We speculate that this represents a conserved vertebrate clock gene response to low temperatures. Furthermore, these results bring new insight into the issue of whether circadian clock function is compatible with hypothermia.

  10. Around-the-World Atomic Clocks: Predicted Relativistic Time Gains.

    PubMed

    Hafele, J C; Keating, R E

    1972-07-14

    During October 1971, four cesium beam atomic clocks were flown on regularly scheduled commercial jet flights around the world twice, once eastward and once westward, to test Einstein's theory of relativity with macroscopic clocks. From the actual flight paths of each trip, the theory predicts that the flying clocks, compared with reference clocks at the U.S. Naval Observatory, should have lost 40 +/- 23 nanoseconds during the eastward trip, and should have gained 275 +/- 21 nanoseconds during the westward trip. The observed time differences are presented in the report that follows this one.

  11. Prospects for Optical Clocks with a Blue-Detuned Lattice

    SciTech Connect

    Takamoto, M.; Katori, H.; Marmo, S. I.; Ovsiannikov, V. D.; Pal'chikov, V. G.

    2009-02-13

    We investigated the properties of optical lattice clocks operated with a repulsive light-shift potential. The magic wavelength, where light-shift perturbation for the clock transition cancels, was experimentally determined to be 389.889(9) nm for {sup 87}Sr. The hyperpolarizability effects on the clock transition were investigated theoretically. With minimal trapping field perturbation provided by the blue-detuned lattice, the fractional uncertainty due to the hyperpolarizability effects was found to be 2x10{sup -19} in the relevant clock transition.

  12. Continuous Nondemolition Measurement of the Cs Clock Transition Pseudospin

    SciTech Connect

    Chaudhury, Souma; Smith, Greg A.; Schulz, Kevin; Jessen, Poul S.

    2006-02-03

    We demonstrate a weak continuous measurement of the pseudospin associated with the clock transition in a sample of Cs atoms. Our scheme uses an optical probe tuned near the D{sub 1} transition to measure the sample birefringence, which depends on the z component of the collective pseudospin. At certain probe frequencies the differential light shift of the clock states vanishes, and the measurement is nonperturbing. In dense samples the measurement can be used to squeeze the collective clock pseudospin and has the potential to improve the performance of atomic clocks and interferometers.

  13. Around-the-World Atomic Clocks: Observed Relativistic Time Gains.

    PubMed

    Hafele, J C; Keating, R E

    1972-07-14

    Four cesium beam clocks flown around the world on commercial jet flights during October 1971, once eastward and once westward, recorded directionally dependent time differences which are in good agreement with predictions of conventional relativity theory. Relative to the atomic time scale of the U.S. Naval Observatory, the flying clocks lost 59 +/- 10 nanoseconds during the eastward trip and gained 273 +/- 7 nanoseconds during the westward trip, where the errors are the corresponding standard deviations. These results provide an unambiguous empirical resolution of the famous clock "paradox" with macroscopic clocks.

  14. The role of the mechanical clock in medieval science.

    PubMed

    Álvarez, Víctor Pérez

    2015-03-01

    The invention and spread of the mechanical clock is a complex and multifaceted historical phenomenon. Some of these facets, such as its social impact, have been widely studied, but their scientific dimensions have often been dismissed. The mechanical clock was probably born as a scientific instrument for driving a model of the universe, and not only natural philosophers but also kings, nobles and other members of the social elites showed an interest in clocks as scientific instruments. Public clocks later spread a new way of telling time based on equal hours, laying the foundations for changes in time consciousness that would accelerate scientific thinking.

  15. Derivation and experimental verification of clock synchronization theory

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.

    1994-01-01

    The objective of this work is to validate mathematically derived clock synchronization theories and their associated algorithms through experiment. Two theories are considered, the Interactive Convergence Clock Synchronization Algorithm and the Mid-Point Algorithm. Special clock circuitry was designed and built so that several operating conditions and failure modes (including malicious failures) could be tested. Both theories are shown to predict conservative upper bounds (i.e., measured values of clock skew were always less than the theory prediction). Insight gained during experimentation led to alternative derivations of the theories. These new theories accurately predict the clock system's behavior. It is found that a 100% penalty is paid to tolerate worst case failures. It is also shown that under optimal conditions (with minimum error and no failures) the clock skew can be as much as 3 clock ticks. Clock skew grows to 6 clock ticks when failures are present. Finally, it is concluded that one cannot rely solely on test procedures or theoretical analysis to predict worst case conditions. conditions.

  16. Clocked Schroedinger equation in the meaning of the measurement system

    SciTech Connect

    Boonchui, Sutee; Sa-yakanit, Virulh; Sritrakool, W.

    2006-01-15

    The clocked Schroedinger equation was proposed by Sokolovski using the Feynman path integral with constraint (Phys. Rev. A 52, R2, 1995). Sokolovski pointed out that the clocked Schroedinger equation cannot be derived directly from the Schroedinger equation. In this paper, we show that the clocked Schroedinger equation can be derived by starting from the normal Schroedinger equation for a composite system, composed of the observed system and the measuring device, as defined by von Neumann. Details of the derivation and the physical meaning of the clocked Schroedinger equation are given.

  17. The molecular clock regulates circadian transcription of tissue factor gene.

    PubMed

    Oishi, Katsutaka; Koyanagi, Satoru; Ohkura, Naoki

    2013-02-01

    Tissue factor (TF) is involved in endotoxin-induced inflammation and mortality. We found that the circadian expression of TF mRNA, which peaked at the day to night transition (activity onset), was damped in the liver of Clock mutant mice. Luciferase reporter and chromatin immunoprecipitation analyses using embryonic fibroblasts derived from wild-type or Clock mutant mice showed that CLOCK is involved in transcription of the TF gene. Furthermore, the results of real-time luciferase reporter experiments revealed that the circadian expression of TF mRNA is regulated by clock molecules through a cell-autonomous mechanism via an E-box element located in the promoter region.

  18. Glucocorticoids entrain molecular clock components in human peripheral cells.

    PubMed

    Cuesta, Marc; Cermakian, Nicolas; Boivin, Diane B

    2015-04-01

    In humans, shift work induces a desynchronization between the circadian system and the outside world, which contributes to shift work-associated medical disorders. Using a simulated night shift experiment, we previously showed that 3 d of bright light at night fully synchronize the central clock to the inverted sleep schedule, whereas the peripheral clocks located in peripheral blood mononuclear cells (PBMCs) took longer to reset. This underlines the need for testing the effects of synchronizers on both the central and peripheral clocks. Glucocorticoids display circadian rhythms controlled by the central clock and are thought to act as synchronizers of rodent peripheral clocks. In the present study, we tested whether the human central and peripheral clocks were sensitive to exogenous glucocorticoids (Cortef) administered in the late afternoon. We showed that 20 mg Cortef taken orally acutely increased PER1 expression in PBMC peripheral clocks. After 6 d of Cortef administration, the phases of central markers were not affected, whereas those of PER2-3 and BMAL1 expression in PBMCs were shifted by ∼ 9.5-11.5 h. These results demonstrate, for the first time, that human peripheral clocks are entrained by glucocorticoids. Importantly, they suggest innovative interventions for shift workers and jet-lag travelers, combining synchronizing agents for the central and peripheral clocks.

  19. Power and Skew Aware Point Diffusion Clock Network

    NASA Astrophysics Data System (ADS)

    Jung, Gunok; Kim, Chunghee; Chae, Kyoungkuk; Park, Giho; Park, Sung Bae

    This letter presents point diffusion clock network (PDCN) with local clock tree synthesis (CTS) scheme. The clock network is implemented with ten times wider metal line space than typical mesh networks for low power and utilized to nine times smaller area CTS execution for minimized clock skew amount. The measurement results show that skew amount of PDCN with local CTS is reduced to 36% and latency is shrunk to 45% of the amount in a 4.81mm2 CortexA-8 core with 65nm Samsung process.

  20. Clocking and synchronization circuits in multiprocessor systems

    SciTech Connect

    Jeong, Deog-Kyoon.

    1989-01-01

    Microprocessors based on RISC (Reduced Instruction Set Computer) concepts have demonstrated an ability to provide more computing power at a given level of integration than conventional microprocessors. The next step is multiprocessors composed of RISC processing elements. Communication bandwidth among such microprocessors is critical in achieving efficient hardware utilization. This thesis focuses on the communication capability of VLSI circuits and presents new circuit techniques as a guide to build an interconnection network of VLSI microprocessors. Two of the most prominent problems in a synchronous system, which most of the current computer systems are based on, have been clock skew and synchronization failure. A new concept called self-timed systems solves such problems but has not been accepted in microprocessor implementations yet because of its complex design procedure and increased overhead. With this in mind, this thesis concentrates on a system in which individual synchronous subsystems are connected asynchronously. Synchronous subsystems operate with a better control over clock skew using a phase locked loop (PLL) technique. Communication among subsystems is done asynchronously with a controlled synchronization failure rate. One advantage is that conventional VLSI design methodologies which are more efficient can still be applied. Circuit techniques for PLL-based clock generation are described along with stability criteria. The main objective of the circuit is to realize a zero delay buffer. Experimental results show the feasibility of such circuits in VLSI. Synchronizer circuit configurations in both bipolar and MOS technology that best utilize each device, or overcome the technology limit using a bandwidth doubling technique are shown. Interface techniques including handshake mechanisms in such a system are also described.

  1. Telomere biology: cancer firewall or aging clock?

    PubMed

    Mitteldorf, J J

    2013-09-01

    It has been a decade since the first surprising discovery that longer telomeres in humans are statistically associated with longer life expectancies. Since then, it has been firmly established that telomere shortening imposes an individual fitness cost in a number of mammalian species, including humans. But telomere shortening is easily avoided by application of telomerase, an enzyme which is coded into nearly every eukaryotic genome, but whose expression is suppressed most of the time. This raises the question how the sequestration of telomerase might have evolved. The predominant assumption is that in higher organisms, shortening telomeres provide a firewall against tumor growth. A more straightforward interpretation is that telomere attrition provides an aging clock, reliably programming lifespans. The latter hypothesis is routinely rejected by most biologists because the benefit of programmed lifespan applies only to the community, and in fact the individual pays a substantial fitness cost. There is a long-standing skepticism that the concept of fitness can be applied on a communal level, and of group selection in general. But the cancer hypothesis is problematic as well. Animal studies indicate that there is a net fitness cost in sequestration of telomerase, even when cancer risk is lowered. The hypothesis of protection against cancer has never been tested in animals that actually limit telomerase expression, but only in mice, whose lifespans are not telomerase-limited. And human medical evidence suggests a net aggravation of cancer risk from the sequestration of telomerase, because cells with short telomeres are at high risk of neoplastic transformation, and they also secrete cytokines that exacerbate inflammation globally. The aging clock hypothesis fits well with what is known about ancestral origins of telomerase sequestration, and the prejudices concerning group selection are without merit. If telomeres are an aging clock, then telomerase makes an

  2. Circadian rhythms in the CNS and peripheral clock disorders: human sleep disorders and clock genes.

    PubMed

    Ebisawa, Takashi

    2007-02-01

    Genetic analyses of circadian rhythm sleep disorders (CRSD), such as familial advanced sleep phase syndrome (ASPS) and delayed sleep phase syndrome (DSPS), and morningness-eveningness revealed the relationship between variations in clock genes and diurnal change in human behaviors. Variations such as T3111C in the Clock gene are reportedly associated with morningness-eveningness. Two of the pedigrees of familial ASPS (FASPS) are caused by mutations in clock genes: the S662G mutation in the Per2 gene or the T44A mutation in the casein kinase 1 delta (CK1delta) gene, although these mutations are not found in other pedigrees of FASPS. As for DSPS, a missense variation in the Per3 gene is identified as a risk factor, while the one in the CK1epsilon gene is thought to be protective. These findings suggest that further, as yet unidentified, gene variations are involved in human circadian activity. Many of the CRSD-relevant variations reported to date seem to affect the phosphorylation status of the clock proteins. A recent study using mathematical models of circadian rhythm generation has provided a new insight into the role of phosphorylation in the molecular mechanisms of these disorders. PMID:17299246

  3. Individual trial analysis evidences clock and non-clock based conditioned suppression behaviors in rats.

    PubMed

    Tallot, Lucille; Capela, Daphné; Brown, Bruce L; Doyère, Valérie

    2016-03-01

    We analyzed the temporal pattern of conditioned suppression of lever-pressing for food in rats conditioned with tone-shock pairings using either a 10 or 15s conditioned stimulus (CS)-unconditioned stimulus (US) interval with a CS duration that was three times the CS-US interval. The analysis of average suppression and of individual trials was performed during Probe CS-alone trials and when a short gap was inserted during the CS. The pattern of suppression followed the classical temporal rules: (1) scalar property, (2) a shift in peak suppression due to a gap, compatible with a Stop rule, (3) a three-state pattern of lever-pressing in individual trials, with abrupt start and stop of suppression. The peak of the average suppression curve, but not the middle time, was anticipatory to the programmed US time. The pattern of lever-pressing in individual trials unraveled two types of start of suppression behavior: a clock-based biphasic responding, with a burst of lever-pressing before suppression, and a non-clock based monophasic reduction of lever-pressing close to the CS onset. The non-clock based type of behavior may be responsible for the anticipatory peak time, and the biphasic pattern of lever-pressing may reflect the decision stage described in clock models. PMID:26772780

  4. Code-Phase Clock Bias and Frequency Offset in PPP Clock Solutions.

    PubMed

    Defraigne, Pascale; Sleewaegen, Jean-Marie

    2016-07-01

    Precise point positioning (PPP) is a zero-difference single-station technique that has proved to be very effective for time and frequency transfer, enabling the comparison of atomic clocks with a precision of a hundred picoseconds and a one-day stability below the 1e-15 level. It was, however, noted that for some receivers, a frequency difference is observed between the clock solution based on the code measurements and the clock solution based on the carrier-phase measurements. These observations reveal some inconsistency either between the code and carrier phases measured by the receiver or between the data analysis strategy of codes and carrier phases. One explanation for this discrepancy is the time offset that can exist for some receivers between the code and the carrier-phase latching. This paper explains how a code-phase bias in the receiver hardware can induce a frequency difference between the code and the carrier-phase clock solutions. The impact on PPP is then quantified. Finally, the possibility to determine this code-phase bias in the PPP modeling is investigated, and the first results are shown to be inappropriate due to the high level of code noise. PMID:26595916

  5. Individual trial analysis evidences clock and non-clock based conditioned suppression behaviors in rats.

    PubMed

    Tallot, Lucille; Capela, Daphné; Brown, Bruce L; Doyère, Valérie

    2016-03-01

    We analyzed the temporal pattern of conditioned suppression of lever-pressing for food in rats conditioned with tone-shock pairings using either a 10 or 15s conditioned stimulus (CS)-unconditioned stimulus (US) interval with a CS duration that was three times the CS-US interval. The analysis of average suppression and of individual trials was performed during Probe CS-alone trials and when a short gap was inserted during the CS. The pattern of suppression followed the classical temporal rules: (1) scalar property, (2) a shift in peak suppression due to a gap, compatible with a Stop rule, (3) a three-state pattern of lever-pressing in individual trials, with abrupt start and stop of suppression. The peak of the average suppression curve, but not the middle time, was anticipatory to the programmed US time. The pattern of lever-pressing in individual trials unraveled two types of start of suppression behavior: a clock-based biphasic responding, with a burst of lever-pressing before suppression, and a non-clock based monophasic reduction of lever-pressing close to the CS onset. The non-clock based type of behavior may be responsible for the anticipatory peak time, and the biphasic pattern of lever-pressing may reflect the decision stage described in clock models.

  6. Code-Phase Clock Bias and Frequency Offset in PPP Clock Solutions.

    PubMed

    Defraigne, Pascale; Sleewaegen, Jean-Marie

    2016-07-01

    Precise point positioning (PPP) is a zero-difference single-station technique that has proved to be very effective for time and frequency transfer, enabling the comparison of atomic clocks with a precision of a hundred picoseconds and a one-day stability below the 1e-15 level. It was, however, noted that for some receivers, a frequency difference is observed between the clock solution based on the code measurements and the clock solution based on the carrier-phase measurements. These observations reveal some inconsistency either between the code and carrier phases measured by the receiver or between the data analysis strategy of codes and carrier phases. One explanation for this discrepancy is the time offset that can exist for some receivers between the code and the carrier-phase latching. This paper explains how a code-phase bias in the receiver hardware can induce a frequency difference between the code and the carrier-phase clock solutions. The impact on PPP is then quantified. Finally, the possibility to determine this code-phase bias in the PPP modeling is investigated, and the first results are shown to be inappropriate due to the high level of code noise.

  7. [Sleep and biological clock in the elderly].

    PubMed

    Münch, Mirjam

    2014-11-01

    This article gives an overview of factors underlying age-related changes in sleep wake behavior in healthy older humans. The self-regulation of the sleep-wake cycle [sleep-wake homeostasis] and the circadian clock, represent primary factors responsible for changes in sleep with age. As a matter of fact older healthy adults have a more superficial and less consolidated sleep and go to bed earlier compared to younger ages. Furthermore, sleep in healthy older people is more vulnerable to disturbances such as circadian desynchronisation and the lack of zeitgebers [insufficient light during the day].

  8. Intense, narrow atomic-clock resonances.

    PubMed

    Jau, Y-Y; Post, A B; Kuzma, N N; Braun, A M; Romalis, M V; Happer, W

    2004-03-19

    We present experimental and theoretical results showing that magnetic resonance transitions from the "end" sublevels of maximum or minimum spin in alkali-metal vapors are a promising alternative to the conventional 0-0 transition for small-size gas-cell atomic clocks. For these "end resonances," collisional spin-exchange broadening, which often dominates the linewidth of the 0-0 resonance, decreases with increasing spin polarization and vanishes for 100% polarization. The end resonances also have much stronger signals than the 0-0 resonance, and are readily detectable in cells with high buffer-gas pressure.

  9. Einstein’s Clocks

    ScienceCinema

    Lincoln, Don

    2016-07-12

    One of the most non-intuitive physics theories ever devised is Einstein’s Theory of Special Relativity, which claim such crazy-sounding things as two people disagreeing on such familiar concepts as length and time. In this video, Fermilab’s Dr. Don Lincoln shows that every single day particle physicists prove that moving clocks tick more slowly than stationary ones. He uses an easy to understand example of particles that move for far longer distances than you would expect from combining their velocity and stationary lifetime.

  10. Clocking an Array of Quantum Dots

    NASA Astrophysics Data System (ADS)

    Khatun, Mahfuza; Mandell, Eric

    2000-10-01

    Preferred Session: Condensed Matter Physics Clocking an Array of Quantum Dots* Eric Mandell and M. Khatun, Ball State University. We report a theoretical analysis of the time-dependent electric field due to a line of charged rods. The effects of both the real and image charge are taken into account. The rods are biased electrostatically to study the dynamical behavior of an array of quantum dots. The barrier heights between the quantum dots are controlled by the electric field. *Supported in part by the Indiana Academy of Science, Center for Energy Research/Education/Services(CERES) and the Office of Academic Research and Sponsored Programs, Ball State University.

  11. A rubidium clock for SEEK-TALK

    NASA Technical Reports Server (NTRS)

    Riley, W. J.

    1983-01-01

    The development of a tactical rubidium frequency standard (TRFS) for the SEEK-TALK program is discussed. This effort, which is entering the prototype stage, is directed toward the establishment of a production capability for miniature rubidium clocks of medium stability capable of fast warmup and extreme ruggedness for military avionics applications. The overall unit consists of an ultraminiature physics package and four plug-in circuit boards inside a 2 1/2-inch square by 4-inch box. This size is achieved without the extensive use of hybrid microcircuitry, yet is believed to be the smallest atomic frequency standard yet developed.

  12. Laser Cooled Atomic Clocks in Space

    NASA Technical Reports Server (NTRS)

    Thompson, R. J.; Kohel, J.; Klipstein, W. M.; Seidel, D. J.; Maleki, L.

    2000-01-01

    The goals of the Glovebox Laser-cooled Atomic Clock Experiment (GLACE) are: (1) first utilization of tunable, frequency-stabilized lasers in space, (2) demonstrate laser cooling and trapping in microgravity, (3) demonstrate longest 'perturbation-free' interaction time for a precision measurement on neutral atoms, (4) Resolve Ramsey fringes 2-10 times narrower than achievable on Earth. The approach taken is: the use of COTS components, and the utilization of prototype hardware from LCAP flight definition experiments. The launch date is scheduled for Oct. 2002. The Microgravity Science Glovebox (MSG) specifications are reviewed, and a picture of the MSG is shown.

  13. Automatic Multi-Stage Clock Gating Optimization Using ILP Formulation

    NASA Astrophysics Data System (ADS)

    Man, Xin; Horiyama, Takashi; Kimura, Shinji

    Clock gating is supported by commercial tools as a power optimization feature based on the guard signal described in HDL (structural method). However, the identification of control signals for gated registers is hard and designer-intensive work. Besides, since the clock gating cells also consume power, it is imperative to minimize the number of inserted clock gating cells and their switching activities for power optimization. In this paper, we propose an automatic multi-stage clock gating algorithm with ILP (Integer Linear Programming) formulation, including clock gating control candidate extraction, constraints construction and optimum control signal selection. By multi-stage clock gating, unnecessary clock pulses to clock gating cells can be avoided by other clock gating cells, so that the switching activity of clock gating cells can be reduced. We find that any multi-stage control signals are also single-stage control signals, and any combination of signals can be selected from single-stage candidates. The proposed method can be applied to 3 or more cascaded stages. The multi-stage clock gating optimization problem is formulated as constraints in LP format for the selection of cascaded clock-gating order of multi-stage candidate combinations, and a commercial ILP solver (IBM CPLEX) is applied to obtain the control signals for each register with minimum switching activity. Those signals are used to generate a gate level description with guarded registers from original design, and a commercial synthesis and layout tools are applied to obtain the circuit with multi-stage clock gating. For a set of benchmark circuits and a Low Density Parity Check (LDPC) Decoder (6.6k gates, 212 F.F.s), the proposed method is applied and actual power consumption is estimated using Synopsys NanoSim after layout. On average, 31% actual power reduction has been obtained compared with original designs with structural clock gating, and more than 10% improvement has been achieved for some

  14. A precise clock distribution network for MRPC-based experiments

    NASA Astrophysics Data System (ADS)

    Wang, S.; Cao, P.; Shang, L.; An, Q.

    2016-06-01

    In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.

  15. Particle entry through sash in the magnetopause with a dawndard IMF as simulated by a 3-D EM particle code

    NASA Astrophysics Data System (ADS)

    Cai, D.; Yan, X.; Lembege, B.; Nishikawa, K.

    2003-12-01

    We report a new progress in the long-term effort to represent the global interaction of the solar wind with the Earth's magnetosphere using a three-dimensional electromagnetic particle code with the improved resolutions using the HPF Tristan code. After a quasi-steady state is established with an unmagnetized solar wind we gradually switch on a northward interplanetary magnetic field (IMF), which causes a magnetic reconnection at the nightside cusps and the magnetosphere to be depolarized. In the case that the northward IMF is switched gradually to dawnward, there is no signature of reconnection in the near-Earth magnetotail as in the case with the southward turning. On the contrary analysis of magnetic fields in the magnetopause confirms a signature of magnetic reconnection at both the dawnside and duskside. And the plasma sheet in the near-Earth magnetotail clearly thins as in the case of southward turning. Arrival of dawnward IMF to the magnetopause creates a reconnection groove which cause particle entry into the deep region of the magnetosphere via field lines that go near the magnetopause. This deep connection is more fully recognized tailward of Earth. The flank weak-field fan joins onto the plasma sheet and the current sheet to form a geometrical feature called the cross-tail S that structurally integrates the magnetopause and the tail interior. This structure contributes to direct plasma entry between the magnetosheath to the inner magnetosphere and plasma sheet, in which the entry process heats the magnetosheath plasma to plasma sheet temperatures. These phenomena have been found by Cluster observations. Further investigation with Cluster observations will provide new insights for unsolved problems such as hot flow anomalies (HFAs), substorms, and storm-substorm relationship. 3-D movies with sash structure will be presented at the meeting.

  16. Melatonin: both master clock output and internal time-giver in the circadian clocks network.

    PubMed

    Pevet, Paul; Challet, Etienne

    2011-12-01

    Daily rhythms in physiological and behavioral processes are controlled by a network of circadian clocks, reset by inputs and delivering circadian signals to the brain and peripheral organs. In mammals, at the top of the network is a master clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus, mainly reset by ambient light. The nocturnal synthesis and release of melatonin by the pineal gland are tightly controlled by the SCN clock and inhibited by light exposure. Several roles of melatonin in the circadian system have been identified. As a major hormonal output, melatonin distributes temporal cues generated by the SCN to the multitude of tissue targets expressing melatonin receptors. In some target structures, like the Pars tuberalis of the adenohypophysis, these melatonin signals can drive daily rhythmicity that would otherwise be lacking. In other target structures, melatonin signals are used for the synchronization (i.e., adjustment of the timing of existing oscillations) of peripheral oscillators, such as the fetal adrenal gland. Due to the expression of melatonin receptors in the SCN, endogenous melatonin is also able to feedback onto the master clock, although its physiological significance needs further characterization. Of note, pharmacological treatment with exogenous melatonin can synchronize the SCN clock. From a clinical point of view, provided that the subject is not exposed to light at night, the daily profile of circulating melatonin provides a reliable estimate of the timing of the human SCN. During the past decade, a number of melatonin agonists have been developed for treating circadian, psychiatric and sleep disorders. These drugs may target the SCN for improving circadian timing or act indirectly at some downstream level of the circadian network to restore proper internal synchronization.

  17. A new research of the current sheet and Field aligned current system: IMF, Solar Wind influence? MLT dependence?

    NASA Astrophysics Data System (ADS)

    Yang, J.

    2015-12-01

    Field-aligned current systems (FACs) are the dominant process by which energy and momentum are transported between the magnetosphere and the ionosphere-thermosphere system. Both large- and small-scale FACs have been observed in the auroral zone and the current sheets have complicated spatial and temporal variations. However, It is argued that while the intensity of currents varies from event to event, the basic pattern will be maintained or not. We present a statistical study of the temporal and spatial characteristics of FACs using Swarm satellite, and show the IMF, Solar Wind influence and the MLT dependence of the FACs.

  18. Reading angles in maps.

    PubMed

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections appeared without any relevant length or distance information. Children were able to read these map fragments and compare two-dimensional to three-dimensional angles. However, this ability appeared both variable and fragile among the youngest children of the sample. These findings suggest that 4-year-old children begin to form an abstract concept of angle that applies both to two-dimensional and three-dimensional displays and that serves to interpret novel spatial symbols. PMID:23647223

  19. 'Magic Angle Precession'

    SciTech Connect

    Binder, Bernd

    2008-01-21

    An advanced and exact geometric description of nonlinear precession dynamics modeling very accurately natural and artificial couplings showing Lorentz symmetry is derived. In the linear description it is usually ignored that the geometric phase of relativistic motion couples back to the orbital motion providing for a non-linear recursive precession dynamics. The high coupling strength in the nonlinear case is found to be a gravitomagnetic charge proportional to the precession angle and angular velocity generated by geometric phases, which are induced by high-speed relativistic rotations and are relevant to propulsion technologies but also to basic interactions. In the quantum range some magic precession angles indicating strong coupling in a phase-locked chaotic system are identified, emerging from a discrete time dynamical system known as the cosine map showing bifurcations at special precession angles relevant to heavy nuclei stability. The 'Magic Angle Precession' (MAP) dynamics can be simulated and visualized by cones rolling in or on each other, where the apex and precession angles are indexed by spin, charge or precession quantum numbers, and corresponding magic angles. The most extreme relativistic warping and twisting effect is given by the Dirac spinor half spin constellation with 'Hyperdiamond' MAP, which resembles quark confinement.

  20. Epidemiology of the human circadian clock.

    PubMed

    Roenneberg, Till; Kuehnle, Tim; Juda, Myriam; Kantermann, Thomas; Allebrandt, Karla; Gordijn, Marijke; Merrow, Martha

    2007-12-01

    Humans show large inter-individual differences in organising their behaviour within the 24-h day-this is most obvious in their preferred timing of sleep and wakefulness. Sleep and wake times show a near-Gaussian distribution in a given population, with extreme early types waking up when extreme late types fall asleep. This distribution is predominantly based on differences in an individuals' circadian clock. The relationship between the circadian system and different "chronotypes" is formally and genetically well established in experimental studies in organisms ranging from unicells to mammals. To investigate the epidemiology of the human circadian clock, we developed a simple questionnaire (Munich ChronoType Questionnaire, MCTQ) to assess chronotype. So far, more than 55,000 people have completed the MCTQ, which has been validated with respect to the Horne-Østberg morningness-eveningness questionnaire (MEQ), objective measures of activity and rest (sleep-logs and actimetry), and physiological parameters. As a result of this large survey, we established an algorithm which optimises chronotype assessment by incorporating the information on timing of sleep and wakefulness for both work and free days. The timing and duration of sleep are generally independent. However, when the two are analysed separately for work and free days, sleep duration strongly depends on chronotype. In addition, chronotype is both age- and sex-dependent. PMID:17936039

  1. Temperature-Compensated Clock Skew Adjustment

    PubMed Central

    Castillo-Secilla, Jose María; Palomares, Jose Manuel; Olivares, Joaquín

    2013-01-01

    This work analyzes several drift compensation mechanisms in wireless sensor networks (WSN). Temperature is an environmental factor that greatly affects oscillators shipped in every WSN mote. This behavior creates the need of improving drift compensation mechanisms in synchronization protocols. Using the Flooding Time Synchronization Protocol (FTSP), this work demonstrates that crystal oscillators are affected by temperature variations. Thus, the influence of temperature provokes a low performance of FTSP in changing conditions of temperature. This article proposes an innovative correction factor that minimizes the impact of temperature in the clock skew. By means of this factor, two new mechanisms are proposed in this paper: the Adjusted Temperature (AT) and the Advanced Adjusted Temperature (A2T). These mechanisms have been combined with FTSP to produce AT-FTSP and A2T-FTSP Both have been tested in a network of TelosB motes running TinyOS. Results show that both AT-FTSP and A2T-FTSP improve the average synchronization errors compared to FTSP and other temperature-compensated protocols (Environment-Aware Clock Skew Estimation and Synchronization for WSN (EACS) and Temperature Compensated Time Synchronization (TCTS)). PMID:23966192

  2. How to fix a broken clock

    PubMed Central

    Schroeder, Analyne M.; Colwell, Christopher S.

    2013-01-01

    Fortunate are those who rise out of bed to greet the morning light well rested with the energy and enthusiasm to drive a productive day. Others however, depend on hypnotics for sleep and require stimulants to awaken lethargic bodies. Sleep/wake disruption is a common occurrence in healthy individuals throughout their lifespan and is also a comorbid condition to many diseases (neurodegenerative) and psychiatric disorders (depression and bipolar). There is growing concern that chronic disruption of the sleep/wake cycle contributes to more serious conditions including diabetes (type 2), cardiovascular disease and cancer. A poorly functioning circadian system resulting in misalignments in the timing of clocks throughout the body may be at the root of the problem for many people. In this article, we discuss environmental (light therapy) and lifestyle changes (scheduled meals, exercise and sleep) as interventions to help fix a broken clock. We also discuss the challenges and potential for future development of pharmacological treatments to manipulate this key biological system. PMID:24120229

  3. The Renaissance or the cuckoo clock.

    PubMed

    Pines, Jonathon; Hagan, Iain

    2011-12-27

    '…in Italy, for thirty years under the Borgias, they had warfare, terror, murder and bloodshed, but they produced Michelangelo, Leonardo da Vinci and the Renaissance. In Switzerland, they had brotherly love, they had five hundred years of democracy and peace-and what did that produce? The cuckoo clock'. Orson Welles as Harry Lime: The Third Man. Orson Welles might have been a little unfair on the Swiss, after all cuckoo clocks were developed in the Schwartzwald, but, more importantly, Swiss democracy gives remarkably stable government with considerable decision-making at the local level. The alternative is the battling city-states of Renaissance Italy: culturally rich but chaotic at a higher level of organization. As our understanding of the cell cycle improves, it appears that the cell is organized more along the lines of Switzerland than Renaissance Italy, and one major challenge is to determine how local decisions are made and coordinated to produce the robust cell cycle mechanisms that we observe in the cell as a whole.

  4. The Circadian Clock and Human Health.

    PubMed

    Roenneberg, Till; Merrow, Martha

    2016-05-23

    Epidemiological studies provided the first evidence suggesting a connection between the circadian clock and human health. Mutant mice convincingly demonstrate the principle that dysregulation of the circadian system leads to a multitude of pathologies. Chrono-medicine is one of the most important upcoming themes in the field of circadian biology. Although treatments counteracting circadian dysregulation are already being applied (e.g., prescribing strong and regular zeitgebers), we need to comprehend entrainment throughout the body's entire circadian network before understanding the mechanisms that tie circadian dysregulation to pathology. Here, we attempt to provide a systematic approach to understanding the connection between the circadian clock and health. This taxonomy of (mis)alignments on one hand exposes how little we know about entrainment within any organism and which 'eigen-zeitgeber' signals are used for entrainment by the different cells and tissues. On the other hand, it provides focus for experimental approaches and tools that will logically map out how circadian systems contribute to disease as well as how we can treat and prevent them. PMID:27218855

  5. Shift work: coping with the biological clock.

    PubMed

    Arendt, Josephine

    2010-01-01

    The internal circadian clock adapts slowly, if at all, to rapid transitions between different shift schedules. This leads to misalignment (desynchrony) of rhythmic physiological systems, such as sleep, alertness, performance, metabolism and the hormones melatonin and cortisol, with the imposed work-rest schedule. Consequences include sleep deprivation and poor performance. Clock gene variants may influence tolerance of sleep deprivation. Shift work is associated with an increased risk of major disease (heart disease and cancer) and this may also, at least in part, be attributed to frequent circadian desynchrony. Abnormal metabolism has been invoked as a contributory factor to the increased risk of heart disease. There is recent evidence for an increased risk of certain cancers, with hypothesized causal roles of light at night, melatonin suppression and circadian desynchrony. Various strategies exist for coping with circadian desynchrony and for hastening circadian realignment (if desired). The most important factor in manipulating the circadian system is exposure to and/or avoidance of bright light at specific times of the 'biological night'.

  6. Optical system design for femtosecond-level synchronization of clocks

    NASA Astrophysics Data System (ADS)

    Sinclair, Laura C.; Swann, William C.; Deschênes, Jean-Daniel; Bergeron, Hugo; Giorgetta, Fabrizio R.; Baumann, Esther; Cermak, Michael; Coddington, Ian; Newbury, Nathan R.

    2016-03-01

    Synchronization of optical clocks via optical two-way time-frequency transfer across free-space links can result in time offsets between the two clocks below tens of femtoseconds over many hours. The complex optical system necessary to support such synchronization is described in detail here.

  7. Clocking in the face of unpredictability beyond quantum uncertainty

    NASA Astrophysics Data System (ADS)

    Madjid, F. Hadi; Myers, John M.

    2015-05-01

    In earlier papers we showed unpredictability beyond quantum uncertainty in atomic clocks, ensuing from a proven gap between given evidence and explanations of that evidence. Here we reconceive a clock, not as an isolated entity, but as enmeshed in a self-adjusting communications network adapted to one or another particular investigation, in contact with an unpredictable environment. From the practical uses of clocks, we abstract a clock enlivened with the computational capacity of a Turing machine, modified to transmit and to receive numerical communications. Such "live clocks" phase the steps of their computations to mesh with the arrival of transmitted numbers. We lift this phasing, known in digital communications, to a principle of logical synchronization, distinct from the synchronization defined by Einstein in special relativity. Logical synchronization elevates digital communication to a topic in physics, including applications to biology. One explores how feedback loops in clocking affect numerical signaling among entities functioning in the face of unpredictable influences, making the influences themselves into subjects of investigation. The formulation of communications networks in terms of live clocks extends information theory by expressing the need to actively maintain communications channels, and potentially, to create or drop them. We show how networks of live clocks are presupposed by the concept of coordinates in a spacetime. A network serves as an organizing principle, even when the concept of the rigid body that anchors a special-relativistic coordinate system is inapplicable, as is the case, for example, in a generic curved spacetime.

  8. Costs of Clock-Environment Misalignment in Individual Cyanobacterial Cells.

    PubMed

    Lambert, Guillaume; Chew, Justin; Rust, Michael J

    2016-08-23

    Circadian rhythms are endogenously generated daily oscillations in physiology that are found in all kingdoms of life. Experimental studies have shown that the fitness of Synechococcus elongatus, a photosynthetic microorganism, is severely affected in non-24-h environments. However, it has been difficult to study the effects of clock-environment mismatch on cellular physiology because such measurements require a precise determination of both clock state and growth rate in the same cell. Here, we designed a microscopy platform that allows us to expose cyanobacterial cells to pulses of light and dark while quantitatively measuring their growth, division rate, and circadian clock state over many days. Our measurements reveal that decreased fitness can result from a catastrophic growth arrest caused by unexpected darkness in a small subset of cells with incorrect clock times corresponding to the subjective morning. We find that the clock generates rhythms in the instantaneous growth rate of the cell, and that the time of darkness vulnerability coincides with the time of most rapid growth. Thus, the clock mediates a fundamental trade-off between growth and starvation tolerance in cycling environments. By measuring the response of the circadian rhythm to dark pulses of varying lengths, we constrain a mathematical model of a population's fitness under arbitrary light/dark schedules. This model predicts that the circadian clock is only advantageous in highly regular cycling environments with frequencies sufficiently close to the natural frequency of the clock. PMID:27558731

  9. Circadian clock regulation of skeletal muscle growth and repair.

    PubMed

    Chatterjee, Somik; Ma, Ke

    2016-01-01

    Accumulating evidence indicates that the circadian clock, a transcriptional/translational feedback circuit that generates ~24-hour oscillations in behavior and physiology, is a key temporal regulatory mechanism involved in many important aspects of muscle physiology. Given the clock as an evolutionarily-conserved time-keeping mechanism that synchronizes internal physiology to environmental cues, locomotor activities initiated by skeletal muscle enable entrainment to the light-dark cycles on earth, thus ensuring organismal survival and fitness. Despite the current understanding of the role of molecular clock in preventing age-related sarcopenia, investigations into the underlying molecular pathways that transmit clock signals to the maintenance of skeletal muscle growth and function are only emerging. In the current review, the importance of the muscle clock in maintaining muscle mass during development, repair and aging, together with its contribution to muscle metabolism, will be discussed. Based on our current understandings of how tissue-intrinsic muscle clock functions in the key aspects muscle physiology, interventions targeting the myogenic-modulatory activities of the clock circuit may offer new avenues for prevention and treatment of muscular diseases. Studies of mechanisms underlying circadian clock function and regulation in skeletal muscle warrant continued efforts. PMID:27540471

  10. Circadian clock genes universally control key agricultural traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian clocks are endogenous timers that enable plants to synchronize biological processes with daily and seasonal environmental conditions in order to allocate resources during the most beneficial times of day and year. The circadian clock regulates a number of central plant activities, includin...

  11. Verge and Foliot Clock Escapement: A Simple Dynamical System

    ERIC Educational Resources Information Center

    Denny, Mark

    2010-01-01

    The earliest mechanical clocks appeared in Europe in the 13th century. From about 1250 CE to 1670 CE, these simple clocks consisted of a weight suspended from a rope or chain that was wrapped around a horizontal axle. To tell time, the weight must fall with a slow uniform speed, but, under the action of gravity alone, such a suspended weight would…

  12. Velocity response curves demonstrate the complexity of modeling entrainable clocks.

    PubMed

    Taylor, Stephanie R; Cheever, Allyson; Harmon, Sarah M

    2014-12-21

    Circadian clocks are biological oscillators that regulate daily behaviors in organisms across the kingdoms of life. Their rhythms are generated by complex systems, generally involving interlocked regulatory feedback loops. These rhythms are entrained by the daily light/dark cycle, ensuring that the internal clock time is coordinated with the environment. Mathematical models play an important role in understanding how the components work together to function as a clock which can be entrained by light. For a clock to entrain, it must be possible for it to be sped up or slowed down at appropriate times. To understand how biophysical processes affect the speed of the clock, one can compute velocity response curves (VRCs). Here, in a case study involving the fruit fly clock, we demonstrate that VRC analysis provides insight into a clock׳s response to light. We also show that biochemical mechanisms and parameters together determine a model׳s ability to respond realistically to light. The implication is that, if one is developing a model and its current form has an unrealistic response to light, then one must reexamine one׳s model structure, because searching for better parameter values is unlikely to lead to a realistic response to light. PMID:25193284

  13. Frequency comparison of optical lattice clocks beyond the Dick limit

    NASA Astrophysics Data System (ADS)

    Takamoto, Masao; Takano, Tetsushi; Katori, Hidetoshi

    2011-05-01

    The supreme accuracy of atomic clocks relies on the universality of atomic transition frequencies. The stability of a clock, meanwhile, measures how quickly the clock's statistical uncertainties are reduced. The ultimate measure of stability is provided by the quantum projection noise, which improves as 1/√N by measuring N uncorrelated atoms. Quantum projection noise limited stabilities have been demonstrated in caesium clocks and in single-ion optical clocks, where the quantum noise overwhelms the Dick effect attributed to local oscillator noise. Here, we demonstrate a synchronous frequency comparison of two optical lattice clocks using 87Sr and 88Sr atoms, respectively, for which the Allan standard deviation reached 1 × 10-17 in an averaging time of 1,600 s by cancelling out the Dick effect to approach the quantum projection noise limit. The scheme demonstrates the advantage of using a large number (N ~ 1,000) of atoms in optical clocks and paves the way to investigating the inherent uncertainties of clocks and relativistic geodesy on a timescale of tens of minutes.

  14. Clock Genes Show Circadian Rhythms in Salivary Glands

    PubMed Central

    Zheng, L.; Seon, Y.J.; McHugh, J.; Papagerakis, S.; Papagerakis, P.

    2012-01-01

    Circadian rhythms are endogenous self-sustained oscillations with 24-hour periods that regulate diverse physiological and metabolic processes through complex gene regulation by “clock” transcription factors. The oral cavity is bathed by saliva, and its amount and content are modified within regular daily intervals. The clock mechanisms that control salivary production remain unclear. Our objective was to evaluate the expression and periodicity of clock genes in salivary glands. Real-time quantitative RT-PCR, in situ hybridization, and immunohistochemistry were performed to show circadian mRNA and protein expression and localization of key clock genes (Bmal1, Clock, Per1, and Per2), ion and aqua channel genes (Ae2a, Car2, and Aqp5), and salivary gland markers. Clock gene mRNAs and clock proteins were found differentially expressed in the serous acini and duct cells of all major salivary glands. The expression levels of clock genes and Aqp5 showed regular oscillatory patterns under both light/dark and complete-dark conditions. Bmla1 overexpression resulted in increased Aqp5 expression levels. Analysis of our data suggests that salivary glands have a peripheral clock mechanism that functions both in normal light/dark conditions and in the absence of light. This finding may increase our understanding of the control mechanisms of salivary content and flow. PMID:22699207

  15. The circadian clock in oral health and diseases.

    PubMed

    Papagerakis, S; Zheng, L; Schnell, S; Sartor, M A; Somers, E; Marder, W; McAlpin, B; Kim, D; McHugh, J; Papagerakis, P

    2014-01-01

    Most physiological processes in mammals display circadian rhythms that are driven by the endogenous circadian clock. This clock is comprised of a central component located in the hypothalamic suprachiasmatic nucleus and subordinate clocks in peripheral tissues. Circadian rhythms sustain 24-hour oscillations of a large number of master genes controlling the correct timing and synchronization of diverse physiological and metabolic processes within our bodies. This complex regulatory network provides an important communication link between our brain and several peripheral organs and tissues. At the molecular level, circadian oscillations of gene expression are regulated by a family of transcription factors called "clock genes". Dysregulation of clock gene expression results in diverse human pathological conditions, including autoimmune diseases and cancer. There is increasing evidence that the circadian clock affects tooth development, salivary gland and oral epithelium homeostasis, and saliva production. This review summarizes current knowledge of the roles of clock genes in the formation and maintenance of oral tissues, and discusses potential links between "oral clocks" and diseases such as head and neck cancer and Sjögren's syndrome. PMID:24065634

  16. Molecular clock integration of brown adipose tissue formation and function.

    PubMed

    Nam, Deokhwa; Yechoor, Vijay K; Ma, Ke

    2016-01-01

    The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation. PMID:27385482

  17. Molecular clock integration of brown adipose tissue formation and function

    PubMed Central

    Nam, Deokhwa; Yechoor, Vijay K.; Ma, Ke

    2016-01-01

    Abstract The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation. PMID:27385482

  18. Molecular clock integration of brown adipose tissue formation and function.

    PubMed

    Nam, Deokhwa; Yechoor, Vijay K; Ma, Ke

    2016-01-01

    The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation.

  19. Stable Kalman filters for processing clock measurement data

    NASA Technical Reports Server (NTRS)

    Clements, P. A.; Gibbs, B. P.; Vandergraft, J. S.

    1989-01-01

    Kalman filters have been used for some time to process clock measurement data. Due to instabilities in the standard Kalman filter algorithms, the results have been unreliable and difficult to obtain. During the past several years, stable forms of the Kalman filter have been developed, implemented, and used in many diverse applications. These algorithms, while algebraically equivalent to the standard Kalman filter, exhibit excellent numerical properties. Two of these stable algorithms, the Upper triangular-Diagonal (UD) filter and the Square Root Information Filter (SRIF), have been implemented to replace the standard Kalman filter used to process data from the Deep Space Network (DSN) hydrogen maser clocks. The data are time offsets between the clocks in the DSN, the timescale at the National Institute of Standards and Technology (NIST), and two geographically intermediate clocks. The measurements are made by using the GPS navigation satellites in mutual view between clocks. The filter programs allow the user to easily modify the clock models, the GPS satellite dependent biases, and the random noise levels in order to compare different modeling assumptions. The results of this study show the usefulness of such software for processing clock data. The UD filter is indeed a stable, efficient, and flexible method for obtaining optimal estimates of clock offsets, offset rates, and drift rates. A brief overview of the UD filter is also given.

  20. A Novel Method of Clock Synchronization in Distributed System

    NASA Astrophysics Data System (ADS)

    Li, G.; Niu, M. J.; Cai, Y. S.; Chen, X.; Ren, Y. Q.

    2016-03-01

    Time synchronization plays an important role in application of aircraft flying formation and constellation autonomous navigation, etc. In application of clock synchronization in the network system, it is not always true that each observed node may be interconnected, therefore, it is difficult to achieve time synchronization of network system with high precision in the condition that a certain node can only obtain the measurement information of clock from one of its corresponding neighbors, and cannot obtain from other nodes. According to this special problem, a novel method of high precision time synchronization of network system has been proposed. In this paper, we regard each clock as a node in the network system, and based on different distributed topology definition, the following three control algorithms of time synchronization under three circumstances have been designed: without a master clock (reference clock), with a master clock (reference clock), and with a fixed communication delay in the network system. The validity of the designed clock synchronization protocol has been proved both theoretically and through numerical simulation.

  1. Circadian clock regulation of skeletal muscle growth and repair

    PubMed Central

    Chatterjee, Somik; Ma, Ke

    2016-01-01

    Accumulating evidence indicates that the circadian clock, a transcriptional/translational feedback circuit that generates ~24-hour oscillations in behavior and physiology, is a key temporal regulatory mechanism involved in many important aspects of muscle physiology. Given the clock as an evolutionarily-conserved time-keeping mechanism that synchronizes internal physiology to environmental cues, locomotor activities initiated by skeletal muscle enable entrainment to the light-dark cycles on earth, thus ensuring organismal survival and fitness. Despite the current understanding of the role of molecular clock in preventing age-related sarcopenia, investigations into the underlying molecular pathways that transmit clock signals to the maintenance of skeletal muscle growth and function are only emerging. In the current review, the importance of the muscle clock in maintaining muscle mass during development, repair and aging, together with its contribution to muscle metabolism, will be discussed. Based on our current understandings of how tissue-intrinsic muscle clock functions in the key aspects muscle physiology, interventions targeting the myogenic-modulatory activities of the clock circuit may offer new avenues for prevention and treatment of muscular diseases. Studies of mechanisms underlying circadian clock function and regulation in skeletal muscle warrant continued efforts. PMID:27540471

  2. Field-aligned currents in the polar cap at small IMF Bz and By inferred from SuperDARN radar observations

    NASA Astrophysics Data System (ADS)

    Kustov, A. V.; Lyatsky, W. B.; Sofko, G. J.; Xu, L.

    2000-01-01

    Routine SuperDARN observations of the ionospheric plasma convection and field-aligned currents (FACs) in the high-latitude ionosphere are used to study current systems established at small interplanetary magnetic field (IMF) Bz and By. By statistical averaging of available data sets we show that under this IMF condition the ionospheric convection pattern consists of two (evening and morning) convection cells that are similar in shape. The flow intensity inside the central polar cap is noticeably depressed so that plasma entering the polar cap flows around its border, predominantly along the lines of equal magnetic latitude, so that the convection cells are of a crescent-like shape. This global pattern of plasma flow is associated with the effect of the region 0 field-aligned currents coexisting with the region 1 and region 2 field-aligned currents. SuperDARN observations of FACs for individual events support this conclusion. FACs were derived by analyzing the vorticity of the SuperDARN convection maps. We show that region 0 currents for small IMF Bz and By can exist in time sectors way off the magnetic noon. Thus radar observations support earlier findings from satellite magnetometer measurements of the region 0 current system at high latitudes during both the prenoon and afternoon at small IMF intensities. Because the region 0 FACs occur during small IMF intensities, it is suggested that quasi-viscous processes play a role in their generation.

  3. Clock Synchronization in Wireless Sensor Networks: An Overview

    PubMed Central

    Rhee, Ill-Keun; Lee, Jaehan; Kim, Jangsub; Serpedin, Erchin; Wu, Yik-Chung

    2009-01-01

    The development of tiny, low-cost, low-power and multifunctional sensor nodes equipped with sensing, data processing, and communicating components, have been made possible by the recent advances in micro-electro-mechanical systems (MEMS) technology. Wireless sensor networks (WSNs) assume a collection of such tiny sensing devices connected wirelessly and which are used to observe and monitor a variety of phenomena in the real physical world. Many applications based on these WSNs assume local clocks at each sensor node that need to be synchronized to a common notion of time. This paper reviews the existing clock synchronization protocols for WSNs and the methods of estimating clock offset and clock skew in the most representative clock synchronization protocols for WSNs. PMID:22389588

  4. Calibration of a Larmor clock for tunneling time experiments

    NASA Astrophysics Data System (ADS)

    Ramos, Jesus; Potnis, Shreyas; Spierings, David; Ebadi, Sapehr; Steinberg, Aephraim

    2016-05-01

    How much time does it take for a particle to tunnel? This has been a controversial question since the early times of quantum mechanics. The debate stems mainly from the inability to measure time directly. One proposal to measure the tunnelling time is the Larmor clock, in which the spin degree of freedom of the tunneling particle is used as a clock. This clock only ``ticks'' inside the forbidden region due to the precession of the spin about a magnetic field localized within the barrier. Here, we report the calibration of a Larmor clock to measure tunneling times of a 87 Rb Bose Einstein condensate. We use the Zeeman sublevels of the ground-state F = 2 manifold and Raman beams for the implementation of a Larmor clock. Experimental progress towards measuring the tunneling time and the challenges involved in this measurement will also be discussed.

  5. Physiological importance of a circadian clock outside the suprachiasmatic nucleus.

    PubMed

    Storch, K-F; Paz, C; Signorovitch, J; Raviola, E; Pawlyk, B; Li, T; Weitz, C J

    2007-01-01

    Circadian clocks are widely distributed in mammalian tissues, but little is known about the physiological functions of clocks outside the suprachiasmatic nucleus of the brain. The retina has an intrinsic circadian clock, but its importance for vision is unknown. Here, we show that mice lacking Bmal1, a gene required for clock function, had abnormal retinal transcriptional responses to light and defective inner retinal electrical responses to light, but normal photoreceptor responses to light and retinas that appeared structurally normal as observed by light and electron microscopy. We generated mice with a retina-specific genetic deletion of Bmal1, and they had defects of retinal visual physiology essentially identical to those of mice lacking Bmal1 in all tissues and lacked a circadian rhythm of inner retinal electrical responses to light. Our findings indicate that the intrinsic circadian clock of the retina regulates retinal visual processing in vivo.

  6. Lattice-induced nonadiabatic frequency shifts in optical lattice clocks

    SciTech Connect

    Beloy, K.

    2010-09-15

    We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10{sup -18} and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.

  7. Synchronization of Cellular Clocks in the Suprachiasmatic Nucleus

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Shun; Isejima, Hiromi; Matsuo, Takuya; Okura, Ryusuke; Yagita, Kazuhiro; Kobayashi, Masaki; Okamura, Hitoshi

    2003-11-01

    Individual cellular clocks in the suprachiasmatic nucleus (SCN), the circadian center, are integrated into a stable and robust pacemaker with a period length of about 24 hours. We used real-time analysis of gene expression to show synchronized rhythms of clock gene transcription across hundreds of neurons within the mammalian SCN in organotypic slice culture. Differentially phased neuronal clocks are topographically arranged across the SCN. A protein synthesis inhibitor set all cell clocks to the same initial phase and, after withdrawal, intrinsic interactions among cell clocks reestablished the stable program of gene expression across the assemblage. Na+-dependent action potentials contributed to establishing cellular synchrony and maintaining spontaneous oscillation across the SCN.

  8. Quantum Algorithmic Readout in Multi-Ion Clocks.

    PubMed

    Schulte, M; Lörch, N; Leroux, I D; Schmidt, P O; Hammerer, K

    2016-01-01

    Optical clocks based on ensembles of trapped ions promise record frequency accuracy with good short-term stability. Most suitable ion species lack closed transitions, so the clock signal must be read out indirectly by transferring the quantum state of the clock ions to cotrapped logic ions of a different species. Existing methods of quantum logic readout require a linear overhead in either time or the number of logic ions. Here we describe a quantum algorithmic readout whose overhead scales logarithmically with the number of clock ions in both of these respects. The scheme allows a quantum nondemolition readout of the number of excited clock ions using a single multispecies gate operation which can also be used in other areas of ion trap technology such as quantum information processing, quantum simulations, metrology, and precision spectroscopy. PMID:26799016

  9. Dissecting the Mechanisms of the Clock in Neurospora

    PubMed Central

    Hurley, Jennifer; Loros, Jennifer J.; Dunlap, Jay C.

    2015-01-01

    The circadian clock exists to synchronize inner physiology with the external world, allowing life to anticipate and adapt to the continual changes that occur in an organism’s environment. The clock architecture is highly conserved, present in almost all major branches of life. Within eukaryotes, the filamentous fungus Neurospora crassa has consistently been used as an excellent model organism to uncover the basic circadian physiology and molecular biology. The Neurospora model has elucidated our fundamental understanding of the clock as nested positive and negative feedback loop, regulated by transcriptional and posttranscriptional processes. This review will examine the basics of circadian rhythms in the model filamentous fungus N. crassa as well as highlight the output of the clock in Neurospora and the reasons that N. crassa has continued to be a strong model for the study of circadian rhythms. It will also synopsize classical and emerging methods in the study of the circadian clock. PMID:25662450

  10. A self-interfering clock as a "which path" witness.

    PubMed

    Margalit, Yair; Zhou, Zhifan; Machluf, Shimon; Rohrlich, Daniel; Japha, Yonathan; Folman, Ron

    2015-09-11

    In Einstein's general theory of relativity, time depends locally on gravity; in standard quantum theory, time is global-all clocks "tick" uniformly. We demonstrate a new tool for investigating time in the overlap of these two theories: a self-interfering clock, comprising two atomic spin states. We prepare the clock in a spatial superposition of quantum wave packets, which evolve coherently along two paths into a stable interference pattern. If we make the clock wave packets "tick" at different rates, to simulate a gravitational time lag, the clock time along each path yields "which path" information, degrading the pattern's visibility. In contrast, in standard interferometry, time cannot yield "which path" information. This proof-of-principle experiment may have implications for the study of time and general relativity and their impact on fundamental effects such as decoherence and the emergence of a classical world. PMID:26249229

  11. Calcium and SOL Protease Mediate Temperature Resetting of Circadian Clocks

    PubMed Central

    Tataroglu, Ozgur; Zhao, Xiaohu; Busza, Ania; Ling, Jinli; O’Neill, John S.; Emery, Patrick

    2015-01-01

    Summary Circadian clocks integrate light and temperature input to remain synchronized with the day/night cycle. Although light input to the clock is well studied, the molecular mechanisms by which circadian clocks respond to temperature remain poorly understood. We found that temperature phase shifts Drosophila circadian clocks through degradation of the pacemaker protein TIM. This degradation is mechanistically distinct from photic CRY-dependent TIM degradation. Thermal TIM degradation is triggered by cytosolic calcium increase and CALMODULIN binding to TIM and is mediated by the atypical calpain protease SOL. This thermal input pathway and CRY-dependent light input thus converge on TIM, providing a molecular mechanism for the integration of circadian light and temperature inputs. Mammals use body temperature cycles to keep peripheral clocks synchronized with their brain pacemaker. Interestingly, downregulating the mammalian SOL homolog SOLH blocks thermal mPER2 degradation and phase shifts. Thus, we propose that circadian thermosensation in insects and mammals share common principles. PMID:26590423

  12. A self-interfering clock as a "which path" witness.

    PubMed

    Margalit, Yair; Zhou, Zhifan; Machluf, Shimon; Rohrlich, Daniel; Japha, Yonathan; Folman, Ron

    2015-09-11

    In Einstein's general theory of relativity, time depends locally on gravity; in standard quantum theory, time is global-all clocks "tick" uniformly. We demonstrate a new tool for investigating time in the overlap of these two theories: a self-interfering clock, comprising two atomic spin states. We prepare the clock in a spatial superposition of quantum wave packets, which evolve coherently along two paths into a stable interference pattern. If we make the clock wave packets "tick" at different rates, to simulate a gravitational time lag, the clock time along each path yields "which path" information, degrading the pattern's visibility. In contrast, in standard interferometry, time cannot yield "which path" information. This proof-of-principle experiment may have implications for the study of time and general relativity and their impact on fundamental effects such as decoherence and the emergence of a classical world.

  13. A New Trapped Ion Clock Based on Hg-201(+)

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, S.; Burt, E. A.; Lea, S. N.; Prestage, J. D.; Tjoelker, R. L.

    2009-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave clock: Hg-199(+) and Hg-201(+). Virtually all trapped mercury ion clocks to date have used the 199 isotope. We have begun to investigate the viability of a trapped ion clock based on Hg-201(+). We have measured the unperturbed frequency of the (S-2)(sub 1/2) F = 1, m(sub F) = 0 to (S-2)(sub 1/2) F = 2, m(sub F) = 0 clock transition to be 29.9543658211(2) GHz. In this paper we describe initial measurements with Hg-201(+) and new applications to clocks and fundamental physics.

  14. The molecular clock mediates leptin-regulated bone formation.

    PubMed

    Fu, Loning; Patel, Millan S; Bradley, Allan; Wagner, Erwin F; Karsenty, Gerard

    2005-09-01

    The hormone leptin is a regulator of bone remodeling, a homeostatic function maintaining bone mass constant. Mice lacking molecular-clock components (Per and Cry), or lacking Per genes in osteoblasts, display high bone mass, suggesting that bone remodeling may also be subject to circadian regulation. Moreover, Per-deficient mice experience a paradoxical increase in bone mass following leptin intracerebroventricular infusion. Thus, clock genes may mediate the leptin-dependent sympathetic regulation of bone formation. We show that expression of clock genes in osteoblasts is regulated by the sympathetic nervous system and leptin. Clock genes mediate the antiproliferative function of sympathetic signaling by inhibiting G1 cyclin expression. Partially antagonizing this inhibitory loop, leptin also upregulates AP-1 gene expression, which promotes cyclin D1 expression, osteoblast proliferation, and bone formation. Thus, leptin determines the extent of bone formation by modulating, via sympathetic signaling, osteoblast proliferation through two antagonistic pathways, one of which involves the molecular clock.

  15. The Retina and Other Light-sensitive Ocular Clocks.

    PubMed

    Besharse, Joseph C; McMahon, Douglas G

    2016-06-01

    Ocular clocks, first identified in the retina, are also found in the retinal pigment epithelium (RPE), cornea, and ciliary body. The retina is a complex tissue of many cell types and considerable effort has gone into determining which cell types exhibit clock properties. Current data suggest that photoreceptors as well as inner retinal neurons exhibit clock properties with photoreceptors dominating in nonmammalian vertebrates and inner retinal neurons dominating in mice. However, these differences may in part reflect the choice of circadian output, and it is likely that clock properties are widely dispersed among many retinal cell types. The phase of the retinal clock can be set directly by light. In nonmammalian vertebrates, direct light sensitivity is commonplace among body clocks, but in mice only the retina and cornea retain direct light-dependent phase regulation. This distinguishes the retina and possibly other ocular clocks from peripheral oscillators whose phase depends on the pace-making properties of the hypothalamic central brain clock, the suprachiasmatic nuclei (SCN). However, in mice, retinal circadian oscillations dampen quickly in isolation due to weak coupling of its individual cell-autonomous oscillators, and there is no evidence that retinal clocks are directly controlled through input from other oscillators. Retinal circadian regulation in both mammals and nonmammalian vertebrates uses melatonin and dopamine as dark- and light-adaptive neuromodulators, respectively, and light can regulate circadian phase indirectly through dopamine signaling. The melatonin/dopamine system appears to have evolved among nonmammalian vertebrates and retained with modification in mammals. Circadian clocks in the eye are critical for optimum visual function where they play a role fine tuning visual sensitivity, and their disruption can affect diseases such as glaucoma or retinal degeneration syndromes. PMID:27095816

  16. Postnatal ontogenesis of molecular clock in mouse striatum.

    PubMed

    Cai, Yanning; Liu, Shu; Li, Ning; Xu, Shengli; Zhang, Yanli; Chan, Piu

    2009-04-01

    Striatum is an important brain area whose function is related to motor, emotion and motivation. Interestingly, biological and physiological circadian rhythms have been found in the striatum extensively, suggesting molecular clock machinery works efficiently therein. However, the striatal expression profiles of clock genes have not been characterized systematically. In addition, little is known about when the expression rhythms start during postnatal ontogenesis. In the present study, 24 h mRNA oscillations of 6 principle clock genes (Bmal1, Clock, Npas2, Cry1, Per1 and Rev-erb alpha) were examined in mouse striatum, at early postnatal stage (postnatal day 3), pre-weaning stage (postnatal day 14) and in adult (postnatal day 60). At P3, no daily oscillation was found for all clock genes. At P14, a significant time effect was identified only for Rev-erb alpha and Npas2. At P60, the daily oscillations of these clock genes were at least borderline significant, with peak time at Circadian time (CT) 01 for Bmal1, Clock, Npas2 and Cry1; at CT 13 for Per1; and at CT 07 for Rev-erb alpha. In addition, the overall mean mRNA levels of these clock genes also underwent a dynamic change postnatally. For Bmal1, Clock, Npas2, Per1 and Rev-erb alpha, the expression level increased throughout the postnatal ontogenesis from P3, P14 to P60. For Cry1, however, the abundance at P3 and P60 were similar while that at P14 was much lower. In conclusion, the striatal molecular clock machinery, although works efficiently in adult, develops gradually after birth in mice.

  17. Desynchronization of Noisy Multi-cellular Clocks Underlies the Population-level Singularity Behavior of Mammalian Circadian Clock

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya J.; Ukai, Hideki; Ueda, Hiroki R.

    2007-07-01

    The singularity behavior of circadian clocks defined as the suppression of circadian oscillation by critical perturbation is one of the intriguing dynamical properties of circadian rhythms. Although the singularity behaviors have been observed in various organisms, its mechanism has not yet been elucidated, because the hierarchical structure of multi-cell-level circadian clocks exists behind the organism-level circadian rhythm. In vitro light-responsible circadian system is indispensable for extracting the underlying mechanism of the singularity behavior behind the hierarchical structure of multi-cell organisms. To obtain such in vitro system, we synthetically constructed light-responsible mammalian clock cells by exogenously introducing a photo-responsible receptor. By using this synthetic system and population-level high-throughput promoter activity assay, we found that a light pulse with critical timing and strength can induce population-level singularity behavior of the light-responsible mammalian clock cells. Subsequent single-cell measurement revealed that desynchronization of multi-cellular clocks underlies the population-level singularity. A mathematical model consistently explains our population-level and single-cell-level experimental data, and also demonstrates that the synchronization and desynchronization of cellular clocks is the underlying mechanism of population-level response of circadian clocks to external perturbation. In addition, our model suggests that fluctuation in single-cell-level behavior of the clock cells is the key determinant of the observable singularity behavior.

  18. Disruption of the circadian clock due to the Clock mutation has discrete effects on aging and carcinogenesis

    PubMed Central

    Antoch, Marina P.; Gorbacheva, Victoria Y.; Vykhovanets, Olena; Toshkov, Illia A.; Kondratov, Roman V.; Kondratova, Anna A.; Lee, Choogon; Nikitin, Alexander Yu.

    2009-01-01

    The mammalian circadian system has been implicated in the regulation of various biological processes including those involved in genotoxic stress responses and tumor suppression. Here we report that mice with the functional deficiency in circadian transcription factor CLOCK (Clock/Clock mutant mice) do not display predisposition to tumor formation both during their normal lifespan or when challenged by γ-radiation. This phenotype is consistent with high apoptotic and low proliferation rate in lymphoid tissues of Clock mutant mice and is supported by the gene expression profiling of a number of apoptosis and cell cycle-related genes, as well as by growth inhibition of cells with CLOCK downregulation. At the same time, Clock mutant mice respond to low-dose irradiation by accelerating their aging program, and develop phenotypes that are reminiscent of those in Bmal1-deficient mice. Taken together, our results demonstrate the dichotomy in biological consequences of the disruption of the circadian clock with respect to ageing and cancer. They also highlight the existence of a complex interconnection between ageing, carcinogenesis and individual components of the circadian clock machinery. PMID:18418054

  19. Kelvin-Helmholtz vortices observed by Themis at the dusk side of the magnetopause under southward IMF

    NASA Astrophysics Data System (ADS)

    Qing, Yan Guang; McFadden, James; Parks, George; Shen, Chao; Mozer, Forrest; Chen, professor. Tao; Cai, Chunlin

    Under southward interplanetary magnetic field (IMF), 3 spacecraft of Themis observed several crossings of the magnetopause periodically at the duskside of the magnetopause, with tailward shear flows in the magnetosheath and significant sunward returning flows inside the magnetopause. The observed flow velocity shows rotating features for each of the spacecraft, and periodical enhancements could be seen in the vorticity calculated normal to the 3-point spacecraft plain based on the 3-point velocity measurements. The rotating features of the velocity and the periodic enhancements in the normal vorticity could be considered the evidence of the Kelvin-Helmholtz vortices due to the velocity shear at the dusk side of the magnetopause. The tailward propagation of the vortices along the flank magnetopause could be notable in the time lags from one spacecraft to another, which could be estimated as about 330 km/s, similar to the previous estimate under southward IMF. At the edges of the vortices, enhancements in the magnetic field due to the compression of the magnetic field could be found. By investigating the difference between the observed and convective electric fields, the non-convective electric field of 5-8 mV/m was observed at small scale from electron gyro-radius to ion gyro-radius, some of which consistent with the compression of the magnetic field at the distorted magnetopause. The non-convective electric field might possibly be one of the factors to induce possible reconnection inside the vortices.

  20. AE index forecast at different time scales through an ANN algorithm based on L1 IMF and plasma measurements

    NASA Astrophysics Data System (ADS)

    Pallocchia, G.; Amata, E.; Consolini, G.; Marcucci, M. F.; Bertello, I.

    2008-02-01

    The AE index is known to have two main components, one directly driven by the solar wind and the other related to the magnetotail unloading process. As regards the role played by the IMF and solar wind parameters, recently several authors used artificial neural networks (ANN) to forecast AE from solar wind data. Following this track, in this paper we present a study of the AE forecast at different time scales, from 5 min to 1 h, in order to check whether the performance of the ANN prediction varies significantly as a function of the AE time resolution.The study is based on a new ANN Elman network with Bz (in GSM) and Vx as inputs, one hidden layer containing four neurons, four context units and one output neuron. We find that the forecast AE values, during disturbed AE periods, result to be always smaller than the experimental values; on the other hand, the algorithm performance improves as the time scale increases, i.e. the total standard deviation (calculated over a test data set) between the forecast and the Kyoto AE decreases as the averaging time increases. Under the hypothesis that this decrease follows an exponential law, we find that the 1 h scale normalised standard deviation is 0.975, very close to the asymptotic value of 0.95 for an infinite averaging time. We interpret our results in the sense that the unloading component of the AE variations cannot be predicted from IMF and solar wind parameters only.

  1. Probing the Low-Mass End of the IMF in Star-Forming Regions: AWIRCam/CFHT Survey

    NASA Astrophysics Data System (ADS)

    Alves de Oliveira, Catarina; Moraux, Estelle; Bouvier, Jerôme; Burgess, Andrew; Bouy, Hervé; Marmo, Chiara; Hudelot, Patrick

    One of the most attempted goals of star formation theories is to determine the dominant process by which brown dwarfs form and the implications of the environment on its outcome. Current theories must be able to reproduce not only the observed shape of the IMF, but predict observable properties of clusters such as multiplicity, mass segregation, frequency and sizes of discs, accretion, etc. The new observational frontier is therefore the detection and characterization of very low mass objects in star forming regions, to confront model predictions from numerical simulations of the collapse of molecular clouds to the observed properties of YSOs. This is the main driver behind a WIRCam large program that has been conducted at CFHT to detect BD with masses between 1 and 30 Jupiter masses in a sample of 6 young clusters. I will present the main results obtained so far for the ρ Ophiuchi molecular cloud and IC 348, where a spectroscopic follow-up of many of these candidates is being conducted using several facilities (TNG, GTC, NTT, VLT, Gemini) to ascertain their spectral types and masses, and ultimately, to construct the low-mass end of the IMF for those star forming regions.

  2. The eCDR-PLL, a radiation-tolerant ASIC for clock and data recovery and deterministic phase clock synthesis

    NASA Astrophysics Data System (ADS)

    Leitao, P.; Francisco, R.; Llopart, X.; Tavernier, F.; Baron, S.; Bonacini, S.; Moreira, P.

    2015-03-01

    A radiation-tolerant CDR/PLL ASIC has been developed for the upcoming LHC upgrades, featuring clock Frequency Multiplication (FM) and Clock and Data Recovery (CDR), showing deterministic phase and low jitter. Two FM modes have been implemented: either generating 40, 60, 120 and 240 MHz clock outputs for GBT-FPGA applications or providing 40, 80, 160 and 320 MHz clocks for TTC and e-link applications. The CDR operates with 40, 80, 160 or 320 Mbit/s data rates while always generating clocks at 40, 80, 160 and 320 MHz, regardless of the data rate. All the outputs are phase programmable with a resolution of 195 ps or 260 ps, depending on the selected mode. The ASIC has been designed using radiation-tolerant techniques in a 130 nm CMOS technology and operates at a 1.2 V supply voltage.

  3. Superposed epoch analysis of vertical plasma flow and its relationship with FACs as observed by DMSP and CHAMP: IMF By and Bx dependence

    NASA Astrophysics Data System (ADS)

    Kervalishvili, Guram; Lühr, Hermann

    2016-04-01

    This study presents results of a superposed epoch analysis (SEA) method applied to vertical plasma flow and large-scale field aligned currents (FACs) in the Northern Hemisphere cusp region. Our study is based on DMSP (F13 and F15) and CHAMP satellite observations during the years 2001-2005. Interplanetary magnetic field (IMF) data were taken from the NASA/GSFC's OMNI online database. The dependence on IMF By and Bx component orientation is investigated, while the absolute amplitude of IMF Bz is selected to be less than 2 nT. Seasonal variations are also investigated with seasons defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32 days), and local summer (1 July ± 65 days). The reference time and location for the SEA method are taken from the vertical ion velocity peaks (> 100 m/s for upflow and <-100 m/s for downflow) detected by DMSP in the northern cusp region. Our analyses were performed in the magnetic latitude (MLat) and local time (MLT) coordinate system. In general the vertical plasma downflow is weaker than the upflow. This product, ion density times velocity, shows no dependence on the IMF By orientation, while its value increases towards local summer. The ion density is low in winter and increases towards local summer, while the vertical velocity is much higher in local winter than during equinoxes or local summer. The event number distribution (in MLat-MLT frame) of vertical ion velocity peaks shows no significant dependence on the given conditions. In case of large-scale FACs a clear dependence on IMF By orientation and local season emerges from SEA analysis. Similarly to the vertical plasma upflow, the amplitude of large-scale FACs is also increasing towards local summer. Large-scale FACs show an IMF By dependent regular pattern for upflow cases and no regular pattern for downflow cases in all considered cases.

  4. Clock and light regulation of the CREB coactivator CRTC1 in the suprachiasmatic circadian clock.

    PubMed

    Sakamoto, Kensuke; Norona, Frances E; Alzate-Correa, Diego; Scarberry, Daniel; Hoyt, Kari R; Obrietan, Karl

    2013-05-22

    The CREB/CRE transcriptional pathway has been implicated in circadian clock timing and light-evoked clock resetting. To date, much of the work on CREB in circadian physiology has focused on how changes in the phosphorylation state of CREB regulate the timing processes. However, beyond changes in phosphorylation, CREB-dependent transcription can also be regulated by the CREB coactivator CRTC (CREB-regulated transcription coactivator), also known as TORC (transducer of regulated CREB). Here we profiled both the rhythmic and light-evoked regulation of CRTC1 and CRTC2 in the murine suprachiasmatic nucleus (SCN), the locus of the master mammalian clock. Immunohistochemical analysis revealed rhythmic expression of CRTC1 in the SCN. CRTC1 expression was detected throughout the dorsoventral extent of the SCN in the middle of the subjective day, with limited expression during early night, and late night expression levels intermediate between mid-day and early night levels. In contrast to CRTC1, robust expression of CRTC2 was detected during both the subjective day and night. During early and late subjective night, a brief light pulse induced strong nuclear accumulation of CRTC1 in the SCN. In contrast with CRTC1, photic stimulation did not affect the subcellular localization of CRTC2 in the SCN. Additionally, reporter gene profiling and chromatin immunoprecipitation analysis indicated that CRTC1 was associated with CREB in the 5' regulatory region of the period1 gene, and that overexpression of CRTC1 leads to a marked upregulation in period1 transcription. Together, these data raise the prospect that CRTC1 plays a role in fundamental aspects of SCN clock timing and entrainment.

  5. Polarizabilities of the beryllium clock transition

    SciTech Connect

    Mitroy, J.

    2010-11-15

    The polarizabilities of the three lowest states of the beryllium atom are determined from a large basis configuration interaction calculation. The polarizabilities of the 2s{sup 2} {sup 1}S{sup e} ground state (37.73a{sub 0}{sup 3}) and the 2s2p {sup 3}P{sub 0}{sup o} metastable state (39.04a{sub 0}{sup 3}) are found to be very similar in size and magnitude. This leads to an anomalously small blackbody radiation shift at 300 K of -0.018(4) Hz for the 2s{sup 2} {sup 1}S{sup e}-2s2p {sup 3}P{sub 0}{sup o} clock transition. Magic wavelengths for simultaneous trapping of the ground and metastable states are also computed.

  6. Clock Agreement Among Parallel Supercomputer Nodes

    DOE Data Explorer

    Jones, Terry R.; Koenig, Gregory A.

    2014-04-30

    This dataset presents measurements that quantify the clock synchronization time-agreement characteristics among several high performance computers including the current world's most powerful machine for open science, the U.S. Department of Energy's Titan machine sited at Oak Ridge National Laboratory. These ultra-fast machines derive much of their computational capability from extreme node counts (over 18000 nodes in the case of the Titan machine). Time-agreement is commonly utilized by parallel programming applications and tools, distributed programming application and tools, and system software. Our time-agreement measurements detail the degree of time variance between nodes and how that variance changes over time. The dataset includes empirical measurements and the accompanying spreadsheets.

  7. Clocking and synchronization circuits in multiprocessor systems

    SciTech Connect

    Jeong, D.K.

    1989-01-01

    Microprocessors based on RISC (Reduced Instruction Set Computer) concepts have demonstrated an ability to provide more computing power at a given level of integration than conventional microprocessors. The next step is multiprocessors composed of RISC processing elements. Communication bandwidth among such microprocessors is critical in achieving efficient hardware utilization. This thesis focuses on the communication capability of VLSI circuits and presents new circuit techniques as a guide to build an interconnection network of VLSI microprocessors. Circuit techniques for PLL-based clock generation are described along with stability criteria. The main objective of the circuit is to realize a zero delay buffer. Experimental results show the feasibility of such circuits in VLSI. Synchronizer circuit configurations in both bipolar and MOS technology that best utilize each device, or overcome the technology limit using a bandwidth doubling technique are shown. Interface techniques including handshake mechanisms in such a system are also described.

  8. Precision of a Mammalian Circadian Clock

    NASA Astrophysics Data System (ADS)

    Kumar Sharma, Vijay; Chandrashekaran, Maroli K.

    This paper reports study of day-to-day instability in the locomotor activity rhythm of the nocturnal field mouse Mus booduga. The free-running period (τ) of this rhythm was estimated in constant darkness in n=347 adult male mice. The "onset" and "offset" of locomotor activity rhythm were used as phase markers of the circadian clock. The precision of the onset of locomotor activity was observed to be a non-linear function of τ, with maximal precision at τ close to 24h. The precision of the offset of locomotor activity was found to increase with increasing τ. These results suggest that the homeostasis of τ is tighter when τ is close to 24h.

  9. Dynamics and performance of clock pendulums

    NASA Astrophysics Data System (ADS)

    Hoyng, Peter

    2014-11-01

    We analyze the dynamics of a driven, damped pendulum as used in mechanical clocks. We derive equations for the amplitude and phase of the oscillation, on time scales longer than the pendulum period. The equations are first order ODEs and permit fast simulations of the joint effects of circular and escapement errors, friction, and other disturbances for long times. The equations contain two averages of the driving torque over a period, so that the results are not very sensitive to the "fine structure" of the driving. We adopt a constant-torque escapement and study the stationary pendulum rate as a function of driving torque and friction. We also study the reaction of the pendulum to a sudden change in the driving torque, and to stationary noisy driving. The equations for the amplitude and phase are shown to describe the pendulum dynamics quite well on time scales of one period and longer. Our emphasis is on a clear exposition of the physics.

  10. Mass Loading Characteristics of Crystal Clock Oscillators

    NASA Technical Reports Server (NTRS)

    Cobb, Janel; Morris, V. R.; Thorpe, A. N.

    1997-01-01

    The 10-MHz piezoelectric quartz-crystal microbalance (QCM) has been used extensively for stratospheric aerosol sampling. We have undertaken laboratory studies of the QCM response to mass loading by trace gases. However, this device requires dual oscillator circuitry and the mass sensitivity can often be affected by the electronics. The coatings on the quartz crystals are sometimes difficult to remove after they have reacted with a particular gas and a disposable crystal system would be desirable. The cost of the dual oscillator-based QCM makes this a prohibitive option. Since our goal is to develop a cost-effective microbalance system with stable electronics we have begun testing of crystal clock oscillators, which are assembled with their own circuitry. We have been using chemically specific coatings for ozone to determine if the sensitivity and mass-frequency ratios are comparable to that of the 10-MHz QCM.

  11. Clock comparison based on laser ranging technologies

    NASA Astrophysics Data System (ADS)

    Samain, Etienne

    2015-06-01

    Recent progress in the domain of time and frequency standards has required some important improvements of existing time transfer links. Several time transfer by laser link (T2L2) projects have been carried out since 1972 with numerous scientific or technological objectives. There are two projects currently under exploitation: T2L2 and Lunar Reconnaissance Orbiter (LRO). The former is a dedicated two-way time transfer experiment embedded on the satellite Jason-2 allowing for the synchronization of remote clocks with an uncertainty of 100 ps and the latter is a one-way link devoted for ranging a spacecraft orbiting around the Moon. There is also the Laser Time Transfer (LTT) project, exploited until 2012 and designed in the frame of the Chinese navigation constellation. In the context of future space missions for fundamental physics, solar system science or navigation, laser links are of prime importance and many missions based on that technology have been proposed for these purposes.

  12. Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock.

    PubMed

    Kamioka, Mari; Takao, Saori; Suzuki, Takamasa; Taki, Kyomi; Higashiyama, Tetsuya; Kinoshita, Toshinori; Nakamichi, Norihito

    2016-03-01

    The circadian clock is a biological timekeeping system that provides organisms with the ability to adapt to day-night cycles. Timing of the expression of four members of the Arabidopsis thaliana PSEUDO-RESPONSE REGULATOR(PRR) family is crucial for proper clock function, and transcriptional control of PRRs remains incompletely defined. Here, we demonstrate that direct regulation of PRR5 by CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) determines the repression state of PRR5 in the morning. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses indicated that CCA1 associates with three separate regions upstream of PRR5 CCA1 and its homolog LATE ELONGATED HYPOCOTYL (LHY) suppressed PRR5 promoter activity in a transient assay. The regions bound by CCA1 in the PRR5 promoter gave rhythmic patterns with troughs in the morning, when CCA1 and LHY are at high levels. Furthermore,ChIP-seq revealed that CCA1 associates with at least 449 loci with 863 adjacent genes. Importantly, this gene set contains genes that are repressed but upregulated incca1 lhy double mutants in the morning. This study shows that direct binding by CCA1 in the morning provides strong repression of PRR5, and repression by CCA1 also temporally regulates an evening-expressed gene set that includes PRR5. PMID:26941090

  13. Somitogenesis clock-wave initiation requires differential decay and multiple binding sites for clock protein.

    PubMed

    Campanelli, Mark; Gedeon, Tomás

    2010-04-01

    Somitogenesis is a process common to all vertebrate embryos in which repeated blocks of cells arise from the presomitic mesoderm (PSM) to lay a foundational pattern for trunk and tail development. Somites form in the wake of passing waves of periodic gene expression that originate in the tailbud and sweep posteriorly across the PSM. Previous work has suggested that the waves result from a spatiotemporally graded control protein that affects the oscillation rate of clock-gene expression. With a minimally constructed mathematical model, we study the contribution of two control mechanisms to the initial formation of this gene-expression wave. We test four biologically motivated model scenarios with either one or two clock protein transcription binding sites, and with or without differential decay rates for clock protein monomers and dimers. We examine the sensitivity of wave formation with respect to multiple model parameters and robustness to heterogeneity in cell population. We find that only a model with both multiple binding sites and differential decay rates is able to reproduce experimentally observed waveforms. Our results show that the experimentally observed characteristics of somitogenesis wave initiation constrain the underlying genetic control mechanisms.

  14. Recent Developments in Microwave Ion Clocks

    NASA Astrophysics Data System (ADS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    We review the development of microwave-frequency standards based on trapped ions. Following two distinct paths, microwave ion clocks have evolved greatly in the last twenty years since the earliest Paul-trap-based units. Laser-cooled ion frequency standards reduce the second-order Doppler shift from ion micromotion and thermal secular motion achieving good signal-to-noise ratios via cycling transitions where as many as ~10^8 photons per second per ion may be scattered. Today, laser-cooled ion standards are based on linear Paul traps which hold ions near the node line of the trapping electric field, minimizing micromotion at the trapping-field frequency and the consequent second-order Doppler frequency shift. These quadrupole (radial) field traps tightly confine tens of ions to a crystalline single-line structure. As more ions are trapped, space charge forces some ions away from the node-line axis and the second-order Doppler effect grows larger, even at negligibly small secular temperatures. Buffer-gas-cooled clocks rely on large numbers of ions, typically ~10^7, optically pumped by a discharge lamp at a scattering rate of a few photons per second per ion. To reduce the second-order Doppler shift from space charge repulsion of ions from the trap node line, novel multipole ion traps are now being developed where ions are weakly bound with confining fields that are effectively zero through the trap interior and grow rapidly near the trap electrode ``walls''.

  15. Redox rhythm reinforces the circadian clock to gate immune response.

    PubMed

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian

    2015-07-23

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.

  16. Use of Very Stable Clocks in Satellite Geodesy

    NASA Astrophysics Data System (ADS)

    Hugentobler, Urs; Romanyuk, Tetyana

    2016-07-01

    Time and frequency play an essential role in satellite geodesy and navigation. Global Navigation Satellite Systems (GNSS) rely on precise measurements of signal travel times. The satellite and receiver clocks involved in measuring this time interval need to be synchronized at the picosecond level. The concept of GNSS allows for an epoch-wise synchronization of space and ground clocks, a feature which is consequently used in satellite geodesy by estimating epoch-wise clock corrections for all clocks in the system, either explicitly or implicitly by forming double differences. Ultra-stable clocks allow to estimate only few parameters for each clock, e.g., offset and drift. The much reduced number of parameters should stabilize GNSS solutions, e.g., tracking network station coordinates. On the other hand systematic errors, e.g., from troposphere or orbit modeling deficiencies or temperature induced hardware delay variations may systematically affect the solutions. The presentation shows trade-offs of modelling higly stable clocks and negative impact of error sources based on simulations.

  17. The circadian clock and defence signalling in plants.

    PubMed

    Sharma, Mayank; Bhatt, Deepesh

    2015-02-01

    The circadian clock is the internal time-keeping machinery in higher organisms. Cross-talk between the circadian clock and a diverse range of physiological processes in plants, including stress acclimatization, hormone signalling, photomorphogenesis and defence signalling, is currently being explored. Recent studies on circadian clock genes and genes involved in defence signalling have indicated a possible reciprocal interaction between the two. It has been proposed that the circadian clock shapes the outcome of plant-pathogen interactions. In this review, we highlight the studies carried out so far on two model plant pathogens, namely Pseudomonas syringae and Hyaloperonospora arabidopsidis, and the involvement of the circadian clock in gating effector-triggered immunity and pathogen-associated molecular pattern-triggered immunity. We focus on how the circadian clock gates the expression of various stress-related transcripts in a prolific manner to enhance plant fitness. An understanding of this dynamic relationship between clock and stress will open up new avenues in the understanding of endogenous mechanisms of defence signalling in plants.

  18. "Round-the-Clock" Surgical Access to the Orbit.

    PubMed

    Paluzzi, Alessandro; Gardner, Paul A; Fernandez-Miranda, Juan C; Tormenti, Matthew J; Stefko, S Tonya; Snyderman, Carl H; Maroon, Joseph C

    2015-02-01

    Objective To describe an algorithm to guide surgeons in choosing the most appropriate approach to orbital pathology. Methods A review of 12 selected illustrative cases operated on at the neurosurgical department of University of Pittsburgh Medical Center over 3 years from 2009 to 2011 was performed. Preoperative coronal magnetic resonance imaging and/or computed tomography views were compared using a "clock model" of the orbit with its center at the optic nerve. The rationale for choosing an external, endoscopic, or combined approach is discussed for each case. Results Using the right orbit for demonstration of the clock model, the medial transconjunctival approach provides access to the anterior orbit from 1 to 6 o'clock; endoscopic endonasal approaches provide access to the mid and posterior orbit and orbital apex from 1 to 7 o'clock. The lateral micro-orbitotomy gives access to the orbit from 8 to 10 o'clock. The frontotemporal craniotomy with orbital osteotomy accesses the orbit from 9 to 1 o'clock; addition of a zygomatic osteotomy to this extends access from 6 to 8 o'clock. Conclusions Combined, the approaches described provide 360 degrees of access to the entire orbit with the choice of the optimal approach guided primarily by the avoidance of crossing the plane of the optic nerve.

  19. Crosstalk of clock gene expression and autophagy in aging

    PubMed Central

    Kalfalah, Faiza; Janke, Linda; Schiavi, Alfonso; Tigges, Julia; Ix, Alexander; Ventura, Natascia; Boege, Fritz; Reinke, Hans

    2016-01-01

    Autophagy and the circadian clock counteract tissue degeneration and support longevity in many organisms. Accumulating evidence indicates that aging compromises both the circadian clock and autophagy but the mechanisms involved are unknown. Here we show that the expression levels of transcriptional repressor components of the circadian oscillator, most prominently the human Period homologue PER2, are strongly reduced in primary dermal fibroblasts from aged humans, while raising the expression of PER2 in the same cells partially restores diminished autophagy levels. The link between clock gene expression and autophagy is corroborated by the finding that the circadian clock drives cell-autonomous, rhythmic autophagy levels in immortalized murine fibroblasts, and that siRNA-mediated downregulation of PER2 decreases autophagy levels while leaving core clock oscillations intact. Moreover, the Period homologue lin-42 regulates autophagy and life span in the nematode Caenorhabditis elegans, suggesting an evolutionarily conserved role for Period proteins in autophagy control and aging. Taken together, this study identifies circadian clock proteins as set-point regulators of autophagy and puts forward a model, in which age-related changes of clock gene expression promote declining autophagy levels. PMID:27574892

  20. The Circadian Clock in Oral Health and Diseases

    PubMed Central

    Papagerakis, S.; Zheng, L.; Schnell, S.; Sartor, M.A.; Somers, E.; Marder, W.; McAlpin, B.; Kim, D.; McHugh, J.; Papagerakis, P.

    2014-01-01

    Most physiological processes in mammals display circadian rhythms that are driven by the endogenous circadian clock. This clock is comprised of a central component located in the hypothalamic suprachiasmatic nucleus and subordinate clocks in peripheral tissues. Circadian rhythms sustain 24-hour oscillations of a large number of master genes controlling the correct timing and synchronization of diverse physiological and metabolic processes within our bodies. This complex regulatory network provides an important communication link between our brain and several peripheral organs and tissues. At the molecular level, circadian oscillations of gene expression are regulated by a family of transcription factors called “clock genes”. Dysregulation of clock gene expression results in diverse human pathological conditions, including autoimmune diseases and cancer. There is increasing evidence that the circadian clock affects tooth development, salivary gland and oral epithelium homeostasis, and saliva production. This review summarizes current knowledge of the roles of clock genes in the formation and maintenance of oral tissues, and discusses potential links between “oral clocks” and diseases such as head and neck cancer and Sjögren’s syndrome. PMID:24065634