DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian Fangfang; Xiao Hailian; Liu Faqian
2006-12-15
Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN){sub 4}Ni(Im){sub 3}] {sub {infinity}} 1, [Hg(SCN){sub 4}Mn(Im){sub 2}] {sub {infinity}} 2, and [Hg(SCN){sub 4}Cu(Me-Im){sub 2} Hg(SCN){sub 4}Cu(Me-Im){sub 4}] {sub {infinity}} 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by means of elemental analysis, ESR, and single-crystal X-ray. X-ray diffraction analysis reveals that these three complexes all form 3D network structure, and their structures all contain a thiocyanato-bridged Hg...Hg chain (M=Mn, Ni, Cu) in which the metal and mercury centers exhibit different coordination environments. In complex 1, the [Hg(SCN){sub 4}]{sup 2-} anion connects three [Ni(Im){sub 3}]{sup 2+} using three SCN ligands giving risemore » to a 3D structure, and in complex 2, four SCN ligands bridge [Hg(SCN){sub 4}]{sup 2-} and [Mn(Im){sub 2}]{sup 2+} to form a 3D structure. The structure of 3 contains two copper atoms with distinct coordination environment; one is coordinated by four N-methyl-imidazole ligands and two axially elongated SCN groups, and another by four SCN groups (two elongated) and two N-methyl-imidazole ligands. The magnetic property of complex 1 has been investigated. The spin state structure in hetermetallic NiHgNi systems of complex 1 is irregular. The ESR spectra results of complex 3 demonstrate Cu{sup 2+} ion lie on octahedral environment. -- Graphical abstract: Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN){sub 4}Ni(Im){sub 3}] {sub {infinity}} 1, [Hg(SCN){sub 4}Mn(Im){sub 2}] {sub {infinity}} 2, and [Hg(SCN){sub 4}Cu(Me-Im){sub 2} Hg(SCN){sub 4}Cu(Me-Im){sub 4}] {sub {infinity}} 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by single-crystal X-ray. All coordination polymers possess 3-D structures, and consist of organic base neutral ligands (imidazole and N-methyl-imidazole) and SCN{sup -1} anions. Their structural difference is maicaused by the role of the organic base and metal ions. The complex 1 shows the irregular spin state structure.« less
Majhi, Paresh Kumar; Schnakenburg, Gregor; Streubel, Rainer
2014-11-28
Synthesis of the first P(V)-bridged bis(NHC) ligand 7 was achieved via deprotonation of P(V)-functionalized bis(imidazolium) salt 6, which was obtained via oxidative desulfurization of bis(imidazole-2-thion-4-yl)phosphane 2. Bis(imidazolium) salt 6 was also employed to synthesize the corresponding silver complex 8. All new products were firmly established by spectroscopic and spectrometric methods as well as elemental analysis and, in addition, X-ray crystal structure analysis in the case of 3.
Liu, Yaru; Liu, Lan; Zhang, Xiao; Liang, Guorui; Gong, Xuebing
2018-01-01
The rational selection of ligands is vitally important in the construction of coordination complexes. Two novel Zn II complexes, namely bis(acetato-κO)bis[1-(1H-benzotriazol-1-ylmethyl)-2-propyl-1H-imidazole-κN 3 ]zinc(II) monohydrate, [Zn(C 13 H 15 N 5 ) 2 (C 2 H 3 O 2 ) 2 ]·H 2 O, (1), and bis(azido-κN 1 )bis[1-(1H-benzotriazol-1-ylmethyl)-2-propyl-1H-imidazole-κN 3 ]zinc(II), [Zn(C 13 H 15 N 5 ) 2 (N 3 ) 2 ], (2), constructed from the asymmetric multidentate imidazole ligand, have been synthesized under mild conditions and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction analysis. Both complexes exhibit a three-dimensional supramolecular network directed by different intermolecular interactions between discrete mononuclear units. The complexes were also investigated by fluorescence and thermal analyses. The experimental results show that (1) is a promising fluorescence sensor for detecting Fe 3+ ions and (2) is effective as an accelerator of the thermal decomposition of ammonium perchlorate.
NASA Astrophysics Data System (ADS)
Turkyilmaz, Murat; Uluçam, Gühergül; Aktaş, Şaban; Okan, S. Erol
2017-05-01
Two new pincer type N-heterocyclic carbene ligands were synthesized. The compounds were characterized by FTIR, NMR (1H, 13C) GC-MS and elemental analyses. They were also both modelled by DFT calculations as the crystal structure of 1,3-bis(acetamide)imidazol-3-ium bromide was determined by XRD which is an orthorhombic system with space group P21212. The structural analyses in gas phase were realized by comparing the experimental NMR and IR spectra with those of the theoretical calculations. In vitro biological activities of the molecules were determined and found that one of them exhibits significant cytotoxic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G.-F., E-mail: wgf1979@126.com; Zhang, X., E-mail: zhangx@hit.edu.cn; Sun, S.-W., E-mail: s-shuwen@163.com
3-(4-(1H-Benzo[d]imidazol-1-yl)-4-methoxyphenyl)-1-phenylprop-2-en-1-one (L{sup 1}, 1) and its Mn(II) complex, [Mn(L{sup 1}){sub 2}(SCN){sub 2}]{sub ∞} (2), were synthesized and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction. The Mn(II) ion in 2 is six-coordinated to four nitrogen atoms of two L{sup 1} ligands, two SCN-ligands, and two oxygen atoms of other two L{sup 1} ligands to form a distorted octahedral geometry. Therefore, each L{sup 1} links Mn ions through the O and N atoms to generate 2D sheet structure.
Kalanithi, M; Rajarajan, M; Tharmaraj, P; Sheela, C D
2012-02-15
Tridentate chelate complexes of Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the chalcone based ligands 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-(phenylallyl)]phenol(HL(1)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-p-tolylallyl]phenol(HL(2)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-4-nitrophenylallyl]phenol(HL(3)). Microanalytical data, UV-vis spectrophotometric method, magnetic susceptibility measurements, IR, 1H NMR, Mass, and EPR techniques were used to characterize the structure of chelates. The electronic absorption spectra and magnetic susceptibility measurements suggest a distorted square planar geometry for the copper(II) ion. The other metal complexes show distorted tetrahedral geometry. The coordination of the ligands with metal(II) ions was further confirmed by solution fluorescence spectrum. The antimicrobial activity of the ligands and metal(II) complexes against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger has been carried out and compared. The electrochemical behavior of copper(II) complex is studied by cyclic voltammetry. Copyright © 2011 Elsevier B.V. All rights reserved.
Fujinami, Takeshi; Koike, Masataka; Matsumoto, Naohide; Sunatsuki, Yukinari; Okazawa, Atsushi; Kojima, Norimichi
2014-02-17
The solvent-free spin crossover iron(III) complex [Fe(III)(Him)2(hapen)]AsF6 (Him = imidazole, H2hapen = N,N'-bis(2-hydroxyacetophenylidene)ethylenediamine), exhibiting thermal hysteresis, was synthesized and characterized. The Fe(III) ion has an octahedral coordination geometry, with N2O2 donor atoms of the planar tetradentate ligand (hapen) and two nitrogen atoms of two imidazoles at the axial positions. One of two imidazoles is hydrogen-bonded to the phenoxo oxygen atom of hapen of the adjacent unit to give a hydrogen-bonded one-dimensional chain, while the other imidazole group is free from hydrogen bonding. The temperature dependencies of the magnetic susceptibilities and Mössbauer spectra revealed an abrupt spin transition between the high-spin (S = 5/2) and low-spin (S = 1/2) states, with thermal hysteresis.
NASA Astrophysics Data System (ADS)
Jian, Fang-Fang; Xiao, Hai-Lian; Liu, Fa Qian
2006-12-01
Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN) 4Ni(Im) 3] ∞1, [Hg(SCN) 4Mn(Im) 2] ∞2, and [Hg(SCN) 4Cu(Me-Im) 2 Hg(SCN) 4Cu(Me-Im) 4] ∞3, (Im=imidazole, Me-Im= N-methyl-imidazole), have been synthesized and characterized by means of elemental analysis, ESR, and single-crystal X-ray. X-ray diffraction analysis reveals that these three complexes all form 3D network structure, and their structures all contain a thiocyanato-bridged Hg⋯M⋯Hg chain ( M=Mn, Ni, Cu) in which the metal and mercury centers exhibit different coordination environments. In complex 1, the [Hg(SCN) 4] 2- anion connects three [Ni(Im) 3] 2+ using three SCN ligands giving rise to a 3D structure, and in complex 2, four SCN ligands bridge [Hg(SCN) 4] 2- and [Mn(Im) 2] 2+ to form a 3D structure. The structure of 3 contains two copper atoms with distinct coordination environment; one is coordinated by four N-methyl-imidazole ligands and two axially elongated SCN groups, and another by four SCN groups (two elongated) and two N-methyl-imidazole ligands. The magnetic property of complex 1 has been investigated. The spin state structure in hetermetallic NiHgNi systems of complex 1 is irregular. The ESR spectra results of complex 3 demonstrate Cu 2+ ion lie on octahedral environment.
NASA Astrophysics Data System (ADS)
Jin, Jun-Cheng; Fu, Ai-Yun; Li, Dian; Chang, Wen-Gui; Wu, Ju; Yang, Mei; Xie, Cheng-Gen; Xu, Guang-Nian; Cai, An-Xing; Wu, Ai-Hua
2014-11-01
Two new zinc(II) metal-organic compounds of [Zn(ADC)(bimh)]n (1) and [Zn(ADA)(bimh)]n (2) (H2ADC = 1,3-adamantanedicarboxylic acid, H2ADA = 1,3-adamantanediacetic acid, bimh = 1,6-bis(2-methyl-imidazole-1-yl)-hexane, have been structurally characterized by X-ray diffraction analysis. In compound 1, the zinc(II) ions are bridged by ADC and bimh ligands to form a 1D looped chain. In compound 2, the ADA molecules alternately bridge Zn(II) atoms to form infinite chains, and then the 1D chain is connected through the bimh ligand resulting in an undulating infinite two-dimensional (2D) polymeric network. Additionally, TG analysis, XRPD and fluorescent properties for compounds 1 and 2 are also measured and discussed.
Worm, Karen; Chu, Feiya; Matsumoto, Kazunari; Best, Michael D; Lynch, Vincent; Anslyn, Eric V
2003-02-03
Two preorganized bis-zinc receptors (2 and 3) were synthesized wherein the metals were ligated with ligands present in natural phosphodiesterases: imidazoles and carboxylates. The intrametallic distance is near 4.5 A, that found in natural nucleases and other successful artificial nucleases. With only two imidazoles (2), the zinc binding affinities were not high enough to achieve cooperativity. Yet, with a third ligand, a carboxylate (3), cooperativity was found in the cleavage of HPNPP. The preorganization of 3 was achieved using a "steric gearing" strategy. The enhancement was 80-fold for cooperation between the two metals relative to a mono-metallic analogue (5). However, there was no observable enhancement in the hydrolysis of RNA using 3 relative to 5. Therefore, we conclude that placing two zinc atoms that are ligated with natural ligands at the appropriate distance for catalysis is not sufficient to enhance the cleavage of RNA, but is successful for activated RNA substrate mimics.
NASA Astrophysics Data System (ADS)
Liu, Kang; Sun, Yayong; Deng, Liming; Cao, Fan; Han, Jishu; Wang, Lei
2018-02-01
Six new copper(II) coordination polymers combining 2,3,5,6-tetrafluoroterephthalatic acid (H2tfBDC) and diverse imidazole-containing ligands, {[Cu(tfBDC)(1,2-bix)2]·2(H2O)}n (1), {Cu(tfBDC)(Im)2}n (2), {[Cu(1,4-bmimb)2(H2O)]·(tfBDC)·2(H2O)}n (3), {Cu(1,4-bimb)2(H2O)2·(tfBDC)}n (4), {[Cu(1,3-bix)2(H2O)2]·(tfBDC)·6(H2O)}n (5) and {[Cu(1,4-bix)2(H2O)2]·(tfBDC)·(1,4-bix)·4(H2O)}n (6) (1,2-bix = 1,2-bis(imidazole-1-ylmethyl)-benzene, Im = imidazole, 1,4-bmimb = 1,4-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene, 1,4-bimb = 1,4-bis(imidazol-1-yl)-butane, 1,3-bix = 1,3-bis(imidazole-1-ylmethyl)-benzene, 1,4-bix = 1,4-bis(imidazole-1-ylmethyl)-benzene), have been obtained and structurally verified by single-crystal X-ray diffraction analyses and further characterized by powder X-ray diffraction (PXRD), elemental analyses and infrared spectroscopy (IR). Single crystal X-ray diffraction analysis revealed that 1 is 2D 4-connected sql topology (point symbol: {44·62}) based on a single metal ion node. Compound 2 is characterized as an infinite 1D chain structure, which is further extended into a 2D layer through N-H···O hydrogen bonds and then a 3D supramolecular architecture via π···π stacking interactions. Note that 2 was prepared through an in situ ligand reaction in which N,N'-carbonyldiimidazole (cdi) broke up into imidazole ligand. Compound 3 possesses a 3D 4-fold interpenetrated architecture with 4-connected dia topology (Schläfli symbol: {66}) in which tfBDC2- is stabilized in the channel by hydrogen bonds. Compounds 4-6 are all linear 1D coordination polymers. In 4, the free tfBDC2- ligand acts as a μ4-bridge to link four coordinated water molecules from the chain to construct a 2D structure via hydrogen bonds. While in 5 and 6, the uncoordinated tfBDC2- ligands and multimeric water clusters is responsible for the conversion of these 1D coordination polymers into 3D supramolecular assemblies through O-H⋯O hydrogen bonding interactions. Moreover, the UV-vis spectra and thermal stability of 1-6 are discussed in detail.
Wu, Qi; Yao, Zhen; Li, Jianfeng
2017-09-01
Metalloporphyrin complexes containing an additional imidazole ligand can provide information about the effect of deprotonation or hydrogen bonding on the axial histidine unit in heme proteins. The title high-spin five-coordinate imidazolate-ligated iron(II) porphyrinate, [K(C 18 H 36 N 2 O 6 )][Fe(C 4 H 5 N 2 )(C 44 H 28 N 4 )]·C 4 H 6 N 2 ·2C 4 H 8 O, has been synthesized and investigated. The solvated salt crystallizes with one 2-methylimidazole molecule, two tetrahydrofuran solvent molecules and a potassium cation chelated inside a cryptand-222 (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) molecule. The imidazolate ligand is ordered. The average Fe-Np (Np is a porphyrin N atom) bond length is 2.113 (11) Å and the axial Fe-N Im (N Im is an imidazolate N atom) is 2.0739 (13) Å. The out-of-plane displacement of the Fe II atom from the 24-atom mean plane is 0.6098 (5) Å, indicating an apparent doming of the porphyrin core.
Zeolitic imidazolate frameworks for kinetic separation of propane and propene
Li, Jing; Li, Kunhao; Olson, David H.
2014-08-05
Zeolitic Imidazolate Frameworks (ZIFs) characterized by organic ligands consisting of imidazole ligands that are either essentially all 2-chloroimidazole ligands or essentially all 2-bromoimidazole ligands are disclosed. Methods for separating propane and propene with the ZIFs of the present invention, as well as other ZIFs, are also disclosed.
NASA Astrophysics Data System (ADS)
Arıcı, Mürsel; Yeşilel, Okan Zafer; Taş, Murat
2017-01-01
Three new Cd(II)-coordination polymers, namely, {[Cd2(μ6-ao2btc)(μ-1,5-bipe)2]·2H2O}n (1), {[Cd2(μ6-ao2btc)(μ-1,4-bix)2]n·2DMF} (2) and {[Cd2(μ8-abtc)(μ-1,4-betix)]·DMF·H2O}n (3) (ao2btc=di-oxygenated form of 3,3‧,5,5‧-azobenzenetetracarboxylate, 1,5-bipe: 1,5-bis(imidazol-1yl)pentane, 1,4-bix=1,4-bis(imidazol-1ylmethyl)benzene, 1,4-betix=1,4-bis(2-ethylimidazol-1ylmethyl)benzene) were synthesized with 3,3‧,5,5‧-azobenzenetetracarboxylic acid and flexible, semi-flexible and semi-flexible substituted bis(imidazole) linkers. They were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffractions (PXRD) and thermal analyses (TG/DTA). Complexes 1-3 exhibited structural diversities depending on flexible, semi-flexible and semi-flexible substituted bis(imidazole) ligands. Complex 1 was 2D structure with 3,6L18 topology. Complex 2 had a 3D pillar-layered framework with the rare sqc27 topology. When semi-flexible substituted bis(imidazole) linker was used, 3D framework of complex 3 was obtained with the paddlewheel Cd2(CO2)4-type binuclear SBU. Moreover, thermal and photoluminescence properties of the complexes were determined in detailed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arıcı, Mürsel, E-mail: marici@ogu.edu.tr; Yeşilel, Okan Zafer; Taş, Murat
Three new Cd(II)-coordination polymers, namely, ([Cd{sub 2}(μ{sub 6}-ao{sub 2}btc)(μ-1,5-bipe){sub 2}]·2H{sub 2}O){sub n} (1), ([Cd{sub 2}(μ{sub 6}-ao{sub 2}btc)(μ-1,4-bix){sub 2}]{sub n}·2DMF) (2) and ([Cd{sub 2}(μ{sub 8}-abtc)(μ-1,4-betix)]·DMF·H{sub 2}O){sub n} (3) (ao{sub 2}btc=di-oxygenated form of 3,3′,5,5′-azobenzenetetracarboxylate, 1,5-bipe: 1,5-bis(imidazol-1yl)pentane, 1,4-bix=1,4-bis(imidazol-1ylmethyl)benzene, 1,4-betix=1,4-bis(2-ethylimidazol-1ylmethyl)benzene) were synthesized with 3,3′,5,5′-azobenzenetetracarboxylic acid and flexible, semi-flexible and semi-flexible substituted bis(imidazole) linkers. They were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffractions (PXRD) and thermal analyses (TG/DTA). Complexes 1–3 exhibited structural diversities depending on flexible, semi-flexible and semi-flexible substituted bis(imidazole) ligands. Complex 1 was 2D structure with 3,6L18 topology. Complex 2 had a 3D pillar-layered framework with the raremore » sqc27 topology. When semi-flexible substituted bis(imidazole) linker was used, 3D framework of complex 3 was obtained with the paddlewheel Cd{sub 2}(CO{sub 2}){sub 4}-type binuclear SBU. Moreover, thermal and photoluminescence properties of the complexes were determined in detailed. - Graphical abstract: In this study, three novel Cd(II)-coordination polymers were synthesized with 3,3′,5,5′-azobenzenetetracarboxylic acid and flexible, semi-flexible and semi-flexible substituted bis(imidazole) linkers. They were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffractions (PXRD) and thermal analyses (TG/DTA). Complexes 1–3 exhibited structural diversities depending on flexible, semi-flexible and semi-flexible substituted bis(imidazole) ligands. Complex 1 was 2D structure with 3,6L18 topology. Complex 2 had a 3D pillar-layered framework with the rare sqc27 topology. When semi-flexible substituted bis(imidazole) linker was used, 3D framework of complex 3 was obtained with the paddlewheel Cd{sub 2}(CO{sub 2}){sub 4}-type binuclear SBU. - Highlights: • Three new Cd(II)-coordination polymers with azobenzenetetracarboxylic acid and diverse bis(imidazole) linkers. • Complex 1 is 2D structure with 3,6L18 topology. • 3D pillar-layered framework of 2 with the rare sqc27 topology. • 3D framework of 3 with the paddlewheel Cd{sub 2}(CO{sub 2}){sub 4}-type SBU.« less
Crystal Structure of Two V-shaped Ligands with N-Heterocycles
NASA Astrophysics Data System (ADS)
Wang, Gao-Feng; Sun, Shu-Wen; Zhang, Xiao; Sun, Shu-Gang
2017-12-01
Two V-shaped ligands with N-heterocycles, bis(4-(1 H-imidazol-1-yl) phenyl)methanone ( 1), and bis(4-(1 H-benzo[d]imidazol-1-yl)phenyl)methanone ( 2) have been synthesized and characterized by elemental analyses, IR and 1 H NMR spectroscopy. Crystal structures of 1 and 2 have been determined by X-ray diffraction. The crystal of 1 is monoclinic, sp. gr. P21/ c, Z = 4. The crystal of 2 is orthorhombic, sp. gr. Fdd2, Z = 8. X-ray diffraction analyses show that the V-shaped angles of 1 and 2 are 122.72(15)° and 120.7(4)°, respectively. Intermolecular C-H···O, C-H···N, C-H···π, and π···π interactions link the components into three-dimensional networks in the crystal structures.
NASA Astrophysics Data System (ADS)
Jin, Tianqi; Zhou, Junqiang; Pan, Yangyang; Huang, Yu; Jin, Chuanming
2018-05-01
Three novel supramolecular complexes, [Ag4(2-mBIM)4](ClO4)4(H2O) (1), [Ag2(2-mBIM)2](PF6)2 (2) and [Ag2(PA-BIM)2](ClO4)2(CH2Cl2) (3) (2-mBIM = bis(2-methyl- imidazol-1-yl)methane; PA-BIM = 1,1-bis[(2-phenylazo)imidazol-1-yl]methane), have been prepared and structurally characterized. The reported complexes bear [4+4]metallomacrocyclic motifs comprising four silver atoms and four ditopic bis(imidazolyl)methane ligands. Complex 1 exhibits a rare 1D infinite inorganic [2]catenane structure, which was self-assembled by the interlocking action of [4+4]metallomacrocyclic units. Complex 2 is a 2D layered supramolecular motif containing [4+4]macrometallacycle units with π-π interaction between imidazole rings. Complex 3 has a 2D sheet supramolecular framework through Ag-Ag interactions in [4+4]macrometallacyclic calix [8]phenylazoimidazole with a nanocavity. The results suggest that the bisimidazolium ligands and anions play crucial roles in the formation of the different host structures. The thermal stability and photoluminescence spectra of the synthesized complexes have also been discussed.
NASA Astrophysics Data System (ADS)
Li, Kunhao
The discovery of the dramatic in vitro antimalarial activity of 2-iodo-L-histidine and 2-fluoro-L-histidine, as well as their in vivo limitations, has prompted a systematic search for novel 2-substituted imidazoles and bioimidazoles as agents against human malaria. Previous research has shown that the regioselective alkyl free radical substitution on imidazoles and bioimidazoles could serve as a simple and efficient route to a wide variety of 2-alkylimidazoles. In this research, this methodology was successfully extended to include alkyl radicals substituted with various functional groups such as amide or ester. While this novel methodology should be of some synthetic utility when tertiary radicals are used, poorer yields are usually encountered in the cases of primary radicals. In the second part of this dissertation, a series of novel ligands containing multiple ortho-bis(organothio) groups were synthesized and their coordination and network forming properties were studied in the context of crystalline organic-inorganic hybrid extended networks. For the syntheses of HRTTs [2,3,6,7,10,11-hexakis(alkylthio)triphenylenes], a simpler, safer and higher yielding one-pot process was developed. Quenching the hexa-anions (formed when sodium methylthiolate was refluxed with hexabromotriphenylene) with alkyl halides or acid chlorides afforded HRTTs. This newly developed process was also successfully expanded to the pyrene system. In the syntheses of unsymmetrically substituted triphenlyenes, it was shown for the first time that the oxidative cyclization process is applicable to thioether containing systems, pointing to a novel strategy for the preparation of this type of unsymmetrically substituted triphenlyenes. Treating these novel ligands with various metal salts [i.e. bismuth(III) chloride and bismuth(III) bromide] under carefully controlled conditions resulted in a series of air-stable semiconductive coordination networks. Their single crystal structures were determined by X-ray diffraction and properties such as semiconductivity and solution processability, as well as the structure-property relationship, were also studied. As a reasonable extension of this research, two phenylacetylene-based thioether containing ligands L1 and L2, were prepared. Similar to the triphenylene-based ligands, they also formed semiconductive extended networks with bismuth(III) bromide. The preparation of HArTTs [2,3,6,7,10,11-hexakis-(arylthio)triphenlyenes] and a series of crystalline extended networks based on the coordination of these ligands and various silver salts are reported in Chapter 5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arıcı, Mürsel, E-mail: marici@ogu.edu.tr; Zafer Yeşilel, Okan; Büyükgüngör, Orhan
Four coordination polymers including, [Co(µ-Htbip){sub 2}(µ-dib)]{sub n} (1), [Co(µ-tbip)(µ-dmib){sub 0.5}]{sub n} (2), [Zn{sub 2}(µ-tbip)(µ{sub 3}-tbip)(µ-dmib){sub 1.5}]{sub n} (3) and [Cd(µ{sub 3}-tbip)(µ-dib){sub 0.5} (H{sub 2}O)]{sub n} (4) (tbip: 5-tert-butylisophthalate, dib: 1,4-bis(imidazol-1yl)benzene, dmib: 1,4-bis(imidazol-1yl)-2,5-dimethylbenzene), were hydrothermally synthesized and characterized by elemental analysis, IR spectra, single crystal and powder X-ray diffraction and thermal analysis (TG/DTA). The structural diversity is observed depending on ligands and coordination number of metal centers in the synthesized complexes. The tbip ligand displayed five different coordination modes in its complexes. In 1 and 2, complex 1 is 3D framework with the dia topology while complex 2 has 2D structuremore » with the sql topology depending on coordination geometries of Co ions. Complex 3 is 3D framework with the fsh 4,6-conn topology and complex 4 has 2D 4-connected sql topology. Photoluminescent properties of complex 3 dispersed in various organic solvents were investigated and the results showed that 3 dispersed in methanol could be used as a fluorescent sensor for the detection of acetone. Moreover, thermal and optical properties of the complexes were also studied. - Graphical abstract: Four coordination polymers were hydrothermally synthesized and characterized by various techniques. The complexes showed the structural diversity depending on ligands and coordination number of metal centers. The tbip ligand displayed four different coordination modes in its complexes. In 1 and 2, complexes 1 and 2 are 3D and 2D structures with the dia and sql topologies depending on coordination geometries of Co ions, respectively. Complexes 3 and 4 are 3D and 2D structures with the fsh 4,6-conn and sql topology, respectively. Photoluminescent properties of complex 3 dispersed in various organic solvents were investigated and the results showed that 3 dispersed in methanol could be used as a fluorescent sensor for the detection of acetone. Moreover, thermal and optical properties of the complexes were also studied. - Highlights: • Four new 2D and 3D coordination polymers with 5-tert-butyl isophthalic acid and rigid bis(imidazol-1yl)benzene linkers. • The structural diversity depending on ligands and coordination number of metal centers. • Fluorescent sensor for the detection of acetone.« less
Yarkandi, Naeema H; El-Ghamry, Hoda A; Gaber, Mohamed
2017-06-01
A novel Schiff base ligand, (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol (HL), has been designed and synthesized in addition to its metal chelates [Co(L) 2 ]·l2H 2 O, [Ni(L)Cl·(H 2 O) 2 ].5H 2 O, [Cu(L)Cl] and [Zn(L)(CH 3 COO)]. The structures of the isolated compounds have been confirmed and identified by means of different spectral and physicochemical techniques including CHN analysis, 1 H & 13 C NMR, mass spectral analysis, molar conductivity measurement, UV-Vis, infrared, magnetic moment in addition to TGA technique. The infrared spectral results ascertained that the ligand acts as monobasic tridentate binding to the metal centers via deprotonated hydroxyl oxygen, azomethine and imidazole nitrogen atoms. The UV-Vis, magnetic susceptibility and molar conductivity data implied octahedral geometry for Co(II) & Ni(II) complexes, tetrahedral for Zn(II) complex and square planar for Cu(II) complex. X-ray structural analysis of Co(II) complex 1 has been reported and discussed. Moreover, the type of interaction between the ligand & its complexes towards salmon sperm DNA (SS-DNA) has been examined by the measurement of absorption spectra and viscosity which confirmed that the ligand and its complexes interact with DNA via intercalation interaction as concluded from the values of binding constants (K b ). Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Dongfeng; Li, Shuan; Yang, Dexi; Yu, Jiuhong; Huang, Jin; Li, Yizhi; Tang, Wenxia
2003-09-22
The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.
Huang, Qiu Ying; Zhao, Yang; Meng, Xiang Ru
2017-08-01
Careful choice of the organic ligands is one of the most important parameters in the rational design and synthesis of coordination polymers. Aromatic polycarboxylates have been widely used in the preparation of metal-organic polymers since they can utilize various coordination modes to form diverse structures and can act as hydrogen-bond acceptors and donors in the assembly of supramolecular structures. Nitrogen-heterocyclic organic compounds have also been used extensively as ligands for the construction of polymers with interesting structures. In the polymers catena-poly[[[diaquabis{2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole-κN 3 }cobalt(II)]-μ 2 -benzene-1,4-dicarboxylato-κ 2 O 1 :O 4 ] dihydrate], {[Co(C 8 H 4 O 4 )(C 12 H 11 N 4 ) 2 (H 2 O) 2 ]·2H 2 O} n , (I), and catena-poly[[[diaquabis{2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole-κN 3 }nickel(II)]-μ 2 -benzene-1,4-dicarboxylato-κ 2 O 1 :O 4 ] dihydrate], {[Ni(C 8 H 4 O 4 )(C 12 H 11 N 4 ) 2 (H 2 O) 2 ]·2H 2 O} n , (II), the Co II or Ni II ion lies on an inversion centre and exhibits a slightly distorted octahedral coordination geometry, coordinated by two N atoms from two imidazole rings and four O atoms from two monodentate carboxylate groups and two water molecules. The dicarboxylate ligands bridge metal ions forming a polymeric chain. The 2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole ligands coordinate to the Co II or Ni II centres in monodentate modes through an imidazole N atom and are pendant on opposite sides of the main chain. The two structures are isomorphous. In the crystal, the one-dimensional chains are further connected through O-H...O, O-H...N and N-H...O hydrogen bonds, leading to a three-dimensional supramolecular architecture. In addition, the IR spectroscopic properties, PXRD patterns, thermogravimetric behaviours and fluorescence properties of both polymers have been investigated.
Dai, Yu-Mei; Tang, En; Huang, Jin-Feng; Yang, Qiu-Yan
2008-10-01
The asymmetric unit of the title compound, {[Cu(CO(3))(C(14)H(14)N(4))(1.5)] x 0.5 C(14)H(14)N(4) x 5 H(2)O}(n), contains one Cu(II) cation in a slightly distorted square-pyramidal coordination environment, one CO(3)(2-) anion, one full and two half 1,4-bis(imidazol-1-ylmethyl)benzene (bix) ligands, one half-molecule of which is uncoordinated, and five uncoordinated water molecules. One of the coordinated bix ligands and the uncoordinated bix molecule are situated about centers of symmetry, located at the centers of the benzene rings. The coordinated bix ligands link the copper(II) ions into a [Cu(bix)(1.5)](n) molecular ladder. These molecular ladders do not form interpenetrated ladders but are arranged in an ABAB parallel terrace, i.e. with the ladders arranged one above another, with sequence A translated with respect to B by 8 A. To best of our knowledge, this arrangement has not been observed in any of the molecular ladder frameworks synthesized to date. The coordination environment of the Cu(II) atom is completed by two O atoms of the CO(3)(2-) anion. The framework is further strengthened by extensive O-H...O and O-H...N hydrogen bonds involving the water molecules, the O atoms of the CO(3)(2-) anion and the N atoms of the bix ligands. This study describes the first example of a molecular ladder coordination polymer based on bix and therefore demonstrates further the usefulness of bix as a versatile multidentate ligand for constructing coordination polymers with interesting architectures.
NASA Astrophysics Data System (ADS)
Qiao, Rui; Chen, Shui-Sheng; Sheng, Liang-Quan; Yang, Song; Li, Wei-Dong
2015-08-01
Four metal-organic coordination polymers [Zn(HL)(H2O)]·4H2O (1), [Zn(HL)(L1)]·4H2O (2), [Cu(HL)(H2O)]·3H2O (3) and [Cu(HL)(L1)]·5H2O (4) were synthesized by reactions of the corresponding metal(II) salts with semirigid polycarboxylate ligand (5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, H3L·HCl) or auxiliary ligand (1,4-di(1H-imidazol-4-yl)benzene, L1). The structures of the compounds were characterized by elemental analysis, FT-IR spectroscopy and single-crystal X-ray diffraction. The use of auxiliary ligand L1 has great influence on the structures of two pairs of complexes 1, 2 and 3, 4. Complex 1 is a uninodal 3-connected rare 2-fold interpenetrating ZnSc net with a Point (Schlafli) symbol of (103) while 2 is a one-dimensional (1D) ladder structure. Compound 3 features a two-dimensional (2D) honeycomb network with typical 63-hcb topology, while 4 is 2D network with (4, 4) sql topology based on binuclear CuII subunits. The non-covalent bonding interactions such as hydrogen bonds, π···π stacking and C-H···π exist in complexes 1-4, which contributes to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. And the photoluminescent property of 1 and 2 and gas sorption property of 4 have been investigated.
NASA Astrophysics Data System (ADS)
Arıcı, Mürsel
2018-06-01
Five coordination polymers, namely, [Cd(μ3-5-nip)(μ-obix)]n (1), [Co(μ3-5-nip)(μ-obix)]n (2), [Zn(μ-5-nip)(μ-obix)]n (3 and 4) and [Cd(μ-5-nip)(μ-bisobix)]n (5) (5-nip: 5-nitroisophthalate, obix: 1,2-bis(imidazol-1ylmethyl)benzene, bisobix: 1,2-bis(2-isopropylimidazol-1ylmethyl)benzene) were hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, single crystal and powder X-ray diffraction and thermal analysis (TG/DTA). X-ray results showed that the complexes displayed structural diversity depending on metal ions and conformations of bis(imidazole) linkers. Complexes 1 and 2 were 1D structures and obix ligand displayed cis-conformation. Complexes 3 and 4 exhibited 2D and 3D structures with same components depending on obix conformation. In complex 5, 3D+3D→3D interpenetrated structure was obtained with dia topology when bisobix having sterically hindered groups on imidazole rings was used. Moreover, thermal, photoluminescence and optical properties of the complexes were also investigated.
Pell, Thomas P; Wilson, David J D; Skelton, Brian W; Dutton, Jason L; Barnard, Peter J
2016-07-18
A new synthetic methodology has been developed for the preparation of heterobimetallic group 11 and group 12 complexes of a symmetrical bis-NHC "pincer" ligand. The synthetic route involved the initial preparation of a mononuclear [Au(NHC)2](+) complex with pendent imidazole moieties on the NHC ligands. Subsequent alkylation of the imidazole groups with Et3OBF4 and metalation with a second metal ion (Ag(I) or Hg(II)) provided two heterobimetallic complexes. Four homobimetallic (Cu(I)2, Ag(I)2, Au(I)2, and Hg(II)2) complexes of the same bis-NHC "pincer" ligand were also prepared. The homobimetallic Cu(I)2, Au(I)2, and Hg(II)2 complexes and heterobimetallic Au(I)-Ag(I) and Au(I)-Hg(II) complexes and the synthetic intermediates for the heterobimetallic complexes were characterized by X-ray crystallography. These X-ray structures show that the bimetallic complexes adopt "twisted" conformations in the solid state, supporting short M···M interactions. Crystalline samples of the homobimetallic Ag(I)2 and Au(I)2 and heterobimetallic Au(I)-Ag(I) and Au(I)-Hg(II) complexes were emissive at room temperature and at 77 K. The geometries of the synthesized complexes were optimized at the M06-L/def2-SVP level of theory, and the electronic nature of the M···M interactions for all synthesized complexes was investigated using natural bond orbital (NBO) calculations.
NASA Astrophysics Data System (ADS)
Shao, Min; Li, Ming-Xing; Lu, Li-Ruo; Zhang, Heng-Hua
2016-09-01
Three Cu(I)-cyanide coordination polymers based on trigonal 1,3,5-tris(1H-imidazol-1-yl)benzene (tib) ligand, namely [Cu3(CN)3(tib)]n (1), [Cu4(CN)4(tib)]n (2), and [Cu2(CN)2(tib)]n (3), have been prepared and characterized by elemental analysis, IR, PXRD, thermogravimetry and single-crystal X-ray diffraction analysis. Complex 1 displays a 3D metal-organic framework with nanosized pores. Complex 2 is a 3D coordination polymer assembled by three μ2-cyanides and a μ3-cyanide with a very short Cu(I)···Cu(I) metal bond(2.5206 Å). Complex 3 is a 2D coordination polymer constructing from 1D Cu(I)-cyanide zigzag chain and bidentate tib spacer. Three Cu(I) complexes are thermally stable up to 250-350 °C. Complexes 1-3 show similar orange emission band at 602 nm originating from LMCT mechanism.
Bergmann, Larissa; Braun, Carolin; Nieger, Martin; Bräse, Stefan
2018-01-02
The prediction of coordination modes is of high importance when structure-property relationships are discussed. Herein, the coordination chemistry of copper(i) with pyridine-amines with a varying number of coordinating N-atoms, namely pyridine-benzimidazole, -triazole and -tetrazole, or their deprotonated analogues, and different phosphines was systematically studied and the photoluminescence properties of all synthesized complexes examined and related to DFT data. Each complex was characterized by single-crystal X-ray analysis and elemental analysis, and a set of prediction rules derived for the coordination chemistry of copper(i) with these ligands. A mononuclear cationic coordination motif was found for PPh 3 or DPEPhos with all N^N ligands, which exhibits blue to green luminescence of MLCT character d(Cu) → π*(pyridine-amine ligand) with quantum yields up to 46%. With the deprotonated N^N ligands, mononuclear neutral complexes were only expected with DPEPhos. The emission's nature of this complex type is strongly dependent on the electronic effects of the N^N ligand and was characterized as (ML + IL)CT transition. In contrast to the high quantum yields up to 78% for the tetrazolate complexes (as reported before), the triazolate and imidazolate based complexes show much lower emission efficiencies below 10%. Besides the mononuclear copper(i) complexes, cluster-type complexes were obtained, which show moderate luminescence in the blue to green region of the visible spectrum (469-505 nm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Rui; Chen, Shui-Sheng, E-mail: chenss@fync.edu.cn; Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093
2015-08-15
Four metal–organic coordination polymers [Zn(HL)(H{sub 2}O)]·4H{sub 2}O (1), [Zn(HL)(L{sub 1})]·4H{sub 2}O (2), [Cu(HL)(H{sub 2}O)]·3H{sub 2}O (3) and [Cu(HL)(L{sub 1})]·5H{sub 2}O (4) were synthesized by reactions of the corresponding metal(II) salts with semirigid polycarboxylate ligand (5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, H{sub 3}L·HCl) or auxiliary ligand (1,4-di(1H-imidazol-4-yl)benzene, L{sub 1}). The structures of the compounds were characterized by elemental analysis, FT-IR spectroscopy and single-crystal X-ray diffraction. The use of auxiliary ligand L{sub 1} has great influence on the structures of two pairs of complexes 1, 2 and 3, 4. Complex 1 is a uninodal 3-connected rare 2-fold interpenetrating ZnSc net with a Point (Schlafli) symbolmore » of (10{sup 3}) while 2 is a one-dimensional (1D) ladder structure. Compound 3 features a two-dimensional (2D) honeycomb network with typical 6{sup 3}-hcb topology, while 4 is 2D network with (4, 4) sql topology based on binuclear Cu{sup II} subunits. The non-covalent bonding interactions such as hydrogen bonds, π···π stacking and C–H···π exist in complexes 1–4, which contributes to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. And the photoluminescent property of 1 and 2 and gas sorption property of 4 have been investigated. - Graphical abstract: Four new coordination polymers have been obtained and their photoluminescent and gas sorption properties have also been investigated. - Highlights: • Two pairs of Zn{sup II}/ Cu{sup II} compounds have been synthesized. • Auxiliary ligand-controlled assembly of the complexes is reported. • The luminescent properties of complexes 1–2 were investigated. • The gas sorption property of 4 has been investigated.« less
NASA Astrophysics Data System (ADS)
Zhang, Xiaowei; Xing, Peiqi; Geng, Xiujuan; Sun, Daofeng; Xiao, Zhenyu; Wang, Lei
2015-09-01
Eight new coordination polymers (CPs), namely, [Zn(1,2-mbix)(tbtpa)]n (1), [Co(1,2-mbix)(tbtpa)]n (2), [CdCl(1,2-mbix)(tbtpa)0.5]n (3), {[Cd(1,2-bix)(tbtpa)]·H2O}n (4), {[Cd0.5(1,2-bix)(tbtpa)0.5]·H2O}n (5), {[Co0.5(1,2-bix)(tbtpa)0.5]·2H2O}n (6), {[Co(1,2-bix)(tbtpa)]·H2O}n (7) and {[Co(1,2-bix)(tbtpa)]·Diox·2H2O}n (8), were synthesized under solvothermal conditions based on mix-ligand strategy (H2tbtpa=tetrabromoterephthalic acid and 1,2-mbix=1,2-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene, 1,2-bix=1,2-bis(imidazol-1-ylmethyl)benzene). All of the CPs have been structurally characterized by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectroscopy, powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). X-ray diffraction analyses show that 1 and 2 are isotypics which have 2D highly undulated networks with (4,4)-sql topology with the existence of C-H ⋯Br interactions; for 3, it has a 2D planar network with (4,4)-sql topology with the occurrence of C-H ⋯Cl interactions other than C-H ⋯Br interactions; 4 shows a 3D 2-fold interpenetrated nets with rare 65·8-mok topology which has a self-catention property. As the same case as 1 and 2, 5 and 6 are also isostructural with planar layers with 44-sql topology which further assembled into 3D supramolecular structure through the interdigitated stacking fashion and the C-Br ⋯Cph interactions. As for 7, it has a 2D slightly undulated networks with (4,4)-sql topology which has one dimension channel. While 8 has a 2-fold interpenetrated networks with (3,4)-connect jeb topology with point symbol {63}{65·8}. And their structures can be tuned by conformations of bis(imidazol) ligands and solvent mixture. Besides, the TGA properties for all compounds and the luminescent properties for 1, 3, 4, 5 are discussed in detail.
Jayabharathi, Jayaraman; Thanikachalam, Venugopal; Venkatesh Perumal, Marimuthu
2012-09-01
The synthesized imidazole derivative 2-(2,4-difluorophenyl)-1-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (dfpmpip) has been characterized using IR, mass, (1)H, (13)C NMR and elemental analysis. The photophysical properties of dfpmpip have been studied using UV-visible and fluorescence spectroscopy in different solvents. The solvent effect on the absorption and fluorescence bands has been analyzed by a multi-component linear regression. Theoretically calculated bond lengths, bond angles and dihedral angles are found to be slightly higher than that of X-ray Diffraction (XRD) values of its parent compound. The charge distribution has been calculated from the atomic charges by non-linear optical (NLO) and natural bond orbital (NBO) analysis. Since the synthesized imidazole derivative has the largest μ(g)β(0) value, the reported imidazole can be used as potential NLO material. The energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels and the molecular electrostatic potential (MEP) energy surface studies evidenced the existence of intramolecular charge transfer (ICT) within the molecule. Theoretical calculations regarding the chemical potential (μ), hardness (η) and electrophilicity index (ω) have also been calculated. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Jun-Liang; He, Kun-Huan; Wang, Duo-Zhi; Zhang, Ying-Hui; Wang, Dan-Hong
2018-07-01
Three new Co(II) coordination polymers with formulas of {[Co2(L1)(1,4-NDC)2]·3H2O}n (1), [Co3(L2)2(HCOO)2(1,4-NDC)2]n (2) and [Co2(L2)(μ3-OH)(1,4-NDC)1.5]n (3) (1,4-H2NDC = Naphthalene-1,4-dicarboxylic acid, L1 = di(1H-imidazol-1-yl)methane, L2 = 1,4-di(1H-imidazol-1-yl)benzene) were solvothermal synthesized from 1,4-H2NDC with the aid of three different length-controllable auxiliary ligands and fully characterized. Their structures are determined by single-crystal X-ray diffraction, IR spectra, elemental analysis, powder X-ray diffraction and thermogravimetric analysis. Complexes 1 and 3 display 3D framework structures, corresponding to a 6-connected (412·63) net, a 8-connected (424·5·63) net, respectively. However, it is noteworthy that the complex 1 displays a 2-fold interpenetrating framework structure, complex 3 possesses a self-interpenetrating framework structure. Complex 2 displays 2D 4-connected undulating plane net structure. Moreover, magnetic studies indicate antiferromagnetic interactions between the Co(II) ions in the four complexes.
Moraca, Francesca; De Vita, Daniela; Pandolfi, Fabiana; Di Santo, Roberto; Costi, Roberta; Cirilli, Roberto; D'Auria, Felicia Diodata; Panella, Simona; Palamara, Anna Teresa; Simonetti, Giovanna; Botta, Maurizio; Scipione, Luigi
2014-08-18
A new series of 2-(1H-imidazol-1-yl)-1-phenylethanol derivatives was synthesized. The antifungal activity was evaluated in vitro against different fungal species. The biological results show that the most active compounds possess an antifungal activity comparable or higher than Fluconazole against Candida albicans, non-albicans Candida species, Cryptococcus neoformans and dermathophytes. Because of their racemic nature, the most active compounds 5f and 6c were tested as pure enantiomers. For 6c the (R)-enantiomer resulted more active than the (S)-one, otherwise for 5f the (S)-enantiomer resulted the most active. To rationalize the experimental data, a ligand-based computational study was carried out; the results of the modelling study show that (S)-5f and (R)-6c perfectly align to the ligand-based model, showing the same relative configuration. Preliminary studies on the human lung adenocarcinoma epithelial cells (A549) have shown that 6c, 5e and 5f possess a low cytotoxicity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Structural modulation of silver complexes and their distinctive catalytic properties.
Zhao, Yue; Chen, Kai; Fan, Jian; Okamura, Taka-aki; Lu, Yi; Luo, Li; Sun, Wei-Yin
2014-02-07
A family of silver(I) complexes, [Ag2(L)2(OOCCF3)2] (1), [Ag(L)0.5(OOCCF3)] (2), [Ag(L)2](OOCCF3)(H2O)2 (3), was obtained by reactions of 4,4'-di(2-oxazolinyl)biphenyl (L) and AgOOCCF3 in different reaction media. Compound 1 has a 1D chain structure with alternative connections between the Ag(I) and L ligand. When the crystal nucleation inductor, pyrazine, was added into the reaction system, complex 2 was isolated with no pyrazine observed in its structure. In 2, the 1D inorganic chains formed by Ag(I) cations and OOCCF3(-) anions were connected by the L ligand to produce a 2D network. When a different inductor, imidazole, was added into the reaction system, 3 with (4,4) topology was synthesized, and again no imidazole was found in 3. When 1-3 were used as catalysts for cycloaddition reactions between imino esters and methyl acrylate, 3 affords the highest yield, in which the particular size of the channels in 3 led to its selective catalytic performance.
Pesavento, Russell P; Pratt, Derek A; Jeffers, Jerry; van der Donk, Wilfred A
2006-07-21
Cytochrome c oxidase, the enzyme complex responsible for the four-electron reduction of O2 to H2O, contains an unusual histidine-tyrosine cross-link in its bimetallic heme a3-CuB active site. We have synthesised an unhindered, tripodal chelating ligand, BPAIP, containing the unusual ortho-imidazole-phenol linkage, which mimics the coordination environment of the CuB center. The ligand was used to investigate the physicochemical (pKa, oxidation potential) and coordination properties of the imidazole-phenol linkage when bound to a dication. Zn(II) coordination lowers the pKa of the phenol by 0.6 log units, and increases the potential of the phenolate/phenoxyl radical couple by approximately 50 mV. These results are consistent with inductive withdrawal of electron density from the phenolic ring. Spectroscopic data and theoretical calculations (DFT) were used to establish that the cationic complex [Zn(BPAIP)Br]+ has an axially distorted trigonal bipyramidal structure, with three coordinating nitrogen ligands (two pyridine and one imidazole) occupying the equatorial plane and the bromide and the tertiary amine nitrogen of the tripod in the axial positions. Interestingly, the Zn-Namine bonding interaction is weak or absent in [Zn(BPAIP)Br]+ and the complex gains stability in basic solutions, as indicated by 1H NMR spectroscopy. These observations are supported by theoretical calculations (DFT), which suggest that the electron-donating capacity of the equatorial imidazole ligand can be varied by modulation of the protonation and/or redox state of the cross-linked phenol. Deprotonation of the phenol makes the equatorial imidazole a stronger sigma-donor, resulting in an increased Zn-Nimd interaction and thereby leading to distortion of the axial ligand axis toward a more tetrahedral geometry.
Zhu, Run-Qiang
2011-01-01
The centrosymmetric molecule of the title complex, [Cd4Cl8(C3H4N2)6(C3H7NO)2], contains four CdII atoms, six imidazole, two dimethylformamide and eight chloride ligands. The structure shows a novel chloride-bridged tetranuclear cadmium quasi-cubane cluster. The coordination geometry of all CdII atoms is distorted octahedral, with the two metal atoms in the asymmetric unit in different coordination environments. One of the Cd2+ ions is coordinated by five Cl− ions and by one N atom from an imidazole ligand, while the second is coordinated by three chloride ligands, two N atoms from two imidazole ligands and one O atom from a dimethylformamide molecule. Intermolecular N—H⋯Cl hydrogen bonds link the molecules into a two-dimensional polymeric structure parallel to the ab plane. PMID:22058708
Luminescent Dinuclear Ruthenium Terpyridine Complexes with a Bis-Phenylbenzimidazole Spacer.
Mondal, Debiprasad; Biswas, Sourav; Paul, Animesh; Baitalik, Sujoy
2017-07-17
A conjugated bis-terpyridine bridging ligand, 2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-6-(2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-1H-benzo[d]imidazol-6-yl)-1H-benzo[d] imidazole (tpy-BPhBzimH 2 -tpy), was designed in this work by covalent coupling of 3,3'-diaminobenzidine and two 4'-(p-formylphenyl)-2,2':6',2″-terpyridine units to synthesize a new series of bimetallic Ru(II)-terpyridine light-harvesting complexes. Photophysical and electrochemical properties were modulated by the variation of the terminal ligands in the complexes. The new compounds were thoroughly characterized by 1 H NMR spectroscopy, high-resolution mass spectrometry, and elemental analysis. Absorption spectra of the complexes consist of very strong ligand-centered π-π* and n-π* transitions in the UV, metal-to-ligand, and intraligand charge transfer bands in the visible regions. Steady-state and time-resolved emission spectral measurements indicate that the complexes exhibit moderately intense luminescence at room temperature within the spectral domain of 653-687 nm having luminescence lifetimes in the range between 6.3 and 55.2 ns, depending upon terminal tridentate ligand and solvent. Variable-temperature luminescence measurements suggest substantial increase of the energy gap between luminescent 3 metal-to-ligand charge transfer state and nonluminescent 3 metal centered in the complexes compared to the parent [Ru(tpy) 2 ] 2+ . Each of the three bimetallic complexes exhibits only one reversible couple in the positive potential window with almost no detectable splitting corresponding to simultaneous oxidation of the two remote Ru centers. All the complexes possess a number of imidazole NH protons, which became sufficiently acidic upon metal ion coordination. By utilizing these NH protons, we thoroughly studied anion recognition properties of the complexes in pure organic as well as predominantly aqueous media through multiple optical channels and spectroscopic methods. Finally computation investigations employing density functional theory (DFT) and time-dependent DFT were done to examine the electronic structures of the complexes and accurate assignment of experimentally observed optical spectral bands.
Akimbekov, Zamirbek; Katsenis, Athanassios D; Nagabhushana, G P; Ayoub, Ghada; Arhangelskis, Mihails; Morris, Andrew J; Friščić, Tomislav; Navrotsky, Alexandra
2017-06-14
We provide the first combined experimental and theoretical evaluation of how differences in ligand structure and framework topology affect the relative stabilities of isocompositional (i.e., true polymorph) metal-organic frameworks (MOFs). We used solution calorimetry and periodic DFT calculations to analyze the thermodynamics of two families of topologically distinct polymorphs of zinc zeolitic imidazolate frameworks (ZIFs) based on 2-methyl- and 2-ethylimidazolate linkers, demonstrating a correlation between measured thermodynamic stability and density, and a pronounced effect of the ligand substituent on their stability. The results show that mechanochemical syntheses and transformations of ZIFs are consistent with Ostwald's rule of stages and proceed toward thermodynamically increasingly stable, more dense phases.
NASA Astrophysics Data System (ADS)
Huo, Liangqin; Fan, Liming; Zhang, Jie; Gao, Lingling; Zhai, Lijun; Wang, Xiaoqing; Hu, Tuoping
2018-05-01
Three coordination polymers (CPs), namely, {[Co3(HL)2(bib)3 (H2O)7]·12H2O}n (1), {[Co(HL)(bib)]·H2O}n (2), and {[Co1.5(L)(bibp)1.5 (H2O)]·1.5DMF·2EtOH·3H2O}n (3), have been synthesized from the tripodal ligand of tris(p-carboxyphenyl)phosphane oxide (H3L) with the help of 1,4-bis(imidazol-1-yl)benzene (bib) or 4,4‧-bis(imidazol-1-yl)biphenyl (bibp). Structural analyses reveal that complex 1 features a 3D 4-connected {650.8}-cds net. 2 displays a 2D 6-connected {360.460.53}-hxl sheet based on the binuclear {Co2(COO)2} SBUs. Complex 3 shows a 3D (3,4,4)-connected net with {6·82}2{6·840.10}2{620.820.102} point symbol. Furthermore, the results of the variable-temperature magnetic susceptibilities indicate that complexes 1-3 have antiferromagnetic behavior between Co(II) ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, M.; Lemus-Santana, A.A.; Rodríguez-Hernández, J.
2013-08-15
This study sheds light on the intermolecular interactions between imidazole derive molecules (2-methyl-imidazole, 2-ethyl-imidazole and benzimidazole) intercalated in T[Ni(CN){sub 4}] layers to form a solid of formula unit T(ImD){sub 2}[Ni(CN){sub 4}]. These hybrid inorganic–organic solids were prepared by soft chemical routes and their crystal structures solved and refined from X-ray powder diffraction data. The involved imidazole derivative molecules were found coordinated through the pyridinic N atom to the axial positions for the metal T in the T[Ni(CN){sub 4}] layer. In the interlayers region ligand molecules from neighboring layers remain stacked in a face-to-face configuration through dipole–dipole and quadrupole–quadrupole interactions. Thesemore » intermolecular interactions show a pronounced dependence on the substituent group and are responsible for an ImD-pillaring concatenation of adjacent layers. This is supported by the structural information and the recorded magnetic data in the 2–300 K temperature range. The samples containing Co and Ni are characterized by presence of spin–orbit coupling and pronounced temperature dependence for the effective magnetic moment except for 2-ethyl-imidazole related to the local distortion for the metal coordination environment. For this last one ligand a weak ferromagnetic ordering ascribed to a super-exchange interaction between T metals from neighboring layers through the ligands π–π interaction was detected. - Graphical abstract: In the interlayers region imidazole derivative molecules are oriented according to their dipolar and quadrupolar interactions and minimizing the steric impediment. Highlights: • Imidazole derivatives intercalation compounds. • Intermolecular interaction between intercalated imidazole derivatives. • Hybrid inorganic–organic solids. • Pi–pi interactions and ferromagnetic coupling. • Dipolar and quadrupolar interactions between intercalated imidazole derivatives.« less
Gou, Yi; Qi, Jinxu; Ajayi, Joshua-Paul; Zhang, Yao; Zhou, Zuping; Wu, Xiaoyang; Yang, Feng; Liang, Hong
2015-10-05
To synergistically enhance the selectivity and efficiency of anticancer copper drugs, we proposed and built a model to develop anticancer copper pro-drugs based on the nature of human serum albumin (HSA) IIA subdomain and cancer cells. Three copper(II) compounds of a 2-hydroxy-1-naphthaldehyde benzoyl hydrazone Schiff-base ligand in the presence pyridine, imidazole, or indazole ligands were synthesized (C1-C3). The structures of three HSA complexes revealed that the Cu compounds bind to the hydrophobic cavity in the HSA IIA subdomain. Among them, the pyridine and imidazole ligands of C1 and C2 are replaced by Lys199, and His242 directly coordinates with Cu(II). The indazole and Br ligands of C3 are replaced by Lys199 and His242, respectively. Compared with the Cu(II) compounds alone, the HSA complexes enhance cytotoxicity in MCF-7 cells approximately 3-5-fold, but do not raise cytotoxicity levels in normal cells in vitro through selectively accumulating in cancer cells to some extent. We find that the HSA complex has a stronger capacity for cell cycle arrest in the G2/M phase of MCF-7 by targeting cyclin-dependent kinase 1 (CDK1) and down-regulating the expression of CDK1 and cyclin B1. Moreover, the HSA complex promotes MCF-7 cell apoptosis possibly through the intrinsic reactive oxygen species (ROS) mediated mitochondrial pathway, accompanied by the regulation of Bcl-2 family proteins.
Zhang, Zhenyu; Zhang, Zuolun; Zhang, Hongyu; Wang, Yue
2017-12-19
Two new four-coordinate organoboron compounds with 2-(2-hydroxyphenyl)imidazole derivatives as the chelating ligands have been synthesized. They possess high thermal stability and are able to form an amorphous glass state. Crystallographic analyses indicate that the differences in ligand structure cause the change of ππ stacking character. The CH 2 Cl 2 solutions and thin films of these compounds display bright blue emission, and these compounds have appropriate HOMO and LUMO energy levels for carrier injection in OLEDs. By utilizing the good thermal and luminescent properties, as well as the proper frontier orbital energy levels, bright non-doped OLEDs with a simple structure have been realized. Notably, these simple devices show deep blue electroluminescence with the Commission Internationale de l'Éclairage (CIE) coordinate of ca. (0.16, 0.08), which is close to the CIE coordinate of (0.14, 0.08) for standard blue defined by the National Television System Committee. In addition, one of the devices exhibits good performance, showing brightness, current efficiency, power efficiency and external quantum efficiency up to 2692 cd m -2 , 2.50 cd A -1 , 1.81 lm W -1 and 3.63%, respectively. This study not only provides good deep-blue emitting OLED materials that are rarely achieved by using four-coordinate organoboron compounds, but also allows a deeper understanding of the structure-property relationship of 2-(2-hydroxyphenyl)imidazole-based boron complexes, which benefits the further structural design of this type of material.
Ma, Xuejuan; Zhang, Lin; Xia, Mengfan; Zhang, Xiaohong; Zhang, Yaodong
2018-05-15
The degradation of organophosphorous nerve agents is of primary concern due to the severe toxicity of these agents. Based on the active center of organophosphorus hydrolase (OPH), a bimetallic nuclear ligand, (5-vinyl-1,3-phenylene)bis(di(1H-imidazol-2-yl) methanol) (VPIM), was designed and synthesized, which contains four imidazole groups to mimic the four histidines at OPH active center. By grafting VPIM on graphene oxide (GO) surface via polymerization, the VPIM-polymer beads@GO was produced. The obtained OPH mimics has an impressive activity in dephosphorylation reactions (turnover frequency (TOF) towards paraoxon: 2.3 s -1 ). The synergistic catalytic effect of the bimetallic Zn 2+ nuclear center and carboxyl groups on surface of GO possibly contributes to the high hydrolysis on organophosphate substrate. Thus, a biomimetic catalyst for efficient degradation of some organophosphorous nerve agent simulants, such as paraoxon and chlorpyrifos, was prepared by constructing catalytic active sites. The proposed mechanism and general synthetic strategy open new avenues for the engineering of functional GOs for biomimetic catalysts. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xin-Fang; Du, Ceng-Ceng; Zhou, Sheng-Bin; Wang, Duo-Zhi
2017-01-01
Herein we reported six new Ni(II)/Cu(II)/Zn(II) complexes, namely, [Ni(L1)4(OH)2] (1), [Cu(L1)4(OH)2] (2), [Cu(L1)2(SiF6)]n (3), {[Cu(L2)(HCOO)2]·H2O·CH3OH}n (4), [Ni(L2)2(NO3)2]n (5) and {[Zn(L2)Cl2]·DMF}n (6) (L1 = 3,6-bis(imidazole-1-yl)pyridazine, L2 = 3,6-bis(benzimidazole-1-yl)pyridazine), which were characterized by single-crystal X-ray diffraction, elemental analysis, IR, PXRD. These complexes have been successfully constructed under interface diffusion process, heating reflux or hydrothermal conditions. The structures of 1 and 2 are mononuclear complexes. Complex 3 exhibits a 6-connected 3D topology network with the Schläfli symbol of (412·63). In complex 4, two Cu(II) were connected through two HCOO- anions to form dinuclear structure unit, which is arranged into a 1D ladder-like structure by μ2-L2 ligands. Complexes 5 and 6 are 1D zigzag chains connected by L2 ligands, but the Ni(II) ion is six-coordinated in 5 and the Zn(II) ion is four-coordinated in 6. Moreover, the solid-state luminescence property and UV-vis diffuse reflection spectrum of complex 6 have been investigated and discussed.
NASA Astrophysics Data System (ADS)
Shobana, Sutha; Dharmaraja, Jeyaprakash; Selvaraj, Shanmugaperumal
2013-04-01
Equilibrium studies of Ni(II), Cu(II) and Zn(II) mixed ligand complexes involving a primary ligand 5-fluorouracil (5-FU; A) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) as co-ligands(B) were carried out pH-metrically in aqueous medium at 310 ± 0.1 K with I = 0.15 M (NaClO4). In solution state, the stoichiometry of MABH, MAB and MAB2 species have been detected. The primary ligand(A) binds the central M(II) ions in a monodentate manner whereas him, bim, hist and his co-ligands(B) bind in mono, mono, bi and tridentate modes respectively. The calculated Δ log K, log X and log X' values indicate higher stability of the mixed ligand complexes in comparison to binary species. Stability of the mixed ligand complex equilibria follows the Irving-Williams order of stability. In vitro biological evaluations of the free ligand(A) and their metal complexes by well diffusion technique show moderate activities against common bacterial and fungal strains. Oxidative cleavage interaction of ligand(A) and their copper complexes with CT DNA is also studied by gel electrophoresis method in the presence of oxidant. In vitro antioxidant evaluations of the primary ligand(A), CuA and CuAB complexes by DPPH free radical scavenging model were carried out. In solid, the MAB type of M(II)sbnd 5-FU(A)sbnd his(B) complexes were isolated and characterized by various physico-chemical and spectral techniques. Both the magnetic susceptibility and electronic spectral analysis suggest distorted octahedral geometry. Thermal studies on the synthesized mixed ligand complexes show loss of coordinated water molecule in the first step followed by decomposition of the organic residues subsequently. XRD and SEM analysis suggest that the microcrystalline nature and homogeneous morphology of MAB complexes. Further, the 3D molecular modeling and analysis for the mixed ligand MAB complexes have also been carried out.
NASA Astrophysics Data System (ADS)
Shi, Chenjie; Wang, Zikai; Chen, Yifan; Zhang, Xiaoyu; Zhao, Yue; Tao, Yuehong; Wu, Hua
2017-09-01
Four 3D coordination compounds, named [Cd3(nbta)2(bix)2(H2O)2]·H2O (1), Zn3(nbta)2(biim)3 (2), Zn6(nbta)4(btd)5 (3) and [Co3(nbta)2(bid)(H2O)8]·4H2O (4) (bix=1,4-bis(imidazole-1-ylmethyl)benzene, biim=1,1‧-(1,4-butanediyl)bis(imidazole), btd=1,10-bis(1,2,4-triazol-1-yl)decane, bid=1,10-bis(imidazole-1-yl)decane), and H3nbta=5-nitro-1,2,3-benzenetricarboxylic acid), have been synthesized by solvothermal methods and structurally characterized by X-ray diffraction studies. In compound 1, every nbta3- anion connects four CdII ions to give a 2D layer, and the layers are pillared by bix ligands to generate a 3D framework with a Schläfli symbol of (3·4·63·7)(4·64·8)(43·63)(34·42·66·76·88·92). For compound 2, every nbta3- anion connects three ZnII ions to give a 2D layer structure, the 2D layers are further connected into a facinating 3D framework by biim ligands with (3,4)-connected (3·6·7)(3·5·62·7·8)(3·52·6·8·9)(5·6·8·10·112) topology. In compound 3, the nbta3- anions are connected by ZnII ions to generate a 2D layer, and the layers are bridged by btd ligands to build a fascinating 3D framework with (4·6·7·8·92)(4·6·8·92·10)(4·93·102)(4·6·8·9·102)(4·6·7·8·9·10)(4·6·7·8·102)(42·6·7·8·9) topology. In compound 4, the nbta3- aions are connected by CoII ions into a 2D layer, the 2D layers are linked by bid ligands to generate a 3D 103 topological framework. Furthermore, the IR spectra, TGA, PXRD, elemental analyses, the solid-state luminescence of compounds 1-3 have been studied.
NASA Astrophysics Data System (ADS)
Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim
2018-03-01
The new ternary complexes, ZnLL‧ [L = 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide and L‧ = imidazole (1), 2, 2‧-bipyridine (2) and 2-methyimidazole (3)], Zn2L2L‧ [L‧ = 4, 4‧-bipy (4)] and CuLL‧ [L‧ = 2, 2‧-bipy (5)] have been synthesized by the reaction of a metal(II) acetate salt with the thiosemicarbazone and in presence of heterocyclic bases as auxiliary ligands. The synthesized compounds were investigated by elemental analysis and IR, 1H NMR, and 13C NMR spectroscopy and complex 5 was structurally characterized by X-ray crystallography. The results indicate the thiosemicarbazone doubly deprotonated and coordinates to metal through the thiolate sulfur, imine nitrogen and phenolic oxygen atoms. The nitrogen atom(s) of the auxiliary ligand complete the coordination sphere. Complex 4 is binuclear with 4, 4‧-bipy acting as a bridging ligand. The structure of 5 is a distorted square pyramid with one of the bipyridine nitrogen atoms in the apical position. This compound creates an inversion dimer in solid state by intermolecular hydrogen bonds of Nsbnd H⋯S type. The in vitro antibacterial activity of the synthesized compounds were evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and is compared to that of standard antibacterial drugs. All complexes exhibit good inhibitory effects and are significantly more effective than the parent ligand.
Synthesis and Characterization of New Bivalent Agents as Melatonin- and Histamine H3-Ligands
Pala, Daniele; Scalvini, Laura; Lodola, Alessio; Mor, Marco; Flammini, Lisa; Barocelli, Elisabetta; Lucini, Valeria; Scaglione, Francesco; Bartolucci, Silvia; Bedini, Annalida; Rivara, Silvia; Spadoni, Gilberto
2014-01-01
Melatonin is an endogenous molecule involved in many pathophysiological processes. In addition to the control of circadian rhythms, its antioxidant and neuroprotective properties have been widely described. Thus far, different bivalent compounds composed by a melatonin molecule linked to another neuroprotective agent were synthesized and tested for their ability to block neurodegenerative processes in vitro and in vivo. To identify a novel class of potential neuroprotective compounds, we prepared a series of bivalent ligands, in which a prototypic melatonergic ligand is connected to an imidazole-based H3 receptor antagonist through a flexible linker. Four imidazolyl-alkyloxy-anilinoethylamide derivatives, characterized by linkers of different length, were synthesized and their binding affinity for human MT1, MT2 and H3 receptor subtypes was evaluated. Among the tested compounds, 14c and 14d, bearing a pentyl and a hexyl linker, respectively, were able to bind to all receptor subtypes at micromolar concentrations and represent the first bivalent melatonergic/histaminergic ligands reported so far. These preliminary results, based on binding affinity evaluation, pave the way for the future development of new dual-acting compounds targeting both melatonin and histamine receptors, which could represent promising therapeutic agents for the treatment of neurodegenerative pathologies. PMID:25222552
Chemistry and Biology of the Pyrrole-Imidazole Alkaloids.
Lindel, Thomas
More than a decade after our last review on the chemistry of the pyrrole-imidazole alkaloids, it was time to analyze once more the developments in that field. The comprehensive article focusses on the total syntheses of pyrrole-imidazole alkaloids that have appeared since 2005. The classic monomeric pyrrole-imidazole alkaloids have all been synthesized, sometimes primarily to demonstrate the usefulness of a new method, as in the case of the related molecules agelastatin A and cyclooroidin with more than 15 syntheses altogether. The phakellin skeleton has been made more than 10 times, too, with a focus on the target structure itself. Thus, some of the pyrrole-imidazole alkaloids are now available in gram amounts, and the supply problem has been solved. The total synthesis of the dimeric pyrrole-imidazole alkaloids is still mostly in its pioneering phase with two routes to palau'amine and massadine discovered and three routes to the axinellamines and ageliferin. In addition, the review summarizes recent discoveries regarding the biological activity of the pyrrole-imidazole alkaloids. Regarding the biosynthesis of sceptrin, a pathway is proposed that starts from nagelamide I and proceeds via two electrocyclizations and reduction. Copyright © 2017 Elsevier Inc. All rights reserved.
Zedler, Linda; Kupfer, Stephan; de Moraes, Inês Rabelo; Wächtler, Maria; Beckert, Rainer; Schmitt, Michael; Popp, Jürgen; Rau, Sven; Dietzek, Benjamin
2014-03-24
Ruthenium dyes incorporating a 4H-imidazole chromophore as a ligand exhibit a spectrally broad absorption in the UV/Vis region. Furthermore, they show the ability to store two electrons within the 4H-imidazole ligand. These features render them promising molecular systems, for example, as inter- or intramolecular electron relays. To optimize the structures with respect to their electron-storage capability, it is crucial to understand the impact of structural changes accompanying photoinduced charge transfer in the electronic intermediates of multistep electron-transfer processes. The photophysical properties of these (reactive) intermediates might impact the function of the molecular systems quite substantially. However, the spectroscopic study of short-lived intermediates in stepwise multielectron-transfer processes is experimentally challenging. To this end, this contribution reports on the electrochemical generation of anions identical to intermediate structures and their spectroscopic characterization by in situ resonance Raman and UV/Vis spectroelectrochemistry and computational methods. Thereby, an efficient two-electron pathway to the 4H-imidazole electron-accepting ligand is identified. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Regupathy, Sthanumoorthy; Nair, Madhavan Sivasankaran
2010-02-01
Equilibrium studies on the ternary complex systems involving ampicillin (amp) as ligand (A) and imidazole containing ligands viz., imidazole (Him), benzimidazole (Hbim), histamine (Hist) and histidine (His) as ligands (B) at 37 °C and I = 0.15 mol dm -3 (NaClO 4) show the presence of CuABH, CuAB and CuAB 2. The proton in the CuABH species is attached to ligand A. In the ternary complexes the ligand, amp(A) binds the metal ion via amino nitrogen and carbonyl oxygen atom. The CuAB (B = Hist/His)/CuAB 2 (B = Him/Hbim) species have also been isolated and the analytical data confirmed its formation. Non-electrolytic behavior and monomeric type of chelates have been assessed from their low conductance and magnetic susceptibility values. The electronic and vibrational spectral results were interpreted to find the mode of binding of ligands to metal and geometry of the complexes. This is also supported by the g tensor values calculated from ESR spectra. The thermal behaviour of complexes were studied by TGA/DTA. The redox behavior of the complexes has been studied by cyclic voltammetry. The antimicrobial activity and CT DNA cleavage study of the complexes show higher activity for ternary complexes.
Hayes, Thomas R; Bottorff, Shalina C; Slocumb, Winston S; Barnes, Charles L; Clark, Aurora E; Benny, Paul D
2017-01-24
In the last two decades, a number of chelate strategies have been proposed for the fac-[M I (CO) 3 ] + (M = Re, 99m Tc) core in radiopharmaceutical applications. However, the development of new ligands/complexes with improved function and in vivo performance has been limited in recent years. Expanding on our previous studies using the 2 + 1 labeling strategy, a series of bidentate ligands (neutral vs. anionic) containing an aromatic amine in combination with monodentate pyridine analogs or imidazole were explored to determine the influence of the bidentate and monodentate ligands on the formation and stability of the respective complexes. The 2 + 1 complexes with Re and 99m Tc were synthesized in two steps and characterized by standard radio/chemical methods. X-ray characterization and density functional theory analysis of the Re 2 + 1 complexes with the complete bidentate series with 4-dimethylaminopyridine were conducted, indicating enhanced ligand binding energies of the neutral over anionic ligands. In the 99m Tc studies, anionic bidentate ligands had significantly higher formation yields of the 2 + 1 product, but neutral ligands appear to have increased stability in an amino acid challenge assay. Both bidentate series exhibited improved stability by increasing the basicity of the pyridine ligands.
Hayes, Thomas R.; Bottorff, Shalina C.; Slocumb, Winston S.; Barnes, Charles L.; Clark, Aurora E.; Benny, Paul D.
2017-01-01
In the last two decades, a number of chelate strategies have been proposed for the fac-[MI(CO)3]+ (M = Re, 99mTc) core in radiopharmaceutical applications. However, the development of new ligands/complexes with improved function and in vivo performance has been limited in recent years. Expanding on our previous studies using the 2+1 labeling strategy, a series of bidentate ligands (neutral vs. anionic) containing an aromatic amine in combination with monodentate pyridine analogs or imidazole were explored to determine the influence of the bidentate and monodentate ligands on the formation and stability of the respective complexes. The 2+1 complexes with Re and 99mTc were synthesized in two steps and characterized by standard radio/chemical methods. X-ray characterization and density functional theory analysis of the Re 2+1 complexes with the complete bidentate series with 4-dimethylaminopyridine were conducted, indicating enhanced ligand binding energies of the neutral over anionic ligands. In the 99mTc studies, anionic bidentate ligands had significantly higher formation yields of the 2+1 product, but neutral ligands appear to have increased stability in an amino acid challenge assay. Both bidentate series exhibited improved stability by increasing the basicity of the pyridine ligands. PMID:28045466
Engineering the bio-nano interface using a multi-functional polymer coating
NASA Astrophysics Data System (ADS)
Wang, Wentao
Interfacing inorganic nanoparticles with biological systems to develop a variety of novel imaging, sensing and diagnostic tools has generated great interest and much activity over the past two decades. However, the effectiveness of this approach hinges on the ability to prepare water dispersible nanoparticles, with compact size and long term colloidal stability in biological environments, and the development of controlled conjugation to various biomolecules. The primary focus of this dissertation is the design and synthesis, characterization and use of a series of new multidentate and multifunctional coordinating polymers as ligands that render various inorganic nanocrystals water soluble, In Chapter 1 we introduce the basic physical properties of quantum dots (QDs), gold nanocrystals and magnetic nanocrystals along with brief description of their syntheses. We then provide an overview of surface functionalization strategies and recent progress in the ligand chemistry, followed by highlights of a few conjugation approaches applied to nanoparticles in biology. We then discuss modulation of the optical and spectroscopic properties of QDs via energy and charge transfer interactions. We conclude by presenting a few related examples on the incorporation of QD-conjugates into sensor design and intracellular imaging. In Chapter 2, we report the design of a series of multifunctional polymers as ligands for surface engineering of QDs and facilitating their use in bioconjugation. First, we introduce a novel PEGylated polymer that combines the synergies of metal-chelation promoted by lipoic acid and imidazole groups, as effective coating for the surface functionalization of QDs; one of the goals was to address the problems associated with thiol oxidation and weak imidazole affinity. Second, to minimize the hydrodynamic radius of the QDs without sacrificing aqueous solubility, a set of polymer ligands appended with zwitterion and imidazole motifs have been synthesized applied for the surface engineering of QDs. Third, modulation of the nanoparticle's interaction with biological systems requires access to an effective conjugation of these materials with bioactive targets in a controlled manner. To fulfill this goal, we have developed several zwitterion-based multifunctional ligands presenting tunable functional groups, including carboxyl, amine, azide and biotin. This has allowed conjugation of the QDs to biomolecules via bio-orthogonal coupling chemistries, including (1) amine-isothiocyanate reaction; (2) biotin-streptavidin self-assembly; (3) copper-free click chemistry. The resulted QD-bioconjugates have been tested in sensor design and for cell imaging. We also find that the efficiency of polyhistidine-mediated metal coordination is not only determined by the ligand lateral extension but also greatly influenced by the nature of metal coordination on the QDs. In Chapter 3, we have applied the various multi-coordinating and multi-reactive polymers, in particular, those presenting lipoic acid and PEG for the functionalization of gold nanoparticles and nanorods. Gold nanocrystals coated with this polymer exhibit excellent long-term colloidal stability over a broad range of conditions, and furthermore prevent the formation of protein corona. This was verified using dynamic light scattering measurements combined with agarose gel electrophoresis. The diffusion properties of polymer-coated nanocrystals were further characterized using dynamic light scattering; this has yielded valuable information on the nature of the interparticle interactions in biological media. In Chapter 4, an additional set of modular ligands were synthesized and applied for the surface modification of iron oxide nanoparticles. These ligands feature several dopamines for tight binding on iron oxide nanoparticle surface, a short PEG for water solubility and reactive groups (amine, carboxyl, azide and thiol) for bioconjugation. Nanoparticles functionalized with these polymers show extended stability in biologically relevant conditions and little to no cytotoxicity. We demonstrate that covalent attachment of dye enables producing luminescent probe for cell imaging. (Abstract shortened by ProQuest.).
The Activity-Related Ionization in Carbonic Anhydrase
Appleton, David W.; Sarkar, Bibudhendra
1974-01-01
The catalytic activity of carbonic anhydrase (EC 4.2.1.1) is linked to the ionization of a group in close proximity to the essential zinc ion. Studies have been undertaken to delineate the ionizations germane to the active-site chelate system. Several imidazole ligand systems were studied in order to approach a representative chelate. The simplest involved the complexation of Zn(II) by imidazole and by N-methylimidazole. As well, two bidentate systems, Zn(II)-4,4′-bis-imidazoylmethane and Co(II)-cyclic-L-histidyl-L-histidine were investigated. It was found that in a species containing metal-bound water and imidazole coordinated by means of the pyridinium nitrogen, the most acidic group was the pyrrole N-H in the imidazole ring. By the use of N-methylimidazole, the pKa of a metal-bound water molecule in a tri-imidazole ligand field was found to be 9.1. Noting the preference for labilization of the pyrrole hydrogen, the catalytic features of carbonic anhydrase are reexamined assuming that the pKenz is associated with the N-H ionization, and not with the ionization of metal-bound water. PMID:4209558
NASA Astrophysics Data System (ADS)
Pan, Jie; Zhang, Di; Xue, Zhen-Zhen; Wei, Li; Han, Song-De; Wang, Guo-Ming
2017-11-01
Three novel Zn(II)/Cd(II) coordination polymers, [Cd2(bip)2(m-bdc)2(H2O)2·3H2O]n (1), [Zn2(bip)2(p-bdc)2·2.5H2O]n (2) and [Zn(bip) (p-bdc)·3H2O]n (3), where bip = 3,5-bis(imidazole-1-yl)pyridine, m-H2bdc = 1,3-benzenedicarboxylic acid, p-H2bdc = 1,4-benzenedicarboxylic acid, have been successfully synthesized under solvothermal conditions. The linkage of different ligands with Cd(II) ions in compound 1 affords a (3,5)-connected layer. Furthermore, 2D→3D parallel polycatenation occurs wherein the layers are polycatenated with the adjacent two parallel layers to form a 3D framework. In 2 and 3, the polycarboxylates act as pillars to combine the metal-bip chains, yielding the layered structures. These 2D networks are extended to the final 3D supramolecular architectures by π-π stacking interactions. The results show that bip can act as a versatile building block for the construction of various coordination polymers. Moreover, the fluorescent properties of 1-3 in the solid state at room temperature have been investigated.
Makris, George; Tseligka, Eirini D; Pirmettis, Ioannis; Papadopoulos, Minas S; Vizirianakis, Ioannis S; Papagiannopoulou, Dionysia
2016-07-05
A novel bisphosphonate, 1-(3-aminopropylamino)ethane-1,1-diyldiphosphonic acid (3), was coupled to the tridentate chelators di-2-picolylamine, 2-picolylamine-N-acetic acid, iminodiacetic acid, 3-((2-aminoethyl)thio)-3-(1H-imidazol-4-yl)propanoic acid, and 2-((2-carboxyethyl)thio)-3-(1H-imidazol-4-yl)propanoic acid to form ligands 6, 9, 11, 15, and 19, respectively. Organometallic complexes of the general formula [Re/(99m)Tc(CO)3(κ(3)-L)] were synthesized, where L denotes ligand 6, 9, 11, 15, or 19. The rhenium complexes were prepared at the macroscopic level and characterized by spectroscopic methods. The technetium-99m organometallic complexes were synthesized in high yield and were identified by comparative reversed-phase HPLC with their Re analogues. The (99m)Tc tracers were stable in vitro and exhibited binding to hydroxyapatite. In biodistribution studies, all of the (99m)Tc complexes exhibited high bone uptake superior to that of 25, which is the directly (99m)Tc-labeled bisphosphonate 3, and comparable to that of (99m)Tc-methylene diphosphonate ((99m)Tc-MDP). The tracers [(99m)Tc(CO)3(6)] (26), [(99m)Tc(CO)3(9)] (27), [(99m)Tc(CO)3(11)] (28), and [(99m)Tc(CO)3(15)] (29) exhibited higher bone/blood ratios than (99m)Tc-MDP. 26 had the highest bone uptake at 1 h p.i. The new bisphosphonates showed no substantial growth inhibitory capacity in PC-3, Saos-2, and MCF-7 established cancer cell lines at low concentrations. Incubation of 26 with the same cancer cell lines indicated a rapid and saturated uptake. The promising properties of 26-29 indicate their potential for use as bone-imaging agents.
NASA Astrophysics Data System (ADS)
Yan, Pen-Ji; Yao, Xiao-Qiang; Xie, Hua; Xiao, Guo-Bin; Liu, Jia-Cheng; Xu, Xin-Jian
2018-05-01
Two isomorphous metal-organic frameworks, {[M(TIPA) (btec)½]H2O}n, [M = Co (1) or Zn (2)] were synthesized hydrothermally based on a semi-rigid N-center triangular ligand TIPA, where TIPA = tris(4-(1H-imidazol-1-yl)-phenyl)amine, H4btec = 1,2,4,5-benzenetetracarboxylic acid. Single crystal structural analyses show that complexes 1 and 2 are isostructural and both feature a twofold interpenetrated pcu topology. In 1 and 2, the btec4- ligand adopting μ2-η2:η1 and μ1-η1:η0 coordination modes connect adjacent dinuclear Co/Zn units to form a 1D straight polymeric chain. Then these chains arranged in parallel/parallel fashion were further extended to a 3D network by exo-tridentate ligand TIPA with μ2-κ2N:N‧ coordination mode. The magnetic property of 1 and the luminescent property of 2 were investigated. Furthermore, the structure and spectroscopic property of 2 were further investigated by DFT and TD-DFT calculations.
Comparative evaluation of Bis(thiosemicarbazone)- Biotin and Met-ac-TE3A for tumor imaging
NASA Astrophysics Data System (ADS)
Singh, Sweta; Tiwari, Anjani K.; Varshney, Raunak; Mathur, R.; Shukla, Gauri; Bag, N.; Singh, B.; Mishra, Anil K.
2016-01-01
2,2‧,2″-(11-(2-((4-mercapto-1-methoxy-1-oxobutan-2-yl)amino)-2-oxoethyl)-1,4,8,11-tetraaza cyclotetradecane-1,4,8-triyl)triacetic acid, Met-ac-TE3A and (E)-N-methyl-2-((E)-3-(2-(2-(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoyl)hydrazinecarbono-thioyl)hydrazonobutan-2-ylidene)hydrazinecarbothioamide, Bis(thiosemicarbazone)- Biotin were synthesized and evaluated for imaging application. The pharmacokinetics of these ligands were determined by tracer methods. In vitro human serum stability of 99mTc Met-ac-TE3A/99mTc Bis(thiosemicarbazone)-Biotin after 24 h was found to be 96.5% and 97.0% respectively. Blood kinetics of both ligands in normal rabbits showed biphasic clearance pattern. Ex vivo biodistribution study revealed significant initial tumor uptake and high tumor/muscles ratio which is a pre-requisite condition for a ligand to work as SPECT-radiopharmaceutical for tumor imaging.
Bromidotetra-kis-(1H-2-ethyl-5-methyl-imidazole-κN)copper(II) bromide.
Godlewska, Sylwia; Baranowska, Katarzyna; Socha, Joanna; Dołęga, Anna
2011-12-01
The Cu(II) ion in the title compound, [CuBr(C(6)H(10)N(2))(4)]Br, is coordinated in a square-based-pyramidal geometry by the N atoms of four imidazole ligands and a bromide anion in the apical site. Both the Cu(II) and Br(-) atoms lie on a crystallographic fourfold axis. In the crystal, the [CuBr(C(6)H(10)N(2))(4)](+) complex cations are linked to the uncoordinated Br(-) anions (site symmetry [Formula: see text]) by N-H⋯Br hydrogen bonds, generating a three-dimensional network. The ethyl group of the imidazole ligand was modelled as disordered over two orientations with occupancies of 0.620 (8) and 0.380 (8).
Ligand effects on the ferro- to antiferromagnetic exchange ratio in bis(o-semiquinonato)copper(II).
Ovcharenko, Victor I; Gorelik, Elena V; Fokin, Sergey V; Romanenko, Galina V; Ikorskii, Vladimir N; Krashilina, Anna V; Cherkasov, Vladimir K; Abakumov, Gleb A
2007-08-29
Heterospin complexes [Cu(SQ)2Py].C7H8, Cu(SQ)2DABCO, and [Cu(SQ)2NIT-mPy].C6H6, where Cu(SQ)2 is bis(3,6-di-tert-butyl-o-benzosemiquinonato)copper(II), DABCO is 1,4-diazabicyclo(2,2,2)octane, and NIT-mPy is the nitronyl nitroxide 2-(pyridin-3-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl, have been synthesized. The molecules of these complexes have a specific combination of the intramolecular ferro- and antiferromagnetic exchange interactions between the odd electrons of Cu(II) and SQ ligands, characterized by large exchange coupling parameters |J| approximately 100-300 cm(-1). X-ray and magnetochemical studies of a series of mixed-ligand compounds revealed that an extra ligand (Py, NIT-mPy, or DABCO) coordinated to the metal atom produces a dramatic effect on the magnetic properties of the complex, changing the multiplicity of the ground state. Quantum chemical analysis of magnetostructural correlations showed that the energy of the antiferromagnetic exchange interaction between the odd electrons of the SQ ligands in the Cu(SQ)2 bischelate is extremely sensitive to both the nature of the extra ligand and structural distortions of the coordination unit, arising from extra ligand coordination.
Diaquabis{5-carboxy-2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-imidazole-4-carboxylato}manganese(II)
Ding, De-Gang; Tong, Yan
2010-01-01
In the title compound, [Mn(C8H6N5O4)2(H2O)2], the MnII ion is situated on an inversion center and is six-coordinated by two N and two O atoms from two L ligands (HL = 2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-imidazole-4,5-dicarboxylic acid) and two water molecules in a distorted octahedral geometry. In ligand L, the imidazole and triazole rings form a dihedral angle of 74.25 (8)°. Molecules are assembled into a three-dimensional structure via intermolecular O—H⋯O, O—H⋯N and N—H⋯N hydrogen-bonds, and π–π interactions with a short distance of 3.665 (2) Å between the centroids of the imidazole and triazole rings of neighbouring molecules. PMID:21579014
Bromidotetrakis(1H-2-ethyl-5-methylimidazole-κN 3)copper(II) bromide
Godlewska, Sylwia; Baranowska, Katarzyna; Socha, Joanna; Dołęga, Anna
2011-01-01
The CuII ion in the title compound, [CuBr(C6H10N2)4]Br, is coordinated in a square-based-pyramidal geometry by the N atoms of four imidazole ligands and a bromide anion in the apical site. Both the CuII and Br− atoms lie on a crystallographic fourfold axis. In the crystal, the [CuBr(C6H10N2)4]+ complex cations are linked to the uncoordinated Br− anions (site symmetry ) by N—H⋯Br hydrogen bonds, generating a three-dimensional network. The ethyl group of the imidazole ligand was modelled as disordered over two orientations with occupancies of 0.620 (8) and 0.380 (8). PMID:22199662
NASA Astrophysics Data System (ADS)
Zhang, Meili; Ren, Yixia; Ma, Zhenzhen; Qiao, Lei
2017-06-01
Two coordination polymers, [Zn(pda)(bib)]n (1) and [Cd(pda)0.5(bib)Cl]n (2)]. (H2pda = 1,4-phenylenediacetic acid, bib = 1,2-bis(imidazol-1-ylmethyl)benzene), have been synthesized by using Zn(II)/Cd(II) salts with two flexible ligands pda and bib under hydrothermal conditions. Their structures have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD) analysis. Due to the coordination geometry around the metal ions and the diverse coordination modes of the flexible ligands, the obtained complex show diverse structures. In the structure of 1, a pair of bib ligands connect two Zn(II) atoms give rise a 22-membered ring, which is further extended by pda ligands in bidentate coordination mode leading a ring-containing 2D layer. In 2, bib ligands join [Cd2Cl2]2+ dimmers generate 1D polymeric ribbon, the pda ligands further extend such ribbon forming a 2D layer network containing rectangular windows, which discovers the effect of the central metal ions on the formation of metal-organic frameworks. In additional, luminescent properties of two complexes have also been studied, they could be potential fluorescence materials.
Demir, Serkan; Güder, Aytaç; Yazıcılar, Turan K; Çağlar, Sema; Büyükgüngör, Orhan
2015-01-01
A new imidazole-based Schiff base, 2-((1H-imidazol-4-yl)methyleneamino)benzylalcohol (HL) and corresponding analogous bis(2-((1H-imidazol-4-yl)methyleneimino)benzylalcohol)metal(II) perchlorates (M: Co(1), Ni(2), Cu(3)) have prepared and characterized by elemental analyses, ESI-MS, IR, UV-Vis spectroscopies and conductivity measurements. X-ray single crystal structures of 1 and 2 have been also determined. Elemental analyses, spectroscopic and conductance data of 3 demonstrated similar structural features with these of crystallographically characterized complexes and based upon this relevances, HL ligands are neutrally coordinated to metal(II) ions in tridentate mode and all complexes are isostructural, dicathionic, contain perchlorate anions as complementary ions and, are in octahedral geometry with the formulae of [M(HL)2](ClO4)2 (for 3) and [M(HL)2](ClO4)2·H2O (for 1 and 2). Radical scavenging activities of the complexes have been evaluated by using DPPH, DMPD(+), and ABTS(+) assays. SC50 values (μg/mL) of the complexes and standards on DPPH, DMPD(+), ABTS(+) follow the sequences, BHA (9.06±0.33)>CMPD3 (15.62±0.52)>CMPD2 (17.43±0.29)>Rutin (21.65±0.60)>CMPD1 (25.67±0.51)>Trolox (28.57±0.37), Rutin>BHA>CMPD3>CMPD2>Trolox>CMPD1, and Trolox>BHA>CMPD3>CMPD2>Rutin>CMPD1 respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhi-Hao; Zhao, Yue; Chen, Shui-Sheng
Seven new coordination polymers [Zn(H{sub 2}L)(mbdc)] (1), [Zn(H{sub 3}L)(btc)] (2), [Zn(H{sub 2}L)(Hbtc)] (3), [Zn(H{sub 2}L)(Hbtc)]·H{sub 2}O (4), [Zn{sub 2}(H{sub 2}L)(btc)(μ{sub 2}-OH)] (5), [Cd(H{sub 2}L)(mbdc)] (6) and [Cd{sub 3}(H{sub 2}L){sub 2}(btc){sub 2}(H{sub 2}O)]·5H{sub 2}O (7) were synthesized by reactions of the corresponding metal salt with rigid ligand 1,3-di(1H-imidazol-4-yl)benzene (H{sub 2}L) and different carboxylic acids of 1,3-benzenedicarboxylic acid (H{sub 2}mbdc) and benzene-1,3,5-tricarboxylic acid (H{sub 3}btc), respectively. The results of X-ray crystallographic analysis indicate that complex 1 is 1D chain while 2 is a (3,3)-connected 2D network with Point (Schläfli) symbol of (4,8{sup 2}). Complexes 3 and 6 are 2D networks, 4 ismore » a 3-fold interpenetrating 3D framework with Point (Schläfli) symbol of (6{sup 5},8) and 5 is a (3,8)-connected 2D network with Point (Schläfli) symbol of (3,4{sup 2}){sub 2}(3{sup 4},4{sup 6},5{sup 6},6{sup 8},7{sup 3},8), while 7 is a (3,10)-connected 3D net with Schläfli symbol of (3,4,5){sub 2}(3{sup 4},4{sup 8},5{sup 18},6{sup 12},7{sup 2},8). The thermal stability and photoluminescence of the complexes were investigated. Furthermore, DFT calculations were performed for 2–4 to discuss the temperature controlled self-assembly of the complexes. - Graphical abstract: Seven new coordination polymers with multicarboxylate and rigid ditopic 4-imidazole containing ligands have been obtained and found to show different structures and topologies. - Highlights: • Metal complexes with diverse structures of 1D chain, 2D network and 3D framework. • Mixed ligands of 1,3-di(1H-imidazol-4-yl)benzene and multicarboxylate. • Photoluminescence property.« less
Loading Ag nanoparticles on Cd(II) boron imidazolate framework for photocatalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Min; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002; Zhang, De-Xiang
2016-05-15
An amine-functionalized Cd(II) boron imidazolate framework (BIF-77) with three-dimensional open structure has been successfully synthesized, which can load Ag nanoparticles (NPs) for photocatalytic degradation of methylene blue (MB). - Graphical abstract: An amine-functionalized neutral Cd(II) boron imidazolate framework can load Ag NPs and show excellent photocatalytic degradation behavious for MB. - Highlights: • Amine-functionalization. • Neutral boron imidazolate framework. • Loading Ag nanoparticles (NPs). • Photocatalytic degradation of methylene blue.
Vibrational investigation on the copper(II) binding mode of carcinine and its pH dependence
NASA Astrophysics Data System (ADS)
Torreggiani, Armida; Reggiani, Matteo; Manco, Immacolata; Tinti, Anna
2007-05-01
A comparative FT-Raman and FT-IR study of Carcinine (Carc), a natural imidazole dipeptide, and its complexes with Cu(II) ions was performed at different pH's. Both Raman and IR spectra present marker bands useful for the identification of the predominant complexes; in particular, Raman spectroscopy appears useful for identifying the metal-coordination site of the imidazole ring (N π or N τ atoms) of Carc. Free Carc shows a strong network of H-bonds and tautomer I (N τ-H) is the preferred form of the imidazolic ring (bands at 1578, 1292 and 988 cm -1). The presence of Cu(II) does not affect the tautomeric equilibrium at pH 7, whereas the deprotonation of both N-imidazolic nitrogens is strongly induced at higher pH. Under neutral and alkaline conditions the primary amino group takes part to the Cu(II) chelation, whereas all the peptidic moieties are involved in coordination only at pH 7. Thus, Carc acts as a tri-dentate ligand at neutral pH, mainly giving a monomeric complex, [CuLH -1], containing tautomer I, whereas an oligonuclear complex, probably [Cu 4L 4H -8], where metal-imidazolate ions connect different ligand molecules, predominates at alkaline pH.
Facile synthesis, structural elucidation and spectral analysis of pyrrole 4-imidazole derivatives
NASA Astrophysics Data System (ADS)
Singh, R. N.; Rawat, Poonam; Baboo, Vikas
2015-12-01
In this work pyrrole 4-imidazole derivatives (3A-3D): benzimidazoles and pyrrole 4-imidazoline have been synthesized by condensation, cyclization and oxidation of ethyl 4-formyl-3,5-dimethyl-1H-pyrrole carboxylate and phenylene diamine derivatives/ethylene diamine. The structure of these biheterocyclic compounds have been derived by elemental and spectroscopic - IR, UV, MS, 1H and 13C NMR analysis as well as theoretical study. The static first hyperpolarizability, β0 values for pyrrole 4-imidazole derivatives, (3A-3D) have been calculated as 10.901 × 10-31, 19.607 × 10-31, 40.323 × 10-31, 5.686 × 10-31 esu, respectively. The gradual increase in β0 value of synthesized pyrrole-benzimidazole derivatives from 3A to 3C is due to addition of acceptors -Cl atom in 3B to -NO2 group in 3C on benzimidazole side. The experimental absorption spectra found to be in UV region and the high β0 values show that the synthesized pyrrole-imidazoles are suitable as non-linear optical (NLO) materials.
Designing Polyamide Inhibitors of TWIST 1 for Prosenescence Therapy
2014-09-01
Pyrrole -Imidazole Polyamides; TWIST1; KRAS; non-small cell lung cancer (NSCLC); senescence 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF... Pyrrole -Imidazole Polyamides (PIP) are a class of cell permeable programmable small-molecule heterocyclic amino acid oligomers that can be designed...The original specific aims are below: Specific Aim#1. Design and synthesize a TWIST1-inhibitory specific Pyrrole -Imidazole Polyamides (PIP
Titanium-based zeolitic imidazolate framework for chemical fixation of carbon dioxide
A titanium-based zeolitic imidazolate framework (Ti-ZIF) with high surface area and porous morphology was synthesized and itsefficacy was demonstrated in the synthesis of cyclic carbonates from epoxides and carbon dioxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhao-Hao; Xue, Li-Ping, E-mail: lpxue@163.com; Miao, Shao-Bin
2016-08-15
The reaction of Cd(NO{sub 3}){sub 2}·4H{sub 2}O, 2,5-thiophenedicarboxylic acid (H{sub 2}tdc) and 1,2-bis(imidazol-1′-yl)methane (bimm) by modulating solvent systems yielded three highly connected pseudo-polymorphic coordination polymers based on different dinuclear [Cd{sub 2}(CO{sub 2}){sub 2}] subunits bridged by carboxylate groups. Single crystal structural analyses reveal structural variation from 4-connected 2D sql layer, 6-connected 2-fold interpenetrated 3D pcu to 8-connected 3D bcu-type network in compounds 1–3. The structural dissimilarity in the structures dependent on the coordination environments of Cd(II) ions and linking modes of mixed ligand influenced by different solvent systems during the synthesis process. Moreover, thermogravimetric and photoluminescence behaviors of 1–3 weremore » also investigated for the first time, and all the complexes emit blue luminescence in the solid state. - Graphical abstract: Key Topic. Different solvent systems modulated three Cd(II) pseudo-polymorphic coordination polymers based on thiophene-2,5-dicarboxylate and 1,2-bis(imidazol-1′-yl)methane mixed ligands. Display Omitted - Highlights: • Three solvent-dependent Cd(II) pseudo-polymorphic coordination polymers have been synthesized. • Structural variation from 4-connected 2D layer, 6-connected 2-fold interpenetrated 3D net to 8-connected 3D net. • All complexes emit blue luminescence.« less
Syntheses, structures, and magnetic properties of three new MnII-[MoIII(CN)7]4- molecular magnets.
Wei, Xiao-Qin; Pi, Qian; Shen, Fu-Xing; Shao, Dong; Wei, Hai-Yan; Wang, Xin-Yi
2018-05-22
By reaction of K4[MoIII(CN)7]·2H2O, Mn(ClO4)2·6H2O and bidentate chelating ligands, three new cyano-bridged compounds, namely Mn2(3-pypz)(H2O)(CH3CN)[Mo(CN)7] (1), Mn2(1-pypz)(H2O)(CH3CN)[Mo(CN)7] (2) and Mn2(pyim)(H2O)(CH3CN)[Mo(CN)7] (3) (3-pypz = 2-(1H-pyrazol-3-yl)pyridine, 1-pypz = 2-(1H-pyrazol-1-yl)pyridine, pyim = 2-(1H-imidazol-2-yl)pyridine), have been synthesized and characterized structurally and magnetically. Single crystal X-ray analyses revealed that although the chelating ligands are different, compounds 1 to 3 are isomorphous and crystallize in the same monoclinic space group C2/m. Connected by the bridging cyano groups, one crystallographically unique [Mo(CN)7]4- unit and three crystallographically unique MnII ions of different coordination environments form similar three-dimensional frameworks, which have a four-nodal 3,4,4,7-connecting topological net with a vertex symbol of {43}{44·62}2{410·611}. Magnetic measurements revealed that compounds 1-3 display long-range magnetic ordering with critical temperatures of 64, 66 and 62 K, respectively. These compounds are rare examples of a small number of chelating co-ligand coordinated [Mo(CN)7]4--based magnetic materials. Specifically, the bidentate chelating ligands were successfully introduced into the heptacyanomolybdate system for the first time.
NASA Astrophysics Data System (ADS)
Somasundaram, Sivaraman; Kamaraj, Eswaran; Hwang, Su Jin; Park, Sanghyuk
2018-02-01
Imidazole-based excited state intramolecular proton transfer (ESIPT) blue fluorescent molecules, 2-(1-(4-chlorophenyl)-4,5-diphenyl-1H-imidazol-2-yl)phenol (BHPI-Cl) and 2-(1-(4-bromophenyl)-4,5-diphenyl-1H-imidazol-2-yl)phenol (BHPI-Br) were designed and synthesized by Debus-Radziszewski method through a one-pot multicomponent reaction in high yield. The synthesized compounds were fully characterized by 1H NMR, 13C NMR, FT-IR, FT-Raman, GC-Mass, and elemental analysis. The molecular structures in single crystal lattice were studied by X-ray crystallographic analysis. Because of the intramolecular hydrogen bonding, hydroxyphenyl group is planar to the central imidazole ring, while the other phenyl rings gave distorted conformations to the central heterocyclic ring. BHPI-Cl and BHPI-Br molecules showed intense ESIPT fluorescence at 480 nm, because the two twisted phenyl rings on 4- and 5-positions have reduced intermolecular interaction between adjacent molecules in each crystal through a head-to-tail packing manner. Quantum chemical calculations of energies were carried out by (TD-)DFT using B3LYP/6-31G(d, p) basis set to predict the electronic absorption spectra of the compounds, and they showed good agreement between the computational and the experimental values. The thermal analyses of the synthesized molecules were also carried out by TGA/DSC method.
Theivendren, Panneerselvam; Subramanian, Arumugam; Murugan, Indhumathy; Joshi, Shrinivas D; More, Uttam A
2017-05-01
In this study, drug target was identified using KEGG database and network analysis through Cytoscape software. Designed series of novel benzimidazoles were taken along with reference standard Flibanserin for insilico modeling. The novel 4-(1H-benzo[d]imidazol-2-yl)-N-(substituted phenyl)-4-oxobutanamide (3a-j) analogs were synthesized and evaluated for their antidepressant activity. Reaction of 4-(1H-benzo[d]imidazol-2-yl)-4-oxobutanoic acid (1) with 4-(1H-benzo [d] imidazol-2-yl)-4-oxobutanoyl chloride (2) furnished novel 4-(1H-benzo [d] imidazol-2-yl)-N-(substituted phenyl)-4-oxobutanamide (3a-j). All the newly synthesized compounds were characterized by IR, 1 H-NMR, and mass spectral analysis. The antidepressant activities of synthesized derivatives were compared with standard drug clomipramine at a dose level of 20 mg/kg. Among the derivatives tested, most of the compounds were found to have potent activity against depression. The high level of activity was shown by the compounds 3d, 3e, 3i, and it significantly reduced the duration of immobility time at the dose level of 50 mg/kg. © 2016 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Tong, Ruizhan; Ren, Xiaoyu; Li, Zuoxi; Liu, Bin; Hu, Huaiming; Xue, Ganglin; Fu, Feng; Wang, Jiwu
2010-09-01
A novel inorganic-organic hybrid compound based on mixed-valence Wells-Dawson arsenotungstate and mixed-ligand Cu(I) units, Cu 8I(imi) 4(bpy) 6(H 2O)[As 2VW 2VW 16VlO 62]·2H 2O ( 1) (bpy=4,4'-bipydine; imi=imidazole), has been hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, thermal gravimetric analysis, luminescent spectrum and single crystal X-ray diffraction. Single-crystal X-ray diffraction revealed that four terminal and three bridging oxygen atoms of the Wells-Dawson cluster are coordinated to Cu(I) ions and form an unprecedented hepta-supporting polyoxometalate. The functionalized arsenotungstates are further connected by two kinds of tridentate linkers, Imi-Cu-(bpy)-Cu-(bpy)-Cu-(bpy)-Cu-Imi and Imi-Cu-(bpy)-Cu-(bpy)-Cu-H 2O, to construct a 3D framework with 4 6·6 4 topology. The hybrid material has an intense emission at about 397 nm.
Miao, Hao; Hu, Gonghao; Guo, Jiuyu; Wan, Hongxiang; Mei, Hua; Zhang, Yu; Xu, Yan
2015-01-14
Two novel organic-inorganic hybrids, Na[PMo(V)8Mo(VI)4O38(OH)2Zn4][pyim]2·1.5H2O [ε(pyim)2] (pyim = 2-(2-pyridyl)-imidazole) and [PMo(V)8Mo(VI)4O37(OH)3Zn4]2[pyim]6·4H2O [ε2(pyim)6], based on ε-Zn Keggin units {ε-PMo(V)8Mo(VI)4O(40-x)(OH)(x)Zn4}, have been successfully synthesized under hydrothermal conditions by controlling the pH values. Structural analysis indicates that the framework of ε(pyim)2 is a 1D chain constructed by monomeric ε-Zn units modified by pyim ligands, while ε2(pyim)6 is an isolated structural compound with dimeric ε-Zn units modified by pyim ligands. This is the first isolated structure of the ε-Keggin POMs system. The luminescent and electrochemical properties of ε(pyim)2 and ε2(pyim)6 were investigated. ε2(pyim)6 also shows high catalytic activity for the esterification of phosphoric acid with equimolar lauryl alcohol to monoalkyl phosphate ester (MAP).
Conradie, Jeanet; Patra, Ashis K; Harrop, Todd C; Ghosh, Abhik
2015-02-16
Density functional theory (in the form of the PW91, BP86, OLYP, and B3LYP exchange-correlation functionals) has been used to map out the low-energy states of a series of eight-coordinate square-antiprismatic (D2d) first-row transition metal complexes, involving Mn(II), Fe(II), Co(II), Ni(II), and Cu(II), along with a pair of tetradentate N4 ligands. Of the five complexes, the Mn(II) and Fe(II) complexes have been synthesized and characterized structurally and spectroscopically, whereas the other three are as yet unknown. Each N4 ligand consists of a pair of terminal imidazole units linked by an o-phenylenediimine unit. The imidazole units are the strongest ligands in these complexes and dictate the spatial disposition of the metal three-dimensional orbitals. Thus, the dx(2)-y(2) orbital, whose lobes point directly at the coordinating imidazole nitrogens, has the highest orbital energy among the five d orbitals, whereas the dxy orbital has the lowest orbital energy. In general, the following orbital ordering (in order of increasing orbital energy) was found to be operative: dxy < dxz = dyz ≤ dz(2) < dx(2)-y(2). The square-antiprism geometry does not lead to large energy gaps between the d orbitals, which leads to an S = 2 ground state for the Fe(II) complex. Nevertheless, the dxy orbital has significantly lower energy relative to that of the dxz and dyz orbitals. Accordingly, the ground state of the Fe(II) complex corresponds unambiguously to a dxy(2)dxz(1)dyz(1)dz(2)(1)dx(2)-y(2)(1) electronic configuration. Unsurprisingly, the Mn(II) complex has an S = 5/2 ground state and no low-energy d-d excited states within 1.0 eV of the ground state. The Co(II) complex, on the other hand, has both a low-lying S = 1/2 state and multiple low-energy S = 3/2 states. Very long metal-nitrogen bonds are predicted for the Ni(II) and Cu(II) complexes; these bonds may be too fragile to survive in solution or in the solid state, and the complexes may therefore not be isolable. Overall, the different exchange-correlation functionals provided a qualitatively consistent and plausible picture of the low-energy d-d excited states of the complexes.
NASA Astrophysics Data System (ADS)
Pramanik, Harun A. R.; Das, Dharitri; Paul, Pradip C.; Mondal, Paritosh; Bhattacharjee, Chira R.
2014-02-01
Synthesis of a series of newer mixed ligand copper(II) complexes of aminoacid Schiff base of the type [CuL(X)] (L = N-(2‧-hydroxy acetophenone) glycinate, X = imidazole (im) 2, benzimidazole (benz) 3, pyridine (py) 4, hydrazine (hz) 5,8-hydroxyquinoline (8-hq) 6, pyrrolidine (pyrr) 7, piperidine (pip) 8, and nicotinamide (nic) 9) have been accomplished from the interaction of an aquated Schiff base complex, [CuL(H2O)]·H2O, 1 with some selected neutral nitrogen-donor ligands. The copper(II) Schiff base complex, [CuL(H2O)]·H2O, L = N-(2‧-hydroxy acetophenone) glycinate was synthesized from the reaction of glycine and 2‧ hydroxy acetophenone and copper(II) acetate. The compounds were characterised by elemental analysis, spectral, magnetic and thermal studies. The density functional theory calculations were performed using LANL2DZ and 6-311 G(d, p) basis sets with B3LYP correlation functional to ascertain the stable electronic structure, HOMO-LUMO energy gap, chemical hardness and dipole moment of the mixed ligand complexes. A distorted square planar geometry has been conjectured for the complexes. Antibacterial activities of the ligand and its metal complexes have been tested against selected gram-positive and gram-negative strains and correlated with computational docking scores.
Multivalent Ion Transport in Polymers via Metal-Ligand Coordination
NASA Astrophysics Data System (ADS)
Sanoja, Gabriel; Schauser, Nicole; Evans, Christopher; Majumdar, Shubhaditya; Segalman, Rachel
Elucidating design rules for multivalent ion conducting polymers is critical for developing novel high-performance materials for electrochemical devices. Herein, we molecularly engineer multivalent ion conducting polymers based on metal-ligand interactions and illustrate that both segmental dynamics and ion coordination kinetics are essential for ion transport through polymers. We present a novel statistical copolymer, poly(ethylene oxide-stat-imidazole glycidyl ether) (i.e., PEO-stat-PIGE), that synergistically combines the structural hierarchy of PEO with the Lewis basicity of tethered imidazole ligands (xIGE = 0.17) required to coordinate a series of transition metal salts containing bis(trifluoromethylsulfonyl)imide anions. Complexes of PEO-stat-PIGE with salts exhibit a nanostructure in which ion-enriched regions alternate with ion-deficient regions, and an ionic conductivity above 10-5 S/cm. Novel normalization schemes that account for ion solvation kinetics are presented to attain a universal scaling relationship for multivalent ion transport in polymers via metal-ligand coordination. AFOSR MURI program under FA9550-12-1.
Blue phosphorescent nitrile containing C^C* cyclometalated NHC platinum(II) complexes.
Tronnier, Alexander; Metz, Stefan; Wagenblast, Gerhard; Muenster, Ingo; Strassner, Thomas
2014-02-28
Since C^C* cyclometalated Pt(II) complexes with N-heterocyclic carbene (NHC) ligands have been identified as potential emitter materials in organic light-emitting devices (OLEDs), very promising results regarding quantum yields, colour and stability have been presented. Herein, we report on four nitrile substituted complexes with a chelating NHC ligand (1-(4-cyanophenyl)-3-isopropyl-1H-benzo[d]imidazole or 4-(tert-butyl)-1-(4-cyanophenyl)-3-methyl-1H-imidazole) and a bidentate monoanionic auxiliary ligand (acetylacetone or dimesitoylmethane). The complexes have been fully characterized including extensive 2D NMR studies (COSY, HSQC, HMBC, NOESY, (195)Pt NMR), three of them also by solid-state structures. Photophysical measurements in amorphous PMMA films and pure emitter films at room temperature reveal the impact of the mesityl groups in the auxiliary ligand, which led to a significant increase of the quantum yield, while the decay lifetimes decreased. The electron withdrawing nitrile groups shift the emission towards blue colour coordinates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratilla, E.M.A.; Brothers, H.M. II; Kostic, N.M.
1987-07-22
Reactivity and selectivity of Pt(trpy)Cl/sup +/ toward proteins are studied with cytochromes c from horse and tuna as examples. The new transition-metal reagent is specific for histidine residues at pH 5. The reaction, facile one-step displacement of the Cl/sup -/ ligand by imidazole, produces good yield. The binding sites, His 26 and His 33 in the horse protein and His 26 in the tuna protein, are identified by UV-vis spectrophotometry and by peptide-mapping experiments. Model complexes with imidazole, histidine, histidine derivatives, and histidine-containing peptides are prepared and characterized. The covalently attached Pt(trpy)/sup 2 +/ labels allow easy separation of themore » protein derivatives by cation-exchange chromatography. The labels do not perturb the conformation and reduction potential of cytochrome c, as shown by UV-vis spectrophotometry, cyclic voltammetry, differential-pulse voltammetry, EPR spectroscopy, and /sup 1/H NMR spectroscopy. The selectivity of Pt(trpy)Cl/sup +/ is entirely opposite from that of PtCl/sub 4//sup 2 -/ although both of them are platinum(II)-chloro complexes. Owing to an interplay between the steric and electronic effects of the terpyridyl ligand, the new reagent is unreactive toward methionine (a thio ether) and cystine (a disulfide), which are otherwise highly nucleophilic ligands, but very reactive toward imidazole, which is otherwise a relatively weak ligand. Unusual and useful selectivity of preformed transition-metal complexes toward proteins evidently can be achieved by a judicious choice of ancillary ligands.« less
The effect of axial ligand on the oxidation of syringyl alcohol by Co(salen) adducts
Thomas Elder; Joseph Bozell; Diana Cedeno
2013-01-01
Experimental work on the oxidation of the lignin model, syringyl alcohol, using oxygen and a Co(salen) catalyst has revealed variations in yield with different imidazole-based axial ligands. A reasonable linear relationship was found between product yield and pKa of the axial ligand. The current work, using density functional calculations, examined geometric,...
Wang, Jianhao; Zhang, Chencheng; Liu, Li; Kalesh, Karunakaran A; Qiu, Lin; Ding, Shumin; Fu, Minli; Gao, Li-Qian; Jiang, Pengju
2016-08-01
Polyhistidine peptides are effective ligands to coat quantum dots (QDs). It is known that both the number of histidine (His) residues repeats and their structural arrangements in a peptide ligand play important roles in the assembly of the peptide onto CdSe/ZnS QDs. However, due to steric hindrance, a peptide sequence with more than six His residue tandem repeats would hardly coordinate well with Zn(2+) in the QD shell to further enhance the binding affinity. To solve this problem, a His-containing peptide ligand, ATTO 590-E2 G (NH)6 (ATTO-NH), was specifically designed and synthesized for assembly with QDs. With sequential injection of QDs and ATTO-NH into the capillary electrophoresis with fluorescence detection, strong Förster resonance energy transfer phenomenon between the QDs and the ATTO 590 dye was observed, indicating efficient self-assembly of the novel peptide onto the QDs to form ATTO-NH capped QDs inside the capillary. The binding stability of the ligand onto the QD was then systematically investigated by titrating with imidazole, His, and a his-tag containing competitive peptide. It is believed that this new in-capillary assay significantly reduced the sample consumption and the analysis time. By functionalizing QDs with certain metal cation-specific group fused peptide ligand, the QD-based probes could be even extended to the online detection of metal cations for monitoring environment in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coffinier, Yannick; Vijayalakshmi, Mookambeswaran A
2004-08-25
In this study, we attempted a limited combinatorial approach for designing affinity ligands based on mercaptoheterocyclic components. The template, divinyl sulfone structure (DVS), which was grafted on poly(ethylene vinyl alcohol) (PEVA) hollow fiber membrane, has served for the tethering of different heterocyclic compounds as pyridine, imidazole, purine and pyrimidine rings. Their ability to adsorb specifically IgG in a salt independent manner out of pure IgG solution, mixture of IgG/albumin and human plasma was demonstrated. Mercapto methyl imidazole (MMI) has shown the best adsorption of IgG in terms of binding capacity. No subclass discrimination was observed on all tested ligands except for mercapto methyl pyrimidine where the major IgG subclass adsorbed was IgG3. MMI gave an IgG binding capacity of 100 microg/cm2 of hollow fiber membrane surface area.
New benzimidazoles and their antitumor effects with Aurora A kinase and KSP inhibitory activities.
Abd El-All, Amira S; Magd-El-Din, Asmaa A; Ragab, Fatma A F; ElHefnawi, Mahmoud; Abdalla, Mohamed M; Galal, Shadia A; El-Rashedy, Ahmed A
2015-07-01
A newly synthesized series of anticancer compounds comprising thiazolo[3,2-a]pyrimidine derivatives 6a-q bearing a benzimidazole moiety was produced via a one-pot reaction of N-(4-(1H-benzo[d]imidazol-2-yl)phenyl)-2-cyanoacetamide 5 with 2-aminothiazole and an appropriate aromatic aldehyde. Compound 7 was obtained via the reaction of 4-(1H-benzo[d]imidazol-2yl)benzenamide 1 with carbon disulphide and methyl iodide in the presence of concentrated aqueous solution of NaOH, then treated with o-phenylenediamine to give N-(4-1H-benzo[d]imidazol-2-yl)phenyl)-1H-benzo[d]imidazol-2-amine 8. The structures of the newly synthesized compounds were confirmed by analytical and spectroscopic measurements (IR, MS, and (1) H NMR). The synthesized products were screened and studied for their in vitro antitumor activity against three human cancer cell lines (namely colorectal cancer cell line HCT116, human liver cancer cell line HepG2, and human ovarian cancer cell line A2780) and their Aurora A kinase and KSP inhibitory activities. All newly synthesized compounds revealed marked results comparable with the standard drug CK0106023. The compounds 6e and 6k of the thiazolopyrimidine derivatives were the most active compounds when tested against the three cell lines in comparison with the standard drug CK0106023, and showed potent dual KSP and Aurora A kinase inhibition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Chao; Zhao, Jun; Xia, Liang; Wu, Xue-Qian; Wang, Jian-Fang; Dong, Wen-Wen; Wu, Ya-Pan
2016-06-01
Three new coordination polymers, namely, {[Ni(H2L)(bix)(H2O)2]·2h2O}n (1), {[Ni(HL)(Hdpa)(H2O)2]·H2O}n (2), {[Ni(L)0.5(bpp)(H2O)]·H2O}n (3) (H4L=terphenyl-2,2‧,4,4‧-tetracarboxylic acid; bix=1,4-bis(imidazol-1-ylmethyl)benzene; dpa =4,4‧-dipyridylamine; bpp=1,3-bis(4-pyridyl)propane), based on rigid H4L ligand and different N-donor co-ligands, have been synthesized under hydrothermal conditions. Compound 1 features a 3D 4-connected 66-dia-type framework with H4L ligand adopts a μ2-bridging mode with two symmetry-related carboxylate groups in μ1-η1:η0 monodentate mode. Compound 2 displays a 1D [Ni(HL)(Hdpa)]n ribbon chains motif, in which the H4L ligand adopts a μ2-bridging mode with two carboxylate groups in μ1-η1:η1 and μ1-η1:η0 monodentate modes, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology, with H4L ligand displays a μ4-bridging coordination mode. The H4L ligand displays not only different deprotonated forms but also diverse coordination modes and conformations. The structural diversities among 1-3 have been carefully discussed, and the roles of N-donor co-ligands in the self-assembly of coordination polymers have been well documented.
pH-Dependent Optical Properties of Synthetic Fluorescent Imidazoles
Berezin, Mikhail Y.; Kao, Jeff; Achilefu, Samuel
2010-01-01
An imidazole moiety is often found as an integral part of fluorophores in a variety of fluorescent proteins and many such proteins possess pH dependent light emission. In contrast, synthetic fluorescent compounds with incorporated imidazoles are rare and have not been studied as pH probes. In this report, the richness of imidazole optical properties, including pH sensitivity, was demonstrated via a novel imidazole-based fluorophore 1H-imidazol-5-yl-vinyl-benz[e]indolium. Three species corresponding to protonated, neutral and deprotonated imidazoles were identified in the broad range of pH 1-12. The absorption and emission bands of each species were assigned by comparative spectral analysis with synthesized mono- and di-N-methylated fluorescent imidazole analogues. pKa analysis in the ground and the excited states showed photoacidic properties of the fluorescent imidazoles due to the excited state proton transfer (ESPT). This effect was negligible for substituted imidazoles. The assessment of a pH sensitive center in the imidazole ring revealed the switching of the pH sensitive centers from 1-N in the ground state to 3-N in the excited state. The effect was attributed to the unique kind of the excited state charge transfer (ESCT) resulting in a positive charge swapping between two nitrogens. PMID:19212987
NASA Astrophysics Data System (ADS)
Neelakantan, M. A.; Sundaram, M.; Nair, M. Sivasankaran
2011-09-01
Several mixed ligand Ni(II), Cu(II) and Zn(II) complexes of 2-amino-3-hydroxypyridine (AHP) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) have been synthesized and characterized by elemental and spectral (vibrational, electronic, 1H NMR and EPR) data as well as by magnetic moment values. On the basis of elemental analysis and molar conductance values, all the complexes can be formulated as [MAB]Cl except histidine complexes as MAB. Thermogravimetric studies reveal the presence of coordinated water molecules in most of the complexes. From the magnetic measurements and electronic spectral data, octahedral structure was proposed for Ni(II) and Cu(II)-AHP-his, tetrahedral for Cu(II)-AHP-him/bim/hist, but square planar for the Cu(II)-AHP complex. The g∥/ A∥ calculated supports tetrahedral environment around the Cu(II) in Cu(II)-AHP-him/bim/hist and distorted octahedral for Cu(II)-AHP-his complexes. The morphology of the reported metal complexes was investigated by scanning electron micrographs (SEM). The potentiometric study has been performed in aqueous solution at 37 °C and I = 0.15 mol dm -3 NaClO 4. MABH, MAB and MAB 2 species has been identified in the present systems. Proton dissociation constants of AHP and stability constants of metal complexes were determined using MINIQUAD-75. The most probable structure of the mixed ligand species is discussed based upon their stability constants. The in vitro biological activity of the complexes was tested against the Gram positive and Gram negative bacteria, fungus and yeast. The oxidative DNA cleavage studies of the complexes were performed using gel electrophoresis method. Cu(II) complexes have been found to promote DNA cleavage in presence of biological reductant such as ascorbate and oxidant like hydrogen peroxide.
Wang, Chih-Min; Lee, Li-Wei; Chang, Tsung-Yuan; Fan, Bing-Lun; Wang, Chih-Ling; Lin, Hsiu-Mei; Lu, Kuang-Lieh
2016-11-02
A new 3D tubular zinc phosphite, Zn 2 (C 22 H 22 N 8 ) 0.5 (HPO 3 ) 2 ⋅H 2 O (1), incorporating a tetradentate organic ligand was synthesized under hydro(solvo)thermal conditions and structurally characterized by single-crystal X-ray diffraction. Compound 1 is the first example of inorganic zincophosphite chains being interlinked through 1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene to form a tubular porous framework with unusual organic-inorganic hybrid channels. The thermal and chemical stabilities, high capacity for CO 2 adsorption compared to that for N 2 adsorption, and interesting optical properties of LED devices fabricated using this compound were also studied. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kathalikkattil, Amal Cherian; Damodaran, Subin; Bisht, Kamal Kumar; Suresh, Eringathodi
2011-01-01
Four new binary molecular compounds between a flexible exobidentate N-heterocycle and a series of dicarboxylic acids have been synthesized. The N-donor 1,4-bis(imidazol-1-ylmethyl)benzene (bix) was reacted with flexible and rigid dicarboxylic acids viz., cyclohexane-1,4-dicarboxylic acid (H 2chdc), naphthalene-1,4-dicarboxylic acid (H 2npdc) and 1H-pyrazole-3,5-dicarboxylic acid (H 2pzdc), generating four binary molecular complexes. X-ray crystallographic investigation of the molecular adducts revealed the primary intermolecular interactions carboxylic acid⋯amine (via O-H⋯N) as well as carboxylate⋯protonated amine (via N-H +⋯O -) within the binary compounds, generating layered and two-dimensional sheet type H-bonded networks involving secondary weak interactions (C-H⋯O) including the solvent of crystallization. Depending on the differences in p Ka values of the selected base/acid (Δp Ka), diverse H-bonded supramolecular assemblies could be premeditated. This study demonstrates the H-bonding interactions between imidazole/imidazolium cation and carboxylic acid/carboxylate anion in providing sufficient driving force for the directed assembly of binary molecular complexes. In the two-component solid form of hetero synthons involving bix and dicarboxylic acid, only H 2chdc exist as cocrystal with bix, while all the other three compounds crystallized exclusively as salt, in agreement with the Δp Ka values predicted for the formation of salts/cocrystals from the base and acid used in the synthesis of supramolecular solids.
Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho
2017-08-01
Magnetic graphene oxide was modified by four imidazole-based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid-phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single-factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid-liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid-modified magnetic graphene oxide materials, and amount of 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic-liquid-modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Maton, Cedric; De Vos, Nils; Roman, Bart I; Vanecht, Evert; Brooks, Neil R; Binnemans, Koen; Schaltin, Stijn; Fransaer, Jan; Stevens, Christian V
2012-09-17
A versatile and efficient method to synthesize tetrasubstituted imidazoles via a one-pot modified Debus-Radziszewski reaction and their subsequent transformation into the corresponding imidazolium ionic liquids is reported. The tetrasubstituted imidazoles were also synthesized by means of a continuous flow process. This straightforward synthetic procedure allows for a fast and selective synthesis of tetrasubstituted imidazoles on a large scale. The completely substituted imidazolium dicyanamide and bis(trifluoromethylsulfonyl)imide salts were obtained via a metathesis reaction of the imidazolium iodide salts. The melting points and viscosities are of the same order of magnitude as for their non-substituted analogues. In addition to the superior chemical stability of these novel ionic liquids, which allows them to be applied in strong alkaline media, the improved thermal and electrochemical stabilities of these compounds compared with conventional imidazolium ionic liquids is also demonstrated by thermogravimetrical analysis (TGA) and cyclic voltammetry (CV). Although increased substitution of the ionic liquids does not further increase thermal stability, a definite increase in cathodic stability is observable. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Castellano, Sabrina; Stefancich, Giorgio; Chillotti, Annalisa; Poni, Graziella
2003-08-01
A new series of 3-phenyl-1-(1,1'-biphenyl-4-yl)-2-(1H-imidazol-1-yl)propane derivatives 2a-l (related to the antifungal bifonazole) was synthesized and tested for antimicrobial activity. A number of substituents on the phenyl ring were chosen to compare the relative biological properties with those of corresponding aza-analogues, previously described by us. The in vitro antifungal activities of the newly synthesized azoles were tested against several pathogenic fungi responsible for human disease. Test pathogens included representatives of yeasts (Candida albicans, Candida parapsilosis, Criptococcus neoformans), dermathophytes (Tricophyton verrucosum, Tricophyton rubrum, Microsporum gypseum) and moulds (Aspergillus fumigatus). Bifonazole and miconazole were used as reference drugs. Title compounds were prepared by alkylation of 1-biphenyl-4-yl-2-imidazol-1-yl-ethanone with the proper arylmethyl halide and subsequent reduction of corresponding ketones applying the Huang-Minlon modification of the Wolff-Kishner reaction.
DNA as a Target for Anticancer Phen-Imidazole Pd(II) Complexes.
Heydari, Maryam; Moghadam, Mahboube Eslami; Tarlani, AliAkbar; Farhangian, Hossein
2017-05-01
Imidazole ring is a known structure in many natural or synthetic drug molecules and its metal complexes can interact with DNA and do the cleavage. Hence, to study the influence of the structure and size of the ligand on biological behavior of metal complexes, two water-soluble Pd(II) complexes of phen and FIP ligands (where phen is 1,10-phenanthroline and FIP is 2-(Furan-2-yl)-1H-Imidazo[4,5-f][1, 10]phenanthroline) with the formula of [Pd(phen)(FIP)](NO 3 ) 2 and [Pd(FIP) 2 ]Cl 2 , that were activated against chronic myelogenous leukemia cell line, K562, were selected. Also, the interaction of these anticancer Pd(II) complexes with highly polymerized calf thymus DNA was extensively studied by means of electronic absorption, fluorescence, and circular dichroism in Tris-buffer. The results showed that the binding was positive cooperation and [Pd(phen)(FIP)](NO 3 ) 2 (K f = 127 M -1 G = 1.2) exhibited higher binding constant and number of binding sites than [Pd(FIP) 2 ]Cl 2 (K f = 13 M -1 G = 1.03) upon binding to DNA. The fluorescence data indicates that quenching effect for [Pd(phen)(FIP)](NO 3 ) 2 (K SV = 58 mM -1 ) was higher than [Pd(FIP) 2 ]Cl 2 (K SV = 12 mM -1 ). Also, [Pd(FIP) 2 ]Cl 2 interacts with ethidium bromide-DNA, as non-competitive inhibition, and can bind to DNA via groove binding and [Pd(phen)(FIP)](NO 3 ) 2 can intercalate in DNA. These results were confirmed by circular dichroism spectra. Docking data revealed that longer complexes have higher interaction energy and bind to DNA via groove binding. Graphical Abstract Two anticancer Pd(II) complexes of imidazole derivative have been synthesized and interacted with calf thymus DNA. Modes of binding have been studied by electronic absorption, fluorescence, and CD measurements. [Pd(FIP) 2 ]Cl 2 can bind to DNA via groove binding while intercalation mode of binding is observed for [Pd(phen)(FIP)](NO 3 ) 2 .
Three Cd(II) MOFs with Different Functional Groups: Selective CO2 Capture and Metal Ions Detection.
Wang, Zhong-Jie; Han, Li-Juan; Gao, Xiang-Jing; Zheng, He-Gen
2018-05-07
Three Cd(II) iso-frameworks {[Cd(BIPA)(IPA)]·DMF} n (1), {[Cd(BIPA)(HIPA)]·DMF} n (2), and {[Cd(BIPA)(NIPA)]·2H 2 O} n (3) were synthesized from the self-assembly of the BIPA ligand (BIPA = bis(4-(1 H-imidazol-1-yl)phenyl)amine) and different carboxylic ligands (H 2 IPA = isophthalic acid, H 2 HIPA = 5-hydroxyisophthalic acid, H 2 NIPA = 5-nitroisophthalic acid) with Cd(II), which have amino groups, amino and phenolic hydroxyl groups, and amino and nitro groups, respectively. Both 1 and 2 exhibit CO 2 uptakes of more than 20 wt %, indicating that amino and phenolic hydroxyl functionalized groups are beneficial to CO 2 adsorption. Their applications and mechanisms in detecting metal ions were researched. The results exhibit that 1 and 2 are dual-responsive photoluminescent sensors for Hg 2+ and Pb 2+ ions with low detection concentration and high quenching constant. Besides, like most MOFs, 3 can detect a trace quantity of Fe 3+ and Cu 2+ .
Li, Zuo-Xi; Zhao, Jiong-Peng; Sañudo, E C; Ma, Hong; Pan, Zhong-Da; Zeng, Yong-Fei; Bu, Xian-He
2009-12-21
Sparked by the strategy of pillared-layer MOFs, three formate coordination polymers, {[Ni(2)(HCO(2))(3)(L)(2)](NO(3)).2H(2)O}(infinity) (1), {[Co(2)(HCO(2))(3)(L)(2)](HCO(2)).2H(2)O}(infinity) (2), and {[Cu(2)(HCO(2))(3)(L)(2)](HCO(2)).2H(2)O}(infinity) (3), have been synthesized by employing the rodlike ligand 4,4'-bis(imidazol-1-yl)biphenyl (L) as the pillar. Structural analysis indicates that the title complexes 1-3 are isostructural compounds, which possess metal-formate 2D layers perpendicularly pillared by the ligand L to afford a 3D open framework. This is an interesting example of a Kagome lattice based on the formate mediator. Moreover, the formate anion of this 2D Kagome layer exhibits various bridging modes: anti-anti, syn-anti, and 3.21 modes. Their magnetic measurements reveals that only complex 1 presents the spin canting phenomenon, while its isostructural Co(II) and Cu(II) complexes are simply paramagnets with antiferromagnetic coupling.
Follana-Berná, Jorge; Seetharaman, Sairaman; Martín-Gomis, Luis; Charalambidis, Georgios; Trapali, Adelais; Karr, Paul A; Coutsolelos, Athanassios G; Fernández-Lázaro, Fernando; D'Souza, Francis; Sastre-Santos, Ángela
2018-03-14
A new zinc phthalocyanine-zinc porphyrin dyad (ZnPc-ZnP) fused through a pyrazine ring has been synthesized as a receptor for imidazole-substituted C 60 (C 60 Im) electron acceptor. Self-assembly via metal-ligand axial coordination and the pertinent association constants in solution were determined by 1 H-NMR, UV-Vis and fluorescence titration experiments at room temperature. The designed host was able to bind up to two C 60 Im electron acceptor guest molecules to yield C 60 Im:ZnPc-ZnP:ImC 60 donor-acceptor supramolecular complex. The spectral data showed that the two binding sites behave independently with binding constants similar in magnitude. Steady-state fluorescence studies were indicative of an efficient singlet-singlet energy transfer from zinc porphyrin to zinc phthalocyanine within the fused dyad. Accordingly, the transient absorption studies covering a wide timescale of femto-to-milli seconds revealed ultrafast energy transfer from 1 ZnP* to ZnPc (k EnT ∼ 10 12 s -1 ) in the fused dyad. Further, a photo induced electron transfer was observed in the supramolecularly assembled C 60 Im:ZnPc-ZnP:ImC 60 donor-acceptor complex leading to charge separated states, which persisted for about 200 ns.
NASA Astrophysics Data System (ADS)
Bisht, Kamal Kumar; Rachuri, Yadagiri; Parmar, Bhavesh; Suresh, Eringathodi
2014-05-01
Four ternary coordination polymers (CPs) namely, {[Ni(SDB)(BITMB)(H2O)]·H2O}n (CP1), {[Cd(SDB)(BITMB) (H2O)]·(THF)(H2O)}n (CP2), {[Zn2(SDB)2(BITMB)]·(THF)2}n (CP3) and {[Co2(SDB)2(BITMB)]·(Dioxane)3}n (CP4) composed of angular dicarboxylate SDB (4,4'-sulfonyldibenzoate) and N-donor BITMB (1,3-bis(imidazol-1-ylmethyl)-2,4,6-trimethyl benzene) have been synthesized by solvothermal reactions and characterized by single crystal X-ray diffraction and other physico-chemical techniques. CP1 possesses one-dimensional ribbon type metal-organic motifs glued together by H-bonds and π⋯π interactions, whereas CP2-CP4, exhibit non-interpenetrated sql networks supported by weak supramolecular interactions. Structural diversity of these CPs can be attributed to the coordination geometry adopted by the metal nodes, versatile coordination modes of SDB and conformational flexibility of BITMB. Solid state luminescence properties of CP1-CP4 were explored. Photocatalytic performance of all CPs for the decomposition of metanil yellow by dilute hydrogen peroxide in the presence of visible light was also investigated. 25-83% dye removal from aqueous solutions in the presence of CP1-CP4 was observed.
Yang, Jin; Li, Pinhua; Zhang, Yicheng; Wang, Lei
2014-05-21
Six dinuclear N-heterocyclic carbene (NHC) palladium complexes, [PdCl2(IMes)]2(μ-dppe) (1), [PdCl2(IPr)]2(μ-dppe) (2), [PdCl2(IMes)]2(μ-dppb) (3), [PdCl2(IPr)]2(μ-dppb) (4), [PdCl2(IMes)]2(μ-dpph) (5), and [PdCl2(IPr)]2(μ-dpph) (6) [IMes = N,N'-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene; IPr = N,N'-bis-(2,6-di(iso-propyl)phenyl)imidazol-2-ylidene; dppe = 1,2-bis(diphenylphosphino)ethane, dppb = 1,4-bis(diphenylphosphino)butane; and dpph = 1,6-bis(diphenylphosphino)hexane], have been synthesized through bridge-cleavage reactions of chloro-bridged dimeric compounds, [Pd(μ-Cl)(Cl)(NHC)]2, with the corresponding diphosphine ligands. The obtained compounds were fully characterized by (1)H NMR, (13)C NMR and (31)P NMR spectroscopy, FT-IR, elemental analysis and single-crystal X-ray crystallography. Moreover, further explorations of the catalytic potential of the dinuclear carbene palladium complexes as catalysts for the Pd-catalyzed transformations have been performed under microwave irradiation conditions, and the complexes exhibited moderate to good catalytic activity in the Hiyama coupling reaction of trimethoxyphenylsilane with aryl chlorides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, Lina; Goenaga, Gabriel A.; Williams, Kia
We demonstrated that the oxygen reduction reaction (ORR) activity over the catalysts derived from pyrolyzed cobalt zeolitic imidazolate frameworks depends strongly on the imidazole ligand structure and cobalt content. The activity and durability of these catalysts were tested in the proton exchange membrane fuel cell for the first time. The membrane electrode assembly containing a catalyst derived from Co/Zn bimetallic ZIF at cathode achieved an open circuit voltage of 0.93 V, a current density of 28 mA cm-2 at 0.8 ViR-free and a peak power density of 374 mW cm-2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Zhao, Jun, E-mail: junzhao08@126.com; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002
Three new coordination polymers, namely, {[Ni(H_2L)(bix)(H_2O)_2]·2h_2O}{sub n} (1), {[Ni(HL)(Hdpa)(H_2O)_2]·H_2O}{sub n} (2), {[Ni(L)_0_._5(bpp)(H_2O)]·H_2O}{sub n} (3) (H{sub 4}L=terphenyl-2,2′,4,4′-tetracarboxylic acid; bix=1,4-bis(imidazol-1-ylmethyl)benzene; dpa =4,4′-dipyridylamine; bpp=1,3-bis(4-pyridyl)propane), based on rigid H{sub 4}L ligand and different N-donor co-ligands, have been synthesized under hydrothermal conditions. Compound 1 features a 3D 4-connected 6{sup 6}-dia-type framework with H{sub 4}L ligand adopts a μ{sub 2}-bridging mode with two symmetry-related carboxylate groups in μ{sub 1}-η{sup 1}:η{sup 0} monodentate mode. Compound 2 displays a 1D [Ni(HL)(Hdpa)]{sub n} ribbon chains motif, in which the H{sub 4}L ligand adopts a μ{sub 2}-bridging mode with two carboxylate groups in μ{sub 1}-η{sup 1}:η{sup 1} and μ{sub 1}-η{supmore » 1}:η{sup 0} monodentate modes, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology, with H{sub 4}L ligand displays a μ{sub 4}-bridging coordination mode. The H{sub 4}L ligand displays not only different deprotonated forms but also diverse coordination modes and conformations. The structural diversities among 1–3 have been carefully discussed, and the roles of N-donor co-ligands in the self-assembly of coordination polymers have been well documented. - Graphical abstract: Three nickel coordination polymers with different architectures based on mixed ligand system were synthesized and structurally characterized. Topology analyses indicate that 1 shows the 4-connected 6{sup 6}-dia net, 1D ribbon chains for 2 and 3D (4,4)-connected bbf network for 3. Display Omitted - Highlights: • Three Ni-based coordination polymers with distinct features have been prepared. • Compound 1 features a 3D 4-connected 66-dia-type framework, 2 displays a 1D [Ni(HL)(Hdpa)]{sub n} ribbon chains motif, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology. • The “mixed ligand assembled” strategy is significant potential for network design.« less
Shieh, Fa-Kuen; Wang, Shao-Chun; Leo, Sin-Yen; Wu, Kevin C-W
2013-08-19
The ZIF code: ZIF-90 materials were successfully synthesized in an optimized water-based system. The particle size, ranging from micro- to nanoscales, could be controlled by different amounts of polyvinylpyrrolidone (PVP), Zn/imidazole-2-carboxaldehyde ratio and alcohol. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Porous Metal Carboxylate Boron Imidazolate Frameworks (MC-BIFs)
Zheng, Shoutian; Wu, Tao; Zhang, Jian; Chow, Mina; Nieto, Ruben A.
2011-01-01
Integrated Material for Efficient CO2 Storage A new family of porous materials with tunable gas sorption properties have been made by integrating metal carboxylates and boron imidazolates under hydro- or solvothermal conditions. One hydrothermally synthesized phase exhibits a very high volumetric CO2 storage capacity at 81 L/L (273K, 1atm). PMID:20583020
Synthesis and antimicrobial studies of some Mannich bases carrying imidazole moiety.
Frank, Priya V; Manjunatha Poojary, Mahesha; Damodara, Naral; Chikkanna, Chandrashekhar
2013-06-01
3 Starting from 2-methyl-4-nitro-imidazole, new 5-(2-methyl- 4-nitro-1-imidazomethyl)-1,3,4-oxadiazole-2-thione () was synthesized and was subjected to Mannich reaction with appropriate amines to yield a new series of 3-substituted aminomethyl-5-(2-methyl-4-nitro-1-imidazomethyl)- 1,3,4-oxadiazole-2-thiones (4a-j). The structure of the title compounds was elucidated by elemental analysis and spectral data. The newly synthesized Mannich bases were screened for their antibacterial and antifungal activity. Many of these compounds exhibited potent antifungal activity.
NASA Astrophysics Data System (ADS)
Zhang, Lu; Liu, Qianqian; Chai, Yuanyuan; Ren, Jia; Dai, Wei-Lin
2018-02-01
Novel imidazole modified g-C3N4 were firstly synthesized via a facile one-pot thermo-induced co-condensation method. Characterization results showed that imidazole modification can improve the visible light harvesting, interfacial charge transfer and separation of g-C3N4, without destroying its pristine framework structure. The as-obtained imidazole modified g-C3N4 showed remarkably enhanced and rather stable photocatalytic performance in H2 evolution, photo-degradation of water contaminants and selective photo-oxidation of benzyl alcohol, demonstrating its all-round applications as a versatile photocatalyst. The weight ratio between imidazole and urea was well tuned and the optimal photocatalytic activity was obtained, which shows CNU-I50 sample (50 mg imidazole in 15 g urea) possesses the highest hydrogen evolution rate of 2150 μmol g-1 h-1, superior to most of the previous reported g-C3N4 materials. These results suggest that those imidazole modified g-C3N4 materials are potential photocatalyst when applied to solar energy conversion, water purification and selective photosynthesis reactions.
NASA Astrophysics Data System (ADS)
Huo, Jianqiang; Yan, Shuai; Li, Haiqiang; Yu, Donghui; Arulsamy, Navamoney
2018-03-01
A series of three-dimensional coordination polymers, namely, [Cd(BIMB)(SCA)]n (1), [M(BIMB)(trans-CHDC)]n (2, M = Cd2+; 3, M = Co2+), where BIMB = 1,4-di(1H-imidazol-1-yl)benzene, SCA2- = succinate dianion, CHDC2- = cyclohexane-1,4-dicarboxylate dianion) are synthesized hydro/solvatothermal methods. The products are characterized by elemental analysis and single-crystal X-ray diffraction data. Both the dianion and BIMB bridge different pairs of the metal ions, the three complexes are polymeric and their three-dimensional topology feature a diamond-like metal-organic framework (MOF). Owing to the length of the two bridging ligands, moderate size voids are formed in the diamondoid networks. However, the voids are filled by mutual interpenetration of four independent equivalent frameworks in a 5-fold interpenetrating architecture, and there is no sufficient void volume available for any guest molecules. The phase purity and thermal stability of the compounds are verified by powder X-ray diffraction (PXRD) and thermogravimetric (TG) data. The solid-state fluorescence spectra for the 3d10 Cd2+ MOF's 1 and 2 reveal significant enhancement in their emission intensities in comparison to the non-metallated BIMB. The enhanced emission is attributed to perturbation of intra-ligand emission states due to Cd2+ coordination.
Poly[bis[μ2-1,4-bis(1H-imidazol-1-yl)butane]dichloridonickel(II)
Zhang, Jia; Song, Jiang-Feng
2011-01-01
The asymmetric unit of the title compound, [NiCl2(C10H14N4)2]n, consists of one Ni2+ ion which is located on an inversion center, one 1,4-bis(imidazol-1-yl)butane (bimb) and one chloride ion. The Ni2+ ion exhibits a distorted octahedral coordination environment defined by four N atoms from four bimb ligands in the equatorial plane and two chloride ions in axial positions. The bridging coordination mode of the bimb ligands leads to the formation of interpenetrating square Ni4(bimb)4 units that are arranged parallel to (001). The separation between the Ni atoms in these units is 13.740 (3) Å. PMID:22219855
NASA Astrophysics Data System (ADS)
Yao, Xiao-Qiang; Li, Dan-Yang; Xiao, Guo-Bin; Ma, Heng-Chang; Lei, Zi-Qiang; Liu, Jia-Cheng
2018-04-01
A new compound, {[Co(BPFI)(NDC)]H2O·0.5DMF}n (1) has been synthesized under hydrothermal condition by the self-assembly of V-shaped N-containing rigid ligand BPFI with Co(II) ions in the presence of H2NDC acid, where BPFI = 2,8-di(1H-imidazole-1-yl)dibenzo[b,d]furan, H2NDC = naphthalene-1,4-dicarboxylic acid. Compound 1 was characterized by elemental analysis, single crystal X-ray diffraction, FT-IR spectroscopy and UV-visible spectra. Structural analysis reveals that compound 1 is a unique dinuclear Co-based 2D (4,4) layer structure decorated with parallel double chains. In addition, magnetic study reveals the existence of antiferromagnetic coupling interactions between the Co(II) ions within the dinuclear unit of 1.
Bromidotetra-kis-(2-ethyl-1H-imidazole-κN (3))copper(II) bromide.
Godlewska, Sylwia; Kelm, Harald; Krüger, Hans-Jörg; Dołęga, Anna
2012-12-01
The Cu(II) ion in the title mol-ecular salt, [CuBr(C5H8N2)4]Br, is coordinated in a square-pyramidal geometry by four N atoms of imidazole ligands and one bromide anion in the apical position. In the crystal, the ions are linked by N-H⋯Br hydrogen bonds involving both the coordinating and the free bromide species as acceptors. A C-H⋯Br inter-action is also observed. Overall, a three-dimensional network results.
Prebiotic condensation reactions using cyanamide
NASA Technical Reports Server (NTRS)
Sherwood, E.; Nooner, D. W.; Eichberg, J.; Epps, D. E.; Oro, J.
1978-01-01
Condensation reactions in cyanamide, 4-amino-5-imidazole-carboxamide and cyanamide, imidazole systems under dehydrating conditions at moderate temperatures (60 to 100 deg C) were investigated. The cyanamide, imidazole system was used for synthesis of palmitoylglycerols from ammonium palmitate and glycerol. With the addition of deoxythymidine to the former system, P1, P2-dideoxythymidine 5 prime-phosphate was obtained; the same cyanamide, 4-amino-5-imidazole-carboxamide system was used to synthesize deoxythymidine oligonucleotides using deoxythymidine 5 prime-phosphate and deoxythymidine 5 prime-triphosphate, and peptides using glycine, phenylalanine or isoleucine with adenosine 5 prime-triphosphate. The pH requirements for these reactions make their prebiotic significance questionable; however, it is conceivable that they could occur in stable pockets of low interlayer acidity in a clay such as montmorillonite.
La Regina, Giuseppe; D'Auria, Felicia Diodata; Tafi, Andrea; Piscitelli, Francesco; Olla, Stefania; Caporuscio, Fabiana; Nencioni, Lucia; Cirilli, Roberto; La Torre, Francesco; De Melo, Nadja Rodrigues; Kelly, Steven L; Lamb, David C; Artico, Marino; Botta, Maurizio; Palamara, Anna Teresa; Silvestri, Romano
2008-07-10
New 1-[(3-aryloxy-3-aryl)propyl]-1 H-imidazoles were synthesized and evaluated against Candida albicans and dermatophytes in order to develop structure-activity relationships (SARs). Against C. albicans the new imidazoles showed minimal inhibitory concentrations (MICs) comparable to those of ketoconazole, miconazole, and econazole, and were more potent than fluconazole. Several derivatives ( 10, 12, 14, 18- 20, 24, 28, 29, 30, and 34) turned out to be potent inhibitors of C. albicans strains resistant to fluconazole, with MIC values less than 10 microg/mL. Against dermatophytes strains, compounds 20, 25, and 33 (MIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Dong-Cheng; Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063; Fan, Yan
A novel series of Zn/Cd coordination polymers based on H{sub 3}L, namely, [Zn{sub 2}(HL){sub 2}(bipy){sub 2}(H{sub 2}O){sub 6}]{sub n} (1), [Zn(HL)(phen)]{sub n} (2), [Cd{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (3), [Zn{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (4) [(H{sub 3}L =4-[(1-carboxynaphthalen-2-yl)oxy]phthalic acid, bipy =4,4′-bipyridine, phen =1,10-phenanthroline, bbi =1,1′-(1,4-butanediyl)bis(imidazole] have been successfully synthesized by solvothermal reaction. Compound 1 possesses two diverse 1D chains constructed by different bipy coligands, which were further connected to form a 3D supramolecular architecture by hydrogen bonding interactions. Compound 2 possesses a complicated 1D chain based on secondary building unit (SBU) with binuclear Zn cluster. Compounds 3 and 4 exhibitmore » similar 2D→3D framework, which can be rationalized as (3,4,4)-connected 3D net with a Schläfli symbol of (6{sup 3}.8.10{sup 2}){sub 2}(6{sup 3}){sub 2}(6{sup 4}.8.10). In particular, compound 3 exhibited a high sensitivity for Cr{sup 3+} in aqueous solutions, which suggest that compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+}. - Graphical abstract: A series of novel Zn/Cd coordination polymers have been successfully synthesized by solvothermal reaction. The unique 3D Cd{sup 2+} polymer containing bbi as second ligand demonstrates high sensitivity for detection of toxic Cr{sup 3+} in aqueous solutions. Display Omitted - Highlights: • π-conjugated semirigid tricarboxylate ligands with naphthalene rings(H{sub 3}L) were rationally designed. • Four Zn/Cd coordination polymers based on H{sub 3}L have been successfully synthesized by solvothermal reaction. • Compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+} with high sensitivity in aqueous solutions.« less
Novel antiprotozoal products: imidazole and benzimidazole N-oxide derivatives and related compounds.
Aguirre, Gabriela; Boiani, Mariana; Cerecetto, Hugo; Gerpe, Alejandra; González, Mercedes; Sainz, Yolanda Fernández; Denicola, Ana; De Ocáriz, Carmen Ochoa; Nogal, Juan José; Montero, David; Escario, José Antonio
2004-05-01
The syntheses and biological evaluation of the first anti-protozoa imidazole N-oxide and benzimidazole N-oxide and their derivatives are reported. They were tested in vitro against two different protozoa, Trypanosoma cruzi and Trichomonas vaginalis. Derivative 7c, ethyl-1-(i-butyloxycarbonyloxy)-6-nitrobenzimid-azole-2-carboxylate, displayed activity on both protozoa. Lipophilicity and redox potential were experimentally determined in order to study the relationship with activity of the compounds. These properties are well related with the observed bioactivity. Imidazole and benzimidazole N-oxide derivatives are becoming leaders for further chemical modifications and advanced biological studies.
Shiga, Naoki; Takayanagi, Shihori; Muramoto, Risa; Murakami, Tasuku; Qin, Rui; Suzuki, Yuta; Shinohara, Ken-Ichi; Kaneda, Atsushi; Nemoto, Tetsuhiro
2017-05-15
Pyrrole-imidazole (Py-Im) polyamides are useful tools for chemical biology and medicinal chemistry studies due to their unique binding properties to the minor groove of DNA. We developed a novel method of synthesizing Py-Im polyamide oligomers based on a Cu-catalyzed cross-coupling strategy. All four patterns of dimer fragments could be synthesized using a Cu-catalyzed Ullmann-type cross-coupling with easily prepared monomer units. Moreover, we demonstrated that pyrrole dimer, trimer, and tetramer building blocks for Py-Im polyamide synthesis were accessible by combining site selective iodination of the pyrrole/pyrrole coupling adduct. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fekete, Marianna; Rayner, Peter J.; Green, Gary G. R.
2017-01-01
The signal amplification by reversible exchange (SABRE) approach has been used to hyperpolarise the substrates indazole and imidazole in the presence of the co‐ligand acetonitrile through the action of the precataysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)]. 2H‐labelled forms of these catalysts were also examined. Our comparison of the two precatalysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)], coupled with 2H labelling of the N‐heterocyclic carbene and associated relaxation and polarisation field variation studies, demonstrates the critical and collective role these parameters play in controlling the efficiency of signal amplification by reversible exchange. Ultimately, with imidazole, a 700‐fold1H signal gain per proton is produced at 400 MHz, whilst for indazole, a 90‐fold increase per proton is achieved. The co‐ligand acetonitrile proved to optimally exhibit a 190‐fold signal gain per proton in these measurements, with the associated studies revealing the importance the substrate plays in controlling this value. Copyright © 2017 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. PMID:28497481
Rivalta, Ivan; Lisi, George P; Snoeberger, Ning-Shiuan; Manley, Gregory; Loria, J Patrick; Batista, Victor S
2016-11-29
Allosteric enzymes regulate a wide range of catalytic transformations, including biosynthetic mechanisms of important human pathogens, upon binding of substrate molecules to an orthosteric (or active) site and effector ligands at distant (allosteric) sites. We find that enzymatic activity can be impaired by small molecules that bind along the allosteric pathway connecting the orthosteric and allosteric sites, without competing with endogenous ligands. Noncompetitive allosteric inhibitors disrupted allostery in the imidazole glycerol phosphate synthase (IGPS) enzyme from Thermotoga maritima as evidenced by nuclear magnetic resonance, microsecond time-scale molecular dynamics simulations, isothermal titration calorimetry, and kinetic assays. The findings are particularly relevant for the development of allosteric antibiotics, herbicides, and antifungal compounds because IGPS is absent in mammals but provides an entry point to fundamental biosynthetic pathways in plants, fungi, and bacteria.
Probing Aspergillus niger glucose oxidase with pentacyanoferrate(III) aza- and thia-complexes.
Kulys, J; Tetianec, L; Ziemys, A
2006-10-01
Complexes of pentacyanoferrate(III) and biologically relevant ligands, such as pyridine, pyrazole, imidazole, histidine, and other aza- and thia-heterocycles, were synthesized. Their spectral, electrochemical properties, electron exchange constants, electronic structure parameters, and reactivity with glucose oxidase from Aspergillus niger were determined. The formation of the complexes following ammonia replacement by the ligands was associated with the appearance of a new band of absorbance in the visible spectrum. The constants of the complexes formation calculated at a ligand-pentacyanoferrate(III) concentrations ratio of 10:1, were 7.5 x 10(-5), 7.7 x 10(-5), and 1.8 x 10(-3) s(-1) for benzotriazole, benzimidazole, and aminothiazole ligands, respectively. The complexes showed quasi-reversible redox conversion at a glassy carbon electrode. The redox potential of the complexes spanned the potential range from 70 to 240 mV vs. saturated calomel electrode (SCE) at pH7.2. For most of the complexes self-exchange constants (k(11)) were similar to or larger than that of hexacyanoferrate(III) (ferricyanide). The complexes containing pyridine derivatives and thia-heterocyclic ligands held a lower value of k(11) than that of ferricyanide. All complexes reacted with reduced glucose oxidase at pH7.2. The reactivity of the complex containing pyrazole was the largest in comparison to the rest of the complexes. Correlations between the complexes' reactivity and both the free energy of reaction and k(11) shows that the reactivity of pentacyanoferrates obeys the principles of Marcus's electron transfer theory. The obtained data suggest that large negative charges of the complexes decrease their reactivity.
Pure white OLED based on an organic small molecule: 2,6-Di(1H-benzo[d]imidazol-2-yl)pyridine
NASA Astrophysics Data System (ADS)
Liu, Jian
2015-10-01
2,6-Di(1H-benzo[d]imidazol-2-yl)pyridine (DBIP) was synthesized. The single-crystal structure of DBIP was resolved. DBIP-based OLED was fabricated. The electroluminescence for the device corresponds to a pure white emission. In addition, thermal stability, UV-vis, photoluminescence and electrochemical behaviors of DBIP were investigated as well.
Glans, Lotta; Ehnbom, Andreas; de Kock, Carmen; Martínez, Alberto; Estrada, Jesús; Smith, Peter J.; Haukka, Matti; Sánchez-Delgado, Roberto A.; Nordlander, Ebbe
2012-01-01
Three new ruthenium complexes with bidentate chloroquine analogue ligands, [Ru(η6-cym)(L1)Cl]Cl (1, cym = p-cymene, L1 = N-(2-((pyridin-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine), [Ru(η6-cym)(L2)Cl]Cl (2, L2 = N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) and [Ru(η6-cym)(L3)Cl] (3, L3 = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine) have been synthesized and characterized. In addition, the X-ray crystal structure of 2 is reported. The antimalarial activity of complexes 1–3 and ligands L1, L2 and L3, as well as the compound N-(2-(bis((pyridin-2-yl)methyl)amino)ethyl)-7-chloroquinolin-4-amine (L4), against chloroquine sensitive and chloroquine resistant Plasmodium falciparum malaria strains was evaluated. While 1 and 2 are less active than the corresponding ligands, 3 exhibits high antimalarial activity. The chloroquine analogue L2 also shows good activity against both the choloroquine sensitive and the chloroquine resistant strains. Heme aggregation inhibition activity (HAIA) at an aqueous buffer/n-octanol interface (HAIR50) and lipophilicity (D, as measured by water/n-octanol distribution coefficients) have been measured for all ligands and metal complexes. A direct correlation between the D and HAIR50 properties cannot be made because of the relative structural diversity of the complexes, but it may be noted that these properties are enhanced upon complexation of the inactive ligand L3 to ruthenium, to give a metal complex (3) with promising antimalarial activity. PMID:22249579
Development of Matrix Metalloproteinase-2 Inhibitors for Cardioprotection
Bencsik, Péter; Kupai, Krisztina; Görbe, Anikó; Kenyeres, Éva; Varga, Zoltán V.; Pálóczi, János; Gáspár, Renáta; Kovács, László; Weber, Lutz; Takács, Ferenc; Hajdú, István; Fabó, Gabriella; Cseh, Sándor; Barna, László; Csont, Tamás; Csonka, Csaba; Dormán, György; Ferdinandy, Péter
2018-01-01
The objective of our present study is to develop novel inhibitors for MMP-2 for acute cardioprotection. In a series of pilot studies, novel substituted carboxylic acid derivatives were synthesized based on imidazole and thiazole scaffolds and then tested in a screeening cascade for MMP inhibition. We found that the MMP-inhibiting effects of imidazole and thiazole carboxylic acid-based compounds are superior in efficacy in comparison to the conventional hydroxamic acid derivatives of the same molecules. Based on these results, a 568-membered focused library of imidazole and thiazole compounds was generated in silico and then the library members were docked to the 3D model of MMP-2 followed by an in vitro medium throughput screening (MTS) based on a fluorescent assay employing MMP-2 catalytic domain. Altogether 45 compounds showed a docking score of >70, from which 30 compounds were successfully synthesized. Based on the MMP-2 inhibitory tests using gelatin zymography, 7 compounds were then selected and tested in neonatal rat cardiac myocytes subjected to simulated I/R injury. Six compounds showed significant cardio-cytoprotecion and the most effective compound (MMPI-1154) significantly decreased infarct size when applied at 1 μM in an ex vivo model for acute myocardial infarction. This is the first demonstration that imidazole and thiazole carboxylic acid-based compounds are more efficacious MMP-2 inhibitor than their hydroxamic acid derivatives. MMPI-1154 is a promising novel cardio-cytoprotective imidazole-carboxylic acid MMP-2 inhibitor lead candidate for the treatment of acute myocardial infarction. PMID:29674965
Amir, Mohammad; Ali, Israr; Hassan, Mohd Zaheen
2013-06-01
A series of novel imidazole incorporated semicarbazones was synthesized using an appropriate synthetic route and characterized by spectral analysis (IR, 1H NMR, 13C NMR and Mass). The anticonvulsant activity of the synthesized compounds was determined using doses of 30, 100, and 300 mg kg-1 against maximal electroshock seizure (MES), subcutaneous pentylenetetrazole (scPTZ) induced seizure and minimal neurotoxicity test. Six compounds exhibited protection in both models and 2-(1-(4-chlorophenyl)-2-(1H-imidazol-1-yl)ethylidene)-N-p-tolylsemicarbazone emerged as the most active compound of the series without any neurotoxicity and significant CNS depressant effect. Liver enzyme estimations (SGOT, SGPT, Alkaline phosphatase) of the compound also showed no significant change in the enzymes levels. Moreover, it caused 80% elevation of γ-amino butyric acid (GABA) levels in the whole mice brain, thus indicating that it could be a promising candidate in designing of a potent anticonvulsant drug.
Hou, Yanbei; Qiu, Shuilai; Hu, Yuan; Kundu, Chanchal Kumar; Gui, Zhou; Hu, Weizhao
2018-05-30
This work proposed an idea of recycling in preparing Co-Ni layered double hydroxide (LDH)-derived flame retardants. A novel and feasible method was developed to synthesize CO-Ni LDH-decorated graphene oxide (GO) and carbon nanotubes (CNTs), by sacrificing bimetal zeolitic imidazolate frameworks (ZIFs). Organic ligands that departed from ZIFs were recyclable and can be reused to synthesize ZIFs. ZIFs, as transitional objects, in situ synthesized on the surfaces of GO or CNTs directly suppressed the re-stacking of the carbides and facilitated the preparation of GO@LDHs and CNTs@LDHs. As-prepared hybrids catalytically reduced toxic CO yield during the thermal decomposition of unsaturated polyester resin (UPR). What is more, the release behaviors of aromatic compounds were also suppressed during the pyrolysis process of UPR composites. The addition of GO@LDHs and CNTs@LDHs obviously inhibited the heat release and smoke emission behaviors of the UPR matrix during combustion. Mechanical properties of the UPR matrix also improved by inclusion of the carbides derivatives. This work paved a feasible method to prepare well-dispersed carbides@Co-Ni LDH nanocomposites with a more environmentally friendly method.
High-Permeability Magnetic Polymer Additives for Lightweight Electromagnetic Shielding
2015-08-01
organometallic complexes containing Fe2+ cations. [Cp] = cyclopentadiene; [Py] = pyrrole ; [Imid] = imidazole. ΔEmag values calculated with DFT using the...27 Table A-6 Energy difference between high- and low-spin magnetic states in transition metal ion- pyrrole (Py) complexes...2-],52 pyrrole (C4NH5),53 and other heterocyclic ligands.36,54 The cyclopentadienyl ligand, in particular, is ubiquitous in organometallic chemistry
Bromidotetrakis(2-ethyl-1H-imidazole-κN 3)copper(II) bromide
Godlewska, Sylwia; Kelm, Harald; Krüger, Hans-Jörg; Dołęga, Anna
2012-01-01
The CuII ion in the title molecular salt, [CuBr(C5H8N2)4]Br, is coordinated in a square-pyramidal geometry by four N atoms of imidazole ligands and one bromide anion in the apical position. In the crystal, the ions are linked by N—H⋯Br hydrogen bonds involving both the coordinating and the free bromide species as acceptors. A C—H⋯Br interaction is also observed. Overall, a three-dimensional network results. PMID:23468738
Structure and nature of manganese(II) imidazole complexes in frozen aqueous solutions.
Un, Sun
2013-04-01
A common feature of a large majority of the manganese metalloenzymes, as well as many synthetic biomimetic complexes, is the bonding between the manganese ion and imidazoles. This interaction was studied by examining the nature and structure of manganese(II) imidazole complexes in frozen aqueous solutions using 285 GHz high magnet-field continuous-wave electron paramagnetic resonance (cw-HFEPR) and 95 GHz pulsed electron-nuclear double resonance (ENDOR) and pulsed electron-double resonance detected nuclear magnetic resonance (PELDOR-NMR). The (55)Mn hyperfine coupling and isotropic g values of Mn(II) in frozen imidazole solutions continuously decreased with increasing imidazole concentration. ENDOR and PELDOR-NMR measurements demonstrated that the structural basis for this behavior arose from the imidazole concentration-dependent distribution of three six-coordinate and two four-coordinate species: [Mn(H2O)6](2+), [Mn(imidazole)(H2O)5](2+), [Mn(imidazole)2(H2O)4](2+), [Mn(imidazole)3(H2O)](2+), and [Mn(imidazole)4](2+). The hyperfine and g values of manganese proteins were also fully consistent with this imidazole effect. Density functional theory methods were used to calculate the structures, spin and charge densities, and hyperfine couplings of a number of different manganese imidazole complexes. The use of density functional theory with large exact-exchange admixture calculations gave isotropic (55)Mn hyperfine couplings that were semiquantitative and of predictive value. The results show that the covalency of the Mn-N bonds play an important role in determining not only magnetic spin parameters but also the structure of the metal binding site. The relationship between the isotropic (55)Mn hyperfine value and the number of imidazole ligands provides a quick and easy test for determining whether a protein binds an Mn(II) ion using histidine residues and, if so, how many are involved. Application of this method shows that as much as 40% of the Mn(II) ions in Deinococcus radiodurans are ligated to two histidines (Tabares, L. C.; Un, S. J. Biol. Chem 2013, in press).
Chang, Stephanie W; Lewis, Andrew R; Prosser, Kathleen E; Thompson, John R; Gladkikh, Margarita; Bally, Marcel B; Warren, Jeffrey J; Walsby, Charles J
2016-05-16
The Ru(III) complexes indazolium [trans-RuCl4(1H-indazole)2] (KP1019) and sodium [trans-RuCl4(1H-indazole)2] (NKP-1339) are leading candidates for the next generation of metal-based chemotherapeutics. Trifluoromethyl derivatives of these compounds and their imidazole and pyridine analogues were synthesized to probe the effect of ligand lipophilicity on the pharmacological properties of these types of complexes. Addition of CF3 groups also provided a spectroscopic handle for (19)F NMR studies of ligand exchange processes and protein interactions. The lipophilicities of the CF3-functionalized compounds and their unsubstituted parent complexes were quantified by the shake-flask method to give the distribution coefficient D at pH 7.4 (log D7.4). The solution behavior of the CF3-functionalized complexes was characterized in phosphate-buffered saline (PBS) using (19)F NMR, electron paramagnetic resonance (EPR), and UV-vis spectroscopies. These techniques, along with fluorescence competition experiments, were also used to characterize interactions with human serum albumin (HSA). From these studies it was determined that increased lipophilicity correlates with reduced solubility in PBS but enhancement of noncoordinate interactions with hydrophobic domains of HSA. These protein interactions improve the solubility of the complexes and inhibit the formation of oligomeric species. EPR measurements also demonstrated the formation of HSA-coordinated species with longer incubation. (19)F NMR spectra show that the trifluoromethyl complexes release axial ligands in PBS and in the presence of HSA. In vitro testing showed that the most lipophilic complexes had the greatest cytotoxic activity. Addition of CF3 groups enhances the activity of the indazole complex against A549 nonsmall cell lung carcinoma cells. Furthermore, in the case of the pyridine complexes, the parent compound was inactive against the HT-29 human colon carcinoma cell line but showed strong cytotoxicity with CF3 functionalization. Overall, these studies demonstrate that lipophilicity may be a determining factor in the anticancer activity and pharmacological behavior of these types of Ru(III) complexes.
Arulmurugan, Subramaniyan; Kavitha, Helen P
2013-06-01
2 The present work deals with the synthesis of some novel heterocyclic compounds such as benzoxazoles , 7, 13 and 19, imidazoles 3, 8, 14 and 20, benzimidazoles 4, 9, 15 and 21, and tetrazoles 10, 16, and 22. The synthesized compounds were characterized by IR, 1H NMR, mass spectrometry and elemental analysis. The compounds were evaluated for cytotoxicity against human cancer cell lines such as MCF-7 (breast cancer) and HT-29 (colon cancer) by the MTT assay method. Among the tested compounds, 4,4'-sulfonylbis(N-(2-(1H-benzo[d]imidazol- -2-yl)ethyl)aniline (9), N-bis(2-(benzo[d]oxazol-2-yl)-ethyl)- 6-phenyl-1,3,5-triazine-2,4-diamine (13), N-bis(2-(1H-benzo[ d]imidazol-2-yl)ethyl)-6-phenyl-1,3,5-triazine-2,4-diamine (15) and N-tris(2-1H-benzo[d]imidazol-2-yl)ethyl)- 1,3,5-triazine-2,4,6-triamine (21) showed potent cytotoxicity.
Agelis, George; Roumelioti, Panagiota; Resvani, Amalia; Durdagi, Serdar; Androutsou, Maria-Eleni; Kelaidonis, Konstantinos; Vlahakos, Demetrios; Mavromoustakos, Thomas; Matsoukas, John
2010-09-01
A new 1,5 disubstituted imidazole AT(1) Angiotensin II (AII) receptor antagonist related to losartan with reversion of butyl and hydroxymethyl groups at the 2-, 5-positions of the imidazole ring was synthesized and evaluated for its antagonist activity (V8). In vitro results indicated that the reorientation of butyl and hydroxymethyl groups on the imidazole template of losartan retained high binding affinity to the AT(1) receptor concluding that the spacing of the substituents at the 2,5- positions is of primary importance. The docking studies are confirmed by binding assay results which clearly show a comparable binding score of the designed compound V8 with that of the prototype losartan. An efficient, regioselective and cost effective synthesis renders the new compound as an attractive candidate for advanced toxicological evaluation and a drug against hypertension.
NASA Astrophysics Data System (ADS)
Agelis, George; Roumelioti, Panagiota; Resvani, Amalia; Durdagi, Serdar; Androutsou, Maria-Eleni; Kelaidonis, Konstantinos; Vlahakos, Demetrios; Mavromoustakos, Thomas; Matsoukas, John
2010-09-01
A new 1,5 disubstituted imidazole AT1 Angiotensin II (AII) receptor antagonist related to losartan with reversion of butyl and hydroxymethyl groups at the 2-, 5-positions of the imidazole ring was synthesized and evaluated for its antagonist activity ( V8). In vitro results indicated that the reorientation of butyl and hydroxymethyl groups on the imidazole template of losartan retained high binding affinity to the AT1 receptor concluding that the spacing of the substituents at the 2,5- positions is of primary importance. The docking studies are confirmed by binding assay results which clearly show a comparable binding score of the designed compound V8 with that of the prototype losartan. An efficient, regioselective and cost effective synthesis renders the new compound as an attractive candidate for advanced toxicological evaluation and a drug against hypertension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Bao; Li, Qian; Lv, Lei
2015-03-15
The hydrothermal reaction of transition metals, 1H-imidazole-4,5-dicarboxylic acid (H{sub 3}ImDC) and 1,2-bi(pyridin-4-yl)ethene (bpe) affords a series of new complexes, namely, [Mn(HImDC)(bpe)(H{sub 2}O)] (1), [M(H{sub 2}ImDC){sub 2}(H{sub 2}O){sub 2}]·(bpe) (M=Fe(2), Co(3), Zn(4), Cd(6)), [Zn{sub 3}(ImDC){sub 2}(bpe)(H{sub 2}O)]·3H{sub 2}O (5) and [Cd(H{sub 2}ImDC)(bpe)] (7), which are characterized by elemental analyses, IR, TG, XRPD and single crystal X-ray diffraction. Complex 1 exhibits a one dimensional (1D) zigzag chain with two types of irregular rings, and the 1D chains are linked to form a three dimensional (3D) supramolecular framework by the hydrogen bonding interactions (O–H∙∙∙O and O–H∙∙∙N). Complexes 2–4 and 6 are isomorphous, andmore » they display the mononuclear structures. In these complexes, the O–H∙∙∙O and O–H∙∙∙N hydrogen bonds play an important role in sustaining the whole 3D supramolecular frameworks. Complex 5 shows a (3,3)-connected 3D framework with (10{sup 3}) topology, and the lattice water molecules as guest molecules exist in the 3D framework. Complex 7 is a wave-like two dimensional (2D) structure, in which the adjacent 1D chains point at the opposite directions. Moreover, the fluorescent properties of complexes 1–7 and the magnetic property of 1 have been investigated. The water vapor adsorption for complex 5 has been researched at 298 K. - Graphical abstract: Seven new complexes based on different structural characteristics have been hydrothermally synthesized by the mixed ligands. The fluorescent properties, the magnetic property and the water vapor adsorption have been investigated. - Highlights: • The semi-rigid ligand with C=C bonds and imidazole dicarboxylates with some advantages have been used. • A series of new complexes with different structural characteristics have been discussed in detail. • The fluorescent properties, the magnetic property and the water vapor adsorption have been investigated.« less
Seo, Kwangwon; Kim, Dukjoon
2006-09-15
New pH-sensitive polyaspartamide derivatives were synthesized by grafting 1-(3-aminopropyl)imidazole and/or O-(2-aminoethyl)-O'-methylpoly(ethylene glycol) 5000 on polysuccinimide for application in intracellular drug delivery systems. The DS of 1-(3-aminopropyl)imidazole was adjusted by the feed molar ratio, and the structure of the prepared polymer was confirmed using FT-IR and 1H NMR spectroscopy. Their pH-sensitive properties were characterized by light transmittance measurements, and the particle size and its distribution were investigated by dynamic light scattering measurements at varying pH values. The pH-sensitive phase transition was clearly observed in polymer solutions with a high substitution of 1-(3-aminopropyl)imidazole. The prepared polymers showed a high buffering capacity between pH 5 and 7, and this increased with the DS of 1-(3-aminopropyl)imidazole. The pH dependence of the aggregation and de-aggregation behavior was examined using a fluorescence spectrometer. For MPEG/imidazole-g-polyaspartamides with a DS of 1-(3-aminopropyl)imidazole over 82%, self aggregates associated with the hydrophobic interactions of the unprotonated imidazole groups were observed at pH values above 7, and their mean size was over 200 nm, while the aggregates of polymers were dissociated at pH values below 7 by the protonation of imidazole groups. These pH-sensitive polyaspartamide derivatives are potential basic candidates for intracellular drug delivery carriers triggered by small pH changes.
NASA Astrophysics Data System (ADS)
Fayed, Ahmed M.; Elsayed, Shadia A.; El-Hendawy, Ahmed M.; Mostafa, Mohamed R.
2014-08-01
New cis-dioxomolybdenum(VI) and oxovanadium(IV) complexes of the Schiff base, derived from S-methyl dithiocarbazate and 2,3-dihydroxybenzaldehyde (H2dhsm), have been synthesized. The complexes of the type cis-[MoO2(dhsm)] (1a), cis-[MoO2(dhsm)(D)] (1b-1d) [D = neutral monodentate ligand; EtOH, pyridine (py) or imidazole (imz)], [VO(dhsm)(Nsbnd N)] (2a, 2b) [Nsbnd N = 2,2‧-bipyridine (bipy) or 1,10-phenanthroline (phen)] and [VO(dhsm)] (2c) have been isolated, characterized by 1H NMR, IR, UV-Vis and EPR spectral studies and investigated by cyclic voltammetry. The X-ray crystal structure of cis-[MoO2(dhsm)(EtOH)] (1b) has been determined and shows that the complex has a distorted octahedral geometry in which the H2dhsm behaves as a dianionic ONS tridentate ligand coordinating via phenoxide oxygen, hydrazinic nitrogen and thiolate sulfur. The oxomolybdenum(IV) complex [MoO(dhsm)] (1e) has obtained from dioxomolybdenum(VI) complex (1b) by oxo abstraction with PPh3. The reactivity of the complexes toward catalytic oxidation of alcohols in the presence of H2O2 and t-BuOOH as co-oxidants under solvent free conditions is reported.
Self-healing multiphase polymers via dynamic metal-ligand interactions.
Mozhdehi, Davoud; Ayala, Sergio; Cromwell, Olivia R; Guan, Zhibin
2014-11-19
A new self-healing multiphase polymer is developed in which a pervasive network of dynamic metal-ligand (zinc-imidazole) interactions are programmed in the soft matrix of a hard/soft two-phase brush copolymer system. The mechanical and dynamic properties of the materials can be tuned by varying a number of molecular parameters (e.g., backbone/brush degree of polymerization and brush density) as well as the ligand/metal ratio. Following mechanical damage, these thermoplastic elastomers show excellent self-healing ability under ambient conditions without any intervention.
Stellwagen, E; Cass, R D
1975-03-25
Electrostatic binding of at least two anionic iron hexacyanides to cationic horse heart cytochrome c was demonstrated by equilibrium dialysis measurements. No binding was detected following trifluoroacetylation of all of the 19 lysine residues. Replacement of the natural heme iron ligand methionine 80 by the alternative intrinsic ligand lysine 79 but not the extrinsic ligand imidazole resulted in the loss of one hexacyanide binding site. It is proposed that this site is located at the exposed heme edge and is functional in electron exchange.
Crystal structure of tetraaqua[2-(pyridin-2-yl)-1H-imidazole-κ2 N 2,N 3]iron(II) sulfate
Setifi, Zouaoui; Setifi, Fatima; Francuski, Bojana M.; Novaković, Sladjana B.; Merazig, Hocine
2015-01-01
In the title compound, [Fe(C8H7N3)(H2O)4]SO4, the central FeII ion is octahedrally coordinated by two N atoms from the bidentate 2-(pyridin-2-yl)-1H-imidazole ligand and by four O atoms of the aqua ligands. The largest deviation from the ideal octahedral geometry is reflected by the small N—Fe—N bite angle of 76.0 (1)°. The Fe—N coordination bonds have markedly different lengths [2.1361 (17) and 2.243 (2) Å], with the shorter one to the pyrimidine N atom. The four Fe—O coordination bond lengths vary from 2.1191 (18) to 2.1340 (17) Å. In the crystal, the cations and anions are arranged by means of medium-strength O—H⋯O hydrogen bonds into layers parallel to the ab plane. Neighbouring layers further interconnect by N—H⋯O hydrogen bonds involving the imidazole fragment as donor group to one sulfate O atom as an acceptor. The resulting three-dimensional network is consolidated by C—H⋯O, C—H⋯π and π–π interactions. PMID:26029386
Pure white OLED based on an organic small molecule: 2,6-Di(1H-benzo[d]imidazol-2-yl)pyridine.
Liu, Jian
2015-10-05
2,6-Di(1H-benzo[d]imidazol-2-yl)pyridine (DBIP) was synthesized. The single-crystal structure of DBIP was resolved. DBIP-based OLED was fabricated. The electroluminescence for the device corresponds to a pure white emission. In addition, thermal stability, UV-vis, photoluminescence and electrochemical behaviors of DBIP were investigated as well. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Zhenyu; Yang, Xiao; Zhao, Siwei
Eight new metal–organic hybrid materials, namely {Cd(Tcph)(4,4′-bipy)_1_/_2} (1), {[Cd_2(Tcph)_2(1,4-bimb)_1_/_2(H_2O)_4]·H_2O} (2), {Cd_2(Tcph)_2(1,4-bmimb)_1_/_2(H_2O)_4} (3), {Cd(Tcph)(1,2-bmimb)} (4), {Cu(Tcph)(1,4-bimb)(H_2O)} (5), {[Co(Tcph)(1,4-bimb)_1_/_2(H_2O)_3]·(H_2O)} (6), {Zn(Tcph)(1,2-bimb)} (7), {Cu_2(Tcph)_2(1,2-bimb)(H_2O)_4} (8), where Tcph=tetrachlorophthalate acid, 4,4′-bipy=4,4′-bipyridine, 1,4-bimb=1,4-bis(imidazol-1-ylmethyl)benzene, 1,4-bmimb=1,4-bis(2-methylimidazol-1-ylmethyl)benzene, 1,2-bimb=1,2-bis(imidazol-1-ylmethyl)-benzene, 1,2-bmimb=1,2-bis(2-methylimidazol-1-ylmethyl)benzene, have been synthesized and characterized. Their structures are determined by single crystal X-ray diffraction and further characterized by infrared spectra (IR) and thermogravimetric (TG) analyses. Complex 1, 4 and 7 display 2D layer structures. 1 possesses two-dimensional sheet containing an unusual [Cd(Tcph)] chains linked by 4,4′-bipy co-ligand, while 4 and 7 hold the similar 4-connected 4{sup 4}-sql nets. Complex 2 and 3 feature a similar three dimensional (3D) internal compensationmore » structure with a topology of {4"2·6"3·8}{sub 2}{6"3}. 5 is a novel 2-fold self-penetrating 3D network with 4-coordinated 6{sup 5}·8–CdSO{sub 4} subnets. The ladder-like chains of 6 are further connected through O–H···O interactions to yield a 3D supramolecular structure. 8 is a discrete tetranuclear complex. The thermal stabilities of 1–8 and the luminescent properties of 1–4 and 7 in the solid state are also discussed. - Graphical abstract: Structure diversity and photoluminescence of eight new metal–organic hybrid materials constructed by Tetrachlorophthalate acid and different N-donor coligands are discussed in the context. - Highlights: • Eight new coordination polymers were synthesized based on mix-ligand strategy. • Complex 2 and 3 feature a similar 3D structure with {4"2·6"3·8}{sub 2}{6"3} topology. • Seven coordination modes of tetrachlorophthalic anions have been found.« less
NASA Astrophysics Data System (ADS)
Che, Zhijian; Wang, Shaoxiang; Liu, Shenggui; Li, Guobi; Wu, Qiting; Lin, Chunyu; Kong, Linglang; Wang, Sheng
2015-01-01
A new complex [Zn(bbb)Cl2]·DMF, where bbb is 2-(2-(1H-benzo[d]imidazol-2-yl)benzyl)-1H-benzo[d]imidazole, was synthesized and characterized by element analysis, 1H NMR and X-ray single crystal structure analyses. For complex: crystal system, triclinic, space group, P-1, a = 9.4661(13), b = 10.3534(14), c = 13.0025(18) Å, α = 73.477(2), β = 80.743(2), γ = 88.658(2)°, V = 1205.5(3) Å3, Z = 2. In this complex, the Zn2+ distorted tetrahedron geometry is coordinated by two nitrogen atoms from 2-(2-(1H-benzo[d]imidazol-2-yl)benzyl)-1H-benzo[d]imidazole and two Cl-. The complex emits yellow green luminescence with the maximal emission peak at 550 nm in DMF solution. The complex exhibits inhibition on the growth of Eca109 cancer cell with IC50 value of 8.9 ± 1.1 μM, which was lower than that of cisplatin (14.3 ± 1.4 μM). This complex has potential application in treatment of esophageal cancer.
Song, Xiaowei; Li, Jiyang; Guo, Yanan; Pan, Qinhe; Gan, Lin; Yu, Jihong; Xu, Ruren
2009-01-05
Three transitional-metal-substituted aluminophosphate molecular sieves, |(C3N2H5)8|[M8Al16P24O96] (denoted MAPO-LAU, M = Co, Mn, Zn), have been synthesized under solvothermal conditions in the presence of imidazole as the structure-directing agent. Their structures are determined by single-crystal X-ray diffraction and further characterized by powder X-ray diffraction, inductively coupled plasma, thermogravimetric, and diffuse reflectance spectroscopy (UV-vis) analyses. The structure of MAPO-LAU is based on the strict alternation of MO4/AlO4 tetrahedra and PO4 tetrahedra through vertex oxygen atoms. Their frameworks are analogous to the zeotype LAU structure in which 33% of the aluminum sites are replaced by transitional-metal ions. The protonated imidazole cations resided in the 10-ring channels. These compounds show photoluminescent properties due to the existence of imidazole molecules in the structures. Magnetic measurements reveal that there is very weak antiferromagnetic interaction among the metal centers of MnAPO-LAU.
Self-assembly of an imidazolate-bridged Fe(III)/Cu(II) heterometallic cage.
Reichel, Florian; Clegg, Jack K; Gloe, Karsten; Gloe, Kerstin; Weigand, Jan J; Reynolds, Jason K; Li, Chun-Guang; Aldrich-Wright, Janice R; Kepert, Cameron J; Lindoy, Leonard F; Yao, Hong-Chang; Li, Feng
2014-01-21
A rare, discrete, mixed-valent, heterometallic Fe(III)/Cu(II) cage, [Cu6Fe8L8](ClO4)12·χsolvent (H3L = tris{[2-{(imidazole-4-yl)methylidene}amino]ethyl}amine), was designed and synthesized via metal-ion-directed self-assembly with neutral tripodal metalloligands. The formation of this coordination cage was demonstrated by X-ray crystallography, ESI mass spectrometry, FT-IR, and UV-vis-NIR spectroscopy.
Synthesis and antidepressant properties of novel 2-substituted 4,5-dihydro-1H-imidazole derivatives.
Wentland, M P; Bailey, D M; Alexander, E J; Castaldi, M J; Ferrari, R A; Haubrich, D R; Luttinger, D A; Perrone, M H
1987-08-01
A unique combination of alpha 2-adrenoreceptor antagonist and serotonin-selective reuptake inhibitory activities has been identified in a series of 2-substituted 4,5-dihydro-1H-imidazole derivatives. This combination of blocking activities has provided one of these derivatives, napamezole hydrochloride (2), with potential as an antidepressant. A discussion of the syntheses of these compounds includes a convenient method for the conversion of nitriles to imidazolines with ethylenediamine and trimethylaluminum.
Tetracoordinate Imidazole-Based Boron Complexes for the Selective Detection of Picric Acid.
Dhanunjayarao, Kunchala; Mukundam, Vanga; Venkatasubbaiah, Krishnan
2016-11-07
N,N-Dimethylamine and N,N-diphenylamine-decorated highly fluorescent imidazole borates have been synthesized and investigated as new fluorophores for the selective detection of trinitrophenol/picric acid (PA). Structural studies of a probe 1 and PA (1·PA) complex revealed that the adduct formed by the deprotonation of PA by the -NMe 2 group along with weak interactions is responsible for the selective detection of PA over other polynitrated organic compounds.
Patel, R N; Singh, Nripendra; Shukla, K K; Gundla, V L N
2005-06-01
X-band E.S.R., magnetic and electronic spectra of some imidazolate-bridged homometallic complexes [(en)2Cu-R-Im-Cu(en)2](ClO4)3 where en, ethylenediamine; R-ImH, R = H imidazole (ImH); if R = CH3, 2-methylimidazole (M-ImH) and if R = C2H5, 2-ethylimidazole (E-ImH), and mononuclear complexes [(en)Cu-dien](ClO4)2 and [(en)Cu-PMDT](ClO4)2 where dien, diethylenetriamine; PMDT, pentamethyldiethylenetriamine have been described. Superoxide dismutase (SOD) activity has also been measured and compared with earlier reported complexes. In frozen solution at 77 K, the spectra show axial symmetry with a d(x2-y2) ground state. Difference in lambda(max) between mononuclear and binuclear complexes was found to be approximately 65-75 nm. Magnetic susceptibility and E.S.R. spectral measurements for all these binuclear complexes revealed that the copper(II) ions are involved in antiferromagnetic exchange interactions propagated by the imidazolate bridge.
Scott, J. E.; Henderson, Gillian
1968-01-01
1. 2-Thiohydantoins are reduced by borohydrides to 4(5)-hydroxyimidazolidine-2-thiones, which eliminate water in acid to form imidazole-2-thiones. Both steps take place in mild conditions, in high yield. A number of imidazole-2-thiones have been synthesized by this sequence of steps, with one, two or three substituents in the 1-, 3- and 4(5)-positions. 2. 4(5)-Hydroxyimidazolidine-2-thiones are ammonium pseudo-bases, giving rise to an equilibrium mixture of amino aldehyde, carbinolamine and mesomeric ammonium cationic forms. The elimination of water is suggested to be a property of the mesomeric ammonium cation. 3. The mild conditions in which imidazole-2-thiones are formed from 4(5)-hydroxyimidazolidine-2-thiones are similar to those in which ergothioneine, a naturally occurring imidazole-2-thione of uncertain function, is normally released and measured. It is suggested that the occurrence in vivo of a precursor to ergothioneine, in the form of a 4(5)-hydroxyimidazolidine-2-thione, would explain many otherwise conflicting published data. PMID:5679364
Madeira, Paulo J Amorim; Morais, Tânia S; Silva, Tiago J L; Florindo, Pedro; Garcia, M Helena
2012-08-15
The gas-phase behaviour of six Ru(II) cyclopentadienyl-derived complexes with N-coordinated ligands, compounds with antitumor activities against several cancer lines, was studied. This was performed with the intent of establishing fragmentation pathways and to determine the Ru-L(N) and Ru-L(P) ligand bond dissociation energies. Such knowledge can be an important tool for the postulation of the mechanisms of action of these anticancer drugs. Two types of instruments equipped with electrospray ionisation were used (ion trap and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer). The dissociation energies were determined using energy-variable collision-induced dissociation measurements in the ion trap. The FTICR instrument was used to perform MS(n) experiments on one of the compounds and to obtain accurate mass measurements. Theoretical calculations were performed at the density functional theory (DFT) level using two different functionals (B3LYP and M06L) to estimate the dissociation energies of the complexes under study. The influence of the L(N) on the bond dissociation energy (D) of RuCp compounds with different nitrogen ligands was studied. The lability order of L(N) was: imidazole<1-butylimidazole<5-phenyl-1H-tetrazole<1-benzylimidazole. Both the functionals used gave the following ligand lability order: imidazole<1-benzylimidazole<5-phenyl-1H-tetrazole<1-butylimidazole. It is clear that there is an inversion between 1-benzylimidazole and 1-butylimidazole for the experimental and theoretical lability orders. The M06L functional afforded values of D closer to the experimental values. The type of phosphane (L(P) ) influenced the dissociation energies, with values of D being higher for Ru-L(N) with 1-butylimidazole when the phosphane was 1,2-bis(diphenylphosphino)ethane. The Ru-L(P) bond dissociation energy for triphenylphosphane was independent of the type of complex. The D values of Ru-L(N) and Ru-L(P) were determined for all six compounds and compared with the values calculated by the DFT method. For the imidazole-derived ligands the energy trend was rationalized in terms of the increasing extension of the σ-donation/π-backdonation effect. The bond dissociation energy of Ru-PPh(3) was independent of the fragmentations. Copyright © 2012 John Wiley & Sons, Ltd.
Deau, Emmanuel; Robin, Elodie; Voinea, Raluca; Percina, Nathalie; Satała, Grzegorz; Finaru, Adriana-Luminita; Chartier, Agnès; Tamagnan, Gilles; Alagille, David; Bojarski, Andrzej J; Morisset-Lopez, Séverine; Suzenet, Franck; Guillaumet, Gérald
2015-10-22
We report the synthesis of 46 tertiary amine-bearing N-alkylated benzo[d]imidazol-2(3H)-ones, imidazo[4,5-b]pyridin-2(3H)-ones, imidazo[4,5-c]pyridin-2(3H)-ones, benzo[d]oxazol-2(3H)-ones, oxazolo[4,5-b]pyridin-2(3H)-ones and N,N'-dialkylated benzo[d]imidazol-2(3H)-ones. These compounds were evaluated against 5-HT7R, 5-HT2AR, 5-HT1AR, and 5-HT6R as potent dual 5-HT7/5-HT2A serotonin receptors ligands. A thorough study of the structure-activity relationship of the aromatic rings and their substituents, the alkyl chain length and the tertiary amine was conducted. 1-(4-(4-(4-Fluorobenzoyl)piperidin-1-yl)butyl)-1H-benzo[d]imidazol-2(3H)-one (79) and 1-(6-(4-(4-fluorobenzoyl)piperidin-1-yl)hexyl)-1H-benzo[d]imidazol-2(3H)-one (81) were identified as full antagonist ligands on cyclic adenosine monophosphate (cAMP, KB = 4.9 and 5.9 nM, respectively) and inositol monophosphate (IP1, KB = 0.6 and 16 nM, respectively) signaling pathways of 5-HT7R and 5-HT2AR. Both antagonists crossed the blood-brain barrier as evaluated with [(18)F] radiolabeled compounds [(18)F]79 and [(18)F]81 in a primate's central nervous system using positron emission tomography. Both radioligands showed standard uptake values ranging from 0.8 to 1.1, a good plasmatic stability, and a distribution consistent with 5-HT7R and 5-HT2AR in the CNS.
Stanley, Levi M.
2010-01-01
Highly regio- and enantioselective iridium-catalyzed N-allylations of benzimidazoles, imidazoles, and purines have been developed. N-Allylated benzimidazoles and imidazoles were isolated in high yields (up to 97%) with high branched-to-linear selectivity (up to 99:1) and enantioselectivity (up to 98% ee) from the reactions of benzimidazole and imidazole nucleophiles with unsymmetrical allylic carbonates in the presence of single component, ethylene-bound, metallacyclic iridium catalysts. N-Allylated purines were also obtained in high yields (up to 91%) with high N9:N7 selectivity (up to 96:4), high branched-to-linear selectivity (98:2), and high enantioselectivity (up to 98% ee) under similar conditions. The reactions encompass a range of benzimidazole, imidazole, and purine nucleophiles, as well as a variety of unsymmetrical aryl, heteroaryl, and aliphatic allylic carbonates. Competition experiments between common amine nucleophiles and the heterocyclic nitrogen nucleophiles studied in this work illustrate the effect of nucleophile pKa on the rate of iridium-catalyzed N-allylation reactions. Kinetic studies on the allylation of benzimidazole catalyzed by metallacyclic iridium-phosphoramidite complexes, in combination with studies on the deactivation of these catalysts in the presence of heterocyclic nucleophiles, provide insight into the effects of the structure of the phosphoramidite ligands on the stability of the metallacyclic catalysts. The data obtained from these studies has led to the development of N-allylations of benzimidazoles and imidazoles in the absence of an exogenous base. PMID:19480431
Zampieri, Daniele; Mamolo, Maria Grazia; Vio, Luciano; Romano, Maurizio; Skoko, Nataša; Baralle, Marco; Pau, Valentina; De Logu, Alessandro
2016-07-15
N(1)-[1-[1-aryl-3-[4-(1H-imidazol-1-yl)phenyl]-3-oxo]propyl]-pyridine-2-carboxamidrazone derivatives were design, synthesized and tested for their in vitro antimycobacterial activity. The new compounds showed a moderate antimycobacterial activity against the tested strain of Mycobacterium tuberculosis H37Ra and a significant antimycobacterial activity against several mycobacteria other than tuberculosis strains. Copyright © 2016 Elsevier Ltd. All rights reserved.
Exploring the Transphobia Effect on Heteroleptic NHC Cycloplatinated Complexes.
Fuertes, Sara; Chueca, Andrés J; Sicilia, Violeta
2015-10-19
The synthesis of 1-(4-cyanophenyl)-1H-imidazol (1) has been carried out by an improved method. Then its corresponding imidazolium iodide salt, 2, has been used to prepare the N-heterocyclic carbene (NHC) cycloplatinated compound [{Pt(μ-Cl)(C^C*)}2] (4) (HC^C*-κC* = 1-(4-cyanophenyl)-3-methyl-1H-imidazol-2-ylidene) following a step-by-step protocol. The intermediate complex [PtCl(η(3)-2-Me-C3H4) (HC^C*-κC*)] (3) has also been isolated and characterized. Using 4 as precursor, several heteroleptic complexes of stoicheometry [PtCl(C^C*)L] (L = PPh3 (5), pyridine (py, 6), 2,6-dimethylphenyl isocyanide (CNXyl, 7), and 2-mercapto-1-methylimidazole (MMI, 8)) and [Pt(C^C*)LL']PF6 (L = PPh3, L' = py (9), CNXyl (10), and MMI (11)) have been synthesized. Complexes 6-8 were obtained as a mixture of cis- and trans-(C*,L) isomers, while trans-(C*,L) isomer was the only one observed for complexes 5 and 9-11. Their geometries have been discussed in terms of the degree of transphobia (T) of pairs of trans ligands and supported by theoretical calculations. The trans influence of the two σ Pt-C bonds present in these molecules, Pt-C(Ar) and Pt-C*(NHC), has been compared from the J(Pt-P) values observed in the new complex [Pt(C^C*)(dppe)]PF6 (dppe = 1, 2-bis(diphenylphosphino)ethane, 12).
NASA Astrophysics Data System (ADS)
Han, Lu; Zhang, Yumin; Kang, Jing; Tang, Jieli; Zhang, Yihua
2011-11-01
In this paper, three kinds of imidazole derivatives, 2-(4-methylphenyl)-4,5-di(2-furyl) imidazole (MDFI), 2-(4-nitrophenyl)-4,5-di(2-furyl) imidazole (NDFI), and 2-(4-tert-butylphenyl)-4,5-di(2-furyl) imidazole (t-BDFI) were synthesized. In an alkaline medium, the chemiluminescence (CL) reaction of imidazole derivatives with H 2O 2 has been investigated. It was also found that MDFI/H 2O 2 and t-BDFI/H 2O 2 systems gave strong CL. When Co 2+ was added into the two CL systems, the CL intensity was remarkably enhanced. In the optimum conditions, the CL intensity is linearly related to the logarithm of concentration of Co 2+. The linear ranges are 5 × 10 -9-2.5 × 10 -7 mol/L for MDFI/H 2O 2 system and 5 × 10 -9-2.5 × 10 -7 mol/L for t-BDFI/H 2O 2 system, and the corresponding detection limits are 1.2 × 10 -9 mol/L and 1.1 × 10 -9 mol/L, respectively. The method was applied to the determination of Co 2+ in vitamin B 12 injection. Furthermore, the CL mechanism was also discussed.
Tong, Shao-Wei; Li, Shi-Jie; Song, Wen-Dong; Miao, Dong-Liang; An, Jing-Bo
2011-01-01
In the title complex, [Cd(C8H9N2O4)2(H2O)2]·2C3H7NO, the six-coordinate CdII ion is in a slightly distorted octahedral environment, defined by two O atoms from two coordinated water molecules and two carboxylate O atoms and two N atoms from two N,O-bidentate 5-carboxy-2-propyl-1H-imidazole-4-carboxylate ligands. In the crystal, complex molecules and dimethylformamide solvent molecules are linked by O—H⋯O and N—H⋯O hydrogen bonds into a two-dimensional supramolecular structure. The propyl groups of the ligands are disordered over two conformations with refined occupancies of 0.680 (7) and 0.320 (7). PMID:22199635
Li, Bing-Bing; Xiao, Bo
2009-01-01
In the title coordination polymer, [Cd(C8H11O4)2(C14H14N4)]n, the Cd atom (site symmetry 2) is six-coordinated by two O,O′-bidentate 4-carboxycyclohexanecarboxylate (Hchdc) ligands and two N atoms from two different 1,4-bis(imidazol-1-ylmethyl)benzene (1,4-bix) molecules in a very distorted cis-CdN2O4 octahedral environment. The 1,4-bix molecules act as bridging ligands that bind two CdII atoms, thus forming an infinite chain propagating in [100], which is decorated by the Hchdc anions. The structure is completed by O—H⋯O hydrogen bonds, which link the chains together. PMID:21582692
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loew, G.H.; Axe, F.U.; Collins, J.R.
In this study, we have investigated the plausibility of a key postulated transformation of the proximal imidazole ligand (His 175) to an imidazolate by proton transfer to a nearby aspartate (Asp 235) absent in Mb. The proton relay system studied included not only models for the His 175 and Asp 235 residues but also for a nearby Trp 191 residue that could also interact with Asp 235 through hydrogen bonding and polarization. Two semiempirical quantum mechanical methods, Am1 and MNDO/H, with improved capabilities of describing H-bonded systems, were used to calculate the enthalpies of the three tautomeric forms of themore » proton relay system corresponding to the proton on the His, Asp, and Trp, respectively. These calculations were made for several models of the effect of the iron. Relative tautomeric enthalpies were calculated both with H-atom only optimization, keeping the heavy atoms fixed in their X-ray positions, and additional optimization that allowed the model Asp residue to relax. Transition-state enthalpies for the proton transfer from His to Asp were also calculated. The results of these studies suggest that the crucial postulated proton transfer from His to Asp is energetically favored, but only in the presence of the interaction of the iron with the imidazole ligand. Another stable form of the cluster, with competing proton transfer from the Trp to the Asp, was found only when the Asp position was allowed to optimize.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Na; Mu, Bao; Lv, Lei
Four new polyoxometalate(POM)–templated metal–organic frameworks based on flexible ligands, namely, [Cu{sub 6}(bip){sub 12}(PMo{sup VI}{sub 12}O{sub 40}){sub 2}(PMo{sup V}Mo{sup VI}{sub 11}O{sub 40}O{sub 2})]·8H{sub 2}O(1), [Cu{sup I}{sub 3}Cu{sup II}{sub 3}(bip){sub 12}(PMo{sup VI}{sub 12}O{sub 40}){sub 2}(PMo{sup V}{sub 12}O{sub 34})]·8H{sub 2}O(2), [Ni{sub 6}(bip){sub 12}(PMo{sup VI}{sub 12}O{sub 40})(PMo{sup VI}{sub 11}Mo{sup V}O{sub 40}){sub 2}]Cl·6H{sub 2}O(3), [Co{sup II}{sub 3}Co{sup III}{sub 2}(H{sub 2}bib){sub 2}(Hbib){sub 2}(PW{sub 9}O{sub 34}){sub 2}(H{sub 2}O){sub 6}]·6H{sub 2}O(4) (bip=1,3-bis(imidazolyl)propane, bib=1,4-bis(imidazolyl)butane) have been obtained under hydrothermal condition and characterized by single-crystal X-ray diffraction analyses, elemental analyses, and thermogravimetric (TG) analyses. The studies of single crystal X-ray indicate that compounds 1–3 crystallize in the trigonal space groupmore » P-3, and compound 4 crystallizes in the triclinic space group P-1. Compounds 1 and 3 represent 3D frameworks, and POMs as the guest molecules are incorporated into the cages which are composed of the ligands and metals, while compounds 2 and 4 show 3D frameworks by hydrogen bonds. This compounds provide new examples of host–guest compounds based on flexible bis(imidazole) ligands. In addition, the electrochemical property and the catalytic property of compound 1 have also been investigated. - Graphical abstract: Four inorganic–organic hybrid compounds based polyoxometalates (POMs) and flexible ligands, namely, have been obtained under hydrothermal conditions and characterized by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, and thermogravimetric (TG) analyses. Compounds 1–3 are new examples of host–guest compounds based on flexible bis(imidazole) ligands and POMs as the guest molecules are incorporated into the cages which are composed of the ligands and metals. - Highlights: • Polyoxometalate–templated metal–organic frameworks have been prepared. • POMs as the guest molecules are incorporated into the cages. • The cages are flexibility based on flexible bis(imidazole) ligands.« less
Heterobimetallic Complexes Featuring Fe(CO)5 as a Ligand on Gold.
Wang, Guocang; Ponduru, Tharun T; Wang, Qing; Zhao, Lili; Frenking, Gernot; Dias, H V Rasika
2017-12-06
Iron(0) pentacarbonyl complexes of gold(I), [Mes 3 PAu-Fe(CO) 5 ][SbF 6 ] (1) and [(IPr*)Au-Fe(CO) 5 ][SbF 6 ] (2) (Mes=2,4,6-trimethylphenyl; IPr*=1,3-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene) have been synthesized using Mes 3 PAuCl and (IPr*)AuCl as the gold(I) precursor, AgSbF 6 halide ion abstractor, and the Lewis base Fe(CO) 5 . The Au-Fe bond lengths of these metal-only Lewis pair complexes are significantly shorter than the sum of the experimentally derived covalent radii of Au and Fe. The v̄(CO) bands of the molecules show a notable blueshift relative to those observed for free Fe(CO) 5 , indicating a substantial reduction in Fe→CO backbonding upon its coordination to gold(I) with either Mes 3 P or IPr* supporting ligands (L). The analysis of the electronic structure with quantum chemical method suggests that the Au-Fe bond consists mainly of [LAu] + ←Fe(CO) 5 σ-donation and weaker [LAu] + →Fe(CO) 5 π-backdonation. The donor strength of Fe(CO) 5 is similar to that of CO. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yuan, Fei; Wang, Ting-Ting; Hu, Huai-Ming; Li, Chuan-Ti; Zhou, Chun-Sheng; Wang, Xiaofang; Xue, Ganglin
2017-07-01
Using a carboxylic oligopyridine ligand, 4‧-(4-carboxyphenyl)-4,2‧:6‧,4″- terpyridine (Hcptpy), and imidazole-4,5-dicarboxylic acid (H3idc), two metal(II)-cptpy compounds formulated as [Zn2(cptpy)4]n·nH2O (1), [Zn2(cptpy)2(Hidc)(H2O)2]n·nH2O (2) have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Compound 1 shows a 2D +2D →3D supramolecular framework structure generated by two-fold interpenetrating 3-connected 2D framework (2D+2D→2D) with the sql topological net and the Schläfli symbol of {44·62}. Compound 2 displays a 1D ladder chain structure. The luminescent properties of 1 and the ones immersed in various kinds of organic compounds and nitrate@DMF solutions have been investigated. Importantly, 1 shows highly selective and sensitive response to acetone and Cu2+ through luminescence quenching effects, making it a promising luminescent sensor for acetone molecule and Cu2+. Meaningwhile, compound 2 shows highly selective sensitivity for Cr2O72-.
Tabrizi, Leila; Chiniforoshan, Hossein
2017-10-24
New multinuclear gold(iii), palladium(ii) pincer complexes containing bis(diphenylphosphino) ferrocene/non-ferrocene ligands of formula [(L)Au(μ 2 -η 2 -CS 3 )Pd(dppf)](PF 6 ) 2 , 1, and [(L)Au(μ 2 -η 2 -CS 3 )Pd(dppe)](PF 6 ) 2 , 2 (HL = 5-methoxy-1,3-bis (1-methyl-1H-benzo[d]imidazol-2-yl)benzene, dppf = 1,1'-bis(diphenylphosphino)ferrocene, and dppe = bis(diphenylphosphino)ethane) have been synthesized and fully characterized. Both complexes are more cytotoxic to a number of human cancer cell lines than cisplatin. Moreover, complex 1 is more active than auranofin as the reference gold compound against a panel of several human tumor cell lines. Chemosensitivity tests completed on cisplatin sensitive and resistant cell lines have confirmed that both complexes were able to overcome cisplatin resistance. The complexes successfully inhibited the enzymes thioredoxin reductase (TrxR) and glutathione reductase (GR). The cellular uptake of both gold and palladium of the complexes was studied, which indicated a high biological stability of the complexes. The complexes 1 and 2 increase the production of ROS in HCT-15 cells. In addition, these complexes induce major levels of cancer cell death by apoptosis.
Kubis, Christoph; Profir, Irina; Fleischer, Ivana; Baumann, Wolfgang; Selent, Detlef; Fischer, Christine; Spannenberg, Anke; Ludwig, Ralf; Hess, Dieter; Franke, Robert; Börner, Armin
2016-02-18
Homogeneous ruthenium complexes modified by imidazole-substituted monophosphines as catalysts for various highly efficient hydroformylation reactions were characterized by in situ IR spectroscopy under reaction conditions and NMR spectroscopy. A proper protocol for the preformation reaction from [Ru3 (CO)12] is decisive to prevent the formation of inactive ligand-modified polynuclear complexes. During catalysis, ligand-modified mononuclear ruthenium(0) carbonyls were detected as resting states. Changes in the ligand structure have a crucial impact on the coordination behavior of the ligand and consequently on the catalytic performance. The substitution of CO by a nitrogen atom of the imidazolyl moiety in the ligand is not a general feature, but it takes place when structural prerequisites of the ligand are fulfilled. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Roy, Bijan; Shanmugaraju, Sankarasekaran; Saha, Rupak; Mukherjee, Partha Sarathi
2015-01-01
A benzil-based semi-rigid dinuclear-organometallic acceptor 4,4'-bis[trans-Pt(PEt(3))(2)(NO(3))(ethynyl)]benzil (bisPt-NO(3)) containing a Pt-ethynyl functionality was synthesized in good yield and characterized by multinuclear NMR ((1)H, (31)P, and (13)C), electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction analysis of the iodide analogue bisPt-I. The stoichiometric (1:1) combination of the acceptor bisPt-NO(3) separately with four different ditopic donors (L(1)-L(4); L(1) = 9-ethyl-3,6-di(1H-imidazol-1-yl)-9H-carbazole, L(2) = 1,4-bis((1H-imidazol-1-yl)methyl)benzene, L(3) = 1,3-bis((1H-imidazol-1-yl)methyl)benzene and L(4) = 9,10-bis((1H-imidazol-1-yl) methyl)anthracene) yielded four [2 + 2] self-assembled metallacycles M(1)-M(4) in quantitative yields, respectively. All these newly synthesized assemblies were characterized by various spectroscopic techniques (NMR, IR, ESI-MS) and their sizes/shapes were predicted through geometry optimization employing the PM6 semi-empirical method. The benzil moiety was introduced in the backbone of the acceptor bisPt-NO(3) due to the interesting structural feature of long carbonyl C-C bond (∼1.54 Å), which enabled us to probe the role of conformational flexibility on size and shapes of the resulting coordination ensembles.
Benzimidazole derivative vs. different phases of TiO2-physico-chemical approach.
Karunakaran, C; Jayabharathi, J; Jayamoorthy, K
2013-10-01
1-Benzyl-2-phenyl-1H-benzo[d]imidazole (BPBI) has been synthesized by simple steps and characterized by spectral studies. Absorption and fluorescence spectral studies have been employed to investigate the interaction of BPBI with the anatase, hombikat, P25 and rutile phases of TiO2. The emission of the BPBI is efficiently quenched by anatase, hombikat and P25 TiO2 nanoparticles owing to charge injection from the excited singlet state of BPBI to the conduction band of the TiO2 nanoparticles. Surprisingly, rutile phase enhances the fluorescence which is likely due to lowering of LUMO and HOMO levels of the ligand on ducking of the benzimidazole moiety of the BPBI molecule into the void space of rutile TiO2. Electron injection from photoexcited BPBI to the TiO2 conduction band (S*→S(+)+e(-)(CB)) is likely to enhance the fluorescence. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Beheshti, Azizolla; Nozarian, Kimia; Babadi, Susan Soleymani; Noorizadeh, Siamak; Motamedi, Hossein; Mayer, Peter; Bruno, Giuseppe; Rudbari, Hadi Amiri
2017-05-01
Two new compounds namely [Cu(SCN)(μ-L)]n (1) and {[Ag (μ2-L)](ClO4)}n (2) have been synthesized at room temperature by one-pot reactions between the 1,1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione) (L) and appropriate copper(I) and silver(I) salts. These polymers have been characterized by single crystal X-ray diffraction, XRPD, TGA, elemental analysis, infrared spectroscopy, antibacterial activity and scanning probe microscopy studies. In the crystal structure of 1, copper atoms have a distorted trigonal planar geometry with a CuS2N coordination environment. Each of the ligands in the structure of 1 acting as a bidentate S-bridging ligand to form a 1D chain structure. Additionally, the adjacent 1D chains are interconnected by the intermolecular C-H…S interactions to create a 2D network structure. In contrast to 1, in the cationic 3D structure of 2 each of the silver atoms exhibits an AgS4 tetrahedral geometry with 4-membered Ag2S2 rings. In the structure of 2, the flexible ligand adopts two different conformations; gauche-anti-gauche and anti-anti-anti. The antibacterial studies of these polymers showed that polymer 2 is more potent antibacterial agent than 1. Scanning probe microscopy (SPM) study of the treated bacteria was carried out to investigate the structural changes cause by the interactions between the polymers and target bacteria. Theoretical study of polymer 1 investigated by the DFT calculations indicates that observed transitions at 266 nm and 302 nm in the UV-vis spectrum could be attributed to the π→π* and MLCT transitions, respectively.
Huang, Xiao-Chun; Zhang, Jie-Peng; Chen, Xiao-Ming
2004-10-20
A new facile synthetic strategy successfully leads to the isolation of two polygons of high numbers of sides constructed by simple, bent imidazolate bridging ligands and two-coordinate CuI ions upon templating of circular organic molecules, which were characterized by crystallography.
Kumar, Satish; Ceruso, Mariangela; Tuccinardi, Tiziano; Supuran, Claudiu T; Sharma, Pawan K
2016-07-01
Novel pyrazolylbenzo[d]imidazole derivatives (2a-2f) were designed, synthesized and evaluated against four human carbonic anhydrase isoforms belonging to α family comprising of two cytosolic isoforms hCA I and II as well as two transmembrane tumor associated isoforms hCA IX and XII. Starting from these derivatives that showed high potency but low selectivity in favor of tumor associated isoforms hCA IX and XII, we investigated the impact of removing the sulfonamide group. Thus, analogs 3a-3f without sulfonamide moiety were synthesized and biological assay revealed a good activity as well as an excellent selectivity as inhibitors for tumor associated hCA IX and hCA XII and the same was analyzed by molecular docking studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Dong-Cheng; Fan, Yan; Si, Chang-Dai; Wu, Ya-Jun; Dong, Xiu-Yan; Yang, Yun-Xia; Yao, Xiao-Qiang; Liu, Jia-Cheng
2016-09-01
A novel series of Zn/Cd coordination polymers based on H3L, namely, [Zn2(HL)2(bipy)2(H2O)6]n (1), [Zn(HL)(phen)]n (2), [Cd3L2(bbi)3]n (3), [Zn3L2(bbi)3]n (4) [(H3L =4-[(1-carboxynaphthalen-2-yl)oxy]phthalic acid, bipy =4,4‧-bipyridine, phen =1,10-phenanthroline, bbi =1,1‧-(1,4-butanediyl)bis(imidazole] have been successfully synthesized by solvothermal reaction. Compound 1 possesses two diverse 1D chains constructed by different bipy coligands, which were further connected to form a 3D supramolecular architecture by hydrogen bonding interactions. Compound 2 possesses a complicated 1D chain based on secondary building unit (SBU) with binuclear Zn cluster. Compounds 3 and 4 exhibit similar 2D→3D framework, which can be rationalized as (3,4,4)-connected 3D net with a Schläfli symbol of (63.8.102)2(63)2(64.8.10). In particular, compound 3 exhibited a high sensitivity for Cr3+ in aqueous solutions, which suggest that compound 3 is a promising luminescent probe for selectively sensing Cr3+.
NASA Astrophysics Data System (ADS)
Chen, Shui-Sheng; Guo, Xing-Zhe; Zhao, Yue; Li, Wei-Dong
2018-02-01
Four new coordination polymers [Ni2(HL1)2(L1)3(BTC)2]·6H2O (1), [Ni2(L1)3(HBTC)2]·4H2O (2), [Cd2(L2)(BTC)(H2O)3]·2H2O (3) and [Cd2(HL2)(BTCA)] (4) were synthesized by reactions of nickel(II)/ cadmium(II) salts with rigid ligands of 1,4-di(1H-imidazol-4-yl)benzene (L1), 1,3-di(1-imidazolyl)-5-(4H-tetrazol-5-yl)benzene (HL2) and polycarboxylic acids of 1,3,5-benzenetricarboxylic acid (H3BTC), 1,2,4,5-benzenetetracarboxylic acid (H4BTCA), respectively. The structures of the complexes were determined by single crystal X-ray diffraction analysis. The complex 1 is one-dimensional (1D) chain while 2 is a (4, 4)-connected two-dimensional (2D) layered structure with 2D → 2D parallel interpenetration. Complex 3 is a rare tetranodal (3,4)-connected three-dimensional (3D) CrVTiSc architecture with Point (Schläfli) symbol of (4·82)(4·84·10)(42·82·102)(83), and compound 4 has the 2D network with (4,4) topology based on the [Cd2(COO)4] SBUs. The weak interactions such as hydrogen bonds and π···π stacking contribute to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. The UV-vis absorption spectra of 1 - 4 are discussed. Moreover, the photo luminescent properties of 3 and 4 and gas sorption property of 2 have been investigated.
NASA Astrophysics Data System (ADS)
Singh, Nripendra; Shukla, K. K.; Patel, R. N.; Chauhan, U. K.; Shrivastava, R.
2003-11-01
X-band e.s.r. and optical absorption spectra of the imidazolate bridged heterobimetallic complexes [(tren)Cu-E-Im-Zn-(tren)](ClO 4) 3 and [(tren)Cu-E-Im-Ni-(tren)](ClO 4) 3, where trentris(2-aminoethyl)amine, E-Im=2-ethylimidazolate ion and the related mononuclear complexes [Cu(tren)](ClO 4) 2 and [(tren)Cu-E-ImH)](ClO 4) 2 have been described. Biological activities (superoxide dismutase and antimicrobial) have also been measured and compared with reported complexes.
Metal chelate affinity precipitation of RNA and purification of plasmid DNA
NASA Technical Reports Server (NTRS)
Balan, Sindhu; Murphy, Jason; Galaev, Igor; Kumar, Ashok; Fox, George E.; Mattiasson, Bo; Willson, Richard C.
2003-01-01
The affinity of metal chelates for amino acids, such as histidine, is widely used in purifying proteins, most notably through six-histidine 'tails'. We have found that metal affinity interactions can also be applied to separation of single-stranded nucleic acids through interactions involving exposed purines. Here we describe a metal affinity precipitation method to resolve RNA from linear and plasmid DNA. A copper-charged copolymer of N-isopropyl acrylamide (NIPAM) and vinyl imidazole (VI) is used to purify plasmid from an alkaline lysate of E. coli. The NIPAM units confer reversible solubility on the copolymer while the imidazole chelates metal ions in a manner accessible to interaction with soluble ligands. RNA was separated from the plasmid by precipitation along with the polymer in the presence of 800 mM NaCl. Bound RNA could be recovered by elution with imidazole and separated from copolymer by a second precipitation step. RNA binding showed a strong dependence on temperature and on the type of buffer used.
Laskar, Payel; Yamamoto, Keishi; Srinivas, Anga; Mifleur, Alexis; Nagae, Haruki; Tsurugi, Hayato; Mashima, Kazushi
2017-10-03
A mononuclear tantallacyclopentadiene complex, TaCl 3 (C 4 H 2 tBu 2 ) (3), serves as a unique ligand to nickel: the addition of Ni(COD) 2 to 3 selectively afforded heterobimetallic Ta-Ni complex 4. The cyclooctadiene ligand bound to the nickel center in complex 4 was readily substituted by monodentate and bidentate phosphine ligands, such as dimethylphenylphosphine, 1,2-bis(diphenylphosphino)ethane, and 1,2-bis(diethylphosphino)ethane, to give the corresponding phosphine complexes 5, 6a, and 6b. We also examined a ligand substitution reaction with 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) to produce the corresponding Ta-Ni complex 7. These newly prepared Ta-Ni heterobimetallic complexes were characterized spectroscopically together with the crystal structures of 4, 6a, and 7.
Diaquabis[1-hydroxy-2-(imidazol-3-ium-1-yl)-1,1′-ethylidenediphophonato-κ2 O,O′]zinc(II)
Freire, Eleonora; Vega, Daniel R.
2009-01-01
In the title complex, [Zn(C5H9NO7P2)2(H2O)2], the zinc atom is coordinated by two bidentate zoledronate [zoledronate = (2-(1-imidazole)-1-hydroxy-1,1′-ethylidenediphophonate)] ligands and two water molecules. The coordination number is 6. There is one half-molecule in the asymmetric unit with the zinc atom located on a crystallographic inversion centre. The anion exists as a zwitterion with an overall charge of −1; the protonated nitrogen in the ring has a positive charge and the two phosphonates groups each have a single negative charge. There are two intramolecular O—H⋯O hydrogen bonds. The molecules are linked into a chain by intermolecular O—H⋯O hydrogen bonds. Adjacent chains are further linked by O—H⋯O hydrogen bonds involving the aqua ligands. An N—H⋯O interaction is also observed. PMID:21578164
Oganesyan, V S; Sharonov, Y A
1997-03-01
We have carried out analysis of the electronic level scheme of the high-spin ferrous hemoproteins by simultaneous fit of the adjustable parameters of a 4-term theoretical model to low-temperature magnetic circular dichroism (MCD), room temperature absorption spectra and available magnetic susceptibility and or Mössbauer data of myoglobin, horseradish peroxidase and cytochrome P450. The high reliability of the ligand field parameter values obtained for deoxymyoglobin is confirmed by good agreement between the predicted and observed magnetic field dependences of MCD and magnetization not used in the fit procedure. In addition, an energy gap between the ground and first excited singlets, estimated to be 4.2 cm-1, agrees well with the value of approximately 4 cm-1 derived from the far-infrared magnetic resonance. Our computer and explicit theoretical analyses give strong evidence that large distinctions in the shape, intensity and temperature behaviour of the MCD of Mb and HRP from those of cytochrome P450 can be described only if the ground manifold in these proteins is 5E eta and 5B2, respectively. The changes in relative energies of the one-electron 3d-orbitals on substitution of an imidazole of histidine for a sulphur anion of cysteine as a protein-derived heme iron ligand are rationalized by the lower ionization potential of the negatively charged sulphur ligand and the higher pi-orbital overlap of its lone pair orbitals with the iron d pi-orbitals compared to the imidazole ligand.
Asadi, Parvin; Khodarahmi, Ghadamali; Farrokhpour, Hossein; Hassanzadeh, Farshid; Saghaei, Lotfollah
2017-01-01
In an attempt to identify some new potential leads as anti-breast cancer agents, novel hybrid compounds were designed by molecular hybridization approach. These derivatives were structurally derived from hybrid benzofuran–imidazole and quinazolinone derivatives, which had shown good cytotoxicity against the breast cancer cell line (MCF-7). Since aromatase enzyme (CYP19) is highly expressed in the MCF-7 cell line, the binding of these novel hybrid compounds to aromatase was investigated using the docking method. In this study, due to the positive charge on the imidazole ring of the designed ligands and also, the presence of heme iron in the active site of the enzyme, it was decided to optimize the ligand inside the protein to obtain more realistic atomic charges for it. Quantum mechanical/molecular mechanical (QM/MM) method was used to obtain more accurate atomic charges of ligand for docking calculations by considering the polarization effects of CYP19 on ligands. It was observed that the refitted charge improved the binding energy of the docked compounds. Also, the results showed that these novel hybrid compounds were adopted properly within the aromatase binding site, thereby suggesting that they could be potential inhibitors of aromatase. The main binding modes in these complexes were through hydrophobic and H bond interactions showing agreement with the basic physicochemical features of known anti aromatase compounds. Finally, the complex structures obtained from the docking study were used for single point QM/MM calculations to obtain more accurate electronic interaction energy, considering the electronic polarization of the ligand by its protein environment. PMID:28626481
NASA Astrophysics Data System (ADS)
Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Lashin, Fakhr El-Din
2013-07-01
In this study, new Fe(II) Schiff base amino acid chelates derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized via elemental, thermogravimetric analysis, molar conductance, IR, electronic, mass spectra and magnetic moment measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. Correlation of all spectroscopic data suggested that Schiff bases ligands exhibited tridentate with ONO sites coordinating to the metal ions via protonated phenolic-OH, azomethine-N and carboxylate-O with the general formulae [Fe(HL)2]·nH2O. But in case of L-histidine, the ligand acts as tetradentate via deprotonated phenolic-OH, azomethine-N, carboxylate-O and N-imidazole ring ([FeL(H2O)2]·2H2O), where HL = mono anion and L = dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their teratogenicity on chick embryos and found to be safe until a concentration of 100 μg/egg with full embryos formation. Moreover, the interaction between CT-DNA and the investigated complexes were followed by spectrophotometric and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA activity with the sequence: nhi > nari > nali > nasi > nphali. Furthermore, the free ligands and their complexes are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium in order to assess their antimicrobial potential. The results show that the metal complexes are more reactive with respect to their corresponding Schiff base amino acid ligands.
NASA Astrophysics Data System (ADS)
Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim
2017-04-01
Four new ternary complexes, [ZnL (2,2‧-bipy)] (1), Zn2L2(4,4‧-bipy)] (2), [ZnL(Imd)]·H2O (3) and [ZnL3(MeImd)] (4), have been synthesized from the reaction of Zn(II) acetate with 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide (H2L) in the presence of a heterocyclic base, 2,2‧-bipyridine, 4,4‧-bipyridine, imidazole or 2-methylimidazole, as an auxiliary ligand. The complexes have been investigated by elemental analysis and FT-IR, UV-Vis and 1HNMR spectroscopy. These data show that the thiosemicarbazone acts as a tridentate dianionic ligand and coordinates via the thiol group, imine nitrogen, and phenolic oxygen. The coordination sphere was completed by the nitrogen atom(s) of the secondary ligand. The structure of 1 was also confirmed by X-ray crystallography and shown to be a five coordinate complex with coordination geometry between the square-pyramidal and trigonal-bipyramidal. Density functional theory (DFT) calculations including geometry optimization, vibrational frequencies and electronic absorptions have been performed for 1 with the B3LYP functional at the TZP(6-311G*) basis set using the Gaussian 03 or ADF 2009 packages. The optimization calculation showed that the crystallographically determined geometry parameters can be reproduced with that basis set. Experimental IR frequencies and calculated vibration frequencies also support each other. The in vitro antibacterial activities of the ligand and complexes have been evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and compared with the standard antibacterial drugs. The results reveal that all of the complexes show much better activity in comparison to the individual thiosemoicarbazone ligand (H2L), against all bacterial strains used, with complex 3 showing the most promising results.
Rachuri, Yadagiri; Parmar, Bhavesh; Bisht, Kamal Kumar; Suresh, Eringathodi
2016-05-04
Two dimensional metal organic frameworks (MOFs) [Cd(5-BrIP)(TIB)]n () and [Ni2(5-BrIP)2(TIB)2]n (), involving the aromatic polycarboxylate ligand 5-bromo isophthalic acid (H2BrIP), flexible tripodal ligand 1,3,5-tris(imidazol-1-ylmethyl)benzene (TIB) and Cd(ii)/Ni(ii) metal nodes have been synthesized by different methods. These compounds were characterized by various analytical methods, and variable temperature X-ray diffraction data showed thermal stability of both MOFs up to 350 °C. Phase purity as well as water stability of the MOFs were established by powder X-ray diffraction, and the structural diversity of the compounds were investigated by single-crystal X-ray diffraction. Both the MOFs are mixed ligand 2D nets, and the topology of the network can be described as a binodal 3,5-c connected net with 3,5L2 topology having the point symbol {4(2)·6(7)·8}{4(2)·6}. Sensing of picric acid [2,4,6-trinitrophenol, TNP] by luminescence quenching among a large range of nitroanalytes in aqueous phase by the Cd(ii) luminescent MOF (LMOF) were been investigated. Structural studies on 1 : 1 co-crystals () of TIB and TNP were carried out. The selective and sensitive fluorescence quenching response of towards electron-deficient TNP over other nitro analytes in aqueous phase was demonstrated by fluorescence quenching titration. Concomitant occurrence of electron transfer/energy transfer processes and electrostatic interaction favours the selective sensing of TNP. A Cd(ii) LMOF ()-coated paper strip that we developed demonstrated fast and selective response to TNP, by the complete quenching of the blue fluorescence upon excitation of the paper strip at 365 nm radiation in its presence.
Yoon, Yeong Keng; Ali, Mohamed Ashraf; Wei, Ang Chee; Choon, Tan Soo; Khaw, Kooi-Yeong; Murugaiyah, Vikneswaran; Osman, Hasnah; Masand, Vijay H
2013-08-01
Two series of novel acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors containing benzimidazole core structure were synthesized by a four-step reaction pathway starting from 4-fluoro-3-nitrobenzoic acid as the basic compound. The structure of the novel benzimidazoles was characterized and confirmed by the elemental and mass spectral analyses as well as (1)H NMR spectroscopic data. Of the 34 novel synthesized compounds, three benzimidazoles revealed AChE inhibition with IC50<10 μM. The highest inhibitory activity (IC50=5.12 μM for AChE and IC50=8.63 μM for BChE) corresponds to the compound 5IIc (ethyl 1-(3-(1H-imidazol-1-yl)propyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate). The relationship between lipophilicity and the chemical structures as well as their limited structure-activity relationship was discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Carbazole ligands as c-myc G-quadruplex binders.
Głuszyńska, Agata; Juskowiak, Bernard; Kuta-Siejkowska, Martyna; Hoffmann, Marcin; Haider, Shozeb
2018-07-15
The interactions of c-myc G-quadruplex with three carbazole derivatives were investigated by UV-Vis spectrophotometry, fluorescence, CD spectroscopy, and molecular modeling. The results showed that a combination of carbazole scaffold functionalized with ethyl, triazole and imidazole groups resulted in stabilization of the intramolecular G-quadruplex formed by the DNA sequence derived from the NHE III 1 region of c-myc oncogene (Pu22). Binding to the G-quadruplex Pu22 resulted in the significant increase in fluorescence intensity of complexed ligands 1-3. All ligands were capable of interacting with G4 DNA with binding stoichiometry indicating that two ligand molecules bind to G-quadruplex with comparable affinity, which agrees with binding model of end-stacking on terminal G-tetrads. Copyright © 2018 Elsevier B.V. All rights reserved.
Indole Alkaloids from the Sea Anemone Heteractis aurora and Homarine from Octopus cyanea.
Shaker, Kamel H; Göhl, Matthias; Müller, Tobias; Seifert, Karlheinz
2015-11-01
The two new indole alkaloids 2-amino-1,5-dihydro-5-(1H-indol-3-ylmethyl)-4H-imidazol-4-one (1), 2-amino-5-[(6-bromo-1H-indol-3-yl)methyl]-3,5-dihydro-3-methyl-4H-imidazol-4-one (2), and auramine (3) have been isolated from the sea anemone Heteractis aurora. Both indole alkaloids were synthesized for the confirmation of the structures. Homarine (4), along with uracil (5), hypoxanthine (6), and inosine (7) have been obtained from Octopus cyanea. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
NASA Astrophysics Data System (ADS)
Zhong, Rongfeng; Xu, Shengxian; Wang, Jinglan; Zhao, Feng; Xia, Hongying; Wang, Yibo
2016-05-01
Two phenanthroline derivatives, 1H-imidazo[4,5-f][1,10]phenanthroline (imPhen) and 2-(9H-fluoren-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (Flu-imPhen), have been synthesized and characterized and the corresponding absorption and emission spectroscopic properties have been studied in CH2Cl2 solution. The imPhen exhibits the main two absorption bands at 282 nm and 229 nm and these bands are assigned as the typical π → π*(Phen) state. In addition, the weak absorption bands at 313 nm associated with a shoulder near 302 nm were assigned to the π → π*(Phen) state with partial charge transfer (CT) character. A similar absorption spectra are observed in the case of the Flu-imPhen in the region of 200-300 nm, while the region of 300-400 nm of the spectra are dominated by the characteristic π → π* transition of the fluorene moiety. imPhen shows the typical ligand-centered 1π → π* emission, while Flu-imPhen emits from the mixed 1π → π*/CT states. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) were employed to rationalize the photophysical properties of these ligands studied. The theoretical data confirm the assignment of the experimental absorption spectra and the nature of the emitting states.
Spin frustration in a family of pillared kagomé layers of high-spin cobalt(II) ions.
Wang, Long-Fei; Li, Cui-Jin; Chen, Yan-Cong; Zhang, Ze-Min; Liu, Jiang; Lin, Wei-Quan; Meng, Yan; Li, Quan-Wen; Tong, Ming-Liang
2015-02-02
Based on the analogous kagomé [Co3 (imda)2 ] layers (imda=imidazole-4,5-dicarboxylate), a family of pillar-layered frameworks with the formula of [Co3 (imda)2 (L)3 ]⋅(L)n ⋅xH2 O (1: L=pyrazine, n=0, x=8; 2: L=4,4'-bipyridine, n=1, x=8; 3: L=1,4-di(pyridin-4-yl)benzene, n=1, x=13; 4: L=4,4'-di(pyridin-4-yl)-1,1'-biphenyl, n=1, x=14) have been successfully synthesized by a hydrothermal/solvothermal method. Single-crystal structural analysis shows a significant increase in the interlayer distances synchronized with the extension of the pillar ligands, namely, 7.092(3) (1), 10.921(6) (2), 14.780(5) (3), and 19.165(4) Å (4). Despite the wrinkled kagomé layers in complexes 2-4, comprehensive magnetic characterizations revealed weakening of interlayer magnetic interactions and an increase in the degree of frustration as the pillar ligand becomes longer from 1 to 4; this leads to characteristic magnetic ground states. For compound 4, which has the longest interlayer distance, the interlayer interaction is so weak that the magnetic properties observed within the range of temperature measured would correspond to the frustrated layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Anand, Siddeswaran; Muthusamy, Athianna; Dineshkumar, Sengottuvelu; Chandrasekaran, J.
2017-11-01
A series of polybenzimidazole polymers, poly-2-(1H-benzo[d] imidazole-2-yl) phenol (PBIP2), poly-3-(1H-benzo[d] imidazole-2-yl) phenol (PBIP3) and poly-4-(1H-benzo[d] imidazole-2-yl) phenol (PBIP4) were synthesized by oxidative polycondensation of benzimidazole monomers 2-(1H-benzo [d] imidazole-2-yl) phenol (BIP2), 3-(1H-benzo [d] imidazole-2-yl) phenol (BIP3) and 4-(1H-benzo [d] imidazole-2-yl) phenol (BIP4). The structure of benzimidazoles monomers and polybenzimidazoles (PBI) were confirmed by various spectroscopic techniques. The quantum theoretical calculations of band gap energy values of monomers were done with DFT and are compared with its optical band gap energy values. Fluorescence spectra of these compounds showed maximum emission in blue region. The electrical conductivity of PBIs was measured by four-point probe technique and showed good electrical response on iodine doping and conductivity increases with increase iodine doping time. The differences in conductivities among the three PBIs are in accordance with the charge density on imidazole nitrogens calculated by Huckel method. The high carbines residue (∼40%) at 500 °C in thermo gravimetric analysis shows that the PBIs are having reasonably good thermal stability. Polymers have recorded high dielectric constant at low applied frequency of 50 Hz at 393 K. The I-V characteristics of polybenzimidazoles p-n diodes showed rectifying nature with a typical forward to reverse current in the range -4 to 4 V. The high n values are caused by non homogeneities and effect of series resistance.
A Novel Tetrasubstituted Imidazole as a Prototype for the Development of Anti-inflammatory Drugs.
Nascimento, Marcus Vinicius P S; Munhoz, Antonio C M; Theindl, Lais C; Mohr, Eduarda Talita B; Saleh, Najla; Parisotto, Eduardo B; Rossa, Thaís A; Zamoner, Ariane; Creczynski-Pasa, Tania B; Filippin-Monteiro, Fabíola B; Sá, Marcus M; Dalmarco, Eduardo Monguilhott
2018-04-14
Although inflammation is a biological phenomenon that exists to protect the host against infections and/or related problems, its unceasing activation results in the aggravation of several medical conditions. Imidazoles, whether natural or synthetic, are molecules related to a broad spectrum of biological effects, including anti-inflammatory properties. In this study, we screened eight novel small molecules of the imidazole class synthesized by our research group for their in vitro anti-inflammatory activity. The effect of the selected molecules was confirmed in an in vivo inflammatory model. We also analyzed whether the effects were caused by inhibition of nuclear factor kappa B (NF-κB) transcription factor transmigration. Of the eight imidazoles tested, methyl 1-allyl-2-(4-fluorophenyl)-5-phenyl-1H-imidazole-4-acetate (8) inhibited nitric oxide metabolites and pro-inflammatory cytokine (TNF-α, IL-6, and IL-1β) secretion in J774 macrophages stimulated with LPS. It also attenuated leukocyte migration and exudate formation in the pleural cavity of mice challenged with carrageenan. Furthermore, imidazole 8 reverted the oxidative stress pattern triggered by carrageenan in the pleural cavity by diminishing myeloperoxidase, superoxide dismutase, catalase, and glutathione S-transferase activities and reducing the production of nitric oxide metabolites and thiobarbituric acid-reactive substances. Finally, these effects can be attributed, at least in part, to the ability of this compound to prevent NF-κB transmigration. In this context, our results demonstrate that imidazole 8 has promising potential as a prototype for the development of a new anti-inflammatory drug to treat inflammatory conditions in which NF-κB and oxidative stress play a prominent role. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Chira R.; Goswami, Pankaj; Pramanik, Harun A. R.; Paul, Pradip C.; Mondal, Paritosh
2011-05-01
Two new mixed-ligand iron(III) complexes, [Fe(L n)(acac)(C 2H 5OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac) 3] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H 2L 1) or 2-aminobenzoic acid (H 2L 2). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L n)(acac)X] ( n = 1, 2; X = Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, 1H and 13C NMR spectroscopy. Room temperature magnetic susceptibility measurements ( μeff ˜ 5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (Δ Ep > 100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential ( E1/2) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level.
Sequence-selective binding of C8-conjugated pyrrolobenzodiazepines (PBDs) to DNA.
Basher, Mohammad A; Rahman, Khondaker Miraz; Jackson, Paul J M; Thurston, David E; Fox, Keith R
2017-11-01
DNA footprinting and melting experiments have been used to examine the sequence-specific binding of C8-conjugates of pyrrolobenzodiazepines (PBDs) and benzofused rings including benzothiophene and benzofuran, which are attached using pyrrole- or imidazole-containing linkers. The conjugates modulate the covalent attachment points of the PBDs, so that they bind best to guanines flanked by A/T-rich sequences on either the 5'- or 3'-side. The linker affects the binding, and pyrrole produces larger changes than imidazole. Melting studies with 14-mer oligonucleotide duplexes confirm covalent attachment of the conjugates, which show a different selectivity to anthramycin and reveal that more than one ligand molecule can bind to each duplex. Copyright © 2017 Elsevier B.V. All rights reserved.
Tanaka, Atsunari; Shimizu, Toru
2008-12-16
Phosphodiesterase (Ec DOS) from Escherichia coli is a gas-sensor enzyme in which binding of gas molecules, such as O(2), CO, and NO, to the Fe(II)-protoporphyrin IX complex in the sensor domain stimulates phosphodiesterase activity toward cyclic-di-GMP. In this study, we report that external axial ligands, such as cyanide or imidazole, bind to Fe(III)-protoporphyrin IX in the sensor domain and induce a 10- to 11-fold increase (from 8.1 up to 86 min(-1)) in catalysis, which is more substantial than that (6.3 to 7.2-fold) observed for other gas-stimulated Fe(II) heme-bound enzymes. Catalytic activity (50 min(-1)) of the heme-free mutant, H77A, was comparable to that of the ligand-stimulated enzymes. Accordingly, we propose that the heme at the sensor domain inhibits catalysis and that ligand binding to the heme iron complex releases this catalytic suppression. Furthermore, mutations of Met95, Arg97, and Phe113 at the putative heme distal side suppressed the ligand effects on catalysis. The rate constants (19,000 x 10(-5) microM(-1)min(-1)) for cyanide binding to the M95A and M95L mutants of the full-length enzyme were 633-fold higher than that to wild-type Ec DOS (30 x 10(-5) microM(-1)min(-1)). The absorption spectrum of the F113Y mutant suggests that the Tyr O(-) group directly coordinates to the Fe(III) complex and that the cyanide binding rate to the mutant is very slow, compared with those of the wild-type and other mutant proteins. We observed a similar trend in the binding behavior of imidazole to full-length mutant enzymes. Therefore, while Met95 and Phe113 are not direct axial ligands for the Fe(III) complex, catalytic, spectroscopic, and ligand binding evidence suggests that these residues are located in the vicinity of the heme.
Bokor, Éva; Kyriakis, Efthimios; Solovou, Theodora G A; Koppány, Csenge; Kantsadi, Anastassia L; Szabó, Katalin E; Szakács, Andrea; Stravodimos, George A; Docsa, Tibor; Skamnaki, Vassiliki T; Zographos, Spyros E; Gergely, Pál; Leonidas, Demetres D; Somsák, László
2017-11-22
Aryl substituted 1-(β-d-glucosaminyl)-1,2,3-triazoles as well as C-β-d-glucosaminyl 1,2,4-triazoles and imidazoles were synthesized and tested as inhibitors against muscle and liver isoforms of glycogen phosphorylase (GP). While the N-β-d-glucosaminyl 1,2,3-triazoles showed weak or no inhibition, the C-β-d-glucosaminyl derivatives had potent activity, and the best inhibitor was the 2-(β-d-glucosaminyl)-4(5)-(2-naphthyl)-imidazole with a K i value of 143 nM against human liver GPa. An X-ray crystallography study of the rabbit muscle GPb inhibitor complexes revealed structural features of the strong binding and offered an explanation for the differences in inhibitory potency between glucosyl and glucosaminyl derivatives and also for the differences between imidazole and 1,2,4-triazole analogues.
Howell, Tyler O; Huckaba, Aron J; Hollis, T Keith
2014-05-02
A report that demonstrated an efficient methodology for the arylation of imidazoles has been extended to bis(N-heterocyclic) compounds. Using bis(aryl) iodonium salts provides high-yielding access to CCC-NHC ligand precursors in a single step. Examples of arylation using various iodonium salts are reported herein with an investigation into the factors governing their relative rate of reactivity. The metalation of one of these compounds using Zr(NMe2)4 and its subsequent treatment with [Pt(COD)Cl2] to yield a transmetalated product are reported.
Hou, Chen; Gan, Hong-Mei; Liu, Jia-Cheng
2015-05-01
In the title polymeric complex, {[Zn(C24H22N6O2)(H2O)4](NO3)2·2H2O} n , the Zn(II) cation, located about a twofold rotation axis, is coordinated by two imidazole groups and four water mol-ecules in a distorted N2O4 octa-hedral geometry; among the four coordinate water mol-ecules, two are located on the same twofold rotation axis. The 1,4-bis-[4-(1H-imidazol-1-yl)benzo-yl]piperazine] ligand is centro-symmetric, with the centroid of the piperazine ring located on an inversion center, and bridges the Zn(II) cations, forming polymeric chains propagating along [201]. In the crystal, O-H⋯O and weak C-H⋯O hydrogen bonds link the polymeric chains, nitrate anions and solvent water mol-ecules into a three-dimensional supra-molecular architecture. A short O⋯O contact of 2.823 (13) Å is observed between neighboring nitrate anions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meckler, Stephen M.; Li, Changyi; Queen, Wendy L.
2015-11-02
Here we show that sub-micron coatings of zeolitic imidazolate frameworks (ZIFs) and even ZIF–ZIF bilayers can be grown directly on polymers of intrinsic microporosity from zinc oxide (ZnO) nanocrystal precursor films, yielding a new class of all-microporous layered hybrids. The ZnO-to-ZIF chemical transformation proceeded in less than 30 min under microwave conditions using a solution of the imidazole ligand in N,N-dimethylformamide (DMF), water, or mixtures thereof. By varying the ratio of DMF to water, it was possible to control the morphology of the ZIF-on-polymer from isolated crystallites to continuous films. Grazing incidence X-ray diffraction was used to confirm the presencemore » of crystalline ZIF in the thin films, and X-ray absorption spectroscopy was used to quantify film purity, revealing films with little to no residual ZnO. The role solvent plays in the transformation mechanism is discussed in light of these findings, which suggest the ZnO nanocrystals may be necessary to localize heterogeneous nucleation of the ZIF to the polymer surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meckler, Stephen M.; Li, Changyi; Queen, Wendy L.
Here we show that sub-micron coatings of zeolitic imidazolate frameworks (ZIFs) and even ZIF–ZIF bilayers can be grown directly on polymers of intrinsic microporosity from zinc oxide (ZnO) nanocrystal precursor films, yielding a new class of all-microporous layered hybrids. The ZnO-to-ZIF chemical transformation proceeded in less than 30 min under microwave conditions using a solution of the imidazole ligand in N,N-dimethylformamide (DMF), water, or mixtures thereof. By varying the ratio of DMF to water, it was possible to control the morphology of the ZIF-on-polymer from isolated crystallites to continuous films. Grazing incidence X-ray diffraction was used to confirm the presencemore » of crystalline ZIF in the thin films, and X-ray absorption spectroscopy was used to quantify film purity, revealing films with little to no residual ZnO. The role solvent plays in the transformation mechanism is discussed in light of these findings, which suggest the ZnO nanocrystals may be necessary to localize heterogeneous nucleation of the ZIF to the polymer surface.« less
Al-Qawasmeh, Raed A; Huthail, Basil B; Sinnokrot, Mutasem O; Semreen, Mohammad H; Odeh, Raed A; Abu-Zarga, Musa H; Tarazi, Hamadeh; Yousef, Imad A; Al-Tel, Taleb H
2016-01-01
The emergence of drug-resistant bacteria in clinical practice has propelled a concerted effort to find new classes of antibiotics that will circumvent current modes of resistance. We previously described a set of imidazopyridine antibacterial leads that contain a core composed of benzimidazole and a central phthalic acid linker. These compounds showed potent antibacterial properties against a wide range of Gram-positive and Gram-negative bacteria. In this respect, we conducted a systematic exploration of new disubstituted imidazole functionalities on quinoline 4-position as the central linker, to determine the factors that direct the potent antibacterial activity. We found that some of the newly synthesized compounds possessed more potent activity compared to currently available medications. The newly synthesized compounds were screened against several clinical isolates and Staphylococcus aureus, including the methicillinresistant (MRSA) and the methicillin-sensitive (MSAA). The goal of this work is to undertake rigorous testing of new hybrid scaffolds of quinoline flanked by diaryl imidazoles and their structure-activity against a range of bacterial strains. Described herein is the account of the modification of the central linker region, the imidazole functionality, and substituents at the 4-position of the quinoline, and their effect on the antibacterial potency of the resulting derivatives. Our efforts here have been driven by previous reports on the applications of Pfitzinger cyclization protocol. This complexity-generating reaction transforms a relatively simple substrate, into a more complex products with the potential for diversification via functionalization of the resultant acid. We identified compounds that possess potent and broad-spectrum antibacterial activities against clinical isolates and drug resistant strains. Structure-Activity relationships of these compounds were further explored to determine the crucial structural features needed to enhance their antibacterial activity. In this respect, it was found that, hydrophobic and electron-withdrawing moieties, such as halogens, were required on each end of the isoquinoline-based bisaryl imidazole hybrid motifs to produce broad-spectrum activity against the tested strains. Thus, molecules containing halophenyl or pyridyl arms were found more potent than molecules containing thiophene and/or electron-releasing groups on the phenyl arms, which showed much less antibacterial activity against the tested strains. In summary, 4-(4,5-diphenyl-1H-imidazol-2-yl)-2-phenylquinoline systems can be assembled efficiently through the Pfitzinger ring expansion- condensation strategy. This approach appears to hold considerable synthetic utility. The particular value of such a synthetic route resides on the conciseness and efficiency through which imidazo-quinoline construction can be synthesized from structurally simple and accessible acetophenone precursors.
NASA Astrophysics Data System (ADS)
Adhikary, Jaydeep; Das, Balaram; Chatterjee, Sourav; Dash, Sandeep Kumar; Chattopadhyay, Sourav; Roy, Somenath; Chen, Jeng-Wei; Chattopadhyay, Tanmay
2016-06-01
One copper and two silver containing one hetero tri-nuclear precursor compound [Cu(Imdz)4(Ag(CN)2)2] (1) (Imdz = Imidazole) has been synthesized and characterized by single crystal X-ray diffraction. Simple pyrolysis of the complex at 550 °C for 4 h afforded Ag/CuO nanoparticles (NPs). The synthesized nanoparticles were characterized by ultraviolet-visible (UV-Vis), Fourier transform infrared (FT-IR), X-ray powder diffraction (XRPD), dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photo electron spectroscopy (XPS). Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) have been employed as model microbial species to study the anti-microbial activity of the synthesized NPs. The NPs showed potent anti-microbial activity evidenced from the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values. Very high level of cell uptake and then generation of reactive oxygen species (ROS) are the origin of such strong antimicrobial activity for the NPs. However, the cytotoxicity level of the NPs towards normal human cell is very low.
The evolution of histamine H₃ antagonists/inverse agonists.
Lebois, Evan P; Jones, Carrie K; Lindsley, Craig W
2011-01-01
This article describes our efforts along with recent advances in the development, biological evaluation and clinical proof of concept of small molecule histamine H₃ antagonists/inverse agonists. The H3 receptor is a presynaptic autoreceptor within the Class A GPCR family, but also functions as a heteroreceptor modulating levels of neurotransmitters such as dopamine, acetylcholine, norepinephrine, serotonin, GABA and glutamate. Thus, H₃R has garnered a great deal of interest from the pharmaceutical industry for the possible treatment of obesity, epilepsy, sleep/wake, schizophrenia, Alzheimer's disease, neuropathic pain and ADHD. Within the two main classes of H₃ ligands, both imidazole and non-imidazole derived, have shown sufficient potency and specificity which culminated with efficacy in preclinical models for various CNS disorders. Importantly, conserved elements have been identified within the small molecule H₃ ligand scaffolds that resulted in a highly predictive pharmacophore model. Understanding of the pharmacophore model has allowed several groups to dial H₃R activity into scaffolds designed for other CNS targets, and engender directed polypharmacology. Moreover, Abbott, GSK, Pfizer and several others have reported positive Phase I and/or Phase II data with structurally diverse H₃R antagonists/inverse agonists.
Ren, Xin-Yao; Wu, Yong; Wang, Li; Zhao, Liang; Zhang, Min; Geng, Yun; Su, Zhong-Min
2014-06-01
A density functional theory/time-depended density functional theory was used to investigate the synthesized guanidinate-based iridium(III) complex [(ppy)2Ir{(N(i)Pr)2C(NPh2)}] (1) and two designed derivatives (2 and 3) to determine the influences of different cyclometalated ligands on photophysical properties. Except the conventional discussions on geometric relaxations, absorption and emission properties, many relevant parameters, including spin-orbital coupling (SOC) matrix elements, zero-field-splitting parameters, radiative rate constants (kr) and so on were quantitatively evaluated. The results reveal that the replacement of the pyridine ring in the 2-phenylpyridine ligand with different diazole rings cannot only enlarge the frontier molecular orbital energy gaps, resulting in a blue-shift of the absorption spectra for 2 and 3, but also enhance the absorption intensity of 3 in the lower-energy region. Furthermore, it is intriguing to note that the photoluminescence quantum efficiency (ΦPL) of 3 is significantly higher than that of 1. This can be explained by its large SOC value
Abele, U.; Schulz, G. E.
1995-01-01
The structure of adenylate kinase from yeast ligated with the two-substrate-mimicking inhibitor Ap5A and Mg2+ has been refined to 1.96 A resolution. In addition, the refined structure of the same complex with a bound imidazole molecule replacing Mg2+ has been determined at 1.63 A. These structures indicate that replacing Mg2+ by imidazole disturbs the water structure and thus the complex. A comparison with the G-proteins shows that Mg2+ is exactly at the same position with respect to the phosphates. However, although the Mg2+ ligand sphere of the G-proteins is a regular octahedron containing peptide ligands, the reported adenylate kinase has no such ligands and an open octahedron leaving space for the Mg2+ to accompany the transferred phosphoryl group. A superposition of the known crystalline and therefore perturbed phosphoryl transfer geometries in the adenylate kinases demonstrates that all of them are close to the start of the forward reaction with bound ATP and AMP. Averaging all observed perturbed structures gives rise to a close approximation of the transition state, indicating in general how to establish an elusive transition state geometry. The average shows that the in-line phosphoryl transfer is associative, because there is no space for a dissociative metaphosphate intermediate. As a side result, the secondary dipole interaction in the alpha-helices of both protein structures has been quantified. PMID:7670369
Bhattacharjee, Chira R; Goswami, Pankaj; Pramanik, Harun A R; Paul, Pradip C; Mondal, Paritosh
2011-05-01
Two new mixed-ligand iron(III) complexes, [Fe(L(n))(acac)(C(2)H(5)OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac)(3)] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H(2)L(1)) or 2-aminobenzoic acid (H(2)L(2)). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L(n))(acac)X] (n=1, 2; X=Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, (1)H and (13)C NMR spectroscopy. Room temperature magnetic susceptibility measurements (μ(eff)∼5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (ΔE(p)>100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential (E(1/2)) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level. Copyright © 2011 Elsevier B.V. All rights reserved.
{pi}-{pi} Interactions and magnetic properties in a series of hybrid inorganic-organic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, M.; Lemus-Santana, A.A.; Rodriguez-Hernandez, J.
The series of hybrid inorganic-organic solids T(Im){sub 2}[Ni(CN){sub 4}] with T=Fe, Co, Ni and Im=imidazole were prepared by soft chemical routes from aqueous solutions of the involved building units: imidazole, T{sup 2+} metal and the [Ni(CN){sub 4}]{sup 2-} anionic block. The obtained samples were characterized from infrared and UV-vis spectroscopies, and thermogravimetric, X-ray diffraction and magnetic measurements. Anhydrous solids which crystallize with a monoclinic unit cell, in the I2/a space group with four formula units per cell (Z=4) were obtained. Their crystal structure was solved ab initio from the recorded X-ray powder patterns and then refined by the Rietveld method.more » The metal T is found with octahedral coordination to four N ends of CN groups and two imidazole molecules while the inner Ni atom preserves its planar coordination. The system of layers remains stacked in an ordered 3D structure through dipole-dipole and {pi}-{pi} interactions between imidazole rings from neighboring layers. In this way, a pillared structure is achieved without requiring the coordination of both nitrogen atoms from imidazole ring. The recorded magnetic data indicate the occurrence of a predominant ferromagnetic interaction at low temperature for Co and Ni but not for Fe. Such magnetic ordering is more favorable for Ni with transition temperature of 14.67 K, which was ascribed to the relatively high polarizing power for this metal. Within the considered T metals, to nickel the highest electron-withdrawing ability corresponds and this leads to an increase for the metal-ligand electron clouds overlapping and to a stronger {pi}-{pi} attractive interaction, two factors that result into a higher magnetic ordering temperature. - Graphical Abstract: Magnetic ordering through the {pi}-{pi} interaction between the imidazole rings. Highlights: Black-Right-Pointing-Pointer Hybrid inorganic-organic solids. Black-Right-Pointing-Pointer Hybrid inorganic-organic molecular based magnets. Black-Right-Pointing-Pointer Ferromagnetic interaction through {pi}-{pi} stacking of imidazole rings. Black-Right-Pointing-Pointer Organic pillars formed through {pi}-{pi} stacking.« less
Kroll, Thomas; Hadt, Ryan G.; Wilson, Samuel A.; ...
2014-12-04
Axial Cu–S(Met) bonds in electron transfer (ET) active sites are generally found to lower their reduction potentials. An axial S(Met) bond is also present in cytochrome c (cyt c) and is generally thought to increase the reduction potential. The highly covalent nature of the porphyrin environment in heme proteins precludes using many spectroscopic approaches to directly study the Fe site to experimentally quantify this bond. Alternatively, L-edge X-ray absorption spectroscopy (XAS) enables one to directly focus on the 3d-orbitals in a highly covalent environment and has previously been successfully applied to porphyrin model complexes. However, this technique cannot be extendedmore » to metalloproteins in solution. Here, we use metal K-edge XAS to obtain L-edge like data through 1s2p resonance inelastic X-ray scattering (RIXS). It has been applied here to a bis-imidazole porphyrin model complex and cyt c. The RIXS data on the model complex are directly correlated to L-edge XAS data to develop the complementary nature of these two spectroscopic methods. Comparison between the bis-imidazole model complex and cyt c in ferrous and ferric oxidation states show quantitative differences that reflect differences in axial ligand covalency. The data reveal an increased covalency for the S(Met) relative to N(His) axial ligand and a higher degree of covalency for the ferric states relative to the ferrous states. These results are reproduced by DFT calculations, which are used to evaluate the thermodynamics of the Fe–S(Met) bond and its dependence on redox state. Furthermore, these results provide insight into a number of previous chemical and physical results on cyt c.« less
Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S
2016-01-01
Ultrafast transient absorption spectroscopy of endothelial NOS oxygenase domain (eNOS-oxy) was performed to study dynamics of ligand or substrate interaction under Soret band excitation. Photo-excitation dissociates imidazole ligand in <300fs, then followed by vibrational cooling and recombination within 2ps. Such impulsive bond breaking and late rebinding generate proteinquakes, which relaxes in several tens of picoseconds. The photo excited dynamics of eNOS-oxy with L-arginine substrate mainly occurs at the local site of heme, including ultrafast internal conversion within 400fs, vibrational cooling, charge transfer, and complete ground-state recovery within 1.4ps. The eNOS-oxy without additive is partially bound with water molecule, thus its photoexcited dynamics also shows ligand dissociation in <800fs. Then it followed by vibrational cooling coupled with charge transfer in 4.8ps, and recombination of ligand to distal side of heme in 12ps. Copyright © 2016 Elsevier B.V. All rights reserved.
Bioactive ruthenium(II)-arene complexes containing modified 18β-glycyrrhetinic acid ligands.
Kong, Yaqiong; Chen, Feng; Su, Zhi; Qian, Yong; Wang, Fang-Xin; Wang, Xiuxiu; Zhao, Jing; Mao, Zong-Wan; Liu, Hong-Ke
2018-05-01
Metal-arene complexes containing bioactive natural-product derived ligands can have new and unusual properties. We report the synthesis, characterization and antiproliferative activity of two new Ru(II) arene complexes with imidazole (dichlorido complex 1) or bipyridyl (chlorido complex 2) ligands conjugated to 18β-glycyrrhetinic acid, an active triterpenoid metabolite of Glycyrrhiza glabra. In general, the conjugated ligands and complexes showed only moderate activity against HeLa (cervical), MCF-7 (breast) and A2780 (ovarian) cancer cells, although the activity of complex 2 in the former two cell lines approached that of the drug cisplatin. Complex 2 (in contrast to complex 1) also exhibited significant activity towards both Gram-positive S. aureus and Gram-negative E. coil bacteria. Complex 2 can induce condensation of DNA and enhances the generation of intracellular reactive oxygen species (ROS). The conjugation of natural products to ligands in organometallic half-sandwich complexes provides a strategy to enhance their biological activities. Copyright © 2018 Elsevier Inc. All rights reserved.
Islam, Amjad; Zhang, Dongdong; Peng, Ruixiang; Yang, Rongjuan; Hong, Ling; Song, Wei; Wei, Qiang; Duan, Lian; Ge, Ziyi
2017-09-05
Blue organic light-emitting diodes (OLEDs) are necessary for flat-panel display technologies and lighting applications. To make more energy-saving, low-cost and long-lasting OLEDs, efficient materials as well as simple structured devices are in high demand. However, a very limited number of blue OLEDs achieving high stability and color purity have been reported. Herein, three new sky-blue emitters, 1,4,5-triphenyl-2-(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (TPEI), 1-(4-methoxyphenyl)-4,5-diphenyl-2-(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (TPEMeOPhI) and 1-phenyl-2,4,5-tris(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (3TPEI), with a combination of imidazole and tetraphenylethene groups, have been developed. High photoluminescence quantum yields are obtained for these materials. All derivatives have demonstrated aggregation-induced emission (AIE) behavior, excellent thermal stability with high decomposition and glass transition temperatures. Non-doped sky-blue OLEDs with simple structure have been fabricated employing these materials as emitters and realized high efficiencies of 2.41 % (4.92 cd A -1 , 2.70 lm W -1 ), 2.16 (4.33 cd A -1 , 2.59 lm W -1 ) and 3.13 % (6.97 cd A -1 , 4.74 lm W -1 ) for TPEI, TPEMeOPhI and 3TPEI, with small efficiency roll-off. These are among excellent results for molecules constructed from the combination of imidazole and TPE reported so far. The high performance of a 3TPEI-based device shows the promising potential of the combination of imidazole and AIEgen for synthesizing efficient electroluminescent materials for OLED devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Patchett, Ruth; Knighton, Richard C; Mattock, James D; Vargas, Alfredo; Chaplin, Adrian B
2017-11-20
The synthesis of cationic rhodium and iridium complexes of a bis(imidazole-2-thione)-functionalized calix[4]arene ligand and their surprising capacity for potassium binding are described. In both cases, uptake of the alkali metal into the calix[4]arene cavity occurs despite adverse electrostatic interactions associated with close proximity to the transition-metal fragment [Rh + ···K + = 3.715(1) Å; Ir + ···K + = 3.690(1) Å]. The formation and constituent bonding of these unusual heterobimetallic adducts have been interrogated through extensive solution and solid-state characterization, examination of the host-guest chemistry of the ligand and its upper-rim unfunctionalized calix[4]arene analogue, and use of density functional theory based energy decomposition analysis.
NASA Astrophysics Data System (ADS)
Benzon, K. B.; Sheena, Mary Y.; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Pradhan, Kiran; Nanda, Ashis Kumar; Van Alsenoy, C.
2017-02-01
In this work we have investigated in details the spectroscopic and reactive properties of newly synthesized imidazole derivative, namely the 1-hydroxy-2-(4-hydroxyphenyl)-4,5-dimethyl-imidazole 3-oxide (HHPDI). FT-IR and NMR spectra were measured and compared with theoretically obtained data provided by calculations of potential energy distribution and chemical shifts, respectively. Insight into the global reactivity properties has been obtained by analysis of frontier molecular orbitals, while local reactivity properties have been investigated by analysis of charge distribution, ionization energies and Fukui functions. NBO analysis was also employed to understand the stability of molecule, while hyperpolarizability has been calculated in order to assess the nonlinear optical properties of title molecule. Sensitivity towards autoxidation and hydrolysis mechanisms has been investigated by calculations of bond dissociation energies and radial distribution functions, respectively. Molecular docking study was also performed, in order to determine the pharmaceutical potential of the investigated molecule.
Wang, Na; Guo, Yong; Wang, Licheng; Liang, Xiaojing; Liu, Shujuan; Jiang, Shengxiang
2014-05-21
In this paper, a kind of aminopropyl imidazole-modified silica sorbent was synthesized and used as a solid-phase extraction (SPE) sorbent for the determination of carboxylic acid compounds and polycyclic aromatic hydrocarbons (PAHs). The resultant aminopropyl imidazole-modified silica sorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA) to ensure the successful binding of aminopropyl imidazole on the surface of silica gel. Then the aminopropyl imidazole-modified silica sorbent served as a SPE sorbent for the enrichment of carboxylic acid compounds and PAHs. The new sorbent exhibited high extraction efficiency towards the tested compounds and the results show that such a sorbent can offer multiple intermolecular interactions: electrostatic, π-π, and hydrophobic interactions. Several parameters affecting the extraction recovery, such as the pH of sample solution, the pH of eluent, the solubility of eluent, the volume of eluent, and sample loading, were also investigated. Under the optimized conditions, the proposed method was applied to the analysis of four carboxylic acid compounds and four PAHs in environmental water samples. Good linearities were obtained for all the tested compounds with R(2) larger than 0.9903. The limits of detection were found to be in the range of 0.0065-0.5 μg L(-1). The recovery values of spiked river water samples were from 63.2% to 112.3% with relative standard deviations (RSDs) less than 10.1% (n = 4).
NASA Astrophysics Data System (ADS)
Tabrizi, Leila; Chiniforoshan, Hossein; Tavakol, Hossein
2015-04-01
The complexes [Pd(valp)2(imidazole)2] (1), [Pd(valp)2(pyrazine)2] (2) (valp is sodium valproate) have been synthesized and characterized using IR, 1H NMR, 13C{1H} NMR and UV-Vis spectrometry. The interaction of complexes with CT-DNA has been investigated using spectroscopic tools and viscosity measurement. In each case, the association constant (Kb) was deduced from the absorption spectral study and the number of binding sites (n) and the binding constant (K) were calculated from relevant fluorescence quenching data. As a result, a non-covalent interaction between the metal complex and DNA was suggested, which could be assigned to an intercalative binding. In addition, the interaction of 1 and 2 was ventured with bovine serum albumin (BSA) with the help of absorption and fluorescence spectroscopy measurements. Through these techniques, the apparent association constant (Kapp) and the binding constant (K) could be calculated for each complex. Evaluation of cytotoxic activity of the complexes against four different cancer cell lines proved that the complexes exhibited cytotoxic specificity and significant cancer cell inhibitory rate. Moreover, density functional theory (DFT) calculations were employed to provide more evidence about the observed data. The majority of trans isomers were supported not only by energies, but also by the similarity of its calculated IR frequencies, UV adsorptions and NMR chemical shifts to the experimental values.
Melvin, Patrick R; Hazari, Nilay; Lant, Hannah M C; Peczak, Ian L; Shah, Hemali P
2015-01-01
Complexes of the type (η(3)-allyl)Pd(L)(Cl) and (η(3)-indenyl)Pd(L)(Cl) are highly active precatalysts for the Suzuki-Miyaura reaction. Even though allyl and indenyl ligands are similar to cyclopentadienyl (Cp) ligands, there have been no detailed comparative studies exploring the activity of precatalysts of the type (η(5)-Cp)Pd(L)(Cl) for Suzuki-Miyaura reactions. Here, we compare the catalytic activity of (η(5)-Cp)Pd(IPr)(Cl) (IPr = 1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene, Cp) with two commercially available catalysts (η(3)-cinnamyl)Pd(IPr)(Cl) (Cin) and (η(3)-1-t-Bu-indenyl)Pd(IPr)(Cl) ( (tBu) Ind). We show that Cp gives slightly better catalytic activity than Cin, but significantly inferior activity than (tBu) Ind. This order of activity is rationalized by comparing the rates at which the precatalysts are activated to the monoligated Pd(0) active species along with the tendency of the starting precatalysts to comproportionate with monoligated Pd(0) to form inactive Pd(I) dimers. As part of this work the Cp supported Pd(I) dimer (μ-Cp)(μ-Cl)Pd2(IPr)2 (Cp (Dim) ) was synthesized and crystallographically characterized. It does not readily disproportionate to form monoligated Pd(0) and consequently Cp (Dim) is a poor catalyst for the Suzuki-Miyaura reaction.
Ji, Hoon; Hwang, Sunhyun; Kim, Keonmok; Kim, CheolGi; Jeong, Nak Cheon
2016-11-30
The fabrication of metal-organic framework (MOF) films on conducting substrates has demonstrated great potential in applications such as electronic conduction and sensing. For these applications, direct contact of the film to the conducting substrate without a self-assembled monolayer (SAM) is a desired step that must be achieved prior to the use of MOF films. In this report, we propose an in situ strategy for the rapid one-step conversion of Cu metal into HKUST-1 films on conducting Cu substrates. The Cu substrate acts both as a conducting substrate and a source of Cu 2+ ions during the synthesis of HKUST-1. This synthesis is possible because of the simultaneous reaction of an oxidizing agent and a deprotonating agent, in which the former agent dissolves the metal substrate to form Cu 2+ ions while the latter agent deprotonates the ligand. Using this strategy, the HKUST-1 film could not only be rapidly synthesized within 5 min but also be directly attached to the Cu substrate. Based on microscopic studies, we propose a plausible mechanism for the growth reaction. Furthermore, we show the versatility of this in situ conversion methodology, applying it to ZIF-8, which comprises Zn 2+ ions and imidazole-based ligands. Using an I 2 -filled HKUST-1 film, we further demonstrate that the direct contact of the MOF film to the conducting substrate makes the material more suitable for use as a sensor or electronic conductor.
Decatur, S M; DePillis, G D; Boxer, S G
1996-04-02
A variety of heterocyclic ligands can be exchanged into the proximal cavity of sperm whale myoglobin mutant H93G, providing a simple method for introduction of the equivalent of unnatural amino acid side chains into a functionally critical location in this protein. These modified proteins bind CO on the distal side. 1H NMR data on H93G(Im)CO, where Im is imidazole, demonstrate that the structure of the distal heme pocket in H93G(Im)CO is very similar to that of wild type; thus, the effects of the proximal ligand's properties on CO binding can be studied with minimal perturbation of distal pocket structure. The exogenous proximal ligands used in this study include imidazole (Im), 4-methylimidazole (4-MeIm), 4-bromoimidazole (4-BrIm), N-methylimidazole (N-MeIm), pyridine (Pyr), and 3-fluoropyridine (3-FPyr). Substitution of the proximal ligand is found to produce substantial changes in the CO on and off rates, the equilibrium binding constant, and the vibrational stretch frequency of CO. Many of the changes are as large as those reported for distal pocket mutants prepared by site-directed mutagenesis. The ability to systematically vary the nature of the proximal ligand is exploited to test the effects of particular properties of the proximal ligand on CO binding. For example, 4-MeIm and 4-BrIm are similar in size and shape but differ significantly in pKa. The same relationship is true for Pyr and 3-FPyr. By comparison of the IR spectra and CO recombination kinetics of these complexes, the effects of proximal ligand pKa on the CO binding are assessed. Likewise, N-MeIm and 4-MeIm are similar in size and pKa but differ in their ability to hydrogen bond to amino acid residues in the proximal cavity. Comparisons of IR spectra and CO binding kinetics in these complexes reveal that proximal ligand conformation and hydrogen bonding affect the kinetics of CO binding. The mechanism of proximal ligand exchange between solution and the proximal cavity in CO complexes was investigated by obtaining the 19F NMR spectrum of H93G(3-FPyr)CO, whose 19F signal can be observed without interference from resonances of the protein. The proximal ligand is found to exchange within a few seconds by saturation transfer. This exchange rate is about 2 orders of magniture faster than what is observed for the isoelectronic metcyano complex [Decatur, S. M., & Boxer, S. G. (1995) Biochemistry 34, 2122-2129]; in both the ferrous CO and ferric cyano complexes, the proximal ligand exchange rate is independent of ligand concentration. These results suggest that the rate-limiting step in proximal ligand exchange is breakage of the iron-ligand bond, followed by rapid diffusion of the ligand through the protein to bulk solution.
NASA Astrophysics Data System (ADS)
Ahmad, Faheem; Alam, Mohammad Jane; Alam, Mahboob; Azaz, Shaista; Parveen, Mehtab; Park, Soonheum; Ahmad, Shabbir
2018-01-01
The present study reports the synthesis and evaluation of biological properties of 3a,8a-dihydroxy-8-oxo-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazol-2(1H)-iminium chloride (3). The structure was confirmed by the FTIR, NMR, MS, CHN microanalysis and X-ray crystallographic analysis. Quantum chemical calculations have been performed at B3LYP-D3/6-311++G(d,p) level of theory to study the molecular geometry, IR, (1H and 13C) NMR, UV/Vis spectra and other molecular parameters of the asymmetric unit of crystal of imidazole compound (3). An empirical dispersion correction to hybrid functional (B3LYP-D3) has been incorporated in the present calculations due to presence of non-covalent interaction, Cl⋯H-O, in the present compound. The remarkable agreement has been observed between theoretical data and those measured experimentally. Moreover, the Hirshfeld analysis was carried out to ascertain the secondary interactions and associated 2D fingerprint plots. The synthesized imidazole derivative showed promising antioxidant property and inhibitory activity against acetylcholinesterase (AChE). Molecular docking was also performed in order to explain in silico antioxidant studies and to ascertain the probable binding mode of compound with the amino acid residues of protein.
Hou, Chen; Gan, Hong-Mei; Liu, Jia-Cheng
2015-01-01
In the title polymeric complex, {[Zn(C24H22N6O2)(H2O)4](NO3)2·2H2O}n, the ZnII cation, located about a twofold rotation axis, is coordinated by two imidazole groups and four water molecules in a distorted N2O4 octahedral geometry; among the four coordinate water molecules, two are located on the same twofold rotation axis. The 1,4-bis[4-(1H-imidazol-1-yl)benzoyl]piperazine] ligand is centro-symmetric, with the centroid of the piperazine ring located on an inversion center, and bridges the ZnII cations, forming polymeric chains propagating along [201]. In the crystal, O—H⋯O and weak C—H⋯O hydrogen bonds link the polymeric chains, nitrate anions and solvent water molecules into a three-dimensional supramolecular architecture. A short O⋯O contact of 2.823 (13) Å is observed between neighboring nitrate anions. PMID:25995894
Structural clues to UO₂²⁺/VO₂⁺ competition in seawater extraction using amidoxime-based extractants.
Kelley, Steven P; Barber, Patrick S; Mullins, Peter H K; Rogers, Robin D
2014-10-25
Here we present the first structural comparison of amidoxime complexes of UO2(2+) and VO2(+) (the main competitor in the extraction of uranium from seawater using amidoxime-based sorbents) using a 4,5-di(amidoxime)-functionalized imidazole ligand. The amidoxime groups resist tautomerization in both cases and quite different coordination modes (chelating vs. bridging) are observed.
Ding, Bing-Bing; Weng, Yan-Qin; Mao, Zong-Wan; Lam, Chi-Keung; Chen, Xiao-Ming; Ye, Bao-Hui
2005-11-28
Two new isostructural complexes [M(H2biim)3][M(btc)(Hbiim)].2H2O (M = Co, (1); M = Ni, (2)) (btc = 1,3,5-benzenetricarboxylate; H2biim = 2,2'-biimidazole) have been synthesized and characterized by single-crystal X-ray diffraction. They present a unique structure consisting of two distinct units: the monomeric cations [M(H2biim)3]2+ and the two-dimensional (2D) anionic polymer [M(Hbiim)(btc)]2-. In the anionic moiety, the Hbiim- monoanion is simultaneously coordinated to one metal atom in a bidentate mode and further to another metal atom in a monodentate mode. The imidazolate groups bridge the two adjacent metal ions into a helical chain which is further arranged in left- and right-handed manners. These chains are bridged by btc ligands into a 2D brick wall structure. The most interesting aspect is that the [M(H2biim)3]2+ cations act as pillars and link the anionic layers via robust heteromeric hydrogen-bonded synthons (9) and (7) formed by the uncoordinated oxygen atoms of carboxylate groups and the H2biim ligands, resulting in a microporous metal-organic framework with one-dimensional (1D) channels (ca. 11.85 angstroms x 11.85 angstroms for 1 and 11.43 angstroms x 11.43 angstroms for 2). Magnetic properties of these two complexes have also been studied in the temperature range of 2-300 K, and their magnetic susceptibilities obey the Curie-Weiss law in the temperature range of 20-300 K (for 1) and 2-300 K (for 2), respectively, showing anti-ferromagnetic coupling through imidazolate bridging. Taking into consideration the Heisenberg infinite chain model as well as the possibility of chain-to-chain and chain-to-cation interactions, the anti-ferromagnetic exchange of 2 is analyzed via a correction for the molecular field, giving the values of g(cat) = 2.296, g(Ni) = 2.564, J = -13.30 cm(-1), and zJ' = -0.017 cm(-1). The microporous frameworks are stable at ca. 350 degrees C. They do not collapse after removal of the guest water molecules in the channels, and they adsorb methanol molecules selectively.
Non-thiolate ligation of nickel by nucleotide-free UreG of Klebsiella aerogenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin-Diaconescu, Vlad; Joseph, Crisjoe A.; Boer, Jodi L.
Nickel-dependent ureases are activated by a multiprotein complex that includes the GTPase UreG. Prior studies showed that nucleotide-free UreG from Klebsiella aerogenes is monomeric and binds one nickel or zinc ion with near-equivalent affinity using an undefined binding site, whereas nucleotide-free UreG from Helicobacter pylori selectively binds one zinc ion per dimer via a universally conserved Cys-Pro-His motif in each protomer. Iodoacetamide-treated K. aerogenes UreG was nearly unaffected in nickel binding compared to non-treated sample, suggesting the absence of thiolate ligands to the metal. X-ray absorption spectroscopy of nickel-bound UreG showed the metal possessed four-coordinate geometry with all O/N donormore » ligands including one imidazole, thus confirming the absence of thiolate ligation. The nickel site in Strep-tag II-modified protein possessed six-coordinate geometry, again with all O/N donor ligands, but now including two or three imidazoles. An identical site was noted for the Strep-tag II-modified H74A variant, substituted in the Cys-Pro-His motif, ruling out coordination by this His residue. These results are consistent with metal binding to both His6 and a His residue of the fusion peptide in Strep-tagged K. aerogenes UreG. We conclude that the nickel- and zinc-binding site in nucleotide-free K. aerogenes UreG is distinct from that of nucleotide-free H. pylori UreG and does not involve the Cys-Pro-His motif. Further, we show the Strep-tag II can perturb metal coordination of this protein.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beheshti, Azizolla, E-mail: a.beheshti@scu.ac.ir; Nozarian, Kimia; Babadi, Susan Soleymani
Two new compounds namely [Cu(SCN)(µ-L)]{sub n} (1) and ([Ag (µ{sub 2}-L)](ClO{sub 4})){sub n} (2) have been synthesized at room temperature by one-pot reactions between the 1,1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione) (L) and appropriate copper(I) and silver(I) salts. These polymers have been characterized by single crystal X-ray diffraction, XRPD, TGA, elemental analysis, infrared spectroscopy, antibacterial activity and scanning probe microscopy studies. In the crystal structure of 1, copper atoms have a distorted trigonal planar geometry with a CuS{sub 2}N coordination environment. Each of the ligands in the structure of 1 acting as a bidentate S-bridging ligand to form a 1D chain structure. Additionally, themore » adjacent 1D chains are interconnected by the intermolecular C-H…S interactions to create a 2D network structure. In contrast to 1, in the cationic 3D structure of 2 each of the silver atoms exhibits an AgS{sub 4} tetrahedral geometry with 4-membered Ag{sub 2}S{sub 2} rings. In the structure of 2, the flexible ligand adopts two different conformations; gauche-anti-gauche and anti-anti-anti. The antibacterial studies of these polymers showed that polymer 2 is more potent antibacterial agent than 1. Scanning probe microscopy (SPM) study of the treated bacteria was carried out to investigate the structural changes cause by the interactions between the polymers and target bacteria. Theoretical study of polymer 1 investigated by the DFT calculations indicates that observed transitions at 266 nm and 302 nm in the UV–vis spectrum could be attributed to the π→π* and MLCT transitions, respectively. - Graphical abstract: Two new Cu(I) and Ag(I) coordination polymers have been have been synthesized by one-pot reactions. Copper complex has a 2D non-covalent structure, but silver compound is a 3D coordination compound. These compounds have effective antibacterial activity. - Highlights: • Cu(I) and Ag(I) based coordination polymers have different network structures. • Ag(I) polymer has more antibacterial activity than Cu(I) polymer. • DFT calculations of Cu(I) polymer has been investigated. • Cu(I) and Ag(I) polymers can destroy the structure of chromosomal and plasmid DNA.« less
NASA Astrophysics Data System (ADS)
Schübler, Moritz; Sadek, Bassem; Kottke, Tim; Weizel, Lilia; Stark, Holger
2017-09-01
Neurleptic drugs, e.g. aripiprazole, targeting the dopamine D2s and D3 receptors (D2sR and D3R) in the central nervous system are widely used in the treatment of several psychotic and neurodegenerative diseases. Therefore, a new series of benz[d]thiazole-based ligands (1-18) was synthesized by applying the bioisosteric approach derived from the selective D3Rs ligand BP-897 and its structurally related benz[d]imidazole derivatives. Herein, introduction of the benz[d]thiazole moiety was well tolerated by D2sR and D3R binding sites leading to antagonist affinities in the low nanomolar concentration range at both receptor subtypes. Further exploration of different substitution patterns at the benz[d]thiazole heterocycle and the basic 4-phenylpiperazine resulted in the discovery of high dually acting D2sR and D3R ligands. Moreover, the methoxy substitution at 2-position of 4-phenylpiperazine resulted in significantly (22-fold) increased D2sR binding affinity as compared to the parent ligand BP-897, and improved physicochemical and drug-likeness properties of ligands 1-9. However, the latter structural modifications failed to improve the drug-able properties in ligands having un-substituted 4-phenylpiperazine analogues (10-18). Accordingly, compound 7 showed in addition to high dual affinity at the D2sR and D3R (Ki (hD2SR) = 2.8 ± 0.8 nM; Ki (hD3R) = 3.0 ± 1.6 nM), promising clogS, clogP, LE (hD2sR, hD3R), LipE (hD2sR, hD3R), and drug-likeness score values of -4.7, 4.2, (0.4, 0.4), (4.4, 4.3), and 0.7, respectively. Also, the deaminated analogue 8 (Ki (hD2SR) = 3.2 ± 0.4 nM; Ki (hD3R) = 8.5 ± 2.2 nM) revealed clogS, clogP, LE (hD2sR, hD3R), LipE (hD2sR, hD3R) and drug-likeness score values of -4.7, 4.2, (0.4, 0.4), (3.9, 3.5), and 0.4, respectively. The results observed for the newly developed benz[d]thiazole-based ligands 1-18 provide clues for the diversity in structure activity relationships (SARs) at the D2sR and D3R subtypes.
Raczak-Gutknecht, Joanna; Nasal, Antoni; Frąckowiak, Teresa; Kornicka, Anita; Sączewski, Franciszek; Wawrzyniak, Renata; Kubik, Łukasz; Kaliszan, Roman
2017-09-10
Imidazol(in)e derivatives, having the chemical structure similar to clonidine, exert diverse pharmacological activities connected with their interactions with alpha2-adrenergic receptors, e.g. hypotension, bradycardia, sedation as well as antinociceptive, anxiolytic, antiarrhythmic, muscle relaxant and mydriatic effects. The mechanism of pupillary dilation observed after systemic administration of imidazol(in)es to rats, mice and cats depends on the stimulation of postsynaptic alpha2-adrenoceptors within the brain. It was proved that the central nervous system (CNS)-localized I1-imidazoline receptors are not engaged in those effects. It appeared interesting to analyze the CNS-mediated pharmacodynamics of imidazole(in)e agents in terms of their chromatographic and calculation chemistry-derived parameters. In the present study a systematic determination and comparative pharmacometric analysis of mydriatic effects in rats were performed on a series of 20 imidazol(in)e agents, composed of the well-known drugs and of the substances used in experimental pharmacology. The eye pupil dilatory activities of the compounds were assessed in anesthetized Wistar rats according to the established Koss method. Among twenty imidazol(in)e derivatives studied, 18 produced diverse dose-dependent mydriatic effects. In the quantitative structure-activity relationships (QSAR) analysis, the pharmacological data (half maximum mydriatic effect - ED 50 in μmol/kg) were considered along with the structural parameters of the agents from molecular modeling. The theoretically calculated lipophilicity parameters, CLOGP, of imidazol(in)es, as well as their lipophilicity parameters from HPLC, logk w , were also considered. The attempts to derive statistically significant QSAR equations for a full series of the agents under study were unsuccessful. However, for a subgroup of eight apparently structurally related imidazol(in)es a significant relationship between log(1/ED 50 ) and logk w values was obtained. The lack of "predictive" QSAR for the whole series of the structurally diverse agents is probably due to a complex mechanism of the ligand-alpha2-adrenergic receptor interactions, which are predominantly of a highly structurally specific polar nature. Such interactions are difficult to quantify with the established chemical structural descriptors, contrary to the less specific, molecular bulkiness-related interactions. Copyright © 2017 Elsevier B.V. All rights reserved.
Dahaghin, Zohreh; Mousavi, Hassan Zavvar; Sajjadi, S Maryam
2017-12-15
In this work, a magnetic ion-imprinted polymer (Fe 3 O 4 @SiO 2 @IIP) as a novel and selective nanosorbent for selective extraction of Pb(II) ions from various agricultural products is presented. The novel lead magnetic ion-imprinted polymer was synthesized by imidazole as a new ligand and grafted onto the surface of Fe 3 O 4 @SiO 2 NPs. A Box-Behnken (BBD) design was used for optimization of the extraction and elution steps. In the selected conditions, the limit of detection was 0.48ngmL -1 , preconcentration factor was 300, the sorption capacity of this new magnetic ion-imprinted polymer was 105mgg -1 , and the precision of the method (RSD%) for six replicate measurements was found 3.2%. Finally, the feasibility of the new magnetic ion-imprinted polymer was evaluated by extraction and determination of trace Pb 2+ ions in different agricultural products including (orange, mango, apple, kiwi, lettuce, broccoli, carrot, squash, eggplant, radish, mushroom, cucumber, and tomato). Copyright © 2017 Elsevier Ltd. All rights reserved.
Krishnaiah, Maddeboina; Jin, Cheng Hua; Sheen, Yhun Yhong; Kim, Dae-Kee
2015-11-15
To further optimize a clinical candidate 5 (EW-7197), a series of 5-(3-, 4-, or 5-fluoro-substituted-6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)imidazoles 19a-l have been synthesized and evaluated for their TGF-β type I receptor kinase (ALK5) and p38α MAP kinase inhibitory activity in an enzyme assay. The 5-(5-fluoro-substituted-6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)imidazoles 19h-l displayed the similar level of potency to that of 5 against both ALK5 (IC50=7.68-13.70 nM) and p38α MAP kinase (IC50=1240-3370 nM). Among them, 19j inhibited ALK5 with IC50 value of 7.68 nM in a kinase assay and displayed 82% inhibition at 100 nM in a luciferase reporter assay. Copyright © 2015 Elsevier Ltd. All rights reserved.
Semiconducting polymers for gas detection
NASA Technical Reports Server (NTRS)
Byrd, N. R.; Sheratte, M. B.
1975-01-01
Conjugated polyenes, and polyesters containing phthalocyanine in their backbone, were synthesized. These polymers were characterized by chemical analysis, thermogravimetric analysis, spectral analysis, and X-ray diffraction studies for crystallinity, as well as for their film-forming capability and gas/polymer interactions. Most of the polymers were relatively insensitive to water vapor up to 50 percent relative humidity, but the polyester/phthalocyanine (iron) polymer was relatively insensitive up to 100 percent RH. On the other hand, poly(p-dimethylaminophenylacetylene) was too conductive at 100 percent RH. Of the gases tested, the only ones that gave any evidence of interacting with the polymers were SO2, NOx, HCN and NH3. Poly(imidazole)/thiophene responded to each of these gases at all relative humidities, while the other polymers gave varying response, depending upon the RH. Thus, since most of these gases were electron-accepting, the electron-donating character of poly(imidazole)/thiophene substantiates the concept of electronegativity being the operating principle for interaction effects. Of the six polymers prepared, poly(imidazole)/thiophene first showed a very good response to smoldering cotton, but it later became nonresponsive; presumably due to oxidation effects.
NASA Astrophysics Data System (ADS)
Annaraj, B.; Mitu, L.; Neelakantan, M. A.
2016-01-01
Imidazole containing amide fluorescence probe (PAIC) for Ni2+ was designed and successfully synthesized in good yield by reaction between 1-methyl-1H-imidazole-2-carboxylic acid and L-phenylalanine methyl ester. The probe was characterized by FTIR, 1H NMR, ESI-MS, UV-vis and fluorescence spectroscopy. Single crystal XRD analysis reveals that PAIC crystallizes in a monoclinic crystal lattice system with the space group of P21/n. Chemosensor property of PAIC was tested against different metal ions by UV-vis and fluorescent techniques in aqueous medium. Test results show that PAIC has high selectivity for Ni2+ compared to other metal ions (Na+, K+, Ca2+, Ag+, Co2+, Cu2+, Fe2+, Fe3+, Hg2+, Mn2+, Zn2+ and Pb2+). Time-dependent density functional theory (TD-DFT) and configuration interaction singles (CIS) calculations were carried out to understand the sensing mechanism. The practical applicability of PAIC was tested in real water samples.
Pająk, Marek; Woźniczka, Magdalena; Vogt, Andrzej; Kufelnicki, Aleksander
2017-09-19
The paper examines Co(II)-amino acid-imidazole systems (where amino acid = L-α-amino acid: alanine, asparagine, histidine) which, when in aqueous solutions, activate and reversibly take up dioxygen, while maintaining the structural scheme of the heme group (imidazole as axial ligand and O 2 uptake at the sixth, trans position) thus imitating natural respiratory pigments such as myoglobin and hemoglobin. The oxygenated reaction shows higher reversibility than for Co(II)-amac systems with analogous amino acids without imidazole. Unlike previous investigations of the heteroligand Co(II)-amino acid-imidazole systems, the present study accurately calculates all equilibrium forms present in solution and determines the [Formula: see text]equilibrium constants without using any simplified approximations. The equilibrium concentrations of Co(II), amino acid, imidazole and the formed complex species were calculated using constant data obtained for analogous systems under oxygen-free conditions. Pehametric and volumetric (oxygenation) studies allowed the stoichiometry of O 2 uptake reaction and coordination mode of the central ion in the forming oxygen adduct to be determined. The values of dioxygen uptake equilibrium constants [Formula: see text] were evaluated by applying the full mass balance equations. Investigations of oxygenation of the Co(II)-amino acid-imidazole systems indicated that dioxygen uptake proceeds along with a rise in pH to 9-10. The percentage of reversibility noted after acidification of the solution to the initial pH ranged within ca 30-60% for alanine, 40-70% for asparagine and 50-90% for histidine, with a rising tendency along with the increasing share of amino acid in the Co(II): amino acid: imidazole ratio. Calculations of the share of the free Co(II) ion as well as of the particular complex species existing in solution beside the oxygen adduct (regarding dioxygen bound both reversibly and irreversibly) indicated quite significant values for the systems with alanine and asparagine-in those cases the of oxygenation reaction is right shifted to a relatively lower extent. The experimental results indicate that the "active" complex, able to take up dioxygen, is a heteroligand CoL 2 L'complex, where L = amac (an amino acid with a non-protonated amine group) while L' = Himid, with the N1 nitrogen protonated within the entire pH range under study. Moreover, the corresponding log [Formula: see text] value at various initial total Co(II), amino acid and imidazole concentrations was found to be constant within the limits of error, which confirms those results. The highest log [Formula: see text] value, 14.9, occurs for the histidine system; in comparison, asparagine is 7.8 and alanine is 9.7. This high value is most likely due to the participation of the additional effective N3 donor of the imidazole side group of histidine. The Co(II)-amac-Himid systems formed by using a [Co(imid) 2 ] n polymer as starting material demonstrate that the reversible uptake of molecular oxygen occurs by forming dimeric μ-peroxy adducts. The essential impact on the electron structure of the dioxygen bridge, and therefore, on the reversibility of O 2 uptake, is due to the imidazole group at axial position (trans towards O 2 ). However, the results of reversibility measurements of O 2 uptake, unequivocally indicate a much higher effectiveness of dioxygenation than in systems in which the oxygen adducts are formed in equilibrium mixtures during titration of solutions containing Co(II) ions, the amino acid and imidazole, separately.
Jacquemin, Johan; Feder-Kubis, Joanna; Zorębski, Michał; Grzybowska, Katarzyna; Chorążewski, Mirosław; Hensel-Bielówka, Stella; Zorębski, Edward; Paluch, Marian; Dzida, Marzena
2014-02-28
During this research, we present a study on the thermal properties, such as the melting, cold crystallization, and glass transition temperatures as well as heat capacities from 293.15 K to 323.15 K of nine in-house synthesized protic ionic liquids based on the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate ([H-Im-C1OC(n)][Sal]) with n = 3-11. The 3D structures, surface charge distributions and COSMO volumes of all investigated ions are obtained by combining DFT calculations and the COSMO-RS methodology. The heat capacity data sets as a function of temperature of the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate are then predicted using the methodology originally proposed in the case of ionic liquids by Ge et al. 3-(Alkoxymethyl)-1H-imidazol-3-ium salicylate based ionic liquids present specific heat capacities higher in many cases than other ionic liquids that make them suitable as heat storage media and in heat transfer processes. It was found experimentally that the heat capacity increases linearly with increasing alkyl chain length of the alkoxymethyl group of 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate as was expected and predicted using the Ge et al. method with an overall relative absolute deviation close to 3.2% for temperatures up to 323.15 K.
NASA Astrophysics Data System (ADS)
Das, Aniruddha
2017-11-01
5-amino-1-(phenyl/p-halophenyl)imidazole-4-carboxamides (N-phenyl AICA) (2a-e) and 5-amino-1-(phenyl/p-halophenyl)imidazole-4-carbonitriles (N-phenyl AICN) (3a-e) had been synthesized. X-ray crystallographic studies of 2a-e and 3a-e had been performed to identify any distinct change in stacking patterns in their crystal lattice. Single crystal X-ray diffraction studies of 2a-e revealed π-π stack formations with both imidazole and phenyl/p-halophenyl units in anti and syn parallel-displaced (PD)-type dispositions. No π-π stacking of imidazole occurred when the halogen substituent is bromo or iodo; π-π stacking in these cases occurred involving phenyl rings only. The presence of an additional T-stacking had been observed in crystal lattices of 3a-e. Vertical π-π stacking distances in anti-parallel PD-type arrangements as well as T-stacking distances had shown stacking distances short enough to impart stabilization whereas syn-parallel stacking arrangements had got much larger π-π stacking distances to belie any syn-parallel stacking stabilization. DFT studies had been pursued for quantifying the π-π stacking and T-stacking stabilization. The plotted curves for anti-parallel and T-stacked moieties had similarities to the 'Morse potential energy curve for diatomic molecule'. The minima of the curves corresponded to the most stable stacking distances and related energy values indicated stacking stabilization. Similar DFT studies on syn-parallel systems of 2b corresponded to no π-π stacking stabilization at all. Halogen-halogen interactions had also been observed to stabilize the compounds 2d, 2e and 3d. Nano-structural behaviour of the series of compounds 2a-e and 3a-e were thoroughly investigated.
Zeolite-imidazolate framework (ZIF-8) membrane synthesis on a mixed-matrix substrate.
Barankova, Eva; Pradeep, Neelakanda; Peinemann, Klaus-Viktor
2013-10-21
A thin, dense, compact and hydrogen selective ZIF-8 membrane was synthesized on a polymer/metal oxide mixed-matrix support by a secondary seeding method. The new concept of incorporating ZnO particles into the support and PDMS coating of the ZIF-8 layer is introduced to improve the preparation of ZIF-polymer composite membranes.
A Heme-based Redox Sensor in the Methanogenic Archaeon Methanosarcina acetivorans*
Molitor, Bastian; Stassen, Marc; Modi, Anuja; El-Mashtoly, Samir F.; Laurich, Christoph; Lubitz, Wolfgang; Dawson, John H.; Rother, Michael; Frankenberg-Dinkel, Nicole
2013-01-01
Based on a bioinformatics study, the protein MA4561 from the methanogenic archaeon Methanosarcina acetivorans was originally predicted to be a multidomain phytochrome-like photosensory kinase possibly binding open-chain tetrapyrroles. Although we were able to show that recombinantly produced and purified protein does not bind any known phytochrome chromophores, UV-visible spectroscopy revealed the presence of a heme tetrapyrrole cofactor. In contrast to many other known cytoplasmic heme-containing proteins, the heme was covalently attached via one vinyl side chain to cysteine 656 in the second GAF domain. This GAF domain by itself is sufficient for covalent attachment. Resonance Raman and magnetic circular dichroism data support a model of a six-coordinate heme species with additional features of a five-coordination structure. The heme cofactor is redox-active and able to coordinate various ligands like imidazole, dimethyl sulfide, and carbon monoxide depending on the redox state. Interestingly, the redox state of the heme cofactor has a substantial influence on autophosphorylation activity. Although reduced protein does not autophosphorylate, oxidized protein gives a strong autophosphorylation signal independent from bound external ligands. Based on its genomic localization, MA4561 is most likely a sensor kinase of a two-component system effecting regulation of the Mts system, a set of three homologous corrinoid/methyltransferase fusion protein isoforms involved in methyl sulfide metabolism. Consistent with this prediction, an M. acetivorans mutant devoid of MA4561 constitutively synthesized MtsF. On the basis of our results, we postulate a heme-based redox/dimethyl sulfide sensory function of MA4561 and propose to designate it MsmS (methyl sulfide methyltransferase-associated sensor). PMID:23661702
Melvin, Patrick R; Lant, Hannah M C; Peczak, Ian L; Shah, Hemali P
2015-01-01
Summary Complexes of the type (η3-allyl)Pd(L)(Cl) and (η3-indenyl)Pd(L)(Cl) are highly active precatalysts for the Suzuki–Miyaura reaction. Even though allyl and indenyl ligands are similar to cyclopentadienyl (Cp) ligands, there have been no detailed comparative studies exploring the activity of precatalysts of the type (η5-Cp)Pd(L)(Cl) for Suzuki–Miyaura reactions. Here, we compare the catalytic activity of (η5-Cp)Pd(IPr)(Cl) (IPr = 1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene, Cp) with two commercially available catalysts (η3-cinnamyl)Pd(IPr)(Cl) (Cin) and (η3-1-t-Bu-indenyl)Pd(IPr)(Cl) (tBu Ind). We show that Cp gives slightly better catalytic activity than Cin, but significantly inferior activity than tBu Ind. This order of activity is rationalized by comparing the rates at which the precatalysts are activated to the monoligated Pd(0) active species along with the tendency of the starting precatalysts to comproportionate with monoligated Pd(0) to form inactive Pd(I) dimers. As part of this work the Cp supported Pd(I) dimer (μ-Cp)(μ-Cl)Pd2(IPr)2 (Cp Dim) was synthesized and crystallographically characterized. It does not readily disproportionate to form monoligated Pd(0) and consequently Cp Dim is a poor catalyst for the Suzuki–Miyaura reaction. PMID:26732227
NASA Astrophysics Data System (ADS)
Al-Alshaikh, Monirah A.; Mary Y, Sheena; Panicker, C. Yohannan; Attia, Mohamed I.; El-Emam, Ali A.; Alsenoy, C. Van
2016-04-01
The optimized molecular structure, vibrational wavenumbers, corresponding vibrational assignments of 3-(1H-imidazol-1-yl)-1-phenylpropan-1-one have been investigated theoretically and experimentally. The calculated geometrical parameters of the title compound are in agreement with the reported XRD data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Molecular electrostatic potential was performed by the DFT method and from the MEP plot, it is evident that the negative charge covers the carbonyl group and the nitrogen atom N3 of the imidazole ring and the positive region is over the remaining portions of the molecule. The first and second hyperpolarizabilities are calculated and the first hyperpolarizability of the title compound is 16.99 times that of standard NLO material urea and the title compound and its derivatives are good object for further studies in nonlinear optics. The docked ligand title compound forms a stable complex with plasmodium falciparum and gives a binding affinity value of -5.5 kcal/mol and the preliminary results suggest that the compound might exhibit antimalarial activity against plasmodium falciparum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rachuri, Yadagiri; Bisht, Kamal Kumar; Academy of Scientific and Innovative Research
2015-03-15
Two CPs ([Cd{sub 3}(BTC){sub 2}(TIB){sub 2}(H{sub 2}O){sub 4}].(H{sub 2}O){sub 2}){sub n} (1) and ([Zn{sub 3}(BTC){sub 2}(TIB){sub 2}].(H{sub 2}O){sub 6}){sub n} (2) composed of tripodal linkers BTC (1,3,5-benzenetricarboxylate) and TIB (1,3,5-tris(imidazol-1-ylmethyl)benzene) were synthesized via solvothermal route and structurally characterized. Single crystal structural analysis reveals 1 possesses a novel 3D framework structure, whereas 2 represents a previously established compound. Owing to the d{sup 10} configuration of metal nodes and robust 3D frameworks, 1 and 2 exhibit excellent fluorescence properties which have been exploited to sense organic nitro compounds in vapor phase. Compound 1 demonstrates selective sensing of nitromethane over structurally similar methanolmore » with ca. 70 and 43% fluorescence quenching in case of former and later. Similarly, 58% fluorescence quenching was observed in case of nitrobenzene over the structurally resembling toluene for which 30% quenching was observed. Compound 2 did not show any preference for nitro compounds and exhibited comparable fluorescence quenching when exposed to the vapors of nitro or other geometrically resembling organic molecules. Furthermore, adsorption experiments revealed that 1 and 2 can uptake 2.74 and 14.14 wt% molecular iodine respectively in vapor phase which can be released in organic solvents such as hexane and acetonitrile. The maximal iodine uptake in case of 1 and 2 corresponds to 0.15 and 0.80 molecules of iodine per formula unit of respective frameworks. Comprehensive structural description, thermal stability and luminescence behavior for both CPs has also been presented. - Graphical abstract: Two 3D luminescent CPs comprising mixed tripodal ligands have been hydrothermally synthesized and structurally characterized. Iodine encapsulation capacity of synthesized CPs is evaluated and their fluorescence quenching in presence of small organic molecules is exploited for sensing of nitro organics. - Highlights: • Two 3D mixed ligand coordination polymers containing Cd and Zn center are prepared. • Crystal structure and thermal stability of synthesized CPs has been described. • Photoluminescence intensity of CPs was observed to vary in presence of organic vapors. • Photoluminescence quenching in case of Cd CP is exploited to selectively sense nitro organics. • These thermally stable robust CPs are also used for iodine adsorption.« less
Lacy, Eilyn R.; Cox, Kari K.; Wilson, W. David; Lee, Moses
2002-01-01
An imidazole-containing polyamide trimer, f-ImImIm, where f is a formamido group, was recently found using NMR methods to recognize T·G mismatched base pairs. In order to characterize in detail the T·G recognition affinity and specificity of imidazole-containing polyamides, f-ImIm, f-ImImIm and f-PyImIm were synthesized. The kinetics and thermodynamics for the polyamides binding to Watson–Crick and mismatched (containing one or two T·G, A·G or G·G mismatched base pairs) hairpin oligonucleotides were determined by surface plasmon resonance and circular dichroism (CD) methods. f-ImImIm binds significantly more strongly to the T·G mismatch-containing oligonucleotides than to the sequences with other mismatched or with Watson–Crick base pairs. Compared with the Watson–Crick CCGG sequence, f-ImImIm associates more slowly with DNAs containing T·G mismatches in place of one or two C·G base pairs and, more importantly, the dissociation rate from the T·G oligonucleotides is very slow (small kd). These results clearly demonstrate the binding selectivity and enhanced affinity of side-by-side imidazole/imidazole pairings for T·G mismatches and show that the affinity and specificity increase arise from much lower kd values with the T·G mismatched duplexes. CD titration studies of f-ImImIm complexes with T·G mismatched sequences produce strong induced bands at ∼330 nm with clear isodichroic points, in support of a single minor groove complex. CD DNA bands suggest that the complexes remain in the B conformation. PMID:11937638
Prebiotic synthesis of histidine
NASA Technical Reports Server (NTRS)
Shen, C.; Yang, L.; Miller, S. L.; Oro, J.
1990-01-01
The prebiotic formation of histidine (His) has been accomplished experimentally by the reaction of erythrose with formamidine followed by a Strecker synthesis. In the first step of this reaction sequence, the formation of imidazole-4-acetaldehyde took place by the condensation of erythrose and formamidine, two compounds that are known to be formed under prebiotic conditions. In a second step, the imidazole-4-acetaldehyde was converted to His, without isolation of the reaction products by adding HCN and ammonia to the reaction mixture. LC, HPLC, thermospray liquid chromatography-mass spectrometry, and tandem mass spectrometry were used to identify the product, which was obtained in a yield of 3.5% based on the ratio of His/erythrose. This is a new chemical synthesis of one of the basic amino acids which had not been synthesized prebiotically until now.
Novel fluorescent pH sensor based on coumarin with piperazine and imidazole substituents.
Saleh, Na'il; Al-Soud, Yaseen A; Nau, Werner M
2008-12-01
A new coumarin derivative containing piperazine and imidazole moieties is reported as a fluorophore for hydrogen ions sensing. The fluorescence enhancement of the studied sensor with an increase in hydrogen ions concentration is based on the hindering of photoinduced electron transfer from the piperazinyl amine and the imidazolyl amine to the coumarin fluorophore by protonation. The presented sensor has a novel design of fluorophore-spacer-receptor(1)-receptor(2) format, which is proposed to sense two ranges of pH (from 2.5 to 5.5) and (from 10 to 12) instead of sensing one pH range. A model compound, in which the piperazinyl ring is absent, was synthesized as well to confirm the novel pH sensing of the proposed sensor.
Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins.
Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo
2016-07-02
Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel's ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators.
Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins
Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo
2016-01-01
Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555
Wenger, Whitney Nowak; Bates, Frank S; Aydil, Eray S
2017-08-22
Semiconductor quantum dots synthesized using rapid mixing of precursors by injection into a hot solution of solvents and surfactants have surface ligands that sterically stabilize the dispersions in nonpolar solvents. Often, these ligands are exchanged to disperse the quantum dots in polar solvents, but quantitative studies of quantum dot surfaces before and after ligand exchange are scarce. We studied exchanging trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) ligands on as-synthesized CdSe quantum dots dispersed in hexane with a 2000 g/mol thiolated poly(ethylene glycol) (PEG) polymer. Using infrared spectroscopy we quantify the absolute surface concentration of TOP/TOPO and PEG ligands per unit area before and after ligand exchange. While 50-85% of the TOP/TOPO ligands are removed upon ligand exchange, only a few are replaced with PEG. Surprisingly, the remaining TOP/TOPO ligands outnumber the PEG ligands, but these few PEG ligands are sufficient to disperse the quantum dots in polar solvents such as chloroform, tetrahydrofuran, and water. Moreover, as-synthesized quantum dots once easily dispersed in hexane are no longer dispersible in nonpolar solvents after ligand exchange. A subtle coverage-dependent balance between attractive PEG-solvent interactions and repulsive TOP/TOPO-solvent interactions determines the dispersion stability.
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Gautam, Seema; Rajor, Hament Kumar; Bhatia, Rohit
2015-02-01
Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, 1H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group. Ni(II), and Cu(II) complexes were synthesized with this nitrogen-sulfur donor (N2S2) ligand. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, EPR, thermal, and molecular modeling studies. All the complexes showed molar conductance corresponding to non-electrolytic nature, expect [Ni(L)](NO3)2 complex, which was 1:2 electrolyte in nature. [Cu(L)(SO4)] complex may possessed square pyramidal geometry, [Ni(L)](NO3)2 complex tetrahedral and rest of the complexes six coordinated octahedral/tetragonal geometry. Newly synthesized ligand and its metal complexes were examined against the opportunistic pathogens. Results suggested that metal complexes were more biological sensitive than free ligand.
NASA Astrophysics Data System (ADS)
Hughes, Terry Vincent
1999-12-01
This dissertation consists of four chapters. The first chapter details the progress toward a total synthesis of securine A (1). Securine A is an indole/imidazole containing marine alkaloid which contains a 2,3-disubstituted indole ring and a 4,5- disubstituted imidazole ring with a 12-membered lactam connecting the two. The approach into the securine A ring system utilized the opening of a pyrano[3,4-b]indol-3-one ring system with a modified histamine derivative. Efforts in the synthesis of securine A were not successful, but the synthesis of a similar analogue, compound 53, which contained a 13-membered ring was achieved. Chapter two deals with the total synthesis of the indole/maleimide/imidazole containing marine alkaloids: the didemnimides A-D (84- 87). The total syntheses of didemnimide A-D were successful and utilized a base catalyzed condensation reaction of methyl indolyl-3-glyoxylate (102) and 1-trityl-4-imidazoleacetamide (104). Chapter three details a new and convenient synthesis of 1-cyanobenzotriazole (123) and efforts to use it as a source of +CN in carbon-carbon forming reactions. The synthesis is safer than previously reported methods and allows for 123 to be made in multi-gram scale rather inexpensively. It was demonstrated that 1-cyanobenzotriazole (123) is a good source of +CN in carbon-carbon forming reactions by reacting with a variety of sp3, Sp 2, and sp carbanions. Chapter four details a new synthesis of hexadecylquinolinium tricyanoquinodimethanide (171) which has been shown to be a molecular rectifier. In search of additional molecular rectifiers, this new methodology was applied to the synthesis of Z- β-(N-n -hexadecyl-2-benzothiazolium)-α-cyano-4-styryldicyanomethanide (181) as well as its selenium and tellurium analogues 190 and 200; respectively. Additionally, the synthesis of other T- D+-π-A- types of molecules was explored in search for other molecular rectifiers. However, of all the compounds synthesized herein, only 171 has been shown to rectify.
Li, Kun; Ma, Tianyi; Cai, Jingjing; Huang, Min; Guo, Hongye; Zhou, Di; Luan, Shenglin; Yang, Jinyu; Liu, Dan; Jing, Yongkui; Zhao, Linxiang
2017-10-15
Twenty-six conjugates of 18β-glycyrrhetinic acid derivatives with 3-(1H-benzo[d]imidazol-2-yl)propanoic acid were designed and synthesized as Pin1 inhibitors. Most of these semi-synthetic compounds showed improved Pin1 inhibitory activity and anti-proliferative effects against prostate cancer cells as compared to 3-(1H-benzo[d]imidazol-2-yl)propanoic acid and GA. Compounds 10a and 12i were the most potent to inhibit growth of prostate cancer PC-3 with GI 50 values of 7.80μM and 3.52μM, respectively. The enzyme inhibition ratio of nine compounds at 10μM was over 90%. Structure-activity relationships indicated that both appropriate structure at ring C of GA and suitable length of linker between GA skeleton and benzimidazole moiety had significant impact on improving activity. Western blot assay revealed that 10a decreased the level of cell cycle regulating protein cyclin D1. Thus, these compounds might represent a novel anti-proliferative agent working through Pin1 inhibition. Copyright © 2017. Published by Elsevier Ltd.
Chen, Jianjun; Wang, Zhao; Li, Chien-Ming; Lu, Yan; Vaddady, Pavan K.; Meibohm, Bernd; Dalton, James T.; Miller, Duane D.; Li, Wei
2010-01-01
A series of 2-aryl-4-benzoyl-imidazoles (ABI) was synthesized as a result of structural modifications based on the previous set of 2-aryl-imidazole-4-carboxylic amide (AICA) derivatives and 4-substituted methoxylbenzoyl-aryl-thiazoles (SMART). The average IC50 of the most active compound (5da) was 15.7 nM. ABI analogs have substantially improved aqueous solubility (48.9 μg/mL for 5ga vs. 0.909 μg/mL for SMART-1, 0.137 μg/mL for paclitaxel, and 1.04 μg/mL for Combretastatin A4). Mechanism of action studies indicate that the anticancer activity of ABI analogs is through inhibition of tubulin polymerization by interacting with the colchicine binding site. Unlike paclitaxel and colchicine, the ABI compounds were equally potent against multidrug resistant cancer cells and the sensitive parental melanoma cancer cells. In vivo results indicated that 5cb was more effective than DTIC in inhibiting melanoma xenograph tumor growth. Our results suggest that the novel ABI compounds may be developed to effectively treat drug-resistant tumors. PMID:20919720
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng Jiang; Peisach, J.; Lijune Ming
Electron spin echo envelope modulation spectroscopy (ESEEM) was used to study the active site structure of isopenicillin N synthase (IPNS) from Cephalosporium acremonium with Cu(II) as a spectroscopic probe. Fourier transform of the simulated electron spin-echo envelope for the Cu(II)-substituted enzyme, Cu(II)IPNS, revealed two nearly magnetically equivalent, equatorially coordinated His imidazoles. The superhyperfine coupling constant, A{sub iso}, for the remote {sup 14}N of each imidazole was 1.65 MHz. The binding of substrate to the enzyme altered the magnetic coupling so that A{sub iso} is 1.30 MHz for one nitrogen and 2.16 MHz for the other. From a comparison of themore » ESSEM of Cu(II)IPNS in D{sub 2}O and H{sub 2}O, it is suggested that water is a ligand of Cu(II) and this is displaced upon the addition of substrate.« less
Chandra, Sulekh; Gautam, Seema; Rajor, Hament Kumar; Bhatia, Rohit
2015-02-25
Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, (1)H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group. Ni(II), and Cu(II) complexes were synthesized with this nitrogen-sulfur donor (N2S2) ligand. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, EPR, thermal, and molecular modeling studies. All the complexes showed molar conductance corresponding to non-electrolytic nature, expect [Ni(L)](NO3)2 complex, which was 1:2 electrolyte in nature. [Cu(L)(SO4)] complex may possessed square pyramidal geometry, [Ni(L)](NO3)2 complex tetrahedral and rest of the complexes six coordinated octahedral/tetragonal geometry. Newly synthesized ligand and its metal complexes were examined against the opportunistic pathogens. Results suggested that metal complexes were more biological sensitive than free ligand. Copyright © 2014 Elsevier B.V. All rights reserved.
Qin, Haifang; Jiang, Xiyuan; Fan, Jie; Wang, Jianpeng; Liu, Li; Qiu, Lin; Wang, Jianhao; Jiang, Pengju
2017-01-01
Capillary electrophoresis with fluorescence detection was utilized to probe the self-assembly between cyanine group dye labeled tetrahistidine containing peptide and CdSe/ZnS quantum dots, inside the capillary. Quantum dots and cyanine group dye labeled tetrahistidine containing peptide were injected into the capillary one after the other and allowed to self-assemble. Their self-assembly resulted into a measurable Förster resonance energy transfer signal between quantum dots and cyanine group dye labeled tetrahistidine containing peptide. The Förster resonance energy transfer signal increased upon increasing the cyanine group dye labeled tetrahistidine containing peptide/quantum dot molar ratio and reached a plateau at the 32/1 molar ratio. Additionally, the Förster resonance energy transfer signal was also affected by the increment of the interval time of injection and the sampling time. Online ligand exchange experiments were used to assess, the potential of a monovalent ligand of imidazole and a hexavalent ligand peptide, to displace surface bound cyanine group dye labeled peptide ligands from the quantum dots surface. Under optimal conditions, a linear relationship between the integrated peak areas and hexavalent ligand peptide was obtained at a hexavalent ligand concentration range of 0-0.5 mM. Therefore, the present assay has the potential to be applied in the online ligands detection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, F.; Shao, K.-J.; Xiao, Y.-C.
2015-12-15
The rhodium(I) cyclooctadiene complex with the bis(3-tert-butylimidazol-2-ylidene)borate ligand [H{sub 2}B(Im{sup t}Bu){sup 2}]Rh(COD) C{sup 22}H{sup 36}BN{sup 4}Rh, has been prepared, and its crystal structure is determined by X-ray diffraction. Complex exhibits slightly distorted square planar configurations around the metal center, which is coordinated by the bidentate H{sup 2}B(Im{sup t}Bu){sub 2} and one cyclooctadiene group. The Rh–C{sub carbene} bond lengths are 2.043(4) and 2.074(4) Å, and the bond angle C–Rh1–C is 82.59°. The dihedral angle between two imidazol-2-ylidene rings is 67.30°.
Balamurugan, Mani; Mayilmurugan, Ramasamy; Suresh, Eringathodi; Palaniandavar, Mallayan
2011-10-07
Several mononuclear Ni(II) complexes of the type [Ni(L)(CH(3)CN)(2)](BPh(4))(2) 1-7, where L is a tetradentate tripodal 4N ligand such as N,N-dimethyl-N',N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine (L1), N,N-diethyl-N',N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine (L2), N,N-dimethyl-N'-(1-methyl-1H-imidazol-2-ylmethyl)-N'-(pyrid-2-ylmethyl)ethane-1,2-diamine (L3), N,N-dimethyl-N',N'-bis(1-methyl-1H-imidazol-2-ylmethyl)ethane-1,2-diamine (L4), N,N-dimethyl-N',N'-bis(quinolin-2-ylmethyl)ethane-1,2-diamine (L5), tris(benzimidazol-2-ylmethyl)amine (L6) and tris(pyrid-2-ylmethyl)amine (L7), have been isolated and characterized using CHN analysis, UV-Visible spectroscopy and mass spectrometry. The single-crystal X-ray structures of the complexes [Ni(L1)(CH(3)CN)(H(2)O)](ClO(4))(2) 1a, [Ni(L2)(CH(3)CN)(2)](BPh(4))(2) 2, [Ni(L3)(CH(3)CN)(2)](BPh(4))(2) 3 and [Ni(L4)(CH(3)CN)(2)](BPh(4))(2) 4 have been determined. All these complexes possess a distorted octahedral coordination geometry in which Ni(II) is coordinated to four nitrogen atoms of the tetradentate ligands and two CH(3)CN (2, 3, 4) or one H(2)O and one CH(3)CN (1a) are located in cis positions. The Ni-N(py) bond distances (2.054(2)-2.078(3) Å) in 1a, 2 and 3 are shorter than the Ni-N(amine) bonds (2.127(2)-2.196(3) Å) because of sp(2) and sp(3) hybridizations of the pyridyl and tertiary amine nitrogens respectively. In 3 the Ni-N(im) bond (2.040(5) Å) is shorter than the Ni-N(py) bond (2.074(4) Å) due to the stronger coordination of imidazole compared with the pyridine donor. In dichloromethane/acetonitrile solvent mixture, all the Ni(ii) complexes possess an octahedral coordination geometry, as revealed by the characteristic ligand field bands in the visible region. They efficiently catalyze the hydroxylation of alkanes when m-CPBA is used as oxidant with turnover number (TON) in the range of 340-620 and good alcohol selectivity for cyclohexane (A/K, 5-9). By replacing one of the pyridyl donors in TPA by a weakly coordinating -NMe(2) or -NEt(2) donor nitrogen atom the catalytic activity decreases slightly with no change in the selectivity. In contrast, upon replacing the pyridyl nitrogen donor by the strongly σ-bonding imidazolyl or sterically demanding quinolyl/benzimidazolyl nitrogen donor, both the catalytic activity and selectivity decrease, possibly due to destabilization of the intermediate [(4N)(CH(3)CN)Ni-O˙](+) radical species. Adamantane is selectively (3°/2°, 12-17) oxidized to 1-adamantanol, 2-adamantanol and 2-adamantanone while cumene is selectively oxidized to 2-phenyl-2-propanol. In contrast to cyclohexane oxidation, the incorporation of sterically hindering quinolyl/benzimidazolyl donors around Ni(ii) leads to a high 3°/2° bond selectivity for adamantane oxidation. A linear correlation between the metal-ligand covalency parameter (β) and the turnover number has been observed.
Chen, Xiao-Fei; El-Khouly, Mohamed E; Ohkubo, Kei; Fukuzumi, Shunichi; Ng, Dennis K P
2018-03-12
A series of light-harvesting conjugates based on a zinc(II) phthalocyanine core with either two or four boron dipyrromethene (BODIPY) or porphyrin units have been synthesized and characterized. The conjugation of BODIPY/porphyrin units can extend the absorptions of the phthalocyanine core to cover most of the visible region. Upon addition of an imidazole-substituted C 60 (C 60 Im), it can axially bind to the zinc(II) center of the phthalocyanine core through metal-ligand interactions. The resulting complexes form photosynthetic antenna-reaction center mimics in which the BODIPY/porphyrin units serve as the antennas to capture the light and transfer the energy to the phthalocyanine core by efficient excitation energy transfer. The excited phthalocyanine is then quenched by the axially bound C 60 Im moiety by electron transfer, which has been supported by computational studies. The photoinduced processes of the assemblies have been studied in detail by various steady-state and time-resolved spectroscopic methods. By femtosecond transient absorption spectroscopic studies, the lifetimes of the charge-separated state of the bis(BODIPY) and bis(porphyrin) systems have been determined to be 3.2 and 4.0 ns, respectively. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Rahardjo, Sentot B.; Endah Saraswati, Teguh; Pramono, Edy; Fitriana, Nur
2016-02-01
Complex of copper(II) with 2-cyano-1-methyl-3-{2-{{(5-methylimidazol-4- yl)methyl}thio}ethyl)guanidin(xepamet) had been synthesized in 1 : 4 mole ratio of metal to the ligand in methanol. The complex was characterized by metal analysis, thermal gravimetry/differential thermal analyzer (TG/DTA), molar conductivity meter, (Fourier transform infrared spectroscopy) FT-IR, UV-Vis spectroscopy, and magnetic susceptibility balance. The molar conductivity measurement shows that the complex was 2: 1 for electrolyte and SO42- which was acting as a counter ion. The thermal analysis by Thermogravimetric (TG) indicates that the complex contained four molecules of H2O. The Infrared spectral data indicates that functional groups of (C=N) imidazole and (C-S) are coordinated to the center ion Cu2+. Magnetic moment measurement shows that the complex is paramagnetic with peff = 1.78 ± 0.01 BM. Electronic spectra of the complex show a broad band at 608 nm (16447.23 cm-1) are due to Eg→T2g transition. Based on those of characteristics, The complex formula was estimated as [Cu(xepamet)2]SO4.4H2O. The structure of [Cu(xepamet)2]SO4.4H2O complex is probably square planar.
NASA Astrophysics Data System (ADS)
Beheshti, Azizolla; Nozarian, Kimia; Ghamari, Narges; Mayer, Peter; Motamedi, Hossein
2018-02-01
Coordination polymers [CdCl(NCS)L]n (1) and {[Cd2I4(L)2]·H2O·DMF}n (2) (where L = 1, 1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione)) were synthesized and structurally characterized. Compounds 1 and 2 both possess a tetrahedral arrangement with CdS2NCl and CdS2I2 cores, respectively. In these structures, the flexible thione ligands adopt a μ- bridging coordination mode to form 1D chains along the b-axis. The 1D chains are join together by C-H--Cl hydrogen bonds (in 1) and water molecules (in 2) to create a 2D supramolecular framework with an ABAB…packing mode. Remarkably, compounds 1 and 2 in particular polymer 1 exhibit excellent capacity to adsorb Congo red (CR) with high selectivity. The experimental data demonstrate that the mechanism of sorption process can be described by the Elovich and pseudo second order kinetic models for 1 and 2, respectively. Furthermore, the possible mechanism of CR absorption was investigated by UV-Vis and solid state fluorescence spectra for the title polymers. In addition, the antibacterial assessment of these compounds have also been studied.
NASA Astrophysics Data System (ADS)
Wang, Jun; Bai, Chao; Hu, Huai-Ming; Yuan, Fei; Xue, Gang-Lin
2017-05-01
Eight Zn(II)-based coordination polymers, namely, [Zn2L2(2,2'-bipy)]n·nH2O (1), [Zn2L2(phen)]n·nH2O (2), [ZnL(phen)(H2O)]n (3), [Zn3L3(4,4'-bipy)]n (4), [Zn2L2(4,4'-bipy)2]n [Zn2L2(H2O)2]n·2nH2O (5), [Zn4L4(bpp)2]n (6), [ZnL(bbi)0.5]n (7), [ZnL(bpz)]n (8) (H2L=4,4'-{[1,2-phenylenebis-(methylene)]bis(oxy)}dibenzoic acid, 2,2'-bipy =2,2'-bipyridine, phen =1,10-phenanthroline, 4,4'-bpy=4,4'-bipyridine, bpp =1,3-bis(4-pyridyl)propane, bbi=1,4-bis(imidazol-1-yl)butane, bpz=3,3‧,5,5‧-tetramethyl-4,4‧-bipyrazole), have been hydrothermally synthesized and structurally characterized. 1-8 display various coordination motifs with different entangled forms and conformations due to the effect of the assistant N-donor ligands. The photoluminescent properties of compounds 1-8 in solid state were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for Cu2+ cations and CrO42- anions, as well as detection ability for the different organic solvents and nitro explosives. These results indicated that it could be utilized as a multi-responsive luminescent sensor. Furthermore, compound 3 also shows good chemical resistance to both acidity and alkalinity solutions with pH ranging from 2 to 13. Thus, multi-photofunctionality and fluorescent response to pH have been combined in the 3, which is the first example in the Zn-based hybrid materials.
Magnetic Study of the Novel Polynuclear Compound [Cu(II)(6-Mercaptopurinolate 2-)] n
NASA Astrophysics Data System (ADS)
Acevedo-Chávez, Rodolfo; Costas, María. Eugenia; Escudero, Roberto
1997-08-01
Chemical reactions between Cu(II) and 6-mercaptopurine, both in aqueous and in methanolic media, yield the novel amorphous polynuclear compound [Cu(II)(6-mercaptopurinolate)2-]n, which is also obtained from diverse Cu(II)-heterocyclic ligand competitive reactions. The kinetic and thermodynamic stabilities associated with the formation of this compound are inferred as remarkable. The spectroscopic data let us suggest the involvement of the exocyclic S(6) donor site and the N atoms in the imidazolic moiety of the deprotonated heterocyclic ligand in the coordination to Cu(II) atoms, forming a distorted bidimensional metallic network. The magnetic studies show the existence of very weak antiferromagnetic coupling in the solid sample. This system represents the first example of a 1 : 1 metal : 6-mercaptopurinolate2-system with ad-type open shell metallic center. The magnetic study carried out also represents the first example of magnetic characterization for this type of polynuclear Cu(II) systems with the dianionic 6-mercaptopurine ligand.
Velagapudi, Sai Pradeep; Pushechnikov, Alexei; Labuda, Lucas P; French, Jonathan M; Disney, Matthew D
2012-11-16
There are many potential RNA drug targets in bacterial, viral, and human transcriptomes. However, there are few small molecules that modulate RNA function. This is due, in part, to a lack of fundamental understanding about RNA-ligand interactions including the types of small molecules that bind to RNA structural elements and the RNA structural elements that bind to small molecules. In an effort to better understand RNA-ligand interactions, we diversified the 2-aminobenzimidazole core (2AB) and probed the resulting library for binding to a library of RNA internal loops. We chose the 2AB core for these studies because it is a privileged scaffold for binding RNA based on previous reports. These studies identified that N-methyl pyrrolidine, imidazole, and propylamine diversity elements at the R1 position increase binding to internal loops; variability at the R2 position is well tolerated. The preferred RNA loop space was also determined for five ligands using a statistical approach and identified trends that lead to selective recognition.
Synthesis of poly(N-isopropylacrylamide) particles for metal affinity binding of peptides
Tsai, Hsin-Yi; Lee, Alexander; Peng, Wei; Yates, Matthew Z.
2013-01-01
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) microgel particles with metal affinity ligands were prepared for selective binding of peptides containing the His6-tag (six consecutive histidine residues). The PNIPAM particles were copolymerized with the functional ligand vinylbenzyl iminodiacetic acid (VBIDA) through a two-stage dispersion polymerization using poly(N-vinyl pyrrolidone) (PVP) as a steric stabilizer. The resulting particles were monodisperse in size and colloidally stable over a wide range of temperature and ionic strength due to chemically grafted PVP chains. The particle size was also found to be sensitive to ionic strength and pH of the aqueous environment, likely due to the electrostatic repulsion between ionized VBIDA groups. Divalent nickel ions were chelated to the VBIDA groups, allowing selective metal affinity attachment of a His6-Cys peptide. The peptide was released upon the addition of the competitive ligand imidazole, demonstrating that the peptide attachment to the particles is reversible and selective. PMID:24176889
Choi, Jun-Ho; Kwak, Kyung-Won; Cho, Minhaeng
2013-12-12
The CO stretching mode of both wild-type and double mutant ( T67R / S92D ) MbCO (carbonmonoxymyoglobin) proteins is an ideal infrared (IR) probe for studying the local electrostatic environment inside the myoglobin heme pocket. Recently, to elucidate the conformational switching dynamics between two distinguishable states, extensive IR absorption, IR pump-probe, and two-dimensional (2D) IR spectroscopic studies for various mutant MbCO's have been performed by the Fayer group. They showed that the 2D IR spectroscopy of the double mutant, which has a peroxidase enzyme activity, reveals a rapid chemical exchange between two distinct states, whereas that of the wild-type does not. Despite the fact that a few simulation studies on these systems were already performed and reported, such complicated experimental results have not been fully reproduced nor described in terms of conformational state-to-state transition processes. Here, we first develop a distributed vibrational solvatochromic charge model for describing the CO stretch frequency shift reflecting local electric potential changes. Then, by carrying out molecular dynamic simulations of the two MbCO's and examining their CO frequency trajectories, it becomes possible to identify a proper reaction coordinate consisting of His64 imidazole ring rotation and its distance to the CO ligand. From the 2D surfaces of the resulting potential of mean forces, the spectroscopically distinguished A1 and A3 states of the wild-type as well as two more substates of the double mutant are identified and their vibrational frequencies and distributions are separately examined. Our simulated IR absorption and 2D IR spectra of the two MbCO's are directly compared with the previous experimental results reported by the Fayer group. The chemical exchange rate constants extracted from the two-state kinetic analyses of the simulated 2D IR spectra are in excellent agreement with the experimental values. On the basis of the quantitative agreement between the simulated spectra and experimental ones, we further examine the conformational differences in the heme pockets of the two proteins and show that the double mutation, T67R / S92D , suppresses the A1 population, restricts the imidazole ring rotation, and increases hydrogen-bond strength between the imidazole Nε-H and the oxygen atom of the CO ligand. It is believed that such delicate change of distal His64 imidazole ring dynamics induced by the double mutation may be responsible for its enhanced peroxidase catalytic activity as compared to the wild-type myoglobin.
NASA Astrophysics Data System (ADS)
Radha, V. P.; Jone Kirubavathy, S.; Chitra, S.
2018-08-01
Novel imidazoline based Schiff base ligands L1 and L2 were synthesized from o-phenylenediamine/o-aminophenol with creatinine. The ligands were complexed with Co(II) and Cu(II) by direct reaction with metal salts. The synthesized ligands and the metal complexes were characterized by elemental analysis, FT-IR, 1H NMR, mass, electronic, thermal analyses, conductivity and magnetic susceptibility measurements. The conductivity measurements showed the non-electrolytic nature of the complexes. The thermogravimetric analyses confirmed the presence of lattice and coordinated water molecules in the complexes. The DFT calculations were carried out at B3LYP/6-31G(d,p) level for the determination of the optimized structure of the ligands. The synthesized ligands and the metal complexes were screened for their antimicrobial activity against two gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two fungal strains (Aspergillus niger and Candida albicans). The outcomes revealed that the metal complexes showed pronounced activity than the ligands.
NASA Astrophysics Data System (ADS)
Kumar Naik, K. H.; Ashok, B.; Naik, Nagaraja; Mulla, Jameel Ahmed S.; Prakasha, Avinash
2015-04-01
Transition metal complexes containing tri-dentate NSN donor ligands i.e., 5-((1(aminomethyl)cyclohexyl)methyl)-1,3,4-thiadiazol-2-amine (AMTA) (2) and 5-(2-aminophenyl)-1,3,4-thiadiazol-2-amine (ATA) (4i-ii) have been synthesized. The newly synthesized ligands and their respective complexes were characterized by elemental analysis, molar conductance measurement and various spectral studies [infrared (IR), electronic, and NMR (for ligands only)]. Metal complexes are like [M(AMTA)2], [M(ATA)2] type, where M = Mn(II), Co(II) and Cu(II). The proposed geometries of the complexes are octahedral in nature. The synthesized ligands and their complexes were exhibits effective anti-inflammatory, analgesic and DNA binding activities. All the tested compounds exhibited significant analgesic activity, whereas the compound 4i, 4(ia) and 4(iib) is equipotent with Diclofenac sodium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selamat, Norhidayah; Heng, Lee Yook; Hassan, Nurul Izzaty
2015-09-25
The tetradentate ligand with four donor atoms OONN was synthesized. Bis(phenoxy)bipyridine ligand was prepared by Suzuki coupling reaction between 6,6’-dibromo-2,2’-bipyridyl and 2-hydroxyphenylboronic acid with presence of palladium (II) acetate. Bis(phenoxy)bipyridine ligand was also synthesized by demethylating of 6,6’-bis(2-methoxyphenyl)-2,2’-bipyridyl ligand through solvent free reaction using pyridine hydrocloride. The formation of both phenoxy and methoxy ligands was confirmed by {sup 1}H, 2D cosy and {sup 13}C NMR spectroscopy, ESI-MS spectrometry, FTIR spectroscopy. The purity of the ligand was confirmed by melting point. Binding studies of small molecules with DNA are useful to understand the reaction mechanism and to provide guidance for themore » application and design of new and more efficient drugs targeted to DNA. In this study, the binding interaction between the synthesized ligand with calf thymus-DNA (ct-DNA) has been investigated by UV/Vis DNA titration study. From the UV/Vis DNA study, it shows that bis(phenoxy)bipyridine ligand bind with ct-DNA via outside binding with binding contant K{sub b} = 1.19 × 10{sup 3} ± 0.08 M{sup −1}.« less
NASA Astrophysics Data System (ADS)
Ahmad, Muhammad Saeed; Khalid, Muhammad; Shaheen, Muhammad Ashraf; Tahir, Muhammad Nawaz; Khan, Muhammad Usman; Braga, Ataualpa Albert Carmo; Shad, Hazoor Ahmad
2018-04-01
Heterocyclic compounds have potential applications in many fields of life. We synthesized novel tetra substituted imidazoles by four-component condensation of benzil, substituted aldehydes, substituted anilines and ammonium acetate as a source of ammonia and acetic acid as the solvent. Their chemical structures were resolved through X-ray crystallographic and spectroscopic (Fourier transform IR and UV-vis) techniques. In addition to experimental analysis, density functional theory (DFT) calculations at the B3LYP/6-311 + G(d,p) level were performed on 4-bromo-2-(1-(4-methoxyphenyl)-4,5-diphenyl-1H-imidazole-2-yl)phenol (1), 4-bromo-2-(1-(1-naphthalen-yl)-4,5-diphenyl-1H-imidazole-2-yl)phenol (2), and 2-(1-(2-chlorophenyl)-4,5-diphenyl-1-H-imidazole-2-yl)-6-methoxyphenol (3) to obtain the optimized geometry and spectroscopic (Fourier transform IR and UV-vis) and non-linear optical properties. Frontier molecular orbital analysis was performed at the Hartee-Fock/6-311+g(d,p) and DFT/B3LYP/6-311+G(d,p) levels of theory. Natural bond orbital (NBO) and UV-vis spectral analyses were performed at the M06-2X/6-31+G(d,p) and time-dependent DFT/B3LYP/6-311+G(d,p) levels, respectively. Overall, the DFT findings show good agreement with the experimental data. The hyper conjugative interaction network, which is responsible for the stability of compounds 1, 2 and 3 was explored by the NBO approach. The global reactivity parameters were explored with use of the energy of the frontier molecular orbitals. DFT calculations predict the first-order hyperpolarizabilities of compounds 1, 2 and 3 are 294.89 × 10-30, 219.45 × 10-30 and 146.77 × 10-30 esu, respectively. A two-state model was used to describe the non-linear optical properties of the compounds investigated.
Molecular Innovations Toward Theranostics of Aggressive Prostate Cancer
2017-11-01
the positive control. 3. Proposed biodistribution, pharmacokinetics, and potential cytotoxicity evaluation experiments were accomplished. Task 4...Radiochemistry and in vitro assay of the synthesized theranostic agents (Sun/Hsieh) Task 5: In vivo and PET/CT imaging evaluation of the synthesized...were designed, synthesized and evaluated using a well-validated model ligand (integrin αvβ3 ligand). Our work suggests that the chirality of BFC
NASA Astrophysics Data System (ADS)
Wang, Yong-Tao; Lü, Lin-Rui; Tang, Gui-Mei
2018-03-01
Two new benzimidazole salts, namely, [H2IBI]2+ 2X (X = NO3- (1), ClO4- (2) [IBI = 2-((1H-imidazol-1-yl)methyl)-1H-benzimidazole], were grown through reacting IBI and two different inorganic acids by slow evaporation method, respectively. Compounds 1 and 2 have been characterized by single-crystal X-ray diffraction, IR, UV-Vis, and thermogravimetric analyses (TGA). In both compounds, a set of hydrogen bonds (C/Nsbnd H⋯O) can be clearly observed, through which a three-dimensional framework will be generated. The luminescent spectra show the emission peaks in compounds 1 and 2 are found at 375 and 371 nm, respectively. By comparison with the free IBI, the emission maxima of compounds 1 and 2 are obviously red-shifted about 67 and 63 nm, respectively.
Regulation of expression of the ligand for CD40 on T helper lymphocytes.
Castle, B E; Kishimoto, K; Stearns, C; Brown, M L; Kehry, M R
1993-08-15
Activated Th cells deliver contact-dependent signals to resting B lymphocytes that initiate and drive B cell proliferation. Recently, a ligand for the B lymphocyte membrane protein, CD40, has been identified that delivers contact-dependent Th cell signals to B cells. A dimeric soluble form of CD40 was produced and used to further characterize the regulation of expression of the CD40 ligand. Expression of the CD40 ligand was rapidly induced after Th lymphocyte activation, and its stability depended upon whether Th cells were activated with soluble or plastic-bound stimuli. Th cells activated with soluble stimuli rapidly turned over cell-surface CD40 ligand whereas Th cells activated with plastic-bound stimuli exhibited more stable CD40 ligand expression for up to 48 h. Removal of activated Th cells from the plastic-bound stimulus resulted in a rapid turnover of CD40 ligand, suggesting that continuous stimulation could maintain CD40 ligand expression. Ligation by soluble CD40 could also stabilize expression of CD40 ligand on the Th cell surface. Both CD40 ligand and IL-2 were transiently synthesized from 1 to 12 h after Th cell activation and had similar kinetics of synthesis. In Con A-activated Th cells newly synthesized CD40 ligand exhibited an initial high turnover (1.5 h t1/2) and after 5 h of Th cell activation became more stable (10-h t1/2). In Th cells activated with plastic-bound anti-CD3, CD40 ligand exhibited a similar biphasic turnover except that the rapid turnover phase began significantly later. This delay could allow more time for newly synthesized CD40 ligand to assemble or associate with other molecules and thus become stabilized on the cell surface. Newly synthesized CD40 ligand in Con A-activated Th cells appeared to not be efficient in delivering Th cell-dependent contact signals to resting B cells, implying the need for assembly or accessory proteins. Regulation of CD40 ligand expression was consistent with all the characteristics of Th cell-delivered contact signals to B cells and may contribute to the high degree of specificity in B cell responses.
The Effect of Ligands on FePt–Fe 3O 4 Core–Shell Magnetic Nanoparticles
Kim, Dong-Hyun; Tamada, Yoshinori; Ono, Teruo; ...
2014-03-01
FePt–Fe 3O 4 core–shell nanoparticles functionalized with 3,4-dihydroxyphenylacetic acid (DOPAC) and dimercaptosuccinic acid (DMSA) ligands were synthesized and characterized. We also found that the DOPAC ligand enhances the magnetic properties of the FePt–Fe 3O 4 particles, in comparison with the DMSA ligand, which induces the oxidation of the shell layer that causes a significant reduction of the saturation magnetization. We evaluated the synthesized magnetic nanoparticles for applications in magnetic hyperthermia and magnetic resonance imaging contrast enhancement.
Improved purification of immunoglobulin G from plasma by mixed-mode chromatography.
Chai, Dong-Sheng; Sun, Yan; Wang, Xiao-Ning; Shi, Qing-Hong
2014-12-01
Efficient loading of immunoglobulin G in mixed-mode chromatography is often a serious bottleneck in the chromatographic purification of immunoglobulin G. In this work, a mixed-mode ligand, 4-(1H-imidazol-1-yl) aniline, was coupled to Sepharose Fast Flow to fabricate AN SepFF adsorbents with ligand densities of 15-64 mmol/L, and the chromatographic performances of these adsorbents were thoroughly investigated to identify a feasible approach to improve immunoglobulin G purification. The results indicate that a critical ligand density exists for immunoglobulin G on the AN SepFF adsorbents. Above the critical ligand density, the adsorbents showed superior selectivity to immunoglobulin G at high salt concentrations, and also exhibited much higher dynamic binding capacities. For immunoglobulin G purification, both the yield and binding capacity increased with adsorbent ligand density along with a decrease in purity. It is difficult to improve the binding capacity, purity, and yield of immunoglobulin G simultaneously in AN SepFF chromatography. By using tandem AN SepFF chromatography, a threefold increase in binding capacity as well as high purity and yield of immunoglobulin G were achieved. Therefore, the tandem chromatography demonstrates that AN SepFF adsorbent is a practical and feasible alternative to MEP HyperCel adsorbents for immunoglobulin G purification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Romagnoli, Romeo; Baraldi, Pier Giovanni; Prencipe, Filippo; Oliva, Paola; Baraldi, Stefania; Tabrizi, Mojgan Aghazadeh; Lopez-Cara, Luisa Carlota; Ferla, Salvatore; Brancale, Andrea; Hamel, Ernest; Ronca, Roberto; Bortolozzi, Roberta; Mariotto, Elena; Basso, Giuseppe; Viola, Giampietro
2016-01-01
A novel series of tubulin polymerization inhibitors, based on the 1-(3′,4′,5′-trimethoxyphenyl)-2-aryl-1H-imidazole scaffold and designed as cis-restricted combretastatin A-4 analogues, was synthesized with the goal of evaluating the effects of various patterns of substitution on the phenyl at the 2-position of the imidazole ring on biological activity. A chloro and ethoxy group at the meta- and para-positions, respectively, produced the most active compound in the series (4o), with IC50 values of 0.4-3.8 nM against a panel of seven cancer cell lines. Except in HL-60 cells, 4o had greater antiproliferative than CA-4, indicating that the 3′-chloro-4′-ethoxyphenyl moiety was a good surrogate for the CA-4 B-ring. Experiments carried out in a mouse syngenic model demonstrated high antitumor activity of 4o, which significantly reduced the tumor mass at a dose thirty times lower than that required for CA-4P, which was used as a reference compound. Altogether, our findings suggest that 4o is a promising anticancer drug candidate that warrants further preclinical evaluation. PMID:27216165
Zhou, Lian; Su, Ping; Deng, Yulan; Yang, Yi
2017-02-01
Zeolitic imidazolate frameworks have positive surface charges and high adsorption capabilities. In this work, zeolitic imidazolate frameworks-8 and negatively charged magnetic nanoparticles were self-assembled by electrostatic attraction under sonication. The extraction performance of the synthesized hybrid material was evaluated by using it as a magnetic adsorbent for the enrichment of triazine herbicides in various sample matrices prior to analysis using ultrafast liquid chromatography. The main parameters, that is, extraction time, adsorbent dosage, salt concentration, and desorption conditions, were evaluated. Under the optimum conditions, good linear responses from 2.5 to 200 ng/mL for atrazine (simazine) and 1 to 200 ng/mL for prometryn (ametryn), with correlation coefficients (R 2 ) higher than 0.9992 were obtained. The detection limits of the method (S/N = 3) were 0.18-0.72 ng/mL. The proposed method was successfully used to determine triazine herbicides in six samples, namely, apple, pear, strawberry, pakchoi, lettuce, and water. The amounts of simazine in all the fruit and vegetable samples were 10.8-25.2 ng/mL. The recoveries of all the analytes were 88.0-101.9%, with relative standard deviations of less than 8.8%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CuO nanoparticles catalyzed C-N, C-O, and C-S cross-coupling reactions: scope and mechanism.
Jammi, Suribabu; Sakthivel, Sekarpandi; Rout, Laxmidhar; Mukherjee, Tathagata; Mandal, Santu; Mitra, Raja; Saha, Prasenjit; Punniyamurthy, Tharmalingam
2009-03-06
CuO nanoparticles have been studied for C-N, C-O, and C-S bond formations via cross-coupling reactions of nitrogen, oxygen, and sulfur nucleophiles with aryl halides. Amides, amines, imidazoles, phenols, alcohols and thiols undergo reactions with aryl iodides in the presence of a base such as KOH, Cs(2)CO(3), and K(2)CO(3) at moderate temperature. The procedure is simple, general, ligand-free, and efficient to afford the cross-coupled products in high yield.
Prebiotic synthesis of imidazole-4-acetaldehyde and histidine
NASA Astrophysics Data System (ADS)
Shen, Chun; Yang, Lily; Miller, Stanley L.; Oró, J.
1987-09-01
The prebiotic synthesis of imidazole-4-acetaldehyde and imidazole-4-glycol from erythrose and formamidine has been demonstrated as well as the prebiotic synthesis of imidazole-4-ethanol and imidazole-4-glycol from erythrose, formaldehyde and ammonia. The products were identified by TLC, HPLC, and LC-MS by comparison with authentic samples. The maximum yields of imidazole-4-acetaldehyde, imidazole-4-ethanol, and imidazole-4-glycol obtained in these reactions are 1.6, 5.4, 6.8% respectively, based on the erythrose. Imidazole-4-acetaldehyde would have been converted to histidine on the primitive earth by a Strecker synthesis, and several prebiotic reactions would convert imidazole-4-glycol and imidazole-4-ethanol to imidazole-4-acetaldehyde.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jingtian; Luo, Deliang; Yang, Chengju
2013-07-15
Three copper(II) imidazolate frameworks were synthesized by a hydrothermal (or precipitation) reaction. The catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared spectra (FTIR), thermogravimetry (TG). Meanwhile, the photocatalytic activities of the samples for reduction of CO{sub 2} into methanol and degradation of methylene blue (MB) under visible light irradiation were also investigated. The results show that the as-prepared samples exhibit better photocatalytic activities for the reduction of carbon dioxide into methanol with water and degradation of MB under visible light irradiation. The orthorhombic copper(II) imidazolate frameworks with a bandmore » gap of 2.49 eV and green (G) color has the best photocatalytic activity for reduction of CO{sub 2} into methanol, 1712.7 μmol/g over 5 h, which is about three times as large as that of monoclinic copper(II) imidazolate frameworks with a band gap 2.70 eV and blue (J) color. The degradation kinetics of MB over three photocatalysts fitted well to the apparent first-order rate equation and the apparent rate constants for the degradation of MB over G, J and P (with pink color) are 0.0038, 0.0013 and 0.0016 min{sup −1}, respectively. The synergistic effects of smallest band gap and orthorhombic crystal phase structure are the critical factors for the better photocatalytic activities of G. Moreover, three frameworks can also be stable up to 250 °C. The investigation of Cu-based zeolitic imidazolate frameworks maybe provide a design strategy for a new class of photocatalysts applied in degradation of contaminations, reduction of CO{sub 2}, and even water splitting into hydrogen and oxygen under visible light. - Graphical abstract: Carbon dioxide was reduced into methanol with water over copper(II) imidazolate frameworks under visible light irradiation. - Highlights: • Three copper(II) imidazolate frameworks were first applied in the photo-reduction of CO{sub 2}. • The photocatalytic activities of the frameworks depend on their band gap and phase structures. • The photocatalytic activity of orthorhombic frameworks is 3 times that of monoclinic frameworks. • The degradation kinetics of MB over three photocatalysts followed the first-order rate equation. • The largest yield for reduction of CO{sub 2} into methanol on green framworks was 1712.7 μmol/g over 5 h.« less
NASA Astrophysics Data System (ADS)
Safaei, Elham; Bahrami, Hadiseh; Pevec, Andrej; Kozlevčar, Bojan; Jagličić, Zvonko
2017-04-01
Mononuclear copper(II) complex of tetra-dentate o-aminophenol-based ligand (H2LBAPP) has been synthesized and characterized. The three dentate precursor (HLBAP) of the final ligand was synthesized first, while the title four-dentate copper bound ligand was synthesized in situ, isolated only in the final copper species [CuLBAPP]. This copper coordination complex reveals a distorted square-planar geometry around the copper(II) centre by one oxygen and three nitrogen atoms from the coordinating ligand. The ligand is thus twice deprotonated via hydroxy and amine groups. The complex is red, non-typical for copper(II), but the effective magnetic moment of 1.86 B M. and a single isotropic symmetry EPR signal with g 2.059 confirm a S = 1/2 diluted spin system, without copper-copper magnetic coupling. Electrochemical oxidation of this complex yields the corresponding Cu(II)-phenyl radical species. Finally, the title complex CuLBAPP has shown good and selective catalytic activity towards alcohol to aldehyde oxidation, at aerobic room temperature conditions, for a set of different alcohols.
Sulfate Separation by Selective Crystallization with a Bis-iminoguanidinium Ligand.
Seipp, Charles A; Williams, Neil J; Custelcean, Radu
2016-09-08
A simple and effective method for selective sulfate separation from aqueous solutions by crystallization with a bis-guanidinium ligand, 1,4-benzene-bis(iminoguanidinium) (BBIG), is demonstrated. The ligand is synthesized as the chloride salt (BBIG-Cl) by in situ imine condensation of terephthalaldehyde with aminoguanidinium chloride in water, followed by crystallization as the sulfate salt (BBIG-SO4). Alternatively, BBIG-Cl is synthesized ex situ in larger scale from ethanol. The sulfate separation ability of the BBIG ligand is demonstrated by selective and quantitative crystallization of sulfate from seawater. The ligand can be recycled by neutralization of BBIG-SO4 with aqueous NaOH and crystallization of the neutral bis-iminoguanidine, which can be converted back into BBIG-Cl with aqueous HCl and reused in another separation cycle. Finally, (35)S-labeled sulfate and β liquid scintillation counting are employed for monitoring the sulfate concentration in solution. Overall, this protocol will instruct the user in the necessary skills to synthesize a ligand, employ it in the selective crystallization of sulfate from aqueous solutions, and quantify the separation efficiency.
Sulfate Separation by Selective Crystallization with a Bis-iminoguanidinium Ligand
Seipp, Charles A.; Williams, Neil J.; Custelcean, Radu
2016-01-01
One simple and effective method for selective sulfate separation from aqueous solutions by crystallization with a bis-guanidinium ligand, 1,4-benzene-bis(iminoguanidinium) (BBIG), is demonstrated. The ligand is synthesized as the chloride salt (BBIG-Cl) by in situ imine condensation of terephthalaldehyde with aminoguanidinium chloride in water, followed by crystallization as the sulfate salt (BBIG-SO4). Alternatively, BBIG-Cl is synthesized ex situ in larger scale from ethanol. Furthermore, the sulfate separation ability of the BBIG ligand is demonstrated by selective and quantitative crystallization of sulfate from seawater. These ligands can then be recycled by neutralization of BBIG-SO4 with aqueous NaOH and crystallization of the neutralmore » bis-iminoguanidine, which can be converted back into BBIG-Cl with aqueous HCl and reused in another separation cycle. Finally, 35S-labeled sulfate and β liquid scintillation counting are employed for monitoring the sulfate concentration in solution. Overall, this protocol will instruct the user in the necessary skills to synthesize a ligand, employ it in the selective crystallization of sulfate from aqueous solutions, and quantify the separation efficiency.« less
Xu, Shaoan; Onishi, Naoya; Tsurusaki, Akihiro; ...
2015-11-09
Here, we report newly developed iridium catalysts with electron-donating imidazoline moieties as ligands for the hydrogenation of CO 2 to formate in aqueous solution. Interestingly, these new complexes promote CO 2 hydrogenation much more effectively than their imidazole analogues and exhibit a turnover frequency (TOF) of 1290 h –1 for the bisimidazoline complex compared to that of 20 h –1 for the bisimidazole complex at 1 MPa and 50 °C. Additionally, the hydrogenation proceeds smoothly even under atmospheric pressure at room temperature. The TOF of 43 h –1 for the bisimidazoline complex is comparable to that of a dinuclear complexmore » (70 h –1, highest TOF reported) [Nat. Chem. 2012, 4, 383], which incorporates proton-responsive ligands with pendent-OH groups in the second coordination sphere. The catalytic activity of the complex with an N-methylated imidazoline moiety is much the same as that of the corresponding pyridylimidazoline analogue. Our result and the UV/Vis titrations of the imidazoline complexes indicate that the high activity is not attributable to the deprotonation of NH on the imidazoline under the reaction conditions.« less
Nickel Superoxide Dismutase: Structural and Functional Roles of His1 and its H-bonding Network
Ryan, Kelly C.; Guce, Abigail I.; Johnson, Olivia E.; Brunold, Thomas C.; Cabelli, Diane E.; Garman, Scott C.; Maroney, Michael J.
2015-01-01
Crystal structures of nickel-dependent superoxide dismutases (NiSODs) reveal the presence of a H-bonding network formed between the N-H of the apical imidazole ligand from His1 and the Glu17 carboxylate from a neighboring subunit in the hexameric enzyme. This interaction is supported by another intra-subunit H-bond between Glu17 and Arg47. In this study, four mutant NiSOD proteins were produced to experimentally evaluate the roles of this H-bonding network, and compare the results with prior predictions from DFT calculations. H1A-NiSOD, which lacks the apical ligand entirely, was crystallographically characterized and reveals that in the absence of the Glu17-His1 H-bond, the active site is disordered. Subsequent characterization using X-ray absorption spectroscopy (XAS) shows that Ni(II) is bound in the expected N2S2 planar coordination site. Despite these structural perturbations, the H1A-NiSOD variant is an active catalyst with 4% of WT-NiSOD activity. Three other mutations were designed to preserve the apical imidazole ligand, but perturb the H-bonding network: R47A-NiSOD, lacks the intra-molecular H-bonding interaction, E17R/R47A-NiSOD, which retains the intra-molecular H-bond, but lacks the inter-molecular Glu17-His1 H-bond, and E17A/R47A-NiSOD, which lacks both H-bonding interactions. These variants were characterized by a combination of techniques including XAS characterization of the nickel site structure, kinetic studies employing pulse-radiolytic production of superoxide, and EPR and chemical probes of the redox activity. The results indicate that in addition to the roles in redox tuning suggested by the computational models, the Glu17-His1 H-bond plays an important structural role in the formation of the Ni-hook motif that is a critical feature of the active site. PMID:25580509
Giachini, Lisa; Francia, Francesco; Cordone, Lorenzo; Boscherini, Federico; Venturoli, Giovanni
2007-02-15
We report on the structure and dynamics of the Fe ligand cluster of reduced horse heart cytochrome c in solution, in a dried polyvinyl alcohol (PVA) film, and in two trehalose matrices characterized by different contents of residual water. The effect of the solvent/matrix environment was studied at room temperature using Fe K-edge x-ray absorption fine structure (XAFS) spectroscopy. XAFS data were analyzed by combining ab initio simulations and multi-parameter fitting in an attempt to disentangle structural from disorder parameters. Essentially the same structural and disorder parameters account adequately for the XAFS spectra measured in solution, both in the absence and in the presence of glycerol, and in the PVA film, showing that this polymer interacts weakly with the embedded protein. Instead, incorporation in trehalose leads to severe structural changes, more prominent in the more dried matrix, consisting of 1), an increase up to 0.2 A of the distance between Fe and the imidazole N atom of the coordinating histidine residue and 2), an elongation up to 0.16 A of the distance between Fe and the fourth-shell C atoms of the heme pyrrolic units. These structural distortions are accompanied by a substantial decrease of the relative mean-square displacements of the first ligands. In the extensively dried trehalose matrix, extremely low values of the Debye Waller factors are obtained for the pyrrolic and for the imidazole N atoms. This finding is interpreted as reflecting a drastic hindering in the relative motions of the Fe ligand cluster atoms and an impressive decrease in the static disorder of the local Fe structure. It appears, therefore, that the dried trehalose matrix dramatically perturbs the energy landscape of cytochrome c, giving rise, at the level of local structure, to well-resolved structural distortions and restricting the ensemble of accessible conformational substates.
Nickel superoxide dismutase: structural and functional roles of His1 and its H-bonding network
Maroney, Michael J.; Cabelli, Diane E.; Ryan, Kelly C.; ...
2015-01-21
Crystal structures of nickel-dependent superoxide dismutases (NiSODs) reveal the presence of a H-bonding network formed between the NH group of the apical imidazole ligand from His1 and the Glu17 carboxylate from a neighboring subunit in the hexameric enzyme. This interaction is supported by another intrasubunit H-bond between Glu17 and Arg47. In this study, four mutant NiSOD proteins were produced to experimentally evaluate the roles of this H-bonding network and compare the results with prior predictions from density functional theory calculations. The X-ray crystal structure of H1A-NiSOD, which lacks the apical ligand entirely, reveals that in the absence of the Glu17-His1more » H-bond, the active site is disordered. Characterization of this variant using X-ray absorption spectroscopy (XAS) shows that Ni(II) is bound in the expected N₂S₂ planar coordination site. Despite these structural perturbations, the H1A-NiSOD variant retains 4% of wild-type (WT) NiSOD activity. Three other mutations were designed to preserve the apical imidazole ligand but perturb the H-bonding network: R47A-NiSOD, which lacks the intramolecular H-bonding interaction; E17R/R47A-NiSOD, which retains the intramolecular H-bond but lacks the intermolecular Glu17-His1 H-bond; and E17A/R47ANiSOD, which lacks both H-bonding interactions. These variants were characterized by a combination of techniques, including XAS to probe the nickel site structure, kinetic studies employing pulse-radiolytic production of superoxide, and electron paramagnetic resonance to assess the Ni redox activity. The results indicate that in addition to the roles in redox tuning suggested on the basis of previous computational studies, the Glu17-His1 H-bond plays an important structural role in the proper folding of the “Ni-hook” motif that is a critical feature of the active site.« less
NASA Astrophysics Data System (ADS)
Shankarwar, Sunil G.; Nagolkar, Bhagwat B.; Shelke, Vinod A.; Chondhekar, Trimbak K.
2015-06-01
A series of metal complexes of Mn(II), Co(II), Ni(II), Cu(II), have been synthesized with newly synthesized biologically active macrocyclic ligand. The ligand was synthesized by condensation of β-diketone 1-(4-chlorophenyl)-3-(2-hydroxyphenyl)propane-1,3-dione and o-phenylene diamine. All the complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV-Vis spectroscopy and mass spectroscopy. From the analytical data, stoichiometry of the complexes was found to be 1:2 (metal:ligand). Thermal behavior (TG/DTA) and kinetic parameters suggest more ordered activated state in complex formation. All the complexes are of high spin type and six coordinated. On the basis of IR, electronic spectral studies and magnetic behavior, an octahedral geometry has been assigned to these complexes. The antibacterial and antifungal activities of the ligand and its metal complexes, has been screened in vitro against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma respectively.
NASA Astrophysics Data System (ADS)
Mallikarjuna, N. M.; Keshavayya, J.; Maliyappa, M. R.; Shoukat Ali, R. A.; Venkatesh, Talavara
2018-08-01
A novel bioactive Cu (II), Co (II) and Ni (II) complexes of the azo dye ligand (L) derived from sulfamethoxazole were synthesized. The structures of the newly synthesized compounds were characterized by elemental analysis, molar conductance, magnetic susceptibility, FTIR, UV-visible, 1H NMR, mass, thermal and powder XRD spectral techniques. Molar conductivity measurements in DMSO solution confirmed the non-electrolytic nature of the complexes. All the synthesized metal complexes were found to be monomeric and showed square planar geometry except the Co (II) complex which has six coordinate, octahedral environment. The metal complexes have exhibited potential growth inhibitory effect against tested bacterial strains as compared to the free ligand. The ligand and complexes have also shown significant antioxidant and Calf Thymus DNA cleavage activities. Further, the in silico molecular docking studies were performed to predict the possible binding sites of the ligand (L) and its metal complexes with target receptor Glu-6P.
2013-01-01
A total of four biferrocene-based Walphos-type ligands have been synthesized, structurally characterized, and tested in the rhodium-, ruthenium- and iridium-catalyzed hydrogenation of alkenes and ketones. Negishi coupling conditions allowed the biferrocene backbone of these diphosphine ligands to be built up diastereoselectively from the two nonidentical and nonracemic ferrocene fragments (R)-1-(N,N-dimethylamino)ethylferrocene and (SFc)-2-bromoiodoferrocene. The molecular structures of (SFc)-2-bromoiodoferrocene, the coupling product, two ligands, and the two complexes ([PdCl2(L)] and [RuCl(p-cymene)(L)]PF6) were determined by X-ray diffraction. The structural features of complexes and the catalysis results obtained with the newly synthesized biferrocene-based ligands were compared with those of the corresponding Walphos ligands. PMID:23457421
Ren, Aiming; Rajashankar, Kanagalaghatta R.; Patel, Dinshaw J.
2015-06-25
ZTP, the pyrophosphorylated analog of ZMP (5- amino-4-imidazole carboxamide ribose-5'-monophosphate), was identified as an alarmone that senses 10-formyl-tetrahydroflate deficiency in bacteria. Recently, a pfl riboswitch was identified that selectively binds ZMP and regulates genes associated with purine biosynthesis and one-carbon metabolism. Here we report on the structure of the ZMP-bound Thermosinus carboxydivorans pfl riboswitch sensing domain, thereby defining the pseudoknot-based tertiary RNA fold, the binding-pocket architecture, and principles underlying ligand recognition specificity. Molecular recognition involves shape complementarity, with the ZMP 5-amino and carboxamide groups paired with the Watson-Crick edge of an invariant uracil, and the imidazole ring sandwiched between guanines,more » while the sugar hydroxyls form intermolecular hydrogen bond contacts. The burial of the ZMP base and ribose moieties, together with unanticipated coordination of the carboxamide by Mg 2+, contrasts with exposure of the 5'-phosphate to solvent. Lastly, our studies highlight the principles underlying RNA-based recognition of ZMP, a master regulator of one-carbon metabolism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Aiming; Rajashankar, Kanagalaghatta R.; Patel, Dinshaw J.
ZTP, the pyrophosphorylated analog of ZMP (5- amino-4-imidazole carboxamide ribose-5'-monophosphate), was identified as an alarmone that senses 10-formyl-tetrahydroflate deficiency in bacteria. Recently, a pfl riboswitch was identified that selectively binds ZMP and regulates genes associated with purine biosynthesis and one-carbon metabolism. Here we report on the structure of the ZMP-bound Thermosinus carboxydivorans pfl riboswitch sensing domain, thereby defining the pseudoknot-based tertiary RNA fold, the binding-pocket architecture, and principles underlying ligand recognition specificity. Molecular recognition involves shape complementarity, with the ZMP 5-amino and carboxamide groups paired with the Watson-Crick edge of an invariant uracil, and the imidazole ring sandwiched between guanines,more » while the sugar hydroxyls form intermolecular hydrogen bond contacts. The burial of the ZMP base and ribose moieties, together with unanticipated coordination of the carboxamide by Mg 2+, contrasts with exposure of the 5'-phosphate to solvent. Lastly, our studies highlight the principles underlying RNA-based recognition of ZMP, a master regulator of one-carbon metabolism.« less
Synthesis of Bisimidazole Derivatives for Selective Sensing of Fluoride Ion.
Zhang, Liang; Liu, Fang
2017-09-11
Rapid and efficient analysis of fluoride ion is crucial to providing key information for fluoride ion hazard assessment and pollution management. In this study, we synthesized one symmetrical structure called 1,4-bis(4,5-diphenyl-1 H -imidazol-2-yl)benzene ( 1a ) and two asymmetrical structures, namely 2-(4-(4,5-diphenyl-1 H -imidazol-2-yl)phenyl)-1 H -phenanthro(9,10- d )imidazole ( 1b ) and 2-(4-(4,5-diphenyl-1 H -imidazol-2-yl)phenyl)-1 H -imidazo(4,5- f )(1,10)phenanthroline ( 1c ), which served as an efficient anion sensor for fluoride ion over a wide range of other anions (Cl - , Br - , I - , NO₃ - , ClO₄ - , HSO₄ - , BF₄ - , and PF₆ - ) owing to imidazole group in the main backbone. The absorption intensity of compound 1a at λ max 358 nm slightly decreased; however, a new band at λ max 414 nm appeared upon the addition of fluoride ion, while no evident change occurred upon the addition of eight other anions. The photoluminescence intensity of compound 1a at λ max 426 nm was nearly quenched and fluorescence emission spectra were broadened when fluoride ion was added into dimethyl sulfoxide (DMSO) solution of compound 1a . Compared with the optical behaviors of the DMSO solution of compound 1a in the presence of Bu₄N⁺F - , compounds 1b and 1c exhibited considerable sensitivity to fluoride ion due to the increase in coplanarity. Furthermore, compared with the fluorescence emission behaviors of the DMSO solutions of compounds 1a and 1b in the presence of Bu₄N⁺F - , compound 1c exhibited the most significant sensitivity to fluoride ion due to the charge transfer enhancement. Consequently, the detection limits of compounds 1a - 1 c increased from 5.47 × 10 -6 M to 4.21 × 10 -6 M to 9.12 × 10 -7 M. Furthermore, the largest red shift (75 nm) of the DMSO solution compound 1c in the presence of fluoride ion can be observed. Our results suggest that the increase in coplanarity and the introduction of electron-withdrawing groups to the imidazole backbone can improve the performance in detecting fluoride ion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satterlee, J.D.; Erman, J.E.; Mauro, J.M.
Proton NMR spectra of cytochrome c peroxidase (CcP) isolated from yeast (wild type) and two Escherichia coli expressed proteins, the parent expressed protein (CcP(MI)) and the site-directed mutant CcP(MI,D235N) (Asp-235 {yields} Asn-235), have been examined. At neutral pH and in the presence of only potassium phosphate buffer and potassium nitrate, wild-type Ccp and CcP(MI) demonstrate nearly identical spectra corresponding to normal (i.e., unaged) high-spin ferric peroxidase. In contrast, the mutant protein displays a spectrum characteristic of a low-spin form, probably a result of hydroxide ligation. Asp-235 is hydrogen-bonded to the proximal heme ligand, His-175. Changing Asp-235 to Asn results inmore » alteration of the pK for formation of the basic form of CcP. Thus, changes in proximal side structure mediate the chemistry of the distal ligand binding site. All three proteins bind F{sup {minus}}, N{sub 3}{sup {minus}}, and CN{sup {minus}} ions, although the affinity of the mutant protein (D235N) for fluoride ion appears to be much higher than that of the other two proteins. Analysis of proton NMR spectra of the cyanide ligated forms leads to the conclusion that the mutant protein (D235N) possesses a more neutral proximal histidine imidazole ring than does either wild-type CcP or CcP(MI). It confirms that an important feature of the cytochrome c peroxidase structure is at least partial, and probably full, imidazolate character for the proximal histidine (His-175).« less
The preparation and use of metal salen complexes derived from cyclobutane diamine
NASA Astrophysics Data System (ADS)
Patil, Smita
The helix is an important chiral motif in nature, there is increasing development in field of helical transition metal complexes and related supramolecular structures. Hence, the goals of this work are to apply the principles of helicity in order to produce metal complexes with predictable molecular shapes and to study their properties as asymmetric catalysts. Computational studies suggest that the (1R,2 R)-cyclobutyldiamine unit can produce highly twisted salen complexes with a large energy barrier between the M and P helical forms. To test this prediction, the tartrate salt of (1R,2R)-cyclobutyldiamine was synthesized and condensed with a series of saliclaldehydes to produce novel salen ligands. The salicylaldehydes chosen have extended phenanthryl or benz[a]anthryl sidearms to encourage formation of helical coordination complexes. These ligands were metallated with zinc, iron and manganese salts to produce salen metal complexes which were characterized by NMR analysis, high-resolution mass spectrometry, and IR spectroscopy. A second ligand type, neutral bis(pyridine-imine) has also been synthesized from (1R,2R)-cyclobutyldiamine and quinolylaldehydes. The synthesis of bis(pyridine-imine) ligands was conducted using greener method, solvent assisted grinding. These ligands, in-situ with nickel metal salts, showed good catalytic activity for asymmetric Diels-Alder reactions. The third ligand type studied was chiral acid-functionalized Schiff-base ligands. These were synthesized by the condensation of 3-formyl-5-methyl salicylic acid and (1R,2R)-cyclobutyldiamine. With this type of ligand, there is possibility of producing both mono and dinuclear metal complexes. In our studies, we were only able to synthesize mononuclear complexs. These were tested as catalysts for asymmetric direct Mannich-type reaction, but were found to be ineffective.
Gold(I) and Gold(III) Complexes of Cyclic (Alkyl)(amino)carbenes
2016-01-01
The chemistry of Au(I) complexes with two types of cyclic (alkyl)(amino)carbene (CAAC) ligands has been explored, using the sterically less demanding dimethyl derivative Me2CAAC and the 2-adamantyl ligand AdCAAC. The conversion of (AdCAAC)AuCl into (AdCAAC)AuOH by treatment with KOH is significantly accelerated by the addition of tBuOH. (AdCAAC)AuOH is a convenient starting material for the high-yield syntheses of (AdCAAC)AuX complexes by acid/base and C–H activation reactions (X = OAryl, CF3CO2, N(Tf)2, C2Ph, C6F5, C6HF4, C6H2F3, CH2C(O)C6H4OMe, CH(Ph)C(O)Ph, CH2SO2Ph), while the cationic complexes [(AdCAAC)AuL]+ (L = CO, CNtBu) and (AdCAAC)AuCN were obtained by chloride substitution from (AdCAAC)AuCl. The reactivity toward variously substituted fluoroarenes suggests that (AdCAAC)AuOH is able to react with C–H bonds with pKa values lower than about 31.5. This, together with the spectroscopic data, confirm the somewhat stronger electron-donor properties of CAAC ligands in comparison to imidazolylidene-type N-heterocyclic carbenes (NHCs). In spite of this, the oxidation of Me2CAAC and AdCAAC gold compounds is much less facile. Oxidations proceed with C–Au cleavage by halogens unless light is strictly excluded. The oxidation of (AdCAAC)AuCl with PhICl2 in the dark gives near-quantitative yields of (AdCAAC)AuCl3, while [Au(Me2CAAC)2]Cl leads to trans-[AuCl2(Me2CAAC)2]Cl. In contrast to the chemistry of imidazolylidene-type gold NHC complexes, oxidation products containing Au–Br or Au–I bonds could not be obtained; whereas the reaction with CsBr3 cleaves the Au–C bond to give mixtures of [AdCAAC-Br]+[AuBr2]− and [(AdCAAC-Br)]+ [AuBr4]−, the oxidation of (AdCAAC)AuI with I2 leads to the adduct (AdCAAC)AuI·I2. Irrespective of the steric demands of the CAAC ligands, their gold complexes proved more resistant to oxidation and more prone to halogen cleavage of the Au–C bonds than gold(I) complexes of imidazole-based NHC ligands. PMID:26146436
Shankar, Bhookya; Jalapathi, Pochampally; Saikrishna, Balabadra; Perugu, Shaym; Manga, Vijjulatha
2018-01-09
There is a dire need for the discovery and development of new antimicrobial agents after several experiments for a better resistance of microorganisms towards antimicrobial agents become a serious health problem for a few years in the past. As benzimidazole possess various types of biological activities, it has been synthesized, in the present study, a new series of (5-(3-(1H-benzo[d]imidazol-2-yl)-4-hydroxybenzyl)benzofuran-2-yl)(phenyl)methanone analogs by using the condensation and screened for its in vitro antimicrobial activity and cytotoxicity. The synthesized (5-(3-(1H-benzo[d]imidazol-2-yl)-4-hydroxybenzyl) benzofuran-2-yl)(phenyl)methanone analogs were confirmed by IR, 1 H and 13 C-NMR, MS spectra and HRMS spectral data. The synthesized compounds were evaluated for their in vitro antimicrobial potential against Gram-positive (Bacillus subtilis, Bacillus megaterium, Staph aureus and Streptococcus pyogenes), Gram-negative (Escherichia coli, Proteus vulgaris, Proteus mirabilis and Enterobacter aerogenes) bacterial and fungal (Aspergillus niger, Candida albicans, Fusarium oxysporum, Fusarium solani) strains by disc diffusion method and the minimum inhibitory concentration (MIC) in which it has been recorded in microgram per milliliter in comparison to the reference drugs, ciprofloxacin (antibacterial) and nystatin (antifungal). Further, the cytotoxicity (IC 50 value) has also been assessed on human cervical (HeLa), Supt1 cancer cell lines by using MTT assay. The following screened compounds (4d), (4f), (4g), (4k), (4l), (4o) and (4u) were found to be the best active against all the tested bacterial and fungal strains among all the demonstrated compounds of biological study. The MIC determination was also carried out against bacteria and fungi, the compounds (4f) and (4u) are found to be exhibited excellent potent against bacteria and fungi respectively. The compounds (4f) and (4u) were shown non-toxic in nature after screened for cytotoxicity against the cancer cell lines of human cervical (HeLa) and Supt1. Additionally, structure and antibacterial activity relationship were also further supported by in silico molecular docking studies of the active compounds against DNA topoisomerase.
Velegapudi, Sai Pradeep; Pushechnikov, Alexei; Labuda, Lucas P.; French, Jonathan M.; Disney, Matthew D.
2012-01-01
There are many potential RNA drug targets in bacterial, viral, and the human transcriptomes. However, there are few small molecules that modulate RNA function. This is due, in part, to a lack of fundamental understanding about RNA-ligand interactions including the types of small molecules that bind to RNA structural elements and the RNA structural elements that bind to small molecules. In an effort to better understand RNA-ligand interactions, we diversified the 2-aminobenzimidazole core (2AB) and probed the resulting library for binding to a library of RNA internal loops. We chose the 2AB core for these studies because it is a privileged scaffold for binding RNA based on previous reports. These studies identified that N-methyl pyrrolidine, imidazole, and propylamine diversity elements at the R1 position increase binding to internal loops; variability at the R2 position is well tolerated. The preferred RNA loop space was also determined for five ligands using a statistical approach and identified trends that lead to selective recognition. PMID:22958065
Synthesis and crystal structure of the iridium(I) carbene complex with a pair of hydrogen wing tips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, H.-Y.; Chen, Z.-M.; Wang, Y.
The iridium(I) cyclooctadiene complex with two (3-tert-butylimidazol-2-ylidene) ligands [(H-Im{sup t}Bu){sub 2}Ir(COD)]{sup +}PF{sub 6}{sup −} (C{sub 22}H{sub 32}PF{sub 6}IrN{sub 4}) has been prepared, and its crystal structure is determined by X-ray diffraction. Complex exhibits slightly distorted square planar configurations around the metal atom, which is coordinated by two H-Im{sup t}Bu ligands and one cyclooctadiene group. The new iridium carbene complex has a pair of hydrogen wing tips. The Ir−C{sub carbene} bond lengths are 2.066(5) and 2.052(5) Å, and the bond angle C−Ir−C between these bonds is 95.54(19)°. The dihedral angle between two imidazol-2-ylidene rings is 86.42°.
Holbrook, Robert J.; Weinberg, David J.; Peterson, Mark D.; ...
2015-02-11
In this paper, we describe a mechanism of light activation that initiates protein inhibitory action of a biologically inert Co(III) Schiff base (Co(III)-sb) complex. Photoinduced electron transfer (PET) occurs from a Ru(II) bipyridal complex to a covalently attached Co(III) complex and is gated by conformational changes that occur in tens of nanoseconds. Reduction of the Co(III)-sb by PET initiates displacement of the inert axial imidazole ligands, promoting coordination to active site histidines of α-thrombin. Upon exposure to 455 nm light, the rate of ligand exchange with 4-methylimidazole, a histidine mimic, increases by approximately 5-fold, as observed by NMR spectroscopy. Similarly,more » the rate of α-thrombin inhibition increases over 5-fold upon irradiation. Finally, these results convey a strategy for light activation of inorganic therapeutic agents through PET utilizing redox-active metal centers.« less
Carreño-Fuentes, Liliana; Plascencia-Villa, Germán; Palomares, Laura A; Moya, Sergio E; Ramírez, Octavio T
2014-12-16
Biomolecules are advantageous scaffolds for the synthesis and ordering of metallic nanoparticles. Rotavirus VP6 nanotubes possess intrinsic affinity to metal ions, a property that has been exploited to synthesize gold nanoparticles over them. The resulting nanobiomaterials have unique properties useful for novel applications. However, the formed nanobiomaterials lack of colloidal stability and flocculate, limiting their functionality. Here we demonstrate that it is possible to synthesize thiol-protected gold nanoparticles over VP6 nanotubes, which resulted in soluble nanobiomaterials. With this strategy, it was possible to modulate the size, colloidal stability, and surface plasmon resonance of the synthesized nanoparticles by controlling the content of the thiolated ligands. Two types of water-soluble ligands were tested, a small linear ligand, sodium 3-mercapto-1-propanesulfonate (MPS), and a bulky ligand, 5-mercaptopentyl β-D-glucopyranoside (GlcC5SH). The synthesized nanobiomaterials had a higher stability in suspension, as determined by Z-potential measurements. To the extent of our knowledge, this is the first time that a rational strategy is developed to modulate the particular properties of metal nanoparticles in situ synthesized over a protein bioscaffold through thiol coating, achieving a high spatial and structural organization of nanoparticles in a single integrative hybrid structure.
Macchi, Fernanda Souza; Pissinate, Kenia; Villela, Anne Drumond; Abbadi, Bruno Lopes; Rodrigues-Junior, Valnês; Nabinger, Débora Dreher; Altenhofen, Stefani; Sperotto, Nathalia; da Silva Dadda, Adílio; Subtil, Fernanda Teixeira; de Freitas, Talita Freitas; Erhart Rauber, Ana Paula; Borsoi, Ana Flávia; Bonan, Carla Denise; Bizarro, Cristiano Valim; Basso, Luiz Augusto; Santos, Diógenes Santiago; Machado, Pablo
2018-06-02
Using a classical hybridization approach, a series of 1H-benzo[d]imidazoles and 3,4-dihydroquinazolin-4-ones were synthesized (39 examples) and evaluated as inhibitors of Mycobacterium tuberculosis growth. Chemical modification studies yielded potent antitubercular agents with minimum inhibitory concentration (MIC) values as low as 0.24 μM against M. tuberculosis H37Rv strain. Further, the synthesized compounds were active against four drug-resistant strains containing different levels of resistance for the first line drugs. These molecules were devoid of apparent toxicity to HepG2, HaCat, and Vero cells with IC 50s > 30 μM. Viability in mammalian cell cultures was evaluated using MTT and neutral red assays. In addition, some 3,4-dihydroquinazolin-4-ones showed low risk of cardiac toxicity, no signals of neurotoxicity or morphological alteration in zebrafish (Danio rerio) toxicity models. 3,4-Dihydroquinazolin-4-ones 9q and 9w were considered the lead compounds of these series of molecules with MIC values of 0.24 μM and 0.94 μM against M. tuberculosis H37Rv, respectively. Taken together, these data indicate that this class of compounds may furnish candidates for future development of novel anti-TB drugs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Wang, Rubing; Chen, Chengsheng; Zhang, Xiaojie; Zhang, Changde; Zhong, Qiu; Chen, Guanglin; Zhang, Qiang; Zheng, Shilong; Wang, Guangdi; Chen, Qiao-Hong
2015-06-11
Forty-three 1,5-diheteroaryl-1,4-pentadien-3-ones were designed as potential curcumin mimics, structurally featuring a central five-carbon dienone linker and two identical nitrogen-containing aromatic rings. They were synthesized using a Horner-Wadsworth-Emmons reaction as the critical step and evaluated for their cytotoxicity and antiproliferative activities toward both androgen-insensitive and androgen-sensitive prostate cancer cell lines and an aggressive cervical cancer cell line. Most of the synthesized compounds showed distinctly better in vitro potency than curcumin in the four cancer cell lines. The structure-activity data acquired from the study validated (1E,4E)-1,5-dihereroaryl-1,4-pentadien-3-ones as an excellent scaffold for in-depth development for clinical treatment of prostate and cervical cancers. 1-Alkyl-1H-imidazol-2-yl, ortho pyridyl, 1-alkyl-1H-benzo[d]imidazole-2-yl, 4-bromo-1-methyl-1H-pyrazol-3-yl, thiazol-2-yl, and 2-methyl-4-(trifluoromethyl)thiazol-5-yl were identified as optimal heteroaromatic rings for the promising in vitro potency. (1E,4E)-1,5-Bis(2-methyl-4-(trifluoromethyl)thiazol-5-yl)penta-1,4-dien-3-one, featuring thiazole rings and trifluoromethyl groups, was established as the optimal lead compound because of its good in vitro potency and attractive in vivo pharmacokinetic profiles.
Liang, Xiaotong; Liu, Shengquan; Zhu, Rong; Xiao, Lixia; Yao, Shouzhuo
2016-07-01
In this work, novel cellulose/zeolitic imidazolate frameworks-8 composite microspheres have been successfully fabricated and utilized as sorbent for environmental polycyclic aromatic hydrocarbons efficient extraction and sensitive analysis. The composite microspheres were synthesized through the in situ hydrothermal growth of zeolitic imidazolate frameworks-8 on cellulose matrix, and exhibited favorable hierarchical structure with chemical composition as assumed through scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction patterns, and Brunauer-Emmett-Teller surface areas characterization. A robust and highly efficient method was then successfully developed with as-prepared composite microspheres as novel solid-phase extraction sorbent with optimum extraction conditions, such as sorbent amount, sample volume, extraction time, desorption conditions, volume of organic modifier, and ionic strength. The method exhibited high sensitivity with low limit of detection down to 0.1-1.0 ng/L and satisfactory linearity with correlation coefficients ranging from 0.9988 to 0.9999, as well as good recoveries of 66.7-121.2% with relative standard deviations less than 10% for environmental polycyclic aromatic hydrocarbons analysis. Thus, our method was convenient and efficient for polycyclic aromatic hydrocarbons extraction and detection, potential for future environmental water samples analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ghosh, Aloke Kumar; Pait, Moumita; Shatruk, Michael; Bertolasi, Valerio; Ray, Debashis
2014-02-07
The communication reports the synthesis, characterization, and magnetic behavior of a novel μ4-carbonato supported and imidazole capped ligated nickel cage [Ni8(μ-H2bpmp)4(μ4-CO3)4(ImH)8](NO3)4·2H2O (1) through self-assembly of ligand bound ferromagnetic Ni2 building blocks. Structural analysis indicates newer geometrical features for the coordination cage formation and dominant interdimer antiferromagnetic coupling resulting in a diamagnetic ground state.
NASA Astrophysics Data System (ADS)
Wang, Xin-Fang; Zhou, Sheng-Bin; Du, Ceng-Ceng; Wang, Duo-Zhi; Jia, Dianzeng
2017-08-01
Using a new simi-rigid multitopic ligand 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid (H2L), seven new coordination polymers [Zn3(L)2(μ2-OH)2]n (1), {[Zn2(HL)2(H2O)2]·SiF6}n (2), [Zn(HL)(SCN)]n (3), {[Zn2(HL)2(SO4)]·(4,4‧-bpy)}n (4) [4,4‧-bpy =4,4‧-bipyridine], {[Zn(HL)2]·2H2O}n (5), {[Cd(HL)2]·2H2O}n (6) and [Cd2(HL)2(H2O)2(SO4)]n (7) have been successfully obtained from H2L ligand under solvothermal conditions and structurally characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, powder X-ray diffraction and IR spectroscopy. In addition, UV-vis diffuse-reflectance spectra demonstrate wide band gaps. Complex 1 features a 3D topological net of {412·63} with the stoichiometry (6-c), contains 1D channels with the accessible solvent volume of 42.1%. 3, 4, 5 and 6 have a 1D chain structure, 5 and 6 further assemble to form 2D sheet and 3D supramolecular frameworks by hydrogen-bonding interactions, respectively. Complexes 2 and 7 possess a 2D layered structure, and the 2D supramolecular network of 2 can be rationalized to be four-connected {44·62} topological sql network with the dinuclear units, while 7 shows a 3-nodal 2D net with a point symbol of {63}. Moreover, the fluorescent emission, fluorescence lifetimes of 1-7 have been investigated and discussed. Interesting enough, complex 1 showed high efficiency for catalyzing the Knoevenagel condensation reaction between 4-substituted aromatic aldehydes and malononitrile as selective heterogeneous catalyst. The CPs combining catalytic and fluorescent properties could further meet the requirement as a multifunctional material. Seven new Zn(II)/Cd(II) coordination polymers with simi-rigid multitopic ligand, [(2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid) (H2L)] have been successfully obtained and structurally characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, powder X-ray diffraction and IR spectroscopy. All the complexes are air stable at room. In addition, the fluorescent emission, fluorescence lifetime and UV-vis diffuse-reflectance spectra of 1-7 and H2L have been investigated and discussed. Furthermore, we studied the Knoevenagel condensation reaction between 4-substituted aromatic aldehydes and malononitrile by activated 1a as selective heterogeneous catalyst.
LDH nanocages synthesized with MOF templates and their high performance as supercapacitors
NASA Astrophysics Data System (ADS)
Jiang, Zhen; Li, Zhengping; Qin, Zhenhua; Sun, Haiyan; Jiao, Xiuling; Chen, Dairong
2013-11-01
Layered double hydroxides (LDHs) are currently attracting intense research interest for their various applications. Three LDH hollow nano-polyhedra are synthesized with zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as the templates. The nanocages well inherit the rhombic dodecahedral shape of the ZIF-67 templates, and the shell is composed of nanosheets assembled with an edge-to-face stacking. This is the first synthesis of the LDH non-spherical structures. And the mechanism of utilizing metal-organic framework (MOF) nanocrystals as templates is explored. Control of the simultaneous reactions, the precipitation of the shells and the template etching, is extremely crucial to the preparation of the perfect nanocages. And the Ni-Co LDH nanocages exhibit superior pseudocapacitance property due to their novel hierarchical and submicroscopic structures.Layered double hydroxides (LDHs) are currently attracting intense research interest for their various applications. Three LDH hollow nano-polyhedra are synthesized with zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as the templates. The nanocages well inherit the rhombic dodecahedral shape of the ZIF-67 templates, and the shell is composed of nanosheets assembled with an edge-to-face stacking. This is the first synthesis of the LDH non-spherical structures. And the mechanism of utilizing metal-organic framework (MOF) nanocrystals as templates is explored. Control of the simultaneous reactions, the precipitation of the shells and the template etching, is extremely crucial to the preparation of the perfect nanocages. And the Ni-Co LDH nanocages exhibit superior pseudocapacitance property due to their novel hierarchical and submicroscopic structures. Electronic supplementary information (ESI) available: Experimental details, XRD, TEM, SEM, and XPS images. See DOI: 10.1039/c3nr03829g
Effect of leaving group on the oligomerization of 5'-AMP on montmorillonite. [Abstract only
NASA Technical Reports Server (NTRS)
Prabahar, K. Joseph; Ferris, James P.
1994-01-01
The oligomerization of imidazole derivative of 5'-AMP (ImpA) in the presence of montmorillonite clay yields oligomers containing up to 10 monomer units. In these reactions, the heterocyclic base, imidazole is the leaving group. In our present study, we synthesized a series of activated nucleotides of 5'AMP using other leaving groups such as pyrazole, 1,2,4-triazole, piperidine, morpholine, 4-aminopyridine, 4-methylaminopyridine, 4-dimethylaminopyridine, 2-aminobenzimidazole etc. to determine the effect of amine leaving group on the products of the oligomerization reaction. Earlier results from our laboratory showed that the presence AppA in the clay reaction of ImpA enhances the oligomerization reaction to yield higher oligomers. We also studied the effect of AppA in the clay mediated oligomerization reaction of the activated nucleotides. Oligomerization of 2-amino-benzimidazole derivative of 5'-AMP gave higher oligomers containing up to nine monomer units in the presence of AppA.
NASA Astrophysics Data System (ADS)
Niu, Qing-Jun; Zheng, Yue-Qing; Zhou, Lin-Xia; Zhu, Hong-Lin
2015-07-01
Two 2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonato and oxalic acid bridged coordination polymers (H2en)[Co3(H2zdn)2(ox)(H2O)2] (1) and Cd2(H2zdn)(ox)0.5(H2O) (2) (2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonic acid=H5zdn; oxalic acid=H2ox) were synthesized under hydrothermal conditions and characterized by the infrared (IR), thermogravimetric analyses (TGA), elemental analyses (EA) and X-ray diffraction (XRD). Compound 1 is bridged by phosphonate anions to 1D chain, and further linked by oxalate anions to 2D layer. Compound 2 is bridged by O-P-O units of H5zdn to the layer, and then pillared by oxalate anions to generate 3D frameworks. Compound 1 shows anti-ferromagnetic behaviors analyzed with the temperature-dependent zero-field ac magnetic susceptibilities, while compound 2 exhibits an influence on the luminescent property.
Chen, Qiao-Hong; Yu, Kevin; Zhang, Xiaojie; Chen, Guanglin; Hoover, Andrew; Leon, Francisco; Wang, Rubing; Subrahmanyam, Nithya; Addo Mekuria, Ermias; Harinantenaina Rakotondraibe, Liva
2015-10-15
Inspired by the synergistic effects of dietary natural products with different scaffolds on the inhibition of cancer cell proliferation, incorporation of central (1E,4E)-1,4-penta-dien-3-one linker (an optimal substitute for the central metabolically unstable diketone linker of curcumin), 1-alkyl-1H-imidazol-2-yl (a promising bioisostere of terminal aryl group in curcumin), and chromone (the common pharmacophore in genistein and quercetin) into one chemical entity resulted in ten new hybrid molecules, 3-((1E,4E)-5-(1-alkyl-1H-imidazol-2-yl)-3-oxopenta-1,4-dien-1-yl)-4H-chromen-4-ones. They were synthesized through a three-step transformation using acid-catalyzed aldol condensation as key step. The WST-1 cell proliferation assay showed that they have greater anti-proliferative potency than curcumin, quercetin, and genistein on both androgen-dependent and androgen-independent human prostate cancer cells. Published by Elsevier Ltd.
Mantu, Dorina; Antoci, Vasilichia; Moldoveanu, Costel; Zbancioc, Gheorghita; Mangalagiu, Ionel I
2016-01-01
The design, synthesis, structure, and in vitro anticancer and antimycobacterial activity of new hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives are described. The strategy adopted for synthesis is straight and efficient, involving a three-step setup procedure: N-acylation, N-alkylation, and quaternization of nitrogen heterocycle. The solubility in microbiological medium and anticancer and antimycobacterial activity of a selection of new synthesized compounds were evaluated. The hybrid derivatives have an excellent solubility in microbiological medium, which make them promising from the pharmacological properties point of view. One of the hybrid compounds, 9 (with a benzimidazole and 8-aminoquinoline skeleton), exhibits a very good and selective antitumor activity against Renal Cancer A498 and Breast Cancer MDA-MB-468. Moreover, the anticancer assay suggests that the hybrid Imz (Bimz)/2-AP (8-AQ) compounds present a specific affinity to Renal Cancer A498. Concerning the antimycobacterial activity, only the hybrid compound, 9, has a significant activity. SAR correlations have been performed.
NASA Astrophysics Data System (ADS)
Eseola, Abiodun O.; Obi-Egbedi, Nelson O.
2010-02-01
New 2-(1H-imidazol-2-yl)phenols ( L1Et- L8tBuPt) bearing a phenolic proton in the vicinity of the imidazole base were prepared and characterized. Experimental studies of the dependence of their protonation/deprotonation equilibrium on substituent identities and intramolecular hydrogen bonding tendencies were carried out using electronic absorption spectroscopy at varying pH values. In order to make comparison, 2-(anthracen-10-yl)-4,5-diphenyl-1H-imidazole ( L9Anthr) bearing no phenolic proton and 4,5-diphenyl-2-(4,5-diphenyl-1H-imidazol-2-yl)-1H-imidazole ( L10BisIm) bearing two symmetrical imidazole base fragments were also prepared and experimentally investigated. DFT calculations were carried out to study frontier orbitals of the investigated molecules. While electron-releasing substituents produced increase in protonation-deprotonation p Kas for the hydroxyl group, values for the imidazole base were mainly affected by polarization of the imidazole ring aromaticity across the 2-imidazole carbon and the 4,5-imidazole carbons axis of the imidazole ring. It was concluded that electron-releasing substituents on the phenol ring and/or electron-withdrawing substituents on 4,5-imidazole carbons negatively affects donor strengths/coordination chemistries of 2-(1H-imidazol-2-yl)phenols, and vice versa. Change of substituents on the phenol ring significantly altered the donor strength of the imidazole base. The understanding of p Ka variation on account of electronic effects of substituents in this work should aid the understanding of biochemical properties and substituent environments of imidazole-containing biomacromolecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qiyuan; Cen, Jiajie; Zhao, Yue
Ultra-small gold nanoclusters were synthesized via a ligand exchange method and deposited onto different TiO2 supports to study their properties. STM imaging revealed that the as-synthesized gold nanoclusters had 2-D morphology consisting of monolayers of gold atoms. In conclusion, subsequent XPS, XAFS, and CO oxidation TPD results indicated that heat treatments of gold clusters at different temperatures significantly altered their electronic and catalytic properties due to ligand deprotection and cluster agglomeration.
Wu, Qiyuan; Cen, Jiajie; Zhao, Yue; ...
2017-12-08
Ultra-small gold nanoclusters were synthesized via a ligand exchange method and deposited onto different TiO2 supports to study their properties. STM imaging revealed that the as-synthesized gold nanoclusters had 2-D morphology consisting of monolayers of gold atoms. In conclusion, subsequent XPS, XAFS, and CO oxidation TPD results indicated that heat treatments of gold clusters at different temperatures significantly altered their electronic and catalytic properties due to ligand deprotection and cluster agglomeration.
Pantatosaki, Evangelia; Jobic, Hervé; Kolokolov, Daniil I; Karmakar, Shilpi; Biniwale, Rajesh; Papadopoulos, George K
2013-01-21
The problem of simulating processes involving equilibria and dynamics of guest sorbates within zeolitic imidazolate frameworks (ZIF) by means of molecular dynamics (MD) computer experiments is of growing importance because of the promising role of ZIFs as molecular "traps" for clean energy applications. A key issue for validating such an atomistic modeling attempt is the possibility of comparing the MD results, with real experiments being able to capture analogous space and time scales to the ones pertained to the computer experiments. In the present study, this prerequisite is fulfilled through the quasi-elastic neutron scattering technique (QENS) for measuring self-diffusivity, by elaborating the incoherent scattering signal of hydrogen nuclei. QENS and MD experiments were performed in parallel to probe the hydrogen motion, for the first time in ZIF members. The predicted and measured dynamics behaviors show considerable concentration variation of the hydrogen self-diffusion coefficient in the two topologically different ZIF pore networks of this study, the ZIF-3 and ZIF-8. Modeling options such as the flexibility of the entire matrix versus a rigid framework version, the mobility of the imidazolate ligand, and the inclusion of quantum mechanical effects in the potential functions were examined in detail for the sorption thermodynamics and kinetics of hydrogen and also of deuterium, by employing MD combined with Widom averaging towards studying phase equilibria. The latter methodology ensures a rigorous and efficient way for post-processing the dynamics trajectory, thereby avoiding stochastic moves via Monte Carlo simulation, over the large number of configurational degrees of freedom a nonrigid framework encompasses.
Borghi, Elena; Casella, Luigi
2010-02-21
In this study copper(ii) complexes with the tridentate nitrogen ligand bis[2-(1-methylbenzimidazol-2-yl)ethyl]amine (2-BB) are considered as model compounds for the Cu-tris(imidazole) array found in several copper proteins. 2-BB chelates copper(ii) forming two six-membered rings and the complexes contain methanol, nitrite, azide and water as ancillary ligands; both the coordination numbers and stereochemistries differ in these complexes. Their key structural features were investigated by using full multiple-scattering theoretical analysis of the copper K-edge X-ray absorption spectrum with the MXAN code. We showed that using cluster sizes large enough to include all atoms of the ligand, the analysis of the XANES region can give both a structural model of the metal centre and map the structure of the 2-BB complexes. Complex [Cu(2-BB)(N(3))](+) provided a critical test through the comparison of the XANES simulation results with crystallographic data, thus permitting the extension of the method to the complex [Cu(2-BB)(H(2)O)(n)](+) (n = 1 or 2), for which crystallographic data are not available but is expected to bear a five-coordinated Cu(3N)(2O) core (n = 2). The structural data of [Cu(2-BB)(MeOH)(ClO(4))](+) and [Cu(2-BB)(NO(2))](+), both with a Cu(3N)(2O) core but with a different stereochemistry, were used as the starting parameters for two independent simulations of the XANES region of the [Cu(2-BB)(H(2)O)(2)](+) cation. The two structural models generated by simulation converge towards a structure for the aqua-cation with a lower coordination number. New calculations, where four-coordinated Cu(3N)(O) cores were considered as the starting structures, validated that the structure of the aqua-complex in the powder state has a copper(ii) centre with a four-coordinated Cu(3N)(O) core and a molecular formula [Cu(2-BB)(H(2)O)](ClO(4)).(H(2)O). A water solvation molecule, presumed to be disordered from the simulations with the two Cu(3N)(2O) cores, is present. The successful treatment of this Cu-2-BB complex system allows the extension of the method to other biomimetic compounds when a structural characterization is lacking.
Koppaka, Anjaneyulu; Captain, Burjor
2016-03-21
The complex Pt(IPr)(SnBu(t)3)(H) (1) was obtained from the reaction of Pt(COD)2 with Bu(t)3SnH and IPr [IPr = N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]. Complex 1 undergoes exchange reactions with deuterated solvents (C6D6, toluene-d8, and CD2Cl2), where the hydride ligand and the methyl hydrogen atoms on the isopropyl group of the IPr ligand have been replaced by deuterium atoms. Complex 1 reacts with H2 gas reversibly at room temperature to yield the complex Pt(IPr)(SnBu(t)3)(H)3 (2). Complex 2 also undergoes exchange reactions with deuterated solvents as in 1 to deuterate the hydride ligands and the methyl hydrogen atoms on the isopropyl group of the IPr ligand. Complex 1 catalyzes the hydrogenation of styrene to ethylbenzene at room temperature. The reaction of 1 with 1 equiv of styrene at -20 °C yields the η(2)-coordinated product Pt(IPr)(SnBu(t)3)(η(2)-CH2CHPh)(H) (3), and with 2 equiv of styrene, it forms Pt(IPr)(η(2)-CH2CHPh)2 (4).
NASA Astrophysics Data System (ADS)
Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram
2015-01-01
Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.
Nag, Angshuman; Kovalenko, Maksym V; Lee, Jong-Soo; Liu, Wenyong; Spokoyny, Boris; Talapin, Dmitri V
2011-07-13
All-inorganic colloidal nanocrystals were synthesized by replacing organic capping ligands on chemically synthesized nanocrystals with metal-free inorganic ions such as S(2-), HS(-), Se(2-), HSe(-), Te(2-), HTe(-), TeS(3)(2-), OH(-) and NH(2)(-). These simple ligands adhered to the NC surface and provided colloidal stability in polar solvents. The versatility of such ligand exchange has been demonstrated for various semiconductor and metal nanocrystals of different size and shape. We showed that the key aspects of Pearson's hard and soft acids and bases (HSAB) principle, originally developed for metal coordination compounds, can be applied to the bonding of molecular species to the nanocrystal surface. The use of small inorganic ligands instead of traditional ligands with long hydrocarbon tails facilitated the charge transport between individual nanocrystals and opened up interesting opportunities for device integration of colloidal nanostructures.
Enantioselective Total Syntheses of (−)-Palau’amine, (−)- Axinellamines, and (−)-Massadines
Seiple, Ian B.; Su, Shun; Young, Ian S.; Nakamura, Akifumi; Yamaguchi, Junichiro; Jørgensen, Lars; Rodriguez, Rodrigo A.; O’Malley, Daniel P.; Gaich, Tanja; Köck, Matthias; Baran, Phil S.
2011-01-01
Dimeric pyrrole-imidazole alkaloids represent a rich and topologically unique class of marine natural products. This full account will follow the progression of efforts that culminated in the enantioselective total syntheses of the most structurally ornate members of this family: the axinellamines, the massadines, and palau’amine. A bio-inspired approach capitalizing on the pseudo-symmetry of the members of this class is recounted, delivering a deschloro derivative of the natural product core. Next, the enantioselective synthesis of the chlorocyclopentane core featuring a scalable, catalytic, enantioselective Diels–Alder reaction of a 1-siloxydiene is outlined in detail. Finally, the successful divergent conversion of this core to each of the aforementioned natural products, and the ensuing methodological developments are described. PMID:21861522
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatimah, Soja Siti, E-mail: soja-sf@upi.edu; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor; Bahti, Husein H.
2016-02-08
The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, andmore » using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, ({sup 1}H, and {sup 13}C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.« less
NASA Astrophysics Data System (ADS)
Fatimah, Soja Siti; Bahti, Husein H.; Hastiawan, Iwan; Permanasari, Anna
2016-02-01
The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, (1H, and 13C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.
Asamitsu, Sefan; Obata, Shunsuke; Phan, Anh Tuân; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi
2018-03-20
A G-quadruplex (quadruplex) is a nucleic acid secondary structure adopted by guanine-rich sequences and is considered to be relevant to various pharmacological and biological contexts. Although a number of researchers have endeavored to discover and develop quadruplex-interactive molecules, poor ligand designability originating from topological similarity of the skeleton of diverse quadruplexes has remained a bottleneck for gaining specificity for individual quadruplexes. This work reports on hybrid molecules that were constructed with dual DNA-binding components, a cyclic imidazole/lysine polyamide (cIKP), and a hairpin pyrrole/imidazole polyamide (hPIP), with the aim toward specific quadruplex targeting by reading out the local duplex DNA sequence adjacent to designated quadruplexes in the genome. By means of circular dichroism (CD), fluorescence resonance energy transfer (FRET), surface plasmon resonance (SPR), and NMR techniques, we showed the dual and simultaneous recognition of the respective segment via hybrid molecules, and the synergistic and mutual effect of each binding component that was appropriately linked on higher binding affinity and modest sequence specificity. Monitoring quadruplex and duplex imino protons of the quadruplex/duplex motif titrated with hybrid molecules clearly revealed distinct features of the binding of hybrid molecules to the respective segments upon their simultaneous recognition. A series of the systematic and detailed binding assays described here showed that the concept of simultaneous recognition of quadruplex and its proximal duplex by hybrid molecules constructed with the dual DNA-binding components may provide a new strategy for ligand design, enabling targeting of a large variety of designated quadruplexes at specific genome locations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gay, Sean C; Shah, Manish B; Talakad, Jyothi C; Maekawa, Keiko; Roberts, Arthur G; Wilderman, P Ross; Sun, Ling; Yang, Jane Y; Huelga, Stephanie C; Hong, Wen-Xu; Zhang, Qinghai; Stout, C David; Halpert, James R
2010-04-01
The structure of the K262R genetic variant of human cytochrome P450 2B6 in complex with the inhibitor 4-(4-chlorophenyl)imidazole (4-CPI) has been determined using X-ray crystallography to 2.0-A resolution. Production of diffraction quality crystals was enabled through a combination of protein engineering, chaperone coexpression, modifications to the purification protocol, and the use of unique facial amphiphiles during crystallization. The 2B6-4-CPI complex is virtually identical to the rabbit 2B4 structure bound to the same inhibitor with respect to the arrangement of secondary structural elements and the placement of active site residues. The structure supports prior P450 2B6 homology models based on other mammalian cytochromes P450 and is consistent with the limited site-directed mutagenesis studies on 2B6 and extensive studies on P450 2B4 and 2B1. Although the K262R genetic variant shows unaltered binding of 4-CPI, altered binding affinity, kinetics, and/or product profiles have been previously shown with several other ligands. On the basis of new P450 2B6 crystal structure and previous 2B4 structures, substitutions at residue 262 affect a hydrogen-bonding network connecting the G and H helices, where subtle differences could be transduced to the active site. Docking experiments indicate that the closed protein conformation allows smaller ligands such as ticlopidine to bind to the 2B6 active site in the expected orientation. However, it is unknown whether 2B6 undergoes structural reorganization to accommodate bulkier molecules, as previously inferred from multiple P450 2B4 crystal structures.
Iversen, L F; Brzozowski, M; Hastrup, S; Hubbard, R; Kastrup, J S; Larsen, I K; Naerum, L; Nørskov-Lauridsen, L; Rasmussen, P B; Thim, L; Wiberg, F C; Lundgren, K
1997-05-01
The structures of three complexes of human fructose-1,6-bisphosphatase (FB) with the allosteric inhibitor AMP and two AMP analogues have been determined and all fully refined. The data used for structure determination were collected at cryogenic temperature (110 K), and with the use of synchrotron radiation. The structures reveal a common mode of binding for AMP and formycine monophosphate (FMP). 5-Amino-4-carboxamido-1 beta-D-5-phosphate-ribofuranosyl-1H-imidazole (AICAR-P) shows an unexpected mode of binding to FB, different from that of the other two ligands. The imidazole ring of AICAR-P is rotated 180 degrees compared to the AMP and FMP bases. This rotation results in a slightly different hydrogen bonding pattern and minor changes in the water structure in the binding pocket. Common features of binding are seen for the ribose and phosphate moieties of all three compounds. Although binding in a different mode, AICAR-P is still capable of making all the important interactions with the residues building the allosteric binding pocket. The IC50 values of AMP, FMP, and AICAR-P were determined to be 1.7, 1.4, and 20.9 microM, respectively. Thus, the approximately 10 times lower potency of AICAR-P is difficult to explain solely from the variations observed in the binding pocket. Only one water molecule in the allosteric binding pocket was found to be conserved in all four subunits in all three structures. This water molecule coordinates to a phosphate oxygen atom and the N7 atom of the AMP molecule, and to similarly situated atoms in the FMP and AICAR-P complexes. This implies an important role of the conserved water molecule in binding of the ligand.
Iversen, L. F.; Brzozowski, M.; Hastrup, S.; Hubbard, R.; Kastrup, J. S.; Larsen, I. K.; Naerum, L.; Nørskov-Lauridsen, L.; Rasmussen, P. B.; Thim, L.; Wiberg, F. C.; Lundgren, K.
1997-01-01
The structures of three complexes of human fructose-1,6-bisphosphatase (FB) with the allosteric inhibitor AMP and two AMP analogues have been determined and all fully refined. The data used for structure determination were collected at cryogenic temperature (110 K), and with the use of synchrotron radiation. The structures reveal a common mode of binding for AMP and formycine monophosphate (FMP). 5-Amino-4-carboxamido-1 beta-D-5-phosphate-ribofuranosyl-1H-imidazole (AICAR-P) shows an unexpected mode of binding to FB, different from that of the other two ligands. The imidazole ring of AICAR-P is rotated 180 degrees compared to the AMP and FMP bases. This rotation results in a slightly different hydrogen bonding pattern and minor changes in the water structure in the binding pocket. Common features of binding are seen for the ribose and phosphate moieties of all three compounds. Although binding in a different mode, AICAR-P is still capable of making all the important interactions with the residues building the allosteric binding pocket. The IC50 values of AMP, FMP, and AICAR-P were determined to be 1.7, 1.4, and 20.9 microM, respectively. Thus, the approximately 10 times lower potency of AICAR-P is difficult to explain solely from the variations observed in the binding pocket. Only one water molecule in the allosteric binding pocket was found to be conserved in all four subunits in all three structures. This water molecule coordinates to a phosphate oxygen atom and the N7 atom of the AMP molecule, and to similarly situated atoms in the FMP and AICAR-P complexes. This implies an important role of the conserved water molecule in binding of the ligand. PMID:9144768
NASA Astrophysics Data System (ADS)
Carrillo, Alvaro; Gujraty, Kunal V.; Rai, Prakash R.; Kane, Ravi S.
2005-07-01
Multivalent molecules, i.e. scaffolds presenting multiple copies of a suitable ligand, constitute an emerging class of nanoscale therapeutics. We present a novel approach for the design of multivalent ligands, which allows the biofunctionalization of polymers with proteins or peptides in a controlled orientation. It consists of the synthesis of water-soluble, activated polymer scaffolds of controlled molecular weight, which can be biofunctionalized with various thiolated ligands in aqueous media under mild conditions. These polymers were synthesized by ring-opening metathesis polymerization (ROMP) and further modified to make them water-soluble. The incorporation of chloride groups activated the polymers to react with thiol-containing peptides or proteins, and the formation of multivalent ligands in aqueous media was demonstrated. This strategy represents a convenient route for synthesizing multivalent ligands of controlled dimensions and valency.
Niihori, Yoshiki; Hossain, Sakiat; Sharma, Sachil; Kumar, Bharat; Kurashige, Wataru; Negishi, Yuichi
2017-05-01
It is now possible to accurately synthesize thiolate (SR)-protected gold clusters (Au n (SR) m ) with various chemical compositions with atomic precision. The geometric structure, electronic structure, physical properties, and functions of these clusters are well known. In contrast, the ligand or metal atom exchange reactions between these clusters and other substances have not been studied extensively until recently, even though these phenomena were observed during early studies. Understanding the mechanisms of these reactions could allow desired functional metal clusters to be produced via exchange reactions. Therefore, we have studied the exchange reactions between Au n (SR) m and analogous clusters and other substances for the past four years. The results have enabled us to gain deep understanding of ligand exchange with respect to preferential exchange sites, acceleration means, effect on electronic structure, and intercluster exchange. We have also synthesized several new metal clusters using ligand and metal exchange reactions. In this account, we summarize our research on ligand and metal exchange reactions. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Jian; Bai, Fu-Quan; Xia, Bao-Hui; Sun, Lei; Zhang, Hong-Xing
2011-03-17
Using density functional theory (DFT) approach, we assessed the newly developed fluoride sensor: [(bpy)(2)Ru(H(3)ImBzim)](2+) (denoted as 1, where H(3)ImBzim = 4,5-bis(benzimidazol-2-yl)imidazole and byp = 2,2'-bipyridine). On the basis of our benchmark test, a PBE0 functional with a LanL2DZ basis set was chosen to explore the electronic structure of 1 in both ground and singlet excited states in acetonitrile solution. Both absorption bands at 426 and 352 nm are assigned as metal-to-ligand charge-transfer transition characters. By analyzing the difference of absorption spectrum between the binding adducts and the experimental measurement, the fluoride detection process was found to be driven by the proton transfer model, which makes 1 not only capable of detecting fluoride, but also for other Bønster base anions. And the result is in general accordance with the experimental observations. We hope the current exploration can give some knowledge about the detection mechanism of the F(-) anion sensor and provide some inspiration for the design of functional molecular detectors for F(-) anion.
Sharma, Savita K; Kim, Hyun; Rogler, Patrick J; A Siegler, Maxime; Karlin, Kenneth D
2016-09-01
A series of ferrous-heme 2,6-dimethylphenyl isocyanide (DIMPI) and ferrous-heme mononitrosyl complexes have been synthesized and characterized. The heme portion of the complexes studied is varied with respect to the nature of the axial ligand, including complexes, where it is covalently tethered to the porphyrinate periphery. Reduced heme complexes, [(F8)Fe(II)], [(P(Py))Fe(II)], [(P(Im))Fe(II)], and [(P(ImH))Fe(II)], where F8 = tetrakis(2,6-difluorophenyl)-porphyrinate and P(Py), P(Im), and P(ImH) are partially fluorinated tetraaryl porphyrinates with covalently appended axial base pyridyl/imidazolyl or histamine moieties, were employed; P(ImH) is a new construct. Room temperature addition of DIMPI to these iron(II) complexes affords the bis-isocyanide species [(F8)Fe(II)-(DIMPI)2] in the case of [(F8)Fe(II)], while for the other hemes, mono-DIMPI compounds are obtained, [(P(Py))Fe(II)-(DIMPI)] [(2)-DIMPI], [(P(Im))Fe(II)-(DIMPI)] [(3)-DIMPI], and [(P(ImH))Fe(II)-(DIMPI)] [(4)-DIMPI]. The structures of complexes (3)-DIMPI and (4)-DIMPI have been determined by single crystal X-ray crystallography, where interesting H…F(porphryinate aryl group) interactions are observed. (19)F-NMR spectra determined for these complexes suggest that H…F(porphyrinate aryl groups) attractions also occur in solution, the H atom coming either from the DIMPI methyl groups or from a porphyinate axial base imidazole or porphyrinate pyrrole. Similarly, we have used nitrogen monoxide to generate ferrous-nitrosyl complexes, a five-coordinate species for F8, [(F8)Fe(II)-(NO)], or low-spin six-coordinate compounds [(P(Py))Fe(II)-(NO)], [(P(Im))Fe(II)-(NO)], and [(P(ImH))Fe(II)-(NO)]. The DIMPI and mononitrosyl complexes have also been characterized using UV-Vis, IR, (1)H-NMR, and EPR spectroscopies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Gan; Zou, Kang-Yu; Yang, Ying
In this work, the rod-like ligand 1,4-bis(imidazol-1-yl)-benzene (bib) has been utilized as a building block to perform counterion researches on the structural diversities of coordination polymers. A series of new manganese compounds, ([Mn(bib){sub 3}(ClO{sub 4}){sub 2}](CHCl{sub 3}){sub 2}){sub n} (1), [Mn(bib){sub 2}(N{sub 3}){sub 2}]{sub n} (2), [Mn(bib){sub 2}(HCO{sub 2}){sub 2}]{sub n} (3), [Mn(bib){sub 2}(Ac){sub 2}]{sub n} (4), ([Mn(bib){sub 2}(CF{sub 3}SO{sub 3}){sub 2}](CH{sub 2}Cl{sub 2}){sub 4}){sub n} (5), and [Mn(bib){sub 2}(SO{sub 4})]{sub n} (6) have been successfully synthesized. Compound 1 shows a 3D interpenetrating α-Po network only based on the bib linker. Compounds 2 and 3 exhibit a 2D (4,4) layermore » with parallel and incline interpenetration, respectively. Compounds 4 and 5 display a parallel-packing 2D (4,4) layer with the porosity of 23.4% and 61.4%, respectively. Compound 6 furnishes a 3D α-Po framework with a 2D (4,4) layer pillared by the μ{sub 2}-SO{sub 4}{sup 2−} ion. The structural diversities among 1–6 have been carefully discussed, and the roles of counterions (from coordination affinity and molecular size) in the self-assembly of coordination polymers have also been well documented. Furthermore, magnetic properties of 6 have been carefully studied. - Graphical abstract: Six new compounds have been successfully synthesized. Structural studies reveal that the topology, entanglement and porosity are tunable by the counterion. Furthermore, the weak ferromagnetic coupling is conducted in 6. - Highlights: • Six new Mn{sup II} compounds have been synthesized. • Compounds 1–3 exhibit diverse interpenetrating frameworks. • Compounds 4 and 5 exhibit 3D packing porous architectures. • The tunable effect of counterion has been documented. • Magnetic properties of 6 have been studied by fitting the data.« less
Characteristics Of Bridging Oxo And Sulfido Groups In Multinuclear Iron Proteins
NASA Astrophysics Data System (ADS)
Loehr, Thomas M.
1989-07-01
The presence of oxo-bridged dinuclear iron clusters has been established in the respiratory protein, hemerythrin (Hr), and in the DNA-biosynthesis regulatory enzyme, ribonucleotide reductase (Rr). For the iron proteins uteroferrin and purple acid phosphatase (PAP) evidence for μ-oxo-bridged centers is less clear. Resonance Raman (RR) spectra obtained by excitation into an 0(2-) --> Fe(III) CT band may show strong symmetric and weak antisymmetric Fe-0-Fe vibrational modes. We have investigated the spectra of a variety of μ-oxo-bridged Fe(III) complexes to establish the dependence of Raman scattering intensities upon structural parameters. Intensities were found to relate to the nature of the ligand trans to the oxo group: nitrogen ligands with unsaturation (e.g., pyrazole and imidazole) lead to strong scattering, whereas saturated ligands provide only poor scattering. The Fe-0 bonds in Hr and Rr are strong scatterers; the former is known from x-ray crystallography to have a histidyl ligand trans to the μ-oxo group. On this basis, a similar ligand structure is likely in the reductase. In contrast, PAP shows no oxo-bridge with UV and near-UV excitation. We propose that a different structural framework is necessary to account for this result. Hydrogen bonding of protein side chains to oxo and sulfido ligands is proposed to explain changes in frequencies for samples dissolved in water vs. D20. Differences in hydrogen-bond strengths between 0...(D) and S...(D) systems are transferred to the observed Fe-0 and Fe-S bond vibrations.
Ho, Dominik; Dose, Christian; Albrecht, Christian H.; Severin, Philip; Falter, Katja; Dervan, Peter B.; Gaub, Hermann E.
2009-01-01
Force-based ligand detection is a promising method to characterize molecular complexes label-free at physiological conditions. Because conventional implementations of this technique, e.g., based on atomic force microscopy or optical traps, are low-throughput and require extremely sensitive and sophisticated equipment, this approach has to date found only limited application. We present a low-cost, chip-based assay, which combines high-throughput force-based detection of dsDNA·ligand interactions with the ease of fluorescence detection. Within the comparative unbinding force assay, many duplicates of a target DNA duplex are probed against a defined reference DNA duplex each. The fractions of broken target and reference DNA duplexes are determined via fluorescence. With this assay, we investigated the DNA binding behavior of artificial pyrrole-imidazole polyamides. These small compounds can be programmed to target specific dsDNA sequences and distinguish between D- and L-DNA. We found that titration with polyamides specific for a binding motif, which is present in the target DNA duplex and not in the reference DNA duplex, reliably resulted in a shift toward larger fractions of broken reference bonds. From the concentration dependence nanomolar to picomolar dissociation constants of dsDNA·ligand complexes were determined, agreeing well with prior quantitative DNAase footprinting experiments. This finding corroborates that the forced unbinding of dsDNA in presence of a ligand is a nonequilibrium process that produces a snapshot of the equilibrium distribution between dsDNA and dsDNA·ligand complexes. PMID:19486688
Teng, Fangfang; Deng, Peizong; Song, Zhimei; Zhou, Feilong; Feng, Runliang; Liu, Na
2017-06-15
In order to improve azithromycin's antibacterial activity in acidic medium, monomethoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) copolymer was synthesized through allylation, free radical addition, ring-opening polymerization and amidation reactions with methoxy poly (ethylene glycol) as raw material. Drug loading capacity and encapsulation efficiency of azithromycin-loaded micelles prepared via thin film hydration method were 11.58±0.86% and 96.06±1.93%, respectively. The drug-loaded micelles showed pH-dependent property in the respects of particle size, zeta potential at the range of pH 5.5-7.8. It could control drug in vitro release and demonstrate higher release rate at pH 6.0 than that at pH 7.4. In vitro antibacterial experiment indicated that the activity of azithromycin-loaded micelles against S. aureus was superior to free azithromycin in medium at both pH 6.0 and pH 7.4. Using fluorescein as substitute with pH-dependent fluorescence decrease property, laser confocal fluorescence microscopy analysis confirmed that cellular uptake of micelles was improved due to protonation of copolymer's imidazole groups at pH 6.0. The enhanced cellular uptake and release of drug caused its activity enhancement in acidic medium when compared with free drug. The micellar drug delivery system should be potential application in the field of bacterial infection treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of L-cysteine on the oxidation of cyclohexane catalyzed by manganeseporphyrin.
Zhou, Wei-You; Tian, Peng; Chen, Yong; He, Ming-Yang; Chen, Qun; Chen, Zai Xin
2015-06-01
Effect of L-cysteine as the cocatalyst on the oxidation of cyclohexane by tert-butylhydroperoxide (TBHP) catalyzed by manganese tetraphenylporphyrin (MnTPP) has been investigated. The results showed that L-cysteine could moderately improve the catalytic activity of MnTPP and significantly increase the selectivity of cyclohexanol. Different from imidazole and pyridine, the L-cysteine may perform dual roles in the catalytic oxidation of cyclohexane. Besides as the axial ligand for MnTPP, the L-cysteine could also react with cyclohexyl peroxide formed as the intermediate to produce alcohol as the main product. Copyright © 2015 Elsevier Ltd. All rights reserved.
Matsumoto, Yasumasa; Yamada, Ken-ichi; Tomioka, Kiyoshi
2008-06-20
The asymmetric construction of quaternary carbon centers by conjugate addition of Grignard reagents to 3-methyl- and 3-ethylcyclohexenones was realized in a maximum enantioselectivity of 80% by using a C 2 symmetric chiral N-heterocyclic carbene (NHC)-copper catalyst, generated from (4 S,5 S)-1,3-bis(2-methoxyphenyl)-4,5-diphenyl-4,5-dihydro-1 H-imidazol-3-ium tetrafluoroborate and copper(II) triflate. The stereostructures of the NHC-Au complexes were analyzed by X-ray crystallography, which rationalized the good stereocontrolling ability of N-aryl NHCs.
NASA Astrophysics Data System (ADS)
Hu, Kaikai; Deng, Bowen; Jin, Shouwen; Ding, Aihua; Jin, Shide; Zhu, Jin; Zhang, Huan; Wang, Daqi
2018-04-01
Cocrystallization of the imidazole derivatives with a series of mineral acids gave a total of ten hybrid salts with the compositions: [(H2bzm)(Cl)2·3H2O] (1), [(H2bzm)(ClO4)2] (2), [(H2bze)(Cl)2·2H2O] (3), [(H2bze)(Br)2·2H2O] (4), [(H2bzp)(Cl)2·4H2O] (5), [(H2bzp)(Br)2·4H2O] (6), (2-(imidazol-1-yl)-1-phenylethanone): (phosphoric acid) [(Himpeta)+(H2PO4)-] (7), [(H2impd)(Br)2] (8), [(H2impd)(ClO4)2] (9), and [(Hbzml)(Cl)] (10). The ten salts have been characterised by X-ray diffraction analysis, IR, and elemental analysis, and the melting points of all the salts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the ten investigated crystals the ring N atoms of the imidazole are protonated when the acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted classical H-bonds between the NH+ and deprotonated acidic groups. Further analysis of the crystal packing of the salts indicated that a different set of additional CHsbnd O, CH2sbnd O, CHsbnd Cl, CH2sbnd Cl, CHsbnd N, CHsbnd Br, CH2sbnd Br, Osbnd O, O-π, Br-π, CH-π, and π-π associations contribute to the stabilization and expansion of the total high-dimensional frameworks. For the coexistence of the various weak nonbonding interactions these structures adopted homo or hetero supramolecular synthons or both. Some classical supramolecular synthons, such as R21(7), R22(7), R22(8), and R42(8), usually observed in the organic solids, were again shown to be involved in constructing some of these H-bonding networks.
LDH nanocages synthesized with MOF templates and their high performance as supercapacitors.
Jiang, Zhen; Li, Zhengping; Qin, Zhenhua; Sun, Haiyan; Jiao, Xiuling; Chen, Dairong
2013-12-07
Layered double hydroxides (LDHs) are currently attracting intense research interest for their various applications. Three LDH hollow nano-polyhedra are synthesized with zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as the templates. The nanocages well inherit the rhombic dodecahedral shape of the ZIF-67 templates, and the shell is composed of nanosheets assembled with an edge-to-face stacking. This is the first synthesis of the LDH non-spherical structures. And the mechanism of utilizing metal-organic framework (MOF) nanocrystals as templates is explored. Control of the simultaneous reactions, the precipitation of the shells and the template etching, is extremely crucial to the preparation of the perfect nanocages. And the Ni-Co LDH nanocages exhibit superior pseudocapacitance property due to their novel hierarchical and submicroscopic structures.
Construction of 4D-QSAR Models for Use in the Design of Novel p38-MAPK Inhibitors
NASA Astrophysics Data System (ADS)
Romeiro, Nelilma Correia; Albuquerque, Magaly Girão; de Alencastro, Ricardo Bicca; Ravi, Malini; Hopfinger, Anton J.
2005-06-01
The p38-mitogen-activated protein kinase (p38-MAPK) plays a key role in lipopolysaccharide-induced tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1) release during the inflammatory process, emerging as an attractive target for new anti-inflammatory agents. Four-dimensional quantitative structure-activity relationship (4D-QSAR) analysis [Hopfinger et al., J. Am. Chem. Soc., 119 (1997) 10509] was applied to a series of 33 (a training set of 28 and a test set of 5) pyridinyl-imidazole and pyrimidinyl-imidazole inhibitors of p38-MAPK, with IC50 ranging from 0.11 to 2100 nM [Liverton et al., J. Med. Chem., 42 (1999) 2180]. Five thousand conformations of each analogue were sampled from a molecular dynamics simulation (MDS) during 50 ps at a constant temperature of 303 K. Each conformation was placed in a 2 Å grid cell lattice for each of three trial alignments. 4D-QSAR models were constructed by genetic algorithm (GA) optimization and partial least squares (PLS) fitting, and evaluated by leave-one-out cross-validation technique. In the best models, with three to six terms, the adjusted cross-validated squared correlation coefficients, Q 2 adj, ranged from 0.67 to 0.85. Model D ( Q 2 adj = 0.84) was identified as the most robust model from alignment 1, and it is representative of the other best models. This model encompasses new molecular regions as containing pharmacophore sites, such as the amino-benzyl moiety of pyrimidine analogs and the N1-substituent in the imidazole ring. These regions of the ligands should be further explored to identify better anti-inflammatory inhibitors of p38-MAPK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpio, M.M.; Kerr, J.B.
2005-01-01
Biosensing devices are important because they can detect, record, and transmit information regarding the presence of, or physiological changes in, different chemical or biological materials in the environment. The goal of this research is to prepare a biosensing device that is effective, quick, and low cost. This is done by examining which chemicals will work best when placed in a biosensor. The first study involved experimenting on a rhodium catalyst complexed with ligands such as bipyridine and imidazole. The rhodium catalyst is important because it is reduced from RhIII to RhI, forms a hydride by reaction with water and releasesmore » the hydride to react with nicotinamide adenine dinucleotide (NAD+) to selectively produce 1,4-NADH, the reduced form of NAD+. The second study looked at different types of ketones and enzymes for the enzyme-substrate reaction converting a ketone into an alcohol. Preliminary results showed that the rhodium complexed with bipyridine was able to carry out all the reactions, while the rhodium complexed with imidazole was not able to produce and release hydrides. In addition, the most effective ketone to use is benzylacetone with the enzyme alcohol dehydrogenase from baker’s yeast. Future work includes experimenting with bis-imidazole, which mimics the structure of bipyridine to see if it has the capability to reduce and if the reduction rate is comparable to the bipyridine complex. Once all testing is completed, the fastest catalysts will be combined with polymer membranes designed for fuel cells to prepare biosensing devices that can be used in a variety of applications including ones in the medical and environmental fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xin; Zhou, Pei; Zheng, Chunying
A copper complex ([Cu(py){sub 2}(L){sub 2}]·2CH{sub 3}OH){sub n} (HL=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) (1) with acrylic acid ligand was synthesized and structurally analyzed by IR, elemental analysis, TGA and the single-crystal X-ray diffraction methods. It is the first time to find that phenolic hydroxyl of L coordinates to Cu(II). Complex 1 exhibits 1D chain by a double-bridge of ligands, and the 3D supramolecular framework in complex 1 is constructed by π–π stacking interactions and van der Waals Contacts among the 1D chains. The magnetic properties of complex 1 have been studied. - Graphical abstract: A copper complex based on (E)-3-(3-hydroxyl-phenyl)-acrylic acid in amore » novel coordinated way was synthesized and a ferromagnetic exchange interactions between neighboring Cu(II) ions has be achieved. - Highlights: • A new copper complex with acrylic acid ligand was synthesized and analyzed. • We find the phenolic hydroxyl of MCA ligand coordinates to metal ion firstly. • A ferromagnetic exchange interactions between Cu(II) ions has been achieved.« less
Shearer, Jason
2014-08-19
Nickel superoxide dismutase (NiSOD) is a nickel-containing metalloenzyme that catalyzes the disproportionation of superoxide through a ping-pong mechanism that relies on accessing reduced Ni(II) and oxidized Ni(III) oxidation states. NiSOD is the most recently discovered SOD. Unlike the other known SODs (MnSOD, FeSOD, and (CuZn)SOD), which utilize "typical" biological nitrogen and oxygen donors, NiSOD utilizes a rather unexpected ligand set. In the reduced Ni(II) oxidation state, NiSOD utilizes nitrogen ligands derived from the N-terminal amine and an amidate along with two cysteinates sulfur donors. These are unusual biological ligands, especially for an SOD: amine and amidate donors are underrepresented as biological ligands, whereas cysteinates are highly susceptible to oxidative damage. An axial histidine imidazole binds to nickel upon oxidation to Ni(III). This bond is long (2.3-2.6 Å) owing to a tight hydrogen-bonding network. All of the ligating residues to Ni(II) and Ni(III) are found within the first 6 residues from the NiSOD N-terminus. Thus, small nickel-containing metallopeptides derived from the first 6-12 residues of the NiSOD sequence can reproduce many of the properties of NiSOD itself. Using these nickel-containing metallopeptide-based NiSOD mimics, we have shown that the minimal sequence needed for nickel binding and reproduction of the structural, spectroscopic, and functional properties of NiSOD is H2N-HCXXPC. Insight into how NiSOD avoids oxidative damage has also been gained. Using small NiN2S2 complexes and metallopeptide-based mimics, it was shown that the unusual nitrogen donor atoms protect the cysteinates from oxidative damage (both one-electron oxidation and oxygen atom insertion reactions) by fine-tuning the electronic structure of the nickel center. Changing the nitrogen donor set to a bis-amidate or bis-amine nitrogen donor led to catalytically nonviable species owing to nickel-cysteinate bond oxidative damage. Only the amine/amidate nitrogen donor atoms within the NiSOD ligand set produce a catalytically viable species. These metallopeptide-based mimics have also hinted at the detailed mechanism of SOD catalysis by NiSOD. One such aspect is that the axial imidazole likely remains ligated to the Ni center under rapid catalytic conditions (i.e., high superoxide loads). This reduces the degree of structural rearrangement about the nickel center, leading to higher catalytic rates. Metallopeptide-based mimics have also shown that, although an axial ligand to Ni(III) is required for catalysis, the rates are highest when this is a weak interaction, suggesting a reason for the long axial His-Ni(III) bond found in NiSOD. These mimics have also suggested a surprising mechanistic insight: O2(-) reduction via a "H(•)" tunneling event from a R-S(H(+))-Ni(II) moiety to O2(-) is possible. The importance of this mechanism in NiSOD has not been verified.
Andriani, Grasiella; Amata, Emanuele; Beatty, Joel; Clements, Zeke; Coffey, Brian J.; Courtemanche, Gilles; Devine, William; Erath, Jessey; Juda, Cristin E.; Wawrzak, Zdzislaw; Wood, JodiAnne T.; Lepesheva, Galina I.; Rodriguez, Ana; Pollastri, Michael P.
2013-01-01
Chagas disease is caused by the intracellular protozoan parasite Trypanosomal cruzi, and current drugs are lacking in terms of desired safety and efficacy profiles. Following on a recently reported high-throughput screening campaign, we have explored initial structure-activity relationships around a class of imidazole-based compounds. This profiling has uncovered compounds 4c (NEU321) and 4j (NEU704), which are potent against in vitro cultures of T. cruzi and are greater than 160-fold selective over host cells. We report in vitro drug metabolism and properties profiling of 4c and show that this chemotype inhibits the T cruzi CYP51 enzyme, an observation confirmed by X-ray crystallographic analysis. We compare the binding orientation of 4c to that of other, previously reported inhibitors. We show that 4c displays a significantly better ligand efficiency and a shorter synthetic route over previously disclosed CYP51 inhibitors, and should therefore be considered a promising lead compound for further optimization. PMID:23448316
Williams, W Robert
2011-01-01
Purine nucleotides play a central role in signal transduction events initiated at the cell membrane. The NO-cGMP-cGK pathway, in particular, mediates events involving NOS and some classes of K(+) ion channel. The aim of this study is to investigate relative molecular similarity within the ligands binding to NOS, K(ATP), BK(Ca) channels and regulatory nucleotides. Minimum energy conformers of the ligand structures were superimposed and fitted to L-arginine and the nucleotides of adenine and guanine using a computational program. Distinctive patterns were evident in the fitting of NOS isoform antagonists to L-arginine. K(ATP) channel openers and antagonists superimposed on the glycosidic linkage and imidazole ring of the purine nucleotides, and guanidinium and ribose groups of GTP in the case of glibenclamide. The fits of BK(Ca) channel openers and antagonists to cGMP were characterized by the linear dimensions of their structures; distances between terminal oxy groups in respect of dexamethasone and aldosterone. The findings provide structural evidence for the functional interaction between K(+) channel openers/antagonists and the regulatory nucleotides. Use of the purine nucleotide template systematizes the considerable heterogeneity evident within the structures of ligands operating on K(+) ion channels. © 2010 The Author. JPP © 2010 Royal Pharmaceutical Society.
Multimodal charge-induction chromatography for antibody purification.
Tong, Hong-Fei; Lin, Dong-Qiang; Chu, Wen-Ning; Zhang, Qi-Lei; Gao, Dong; Wang, Rong-Zhu; Yao, Shan-Jing
2016-01-15
Hydrophobic charge-induction chromatography (HCIC) has advantages of high capacity, salt-tolerance and convenient pH-controlled elution. However, the binding specificity might be improved with multimodal molecular interactions. New ligand W-ABI that combining tryptophan and 5-amino-benzimidazole was designed with the concept of mutimodal charge-induction chromatography (MCIC). The indole and benzimidazole groups of the ligand could provide orientated mutimodal binding to target IgG under neutral pH, while the imidazole groups could induce the electrostatic repulsion forces for efficient elution under acidic pH. W-ABI ligand was coupled successfully onto agarose gel, and IgG adsorption behaviors were investigated. High affinity to IgG was found with the saturated adsorption capacity of 70.4 mg/ml at pH 7, and the flow rate of mobile phase showed little impact on the dynamic binding capacity. In addition, efficient elution could be achieved at mild acidic pH with high recovery. Two separation cases (IgG separation from albumin containing feedstock and monoclonal antibody purification from cell culture supernatant) were verified with high purity and recovery. In general, MCIC with the specially-designed ligand is an expanding of HCIC with improved adsorption selectivity, which would be a potential alternative to Protein A-based capture for the cost-effective purification of antibodies. Copyright © 2015 Elsevier B.V. All rights reserved.
Mazzio, Katherine A; Okamoto, Ken; Li, Zhi; Gutmann, Sebastian; Strein, Elisabeth; Ginger, David S; Schlaf, Rudy; Luscombe, Christine K
2013-02-14
A one pot method for organic/colloidal CdSe nanoparticle hybrid material synthesis is presented. Relative to traditional ligand exchange processes, these materials require smaller amounts of the desired capping ligand, shorter syntheses and fewer processing steps, while maintaining nanoparticle morphology.
Teich, Monique; van Pinxteren, Dominik; Kecorius, Simonas; Wang, Zhibin; Herrmann, Hartmut
2016-02-02
Imidazoles are widely discussed in recent literature. They have been studied as a secondary product of the reaction of dicarbonyls with nitrogen containing compounds in a number of laboratory studies, potentially acting as photosensitizers triggering secondary organic aerosol growth and are forming constituents of light absorbing brown carbon. Despite the knowledge from laboratory studies, no quantitative information about imidazoles in ambient aerosol particles is available. Within the present study, five imidazoles (1-butylimidazole, 1-ethylimidazole, 2-ethylimidazole, imidazol-2-carboxaldehyde, and 4(5)-methylimidazole) were successfully identified and quantified for the first time in ambient aerosol samples from different environments in Europe and China. Their concentrations range between 0.2 and 14 ng/m(3). 4(5)-Methylimidazole was found to be the most abundant imidazole. The occurrence of imidazoles seems to be favored at sites with strong biomass burning influence or connected to more polluted air masses. No connection was found between aerosol particle pH and imidazole concentration. Our work corroborates the laboratory studies by showing that imidazoles are present in ambient aerosol samples in measurable amounts. Moreover, it further motivates to explore the potential photosensitizing properties of small alkyl-substituted imidazoles.
Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
Zhang, Lilu; Meggers, Eric
2017-02-21
Catalysts for asymmetric synthesis must be chiral. Metal-based asymmetric catalysts are typically constructed by assembling chiral ligands around a central metal. In this Account, a new class of effective chiral Lewis acid catalysts is introduced in which the octahedral metal center constitutes the exclusive source of chirality. Specifically, the here discussed class of catalysts are composed of configurationally stable, chiral-at-metal Λ-configured (left-handed propeller) or Δ-configured (right-handed propeller) iridium(III) or rhodium(III) complexes containing two bidentate cyclometalating 5-tert-butyl-2-phenylbenzoxazole (dubbed IrO and RhO) or 5-tert-butyl-2-phenylbenzothiazole (dubbed IrS and RhS) ligands in addition to two exchange-labile acetonitriles. They are synthetically accessible in an enantiomerically pure fashion through a convenient auxiliary-mediated synthesis. Such catalysts are of interest due to their intrinsic structural simplicity (only achiral ligands) and the prospect of an especially effective asymmetric induction due to the intimate contact between the chiral metal center and the metal-coordinated substrates or reagents. With respect to chiral Lewis acid catalysis, the bis-cyclometalated iridium and rhodium complexes provide excellent catalytic activities and asymmetric inductions for a variety of reactions including Michael additions, Friedel-Crafts reactions, cycloadditions, α-aminations, α-fluorinations, Mannich reactions, and a cross-dehydrogenative coupling. Mechanistically, substrates such as 2-acyl imidazoles are usually activated by two-point binding. Exceptions exist as for example for an efficient iridium-catalyzed enantioselective transfer hydrogenation of arylketones with ammonium formate, which putatively proceeds through an iridium-hydride intermediate. The bis-cyclometalated iridium complexes catalyze visible-light-induced asymmetric reactions by intertwining asymmetric catalysis and photoredox catalysis in a unique fashion. This has been applied to the visible-light-induced α-alkylation of 2-acyl imidazoles (and in some instances 2-acylpyridines) with acceptor-substituted benzyl, phenacyl, trifluoromethyl, perfluoroalkyl, and trichloromethyl groups, in addition to photoinduced oxidative α-aminoalkylations and a photoinduced stereocontrolled radical-radical coupling, each employing a single iridium complex. In all photoinduced reaction schemes, the iridium complex serves as a chiral Lewis acid catalyst and at the same time as precursor of in situ assembled photoactive species. The nature of these photoactive intermediates then determines their photochemical properties and thereby the course of the asymmetric photoredox reactions. The bis-cyclometalated rhodium complexes are also very useful for asymmetric photoredox catalysis. Less efficient photochemical properties are compensated with a more rapid ligand exchange kinetics, which permits higher turnover frequencies of the catalytic cycle. This has been applied to a visible-light-induced enantioselective radical α-amination of 2-acyl imidazoles. In this reaction, an intermediate rhodium enolate is supposed to function as a photoactivatable smart initiator to initiate and reinitiate an efficient radical chain process. If a more efficient photoactivation is required, a rhodium-based Lewis acid can be complemented with a photoredox cocatalyst, and this has been applied to efficient catalytic asymmetric alkyl radical additions to acceptor-substituted alkenes. We believe that this class of chiral-only-at-metal Lewis acid catalysts will be of significant value in the field of asymmetric synthesis, in particular in combination with visible-light-induced redox chemistry, which has already resulted in novel strategies for asymmetric synthesis of chiral molecules. Hopefully, this work will also pave the way for the development of other asymmetric catalysts featuring exclusively octahedral centrochirality.
Zhang, Peng; Guan, Bu Yuan; Yu, Le; Lou, Xiong Wen David
2017-06-12
Complex metal-organic frameworks used as precursors allow design and construction of various nanostructured functional materials which might not be accessible by other methods. Here, we develop a sequential chemical etching and sulfurization strategy to prepare well-defined double-shelled zinc-cobalt sulfide (Zn-Co-S) rhombic dodecahedral cages (RDCs). Yolk-shelled zinc/cobalt-based zeolitic imidazolate framework (Zn/Co-ZIF) RDCs are first synthesized by a controlled chemical etching process, followed by a hydrothermal sulfurization reaction to prepare double-shelled Zn-Co-S RDCs. Moreover, the strategy reported in this work enables easy control of the Zn/Co molar ratio in the obtained double-shelled Zn-Co-S RDCs. Owing to the structural and compositional benefits, the obtained double-shelled Zn-Co-S RDCs exhibit enhanced performance with high specific capacitance (1266 F g -1 at 1 A g -1 ), good rate capability and long-term cycling stability (91 % retention over 10,000 cycles) as a battery-type electrode material for hybrid supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Böhme, Ulrike; Barth, Benjamin; Paula, Carolin; Kuhnt, Andreas; Schwieger, Wilhelm; Mundstock, Alexander; Caro, Jürgen; Hartmann, Martin
2013-07-09
Two types of metal-organic frameworks (MOFs) have been synthesized and evaluated in the separation of C2 and C3 olefins and paraffins. Whereas Co2(dhtp) (=Co-CPO-27 = Co-MOF-74) and Mg2(dhtp) show an adsorption selectivity for the olefins ethene and propene over the paraffins ethane and propane, the zeolitic imidazolate framework ZIF-8 behaves in the opposite way and preferentially adsorbs the alkane. Consequently, in breakthrough experiments, the olefins or paraffins, respectively, can be separated.
Xiong, Jin-Feng; Li, Jian-Xiao; Mo, Guang-Zhen; Huo, Jing-Pei; Liu, Jin-Yan; Chen, Xiao-Yun; Wang, Zhao-Yang
2014-12-05
1,3,5-Tri(1H-benzo[d]imidazol-2-yl)benzene derivatives, as a new kind of fluorescent chemosensor for the detection of nitroaromatic explosives, are designed and synthesized by simple N-hydrocarbylation. Among 16 obtained compounds, compound 4g has the best capability for detection of picric acid (PA), having good selectivity and high sensitivity. The detection of PA with 4g solution-coated paper strips at the picogram level is developed. A simple, portable, and low-cost method is provided for detecting PA in solution and contact mode.
2-Ferrocenyl-2-thiazoline as a building block of novel phosphine-free ligands.
Corona-Sánchez, Ricardo; Toscano, Rubén A; Ortega-Alfaro, M Carmen; Sandoval-Chávez, César; López-Cortés, José G
2013-09-07
New 1,2-disubstituted ferrocenes [5(b-j), in which R = -SMe, -SPh, -SiPr, -SiMe3, -SePh, -SnBu3, -B(OH)2, -Me, -I] with a thiazoline ring in the ferrocene backbone using as key intermediate a ferrocenyl Fischer carbene complex were synthesized. The capability of the 2-thiazoline moiety as an ortho-directed metalation group was demonstrated by subsequent quenching of lithium intermediate with several electrophiles, proving to be an excellent method for synthesizing bidentate ligands. The catalytic scope of the [N,S] ligand 5b as the corresponding palladium complex 5b-PdCl(2) in a microwave-promoted Heck reaction was also tested. Results obtained showed better catalytic activity of 5b-PdCl(2) compared to other catalytic systems based on a [N,S] ferrocenyl ligand.
ERIC Educational Resources Information Center
William, Wilson Ngambeki
2011-01-01
Abstract I. The goal of this study was to synthesize and characterize a set of coordination complexes containing 6pi-cationic ligands. These compounds could be extremely useful as catalysts for the polymerization of olefins that are widely used in the synthetic polymer industry. The original strategy was to synthesize the 6pi-cationic ligands…
Anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Li-Wei; Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan; Luo, Tzuoo-Tsair
2016-07-15
A Cd(II)–organic framework {[Cd_2(tpim)_4(SO_4)(H_2O)_2]·(SO_4)·21H_2O}{sub n} (1) was synthesized by reacting CdSO{sub 4}·8/3H{sub 2}O and 2,4,5-tri(4-pyridyl)imidazole (tpim) under hydrothermal conditions. A structural analysis showed that compound 1 adopts a layered structure in which the [Cd(tpim){sub 2}]{sub n} chains are linked by sulfate anions. These 2D layers are further packed into a 3D supramolecular framework via π–π interactions. The structure contains two types of SO{sub 4}{sup 2−} anions, i.e., bridging SO{sub 4}{sup 2−} and free SO{sub 4}{sup 2−} anions, the latter of which are included in the large channels of the framework. Compound 1 exhibits interesting anion exchange behavior. In the presencemore » of SCN{sup −} anions, both the bridging and free SO{sub 4}{sup 2−} anions in 1 were completely exchanged by SCN{sup −} ligands to form a 1D species [Cd(tpim){sub 2}(SCN){sub 2}] (1A), in which the SCN{sup –} moieties function as a monodentate ligand. On the other hand, when compound 1 was ion exchanged with N{sub 3}{sup −} anions in aqueous solution, the bridging SO{sub 4}{sup 2−} moieties remained intact, and only the free guest SO{sub 4}{sup 2−} were replaced by N{sub 3}{sup −} anions. The gas adsorption behavior of the activated compound 1 was also investigated. - Highlights: • An interesting anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework is reported. • The sulfate-incorporated 2D layer compound exhibits very different anion exchange behavior with respect to SCN{sup −} and N{sub 3}{sup −}. • Both the bridging and free SO{sub 4}{sup 2−} anions in the 2D structure were completely exchanged by SCN{sup −} ligands, resulting in the formation of a 1D species. However, in the case of N{sub 3}{sup −} anions, only the free guest SO{sub 4}{sup 2−} in the structure was replaced.« less
NASA Astrophysics Data System (ADS)
Kamat, Vinayak; Naik, Krishna; Revankar, Vidyanand K.
2017-04-01
A novel Schiff base ligand 3-(hydroxyimino)-2-butanone-2-(1H-benzimidazol-2-yl)hydrazone has been synthesized by the condensation reaction of 2-Hydrazinobenzimidazole with diacetyl monoxime in presence of acetic acid catalyst. The ligand has crystallized as its acetate salt, due to the charge-assisted hydrogen bonding between protonated benzimidazole ring and acetate anion. Efforts to synthesize the zinc(II) complex of the title compound, has resulted in the formation of a nitrate salt of the ligand, instead of coordination complex of zinc(II). Acetate salt has crystallized in monoclinic P 21/n, while the nitrate salt has crystallized in a triclinic crystal system with P -1 space group. Hirshfeld surface analysis is presented for both of the crystal structures. Structures of synthesized molecules are even computationally optimized using DFT. A comparative structural approach between the synthesized molecules and DFT optimized structure of bare ligand without any counterions is analyzed in terms of bond parameters. Hydrogen bonding is explained keeping the anions as the central dogma. Mass fragmentation pattern of the organic molecule and comparative account of IR, 1H and 13C NMR chemical shifts are also presented. Compounds are screened for their antibacterial and antifungal potencies against few pathogenic microorganisms. The organic motif is found be an excellent antifungal agent.
Mendoza-Espinosa, Daniel; Donnadieu, Bruno
2011-01-01
A series of bimetallic complexes supported by a 4-phosphino substituted NHC ligand have been synthesized. The use of the stable ligand reduces the number of synthetic steps and allows for a wide range of metal combinations. PMID:21322115
NASA Astrophysics Data System (ADS)
Taşdemir, Erdal; Özbek, Füreya Elif; Sertçelik, Mustafa; Hökelek, Tuncer; Çelik, Raziye Çatak; Necefoğlu, Hacali
2016-09-01
Three novel complexes Co(II), Ni(II) and Zn(II) containing p-hydroxybenzoates and caffeine ligands were synthesized and characterized by elemental analysis, FT-IR and UV-vis Spectroscopy, molar conductivity and single crystal X-ray diffraction methods. The thermal properties of the synthesized complexes were investigated by TGA/DTA. The general formula of the complexes is [M(HOC6H4COO)2(H2O)4]·2(C8H10N4O2)·8H2O (where: M: Co, Ni and Zn). The IR studies showed that carboxylate groups of p-hydroxybenzoate ligands have monodentate coordination mode. The M2+ ions are octahedrally coordinated by two p-hydroxybenzoate ligands, four water molecules leading to an overall MO6 coordination environment. The medium-strength hydrogen bondings involving the uncoordinated caffeine ligands and water molecules, coordinated and uncoordinated water molecules and p-hydroxybenzoate ligands lead to three-dimensional supramolecular networks in the crystal structures.
Effects of multiple organic ligands on size uniformity and optical properties of ZnSe quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archana, J., E-mail: archana.jayaram@yahoo.com; Navaneethan, M.; Hayakawa, Y.
2012-08-15
Highlights: ► Highly monodispersed ZnSe quantum dots have been synthesized by wet chemical route. ► Strong quantum confinement effect have been observed in ∼ 4 nm ZnSe quantum dots. ► Enhanced ultraviolet near band emission have been obtained using long chain polymer. -- Abstract: The effects of multi-ligands on the formation and optical transitions of ZnSe quantum dots have been investigated. The dots are synthesized using 3-mercapto-1,2-propanediol and polyvinylpyrrolidone ligands, and have been characterized by X-ray diffraction, transmission electron microscopy (TEM), UV–visible absorption spectroscopy, photoluminescence spectroscopy, and Fourier transform infrared spectroscopy. TEM reveals high monodispersion with an average size ofmore » 4 nm. Polymer-stabilized, organic ligand-passivated ZnSe quantum dots exhibit strong UV emission at 326 nm and strong quantum confinement in the UV–visible absorption spectrum. Uniform size and suppressed surface trap emission are observed when the polymer ligand is used. The possible growth mechanism is discussed.« less
NASA Astrophysics Data System (ADS)
Bakale, Raghavendra P.; Naik, Ganesh N.; Machakanur, Shrinath S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.; Gudasi, Kalagouda B.
2018-02-01
A hydrazone ligand has been synthesized by the condensation of 2-nitrobenzaldehyde and hydralazine, and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been reported. Structural characterization of the ligand and its metal complexes has been performed by various spectroscopic [IR, NMR, UV-Vis, Mass], thermal and other physicochemical methods. The structure of the ligand and its Ni(II) complex has been characterized by single crystal X-ray diffraction studies. All the synthesized compounds have been screened for in vitro antimicrobial activity. The antibacterial activity is tested against Gram-positive strains Enterococcus faecalis, Streptococcus mutans and Staphylococcus aureus and Gram-negative strains Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae using ciprofloxacin as the reference standard. Antifungal activity is tested against Candida albicans, Aspergillus fumigatus and Aspergillus niger using ketoconazole as the reference standard. The minimum inhibitory concentration (MIC) was determined for test compounds as well as for reference standard. Ligand, Cu(II) and Zn(II) complexes have shown excellent activity against Candida albicans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu
It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles ismore » tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability is attained with the same catalyst, which loses only 20 mV after 10 000 potential cycles (0.6–1.0 V) in O2 saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu
It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). We report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunablemore » through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. In using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe 3+ to Fe 2+) likely bonded with pyridinic N (FeN 4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H 2SO 4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μg Pt/cm 2). Finally, enhanced stability is attained with the same catalyst, which loses only 20 mV after 10 000 potential cycles (0.6–1.0 V) in O 2 saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.« less
Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu; ...
2017-09-13
It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). We report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunablemore » through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. In using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe 3+ to Fe 2+) likely bonded with pyridinic N (FeN 4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H 2SO 4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μg Pt/cm 2). Finally, enhanced stability is attained with the same catalyst, which loses only 20 mV after 10 000 potential cycles (0.6–1.0 V) in O 2 saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.« less
Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Iijima, Seiichiro; Halcrow, Malcolm A; Sunatsuki, Yukinari; Kojima, Masaaki
2011-12-07
Two Fe(II) complexes fac-[Fe(II)(HL(n-Pr))(3)]Cl·Y (Y = AsF(6) (1) and BF(4) (2)) were synthesized, where HL(n-Pr) is 2-methylimidazole-4-yl-methylideneamino-n-propyl. Each complex-cation has the same octahedral N(6) geometry coordinated by three bidentate ligands and assumes facial-isomerism, fac-[Fe(II)(HL(n-Pr))(3)](2+) with Δ- and Λ-enantiomorphs. Three imidazole groups per Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) are hydrogen-bonded to three Cl(-) ions or, from the viewpoint of the Cl(-) ion, one Cl(-) ion is hydrogen-bonded to three neighbouring fac-[Fe(II)(HL(n-Pr))(3)](2+) cations. The 3 : 3 NH···Cl(-) hydrogen bonds between Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) and Cl(-) generate two kinds of assembly structures. The directions of the 3 : 3 NH···Cl(-) hydrogen bonds and hence the resulting assembly structures are determined by the size of the anion Y, though Y is not involved into the network structure and just accommodated in the cavity. Compound 1 has a 1D ladder structure giving a larger cavity, in which the Δ- and Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) enantiomorphs are bridged by two NH···Cl(-) hydrogen bonds. Compound 2 has a 2D network structure with a net unit of a cyclic trimer of {fac-[Fe(II)(HL(n-Pr))(3)](2+)···Cl(-)}(3) giving a smaller cavity, in which Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) species with the same chirality are linked by NH···Cl(-) hydrogen bonds to give a homochiral 2D network structure. Magnetic susceptibility and Mössbauer spectral measurements demonstrated that compound 1 showed an abrupt one-step spin crossover with 4.0 K thermal hysteresis of T(c↓) = 125.5 K and T(c↑) = 129.5 K and compound 2 showed no spin transition and stayed in the high-spin state over the 5-300 K temperature range.
Honorio-Felício, Nathalie; Carepo, Marta S P; de F Paulo, Tércio; de França Lopes, Luiz Gonzaga; Sousa, Eduardo H S; Diógenes, Izaura C N; Bernhardt, Paul V
2016-11-01
Conformational changes associated to sensing mechanisms of heme-based protein sensors are a key molecular event that seems to modulate not only the protein activity but also the potential of the Fe III/II redox couple of the heme domain. In this work, midpoint potentials (E m ) assigned to the Fe III/II redox couple of the heme domain of FixL from Rhizobium etli (ReFixL) in the unliganded and liganded states were determined by spectroelectrochemistry in the presence of inorganic mediators. In comparison to the unliganded ReFixL protein (+19mV), the binding to ligands that switch off the kinase activity induces a negative shift, i. e. E m =-51, -57 and -156mV for O 2 , imidazole and CN - , respectively. Upon binding to CO, which does not affect the kinase active, E m was observed at +21mV. The potential values observed for Fe III/II of the heme domain of ReFixL upon binding to CO and O 2 do not follow the expected trend based on thermodynamics, assuming that positive potential shift would be expected for ligands that bind to and therefore stabilize the Fe II state. Our results suggest that the conformational changes that switch off kinase activity upon O 2 binding have knock-on effects to the local environment of the heme, such as solvent rearrangement, destabilize the Fe II state and counterbalances the Fe II -stabilizing influence of the O 2 ligand. Copyright © 2016 Elsevier Inc. All rights reserved.
RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems.
Burcar, Bradley T; Barge, Laura M; Trail, Dustin; Watson, E Bruce; Russell, Michael J; McGown, Linda B
2015-07-01
Discovering pathways leading to long-chain RNA formation under feasible prebiotic conditions is an essential step toward demonstrating the viability of the RNA World hypothesis. Intensive research efforts have provided evidence of RNA oligomerization by using circular ribonucleotides, imidazole-activated ribonucleotides with montmorillonite catalyst, and ribonucleotides in the presence of lipids. Additionally, mineral surfaces such as borates, apatite, and calcite have been shown to catalyze the formation of small organic compounds from inorganic precursors (Cleaves, 2008 ), pointing to possible geological sites for the origins of life. Indeed, the catalytic properties of these particular minerals provide compelling evidence for alkaline hydrothermal vents as a potential site for the origins of life since, at these vents, large metal-rich chimney structures can form that have been shown to be energetically favorable to diverse forms of life. Here, we test the ability of iron- and sulfur-rich chimneys to support RNA oligomerization reactions using imidazole-activated and non-activated ribonucleotides. The chimneys were synthesized in the laboratory in aqueous "ocean" solutions under conditions consistent with current understanding of early Earth. Effects of elemental composition, pH, inclusion of catalytic montmorillonite clay, doping of chimneys with small organic compounds, and in situ ribonucleotide activation on RNA polymerization were investigated. These experiments, under certain conditions, showed successful dimerization by using unmodified ribonucleotides, with the generation of RNA oligomers up to 4 units in length when imidazole-activated ribonucleotides were used instead. Elemental analysis of the chimney precipitates and the reaction solutions showed that most of the metal cations that were determined were preferentially partitioned into the chimneys.
Kim, Wan Jung; Korthals, Keith A.; Li, Suhua; Le, Christine; Kalisiak, Jarosław; Sharpless, K. Barry; Fokin, Valery V.; Miyamoto, Yukiko
2017-01-01
ABSTRACT Giardia lamblia is an important and ubiquitous cause of diarrheal disease. The primary agents in the treatment of giardiasis are nitroheterocyclic drugs, particularly the imidazoles metronidazole and tinidazole and the thiazole nitazoxanide. Although these drugs are generally effective, treatment failures occur in up to 20% of cases, and resistance has been demonstrated in vivo and in vitro. Prior work had suggested that side chain modifications of the imidazole core can lead to new effective 5-nitroimidazole drugs that can combat nitro drug resistance, but the full potential of nitroheterocycles other than imidazole to yield effective new antigiardial agents has not been explored. Here, we generated derivatives of two clinically utilized nitroheterocycles, nitrothiazole and nitrofuran, as well as a third heterocycle, nitropyrrole, which is related to nitroimidazole but has not been systematically investigated as an antimicrobial drug scaffold. Click chemistry was employed to synthesize 442 novel nitroheterocyclic compounds with extensive side chain modifications. Screening of this library against representative G. lamblia strains showed a wide spectrum of in vitro activities, with many of the compounds exhibiting superior activity relative to reference drugs and several showing >100-fold increase in potency and the ability to overcome existing forms of metronidazole resistance. The majority of new compounds displayed no cytotoxicity against human cells, and several compounds were orally active against murine giardiasis in vivo. These findings provide additional impetus for the systematic development of nitroheterocyclic compounds with nonimidazole cores as alternative and improved agents for the treatment of giardiasis and potentially other infectious agents. PMID:28396548
Kim, Wan Jung; Korthals, Keith A; Li, Suhua; Le, Christine; Kalisiak, Jarosław; Sharpless, K Barry; Fokin, Valery V; Miyamoto, Yukiko; Eckmann, Lars
2017-06-01
Giardia lamblia is an important and ubiquitous cause of diarrheal disease. The primary agents in the treatment of giardiasis are nitroheterocyclic drugs, particularly the imidazoles metronidazole and tinidazole and the thiazole nitazoxanide. Although these drugs are generally effective, treatment failures occur in up to 20% of cases, and resistance has been demonstrated in vivo and in vitro Prior work had suggested that side chain modifications of the imidazole core can lead to new effective 5-nitroimidazole drugs that can combat nitro drug resistance, but the full potential of nitroheterocycles other than imidazole to yield effective new antigiardial agents has not been explored. Here, we generated derivatives of two clinically utilized nitroheterocycles, nitrothiazole and nitrofuran, as well as a third heterocycle, nitropyrrole, which is related to nitroimidazole but has not been systematically investigated as an antimicrobial drug scaffold. Click chemistry was employed to synthesize 442 novel nitroheterocyclic compounds with extensive side chain modifications. Screening of this library against representative G. lamblia strains showed a wide spectrum of in vitro activities, with many of the compounds exhibiting superior activity relative to reference drugs and several showing >100-fold increase in potency and the ability to overcome existing forms of metronidazole resistance. The majority of new compounds displayed no cytotoxicity against human cells, and several compounds were orally active against murine giardiasis in vivo These findings provide additional impetus for the systematic development of nitroheterocyclic compounds with nonimidazole cores as alternative and improved agents for the treatment of giardiasis and potentially other infectious agents. Copyright © 2017 American Society for Microbiology.
Imidazole as a parent π-conjugated backbone in charge-transfer chromophores
Kulhánek, Jiří
2012-01-01
Summary Research activities in the field of imidazole-derived push–pull systems featuring intramolecular charge transfer (ICT) are reviewed. Design, synthetic pathways, linear and nonlinear optical properties, electrochemistry, structure–property relationships, and the prospective application of such D-π-A organic materials are described. This review focuses on Y-shaped imidazoles, bi- and diimidazoles, benzimidazoles, bis(benzimidazoles), imidazole-4,5-dicarbonitriles, and imidazole-derived chromophores chemically bound to a polymer chain. PMID:22423270
Alea-Reyes, María E; Penon, Oriol; García Calavia, Paula; Marín, María J; Russell, David A; Pérez-García, Lluïsa
2018-07-01
Metalloporphyrins are extensively investigated for their ability to form reactive oxygen species and as potent photosensitisers for use in photodynamic therapy. However, their hydrophobicity generally causes solubility issues concerning in vivo delivery due to lack of distribution and low clearance from the body. Immobilising porphyrins on carriers, such as gold nanoparticles (GNP), can overcome some of these drawbacks. The mode of assembling the porphyrins to the carrier influences the properties of the resulting drug delivery systems. We describe the synthesis and characterisation of new porphyrin decorated water soluble GNP and we explore Zn-imidazole axial coordination as the mode of linking the porphyrin to the metallic core of the nanoparticles. Quantification of singlet oxygen production, toxicity in dark, cellular uptake by SK-BR-3 cells and phototoxicity have been assessed. Axial coordination limits the number of porphyrins on the gold surface, reduces the formation of aggregates, and diminishes metal exchange in the porphyrin, all of which contribute to enhance the efficiency of singlet oxygen generation from the immobilised porphyrin. In vitro experiments on SK-BR-3 cells reveal a fast uptake followed by more than 80% cell death after irradiation with low doses of light. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ray, Sibdas; Das, Aniruddha
2015-06-01
Reaction of 2-ethoxymethyleneamino-2-cyanoacetamide with primary alkyl amines in acetonitrile solvent affords 1-substituted-5-aminoimidazole-4-carboxamides. Single crystal X-ray diffraction studies of these imidazole compounds show that there are both anti-parallel and syn-parallel π-π stackings between two imidazole units in parallel-displaced (PD) conformations and the distance between two π-π stacked imidazole units depends mainly on the anti/ syn-parallel nature and to some extent on the alkyl group attached to N-1 of imidazole; molecules with anti-parallel PD-stacking arrangements of the imidazole units have got vertical π-π stacking distance short enough to impart stabilization whereas the imidazole unit having syn-parallel stacking arrangement have got much larger π-π stacking distances. DFT studies on a pair of anti-parallel imidazole units of such an AICA lead to curves for 'π-π stacking stabilization energy vs. π-π stacking distance' which have got similarity with the 'Morse potential energy diagram for a diatomic molecule' and this affords to find out a minimum π-π stacking distance corresponding to the maximum stacking stabilization energy between the pair of imidazole units. On the other hand, a DFT calculation based curve for 'π-π stacking stabilization energy vs. π-π stacking distance' of a pair of syn-parallel imidazole units is shown to have an exponential nature.
Synthetic bioactive novel ether based Schiff bases and their copper(II) complexes
NASA Astrophysics Data System (ADS)
Shabbir, Muhammad; Akhter, Zareen; Ismail, Hammad; Mirza, Bushra
2017-10-01
Novel ether based Schiff bases (HL1- HL4) were synthesized from 5-chloro-2-hydroxy benzaldehyde and primary amines (1-amino-4-phenoxybenzene, 4-(4-aminophenyloxy) biphenyl, 1-(4-aminophenoxy) naphthalene and 2-(4-aminophenoxy) naphthalene). From these Schiff bases copper(II) complexes (Cu(L1)2-Cu(L4)2)) were synthesized and characterized by elemental analysis and spectroscopic (FTIR, NMR) techniques. The synthesized Schiff bases and copper(II) complexes were further assessed for various biological studies. In brine shrimp assay the copper(II) complexes revealed 4-fold higher activity (LD50 3.8 μg/ml) as compared with simple ligands (LD50 12.4 μg/ml). Similar findings were observed in potato disc antitumor assay with higher activities for copper(II) complexes (IC50 range 20.4-24.1 μg/ml) than ligands (IC50 range 40.5-48.3 μg/ml). DPPH assay was performed to determine the antioxidant potential of the compounds. Significant antioxidant activity was shown by the copper(II) complexes whereas simple ligands have shown no activity. In DNA protection assay significant protection behavior was exhibited by simple ligand molecules while copper(II) complexes showed neutral behavior (neither protective nor damaging).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Ling, E-mail: qinling@hfut.edu.cn; Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093
2016-07-15
Two zinc coordination polymers {[Zn_2(TPPBDA)(oba)_2]·DMF·1.5H_2O}{sub n} (1), {[Zn(TPPBDA)_1_/_2(tpdc)]·DMF}{sub n} (2) have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. These complexes were characterized by elemental analyses and X-ray single-crystal diffraction analyses. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. These mononuclear or dinuclear cluster units are linked by mix-ligands, resulting in various degrees of interpenetration. In addition, the photoluminescent properties for TPPBDA ligand under different state and coordination polymersmore » have been investigated in detail. - Graphical abstract: Two zinc coordination polymers have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. In addition, the photoluminescent properties for TPPBDA ligand under different status and coordination polymers have been investigated in detail. Display Omitted - Highlights: • Two Zn coordination polymers based on mononuclear or dinuclear cluster units have been synthesized. • Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. • Compound 2 is a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. • The photoluminescent properties for TPPBDA with different state and two coordination polymers have been investigated.« less
Fuertes, Sara; Chueca, Andrés J; Arnal, Lorenzo; Martín, Antonio; Giovanella, Umberto; Botta, Chiara; Sicilia, Violeta
2017-05-01
New heteroleptic compounds of platinum(II)-containing cyclometalated N-heterocyclic carbenes, [PtCl(R-C^C*)(PPh 3 )] [R-CH^C*-κC* = 3-methyl-1-(naphthalen-2-yl)-1H-imidazol-2-ylidene (R-C = Naph; 1A), 1-[4-(ethoxycarbonyl)phenyl]-3-methyl-1H-imidazol-2-ylidene (R = CO 2 Et; 1B), and [Pt(R-C^C*)(py)(PPh 3 )]PF 6 (py = pyridine; R-C = Naph, 2A; R = CO 2 Et, 2B], have been prepared and fully characterized. All of them were obtained as the trans-(C*,PPh 3 ) isomer in high yields. The selectivity of their synthesis has been explained in terms of the degree of transphobia (T) of pairs of ligands in trans positions. X-ray diffraction studies on both 2A and 2B revealed that only in 2A, containing a C^C* with a more extended π system, do the molecules assemble themselves into head-to-tail pairs through intermolecular π···π contacts. The photophysical properties of 2A and 2B and those of the related compounds [Pt(NC-C^C*)(PPh 3 )L]PF 6 [NC-CH^C*-κC* = 1-(4-cyanophenyl)-3-methyl-1H-imidazol-2-ylidene; L = pyridine (py; 2C), 2,6-dimethylphenylisocyanide (CNXyl; 3C), and 2-mercapto-1-methylimidazole (MMI; 4C)] have been examined to analyze the influence of the R substituent on R-C^C* (R-C = Naph; R = CO 2 Et, CN) and that of the ancillary ligands (L) on them. Experimental data and time-dependent density functional theory calculations showed the similarity of the electronic features associated with R-C^C* (R = CN, CO 2 Et) and their difference with respect to R-C^C* (R-C = Naph). All of the compounds are very efficient blue emitters in poly(methyl methacrylate) films under an argon atmosphere, with QY values ranging from 68% (2B) to 93% (2C). In the solid state, the color of the emission changes to yellowish-orange for compounds 2A (λ max = 600 nm) and 3C (λ max = 590 nm) because of the formation of aggregates through intermolecular π···π interactions. 2C and 3C were chosen to fabricate fully solution-processed electroluminescent devices with blue-light (2C), yellow-orange-light (3C), and white-light (mixtures of 2C and 3C) emission from neat films of the compounds as emitting layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun; College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000; Bai, Chao
Eight Zn(II)-based coordination polymers, namely, [Zn{sub 2}L{sub 2}(2,2’-bipy)]{sub n}·nH{sub 2}O (1), [Zn{sub 2}L{sub 2}(phen)]{sub n}·nH{sub 2}O (2), [ZnL(phen)(H{sub 2}O)]{sub n} (3), [Zn{sub 3}L{sub 3}(4,4’-bipy)]{sub n} (4), [Zn{sub 2}L{sub 2}(4,4’-bipy){sub 2}]{sub n} [Zn{sub 2}L{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (5), [Zn{sub 4}L{sub 4}(bpp){sub 2}]{sub n} (6), [ZnL(bbi){sub 0.5}]{sub n} (7), [ZnL(bpz)]{sub n} (8) (H{sub 2}L=4,4’-([1,2-phenylenebis-(methylene)]bis(oxy))dibenzoic acid, 2,2’-bipy =2,2’-bipyridine, phen =1,10-phenanthroline, 4,4’-bpy=4,4’-bipyridine, bpp =1,3-bis(4-pyridyl)propane, bbi=1,4-bis(imidazol-1-yl)butane, bpz=3,3′,5,5′-tetramethyl-4,4′-bipyrazole), have been hydrothermally synthesized and structurally characterized. 1–8 display various coordination motifs with different entangled forms and conformations due to the effect of the assistant N-donor ligands. The photoluminescent properties of compounds 1–8 in solid statemore » were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for Cu{sup 2+} cations and CrO{sub 4}{sup 2-} anions, as well as detection ability for the different organic solvents and nitro explosives. These results indicated that it could be utilized as a multi-responsive luminescent sensor. Furthermore, compound 3 also shows good chemical resistance to both acidity and alkalinity solutions with pH ranging from 2 to 13. Thus, multi-photofunctionality and fluorescent response to pH have been combined in the 3, which is the first example in the Zn-based hybrid materials. - Graphical abstract: Eight new Zn(II)-based coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and different N-donor ligands have been hydrothermally synthesized through fixing the metal salts and the solvent systems. The photoluminescent properties of complexes 1−8 in solid state were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for Cu{sup 2+} cations and CrO{sub 4}{sup 2-} anions, as well as detection ability for the different organic solvents and nitro explosives, in which indicates it could be utilized as a multi-responsive luminescent sensor. Furthermore, compound 3 also shows good chemical resistance to both acidity and alkalinity solutions with pH ranging from 2 to 13. Thus, multiphotofunctionality and fluorescent response to pH have been combined in the 3, which is the first example in the Zn-based hybrid materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadan, M.J.
/sup 125/I-Labeled receptor ligands can be synthesized with specific activities exceeding 2000 Ci/mmol, making them nearly 70-fold more sensitive in receptor site assays than (mono) tritiated ligands. We have synthesized and characterized /sup 125/I-lysergic acid diethylamide (/sup 125/I-LSD), the first radioiodinated ligand for serotonin receptor studies. The introduction of /sup 125/I at the 2 position of LSD increased both the affinity and selectivity of this compound for serotonin 5-HT/sub 2/ receptors in rat cortex. The high specific activity of /sup 125/I-LSD and its high ratio of specific to nonspecific binding make this ligand especially useful for autoradiographic studies of serotoninmore » receptor distribution. We have found that /sup 125/I-LSD binds with high affinity to a class of serotonin receptors in the CNS of the marine mollusk Aplysia californica.« less
Sumrra, Sajjad H; Chohan, Zahid H
2013-12-01
The condensation reaction of 3,5-diamino-1,2,4-triazole with methoxy-, chloro-, bromo-, iodo- and nitro-substituted 2-hydroxybenzaldehydes formed triazole Schiff bases (L(1))-(L(6)). The synthesized ligands have been characterized through physical, spectral and analytical data. Furthermore, the reaction of synthesized Schiff bases with the oxovanadium(IV) sulphate in (1:2) (metal:ligand) molar ratio afforded the oxovanadium(IV) complexes (1)-(6). All the complexes were non-electrolytic and showed a square-pyramidal geometry. The synthesized compounds have been screened for in-vitro antibacterial, antifungal and brine shrimp bioassay. The bioactivity data showed the complexes to be more active than the original Schiff bases.
NASA Astrophysics Data System (ADS)
Bharti, Sulakshna; Choudhary, Mukesh; Mohan, Bharti; Rawat, S. P.; Sharma, S. R.; Ahmad, K.
2018-07-01
A series of new dimer complexes of copper (II) and nickel (II) were designed and synthesized using the Schiff base ligands which was formed by the condensation of 2-aminothiophenol with 2- methoxybenzaldehyde, 3-formylbenzonitrile and 3-bromo-2-hydroxy-5-nitrobenzaldehyde, respectively. The synthesized metallic complexes were characterized by using different physicochemical and spectroscopic methods. The most plausible geometry for the 1:2 complexes appeared to be distorted square-planar or tetrahedral environments. All the synthesized metal complexes are found to be binuclear and confirmed by elemental analyses, magnetic susceptibility measurements and ESR spectroscopy. The Schiff base ligands (HL1/HL2/H2L) were coordinated to the metal ions through the ONS/SNN and/or N, S donor atoms. In order to prevent the oxidation of the thiol group during the formation of Schiff bases and its complexes, all of the reactions were carried out under an inert atmosphere of argon. The X-ray structures of the Schiff base ligands showed that in the crystalline form the SH groups were oxidized to produce a disulfide Schiff bases as a new double Schiff base ligands (L1a/L2a/H2La). The L1b ligand is a bicyclic ring system of N, S-containing heterocyclic. The crystal structures of the double Schiff bases were determined by single crystal X-ray diffraction. The molar conductivity values of the complexes in DMSO implied the presence of non-electrolyte species. The SOD-like activity of Schiff bases and its complexes were investigated by NBT-DMSO assay and IC50 values were evaluated. Their biological properties have also been studied. These complexes were also tested for their in vitro antibacterial screening activities against three bacteria (Streptococcus aureus, Salmonella typhi, and Escherichia coli) comparing with the Schiff base ligands. Most of the complexes have higher antibacterial activities than those of the free Schiff bases, double Schiff bases and the control.
Jansen, Eveline; Jongbloed, Linda S; Tromp, Dorette S; Lutz, Martin; de Bruin, Bas; Elsevier, Cornelis J
2013-09-01
We herein report on the application and structural investigation of a new set of complexes that contain bidentate N-heterocyclic carbenes (NHCs) and primary amine moieties of the type [M(arene)Cl(L)] [M=Ru, Ir, or Rh; arene=p-cymene or pentamethylcyclopentadienyl; L=1-(2-aminophenyl)-3-(n-alkyl)imidazol-2-ylidine]. These complexes were tested and compared in the hydrogenation of acetophenone with hydrogen. Structural variations in the chelate ring size of the heteroditopic ligand revealed that smaller chelate ring sizes in combination with ring conjugation in the ligand are beneficial for the activity of this type of catalyst, favoring an inner-sphere coordination pathway. Additionally, increasing the steric bulk of the alkyl substituent on the NHC aided the reaction, showing almost no induction period and formation of a more active catalyst for the n-butyl complex relative to complexes with smaller Me and Et substituents. As is common in hydrogenation reactions, the activity of the complexes decreases in the order Ru>Ir>Rh. The application of [Ru(p-cym)Cl(L)]PF6 , which outperforms its reported analogues, has been successfully extended to the hydrogenation of more challenging biomass-inspired substrates. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Benhassine, Anfel; Boulebd, Houssem; Anak, Barkahem; Bouraiou, Abdelmalek; Bouacida, Sofiane; Bencharif, Mustapha; Belfaitah, Ali
2018-05-01
This work presents a combined experimental and theoretical study of two new metal-carboxylate coordination compounds. These complexes were prepared from (1-methyl-1H-benzimidazol-2-yl)methanol under mild conditions. The structures of the prepared compounds were characterized by single-crystal X-ray analysis, FTIR and UV-Vis spectroscopy. In the Cupper complex, the Cu(II) ion is coordinated by two ligands, which act as bidentate chelator through the non-substituted N and O atoms, and two carboxylicg oxygen atoms, displaying a hexa-coordinated compound in a distorted octahedral geometry, while in the Zinc complex the ligand is ligated to the Zn(II) ion in monodentate fashion through the N atom, and the metal ion is also bonded to carboxylic oxygen atoms. The tetra-coordinated compound displays a distorted tetrahedral shape. The density functional theory calculations are carried out for the determination of the optimized structures. The electronic transitions and fundamental vibrational wave numbers are calculated and are in good agreement with experimental. In addition, the ligand and its Cu(II) and Zn(II) complexes were screened and evaluated for their potential as DPPH radical scavenger.
NASA Astrophysics Data System (ADS)
Iftikhar, Bushra; Javed, Kanwal; Khan, Muhammad Saif Ullah; Akhter, Zareen; Mirza, Bushra; Mckee, Vickie
2018-03-01
Three new Schiff base ligands were synthesized by the reaction of Salicylaldehyde with semi-aromatic diamines, prepared by the reduction of corresponding dinitro-compounds, and were further used for the formation of complexes with Cu(II) metal ion. The structural features of the synthesized compounds were confirmed by their physical properties and infrared, electronic and NMR spectroscopic techniques. The studies revealed that the synthesized Schiff bases existed as tetradentate ligands and bonded to the metal ion through the phenolic oxygen and azomethine nitrogen. One of the dinitro precursors was also analyzed by single crystal X-ray crystallography, which showed that it crystallizes in monoclinic system with space group P2/n. The thermal behavior of the Cu(II) complexes was determined by thermogravimetric analysis (TGA) and kinetic parameters were evaluated from the data. Schiff base ligands, their precursors and metal complexes were also screened for antibacterial, antifungal, antitumor, Brine shrimp lethality, DPPH free radical scavenging and DNA damage assays. The results of these analyses indicated the substantial potential of the synthesized Schiff bases, their precursors and Cu(II) complexes in biological field as future drugs.
Effects of Imidazole Deprotonation on Vibrational Spectra of High-Spin Iron(II) Porphyrinates
Hu, Chuanjiang; Peng, Qian; Silvernail, Nathan J.; Barabanschikov, Alexander; Zhao, Jiyong; Alp, E. Ercan; Sturhahn, Wolfgang; Sage, J. Timothy; Scheidt, W. Robert
2013-01-01
The effects of the deprotonation of coordinated imidazole on the dynamics of five-coordinate high-spin iron(II) porphyrinates have been investigated using nuclear resonance vibrational spectroscopy. Two complexes have been studied in detail with both powder and oriented single-crystal measurements. Changes in the vibrational spectra are clearly related to structural differences in the molecular structures that occur when imidazole is deprotonated. Most modes involving the simultaneous motion of iron and imidazolate are unresolved but the one mode that is resolved is found at higher frequency in the imidazolates. These out-of-plane results are in accord with earlier resonance Raman studies of heme proteins. We also show the imidazole vs. imidazolate differences in the in-plane vibrations that are not accessible to resonance Raman studies. The in-plane vibrations are at lower frequency in the imidazolate derivatives; the doming mode shifts are inconclusive. The stiffness, an experimentally determined force constant that averages the vibrational details to quantify the nearest-neighbor interactions, confirms that deprotonation inverts the relative strengths of axial and equatorial coordination. PMID:23470205
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatfield, J.M.; Armstrong, D.J.
1987-07-01
The effects of metal ions on cytokinin oxidase activity extracted from callus tissues of Phaseolus vulgaris L. cv Great Northern have been examined using an assay based on the oxidation of N/sup 6/-(..delta../sup 2/-isopentenyl)-adenine-2,8-/sup 3/H (i/sup 6/ Ade) to adenine (Ade). The addition of cupric ions to reaction mixtures containing imidazole buffer markedly enhanced cytokinin oxidase activity. In the presence of optimal concentrations of copper and imidazole, cytokinin oxidase activity was stimulated more than 20-fold. The effect was enzyme dependent, specific for copper, and observed only in the presence of imidazole. The substrate specificity of the copper-imidazole enhanced reaction, asmore » judged by substrate competition tests, was the same as that observed in the absence of copper and imidazole. Similarly, in tests involving DEAE-cellulose chromatography, elution profiles of cytokinin oxidase activity determined using a copper-imidazole enhanced assay were identical to those obtained using an assay without copper and imidazole. On the basis of these results, the addition of copper and imidazole to reaction mixtures used to assay for cytokinin oxidase activity is judged to provide a reliable and specific assay of greatly enhanced sensitivity for the enzyme. The mechanism by which copper and imidazole enhance cytokinin oxidase activity is not certain, but the reaction catalyzed by the enzyme was not inhibited by anaerobic conditions when these reagents were present. This observation suggests that copper-imidazole complexes are substituting for oxygen in the reaction mechanism by which cytokinin oxidase effects cleavage of the N/sup 6/-side chain of i/sup 6/ Ade.« less
NASA Astrophysics Data System (ADS)
Abd El-Halim, Hanan F.; Mohamed, Gehad G.; Khalil, Eman A. M.
2017-10-01
A series of mixed ligand complexes were prepared from the Schiff base (L1) as a primary ligand, prepared by condensation of oxamide and furan-2-carbaldehyde, and 1,10-phenanthroline (1,10-phen) as a secondary ligand. The Schiff base ligand and its mixed ligand chelates were characterized based on elemental analysis, IR, 1H NMR, thermal analysis, UV-Visible, mass, molar conductance, magnetic moment. X-ray diffraction, solid reflectance and ESR also have been studied. The mixed ligand complexes were found to have the formulae of [M(L1) (1,10-phen)]Clm.nH2O (M = Cr(III) and Fe(III) (m = 3) (n = 0); M = Mn(II), Cu(II) and Cd(II) (m = 2) (n = 0); and M = Co(II) (m = 2) (n = 1), Ni(II) (m = 2) (n = 2) and Zn(II) (m = 2) (n = 3)) and that the geometrical structure of the complexes were octahedral. The parameters of thermodynamic using Coats-Redfern and Horowitz-Metzger equations were calculated. The synthesized Schiff base ligand, 1,10-phenanthroline ligand and Their mixed ligand complexes were also investigated for their antibacterial and antifungal activity against bacterial species (Gram-Ve bacteria: Pseudomonas aeruginosa and Escherichia coli) and (Gram + Ve bacteria: Bacillus subtilis and Streptococcus pneumonia) and fungi (Aspergillus fumigates and Candida albicans). The anticancer activity of the new compounds had been tested against breast (MFC7) and colon (HCT-116) cell lines. The results showed high activity for the synthesized compounds.
Facile Syntheses of Monodisperse Ultra-Small Au Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertino, Massimo F.; Sun, Zhong-Ming; Zhang, Rui
2006-11-02
During our effort to synthesize the tetrahedral Au20 cluster, we found a facile synthetic route to prepare monodisperse suspensions of ultra-small Au clusters AuN (N<12) using diphosphine ligands. In our monophasic and single-pot synthesis, a Au precursor ClAu(I)PPh3 and a bidentate phosphine ligand P(Ph)2(CH2)MP(Ph)2 (Ph = phenyl) are dissolved in an organic solvent. Au(I) is reduced slowly by a borane-tert-butylamine complex to form Au clusters coordinated by the diphosphine ligand. The Au clusters are characterized by both high resolution mass spectrometry and UV-Vis absorption spectroscopy. We found that the mean cluster size obtained depends on the chain length M ofmore » the ligand. In particular, a single monodispersed Au11 cluster is obtained with the P(Ph)2(CH2)3P(Ph)2 ligand, whereas P(Ph)2(CH2)MP(Ph)2 ligands with M = 5 and 6 yield Au10 and Au8 clusters. The simplicity of our synthetic method makes it suitable for large-scale production of nearly monodisperse ultrasmall Au clusters. It is suggested that diphosphines provide a set of flexible ligands to allow size-controlled synthesis of Au nanoparticles.« less
Single step signal group-imidazole labeling of organic phosphate groups under aqueous conditions
Giese, Roger W.; Wang, Poguang
1996-01-01
Compounds and methods for single step, covalent labeling of the phosphate group of an organic substance under aqueous conditions are described. The labeling compound includes any kind of detectable signal group covalently bound to an imidazole moiety, which can be imidazole or a substituted imidazole. A preferred labeling compound has the formula ##STR1##
Development of immobilized ligands for actinide separations. Final report, June 1991--May 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paine, R.T.
1994-06-01
Primary goals during this grant period were to (1) synthesize new bifunctional chelating ligands, (2) characterize the structural features of the Ln and An coordination complexes formed by these ligands, (3) use structural data to iteratively design new classes of multifunctional ligands, and (4) explore additional routes for attachment of key ligands to solid supports that could be useful for chromatographic separations. Some highlights of recently published work as well as a summary of submitted, unpublished and/or still in progress research are outlined.
Synthesis of 3-alkyl naphthalenes as novel estrogen receptor ligands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Jing; Akwabi-Ameyaw, Adwoa; Britton, Jonathan E.
2009-06-24
A series of estrogen receptor ligands based on a 3-alkyl naphthalene scaffold was synthesized using an intramolecular enolate-alkyne cycloaromatization as the key step. Several of these compounds bearing a C6-OH group were shown to be high affinity ligands. All compounds had similar ER{alpha} and ER{beta} binding affinity ranging from micromolar to low nanomolar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumakov, Yu. M.; Tsapkov, V. I., E-mail: vtsapkov@gmail.com; Antosyak, B. Ya.
Nitrato-4-bromo-2-[(2-hydroxyethylimino)methyl]phenolatoimidazolecopper and nitrato-4-chloro-2-[(2-hydroxyethylimino)methyl]phenolatoimidazolecopper were synthesized and studied by X-ray diffraction. The crystals are isostructural. The coordination polyhedron of the copper atom can be described as a distorted square pyramid whose basal plane is formed by the phenolic and alcoholic oxygen atoms and the nitrogen atom of the monodeprotonated tridentate azomethine molecule and the imidazole nitrogen atom. The apex of the copper polyhedron is occupied by the oxygen atom of the nitrato group. The complexes are linked together by hydrogen bonds with the participation of the nitrato groups to form a three-dimensional framework.
Thiolate/disulfide organic redox couples for efficient organic dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Li, Wen-Yan; Zheng, Hai-Kuo; Wang, Jian-Wen; Zhang, Le-Le; Han, Hui-Min; Wu, Ming-Xing
2017-08-01
A series of organic thiolate/disulfide redox couples based on benz-imidazole/othiazole/oxazole have been synthesized and applied to dye-sensitized solar cells (DSCs). Platinum (Pt) and carbon material are introduced as counter electrode (CE) catalysts towards this kind of organic redox couples regeneration and the photovoltaic performance of the DSCs using this organic redox couples has been investigated. The carbon CE shows high catalytic activity than Pt for the organic redox couples and the DSCs using carbon CE exhibit much higher efficiencies than those of the Pt CE-based devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Bo-Wen, E-mail: bowenhu@hit.edu.cn; Zheng, Xiang-Yu; Ding, Cheng
2015-12-15
Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L){sub 2}]{sub n} (1) and [Co{sub 3}(L){sub 4}(N{sub 3}){sub 2}·2MeOH]{sub n} (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co{sub 3}] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groupsmore » are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shearer, J.; Szalai, V
Oxidative stress has been suggested to contribute to neuronal apoptosis associated with Alzheimer's disease (AD). Copper may participate in oxidative stress through redox-cycling between its +2 and +1 oxidation states to generate reactive oxygen species (ROS). In vitro, copper binds to the amyloid-? peptide of AD, and in vivo, copper is associated with amyloid plaques characteristic of AD. As a result, the A?CuI complex may be a critical reactant involved in ROS associated with AD etiology. To characterize the A?CuI complex, we have pursued X-ray absorption (XAS) and electron paramagnetic resonance (EPR) spectroscopy of A?CuII and A?CuI (produced by ascorbatemore » reduction of A?CuII). The A?CuII complex Cu K-edge XAS spectrum is indicative of a square-planar CuII center with mixed N/O ligation. Multiple scattering analysis of the extended X-ray absorption fine structure (EXAFS) data for A?CuII indicates that two of the ligands are imidazole groups of histidine ligands, indicating a (NIm)2(N/O)2 CuII ligation sphere for A?CuII. After reduction of the A?CuII complex with ascorbate, the edge region decreases in energy by 4 eV. The X-ray absorption near-edge spectrum region of A?CuI displays an intense pre-edge feature at 8984.1(2) eV. EXAFS data fitting yielded a two-coordinate geometry, with two imidazole ligands coordinated to CuI at 1.877(2) A in a linear geometry. Ascorbate reduction of A?CuII under inert atmosphere and subsequent air oxidation of A?CuI to regenerate A?CuII was monitored by low-temperature EPR spectroscopy. Slow reappearance of the A?CuII EPR signal indicates that O2 oxidation of the A?CuI complex is kinetically sluggish and A? damage is occurring following reoxidation of A?CuI by O2. Together, these results lead us to hypothesize that CuI is ligated by His13 and His14 in a linear coordination environment in ??, that A? may be playing a neuroprotective role, and that metal-mediated oxidative damage of A? occurs over multiple redox cycles.« less
NASA Astrophysics Data System (ADS)
El-Boraey, Hanaa A.; EL-Gammal, Ohyla A.
2015-03-01
Novel tetraamidemacrocyclic 15-membered ligand [L] i.e. naphthyl-dibenzo[1,5,9,12]tetraazacyclopentadecine-6,10,11,15-tetraoneand its transition metal complexes with Fe(II), Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On the basis of analytical, spectral (IR, MS, UV-Vis, 1H NMR and EPR) and thermal studies distorted octahedral or square planar geometry has been proposed for the complexes. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.27-2.7, 8.33-31.1 μg/mL, respectively) showed potent antitumor activity, towards the former cell lines comparable with their ligand (IC50 = 13, 26 μg/mL, respectively). The results show that the activity of the ligand towards breast cancer cell line becomes more pronounced and significant when coordinated to the metal ion.
40 CFR 721.4468 - 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1H-Imidazole, 2-ethyl-4,5-dihydro-4... Specific Chemical Substances § 721.4468 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1H-imidazole...
NASA Astrophysics Data System (ADS)
Khan, Burhan; Shah, Muhammad Raza; Rabnawaz, Muhammad
2018-03-01
Macrocycles with ultra dense functionalities are very useful but are difficult to synthesize. In this study, we report six novel macrocycles bearing a pincer ligand alone or a combination of pincer-calixarenes, and pincer-fluorene moieties. Click chemistry was utilized to synthesize the desired macrocycles in good yields. These macrocycles were fully characterized using mass spectrometry (EI-MS, ESI-MS, and MALDI-TOF MS), and NMR spectroscopy. These macrocycles are under investigations as size-selective and recyclable catalysts for various chemical transformations.
Jin, Cheng Hua; Krishnaiah, Maddeboina; Sreenu, Domalapally; Subrahmanyam, Vura Bala; Park, Hyun-Ju; Park, So-Jung; Sheen, Yhun Yhong; Kim, Dae-Kee
2014-05-01
A series of 4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5(3)-(6-methylpyridin-2-yl)imidazoles and -pyrazoles 14a-c, 15a-c, 16a, 16b, 19a-d, 21a, and 21b has been synthesized and evaluated for their ALK5 inhibitory activity in an enzyme assay and in a cell-based luciferase reporter assay. Among them, the pyrazole derivative 21b inhibited ALK5 phosphorylation with an IC50 value of 0.018 μM and showed 95% inhibition at 0.03 μM in a luciferase reporter assay using HaCaT cells permanently transfected with p3TP-luc reporter construct. The 21b showed a high selectivity index of 284 against p38α MAP kinase. The binding pose of 21b generated by docking analysis reveals that it fits well into the ATP binding cavity of ALK5 by forming several hydrogen bond interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nozeret, Karine; Loll, François; Cardoso, Gildas Mouta; Escudé, Christophe; Boutorine, Alexandre S
2018-06-01
Pericentromeric heterochromatin plays important roles in controlling gene expression and cellular differentiation. Fluorescent pyrrole-imidazole polyamides targeting murine pericentromeric DNA (major satellites) can be used for the visualization of pericentromeric heterochromatin foci in live mouse cells. New derivatives targeting human repeated DNA sequences (α-satellites) were synthesized and their interaction with target DNA was characterized. The possibility to use major satellite and α -satellite binding polyamides as tools for staining pericentromeric heterochromatin was further investigated in fixed and living mouse and human cells. The staining that was previously observed using the mouse model was further characterized and optimized, but remained limited regarding the fluorophores that can be used. The promising results regarding the staining in the mouse model could not be extended to the human model. Experiments performed in human cells showed chromosomal DNA staining without selectivity. Factors limiting the use of fluorescent polyamides, in particular probe aggregation in the cytoplasm, were investigated. Results are discussed with regards to structure and affinity of probes, density of target sites and chromatin accessibility in both models. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
You, Linna; He, Man; Chen, Beibei; Hu, Bin
2017-11-17
In this work, zeolitic imidazolate framework-8 (ZIF-8)/poly (methyl methacrylate-ethyleneglycol dimethacrylate) (MMA-EGDMA) composite monolith was in situ synthesized on stir bar by one-pot polymerization. Compared with the neat monolith, ZIF-8/poly(MMA-EGDMA) composite monolith has larger surface area and pore volume. It also exhibits higher extraction efficiency for target phytohormones than poly(MMA-EGDMA) monolith and commercial polyethylene glycol (PEG) coated stir bar. Based on it, a method of ZIF-8/poly(MMA-EGDMA) monolith coated stir bar sorptive extraction (SBSE)-high performance liquid chromatography-ultraviolet detection (HPLC-UV) was established for the analysis of five phytohormones in apple and pear samples. The developed method exhibited low limits of detection (0.11-0.51μg/L), wide linear range (0.5-500μg/L) and good recoveries (82.7-111%), which demonstrated good application potential of the ZIF-8/monolith coated stir bar in trace analysis of organic compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery.
Wang, Linlin; Zhu, Hongli; Shi, Ying; Ge, You; Feng, Xiaomiao; Liu, Ruiqing; Li, Yi; Ma, Yanwen; Wang, Lianhui
2018-06-07
Micromotors hold promise as drug carriers for targeted drug delivery owing to the characteristics of self-propulsion and directional navigation. However, several defects still exist, including high cost, short movement life, low drug loading and slow release rate. Herein, a novel catalytic micromotor based on porous zeolitic imidazolate framework-67 (ZIF-67) synthesized by a greatly simplified wet chemical method assisted with ultrasonication is described as an efficient anticancer drug carrier. These porous micromotors display effective autonomous motion in hydrogen peroxide and long durable movement life of up to 90 min. Moreover, the multifunctional micromotor ZIF-67/Fe3O4/DOX exhibits excellent performance in precise drug delivery under external magnetic field with high drug loading capacity of fluorescent anticancer drug DOX up to 682 μg mg-1 owing to its porous nature, high surface area and rapid drug release based on dual stimulus of catalytic reaction and solvent effects. Therefore, these porous ZIF-67-based catalytic micromotors combine the domains of metal-organic frameworks (MOFs) and micomotors, thus developing potential resources for micromotors and holding great potential as label-free and precisely controlled high-quality candidates of drug delivery systems for biomedical applications.
Hu, Yang; Liu, Lei; Liu, Guang-Lu; Tu, Xiao; Wang, Gao-Xue; Ling, Fei
2017-08-01
To control the parasitic disease of Dactylogyrus intermedius, a series of new arctigenin derivatives were designed, synthesized and tested in our study. The anthelmintic activity of most of the derivatives ranged from 1 to 10mg/L. Compared to traditional drug praziquantel (EC 50 =2.69mg/L), ether derivatives 2g and 2h exhibited slightly higher anti-parasitic activity, with the EC 50 values of 2.48 and 1.52mg/L, respectively. Furthermore, the arctigenin-imidazole hybrids 4a and 4b also removed D. intermedius effectively, with the EC 50 values of 2.13 and 2.07mg/L, respectively. The structure-activity relationship analysis indicated that four carbon atoms length of linker and imidazole substitute group could significantly increase the anthelmintic activity, and reduced the toxicity. Through the scanning electron microscope observation, compounds 4a and 4b caused the D. intermedius tegumental damage such as intensive wrinkles, holes and nodular structures. Overall, the structural optimization analysis of arctigenin suggested that 4a and 4b can be used for preventing and controlling Dactylogyrus infections and considered as promising lead compounds for the development of commercial drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ju, Liang; Cailin, Fang; Wenlan, Wu; Pinghua, Yu; Jiayu, Gao; Junbo, Li
2017-02-25
As a new kind of drug carries, pH-sensitive liposomes have been widely studied in tumor therapy for their advantages of target ability and sustained-release. Here, we synthesized a pH-sensitive material, N-(3-Aminopropyl)imidazole-cholesterol (IM-Chol) and prepared a novel pH-sensitive liposomes using IM-Chol and phosphatidylcholine. IM-Chol was synthesized through amidation reaction between the amino group of N-(3-Aminopropyl)imidazole and acyl chloride group of cholesteryl chloroformate in a weak base solution. Optimal conditions to prepare liposomes were obtained by the orthogonal experiment with the higher encapsulation efficiency as the evaluation indicator. The properties of liposomes, such as particle size, zeta potential, morphology, encapsulation efficiency, drug release behavior and in vitro cell toxicity were evaluated by transmission electron microscopy (TEM), dynamic light scattering (DLS) and MTT assay respectively. The results showed that the average particle size of IM-Chol liposomes was 141nm (PDI 0.323). Liposomes can assemble into uniform spheres at pH 7.4, but under the condition of pH 5.0, the spherical structure of IM-Chol liposomes was broken, exhibiting pH-sensitive property. In vitro drug releasing studies demonstrated the controlled-release behavior of the curcumin (CUR) in the IM-Chol liposomes. The cumulative release of CUR reached to 72.5% in the first 24h at pH 5.0, faster than that at pH 7.4, which confirmed that the drug carrier displayed pH-sensitive release behaviors. In addition, the MTT assay was employed to test the cytotoxicity of IM-Chol liposomes and CUR IM-Chol liposomes. All cell viabilities were greater than 80% after incubating for 24h, even up to the highest dose of 500mg/L, indicating that IM-Chol liposomes had good biocompatibility. The tumor inhibitory results towards EC109 cells of free CUR and CUR-loaded IM-Chol liposomes indicated that IM-Chol liposomes indeed enhanced the cell killing effect of CUR. These results showed that the novel IM-Chol liposomes prepared in this paper had pH-sensitive property and were expected to play a huge potential in tumor treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Lalrempuia, Ralte; Breivik, Frida; Törnroos, Karl W; Le Roux, Erwan
2017-06-27
Tetravalent zirconium complexes supported by tridentate bis-phenolate imidazolidin-2-ylidene (L1), imidazol-2-ylidene (L2) and benzimidazol-2-ylidene (L3) NHC ligands were synthesized and evaluated as precursors for the copolymerization of cyclohexene oxide (CHO) with CO 2 . While the reactivity of the imidazolidinium [H 3 L1] chloride salt with Zr(OiPr) 4 (HOiPr), and subsequent ligand exchanges with either (CH 3 ) 3 SiCl or LiOiPr lead to a series of heteroleptic compounds (κ 3 -O,C,O-L1)Zr(X) 2 (THF) (X = Cl, OiPr), both imidazolium [H 3 L2] and benzimidazolium [H 3 L3] chloride salts give a mixture of homoleptic (κ 3 -O,C,O-NHC) 2 Zr and zwitterionic (κ 2 -O,O-HL)ZrCl 2 (OiPr) compounds along with traces or the absence of the heteroleptic intermediate (κ 3 -O,C,O-NHC)Zr(Cl)(OiPr)(THF). Such dissimilar reactivity between the unsaturated and saturated NHC ligands is predominantly ascribed to the increased acidity of azolium salts along with the π-donor strength of the C carbene in L2 and L3-Zr moieties. The reactivity with the more acidic azolium salts (H 3 L2/3) and the destabilized Zr-X trans to NHC carbene bond results in a significant increase in the amount of homoleptic compounds generating HCl. The released HCl reacts preferentially with the heteroleptic intermediates having non-planar NHC ligands (i.e. L2/3) promoting the formation of zwitterionic complexes. The in situ deprotonation of the isolated zwitterionic (κ 2 -O,O-HL3)ZrCl 2 (OiPr) compound by using Ag 2 O gives the homoleptic complex as the major component along with a bimetallic hydroxo-bridged [(κ 3 -O,C,O-L3)Zr(μ-OH)(OiPr)] 2 compound. Of particular interest is that only the heteroleptic NHC-Zr(iv) complexes were identified to be active and highly selective towards the copolymerization of CHO with CO 2 independently of the co-catalysts used (both anionic and neutral) under mild conditions (P CO 2 < 1 bar, T = 60 °C), and gave atactic and completely alternating copolymers in a controlled manner (M w /M n ≈ 1.3-1.8). In contrast, the isolated homoleptic, zwitterionic and bimetallic zirconium species were found to be inactive under similar reaction conditions. Although the activity found for NHC-Zr(iv) complexes is nearly of the same order of magnitude as that of the NHC-Ti(iv) analogues, these results are the first examples of tetravalent zirconium complexes achieving high selectivity (99% in PCHC) in the catalyzed copolymerization of CHO with CO 2 .
NASA Astrophysics Data System (ADS)
El-Taib Heakal, F.; Rizk, S. A.; Elkholy, A. E.
2018-01-01
Corrosion of metallic constructions is a serious problem in most industries worldwide that can be controlled via addition of special chemicals having adsorption capability on metal surfaces and hence isolating it from the aggressive environment. These chemicals are characterized by being rich in functional groups containing free lone pairs of electrons and/or π-electrons. In the present study four newly imidazole-pyrimidine based ionic derivatives have been synthesized and their structures were characterized by means of elemental analysis and different spectroscopic techniques. Quantum chemical calculations were carried out to give insights into the structural and electronic characteristics of these fabricated compounds. Monte Carlo simulation was also applied to shed the light on our prepared corrosion inhibitor molecules by examining their aptitude to adsorb on iron surface. Our ultimate goal is to help industries in fighting corrosion by providing them with a cheap and efficient anti-corrosion molecules.
NASA Astrophysics Data System (ADS)
Suresh Kumar, G. S.; Seethalakshmi, P. G.; Bhuvanesh, N.; Kumaresan, S.
2013-02-01
Three organic cocrystals namely, caffeine:p-formylphenoxyacetic acid [(caf)(p-fpaa)] (1) caffeine:o-formylphenoxyacetic acid monohydrate [(caf)(o-fpaa)]H2O (2) and caffeine:p-formylphenoxypropionic acid [(caf)(p-fppa)] (3) were synthesized and studied by FT-IR, NMR, and single crystal XRD studies. The crystal system of cocrystal [(caf)(p-fpaa)] (1) is monoclinic with space group P21/n and Z = 16, that of cocrystal [(caf)(o-fpaa)]H2O (2) is triclinic with space group P - 1 and Z = 2, and that of cocrystal [(caf)(p-fppa)] (3) is monoclinic with space group P21/c and Z = 4. The imidazole-carboxylic acid synthon is observed in all the three cocrystals. The intermolecular hydrogen bonds, Osbnd H···N and π-π interactions together play a major role in stabilizing the crystal structure of all the three cocrystals. The biological activities of crystals 1-3 were studied.
Synthesis and testing of hypergolic ionic liquids for chemical propulsion
NASA Astrophysics Data System (ADS)
Stovbun, S. V.; Shchegolikhin, A. N.; Usachev, S. V.; Khomik, S. V.; Medvedev, S. P.
2017-06-01
Synthesis of new highly energetic ionic liquids (ILs) is described, and their hypergolic ignition properties are tested. The synthesized ILs combine the advantages of conventional rocket propellants with the energy characteristics of acetylene derivatives. To this end, N-alkylated imidazoles (alkyl = ethyl, butyl) have been synthesized and alkylated with propargyl bromide. The desired ionic liquids have been produced by metathesis using Ag dicyanamide. Modified hypergolic drop tests with white fuming nitric acid have been performed for N-ethyl (IL-1) and N-butyl propargylimidazolium (IL-2) ionic liquids. In the modified drop tests, high-speed shadowgraph imaging is used to visualize the process, and the temperature rise due to ignition is monitored with a two-color photodetector. It is shown that the ignition delay is shorter for IL-1 as compared to IL-2. The ignition of IL-1 occurs in two stages, whereas the combustion of IL-2 proceeds smoothly without secondary flashes.
NASA Astrophysics Data System (ADS)
Majumdar, Dhrubajyoti; Biswas, Jayanta Kumar; Mondal, Monojit; Surendra Babu, M. S.; Metre, Ramesh K.; Das, Sourav; Bankura, Kalipada; Mishra, Dipankar
2018-03-01
A series of dinuclear Zn(II) complexes [Zn2 (L1) (CH3OH)2(SCN) (OAc)](1), [Zn2 (L1) (CH3OH)2(N3)2](2) and [Zn2 (L1) (Cl)2(CH3OH)]·CH3OH (3) have been synthesized by the reaction of compartmental Schiff base ligand (H2L1) [N,N‧-Bis(3-ethoxysalicylidenimino)-1,3-diaminopropane] with Zn(OAc)2·2H2O in presence of coligand like KSCN, NaN3 and NaCl respectively. X-ray diffraction analysis revealed that all the complexes are neutral and possess a 4-membered Zn2 (μ2-O)2 ring fastened by the unified coordination action of a doubly deprotonated ligand. In addition, solid state structure of the complexes display extensive intermolecular interaction which has been supported theoretically by Hirshfeld surface analysis with 2D Fingerprint plots. The synthesized Zn(II) metal complexes observed enhancement of luminescence emission compared to the parent Schiff base due to emanating ligand based intraligand (π→π∗) fluorescence. Additionally, Zn(II) metal complexes exhibited considerable antimicrobial potency against some important Gram +ve and Gram -ve bacteria.
Investigation of dielectric breakdown in silica-epoxy nanocomposites using designed interfaces.
Bell, Michael; Krentz, Timothy; Keith Nelson, J; Schadler, Linda; Wu, Ke; Breneman, Curt; Zhao, Su; Hillborg, Henrik; Benicewicz, Brian
2017-06-01
Adding nano-sized fillers to epoxy has proven to be an effective method for improving dielectric breakdown strength (DBS). Evidence suggests that dispersion state, as well as chemistry at the filler-matrix interface can play a crucial role in property enhancement. Herein we investigate the contribution of both filler dispersion and surface chemistry on the AC dielectric breakdown strength of silica-epoxy nanocomposites. Ligand engineering was used to synthesize bimodal ligands onto 15nm silica nanoparticles consisting of long epoxy compatible, poly(glycidyl methacrylate) (PGMA) chains, and short, π-conjugated, electroactive surface ligands. Surface initiated RAFT polymerization was used to synthesize multiple graft densities of PGMA chains, ultimately controlling the dispersion of the filler. Thiophene, anthracene, and terthiophene were employed as π-conjugated surface ligands that act as electron traps to mitigate avalanche breakdown. Investigation of the synthesized multifunctional nanoparticles was effective in defining the maximum particle spacing or free space length (L f ) that still leads to property enhancement, as well as giving insight into the effects of varying the electronic nature of the molecules at the interface on breakdown strength. Optimization of the investigated variables was shown to increase the AC dielectric breakdown strength of epoxy composites as much as 34% with only 2wt% silica loading. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kotian, Avinash; Kumara, Karthik; Kamat, Vinayak; Naik, Krishna; Kokare, Dhoolesh G.; Nevrekar, Anupama; Lokanath, Neratur Krishnappagowda; Revankar, Vidyanand K.
2018-03-01
In the present work, three potential metal ion chelating ligands, p-halo N4-phenyl substituted thiosemicarbazones are synthesized and characterized. The molecular structure of all (E)-4-(4-halophenyl)-1-(3-hydroxyiminobutan-2-ylidene) thiosemicarbazones (halo = F/Cl/Br) are determined by single crystal X-ray diffraction method. All the molecules have crystallized in monoclinic crystal system with P21/n space group. The ligands show Csbnd H⋯S and Nsbnd H⋯S intermolecular interactions, which are responsible to form the supramolecular self-assemblies through R22(8), R22(12) and R22(14) ring motifs. Hirshfeld surface analysis is carried out to explore the intermolecular interactions. A series of Co(III) and Ni(II) mononuclear transition metal complexes derived from these ligands have been synthesized and characterized by various spectro-analytical methods. The metal to ligand stoichiometry has been found to be 1:2 in all the complexes. The synthesized compounds have been investigated for their in vitro antimicrobial potencies. The compounds are found to be more active than the standard used, in the case of E. coli and A. niger. Additionally, they are also screened for their in vitro antitubercular activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Shaoan; Onishi, Naoya; Tsurusaki, Akihiro
Here, we report newly developed iridium catalysts with electron-donating imidazoline moieties as ligands for the hydrogenation of CO 2 to formate in aqueous solution. Interestingly, these new complexes promote CO 2 hydrogenation much more effectively than their imidazole analogues and exhibit a turnover frequency (TOF) of 1290 h –1 for the bisimidazoline complex compared to that of 20 h –1 for the bisimidazole complex at 1 MPa and 50 °C. Additionally, the hydrogenation proceeds smoothly even under atmospheric pressure at room temperature. The TOF of 43 h –1 for the bisimidazoline complex is comparable to that of a dinuclear complexmore » (70 h –1, highest TOF reported) [Nat. Chem. 2012, 4, 383], which incorporates proton-responsive ligands with pendent-OH groups in the second coordination sphere. The catalytic activity of the complex with an N-methylated imidazoline moiety is much the same as that of the corresponding pyridylimidazoline analogue. Our result and the UV/Vis titrations of the imidazoline complexes indicate that the high activity is not attributable to the deprotonation of NH on the imidazoline under the reaction conditions.« less
NASA Astrophysics Data System (ADS)
Giessner-Prettre, Claude; Jacob, Olivier
1989-03-01
The binding energy and the geometrical arrangements of the complexes formed by the zinc dication with OH-, one, four, five or six water molecules, SH-, H2S, formic acid, the formate anion, imidazole, its anion and formamide are calculated using the MNDO method. The comparison of the results obtained with those of ab initio computations on the same complexes induced us to propose for Zn++ a set of parameters different from the one determined by Dewar for the neutral metal atom. Using the two MNDO parametrizations, similar calculations are carried out for Zn++ interacting with two molecules of 2-aminoethanethiol and with models of the four ligands which are present at the thermolysin active site, in order to evaluate the possibilities and limitations of this semiempirical method for theoretical studies concerning zinc metalloenzymes. In the last case, the results obtained suggest that, in the crystal state, the water molecule could be deprotonated. This finding is discussed in relation with the mechanism of action of the enzyme which has been proposed.
Artificial light-regulation of an allosteric bi-enzyme complex by a photosensitive ligand.
Kneuttinger, Andrea C; Winter, Martin; Simeth, Nadja A; Heyn, Kristina; Merkl, Rainer; König, Burkhard; Sterner, Reinhard
2018-05-29
The artificial regulation of proteins by light is an emerging sub-discipline of synthetic biology. Here, we used this concept in order to photo-control both catalysis and allostery within the heterodimeric enzyme complex imidazole glycerol phosphate synthase (ImGP-S). The ImGP-S consists of the cyclase subunit HisF and the glutaminase subunit HisH, which is allosterically stimulated by substrate binding to HisF. We show that a light-sensitive diarylethene (DTE)-based competitive inhibitor in its ring-open state binds with low micromolar affinity to the cyclase subunit and displaces its substrate from the active site. As a consequence, catalysis by HisF and allosteric stimulation of HisH are impaired. Following UV-light irradiation, the DTE-ligand adopts its ring-closed state and loses affinity for HisF, restoring activity and allostery. Our approach allows for the switching of ImGP-S activity and allostery during catalysis and appears to be generally applicable for the light-regulation of other multi-enzyme complexes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single step signal group-imidazole labeling of organic phosphate groups under aqueous conditions
Giese, R.W.; Wang, P.
1996-04-30
Compounds and methods for single step, covalent labeling of the phosphate group of an organic substance under aqueous conditions are described. The labeling compound includes any kind of detectable signal group covalently bound to an imidazole moiety, which can be imidazole or a substituted imidazole. A preferred labeling compound has the formula shown in the accompanying diagram. 4 figs.
NASA Astrophysics Data System (ADS)
Zhang, He; Yu, Kai; Lv, Jing-Hua; Wang, Chun-Mei; Wang, Chun-Xiao; Zhou, Bai-Bin
2014-09-01
Three supramolecular materials based on {P4Mo6} polyoxoanions, (Hbbi)2(H2bbi)[Cu3Mo12VO24(OH)6(H2O)6(HPO4)4(H2PO4)2(PO4)2]·3H2O (1), (Hbbi)2(H2bbi)[Ni3Mo12VO24(OH)6(H2O)2(HPO4)4(H2PO4)2(PO4)2]·9H2O (2), (Hbpy)(bpy)3[Ni2(H2O)10Na(PCA)2][NiMo12VO24(OH)6(H2PO4)6(PO4)2]·6H2O (3) (bbi=1,1‧-(1,4-butanediyl)bis(imidazole), bpy=4,4‧-bipyridine, PCA=pyridine-4-carboxylic acid), have been hydrothermally synthesized and structurally characterized by the elemental analysis, TG, IR, UV-vis, PXRD and the single-crystal X-ray diffraction. Compounds 1 and 2 exhibit covalent 1-D chains constructed from M[P4Mo6]2 dimeric cluster and {M(H2O)n} (M=Cu, n=3 for 1 and M=Ni, n=1 for 2) linker. Compound 3 possesses an unusual POMMOF supramolecular layers based on [Ni(P4Mo6)]2 dimeric units and 1-D metal-organic strings [Ni(H2O)5Na(PCA)]n, in which an in situ ligand of PCA from 1,3-bis(4-pyridyl)propane (bpp) precursor was observed. Furthermore, the electrochemical behavior of 1-3-CPE and magnetic properties of 1-3 have been investigated in detail.
Syntheses, crystal structures and photoluminescence properties of five Cd/Zn-organic frameworks
NASA Astrophysics Data System (ADS)
Li, Qing; Xue, Dong-Xu; Zhang, Yu-Feng; Zhang, Zong-Hui; Gao, Ziwei
2018-07-01
Luminescent metal-organic frameworks (MOFs) have displayed extensively potential applications for photocatalysis, photoluminescence, electroluminescence, chemical sensors et al. Herein, five new Cd/Zn-organic frameworks of [Cd(HL)C2H5OH] (1), [Cd(HL)(2,2‧-Bpy)H2O] (2), [Cd2(HL)2(Phen)2] (3), [Zn(HL)BIMB] (4), [Cd3(HL)3(4,4‧-Bpy)DMF]·(H2O) (5) have been deliberately constructed via solvothermal reactions of d10 transition metal salts, i.e. Cd(NO3)2•4H2O or Zn(NO3)2·6H2O, and a V-shaped semi-rigid organic linker of 4,4'-(hydroxymethanediyl) dibenzoic acid (H3L) along with the auxiliary poly-nitrogen ligands of 2,2‧-Bpy(2,2‧-bipyridine), Phen(phenanthroline), BIMB(1,1‧-benzene-1,4-diyldimethanediyl-bis-1H-imidazole) and 4,4‧-Bpy(4,4‧-bipyridine). The crystal structures of compounds 1-5 were precisely determined by single-crystal X-ray diffraction (SC-XRD), Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR) and Thermogravimetic analysis (TGA). As revealed by SC-XRD, the isolated 1 presents a 2-periodic framework encompassing side-by-side channel-typed helical tubes. Compounds 2-4 display Z-shaped 1-periodic single chains, concomitant with twin chains and tubular structure, respectively. Interestingly, compound 5 demonstrates a two-fold interpenetrated 3-periodic skeleton in the presence of a rigid pillar of 4,4‧-Bpy. Additionally, photoluminescence properties of 1-5 were lastly investigated.
Tabrizi, Leila; Chiniforoshan, Hossein
2016-11-15
Three new ruthenium(ii) complexes of NCN pincer and phenylcyanamide derivative ligands of the formula [Ru(L)(Ph 2 phen)(3,5-(NO 2 ) 2 pcyd)], 1, [Ru(L)(Me 2 phen)(3,5-(NO 2 ) 2 pcyd)], 2, and [Ru(L)(Cl 2 phen)(3,5-(NO 2 ) 2 pcyd)], 3 (HL: 5-methoxy-1,3-bis(1-methyl-1H-benzo[d]imidazol-2-yl)benzene, 3,5-(NO 2 ) 2 pcyd: 3,5-(NO 2 ) 2 pcyd, Ph 2 phen: 4,7-diphenyl-1,10-phenanthroline, Me 2 phen: 4,7-dimethyl-1,10-phenanthroline, Cl 2 phen: 4,7-dichloro-1,10-phenanthroline) have been synthesized and studied as potential photosensitizers (PSs) in photodynamic therapy (PDT). The complexes exhibited promising 1 O 2 production quantum yields comparable with PSs available on the market. The DNA-binding interactions of the complexes with calf thymus DNA have been studied by absorption, emission, and viscosity measurements. All complexes cleave SC-DNA efficiently on photoactivation at 350 nm with the formation of singlet oxygen ( 1 O 2 ) and hydroxyl radicals (˙OH) in type-II and photoredox pathways. Complexes 1-3 showed very good uptake in cervical cancer cells (HeLa). The compounds studied were found to exhibit low toxicity against HeLa cells (IC 50 > 300 μM) and, remarkably, on non-cancerous MRC-5 cells (IC 50 > 100 μM) in the dark. However, 1 showed very promising behavior with an increment of about 90 times, in its cytotoxicity upon light illumination at 420 nm in addition to very good human plasma stability.
CYP51 structures and structure-based development of novel, pathogen-specific inhibitory scaffolds.
Hargrove, Tatiana Y; Kim, Kwangho; de Nazaré Correia Soeiro, Maria; da Silva, Cristiane França; Batista, Denise da Gama Jaen; Batista, Marcos Meuser; Yazlovitskaya, Eugenia M; Waterman, Michael R; Sulikowski, Gary A; Lepesheva, Galina I
2012-12-01
CYP51 (sterol 14α-demethylase) is a cytochrome P450 enzyme essential for sterol biosynthesis and the primary target for clinical and agricultural antifungal azoles. The azoles that are currently in clinical use for systemic fungal infections represent modifications of two basic scaffolds, ketoconazole and fluconazole, all of them being selected based on their antiparasitic activity in cellular experiments. By studying direct inhibition of CYP51 activity across phylogeny including human pathogens Trypanosoma brucei , Trypanosoma cruzi and Leishmania infantum , we identified three novel protozoa-specific inhibitory scaffolds, their inhibitory potency correlating well with antiprotozoan activity. VNI scaffold (carboxamide containing β-phenyl-imidazoles) is the most promising among them: killing T. cruzi amastigotes at low nanomolar concentration, it is also easy to synthesize and nontoxic. Oral administration of VNI (up to 400 mg/kg) neither leads to mortality nor reveals significant side effects up to 48 h post treatment using an experimental mouse model of acute toxicity. Trypanosomatidae CYP51 crystal structures determined in the ligand-free state and complexed with several azole inhibitors as well as a substrate analog revealed high rigidity of the CYP51 substrate binding cavity, which must be essential for the enzyme strict substrate specificity and functional conservation. Explaining profound potency of the VNI inhibitory scaffold, the structures also outline guidelines for its further development. First steps of the VNI scaffold optimization have been undertaken; the results presented here support the notion that CYP51 structure-based rational design of more efficient, pathogen-specific inhibitors represents a highly promising direction.
Silva-Ortiz, Aylin Viviana; Bratoeff, Eugene; Ramírez-Apan, Teresa; Heuze, Yvonne; Soriano, Juan; Moreno, Isabel; Bravo, Marisol; Bautista, Lucero; Cabeza, Marisa
2017-03-01
The aim of this study was to synthesize several 16-dehydropregnenolone derivatives containing an imidazole ring at C-21 and a different ester moiety at C-3 as inhibitors of 5α-reductase 1 and 2 isoenzymes. Their binding capacity to the androgen receptor (AR) was also studied. Additionally, we evaluated their pharmacological effect in a castrated hamster model and their cytotoxic activity on a panel of cancer cells (PC-3, MCF7, SK-LU-1). The results showed that only the derivatives with an alicyclic ester at C-3 showed 5α-R2 enzyme inhibition activity, the most potent of them being 21-(1H-imidazol-1-yl)-20-oxopregna-5,16-dien-3β-yl-cyclohexanecarboxylate with an IC 50 of 29nM. This is important because prostatic benign hyperplasia is directly associated with the presence of 5α-R2. However, all the derivatives failed to inhibit 5α-R1 or bind to the AR. These alicyclic ester derivatives decreased the weight and size of androgen-dependent glands in the hamster, indicating they are very active in vivo and are not toxic. In addition, the 21-(1H-imidazol-1-yl)-20-oxopregna-5,16-dien-3β-yl-acetate derivative showed the highest cytotoxic activity on the three cancer cell lines studied. It is therefore important in the synthesis of steroidal compounds to consider the size of the ester moiety at C-3 of the steroid skeleton, which is key in obtaining biological activity, as observed in this experiment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ichibangase, T; Ohba, Y; Kishikawa, N; Nakashima, K; Kuroda, N
2014-03-01
8-Amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4(2H,3H)dione (L-012) was recently synthesized as a new chemiluminescence (CL) probe; the light intensity and the sensitivity of L-012 are higher than those of other CL probes such as luminol. Previously, our group developed four lophine-based CL enhancers of the horseradish peroxidase (HRP)-catalyzed CL oxidation of luminol, namely 2-(4-hydroxyphenyl)-4,5-diphenylimidazole (HDI), 2-(4-hydroxyphenyl)-4,5-di(2-pyridyl)imidazole (HPI), 4-(4,5-diphenyl-1H-imidazol-2-yl)phenylboronic acid (DPA), and 4-[4,5-di(2-pyridyl)-1H-imidazol-2-yl]phenylboronic acid (DPPA), and showed that DPPA was suitable for the photographic detection of HRP. In this study, we replaced luminol with L-012 and evaluated these as L-012-dependent CL enhancers. In addition, to detect HRP and/or H2O2 with higher sensitivity, each detection condition for the L-012-HRP-H2O2 enhanced CL was optimized. All the derivatives enhanced the L-012-dependent CL as well as luminol CL; HPI generated the highest enhanced luminescence. Under optimized conditions for HRP detection, the detection limit of HRP was 0.08 fmol. By contrast, the detection limit of HRP with the enhanced L-012-dependent CL using 4-iodophenol, which is a common enhancer of luminol CL, was 1.1 fmol. With regard to H2O2 detection, the detection limits for enhanced CL with HPI and 4-iodophenol were 0.29 and 1.5 pmol, respectively. Therefore, it is demonstrated that HPI is the most superior L-012-dependent CL enhancer. Copyright © 2013 John Wiley & Sons, Ltd.
Mechanism of Inducible Nitric-oxide Synthase Dimerization Inhibition by Novel Pyrimidine Imidazoles*
Nagpal, Latika; Haque, Mohammad M.; Saha, Amit; Mukherjee, Nirmalya; Ghosh, Arnab; Ranu, Brindaban C.; Stuehr, Dennis J.; Panda, Koustubh
2013-01-01
Overproduction of nitric oxide (NO) by inducible nitric-oxide synthase (iNOS) has been etiologically linked to several inflammatory, immunological, and neurodegenerative diseases. As dimerization of NOS is required for its activity, several dimerization inhibitors, including pyrimidine imidazoles, are being evaluated for therapeutic inhibition of iNOS. However, the precise mechanism of their action is still unclear. Here, we examined the mechanism of iNOS inhibition by a pyrimidine imidazole core compound and its derivative (PID), having low cellular toxicity and high affinity for iNOS, using rapid stopped-flow kinetic, gel filtration, and spectrophotometric analysis. PID bound to iNOS heme to generate an irreversible PID-iNOS monomer complex that could not be converted to active dimers by tetrahydrobiopterin (H4B) and l-arginine (Arg). We utilized the iNOS oxygenase domain (iNOSoxy) and two monomeric mutants whose dimerization could be induced (K82AiNOSoxy) or not induced (D92AiNOSoxy) with H4B to elucidate the kinetics of PID binding to the iNOS monomer and dimer. We observed that the apparent PID affinity for the monomer was 11 times higher than the dimer. PID binding rate was also sensitive to H4B and Arg site occupancy. PID could also interact with nascent iNOS monomers in iNOS-synthesizing RAW cells, to prevent their post-translational dimerization, and it also caused irreversible monomerization of active iNOS dimers thereby accomplishing complete physiological inhibition of iNOS. Thus, our study establishes PID as a versatile iNOS inhibitor and therefore a potential in vivo tool for examining the causal role of iNOS in diseases associated with its overexpression as well as therapeutic control of such diseases. PMID:23696643
Jiang, Jianfei; Bakan, Ahmet; Kapralov, Alexandr A.; Silva, K. Ishara; Huang, Zhentai; Amoscato, Andrew A.; Peterson, James; Garapati, Venkata Krishna; Saxena, Sunil; Bayir, Hülya; Atkinson, Jeffrey; Bahar, Ivet; Kagan, Valerian E.
2014-01-01
Mitochondria have emerged as the major regulatory platform responsible for coordination of numerous metabolic reactions as well as cell death processes, whereby the execution of intrinsic apoptosis includes the production of reactive oxygen species fueling oxidation of cardiolipin (CL) catalyzed by cytochrome (cyt) c. As this oxidation occurs within the peroxidase complex of cyt c with CL, the latter represents a promising target for the discovery and design of drugs with anti-apoptotic mechanism of action. In this work, we designed and synthesized a new group of mitochondria-targeted imidazole-substituted analogues of stearic acid TPP-n-ISA with different positions of the attached imidazole group on the fatty acid (n=6, 8, 10, 13 and 14). By using a combination of absorption spectroscopy and EPR protocols (continuous wave electron paramagnetic resonance, and electron spin echo envelope modulation) we demonstrated that TPP-n-ISA indeed were able to potently suppress CL induced structural re-arrangements in cyt c paving the way to its peroxidase competence. TPP-n-ISA analogues preserved the low spin hexa-coordinated heme iron state in cyt c/CL complexes whereby TPP-6-ISA displayed a significantly more effective preservation pattern than TPP-14-ISA. Elucidation of these intermolecular stabilization mechanisms of cyt c identified TPP-6-ISA as an effective inhibitor of the peroxidase function of cyt c/CL complexes with a significant anti-apoptotic potential realized in mouse embryonic cells exposed to ionizing irradiation. These experimental findings were detailed and supported by all atom molecular dynamics simulations. Based on the experimental data and computations predictions, we identified TPP-6-ISA as a candidate drug with optimized anti-apoptotic potency. PMID:24631490
Jiang, Jianfei; Bakan, Ahmet; Kapralov, Alexandr A; Silva, K Ishara; Huang, Zhentai; Amoscato, Andrew A; Peterson, James; Garapati, Venkata Krishna; Saxena, Sunil; Bayir, Hülya; Atkinson, Jeffrey; Bahar, Ivet; Kagan, Valerian E
2014-06-01
Mitochondria have emerged as the major regulatory platform responsible for the coordination of numerous metabolic reactions as well as cell death processes, whereby the execution of intrinsic apoptosis includes the production of reactive oxygen species fueling oxidation of cardiolipin (CL) catalyzed by cytochrome (Cyt) c. As this oxidation occurs within the peroxidase complex of Cyt c with CL, the latter represents a promising target for the discovery and design of drugs with antiapoptotic mechanisms of action. In this work, we designed and synthesized a new group of mitochondria-targeted imidazole-substituted analogs of stearic acid TPP-n-ISAs with various positions of the attached imidazole group on the fatty acid (n = 6, 8, 10, 13, and 14). By using a combination of absorption spectroscopy and EPR protocols (continuous wave electron paramagnetic resonance and electron spin echo envelope modulation) we demonstrated that TPP-n-ISAs indeed were able to potently suppress CL-induced structural rearrangements in Cyt c, paving the way to its peroxidase competence. TPP-n-ISA analogs preserved the low-spin hexa-coordinated heme-iron state in Cyt c/CL complexes whereby TPP-6-ISA displayed a significantly more effective preservation pattern than TPP-14-ISA. Elucidation of these intermolecular stabilization mechanisms of Cyt c identified TPP-6-ISA as an effective inhibitor of the peroxidase function of Cyt c/CL complexes with a significant antiapoptotic potential realized in mouse embryonic cells exposed to ionizing irradiation. These experimental findings were detailed and supported by all-atom molecular dynamics simulations. Based on the experimental data and computation predictions, we identified TPP-6-ISA as a candidate drug with optimized antiapoptotic potency. Copyright © 2014 Elsevier Inc. All rights reserved.
Wu, Yingying; Zhao, Yong; Wang, Yanying; Ye, Xiaoxue; Wu, Tsunghsueh; Deng, HongPing; Wu, Peng; Li, Chunya
2017-10-15
Squamous cell carcinoma antigen (SCCA) is a good specific antigen for cancer diagnosis specifically for squamous cell carcinomas. In this study, 3-amine-N-[3-(N-pyrrole)propyl]imidazole bromide (APPIBr) ionic liquid was successfully synthesized and characterized by 1 H NMR, HPLC-MS and FTIR. APPIBr ionic liquid is a unique functional material with a pyrrole moiety which can be polymerized by using electrochemical technique and an amine group for immobilizing biomolecules; thus, it is ideal for the fabrication of biosensors. Using chloroauric acid as precursor and N-dodecyl imidazole as functional monomer, gold nanoroots (AuNRs) were fabricated and characterized with TEM, SEM and XRD. An immunosensor was built on a glassy carbon electrode (GCE), through the steps of forming the poly(APPIBr)/AuNRs/GCE interface by electrodeposition of APPIBr, anti-SCCA immobilization, and several optimization steps to achieve a sensitive, accurate, precise, and selective anti-SCCA/poly(APPIBr)/AuNRs/GCE for the electrochemical immunosensing SCCA. It was found that poly(APPIBr)/AuNRs nanointerface can improve the sensing performance of the immunosensor. Under the optimized experimental conditions, there existed two linear regimes relating the peak current variation to the concentration of squamous cell carcinoma antigen in the range of 0.001-0.1ngmL -1 and 0.1-5.0ngmL -1 . The detection limit was calculated to be 0.3pgmL -1 . The developed sensor was demonstrated its capability in quantitative analysis of squamous cell carcinoma antigen in human serum with recoveries of 97.3%, 102.4% and 107.4%. Copyright © 2017 Elsevier B.V. All rights reserved.
Sun, Zhiwei; Wang, Xiaoxiang; Cai, Yiping; Fu, Junqing; You, Jinmao
2014-03-01
A new pair of derivatization reagents, d0-4-(1-methyl-1H-phenanthro[9,10-d]imidazol-2-yl)phenlamine (d0-MPIA) and d3-4-(1-methyl-1H-phenanthro[9,10-d]imidazol-2-yl)phenlamine (d3-MPIA) have been designed and synthesized. It was successfully used to label aliphatic aldehydes and the aldehyde derivatives were analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The new isotope-coded reagents could easily label aldehydes under acidic conditions in the presence of NaCNBH3. The target derivatives exhibited intense [M+H](+) and regular product ions with electrospray ionization source in positive mode. The d0/d3-MPIA-aldehydes were monitored by the transitions of [M+H](+)→m/z 322 and [M+H](+)→m/z 165, and the obtained detection limits were in the range of 0.18-15.9 pg/mL at signal to noise ratio of 3. The global isotope internal standard technology was employed for quantification analysis with d3-MPIA-aldehyde as internal standard for corresponding d0-MPIA-aldehyde. Excellent linear responses for relative quantification were observed in the range of 1/10-10/1 with coefficients >0.998. The developed method has been applied to the quantification of aliphatic aldehydes in selected aquatic products with RSD<3.6% and recoveries >85.2%. © 2013 Elsevier B.V. All rights reserved.
Sharma, Rahul; Gupta, Bhanushree; Sahu, Arvind Kumar; Acharya, Jyotiranjan; Satnami, Manmohan L; Ghosh, Kallol K
2016-11-25
Post-treatment of organophosphate (OP) poisoning involves the application of oxime reactivator as an antidote. Structurally different oximes are widely studied to examine their kinetic and mechanistic behavior against OP-inhibited cholinesterase enzyme. A series of structurally related 1,3-disubstituted-2-[(hydroxyiminomethyl)alkyl]imidazolium halides (5a-5e, 9a-9c) were synthesized and further evaluated for their in-vitro reactivation ability to reactivate sarin- and VX-inhibited human acetylcholinesterase (hAChE). The observed results were compared with the reactivation efficacy of standard reactivators; 2-PAM, obidoxime and HI-6. Amongst the synthesized oximes, 5a, 9a and 9b were found to be most potent reactivators against sarin-inhibited hAChE while in case of VX only 9a exhibited comparable reactivity with 2-PAM. Incorporation of pyridinium ring to the imidazole ring resulted in substantial increase in the reactivation strength of prepared reactivator. Physicochemical properties of synthesized reactivators have also been evaluated. Copyright © 2016. Published by Elsevier Ireland Ltd.
Ghareb, Nagat; Abdel Daim, Mohamed M; El-Sayed, Norhan M; Elgawish, Mohamed Saleh
2017-04-01
The synthesis, pharmacological evaluation and molecular modelling study of novel naphthalen-2-yl acetate and 1,6-dithia-4,9-diazaspiro [4.4]nonane-3,8-dione derivatives as potential anticonvulsant agents are described. The newly synthesized compounds were characterized by both analytical and spectral data. Alkylation of 1H-imidazole or substituted piperazine with 1-(2-naphthyl)-2-bromoethanone (2) gave naphthalen-2-yl 2-(1H-imidazol-1-yl) acetate (3) and naphthalen-2-yl 2-(substituted piperazin-1-yl) acetate (4-8). Moreover, condensation of naphthalen-2-yl 2-bromoacetate or 2-bromo-1-(naphthalen-2-yl) ethanone with hydrazine hydrate and acetylacetone resulted in the formation of the cyclic pyrazole products 9 and 13. Sonication of naphthalen-2-yl acetate (1) with 2-chloropyridine, 2-chloropyrimidine and 2-(chloromethyl) oxirane gave naphthalen-2-yl 2-(pyridin-2-yl) acetate (10), naphthalen-2-yl 2-(pyrimidin-2-yl) acetate (11) and naphthalen-2-yl-3-(oxiran-2-yl) propanoate (12) respectively. Cyclocondensation reaction of 2-iminothiazolidin-4-one (14) with thioglycolic acid, thiolactic acid and thiomalic acid gave 1,6-dithia-4,9-diazaspiro [4.4]nonane-3,8-dione derivatives (15-17). The compounds were testedin vivofor the anticonvulsant activity by delaying strychnine-induced seizures. The diazaspirononane (17) and 1-(2-naphthyl)-2-bromoethanone (2) showed a high significant delay in the onset of convulsion and prolongation of survival time compared to phenobarbital. The molecular modelling study of anticonvulsant activity of synthesized compounds showed a CNS depressant activity via modulation of benzodiazepine allosteric site in GABA-A receptors. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Qing-Jun; Zheng, Yue-Qing, E-mail: yqzhengmc@163.com; Zhou, Lin-Xia
2015-07-15
Two 2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonato and oxalic acid bridged coordination polymers (H{sub 2}en)[Co{sub 3}(H{sub 2}zdn){sub 2}(ox)(H{sub 2}O){sub 2}] (1) and Cd{sub 2}(H{sub 2}zdn)(ox){sub 0.5}(H{sub 2}O) (2) (2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonic acid=H{sub 5}zdn; oxalic acid=H{sub 2}ox) were synthesized under hydrothermal conditions and characterized by the infrared (IR), thermogravimetric analyses (TGA), elemental analyses (EA) and X-ray diffraction (XRD). Compound 1 is bridged by phosphonate anions to 1D chain, and further linked by oxalate anions to 2D layer. Compound 2 is bridged by O–P–O units of H{sub 5}zdn to the layer, and then pillared by oxalate anions to generate 3D frameworks. Compound 1 shows anti-ferromagnetic behaviors analyzed with themore » temperature-dependent zero-field ac magnetic susceptibilities, while compound 2 exhibits an influence on the luminescent property. - Graphical abstract: Linked by oxalate, two zoledronate-based metal–organic frameworks are synthesized, which exhibits the different frameworks. Magnetism and luminescent properties have been studied. The weak antiferromagnetic coupling is conducted in 1. - Highlights: • Compound 1 and 2 are first linked by oxalate anion based on zoledronic acid. • Compound 1 generates a classic “dia Diamond” (6{sup 6}) topology. • Compound 2 exhibits a (4{sup 4}·6{sup 2})(4{sup 4}·6{sup 6}) topology. • Magnetism and luminescent properties of 1 and 2 have been studied, respectively.« less
Dual role of imidazole as activator/inhibitor of sweet almond (Prunus dulcis) β-glucosidase.
Caramia, Sara; Gatius, Angela Gala Morena; Dal Piaz, Fabrizio; Gaja, Denis; Hochkoeppler, Alejandro
2017-07-01
The activity of Prunus dulcis (sweet almond) β-glucosidase at the expense of p -nitrophenyl-β-d-glucopyranoside at pH 6 was determined, both under steady-state and pre-steady-state conditions. Using crude enzyme preparations, competitive inhibition by 1-5 mM imidazole was observed under both kinetic conditions tested. However, when imidazole was added to reaction mixtures at 0.125-0.250 mM, we detected a significant enzyme activation. To further inspect this effect exerted by imidazole, β-glucosidase was purified to homogeneity. Two enzyme isoforms were isolated, i.e. a full-length monomer, and a dimer containing a full-length and a truncated subunit. Dimeric β-glucosidase was found to perform much better than the monomeric enzyme, independently of the kinetic conditions used to assay enzyme activity. In addition, the sensitivity towards imidazole was found to differ between the two isoforms. While monomeric enzyme was indeed found to be relatively insensitive to imidazole, dimeric β-glucosidase was observed to be significantly activated by 0.125-0.250 mM imidazole under pre-steady-state conditions. Further, steady-state assays revealed that the addition of 0.125 mM imidazole to reaction mixtures increases the K m of dimeric enzyme from 2.3 to 6.7 mM. The activation of β-glucosidase dimer by imidazole is proposed to be exerted via a conformational transition poising the enzyme towards proficient catalysis.
Devés, R; Krupka, R M
1987-01-01
The properties of the choline transport system are fundamentally altered in saline solution containing 5 mM imidazole buffer instead of 5 mM phosphate: (i) The system no longer exhibits accelerated exchange. (ii) Choline in the external compartment fails to increase the rate of inactivation of the carrier by N-ethylmaleimide. (iii) Depending on the relative concentrations of choline and imidazole, transport may be activated or inhibited. The maximum rates are increased more than fivefold by imidazole, but at moderate substrate concentrations activation is observed with low concentrations of imidazole and inhibition with high concentrations. (iv) The imidazole effect is asymmetric, there being a greater tendency to activate exit than entry. All this behavior is predicted by the carrier model if imidazole is a substrate of the choline carrier having a high maximum transport rate but a relatively low affinity, and if imidazole rapidly enters the cell by simple diffusion, so that it can add to carrier sites on both sides of the membrane. Addition at the cis side inhibits, and at the trans side activates. According to the carrier model, asymmetry is a necessary consequence of the potassium ion gradient in red cells, potassium ion being another substrate of the choline system.
NASA Astrophysics Data System (ADS)
Singh, Rajeev; Kaushik, N. K.
2008-11-01
Some complexes of 2-phenylethyl dithiocarbamate, thiohydrazides and thiodiamines with dibenzyltin(IV) chloride, tribenzyltin(IV) chloride and di( para-chlorobenzyl)tin(IV) dichloride have been synthesized and investigated in 1:2 and 1:1 molar ratio. The dithiocarbamate ligand act as monoanionic bidentate and thiohydrazide, thiodiamines act as neutral bidentate ligand. The synthesized complexes have been characterized by elemental analysis and molecular weight determination studies and their bonding pattern suggested on the basis of electronic, infrared, 1H and 13C NMR spectroscopy. Using thermogravimetric (TG) and differential thermal analysis (DTA) various thermodynamic and kinetic parameters viz. reaction order ( n), apparent activation energy ( Ea), apparent activation entropy ( S#) and heat of reaction (Δ H) have been calculated and correlated with the structural aspects for solid-state decomposition of complexes. The ligands and their tin complexes have also been screened for their fungitoxicity activity against Rhizoctonia solanii and Sclerotium rolfsii and their ED 50 values calculated.
Singh, Rajeev; Kaushik, N K
2008-11-15
Some complexes of 2-phenylethyl dithiocarbamate, thiohydrazides and thiodiamines with dibenzyltin(IV) chloride, tribenzyltin(IV) chloride and di(para-chlorobenzyl)tin(IV) dichloride have been synthesized and investigated in 1:2 and 1:1 molar ratio. The dithiocarbamate ligand act as monoanionic bidentate and thiohydrazide, thiodiamines act as neutral bidentate ligand. The synthesized complexes have been characterized by elemental analysis and molecular weight determination studies and their bonding pattern suggested on the basis of electronic, infrared, 1H and 13C NMR spectroscopy. Using thermogravimetric (TG) and differential thermal analysis (DTA) various thermodynamic and kinetic parameters viz. reaction order (n), apparent activation energy (Ea), apparent activation entropy (S#) and heat of reaction (DeltaH) have been calculated and correlated with the structural aspects for solid-state decomposition of complexes. The ligands and their tin complexes have also been screened for their fungitoxicity activity against Rhizoctonia solanii and Sclerotium rolfsii and their ED50 values calculated.
NASA Astrophysics Data System (ADS)
Babahan, Ilknur; Emirdağ-Öztürk, Safiye; Poyrazoğlu-Çoban, Esin
2015-04-01
A novel ligand, vicinal dioxime ligand (egonol-hydrazone glyoxime) (LH2) was synthesized and characterized using 1H NMR, 13C NMR, MS, AAS, infrared spectroscopy, and magnetic susceptibility measurements. Mononuclear nickel (II), copper (II) and cobalt (II) complexes with a metal:ligand ratio of 1:2 for LH2 were also synthesized. Zn(II) forms complex [Zn(LH)Cl2] with a metal to ligand ratio of 1:1. IR spectrum shows that the ligand act in a bidentate manner and coordinates N4 donor groups of the ligands to NiII, CuII, CoII and ZnII ions. The detection of H-bonding (Osbnd H⋯O) in the [M(LH)2] metal complexes by IR spectra supported the square-planar MN4 coordination of Ni(II), Cu(II) and Co(II) complexes. The antimicrobial activities of compounds LH2 and their Ni(II), Cu(II), Co(II) and Zn(II) complexes were evaluated using the disc diffusion method against 16 bacteria and 5 yeasts. The minimal inhibitory concentrations (MICs) against all the bacteria and yeasts were also determined. Among the attempted test compounds, it is showed that all the compounds (L, LH2, [Ni(LH)2], [Cu(LH)2], [Co(LH)2(H2O)2], [Zn(LH)Cl2]) were effective against used test microorganisms.
Ligand exchange synthesis of organometallic Rh nanoparticles and application in explosive sensing
NASA Astrophysics Data System (ADS)
Srivastav, Amit K.; Agrawal, Bhavesh; Swami, Bhavya; Agrawal, Yadvendra K.; Maity, Prasenjit
2017-06-01
Alkyne {phenyl acetylene (PA) and 9-ethynylphenanthrene (EPT)}-ligated Rh nanoparticles ( 1 and 2, respectively) with mean diameter of 1.5 ± 0.2 nm were synthesized via a facile and high-yield biphasic ligand exchange protocol using similar sized ethylene glycol (EG)-stabilized Rh nanoparticles as precursors (EG:Rh). The synthesized organometallic Rh nanoparticles were convincingly characterized using several spectroscopic and microscopic techniques, e.g., Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), optical absorption spectroscopy (UV-Vis), photoluminescence spectroscopy (PL), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscope (TEM). We propose that the syntheses mechanism relies on catalytic acetylenic (≡C-H, carbon-hydrogen) bond breaking by EG:Rh followed by strong metal-carbon bond formation with a vinyldiene (>C═C═M) motif. The obtained 1 and 2 showed luminescence property, which arises from ligand structure through intraparticle conjugation. Electron-rich phenanthrene-ligated Rh nanoparticles ( 2) showed good sensing performance for detection of electron deficient nitro-aromatic explosive molecules (NA) in solution phase through luminescence quenching method.
NASA Astrophysics Data System (ADS)
Notash, Behrouz
2018-03-01
Three new cadmium coordination polymers, [Cd(L)(NO3)2CH3OH]n, 1, {[Cd(L)2(NO3)]NO3}n, 2 and {[Cd(L)2(NO3)]NO3.H2O}n3, which L is nicotinohydrazide have been synthesized and characterized by spectroscopic methods as well as single crystal X-ray diffraction. Compounds 1-3 have been synthesized by changing solvent and metal-to-ligand ratio. X-ray crystallography showed that compounds 1-3 have different 1D helical structural motif. Semi-flexible nature of L ligand causes to syn-syn conformation which leading to form 1D helical chains coordination polymers. Compounds 2 and 3 were synthesized under the same reaction conditions with similar molar ratio, but using different solvent system. These compounds are pseudopolymorph which differs in the presence or absence of water molecule in their crystal packing. Hirshfeld surface analysis of the structures 1-3 have been performed and find the percent of participation of intermolecular interactions in the crystal packing of compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lin, E-mail: lcheng@seu.edu.cn; Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189; Wang, Jun
2015-01-15
Five chiral Cd(II) complexes with dual chiral components have been synthesized by using a series of (1R,2R)–N{sup 1},N{sup 2}-bis(pyridinylmethyl)cyclohexane-1,2-diamine ligands with different N-positions of pyridyl rings and Cd(NO{sub 3}){sub 2}. The circular dichroism (CD) spectra and second-harmonic generation (SHG) efficiency measurements confirmed that they are of structural chirality in the bulk samples. The luminescent properties indicated that they may have potential applications as optical materials. The formation of discrete mononuclear and binuclear complexes, and one-dimensional chains may be attributed to positional isomerism of the ligands. - Graphical abstract: Five chiral Cd(II) complexes with dual chiral components have been synthesized bymore » using a series of chiral ligands with different N-positions of pyridyl rings. - Highlights: • Five chiral Cd(II) complexes with dual chiral components have been synthesized. • CD spectra and SHG efficiency of the bulk samples have been measured. • The complexes display luminescent properties.« less
Fluorescent and Lanthanide Labeling for Ligand Screens, Assays, and Imaging
Josan, Jatinder S.; De Silva, Channa R.; Yoo, Byunghee; Lynch, Ronald M.; Pagel, Mark D.; Vagner, Josef; Hruby, Victor J.
2012-01-01
The use of fluorescent (or luminescent) and metal contrast agents in high-throughput screens, in vitro assays, and molecular imaging procedures has rapidly expanded in recent years. Here we describe the development and utility of high-affinity ligands for cancer theranostics and other in vitro screening studies. In this context, we also illustrate the syntheses and use of heteromultivalent ligands as targeted imaging agents. PMID:21318902
NASA Astrophysics Data System (ADS)
Sharma, Krishna; Singh, R. V.; Fahmi, Nighat
2011-01-01
A series of Pd(II) and Pt(II) complexes with two N ∩S donor ligands, 5-chloro-3-(indolin-2-one)benzothiazoline and 6-nitro-3-(indolin-2-one)benzothiazoline, have been synthesized by the reaction of metal chlorides (PdCl 2 and PtCl 2) with ligands in 1:2 molar ratios. All the synthesized compounds were characterized by elemental analyses, melting point determinations and a combination of electronic, IR, 1H NMR and 13C NMR spectroscopic techniques for structure elucidation. In order to evaluate the effect of metal ions upon chelation, both the ligands and their complexes have been screened for their antimicrobial activity against the various pathogenic bacterial and fungal strains. The metal complexes have shown to be more antimicrobial against the microbial species as compared to free ligands. One of the ligands, 5-chloro-3-(indolin-2-one)benzothiazoline and its corresponding palladium and platinum complexes have been tested for their antifertility activity in male albino rats. The marked reduction in sperm motility and density resulted in infertility by 62-90%. Significant alterations were found in biochemical parameters of reproductive organs in treated animals as compared to control group. It is concluded that all these effects may finally impair the fertility of male rats.
Nomiya, K; Noguchi, R; Ohsawa, K; Tsuda, K; Oda, M
2000-03-01
Two isomeric gold(I)-triphenylphosphine complexes with nitrogen-containing heterocycles, [Au(L)(PPh3) (HL = pyrazole (1), imidazole (2)) were isolated as colorless cubic crystals for 1 and colorless plate crystals for 2, respectively. The crystal structures of 1 and 2 were determined by single-crystal X-ray diffraction. These complexes were also fully characterized by complete elemental analyses, thermogravimetric/differential thermal analyses (TG/DTA) and FT-IR in the solid state and by solution NMR (31P, 1H and 13C) spectroscopy and molecular weight measurements in acetone solution. These complexes consisted of a monomeric 2-coordinate AuNP core both in the solid state and in solution. The molecular structures of 1 and 2 were compared with those of related gold(I) complexes, [Au(1,2,3-triz)(PPh3)] (3, Htriz = triazole), [Au(1,2,4-triz)(PPh3)]2 (4) as a dimer through a gold(I)-gold(I) bond in the solid state, and [Au(tetz)(PPh3)] (5, Htetz = tetrazole). Selective and effective antimicrobial activities against two gram-positive bacteria (B. subtilis, S. aureus) and modest activities against one yeast (C. albicans) found in these gold(I) complexes 1-4 are noteworthy, in contrast to poor activities observed in the corresponding silver(I) complexes.
Guan, Shengzhou; Nie, Wanli; Borzov, Maxim V.
2011-01-01
The title compound, [ZrCl3(C19H25N2Si)(C4H8O)], was prepared from bis(N,N-dimethylamido-κN)(2-{2-[(1,2,3,3a,7a-η)-indenyl]-2-methylpropyl}-1H-imidazolido-κN 1)zirconium(IV) [(C16H16N2)Zr(NMe2)] by reaction with excess Me3SiCl in tetrahydrofuran (THF) at elevated temperature. The crystal studied contained a minor non-merohedral twin contaminant [6.3 (4)%] which was taken into account during the refinement. The coordination polyhedron of the ZrIV atom is a distorted octahedron [assuming that the five-membered ring of the indenyl group (Cp) occupies one coordination site], with the Cp group and a THF O atom at the apical positions and the three Cl and ligating N atoms at the equatorial positions. The Zr, Si and the methylene C atoms deviate noticeably from the imidazole ring plane [by −0.197 (5), −0.207 (5) and 0.119 (6) Å, respectively]. The THF ligand adopts an envelope conformation. PMID:21754279
Liao, Meng-Sheng; Huang, Ming-Ju; Watts, John D.
2011-01-01
Sixty-four (64) density functionals, ranging from GGA, meta-GGA, hybrid GGA to hybrid meta-GGA, were tested to evaluate the FeP(Im)-AB bonding energies (Ebond) in the heme model complexes FeP(Im)(AB) (P = porphine, Im = imidazole, AB = CO, NO, and O2). The results indicate that an accurate prediction of Ebond for the various ligands to heme is difficult with the DFT methods; usually a functional successful for one system does not perform equally well for the other system(s). Relatively satisfactory results for the various FeP(Im)-AB bonding energies are obtained with the meta-GGA funtionals BLAP3 and Bmτ1; they yield Ebond values of ca.1.1, 1.2, and 0.4 eV for AB = CO, NO, and O2, respectively, which are in reasonable agreement with experimental data (0.78 – 0.85 eV for CO, 0.99 eV for NO, and 0.44 – 0.53 eV for O2). The other functionals show more or less deficiency for one or two of the systems. The performances of the various functionals in describing the spin-state energetics of the five-coordinate FeP(Im) complex were also examined. PMID:22228914
Code of Federal Regulations, 2010 CFR
2010-07-01
...-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinoline carboxylic acid; tolerance for residues. 180.426 Section 180...-Dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinoline carboxylic acid; tolerance for...)-5-oxo-1H-imidazol-2-yl]-3-quinoline carboxylic acid, in or on the raw agricultural commodity soybean...
Proton transfer from imidazole to chloranil studied by FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Sharma, Amit
2018-05-01
Imidazole is incorporated into many important biological molecules. The most obvious is the amino acid histidine, which has an imidazole side chain. Histidine is present in many proteins and enzymes and plays a vital part in the structure and binding functions of hemoglobin. Therefore it is important to study its proton transfer property. In the present work proton transfer from imidazole to chloranil is investigated by Fourier Transform Infra red Spectroscopy.
15N Hyperpolarization of Imidazole-15N2 for Magnetic Resonance pH Sensing via SABRE-SHEATH
2016-01-01
15N nuclear spins of imidazole-15N2 were hyperpolarized using NMR signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH). A 15N NMR signal enhancement of ∼2000-fold at 9.4 T is reported using parahydrogen gas (∼50% para-) and ∼0.1 M imidazole-15N2 in methanol:aqueous buffer (∼1:1). Proton binding to a 15N site of imidazole occurs at physiological pH (pKa ∼ 7.0), and the binding event changes the 15N isotropic chemical shift by ∼30 ppm. These properties are ideal for in vivo pH sensing. Additionally, imidazoles have low toxicity and are readily incorporated into a wide range of biomolecules. 15N-Imidazole SABRE-SHEATH hyperpolarization potentially enables pH sensing on scales ranging from peptide and protein molecules to living organisms. PMID:27379344
15N Hyperpolarization of Imidazole-15N2 for Magnetic Resonance pH Sensing via SABRE-SHEATH.
Shchepin, Roman V; Barskiy, Danila A; Coffey, Aaron M; Theis, Thomas; Shi, Fan; Warren, Warren S; Goodson, Boyd M; Chekmenev, Eduard Y
2016-06-24
15 N nuclear spins of imidazole- 15 N 2 were hyperpolarized using NMR signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH). A 15 N NMR signal enhancement of ∼2000-fold at 9.4 T is reported using parahydrogen gas (∼50% para-) and ∼0.1 M imidazole- 15 N 2 in methanol:aqueous buffer (∼1:1). Proton binding to a 15 N site of imidazole occurs at physiological pH (p K a ∼ 7.0), and the binding event changes the 15 N isotropic chemical shift by ∼30 ppm. These properties are ideal for in vivo pH sensing. Additionally, imidazoles have low toxicity and are readily incorporated into a wide range of biomolecules. 15 N-Imidazole SABRE-SHEATH hyperpolarization potentially enables pH sensing on scales ranging from peptide and protein molecules to living organisms.
Mohammadi, Khosro; Azad, Seyyedeh Sedigheh; Amoozegar, Ameneh
2015-07-05
The tetradentate Schiff base ligands (L(1)-L(4)), were synthesized by reaction between 2-amino-3,5-dibromobenzaldehyde and aliphatic diamines. Then, nickel and oxovanadium(IV) complexes of these ligands were synthesized and characterized by (1)H NMR, Mass, IR, UV-Vis spectroscopy and thermogravimetry. The kinetic parameters of oxovanadium(IV) complexes were calculated from thermal studies. According to the results of thermogravimetric data, the thermal stability of oxovanadium(IV) complexes is as follow: [Formula: see text]. Copyright © 2015 Elsevier B.V. All rights reserved.
Pattenaude, Scott A; Coughlin, Ezra J; Collins, Tyler S; Zeller, Matthias; Bart, Suzanne C
2018-04-16
New uranyl derivatives featuring the amide ligand, -N(SiHMe 2 ) t Bu, were synthesized and characterized by X-ray crystallography, multinuclear NMR spectroscopy, and absorption spectroscopies. Steric properties of these complexes were also quantified using the computational program Solid-G. The increased basicity of the free ligand -N(SiHMe 2 ) t Bu was demonstrated by direct comparison to -N(SiMe 3 ) 2 , a popular supporting ligand for uranyl. Substitutional lability on a uranyl center was also demonstrated by exchange with the -N(SiMe 3 ) 2 ligand. The increased basicity of this ligand and diverse characterization handles discussed here will make these compounds useful synthons for future reactivity.
Nakamura, Shin; Noguchi, Takumi
2016-10-11
During photosynthesis, the light-driven oxidation of water performed by photosystem II (PSII) provides electrons necessary to fix CO 2 , in turn supporting life on Earth by liberating molecular oxygen. Recent high-resolution X-ray images of PSII show that the water-oxidizing center (WOC) is composed of an Mn 4 CaO 5 cluster with six carboxylate, one imidazole, and four water ligands. FTIR difference spectroscopy has shown significant structural changes of the WOC during the S-state cycle of water oxidation, especially within carboxylate groups. However, the roles that these carboxylate groups play in water oxidation as well as how they should be properly assigned in spectra are unresolved. In this study, we performed a normal mode analysis of the WOC using the quantum mechanics/molecular mechanics (QM/MM) method to simulate FTIR difference spectra on the S 1 to S 2 transition in the carboxylate stretching region. By evaluating WOC models with different oxidation and protonation states, we determined that models of high-oxidation states, Mn(III) 2 Mn(IV) 2 , satisfactorily reproduced experimental spectra from intact and Ca-depleted PSII compared with low-oxidation models. It is further suggested that the carboxylate groups bridging Ca and Mn ions within this center tune the reactivity of water ligands bound to Ca by shifting charge via their π conjugation.
NASA Astrophysics Data System (ADS)
Alloui, Mebarka; Belaidi, Salah; Othmani, Hasna; Jaidane, Nejm-Eddine; Hochlaf, Majdi
2018-03-01
We performed benchmark studies on the molecular geometry, electron properties and vibrational analysis of imidazole using semi-empirical, density functional theory and post Hartree-Fock methods. These studies validated the use of AM1 for the treatment of larger systems. Then, we treated the structural, physical and chemical relationships for a series of imidazole derivatives acting as angiotensin II AT1 receptor blockers using AM1. QSAR studies were done for these imidazole derivatives using a combination of various physicochemical descriptors. A multiple linear regression procedure was used to design the relationships between molecular descriptor and the activity of imidazole derivatives. Results validate the derived QSAR model.
Conner, Kip P.; Vennam, Preethi; Woods, Caleb M.; Krzyaniak, Matthew D.; Bowman, Michael K.; Atkins, William M.
2012-01-01
In comparison to imidazole (IMZ) and 1,2,4-triazole (1,2,4-TRZ) the isosteric 1,2,3-triazole (1,2,3-TRZ) is unrepresented among CYP inhibitors. This is surprising because 1,2,3-TRZs are easily obtained via ‘click’ chemistry. To understand this underrepresentation of 1,2,3-TRZs among CYP inhibitors, thermodynamic and DFT computational studies were performed with unsusbstituted IMZ, 1,2,4-TRZ, and 1,2,3-TRZ. The results indicate that the lower affinity of 1,2,3-TRZ for the heme iron includes a large unfavorable entropy term likely originating in solvent – 1,2,3-TRZ interactions; the difference is not solely due to differences in the enthalpy of heme – ligand interactions. In addition, the 1,2,3-TRZ fragment was incorporated into a well-established CYP3A4 substrate and mechanism based inactivator, 17-α-ethynylestradiol (17EE), via click chemistry. This derivative, 17-click, yielded optical spectra consistent with low spin ferric heme iron (type II) in contrast to 17EE, which yields a high spin complex (type I). Furthermore, the rate of CYP3A4-mediated metabolism of 17-click was comparable to 17EE, and with different regioselectivity. Surprisingly, CW EPR and HYSCORE EPR spectroscopy indicate that the 17-click does not displace water from the 6th axial ligand position of CYP3A4 as expected for a type II ligand. We propose a binding model where 17-click pendant 1,2,3-TRZ hydrogen bonds with the 6th axial water ligand. The results demonstrate the potential for 1,2,3-TRZ to form metabolically labile water-bridged low spin heme complexes, consistent with recent evidence that nitrogenous type II ligands of CYPs can be efficiently metabolized. The specific case of [CYP3A4•17-click] highlights the risk of interpreting CYP-ligand complex structure on the basis of optical spectra. PMID:22809252
Comprehensive Fe-ligand vibration identification in {FeNO} 6 Hemes
Li, Jianfeng; Peng, Qian; Oliver, Allen G.; ...
2014-12-09
Oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS) has been used to obtain all iron vibrations in two {FeNO} 6 porphyrinate complexes, five-coordinate [Fe(OEP)(NO)]ClO 4 and six-coordinate [Fe(OEP)(2-MeHIm)(NO)]ClO 4. A new crystal structure was required for measurements of [Fe(OEP)(2-MeHIm)(NO)]ClO 4, and the new structure is reported herein. Single crystals of both complexes were oriented to be either parallel or perpendicular to the porphyrin plane and/or axial imidazole ligand plane. Thus, the FeNO bending and stretching modes can now be unambiguously assigned; the pattern of shifts in frequency as a function of coordination number can also be determined. The pattern is quitemore » distinct from those found for CO or {FeNO} 7 heme species. This is the result of unchanging Fe–N NO bonding interactions in the {FeNO} 6 species, in distinct contrast to the other diatomic ligand species. DFT calculations were also used to obtain detailed predictions of vibrational modes. Predictions were consistent with the intensity and character found in the experimental spectra. The NRVS data allow the assignment and observation of the challenging to obtain Fe–Im stretch in six-coordinate heme derivatives. Furthermore, NRVS data for this and related six-coordinate hemes with the diatomic ligands CO, NO, and O 2 reveal a strong correlation between the Fe–Im stretch and Fe–N Im bond distance that is detailed for the first time.« less
Structure, Function, and Evolution of Biogenic Amine-binding Proteins in Soft Ticks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mans, Ben J.; Ribeiro, Jose M.C.; Andersen, John F.
2008-08-19
Two highly abundant lipocalins, monomine and monotonin, have been isolated from the salivary gland of the soft tick Argas monolakensis and shown to bind histamine and 5-hydroxytryptamine (5-HT), respectively. The crystal structures of monomine and a paralog of monotonin were determined in the presence of ligands to compare the determinants of ligand binding. Both the structures and binding measurements indicate that the proteins have a single binding site rather than the two sites previously described for the female-specific histamine-binding protein (FS-HBP), the histamine-binding lipocalin of the tick Rhipicephalus appendiculatus. The binding sites of monomine and monotonin are similar to themore » lower, low affinity site of FS-HBP. The interaction of the protein with the aliphatic amine group of the ligand is very similar for the all of the proteins, whereas specificity is determined by interactions with the aromatic portion of the ligand. Interestingly, protein interaction with the imidazole ring of histamine differs significantly between the low affinity binding site of FS-HBP and monomine, suggesting that histamine binding has evolved independently in the two lineages. From the conserved features of these proteins, a tick lipocalin biogenic amine-binding motif could be derived that was used to predict biogenic amine-binding function in other tick lipocalins. Heterologous expression of genes from salivary gland libraries led to the discovery of biogenic amine-binding proteins in soft (Ornithodoros) and hard (Ixodes) tick genera. The data generated were used to reconstruct the most probable evolutionary pathway for the evolution of biogenic amine-binding in tick lipocalins.« less
NASA Astrophysics Data System (ADS)
Sharma, Amit Kumar; Chandra, Sulekh
2011-01-01
2,6-Diacetyl pyridine based ligand was synthesized by the reaction of 2,6-diacetyl pyridine with thiocarbohydrazide in presence of acetic acid. The coordination compounds with Cr(III) and Ni(II) metal ions having [Cr(L)X]X 2 and [Ni(L)X]X compositions (where L = ligand and X = NO 3-, Cl - and CH 3COO -) were synthesized and characterized by physicochemical and spectral studies. The studies like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV-Vis, NMR, mass and EPR reveal that the complexes are octahedral. The compounds were examined against the pathogenic fungal and bacterial strains like Alternaria brassicae, Aspergillus niger, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa. A. niger causes the diseases Apergillosis and Otomycosis in humans.
NASA Astrophysics Data System (ADS)
Gull, Parveez; Malik, Manzoor Ahmad; Dar, Ovas Ahmad; Hashmi, Athar Adil
2017-04-01
Three new complexes Ni(II), Cu(II) and Co(II) were synthesized of macrocyclic ligand derived from 1, 4-dicarbonyl-phenyl-dihydrazide and O-phthalaldehyde in the ratio of 2:2. The synthesized compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV-Vis., Mass and 1H NMR spectral studies. The electronic spectra of the metal complexes indicate a six coordinate octahedral geometry of the central metal ion. These metal complexes and the ligand were evaluated for antimicrobial activity against bacteria (E. coli, B. subtilis, S. aureus) and fungi (A. niger, A. flavus, C. albicans) and compared against standard drugs chloramphenicol and nystatin respectively. In addition, the antioxidant activity of the compounds was also investigated through scavenging effect on DPPH radicals.
NASA Astrophysics Data System (ADS)
Hovestadt, Maximilian; Schwegler, Johannes; Schulz, Peter S.; Hartmann, Martin
2018-05-01
A new synthesis route for the zeolitic imidazolate framework ZIF-4 using imidazolium imidazolate is reported. Additionally, the ionic liquid-derived material is compared to conventional ZIF-4 with respect to the powder X-ray diffraction pattern pattern, nitrogen uptake, particle size, and separation potential for olefin/paraffin gas mixtures. Higher synthesis yields were obtained, and the different particle size affected the performance in the separation of ethane and ethylene.
Chitosan impregnation with biologically active tryaryl imidazoles in supercritical carbon dioxide.
Cherkasova, Anastasia V; Glagolev, Nikolay N; Shienok, Andrey I; Demina, Tatiana S; Kotova, Svetlana L; Zaichenko, Natalia L; Akopova, Tatiana A; Timashev, Peter S; Bagratashvili, Victor N; Solovieva, Anna B
2016-09-01
The presented paper is focused on impregnation of chitosan and its derivatives with a biologically active triaryl imidazole model compound ((2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole) in the supercritical carbon dioxide medium. Since initial chitosan represents a polycation-exchange resin and does not swell in supercritical carbon dioxide, the impregnation was carried out in the presence of water (0.15-3.0 vol%). The maximum 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole concentration in a chitosan film was achieved at the ~5 × 10(-3) g/cm(3) water content in the reactor. We also used hydroxy carboxylic acid derivatives of chitosan and its copolymer with polylactide as matrices for introduction of hydrophobic 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole. We have shown that unmodified chitosan contains the greatest amount of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole, as compared with its hydrophobic derivatives. The kinetics of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole diffusion from a chitosan matrix was studied in acidified water with pH 1.6. We found that the complete release of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole into the aqueous phase from unmodified chitosan films occurred in 48 h, while its complete release from chitosan modified with hydroxy carboxylic acids occurred in 5 min or less.
Bala, Manju; Kumar, Satish; Taxak, V B; Boora, Priti; Khatkar, S P
2016-09-01
Two new europium (III) complexes have been synthesized with 1,3-[bis(4-methoxyphenyl)]propane-1,3-dionato (HBMPD) as main ligand and 2,2'-bipyridyl (bipy) or 1,10-phenanthroline (phen) as an auxiliary ligand. The main ligand HBMPD has been synthesized by ecofriendly microwave approach and complexes by solution precipitation method. The resulting materials are characterized by IR, (1)H-NMR, elemental analysis, X-ray diffraction, UV-visible and TG-DTG techniques. The photoluminescence (PL) spectroscopy depicts the detail analysis of photophysical properties of the complexes, their results show that the ligand interact with Eu (III) ion which act as antenna and transfers the absorbed energy to the central europium(III) ion via sensitization process efficiently. As a consequence of this interaction, these materials exhibit excellent luminescent intensity, long decay time (τ), high quantum efficiency (η) and Judd-Ofelt intensity parameter (Ω2). The CIE coordinates fall under the deep red region, matching well with the NTSC (National Television Standard Committee) standard. Hence, these highly efficient optical materials can be used as a red component in organic light emitting diodes (OLEDs) and full color flat panel displays.
NASA Astrophysics Data System (ADS)
Lalegani, Arash; Khaledi Sardashti, Mohammad; Salavati, Hossein; Asadi, Amin; Gajda, Roman; Woźniak, Krzysztof
2016-03-01
Mercury(II) coordination compounds [Hg(μ-bbd)(μ-SCN)4]n(1) and [Hg(bpp)(SCN)2] (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethypyrazol-1-yl)butane (bbd) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp), NCS- ligand and appropriate mercury(II) salts. Compound 1 forms a polymeric network with moieties which are connected by SCN groups and the mercury ions present as HgN3S2 trigonal bipyramides. The crystal structure of 2 is build of monomers and the mercury(II) ion adopts an HgN2S2 tetrahedral geometry. In the complex 1, each bbd acts as bridging ligand connecting Hg(μ-SCN)4 ions, while in the complex 2, the bpp ligand is coordinated to an mercury(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Moreover, in the tetrahedral structure of 2, the neutral molecules form a 1D chain structure through the C-H···N hydrogen bonds, whereas in 1 no hydrogen bonds are observed. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction.
Characterization of local atomic structure in Co/Zn based ZIFs by XAFS
NASA Astrophysics Data System (ADS)
Podkovyrina, Yulia; Butova, Vera; Bulanova, Elena; Budnyk, Andriy; Kremennaya, Maria; Soldatov, Alexander; Lamberti, Carlo
2018-03-01
The local atomic structure in bimetallic Co/Zn zeolitic imidazolate frameworks (ZIFs) was studied using X-ray Absorption Fine Structure (XAFS) spectroscopy and theoretical calculations. The experimental Co K-edge and Zn K-edge XANES (X-ray Absorption Near Edge Structure) spectra of Zn1-xCoxC8H10N4 samples (x = 0.05, 0.25, 0.75) synthesized by microwave synthesis were compared with the data for the ZIF-67 (x=1) and ZIF-8 (x=0). Theoretical XANES spectra for the bimetallic ZIFs were calculated. It was shown that in bimetallic ZIFs the Co and Zn atoms have the similar local environment.
Wada, Azusa; Noguchi, Keiichi; Hirano, Masao; Tanaka, Ken
2007-03-29
[structure: see text]. Enantioenriched C2-symmetric spirobipyridine ligands were efficiently synthesized through a cationic rhodium(I)/(R)-Segphos or (R)-H8-BINAP complex-catalyzed enantioselective intramolecular double [2 + 2 + 2] cycloaddition of bis-diynenitriles.
Architecture effects on multivalent interactions by polypeptide-based multivalent ligands
NASA Astrophysics Data System (ADS)
Liu, Shuang
Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural protein materials, including structural as well as functional proteins. Therefore, polypeptide-based multivalent scaffolds are used to display ligands to assess the contribution of different architectural parameters to the multivalent binding events. In this work, a family of alanine-rich alpha-helical glycopolypeptides was designed and synthesized by a combination of protein engineering and chemical coupling, to display two types of saccharide ligands for two different multivalent binding systems. The valencies, chain length and spacing between adjacent ligands of these multivalent ligands were designed in order to study architecture effects on multivalent interactions. The polypeptides and their glycoconjugates were characterized via various methods, including SDS-PAGE, NMR, HPLC, amino acid analysis (AAA), MALDI, circular dichroism (CD) and GPC. In the first multivalent binding system, cholera toxin B pentamer (CT B5) was chosen to be the protein receptor due to its well-characterized structure, lack of significant steric interference of binding to multiple binding sites, and requirement of only simple monosaccharide as ligands. Galactopyranoside was incorporated into polypeptide scaffolds through amine-carboxylic acid coupling to the side chains of glutamic acid residues. The inhibition and binding to CT B5 of these glycopolypeptide ligands were evaluated by direct enzyme-linked assay (DELA). As a complement method, weak affinity chromatography (WAC) was also used to evaluate glycopolypeptides binding to a CT B5 immobilized column. The architecture effects on CT B 5 inhibition are discussed. In the second system, cell surface receptor L-selectin was targeted by polypeptide-based multivalent ligands containing disulfated galactopyranoside ligands, due to its important roles in various immunological activities. The effects of glycopolypeptide architectural variables L-selectin shedding were evaluated via ELISA-based assays. These polypeptide-based multivalent ligands are suggested to be useful for elucidating architecture effects on multivalent interactions, manipulating multivalent interactions and the subsequent cellular responses in different systems. These materials have great potential applications in therapeutics and could also provide guidelines for design of multivalent ligands for other protein receptors.
Rubina, Marina; Sherrill, William M; Barkov, Alexey Yu
2014-01-01
Summary A novel class of chiral phosphanyl-oxazoline (PHOX) ligands with a conformationally rigid cyclopropyl backbone was synthesized and tested in the intermolecular asymmetric Heck reaction. Mechanistic modelling and crystallographic studies were used to predict the optimal ligand structure and helped to design a very efficient and highly selective catalytic system. Employment of the optimized ligands in the asymmetric arylation of cyclic olefins allowed for achieving high enantioselectivities and significantly suppressing product isomerization. Factors affecting the selectivity and the rate of the isomerization were identified. It was shown that the nature of this isomerization is different from that demonstrated previously using chiral diphosphine ligands. PMID:25161709
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intrator, Miranda Huang
Many industrial catalysts used for homogeneous hydrogenation and dehydrogenation of unsaturated substrates are derived from metal complexes that include (air-sensitive) ligands that are often expensive and difficult to synthesize. In particular, catalysts used for many hydrogenations are based on phosphorus containing ligands (in particular PNP pincer systems). These ligands are often difficult to make, are costly, are constrained to having two carbon atoms in the ligand backbone and are susceptible to oxidation at phosphorus, making their use somewhat complicated. Los Alamos researchers have recently developed a new and novel set of ligands that are based on a NNS (ENENES) skeletonmore » (i.e. no phosphorus donors, just nitrogen and sulfur).« less
Sun, Yang; Xu, Fei; Gong, Bolin
2011-09-01
A novel stationary phase was synthesized for chiral ligand-exchange chromatography via atom transfer radical polymerization (ATRP). Glycidyl methacrylate (GMA) was grafted onto the surface of the silica by ATRP using bromoisobutyryl bromide as an initiator, and the organic metal compound formed in the CuCl/2,2'-bipyridine(Bpy) system as a catalyst at room temperature. The chiral stationary phase was then synthesized by grafting L-phenylalanine on the surface of the silica. The stationary phase was characterized by means of elementary analysis and evaluated in detail to determine its separability. The amount of L-phenylalanine on the surface of silica was calculated to be 4.32 mg/m2. The results showed that the good enantioseparations of some DL-amino acids were obtained using ligand-exchange chromatography on the synthesized chiral stationary phase (50 degrees C) with 0.05 mol/L KH2PO4 and 0.1 mmol/L Cu(Ac)2 solution (pH 4.5) as the mobile phase at a flow rate of 1.0 mL/min and a wavelength of 223 nm. The influences of the mobile phase pH, concentration of Cu (II), and temperature of column on the resolution of DL-amino acids by ligand-exchange chromatography were investigated. The results showed that these conditions could affect the resolution of racemates. Compared with the column prepared by radical method using L-phenylalanine directly bonded onto the surface of the silica, the synthesized stationary phase showed a better separation ability, and the DL-aspartic acids and DL-asparagines could be separated at baseline.
Liang, Feng; Li, Shengqing
2012-01-01
We have developed a chemical reagent that recognizes all naturally occurring DNA bases, a so called universal reader, for DNA sequencing by recognition tunnelling in nanopores.[1] The primary requirements for this type of molecules are the ability to form non-covalent complexes with individual DNA bases and to generate recognizable electronic signatures under an electrical bias. 1-H-imidazole-2-carboxamide was designed as such a recognition moiety to interact with the DNA bases through hydrogen bonding. In the present study, we first furnished a synthetic route to 1-H-imidazole-2-carboxamide containing a short ω-functionalized alkyl chain at its 4(5) position for its attachment to metal and carbon electrodes. The acid dissociation constants of the imidazole-2-carboxamide were then determined by UV spectroscopy. The data show that the 1-H-imidazole-2-carboxamide exists in a neutral form between pH 6–10. Density functional theory (DFT) and NMR studies indicate that the imidazole ring exists in prototropic tautomers. We propose an intramolecular mechanism for tautomerization of 1-H-imidazole-2-carboxamide. In addition, the imidazole-2-carboxamide can self-associate to form hydrogen bonded dimers. NMR titration found that naturally occurring nucleosides interacted with 1-H-imidazole-2-carboxamide through hydrogen bonding in a tendency of dG>dC≫dT> dA. These studies are indispensable to assisting us in understanding the molecular recognition that takes place in the nanopore where routinely used analytical tools such as NMR and FTIR cannot be conveniently applied. PMID:22461259
NASA Astrophysics Data System (ADS)
Ram Kumar, J.; Ananthakumar, S.; Moorthy Babu, S.
2017-01-01
A facile route to synthesize copper indium diselenide (CuInSe2) nanoparticles in aqueous medium was developed using mercaptoacetic acid (MAA) as capping agent. Two different mole ratios (5 and 10) of MAA were used to synthesize CuInSe2 nanoparticles at room temperature, as well as hydrothermal (high temperature) method. Powder x-ray diffraction analysis reveals that the nanoparticles exhibit chalcopyrite phase and the crystallinity increases with increasing the capping ratio. Raman analysis shows a strong band at 233 cm-1 due to the combination of B2 (E) modes. Broad absorption spectra were observed for the synthesized CuInSe2 nanoparticles. The effective surface capping by MAA on the nanoparticles surface was confirmed through attenuated total reflection-Fourier transform infrared spectral analysis. The thermal stability of the synthesized samples was analyzed through thermogravimetric analysis-differential scanning calorimetry. The change in morphology of the synthesized samples was analyzed through scanning electron microscope and it shows that the samples prepared at room temperature are spherical in shape, whereas hydrothermally synthesized samples were found to have nanorod- and nanoflake-like structures. Transmission electron microscope analysis further indicates larger grains for the hydrothermally prepared samples with 10 mol ratio of MAA. Comparative analyses were made for synthesizing CuInSe2 nanoparticles by two different methods to explore the role of ligand and influence of temperature.
All-inorganic Germanium nanocrystal films by cationic ligand exchange
Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; ...
2016-01-21
In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport inmore » germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wei; Li, Yani; Yu, Bo
2015-01-15
A successive anchoring of Ti(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-sitemore » silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, {sup 13}C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated.« less
Yamauchi, Suguru; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Watanabe, Masayuki; Tsuchimoto, Masanobu; Coletti, Cecilia; Re, Nazzareno
2014-06-16
Two Tb(III) complexes with the same N6O3 donor atoms but different coordination geometries, "fac"-[Tb(III)(HL(DL-ala))3]·7H2O (1) and "mer"-[Tb(III)(HL(DL-phe))3]·7H2O (2), were synthesized, where H2L(DL-ala) and H2L(DL-phe) are N-[(imidazol-4-yl)methylidene]-DL-alanine and -DL-phenylalanine, respectively. Each Tb(III) ion is coordinated by three electronically mononegative NNO tridentate ligands to form a coordination geometry of a tricapped trigonal prism. Compound 1 consists of enantiomers "fac"-[Tb(III)(HL(D-ala))3] and "fac"-[Tb(III)(HL(L-ala))3], while 2 consists of "mer"-[Tb(III)(HL(D-phe))2(HL(L-phe))] and "mer"-[Tb(III)(HL(D-phe))(HL(L-phe))2]. Magnetic data were analyzed by a spin Hamiltonian including the crystal field effect on the Tb(III) ion (4f(8), J = 6, S = 3, L = 3, gJ = 3/2, (7)F6). The Stark splitting of the ground state (7)F6 was evaluated from magnetic analysis, and the energy diagram pattern indicated easy-plane and easy-axis (Ising type) magnetic anisotropies for 1 and 2, respectively. Highly efficient luminescences with Φ = 0.50 and 0.61 for 1 and 2, respectively, were observed, and the luminescence fine structure due to the (5)D4 → (7)F6 transition is in good accordance with the energy diagram determined from magnetic analysis. The energy diagram of 1 shows an approximate single-well potential curve, whereas that of 2 shows a double- or quadruple-well potential within the (7)F6 multiplets. Complex 2 displayed an onset of the out-of-phase signal in alternating current (ac) susceptibility at a direct current bias field of 1000 Oe on cooling down to 1.9 K. A slight frequency dependence was recorded around 2 K. On the other hand, 1 did not show any meaningful out-of-phase ac susceptibility. Pulsed-field magnetizations of 1 and 2 were measured below 1.6 K, and only 2 exhibited magnetic hysteresis. This finding agrees well with the energy diagram pattern from crystal field calculation on 1 and 2. DFT calculation allowed us to estimate the negative charge distribution around the Tb(III) ion, giving a rationale to the different magnetic anisotropies of 1 and 2.
Yang, Bin; Hird, Alexander W; Russell, Daniel John; Fauber, Benjamin P; Dakin, Les A; Zheng, Xiaolan; Su, Qibin; Godin, Robert; Brassil, Patrick; Devereaux, Erik; Janetka, James W
2012-07-15
Cell-based subset screening of compounds using a Gli transcription factor reporter cell assay and shh stimulated cell differentiation assay identified a series of bisamide compounds as hedgehog pathway inhibitors with good potency. Using a ligand-based optimization strategy, heteroaryl groups were utilized as conformationally restricted amide isosteres replacing one of the amides which significantly increased their potency against SMO and the hedgehog pathway while decreasing activity against p38α kinase. We report herein the identification of advanced lead compounds such as imidazole 11c and 11f encompassing good p38α selectivity, low nanomolar potency in both cell assays, excellent physiochemical properties and in vivo pharmacokinetics. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rull, Silvia G; Álvarez, Eleuterio; Fructos, Manuel R; Belderrain, Tomás R; Pérez, Pedro J
2017-06-07
The first example of a diazo palladium adduct is reported. The complexes [(ArNHC-PPh 2 )M(η 2 -N 2 C(Ph)CO 2 Et)] (M=Ni, 3; M=Pd, 4; ArNHC-PPh 2 =3-(2,6-diisopropylphenyl)-1-[(diphenylphosphino)ethyl]imidazol-2-ylidene) were prepared by ligand exchange with styrene-coordinated precursors [(ArNHC-PPh 2 )M(styrene)] (M=Ni, 1; M=Pd, 2). Complex 4 was fully characterized, including X-ray analyses; this constitutes the first example of a diazo adduct compound with palladium, thereby closing the gap between Groups 8 and 10 regarding this type of compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lai, Zeng-Wei; Yang, Rong-Fei; Ye, Ke-Yin; Sun, Hongbin; You, Shu-Li
2014-01-01
A class of novel, easily accessible and air-stable 1-[bis(trifluoromethyl)phosphine]-1'-oxazolinylferrocene ligands has been synthesized from ferrocene. It became apparent that these ligands can be used in the regio- and enantioselective Pd-catalyzed allylic alkylation of monosubstituted allyl substrates in a highly efficient manner. Excellent regio- and enantioselectivity could be obtained for a wide range of substrates.
NASA Astrophysics Data System (ADS)
Yan, Li; Liu, Chun-Ling
2017-10-01
Two novel metal-organic coordination polymers [Cd(ipdt)(m-BDC)·3H2O]n (1) and [Pb(mip)2(NTC) ·2H2O]n (2) [ipdt = 2,6-Dimethoxy-4-(1H-1,3,7,8-tetraaza-cyclopenta[l]phenanthren-2-yl)-phenol, mip = 2-(3-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, m-BDC = isophthalic acid, NTC = nicotinic acid] have been synthesized by hydrothermal reactions and characterized by elemental analysis, thermogravimetric (TG) analysis, infrared spectrum (IR) and single-crystal X-ray diffraction. Single-crystal X-ray diffraction reveals that 1 exhibits two-dimensional (2D) layer architecture, and 2 shows 1D chain architecture. TG analysis shows clear courses of weight loss, which corresponds to the decomposition of different ligands. The luminescent properties for the ligand ipdt, mip and complexes 1-2 are also discussed in detail, which should be acted as potential luminescent material.
Parihar, Sanjay; Pathan, Soyeb; Jadeja, R N; Patel, Anjali; Gupta, Vivek K
2012-01-16
1-Phenyl-3-methyl-4-touloyl-5-pyrazolone (ligand) was synthesized and used to prepare an oxovanadium(IV) complex. The complex was characterized by single-crystal X-ray analysis and various spectroscopic techniques. The single-crystal X-ray analysis of the complex shows that the ligands are coordinated in a syn configuration to each other and create a distorted octahedral environment around the metal ion. A heterogeneous catalyst comprising an oxovanadium(IV) complex and hydrous zirconia was synthesized, characterized by various physicochemical techniques, and successfully used for the solvent-free oxidation of styrene. The influence of the reaction parameters (percent loading, molar ratio of the substrate to H(2)O(2), amount of catalyst, and reaction time) was studied. The catalyst was reused three times without any significant loss in the catalytic activity.
Sharma, Amit Kumar; Chandra, Sulekh
2011-01-01
2,6-diacetyl pyridine based ligand was synthesized by the reaction of 2,6-diacetyl pyridine with thiocarbohydrazide in presence of acetic acid. The coordination compounds with Cr(III) and Ni(II) metal ions having [Cr(L)X]X2 and [Ni(L)X]X compositions (where L=ligand and X=NO3-, Cl- and CH3COO-) were synthesized and characterized by physicochemical and spectral studies. The studies like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV-Vis, NMR, mass and EPR reveal that the complexes are octahedral. The compounds were examined against the pathogenic fungal and bacterial strains like Alternaria brassicae, Aspergillus niger, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa. A. niger causes the diseases Apergillosis and Otomycosis in humans. Copyright © 2010. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Dhamodharan, P.; Sathya, K.; Dhandapani, M.
2017-10-01
A novel organic crystal, 1H-benzo[d]imidazol-3-ium-2,4,6-trinitrobenzene-1,3 bis(olate) (BITB), was synthesized. Single crystals of BITB were harvested by solution growth-slow evaporation technique. 1H and 13C NMR spectroscopic techniques were utilized to confirm the presence of various types of carbons and protons in BITB. Single crystal XRD confirms that BITB crystallizes in monoclinic system with a space group of P21/n. The suitability of this material for optical applications was assessed by optical absorption, transmittance, reflectance and refractive index spectroscopic techniques. Gaussian 09 program at B3LYP/6-311++G(d,p) level of basis set as used for the optimization of molecular structure of BITB. Greater first order hyperpolarizability value of BITB is due to intensive hydrogen bond network in the crystal. The value is 15 times greater than that of Urea, a reference standard. Computation of frontier molecular orbitals and electrostatic potential surface helped to understand the electron density and reactive sites in BITB. The material was thermally stable up to 220 °C. Hirshfeld surface analysis was performed to quantify the covalent and non covalent interactions.
Blue-light emitting electrochemical cells comprising pyrene-imidazole derivatives
NASA Astrophysics Data System (ADS)
Lee, Hyeonji; Sunesh, Chozhidakath Damodharan; Subeesh, Madayanad Suresh; Choe, Youngson
2018-04-01
Light-emitting electrochemical cells (LECs), the next-generation lighting sources are the potential replacements for organic light-emitting diodes (OLEDs). In recent years, organic small molecules (SMs) have established the applicability in solid-state lighting, and considered as prospective active materials for LECs with higher device performance. Here, we describe the synthesis of pyrene-imidazole based SMs, PYR1, and PYR2 that differ by one pyrene unit and their characterization by various spectroscopic methods. To investigate the thermal, photophysical, and electrochemical properties of the two synthesized compounds, we performed thermogravimetric, UV-visible, photoluminescence (PL), and voltammetric measurements. The photoluminescence (PL) emission spectra of PYR1 and PYR2 measured in the acetonitrile solution, where PYR1 and PYR2 emit in the blue spectral region with peaks aligned at 383 nm and 389 nm, respectively. The fabricated LEC devices exhibited broader electroluminescence (EL) spectra with a significant red shift of the emission maxima to 446 nm and 487 nm, with CIE coordinates of (0.17, 0.18) and (0.18, 0.25) for PYR1 and PYR2, respectively. The LECs based on PYR1 and PYR2 produced maximum brightness values of 180 and 72 cd m-2 and current densities of 55 and 27 mA cm-2, respectively.
Edelson, Benjamin S; Best, Timothy P; Olenyuk, Bogdan; Nickols, Nicholas G; Doss, Raymond M; Foister, Shane; Heckel, Alexander; Dervan, Peter B
2004-01-01
A pivotal step forward in chemical approaches to controlling gene expression is the development of sequence-specific DNA-binding molecules that can enter live cells and traffic to nuclei unaided. DNA-binding polyamides are a class of programmable, sequence-specific small molecules that have been shown to influence a wide variety of protein-DNA interactions. We have synthesized over 100 polyamide-fluorophore conjugates and assayed their nuclear uptake profiles in 13 mammalian cell lines. The compiled dataset, comprising 1300 entries, establishes a benchmark for the nuclear localization of polyamide-dye conjugates. Compounds in this series were chosen to provide systematic variation in several structural variables, including dye composition and placement, molecular weight, charge, ordering of the aromatic and aliphatic amino-acid building blocks and overall shape. Nuclear uptake does not appear to be correlated with polyamide molecular weight or with the number of imidazole residues, although the positions of imidazole residues affect nuclear access properties significantly. Generally negative determinants for nuclear access include the presence of a beta-Ala-tail residue and the lack of a cationic alkyl amine moiety, whereas the presence of an acetylated 2,4-diaminobutyric acid-turn is a positive factor for nuclear localization. We discuss implications of these data on the design of polyamide-dye conjugates for use in biological systems.
Bustamante, Eugenia L; Fernández, José L; Zamaro, Juan M
2014-06-15
The effect of the solvent on the synthesis process and on the nanocrystal characteristics of the zeolitic imidazolate framework-8 (ZIF-8) was investigated. A synthesis protocol at room temperature employing a series of aliphatic alcohols, water, dimethylformamide and acetone was employed. The results show that the solvent modifies the evolution of the reaction, altering the crystallization rates and nanocrystal sizes. Its hydrogen bond donation ability is the main factor that governs this effect. More precisely, the solvent modulates the formation of ZIF-8 nanocrystals with sizes in the range between 15 and 42 nm. When synthesized in alcohol and acetone, these nanocrystals form globular aggregates with sizes between 130 and 420 nm. In contrast, under the same synthesis conditions, when using water or dimethylformamide the ZIF phase is not developed. In alcohols other than methanol, the crystals develop pill-shaped morphologies with poorly defined facets. Moreover, a markedly fast growing kinetics is verified in these alcohols, leading to an ultra-fast crystallization of ZIF-8 in about 60s. These findings provide new information about the role of the solvent in the synthesis process of nanoZIF-8, which can be useful for controlling the crystallization rates and nanocrystal sizes of this material. Copyright © 2014 Elsevier Inc. All rights reserved.
Al-Wabli, Reem I; Al-Ghamdi, Alwah R; Ghabbour, Hazem A; Al-Agamy, Mohamed H; Monicka, James Clemy; Joe, Issac Hubert; Attia, Mohamed I
2017-02-28
Mycoses are serious health problem, especially in immunocompromised individuals. A new imidazole-bearing compound containing an oxime functionality was synthesized and characterized with different spectroscopic techniques to be used for the preparation of new antifungal agents. The stereochemistry of the oxime double bond was unequivocally determined via the single crystal X-ray technique. The title compound 4 , C 13 H 13 N₃O₃·C₃H₈O, crystallizes in the monoclinic space group P 2₁with a = 9.0963(3) Å, b = 14.7244(6) Å, c = 10.7035(4) Å, β = 94.298 (3)°, V = 1429.57(9) ų, Z = 2. The molecules were packed in the crystal structure by eight intermolecular hydrogen bond interactions. A comprehensive spectral analysis of the title molecule 4 has been performed based on the scaled quantum mechanical (SQM) force field obtained by density-functional theory (DFT) calculations. A molecular docking study illustrated the binding mode of the title compound 4 into its target protein. The preliminary antifungal activity of the title compound 4 was determined using a broth microdilution assay.
Adsorptive removal of 1-naphthol from water with Zeolitic imidazolate framework-67
NASA Astrophysics Data System (ADS)
Yan, Xinlong; Hu, Xiaoyan; Chen, Tao; Zhang, Shiyu; Zhou, Min
2017-08-01
1-Naphthol is widely used as an intermediate in the plastics, dyes, fibers and rubbers production areas, leading to the increasing detection of 1-naphthol in the soil and water environment, which is of particular concern due to its acute toxicity and negative environmental impacts. Considering the high surface area and good stability of ZIFs (zeolitic imidazole frameworks) material, ZIF-67 (a representative cobalt-based ZIFs material) was synthesized and applied as an adsorbent for removal of 1-naphthol from aqueous solution. The obtained ZIF-67 was characterized by XRD, TEM, XPS, N2 physisorption and TG, and the adsorption isotherm, kinetics, and regeneration of the adsorbent were studied in detail. The adsorption of 1-naphthol on ZIF-67 followed a pseudo-second-order equation kinetics and fitted Langmuir adsorption model with a maximum adsorption capacity of 339 mg/g at 313 K, which is much higher than that of the common adsorbents reported such as activated carbon and carbon nanotubes et al. The solution pH was found to be an important factor influencing the adsorption process, which could be explained by the predominant mechanism controlling the process, i.e. electrostatic attraction. In addition, the ZIF-67 showed desirable reusability toward 1-naphthol removal from alkaline aqueous solution.
Kojima, Toshio; Wang, Xiaofei; Fujiwara, Kyoko; Osaka, Shunzo; Yoshida, Yukihiro; Osaka, Eiji; Taniguchi, Masashi; Ueno, Takahiro; Fukuda, Noboru; Soma, Masayoshi; Tokuhashi, Yasuaki; Nagase, Hiroki
2014-01-01
Osteosarcoma is one of the most prevalent bone tumors, occurring mostly in adolescence. However, no noticeable progress has been achieved in developing new therapeutic agents for this disease. Matrix metalloproteinase 9 (MMP9), a type IV collagenase, is a known anticancer target and is overexpressed in osteosarcomas. MMPs can degrade components of the extracellular matrix and are known to be involved in tumor invasion and metastasis. In the present study, we designed and synthesized a pyrrole-imidazole polyamide (HN.49), a gene-silencing agent that specifically targets the nuclear factor-kappa B (NF-κB) binding site of the human MMP9 promoter. We then examined the effect of HN.49 on the enzyme activity of MMP9 and the migration activity of osteosarcoma cells in vitro. It was clearly shown that HN.49 polyamide reduced the expression level of MMP9 mRNA and the enzymatic activity of MMP-9 in SaOS-2 cells. Moreover, HN.49 polyamide inhibited migration and invasion by SaOS-2 cells in in vitro wound-closure and matrigel-invasion assays. These results indicate that HN.49 may be a potential therapeutic agent for inhibiting the invasion and metastasis of osteosarcoma.
Yin, Yichao; Liu, Xiaofang; Wei, Xiaojun; Yu, Ronghai; Shui, Jianglan
2016-12-21
Porous carbon nanotubes/cobalt nanoparticles (CNTs/Co) composite with dodecahedron morphology was synthesized by in situ pyrolysis of the Co-based zeolitic imidazolate framework in a reducing atmosphere. The morphology and microstructure of the composite can be well tuned by controlling the pyrolysis conditions. At lower pyrolysis temperature, the CNTs/Co composite is composed of well-dispersed Co nanoparticles and short CNT clusters with low graphitic degree. The increase of pyrolysis temperature/time promotes the growth and graphitization of CNTs and leads to the aggregation of Co nanoparticles. The optimized CNTs/Co composite exhibits strong dielectric and magnetic losses as well as a good impedance matching property. Interestingly, the CNTs/Co composite displays extremely strong electromagnetic wave absorption with a maximum reflection loss of -60.4 dB. More importantly, the matching thickness of the absorber is as thin as 1.81 mm, and the filler loading of composite in the matrix is only 20 wt %. The highly efficient absorption is closely related to the well-designed structure and the synergistic effect between CNTs and Co nanoparticles. The excellent absorbing performance together with lightweight and ultrathin thickness endows the CNTs/Co composite with the potential for application in the electromagnetic wave absorbing field.
NASA Astrophysics Data System (ADS)
Guhathakurta, Bhargab; Pradhan, Ankur Bikash; Das, Suman; Bandyopadhyay, Nirmalya; Lu, Liping; Zhu, Miaoli; Naskar, Jnan Prakash
2017-02-01
Two osazone based ligands, butane-2,3-dione bis(2‧-pyridylhydrazone) (BDBPH) and hexane-3,4-dione bis(2‧-pyridylhydrazone) (HDBPH), were synthesized out of the 2:1 M Schiff base condensation of 2-hydrazino pyridine respectively with 2,3-butanedione and 3,4-hexanedione. The X-ray crystal structures of both the ligands have been determined. The copper(II) complex of HDBPH has also been synthesized and structurally characterized. HDBPH and its copper(II) complex have thoroughly been characterized through various spectroscopic and analytical techniques. The X-ray crystal structure of the copper complex of HDBPH shows that it is a monomeric Cu(II) complex having 'N4O2' co-ordination chromophore. Interaction of human serum albumin (HSA) with these ligands and their monomeric copper(II) complexes have been studied by various spectroscopic means. The experimental findings show that the ligands as well as their copper complexes are good HSA binders. Molecular docking investigations have also been done to unravel the mode of binding of the species with HSA.
Ali, Imran; Wani, Waseem A; Khan, Amber; Haque, Ashanul; Ahmad, Aijaz; Saleem, Kishwar; Manzoor, Nikhat
2012-08-01
A pyrazoline based ligand; (5-(4-chlorophenyl)-3-phenyl-4, 5-dihydro-1H-pyrazole-1-carbothioamide) has been synthesized by Claisen-Schmidt condensation of acetophenone with p-chlorobenzaldehyde, followed by sodium hydroxide assisted cyclization of the resulting chalcone with thiosemicarbazide. Metal ion complexes of the synthesized ligand were prepared with Cu(II) and Ni(II) metal ions, separately and respectively. Ligand and the metal complexes were characterized by elemental analysis, FT-IR, UV-Vis, (1)HNMR, ESI-MS and (13)CNMR spectroscopic techniques. Molar conductance measurements in DMSO suggested non-electrolytic nature of the complexes. Tetragonally distorted octahedral geometry for copper and octahedral geometry for the nickel complexes was proposed on the basis of UV-Vis spectroscopic studies and magnetic moment measurements. The complexes were investigated for their ability to kill human fungal pathogen Candida by determining MICs (Minimum inhibitory concentrations), inhibition in solid media and ability to produce a possible synergism with conventional most clinically practiced antifungals by disc diffusion assay and FICI (fractional inhibitory concentration index). Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, Brandon R.; Wiedner, Eric S.; Helm, Monte L.
Nickel(II) complexes containing chelating N-heterocyclic carbene-phosphine ligands ([NiL2](BPh4)2, for which L = [MeIm(CH2)2PR2]) have been synthesized for the purpose of studying how this class of ligand effects the electrochemical properties compared to the nickel bis- diphosphine analogues. The nickel complexes were synthesized and characterized by x-ray crystallography and electrochemical methods. Based on the half wave potentials (E1/2), substitution of an NHC for one of the phosphines in a diphoshine ligand results in shifts in potential to 0.6 V to 1.2 V more negative than the corresponding nickel bis-diphosphine complexes. These quantitative results highlight the substantial effect that NHC ligands canmore » have upon the electronic properties of the metal complexes. BRG, JCL, and AMA acknowledge the support by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH acknoledges the support of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
Khan, Saman; Malla, Ali Mohammed; Zafar, Atif
2017-01-01
Despite substantial research on cancer therapeutics, systemic toxicity and drug-resistance limits the clinical application of many drugs like cisplatin. Therefore, new chemotherapeutic strategies against different malignancies are needed. Targeted cancer therapy is a new paradigm for cancer therapeutics which targets pathways or chemical entities specific to cancer cells than normal ones. Unlike normal cells, cancer cells contain elevated copper which plays an integral role in angiogenesis. Copper is an important metal ion associated with chromatin DNA, particularly with guanine. Thus, targeting copper via copper-specific chelators in cancer cells can serve as an effective anticancer strategy. New pharmacophore di(2-picolyl)amine (DPA)-3(bromoacetyl) coumarin (ligand-L) was synthesized and characterized by IR, ESI-MS, 1H- and 13C-NMR. Binding ability of ligand-L to DNA/Cu(II) was evaluated using a plethora of biophysical techniques which revealed ligand-L-DNA and ligand-L-Cu(II) interaction. Competitive displacement assay and docking confirmed non-intercalative binding mode of ligand-L with ctDNA. Cyclic voltammetry confirmed ligand-L causes quasi reversible Cu(II)/Cu(I) conversion. Further, acute toxicity studies revealed no toxic effects of ligand-L on mice. To evaluate the chemotherapeutic potential and anticancer mechanism of ligand-L, DNA damage via pBR322 cleavage assay and reactive oxygen species (ROS) generation were studied. Results demonstrate that ligand-L causes DNA cleavage involving ROS generation in the presence of Cu(II). In conclusion, ligand-L causes redox cycling of Cu(II) to generate ROS which leads to oxidative DNA damage and pro-oxidant cancer cell death. These findings will establish ligand-L as a lead molecule to synthesize new molecules with better copper chelating and pro-oxidant properties against different malignancies. PMID:28763458
NASA Astrophysics Data System (ADS)
Mani, Devendra; Can, Cihad; Pal, Nitish; Schwaab, Gerhard; Havenith, Martina
2017-06-01
Imidazole ring is a part of many biologically important molecules and drugs. Imidazole monomer, dimer and its complexes with water have earlier been studied using infrared spectroscopy in helium droplets^{1,2} and molecular beams^{3}. These studies were focussed on the N-H and O-H stretch regions, covering the spectral region of 3200-3800 \\wn. We have extended the studies on imidazole clusters into the ring vibration region. The imidazole clusters were isolated in helium droplets and were probed using a combination of infrared spectroscopy and mass spectrometry. The spectra in the region of 1000-1100 \\wn and 1300-1460 \\wn were recorded using quantum cascade lasers. Some of the observed bands could be assigned to imidazole monomer and higher order imidazole clusters, using pickup curve analysis and ab initio calculations. Work is still in progress. The results will be discussed in detail in the talk. References: 1) M.Y. Choi and R.E. Miller, J. Phys. Chem. A, 110, 9344 (2006). 2) M.Y. Choi and R.E. Miller, Chem. Phys. Lett., 477, 276 (2009). 3) J. Zischang, J. J. Lee and M. Suhm, J. Chem. Phys., 135, 061102 (2011). Note: This work was supported by the Cluster of Excellence RESOLV (Ruhr-Universitat EXC1069) funded by the Deutsche Forschungsgemeinschaft.
Price, Eric W; Cawthray, Jacqueline F; Adam, Michael J; Orvig, Chris
2014-05-21
The ligands H2dedpa, H4octapa, p-SCN-Bn-H2dedpa, and p-SCN-Bn-H4octapa were synthesized using a new protection chemistry approach, with labile tert-butyl esters replacing the previously used methyl esters as protecting groups for picolinic acid moieties. Additionally, the ligands H2dedpa and p-SCN-Bn-H2dedpa were synthesized using nosyl protection chemistry for the first time. The use of tert-butyl esters allows for deprotection at room temperature in trifluoroacetic acid (TFA), which compares favorably to the harsh conditions of refluxing HCl (6 M) or LiOH that were previously required for methyl ester cleavage. H4octapa has recently been shown to be a very promising (111)In and (177)Lu ligand for radiopharmaceutical applications; therefore, coordination chemistry studies with Y(3+) are described to assess its potential for use with (86)Y/(90)Y. The solution chemistry of H4octapa with Y(3+) is shown to be suitable via solution NMR studies of the [Y(octapa)](-) complex and density functional theory (DFT) calculations of the predicted structure, suggesting properties similar to those of the analogous In(3+) and Lu(3+) complexes. The molecular electrostatic potential (MEP) was mapped onto the molecular surface of the DFT-calculated coordination structures, suggesting very similar and even charge distributions between both the Lu(3+) and Y(3+) complexes of octapa(4-), and coordinate structures between 8 (ligand only) and 9 (ligand and one H2O). Potentiometric titrations determined H4octapa to have a formation constant (log K(ML)) with Y(3+) of 18.3 ± 0.1, revealing high thermodynamic stability. This preliminary work suggests that H4octapa may be a competent ligand for future (86)Y/(90)Y radiopharmaceutical applications.
Mass spectrometric screening of ligands with lower off-rate from a clicked-based pooled library.
Arai, Satoshi; Hirosawa, Shota; Oguchi, Yusuke; Suzuki, Madoka; Murata, Atsushi; Ishiwata, Shin'ichi; Takeoka, Shinji
2012-08-13
This paper describes a convenient screening method using ion trap electrospray ionization mass spectrometry to classify ligands to a target molecule in terms of kinetic parameters. We demonstrate this method in the screening of ligands to a hexahistidine tag from a pooled library synthesized by click chemistry. The ion trap mass spectrometry analysis revealed that higher stabilities of ligand-target complexes in the gas phase were related to lower dissociation rate constants, i.e., off-rates in solution. Finally, we prepared a fluorescent probe utilizing the ligand with lowest off-rate and succeeded in performing single molecule observations of hexahistidine-tagged myosin V walking on actin filaments.
Sanhueza, Carlos A; Cartmell, Jonathan; El-Hawiet, Amr; Szpacenko, Adam; Kitova, Elena N; Daneshfar, Rambod; Klassen, John S; Lang, Dean E; Eugenio, Luiz; Ng, Kenneth K-S; Kitov, Pavel I; Bundle, David R
2015-01-07
A focused library of virtual heterobifunctional ligands was generated in silico and a set of ligands with recombined fragments was synthesized and evaluated for binding to Clostridium difficile toxins. The position of the trisaccharide fragment was used as a reference for filtering docked poses during virtual screening to match the trisaccharide ligand in a crystal structure. The peptoid, a diversity fragment probing the protein surface area adjacent to a known binding site, was generated by a multi-component Ugi reaction. Our approach combines modular fragment-based design with in silico screening of synthetically feasible compounds and lays the groundwork for future efforts in development of composite bifunctional ligands for large clostridial toxins.
Polycatenar Ligand Control of the Synthesis and Self-Assembly of Colloidal Nanocrystals.
Diroll, Benjamin T; Jishkariani, Davit; Cargnello, Matteo; Murray, Christopher B; Donnio, Bertrand
2016-08-24
Hydrophobic colloidal nanocrystals are typically synthesized and manipulated with commercially available ligands, and surface functionalization is therefore typically limited to a small number of molecules. Here, we report the use of polycatenar ligands derived from polyalkylbenzoates for the direct synthesis of metallic, chalcogenide, pnictide, and oxide nanocrystals. Polycatenar molecules, branched structures bearing diverging chains in which the terminal substitution pattern, functionality, and binding group can be independently modified, offer a modular platform for the development of ligands with targeted properties. Not only are these ligands used for the direct synthesis of monodisperse nanocrystals, but nanocrystals coated with polycatenar ligands self-assemble into softer bcc superlattices that deviate from conventional harder close-packed structures (fcc or hcp) formed by the same nanocrystals coated with commercial ligands. Self-assembly experiments demonstrate that the molecular structure of polycatenar ligands encodes interparticle spacings and attractions, engineering self-assembly, which is tunable from hard sphere to soft sphere behavior.
Imidazole catalyzes chlorination by unreactive primary chloramines
Roemeling, Margo D.; Williams, Jared; Beckman, Joseph S.; Hurst, James K.
2015-01-01
Hypochlorous acid and simple chloramines (RNHCl) are stable biologically-derived chlorinating agents. In general, the chlorination potential of HOCl is much greater than that of RNHCl, allowing it to oxidize or chlorinate a much wider variety of reaction partners. However, in this study we demonstrate by kinetic analysis that the reactivity of RNHCl can be dramatically promoted by imidazole and histidyl model compounds via intermediary formation of the corresponding imidazole chloramines. Two biologically relevant reactions were investigated—loss of imidazole-catalyzed chlorinating capacity and phenolic ring chlorination using fluorescein and the tyrosine analog, 4-hydroxyphenylacetic acid (HPA). HOCl reacted stoichiometrically with imidazole, N-acetylhistidine (NAH), or imidazoleacetic acid to generate the corresponding imidazole chloramines which subsequently decomposed. Chloramine (NH2Cl) also underwent a markedly accelerated loss in chlorinating capacity when NAH was present, although in this case NAHCl did not accumulate, indicating that the catalytic intermediate must be highly reactive. Mixing HOCl with 1-methylimidazole (MeIm) led to very rapid loss in chlorinating capacity via formation of a highly reactive chlorinium ion (MeImCl+) intermediate; this behavior suggests that the reactive forms of the analogous imidazole chloramines are their conjugate acids, e.g., the imidazolechlorinium ion (HImCl+). HOCl-generated imidazole chloramine (ImCl) reacted rapidly with fluorescein in a specific acid-catalyzed second order reaction to give 3′-monochloro and 3′,5′-dichloro products. Equilibrium constants for the transchlorination reactions: HOCl + HIm = H2O + ImCl and NH2Cl + HIm = NH3 + ImCl were estimated from the dependence of the rate constants upon [HIm]/[HOCl] and literature data. Acid catalysis again suggests that the actual chlorinating agent is HImCl+; consistent with this interpretation, MeIm markedly catalyzed fluorescein chlorination by HOCl. Time-dependent imidazole-catalyzed HPA chlorination by NH2Cl was also demonstrated by product analyses. Quantitative assessment of the data suggests that physiological levels of histidyl groups will react with primary chloramines to generate a flux of imidazole chloramine sufficient to catalyze biological chlorination via HImCl+, particularly in environments that generate high concentrations of HOCl such as the neutrophil phagosome. PMID:25660996
Li, Sipeng; Ding, Zhaoyang; Liu, Jifu; Cao, Xuejun
2017-12-01
ε-Poly-L-lysine (ε-PL) is a natural preservative for food processing industry. A thermo-responsive polymer, attached with Cu 2+ or Ni 2+ , was prepared for metal-chelate affinity precipitation for purification of ε-PL. The low critical solution temperatures (LCSTs) of these polymers were close to the room temperature (31.0-35.0 °C). The optimal adsorption conditions were as follows: pH 4.0, 0 mol/L NaCl, ligand density 75.00 μmol/g, and 120 min. The ligand Cu 2+ showed a stronger affinity interaction with ε-PL and the highest adsorption amount reached 251.93 mg/g polymer. The elution recovery of ε-PL could be 98.42% with 0.50 mol/L imidazole (pH = 8.0) as the eluent. The method could purify ε-PL from fermentation broth and the final product was proved as electrophoretic pure by SDS-PAGE. Moreover, these affinity polymers could be recycled after the purification of ε-PL and the recoveries were above 95.00%. Graphical Abstract Scheme for affinity precipitation of ε-PL.
Zou, Yi; Wang, Fang; Wang, Yan; Guo, Wenjie; Zhang, Yihua; Xu, Qiang; Lai, Yisheng
2017-05-05
Indoleamine 2,3-dioxygenase 1 (IDO1) is regarded as an attractive target for cancer immunotherapy. To rationalize the detailed interactions between IDO1 and its inhibitors at the atomic level, an integrated computational approach by combining molecular mechanics and quantum mechanics methods was employed in this report. Specifically, the binding modes of 20 inhibitors was initially investigated using the induced fit docking (IFD) protocol, which outperformed other two docking protocols in terms of correctly predicting ligand conformations. Secondly, molecular dynamics (MD) simulations and MM/PBSA free energy calculations were employed to determine the dynamic binding process and crucial residues were confirmed through close contact analysis, hydrogen-bond analysis and binding free energy decomposition calculations. Subsequent quantum mechanics and nonbonding interaction analysis were carried out to provide in-depth explanations on the critical role of those key residues, and Arg231 and 7-propionate of the heme group were major contributors to ligand binding, which lowed a great amount of interaction energy. We anticipate that these findings will be valuable for enzymatic studies and rational drug design. Copyright © 2017. Published by Elsevier Masson SAS.
Locally enhanced sampling molecular dynamics study of the dioxygen transport in human cytoglobin.
Orlowski, Slawomir; Nowak, Wieslaw
2007-07-01
Cytoglobin (Cyg)--a new member of the vertebrate heme globin family--is expressed in many tissues of the human body but its physiological role is still unclear. It may deliver oxygen under hypoxia, serve as a scavenger of reactive species or be involved in collagen synthesis. This protein is usually six-coordinated and binds oxygen by a displacement of the distal HisE7 imidazole. In this paper, the results of 60 ns molecular dynamics (MD) simulations of dioxygen diffusion inside Cyg matrix are discussed. In addition to a classical MD trajectory, an approximate Locally Enhanced Sampling (LES) method has been employed. Classical diffusion paths were carefully analyzed, five cavities in dynamical structures were determined and at least four distinct ligand exit paths were identified. The most probable exit/entry path is connected with a large tunnel present in Cyg. Several residues that are perhaps critical for kinetics of small gaseous diffusion were discovered. A comparison of gaseous ligand transport in Cyg and in the most studied heme protein myoglobin is presented. Implications of efficient oxygen transport found in Cyg to its possible physiological role are discussed.
Inorganic colloidal nanocrystals: Synthesis and bioapplications
NASA Astrophysics Data System (ADS)
Wu, Huimeng
Nanocrystals (NCs) are very small particles, which contain from a few hundred to thousands of atoms depending on the size of NCs. Because of their special properties compared with the bulk materials, NCs have found many promising applications in areas, such as biomedical diagnosis, catalysis, plasmonics, high-density data storage and solar energy conversion. This dissertation presents studies on the syntheses of metal oxide NCs and hybrid NCs, the surface functionalization of NCs by dual-interaction ligands, and gold-NC-based assay for the detection of beta-galactosidase. Monodisperse colloidal uranium dioxide NCs (UO2 NCs) were synthesized by decomposition of uranyl acetylacetonate. By changing the amount of added surfactant, the sizes of the NCs could vary from 2 ˜ 8 nm. Mechanistic studies of the formation of UO2 NCs showed that the condensation product (amide) of oleic acid and oleylamine plays an important role in controlling the particle size. Normally, high-quality NCs are synthesized in organic phase, but most of NC-based bio-applications require water-soluble NCs. To convert these hydrophobic NCs to hydrophilic particles, surface modification is employed. Here dual interaction ligands based on the Tween-derivatives (TDs) were synthesized. Stability tests on TD-capped NCs showed that these dual interaction ligands can significantly increase the stability of NCs compared to single interaction ligands. Further, These TD-capped QDs were further tested as fluorescent labels to detect virusprotein expression in cells. To exploit bio-applications of nanocrystals, gold nanocrystal-based assay to detect enzyme activity was designed. The optical properties of Au-NCs are not only dependent on the particle sizes and shapes, but also the distances between the particles. Here, Lipoic acid-tyramine-beta-galactopyranosyl (LTbeta-gal) was synthesized, as ligands, to cap Au-NCs; and the resultant LTbeta-gal-capped Au-NCs could disperse in water. After the hydrolysis of the ligands with beta-galactosidase, these Au-NCs become to aggregate, which exhibit a red-shift in the absorption spectrum of the Au-NC suspension. The detection of beta-galactosidase was further studies by varying the amounts of beta-galactosidase. Hybrid nanocrystals (HNCs) are attractive candidates for advanced nanomaterials because they contain two or more different nanoscale functionalities, which are expected to possess novel physical and chemical properties. Two kinds of heterodimers (FePt/In2O3 and UO2/In 2O3) were prepared using a similar procedure and the synthesized HNCs exhibited different shapes. The studies of high-resolution transmission electron microscopy (HRTEM) indicate that the shapes of these two dimers were controlled by the interfacial structures. The amorphous iron oxide layers on the FePt NC surfaces act as glue to interconnect the FePt with the indium oxide parts and led to a core-seed-shaped heterodimer. Using completely crystalline UO2 NCs as seeds resulted in a peanut-shapd HNC.
NASA Astrophysics Data System (ADS)
El-Boraey, Hanaa A.; Serag El-Din, Azza A.
2014-11-01
Novel penta-azamacrocyclic 15-membered [N5] ligand [L] i.e. 1,5,8,12-tetetraaza-3,4: 9,10-dibenzo-6-ethyl-7-methyl-1,12-(2,6-pyrido)cyclopentadecan-5,7 diene-2,11-dione and its transition metal complexes with Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and structurally characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On basis of IR, MS, UV-Vis 1H NMR and EPR spectral studies an octahedral geometry has been proposed for all complexes except Co(II), Cu(II) nitrate complexes and Pd(II) chloride complex that adopt tetrahedral, square pyramidal and square planar geometries, respectively. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.04-9.7, 2.5-3.7 μg/mL) showed potent antitumor activity comparable with their ligand (IC50 = 11.7, 3.45 μg/mL) against the above mentioned cell lines, respectively. The results evidently show that the activity of the ligand becomes more pronounced and significant when coordinated to the metal ion.
Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands.
Sumathi, S; Tharmaraj, P; Sheela, C D; Anitha, C
2012-11-01
Transition metal complexes of various acetylacetone based ligands of the type ML [where M=Cu(II), Ni(II), Co(II); L=3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, (1)H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate). Copyright © 2012 Elsevier B.V. All rights reserved.
Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands
NASA Astrophysics Data System (ADS)
Sumathi, S.; Tharmaraj, P.; Sheela, C. D.; Anitha, C.
2012-11-01
Transition metal complexes of various acetylacetone based ligands of the type ML [where M = Cu(II), Ni(II), Co(II); L = 3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, 1H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate).
Synthesis and characterization of heteroleptic titanium MOCVD precursors for TiO2 thin films.
Kim, Euk Hyun; Lim, Min Hyuk; Lah, Myoung Soo; Koo, Sang Man
2018-02-13
Heteroleptic titanium alkoxides with three different ligands, i.e., [Ti(O i Pr)(X)(Y)] (X = tridentate, Y = bidentate ligands), were synthesized to find efficient metal organic chemical vapor deposition (MOCVD) precursors for TiO 2 thin films. Acetylacetone (acacH) or 2,2,6,6-tetramethyl-3,5-heptanedione (thdH) was employed as a bidentate ligand, while N-methyldiethanolamine (MDEA) was employed as a tridentate ligand. It was expected that the oxygen and moisture susceptibility of titanium alkoxides, as well as their tendency to form oligomers, would be greatly reduced by placing multidentate and bulky ligands around the center Ti atom. The synthesized heteroleptic titanium alkoxides were characterized both physicochemically and crystallographically, and their thermal behaviors were also investigated. [Ti(O i Pr)(MDEA)(thd)] was found to be monomeric and stable against moisture; it also showed good volatility in the temperature window between volatilization and decomposition. This material was used as a single-source precursor during MOCVD to generate TiO 2 thin films on silicon wafers. The high thermal stability of [Ti(O i Pr)(MDEA)(thd)] enabled the fabrication of TiO 2 films over a wide temperature range, with steady growth rates between 500 and 800 °C.
NASA Astrophysics Data System (ADS)
Emara, Adel A. A.
2010-09-01
The binuclear Schiff base, H 2L, ligand was synthesized by reaction of 4,6-diacetylresorcinol with diethylenetriamine in the molar ratio 1:2. The coordination behavior of the H 2L towards Cu(II), Ni(II), Co(II), Zn(II), Fe(III), Cr(III), VO(IV) and UO 2(VI) ions has been investigated. The elemental analyses, magnetic moments, thermal studies and IR, electronic, 1H NMR, ESR and mass spectra were used to characterize the isolated ligand and its metal complexes. The ligand acts as dibasic with two N 3O-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The bonding sites are the nitrogen atoms of the azomethine and amine groups and the oxygen atoms of the phenolic groups. The metal complexes exhibit either square planar, tetrahedral, square pyramid or octahedral structures. The Schiff base ligand and its metal complexes were tested against four pathogenic bacteria ( Staphylococcus aureus and Streptococcus pyogenes) as Gram-positive bacteria, and ( Pseudomonas fluorescens and Pseudomonas phaseolicola) as Gram-negative bacteria and two pathogenic fungi ( Fusarium oxysporum and Aspergillus fumigatus) to assess their antimicrobial properties. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.
Eu3+ complex of ligand4’-(4-carboxyphenyl)-2,2’:6’,2″-terpyridine as fluorosensor of heavy metals
NASA Astrophysics Data System (ADS)
Zulys, A.; Rachmawati, N.
2017-04-01
Ligand 4’-(4-carboxyphenyl)-2,2’:6’,2″-terpyridine (2-Hcptpy) has been synthesized by modification of Kröhnke method. The synthesize was performed using aldol condensation reaction. The white precipitate was collected and produced 62% yield (1.062 gr). Ligand 2-Hcptpy has been characterized by FTIR, Elemental analyzer, H-NMR, UV-vis, and UV-DRS spectrometer. It was then reacted with lanthanide group (Eu3+) to form a complex by hydrothermal process. The result of Eu3+ complex was 0.352 gr. of white yellowish precipitate. The application of this research is for the fluorosensor of heavy metals (Pb2+dan Cd2+). The data of fluorescence showed two types of fluorescence, either turn on or turn off fluorosensor. Ligand 2-Hcptpy has an on-off type with the addition of Pb2+ and Cd2+, while complex Eu3+ has two types of fluorosensor. The complex showed turn on-off and turn on-off by addition of Pb2+ and type of turn off by addition of Cd2+. Either ligand or complex, showed fluorescence intensity by adding heavy metals up to concentration 5×10-8 M.
NASA Astrophysics Data System (ADS)
Tyagi, Prateek; Tyagi, Monika; Agrawal, Swati; Chandra, Sulekh; Ojha, Himanshu; Pathak, Mallika
2017-01-01
Two novel Schiff base ligands H2L1 and H2L2 have been synthesized by condensation reaction of amine derivative of 1,2,4-triazole moiety with 2-hydroxy-4-methoxybenzaldehyde. Co(II), Ni(II), Cu(II) and Zn(II) of the synthesized Schiff bases were prepared by using a molar ratio of ligand:metal as 1:1. The structure of the Schiff bases and synthesized metal complexes were established by 1H NMR, UV-Vis, IR, Mass spectrometry and molar conductivity. The thermal stability of the complexes was study by TGA. Fluorescence quenching mechanism of metal complexes 1-4 show that Zn(II) and Cu(II) complex binds more strongly to BSA. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31 + g(d,p) basis set. The spectral data shows that the ligands behaves as binegative tridentate. On the basis of the spectral studies, TGA and DFT data an octahedral geometry has been assigned for Co(II), Ni(II), square planar for Cu(II) and tetrahedral for Zn(II) complexes. The anticancer activity were screened against human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2). Result indicates that metal complexes shows increase cytotoxicity in proliferation to cell lines as compared to free ligand.
Chen, Yu Ming; Yu, Le; Lou, Xiong Wen David
2016-05-10
Hierarchical tubular structures composed of Co3 O4 hollow nanoparticles and carbon nanotubes (CNTs) have been synthesized by an efficient multi-step route. Starting from polymer-cobalt acetate (Co(Ac)2 ) composite nanofibers, uniform polymer-Co(Ac)2 @zeolitic imidazolate framework-67 (ZIF-67) core-shell nanofibers are first synthesized via partial phase transformation with 2-methylimidazole in ethanol. After the selective dissolution of polymer-Co(Ac)2 cores, the resulting ZIF-67 tubular structures can be converted into hierarchical CNTs/Co-carbon hybrids by annealing in Ar/H2 atmosphere. Finally, the hierarchical CNT/Co3 O4 microtubes are obtained by a subsequent thermal treatment in air. Impressively, the as-prepared nanocomposite delivers a high reversible capacity of 1281 mAh g(-1) at 0.1 A g(-1) with exceptional rate capability and long cycle life over 200 cycles as an anode material for lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Suresh Kumar, G. S.; Seethalakshmi, P. G.; Bhuvanesh, N.; Kumaresan, S.
2013-10-01
Two organic cocrystals namely, caffeine:cinnamic acid [(caf)(ca)] (1) and caffeine:eosin dihydrate [(caf)(eos)]·2H2O (2) were synthesized and studied by FT-IR, TGA/DTA, and single crystal XRD. The crystal system of cocrystal 1 is triclinic with space group P-1 and Z = 2 and that of cocrystal 2 is monoclinic with space group P21/C and Z = 4. An imidazole-carboxylic acid synthon is observed in the cocrystal 1. The intermolecular hydrogen bond, O-H⋯N and π-π interactions play a major role in stabilizing 1 whereas the intermolecular hydrogen bonds, O-H⋯O, O-H⋯N, and intramolecular hydrogen bond, O-H⋯Br; along with π-π interactions together play a vital role in stabilizing the structure of 2. The antimicrobial- and DPPH radical scavenging activities of both the cocrystals were studied.
Takarada, Jessica E; Guedes, Adriana P M; Correa, Rodrigo S; Silveira-Lacerda, Elisângela de P; Castelli, Silvia; Iacovelli, Federico; Deflon, Victor Marcelo; Batista, Alzir Azevedo; Desideri, Alessandro
2017-12-15
Three ruthenium/iron-based compounds, 1: [Ru(MIm)(bipy)(dppf)]PF 6 (MIm = 2-mercapto-1-methylimidazole anion), 2: [RuCl(Im)(bipy)(dppf)]PF 6 (Im = imidazole), and 3: [Ru(tzdt)(bipy)(dppf)]PF 6 (tzdt = 1,3-thiazolidine-2-thione anion) (dppf = 1,1'-bis(diphenylphosphine)ferrocene and bipy = 2,2'-bipyridine), were synthesized, and characterized by elemental analyses, conductivity, UV/Vis, IR, 1 H, 13 C and 31 P{1H} NMR spectroscopies, and by electrochemical technique. The complex 3 was also characterized by single-crystal X-ray. The three ruthenium(II) complexes show cytotoxicity against DU-145 (prostate carcinoma cells) and A549 (lung carcinoma cells) tumor cells. The free ligands do not exhibit any cytotoxic activity, such as evident by the IC 50 values higher than 200 μM. UV/Vis and viscosity experiments showed that the complexes interact weakly with the DNA molecule, via electrostatic forces. The interaction of the complexes 1-3 with the HSA is moderate, with K b values in range of 10 5 -10 7 M -1 , presenting a static mechanism of interaction stabilized by hydrophobic. Complexes 2 and 3 showed high affinity for the FA7 HSA site as evidenced by fluorescence spectroscopy and molecular docking. Complexes 1-3 were tested as potential human Topoisomerase IB inhibitors by analysing the different steps of the enzyme catalytic cycle. The results indicate that all compounds efficiently inhibit the DNA relaxation and the cleavage reaction, in which the effect increases upon pre-incubation. Complexes 1 and 2 are also able to slow down the religation reaction. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripuramallu, Bharat Kumar; Das, Samar K., E-mail: skdsc@uohyd.ernet.in
2013-01-15
Two new compounds [Co (2,2 Prime -bipy) (H{sub 2}dbp)]{sub n} (1) and [Ni (2,2 Prime -bipy){sub 2}(H{sub 2}dbp)(H{sub 2}O)]{center_dot}H{sub 2}O (2) based on the flexible ligand 4,4 Prime -dimethylenebiphenyldiphosphonic acid (H{sub 4}dbp) with 2,2 Prime -bipyridine as secondary ligand have been synthesized under hydrothermal conditions. Both the compounds are well characterized by routine elemental analysis, IR, electronic spectroscopies, thermogravimetric analysis and finally by single crystal X-ray diffraction analysis. Compound 1 is a 1D extended coordination polymer and 2 is a discrete molecular compound. A comparative study between the geometries of H{sub 4}dbp ligand (in compounds 1 and 2, present study)more » and p-xylylenediphosphonic acid (H{sub 4}pxp) ligand (in previously reported compounds [Cu(2,2 Prime -bipy)(H{sub 2}pxp)]{center_dot}nH{sub 2}O (1A) and Ni(2,2 Prime -bipy){sub 2}H{sub 4}pxp]{sub n}[H{sub 2}pxp]{sub n} (2A), see text) demonstrate the effect of the twisting in the benzene rings in changing higher dimensional H{sub x}pxp (x refers to number of protonated hydroxyl groups) compounds to lower dimensional H{sub x}dbp compounds. The eight membered Co-dimer rings formed in compound 1 represents the simple and isolated Co-dimer, exhibiting weak antiferromagnetic exchange between metal centers through OPO bridges. - Graphical abstract: Two new compounds based on the dimethylenebiphenyldiphosphonic acid have been synthesized. The effect of twisting of benzene rings in the biphenyl spacer containing multidentate ligands alters dimensionality of final compounds. Highlights: Black-Right-Pointing-Pointer Cobalt containing coordination polymer and a nickel discrete compound have been synthesized. Black-Right-Pointing-Pointer Flexible ligand 4,4'-dimethylenebiphenyldiphosphonic acid has been employed. Black-Right-Pointing-Pointer Co(II) and Ni(II) ions are square pyramidal and octahedral respectively. Black-Right-Pointing-Pointer The effect of the twisting in the benzene rings in the associated ligand has been demonstrated.« less
NASA Astrophysics Data System (ADS)
Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Sumathi, S.
2012-10-01
A series of metal(II) complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the azo Schiff base ligand 4-((E)-4-((E)-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (CDHBAP) and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, ESR and EI-mass), magnetic moment measurements, molar conductance, DNA, SEM, X-ray crystallography and fluorescence studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II) and octahedral geometry for all the other complexes. The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied and implies that CDHBAP is coordinated to the metal ions in a neutral tridentate manner. The redox behavior of copper(II) and vanadyl(II) complexes have been studied by cyclic voltammetry. The nuclease activity of the above metal(II) complexes shows that the complexes cleave DNA. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species (Staphylococcus aureus, Salmonella typhi, Escherichia coli, Bacillus subtilis, Shigella sonnie) and fungi (Candida albicans, Aspergillus niger, Rhizoctonia bataicola). Amikacin and Ketoconozole were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species. The second harmonic generation (SHG) efficiency of the ligand was measured and the NLO (non-linear optical) properties of the ligand are expected to result in the realization of advanced optical devices in optical fiber communication (OFC) and optical computing. The SEM image of the copper(II) complex implies that the size of the particles is 1 μm.
Mechanistic Study of Oxygen Atom Transfer Catalyzed by Rhenium Compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Xiaopeng
2003-01-01
Two ionic and one neutral methyl(oxo)rhenium(V) compounds were synthesized and structurally characterized. They were compared in reactivity towards the ligands triphenylphosphane, pyridines, pyridine N-oxides. Assistance from Broensted bases was found on ligand displacement of ionic rhenium compounds as well as nucleophile assistance on oxidation of all compounds. From the kinetic data, crystal structures, and an analysis of the intermediates, a structural formula of PicH +3 - and mechanisms of ligand displacement and oxidation were proposed.
El Alami, Mohammed Samir Ibn; El Amrani, Mohamed Amin; Agbossou-Niedercorn, Francine; Suisse, Isabelle; Mortreux, André
2015-01-19
The preparation of optically pure secondary alcohols in the presence of catalysts based on chiral ligands derived from monoterpenes, such as pinenes, limonenes and carenes, is reviewed. A wide variety of these ligands has been synthesized and used in several catalytic reactions, including hydrogen transfer, C-C bond formation via addition of organozinc compounds to aldehydes, hydrosilylation, and oxazaborolidine reduction, leading to high activities and enantioselectivities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lai, Zeng-Wei; Yang, Rong-Fei; Ye, Ke-Yin
2014-01-01
Summary A class of novel, easily accessible and air-stable 1-[bis(trifluoromethyl)phosphine]-1’-oxazolinylferrocene ligands has been synthesized from ferrocene. It became apparent that these ligands can be used in the regio- and enantioselective Pd-catalyzed allylic alkylation of monosubstituted allyl substrates in a highly efficient manner. Excellent regio- and enantioselectivity could be obtained for a wide range of substrates. PMID:24991277
NASA Astrophysics Data System (ADS)
Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun
2015-07-01
N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4 h-1 at 25 oC and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles.
Lee, Ha Young; Jee, Hye Won; Seo, Sung Mi; Kwak, Byung Kook; Khang, Gilson; Cho, Sun Hang
2006-01-01
Biocompatible polysuccinimide (PSI) derivatives conjugated with diethylenetriaminepentaacetic acid gadolinium (DTPA-Gd) were prepared as magnetic resonance imaging (MRI) contrast agents. In this study, we synthesized PSI derivatives incorporating methoxy-poly(ethylene glycol) (mPEG) as hydrophilic ligand, hexadecylamine as hydrophobic ligand, and DTPA-Gd as contrast agent. PSI was synthesized by the polycondensation polymerization of aspartic acid. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Critical micellization concentrations were determined using fluorescent probes (pyrene). Micelle size and shape were measured by electro-photometer light scattering (ELS) and atomic force microscopy (AFM). The formed micelle size ranged from 100 to 300 nm. The T1-weighted MR images of the phantom prepared with PSI-mPEG-C16-(DTPA-Gd) were obtained in a 3.0 T clinical MR imager, and the conjugates showed a great potential as MRI contrast agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayoub, Alex M.; Hawk, Laura M. L.; Herzig, Ryan J.
Chemical inhibition of epigenetic regulatory proteins BrdT and Brd4 is emerging as a promising therapeutic strategy in contraception, cancer, and heart disease. We report an easily synthesized dihydropyridopyrimidine pan-BET inhibitor scaffold, which was uncovered via a virtual screen followed by testing in a fluorescence anisotropy assay. Dihydropyridopyimidine 3 was subjected to further characterization and is highly selective for the BET family of bromodomains. Structure–activity relationship data and ligand deconstruction highlight the importance of the substitution of the uracil moiety for potency and selectivity. Compound 3 was also cocrystallized with Brd4 for determining the ligand binding pose and rationalizing subsequent structure–activitymore » data. An additional series of dihydropyridopyrimidines was synthesized to exploit the proximity of a channel near the ZA loop of Brd4, leading to compounds with submicromolar affinity and cellular target engagement. Given these findings, novel and easily synthesized inhibitors are being introduced to the growing field of bromodomain inhibitor development.« less
NASA Astrophysics Data System (ADS)
Mahendra Raj, K.; Vivekanand, B.; Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.
2014-02-01
A series of new binucleating Cu(II), Co(II), Ni(II) and Zn(II) complexes of bicompartmental ligands with ONO donor were synthesized. The ligands were obtained by the condensation of 3-chloro-6-substituted benzo[b]thiophene-2-carbohydrazides and 4,6-diacetylresorcinol. The synthesized ligands and their complexes were characterized by elemental analysis and various spectroscopic techniques. Elemental analysis, IR, 1H NMR, ESI-mass, UV-Visible, TG-DTA, magnetic measurements, molar conductance and powder-XRD data has been used to elucidate their structures. The bonding sites are the oxygen atom of amide carbonyl, azomethine nitrogen and phenolic oxygen for ligands 1 and 2. The binuclear nature of the complexes was confirmed by ESR spectral data. TG-DTA studies for some complexes showed the presence of coordinated water molecules and the final product is the metal oxide. All the complexes were investigated for their electrochemical activity, only the Cu(II) complexes showed the redox property. Cu(II) complexes were square planar, whereas Co(II), Ni(II) and Zn(II) complexes were octahedral. Powder-XRD pattern have been studied in order to test the degree of crystallinity of the complexes and unit cell calculations were made. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligands. The DNA cleaving capacities of all the complexes were analyzed by agarose gel electrophoresis method against supercoiled plasmid DNA. Among the compounds tested for antioxidant capacity, ligand 1 displayed excellent activity than its metal complexes.
Wang, Shou-Guo; Park, Sung Hwan; Cramer, Nicolai
2018-05-04
Chiral cyclopentadienyl (Cp x ) ligands have a large application potential in enantioselective transition-metal catalysis. However, the development of concise and practical routes to such ligands remains in its infancy. We present a convenient and efficient two-step synthesis of a novel class of chiral Cp x ligands with tunable steric properties that can be readily used for complexation, giving Cp x Rh I , Cp x Ir I , and Cp x Ru II complexes. The potential of this ligand class is demonstrated with the latter in the enantioselective cyclization of azabenzonorbornadienes with alkynes, affording dihydrobenzoindoles in up to 98:2 e.r., significantly outperforming existing binaphthyl-derived Cp x ligands. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Artali, Roberto; Botta, Mauro; Cavallotti, Camilla; Giovenzana, Giovanni B; Palmisano, Giovanni; Sisti, Massimo
2007-08-07
A novel pyridine-containing DTPA-like ligand, carrying additional hydroxymethyl groups on the pyridine side-arms, was synthesized in 5 steps. The corresponding Gd(III) complex, potentially useful as an MRI contrast agent, was prepared and characterized in detail by relaxometric methods and its structure modeled by computational methods.