Sample records for immersion ion processing

  1. Etching and structure changes in PMMA coating under argon plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Kondyurin, Alexey; Bilek, Marcela

    2011-06-01

    A thin (120 nm) polymethylmethacrylate coating was treated by plasma immersion ion implantation with Ar using pulsed bias at 20 kV. Ellipsometry and FTIR spectroscopy and gel-fraction formation were used to detect the structure transformations as a function of ion fluence. The kinetics of etching, variations in refractive index and extinction coefficient in 400-1000 nm of wavelength, concentration changes in carbonyl, ether, methyl and methylene groups all as a function of ion fluence were analyzed. A critical ion fluence of 10 15 ions/cm 2 was observed to be a border between competing depolymerization and carbonization processes. Chemical reactions responsible for reorganization of the PMMA chemical structure under ion beam treatment are proposed.

  2. Impact energy and retained dose uniformity in enhanced glow discharge plasma immersion ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Q. Y.; Fu, Ricky K. Y.; Chu, Paul K.

    2009-08-10

    The implantation energy and retained dose uniformity in enhanced glow discharge plasma immersion ion implantation (EGD-PIII) is investigated numerically and experimentally. Depth profiles obtained from different samples processed by EGD-PIII and traditional PIII are compared. The retained doses under different pulse widths are calculated by integrating the area under the depth profiles. Our results indicate that the improvement in the impact energy and retained dose uniformity by this technique is remarkable.

  3. Charge exchange between two nearest neighbour ions immersed in a dense plasma

    NASA Astrophysics Data System (ADS)

    Sauvan, P.; Angelo, P.; Derfoul, H.; Leboucher-Dalimier, E.; Devdariani, A.; Calisti, A.; Talin, B.

    1999-04-01

    In dense plasmas the quasimolecular model is relevant to describe the radiative properties: two nearest neighbor ions remain close to each other during a time scale of the order of the emission time. Within the frame of a quasistatic approach it has been shown that hydrogen-like spectral line shapes can exhibit satellite-like features. In this work we present the effect on the line shapes of the dynamical collision between the two ions exchanging transiently their bound electron. This model is suitable for the description of the core, the wings and the red satellite-like features. It is post-processed to the self consistent code (IDEFIX) giving the adiabatic transition energies and the oscillator strengths for the transient molecule immersed in a dense free electron bath. It is shown that the positions of the satellites are insensitive to the dynamics of the ion-ion collision. Results for fluorine Lyβ are presented.

  4. Increased Biocompatibility and Bioactivity after Energetic PVD Surface Treatments

    PubMed Central

    Mändl, Stephan

    2009-01-01

    Ion implantation, a common technology in semiconductor processing, has been applied to biomaterials since the 1960s. Using energetic ion bombardment, a general term which includes conventional ion implantation plasma immersion ion implantation (PIII) and ion beam assisted thin film deposition, functionalization of surfaces is possible. By varying and adjusting the process parameters, several surface properties can be attuned simultaneously. Extensive research details improvements in the biocompatibility, mainly by reducing corrosion rates and increasing wear resistance after surface modification. Recently, enhanced bioactivity strongly correlated with the surface topography and less with the surface chemistry has been reported, with an increased roughness on the nanometer scale induced by self-organisation processes during ion bombardment leading to faster cellular adhesion processes.

  5. Thin Film Deposition Using Energetic Ions

    PubMed Central

    Manova, Darina; Gerlach, Jürgen W.; Mändl, Stephan

    2010-01-01

    One important recent trend in deposition technology is the continuous expansion of available processes towards higher ion assistance with the subsequent beneficial effects to film properties. Nowadays, a multitude of processes, including laser ablation and deposition, vacuum arc deposition, ion assisted deposition, high power impulse magnetron sputtering and plasma immersion ion implantation, are available. However, there are obstacles to overcome in all technologies, including line-of-sight processes, particle contaminations and low growth rates, which lead to ongoing process refinements and development of new methods. Concerning the deposited thin films, control of energetic ion bombardment leads to improved adhesion, reduced substrate temperatures, control of intrinsic stress within the films as well as adjustment of surface texture, phase formation and nanotopography. This review illustrates recent trends for both areas; plasma process and solid state surface processes. PMID:28883323

  6. Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer

    DOEpatents

    Adzic, Radoslav; Harris, Alexander

    2014-04-15

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by a surface preparation process involving immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing a suitable quantity of non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means. The nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. The process can be controlled and repeated to obtain a desired film coverage. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  7. Modification of Wetting Properties of PMMA by Immersion Plasma Ion Implantation

    NASA Astrophysics Data System (ADS)

    Mireault, N.; Ross, G. G.

    Advancing and receding contact angles below 5° have been obtained on PMMA surfaces with the implantation of argon and oxygen ions. The ion implantations were performed by means of the Immersion Plasma Ion Implantation (IPII) technique, a hybrid between ion beams and immersion plasmas. Characterization of treated PMMA surfaces by means of XPS and its combination with chemical derivatization (CD-XPS) have revealed the depletion of oxygen and the creation of dangling bonds, together with the formation of new chemical functions such as -OOH, -COOH and C=C. These observations provide a good explanation for the strong increase of the wetting properties of the PMMA surfaces.

  8. Effects of catechin-enriched ion beverage intake on thermoregulatory function in a hot environment.

    PubMed

    Nishimura, Rumiko; Nishimura, Naoki; Iwase, Satoshi; Takeshita, Masao; Katashima, Mitsuhiro; Katsuragi, Yoshihisa; Sato, Motohiko

    2018-04-23

    We examined the effect of intake of a catechin-enriched ion beverage (Cat-I) on the thermoregulatory response in a hot environment. Eight healthy men were exposed to a hot environment for 90 min at an ambient temperature of 35 °C (relative humidity: 75%) combined with lower leg water immersion at 40 °C. At that time, either Cat-I, an ion beverage (Ion), or mineral water (Placebo) was consumed at three points: (1) at the start of lower leg immersion, (2) at 30 min after immersion, and (3) at 60 min after immersion. In all conditions, tympanic temperature (Tty) increased gradually during lower leg water immersion. However, the rate of increase of Tty tended to be suppressed after 30 min. The effect of drinking Cat-I had a limited detection period of approximately 60-70 min, and the rate of sweating was clearly increased with Cat-I compared with Ion and Placebo. Cat-I also tended to decrease the body temperature threshold at which sweating was induced compared with Ion or Placebo. These findings suggest that Cat-I efficiently suppressed the increase of body temperature in a hot environment.

  9. Nickel and chromium ion release from stainless steel bracket on immersion various types of mouthwashes

    NASA Astrophysics Data System (ADS)

    Mihardjanti, M.; Ismah, N.; Purwanegara, M. K.

    2017-08-01

    The stainless steel bracket is widely used in orthodontics because of its mechanical properties, strength, and good biocompatibility. However, under certain conditions, it can be susceptible to corrosion. Studies have reported that the release of nickel and chromium ions because of corrosion can cause allergic reactions in some individuals and are mutagenic. The condition of the oral environment can lead to corrosion, and one factor that can alter the oral environment is mouthwash. The aim of this study was to measure the nickel and chromium ions released from stainless steel brackets when immersed in mouthwash and aquadest. The objects consisted of four groups of 17 maxillary premolar brackets with .022 slots. Each group was immersed in a different mouthwash and aquadest and incubated at 37 °C for 30 days. After 30 days of immersion, the released ions were measured using the ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). For statistical analysis, both the Kruskal-Wallis and Mann-Whitney tests were used. The results showed differences among the four groups in the nickel ions released (p < 0.05) and the chromium ions released (p < 0.5). In conclusion, the ions released as a result of mouthwash immersion have a small value that is below the limit of daily intake recommended by the World Health Organization.

  10. Surface treatment of ceramic articles

    DOEpatents

    Komvopoulos, Kyriakos; Brown, Ian G.; Wei, Bo; Anders, Simone; Anders, Andre; Bhatia, C. Singh

    1998-01-01

    A process for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slabodchikov, Vladimir A., E-mail: dipis1991@mail.ru; Borisov, Dmitry P., E-mail: borengin@mail.ru; Kuznetsov, Vladimir M., E-mail: kuznetsov@rec.tsu.ru

    The paper reports on a new method of plasma immersion ion implantation for the surface modification of medical materials using the example of nickel-titanium (NiTi) alloys much used for manufacturing medical implants. The chemical composition and surface properties of NiTi alloys doped with silicon by conventional ion implantation and by the proposed plasma immersion method are compared. It is shown that the new plasma immersion method is more efficient than conventional ion beam treatment and provides Si implantation into NiTi surface layers through a depth of a hundred nanometers at low bias voltages (400 V) and temperatures (≤150°C) of the substrate.more » The research results suggest that the chemical composition and surface properties of materials required for medicine, e.g., NiTi alloys, can be successfully attained through modification by the proposed method of plasma immersion ion implantation and by other methods based on the proposed vacuum equipment without using any conventional ion beam treatment.« less

  12. Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures

    DOEpatents

    Adzic, Radoslav R.; Harris, Alexander

    2015-10-06

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The manufacturing process may involve initial oxidation of the carbon nanostructures followed by immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means and the nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. Subsequent film growth may be performed via the initial quasi-underpotential deposition of a non-noble metal followed by immersion in a solution comprising a more noble metal. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  13. Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures

    DOEpatents

    Adzic, Radoslav; Harris, Alexander

    2013-03-26

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means and the nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. Subsequent film growth may be performed via the initial quasi-underpotential deposition of a non-noble metal followed by immersion in a solution comprising a more noble metal. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  14. Surface treatment of ceramic articles

    DOEpatents

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.

    1998-12-22

    A process is disclosed for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article. 15 figs.

  15. The graphene oxide membrane immersing in the aqueous solution studied by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjing; Chen, Zhe; Yao, Lei; Wang, Xiao; Fu, Ping; Lin, Zhidong

    2018-04-01

    The interlayer spacing of graphene oxide (GO) is a key property for GO membrane. To probe the variation of interlayer spacing of the GO membrane immersing in KCl aqueous solution, electrochemical impedance spectroscopy (EIS), x-ray diffraction (XRD) and computational calculation was utilized in this study. The XRD patterns show that soaking in KCl aqueous solution leads to an increase of interlayer spacing of GO membrane. And the EIS results indicate that during the immersing process, the charge transfer resistance of GO membrane decreases first and then increases. Computational calculation confirms that intercalated water molecules can result in an increase of interlayer spacing of GO membrane, while the permeation of K+ ions would lead to a decrease of interlayer spacing. All the results are in agreement with each other. It suggests that during the immersing process, the interlayer spacing of GO enlarges first and then decreases. EIS can be a promisingly online method for examining the interlayer spacing of GO in the aqueous solution.

  16. Synergistic cytotoxic effects of ions released by zinc-aluminum bronze and the metallic salts on osteoblastic cells.

    PubMed

    Grillo, Claudia A; Morales, María L; Mirífico, María V; Fernández Lorenzo de Mele, Mónica A

    2013-07-01

    The use of copper-based alloys for fixed dental crowns and bridges is increasingly widespread in several countries. The aim of this work is to study the dissolution of a zinc-aluminum-bronze and the cytotoxic effects of the ions released on UMR-106 osteoblastic cell line. Two sources of ions were used: (1) ions released by the metal alloy immersed in the cell culture and (2) salts of the metal ions. Conventional electrochemical techniques, atomic absorption spectroscopy [to obtain the average concentration of ions (AC) in solution], and energy dispersive X-ray (EDX) spectroscopy analysis were used to study the corrosion process. Corrosion tests revealed a strong influence of the composition of the electrolyte medium and the immersion time on the electrochemical response. The cytotoxicity was evaluated with (a) individual ions, (b) combinations of two ions, and (c) the mixture of all the ions released by a metal disc of the alloy. Importantly, synergistic cytotoxic effects were found when Al-Zn ion combinations were used at concentration levels lower than the cytotoxic threshold values of the individual ions. Cytotoxic effects in cells in the vicinity of the metal disc were also found. These results were interpreted considering synergistic effects and a diffusion controlled mechanism that yields to concentration levels, in the metal surroundings, several times higher than the measured AC value. Copyright © 2013 Wiley Periodicals, Inc.

  17. In vitro study of the effect of three hydrogen peroxide concentrations on the corrosion behavior and surface topography of alumina-reinforced dental ceramic.

    PubMed

    Abu-Eittah, Manal R; Mandour, Mona H

    2011-10-01

    This in vitro investigation studied the effect of three hydrogen peroxide (HP) concentrations (30%, 35%, 38% v/v) at two time intervals (1 and 2 hours) on the corrosion behavior and surface topography of a dental ceramic. A total of 62 Vitadur Alpha discs were constructed following manufacturer instructions. Specimens were divided into four main groups (n = 8). Group 1 (control): specimens were immersed in 4% acetic acid for 18 hours at 80°C. Groups 2, 3, and 4: specimens were immersed in 30%, 35%, and 38% HP concentrations, respectively. Each of the three groups was divided into two subgroups (a and b) according to the immersion time (1 and 2 hours, respectively). Specimens of subgroup a were further immersed in 4% acetic acid for 18 hours at 80°C and were designated as subgroup c. The corrosion behavior of the ceramic specimens were tested by solution analysis using the atomic absorption method, weight loss percent, and corrosion rate. Surface topography was investigated by surface roughness (Ra) measurements and scanning electron microscopy (SEM). Results were statistically analyzed. There was a significant increase for ions leached with the increase in time of immersion for all ions at 35% and 38% HP, while at 30% HP, ions of K(+) , Al(3+) , and Si(4+) did not increase significantly with time. The results also showed that at a fixed time of immersion, all ions released were dependent on the increase of HP concentration except for Al(3+) ions (p < 0.05). The combined treatment of specimens with HP followed by acetic acid had a significant effect on the increase of ions leached (p < 0.05). The surface roughness values for all specimens increased significantly with time of immersion as well as with the increase in concentration of HP (p < 0.05). These results were confirmed with SEM. The amount of released ions is directly proportional to HP concentration and time of immersion. Specimens exposed to both HP and acetic acid showed increased weight loss and a higher corrosion rate than those exposed to acetic acid only. Surface roughness values were time and HP concentration dependent. © 2011 by The American College of Prosthodontists.

  18. PLUTONIUM CLEANING PROCESS

    DOEpatents

    Kolodney, M.

    1959-12-01

    A method is described for rapidly removing iron, nickel, and zinc coatings from plutonium objects while simultaneously rendering the plutonium object passive. The method consists of immersing the coated plutonium object in an aqueous acid solution containing a substantial concentration of nitrate ions, such as fuming nitric acid.

  19. Study of reticulated vitreous carbon surface treated by plasma immersion ion implantation for electrodes production

    NASA Astrophysics Data System (ADS)

    Silva, L. L. G.; Conceição, D. A. S.; Oishi, S. S.; Toth, A.; Ueda, M.

    2012-03-01

    RVC samples were treated by nitrogen plasma immersion ion implantation (N-PIII) for electrodes production. High-voltage pulses with amplitudes of -3.0 kV or -10.0 kV were applied to the RVC samples while the treatment time was 10, 20 and 30 min. The samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The SEM images present an apparent enhancement of the surface roughness after the treatment probably due to the surface sputtering during the PIII process. This observation is in agreement with the specific electrochemical surface area (SESA) of RVC electrodes. An increase was observed of the SESA values for the PIII-treated samples compared to the untreated specimen. Some oxygen and nitrogen containing groups were introduced on the RVC surface after the PIII treatment. Both plasma-induced process: the surface roughening and the introduction of the polar species on the RVC surface are beneficial for the RVC electrodes application.

  20. Dynamic determination of secondary electron emission using a calorimetric probe in a plasma immersion ion implantation experiment

    NASA Astrophysics Data System (ADS)

    Haase, Fabian; Manova, Darina; Hirsch, Dietmar; Mändl, Stephan; Kersten, Holger

    2018-04-01

    A passive thermal probe has been used to detect dynamic changes in the secondary electron emission (SEE). Oxidized and nitrided materials have been studied during argon ion sputtering in a plasma immersion ion implantation process. Identical measurements have been performed for the metallic state with high voltage pulses accelerating nitrogen ions towards the surface, supposedly forming a nitride layer. Energy flux data were combined with scanning electron microscopy images of the surface to obtain information about the actual surface composition as well as trends and changes during the process. Within the measurements, a direct comparison of the SEE within both employed ion species (argon and nitrogen) is possible while an absolute quantification is still open. Additionally, the nominal composition of the investigated oxide and nitride layers does not always correspond to stoichiometric compounds. Nevertheless, the oxides showed a remarkably higher SEE compared to the pure metals, while an indistinct behavior was observed for the nitrides: some higher, some lower than the clean metal surfaces. For the aluminum alloy AlMg3 a complex time dependent evolution was observed with consecutive oxidation/sputtering cycles leading to a very rough surface with a diminished oxide layer, leading to an almost black surface of the metal and non-reproducible changes in the SEE. The presented method is a versatile technique for measuring dynamic changes of the surface for materials commonly used in PVD processes with a time resolution of about 1 min, e.g. magnetron sputtering or HiPIMS, where changes in the target or electrode composition are occurring but cannot be measured directly.

  1. Formation of Wear Resistant Steel Surfaces by Plasma Immersion Ion Implantation

    NASA Astrophysics Data System (ADS)

    Mändl, S.; Rauschenbach, B.

    2003-08-01

    Plasma immersion ion implantation (PIII) is a versatile and fast method for implanting energetic ions into large and complex shaped three-dimensional objects where the ions are accelerated by applying negative high voltage pulses to a substrate immersed in a plasma. As the line-of-sight restrictions of conventional implanters are circumvented, it results in a fast and cost-effective technology. Implantation of nitrogen at 30 - 40 keV at moderate temperatures of 200 - 400 °C into steel circumvents the diminishing thermal nitrogen activation encountered, e.g., in plasma nitriding in this temperature regime, thus enabling nitriding of additional steel grades. Nitride formation and improvement of the mechanical properties after PIII are presented for several steel grades, including AISI 316Ti (food industry), AISI D2 (used for bending tools) and AISI 1095 (with applications in the textile industry).

  2. Resonant-cavity antenna for plasma heating

    DOEpatents

    Perkins, F.W. Jr.; Chiu, S.C.; Parks, P.; Rawls, J.M.

    1984-01-10

    This invention relates generally to a method and apparatus for transferring energy to a plasma immersed in a magnetic field, and relates particularly to an apparatus for heating a plasma of low atomic number ions to high temperatures by transfer of energy to plasma resonances, particularly the fundamental and harmonics of the ion cyclotron frequency of the plasma ions. This invention transfers energy from an oscillating radio-frequency field to a plasma resonance of a plasma immersed in a magnetic field.

  3. Comparison of nickel and chromium ions released from stainless steel and NiTi wires after immersion in Oral B®, Orthokin® and artificial saliva.

    PubMed

    Jamilian, Abdolreza; Moghaddas, Omid; Toopchi, Shabnam; Perillo, Letizia

    2014-07-01

    Oral environment of the mouth is a suitable place for biodegradation of alloys used in orthodontic wires. The toxicity of these alloys namely nickel and chromium has concerned the researchers about the release of these ions from orthodontic wires and brackets. The aim of this study was to measure the levels of nickel and chromium ions released from 0.018" stainless steel (SS) and NiTi wires after immersion in three solutions. One hundred and forty-four round NiTi and 144 round SS archwires with the diameters of 0.018" were immersed in Oral B®, Orthokin® and artificial saliva. The amounts of nickel and chromium ions released were measured after 1, 6, 24 hours and 7 days. Two way repeated ANOVA showed that the amount of chromium and nickel significantly increased in all solutions during all time intervals (p < 0.002). Chromium and nickel ions were released more in NiTi wire in all solutions compared with SS wire. The lowest increase rate was also seen in artificial saliva. There is general consensus in literature that even very little amounts of nickel and chromium are dangerous for human body specially when absorbed orally; therefore, knowing the precise amount of these ions released from different wires when immersed in different mouthwashes is of high priority.

  4. Calorimetric Study of Alkali Metal Ion (K +, Na +, Li +) Exchange in a Clay-Like MXene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Geetu; Muthuswamy, Elayaraja; Naguib, Michael

    Intercalation of ions in layered materials has been explored to improve the rate capability in Li-ion batteries and supercapacitors. This work investigates the energetics of alkali ion exchange in a clay-like MXene, Ti 3C 2T x, where T x stands for anionic surface moieties, by immersion calorimetry in aqueous solutions. The measured immersion enthalpies of clay-like Ti 3C 2T x, ΔH imm, at 25 °C in 1 M KCl, 1 M NaCl, 1 M LiCl, and nanopure water are -9.19 (±0.56), -5.90 (±0.31), -1.31 (±0.20), and -1.29 (±0.13) kJ/mol of MXene, respectively. Inductively coupled plasma mass spectrometry is used tomore » obtain the concentrations of alkali ions in the solid and aqueous phases. Using these concentrations, the enthalpies of exchange of alkali metal ions (Li+, Na+, and K+) are calculated; ΔHex in 1 M KCl, 1 M NaCl, 1 M LiCl, and nanopure water are -9.3 (±2.2), 21.0 (±0.9), -1.3 (±0.2), and 302.4 (±0.6) kJ/mol of MXene, respectively. Both immersion and exchange enthalpies are most exothermic for potassium. This suggests that K+ ions interact more strongly with anions present in the interlayers of this MXene than Na + and Li + ions. Water vapor adsorption calorimetry indicates very weak interaction of water with the MXene, while immersion calorimetry suggests a weakly hydrophilic nature of the MXene surface.« less

  5. Calorimetric Study of Alkali Metal Ion (K +, Na +, Li +) Exchange in a Clay-Like MXene

    DOE PAGES

    Sharma, Geetu; Muthuswamy, Elayaraja; Naguib, Michael; ...

    2017-06-21

    Intercalation of ions in layered materials has been explored to improve the rate capability in Li-ion batteries and supercapacitors. This work investigates the energetics of alkali ion exchange in a clay-like MXene, Ti 3C 2T x, where T x stands for anionic surface moieties, by immersion calorimetry in aqueous solutions. The measured immersion enthalpies of clay-like Ti 3C 2T x, ΔH imm, at 25 °C in 1 M KCl, 1 M NaCl, 1 M LiCl, and nanopure water are -9.19 (±0.56), -5.90 (±0.31), -1.31 (±0.20), and -1.29 (±0.13) kJ/mol of MXene, respectively. Inductively coupled plasma mass spectrometry is used tomore » obtain the concentrations of alkali ions in the solid and aqueous phases. Using these concentrations, the enthalpies of exchange of alkali metal ions (Li+, Na+, and K+) are calculated; ΔHex in 1 M KCl, 1 M NaCl, 1 M LiCl, and nanopure water are -9.3 (±2.2), 21.0 (±0.9), -1.3 (±0.2), and 302.4 (±0.6) kJ/mol of MXene, respectively. Both immersion and exchange enthalpies are most exothermic for potassium. This suggests that K+ ions interact more strongly with anions present in the interlayers of this MXene than Na + and Li + ions. Water vapor adsorption calorimetry indicates very weak interaction of water with the MXene, while immersion calorimetry suggests a weakly hydrophilic nature of the MXene surface.« less

  6. Experimental study of copper-alkali ion exchange in glass

    NASA Astrophysics Data System (ADS)

    Gonella, F.; Caccavale, F.; Bogomolova, L. D.; D'Acapito, F.; Quaranta, A.

    1998-02-01

    Copper-alkali ion exchange was performed by immersing different silicate glasses (soda-lime and BK7) in different molten eutectic salt baths (CuSO4:Na2SO4 and CuSO4:K2SO4). The obtained optical waveguides were characterized by m-lines spectroscopy for the determination of refractive index profiles, and by secondary ion mass spectrometry for the concentration profiles of the ion species involved in the exchange process. The different oxidation states of copper inside the glass structure were studied by electron paramagnetic resonance and x-ray absorption techniques. Interdiffusion copper coefficients were also determined. The Cu-alkali exchange was observed to give rise to local structural rearrangement of the atoms in the glass matrix. The Cu+ ion was found to mainly govern the exchange process, while competition between Cu-Na and K-Na exchanges occurred when a potassium sulfate bath was used. In this case, significant waveguide modal birefringence was observed.

  7. EPDM Rubber Modified by Nitrogen Plasma Immersion Ion Implantation.

    PubMed

    Kondyurin, Alexey

    2018-04-24

    Ethylene-propylene diene monomer rubber (EPDM) was treated by plasma immersion ion implantation (PIII) with nitrogen ions of 20 keV energy and fluence from 10 13 to 10 16 ions/cm². The Fourier-transform infrared attenuated total reflection spectra, atomic force microscopy and optical microscopy showed significant structure changes of the surface. The analysis of an interface of PIII treated EPDM rubber with polyurethane binder showed a cohesive character of the adhesion joint fracture at the presence of solvent and interpreted as covalent bond network formation between the PIII treated rubber and the adhesive.

  8. EPDM Rubber Modified by Nitrogen Plasma Immersion Ion Implantation

    PubMed Central

    2018-01-01

    Ethylene-propylene diene monomer rubber (EPDM) was treated by plasma immersion ion implantation (PIII) with nitrogen ions of 20 keV energy and fluence from 1013 to 1016 ions/cm2. The Fourier-transform infrared attenuated total reflection spectra, atomic force microscopy and optical microscopy showed significant structure changes of the surface. The analysis of an interface of PIII treated EPDM rubber with polyurethane binder showed a cohesive character of the adhesion joint fracture at the presence of solvent and interpreted as covalent bond network formation between the PIII treated rubber and the adhesive. PMID:29695109

  9. Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Fernandes, B. B.; Mändl, S.; Oliveira, R. M.; Ueda, M.

    2014-08-01

    The formation of hard and wear resistant surface regions for austenitic stainless steel through different nitriding and nitrogen implantation processes at intermediate temperatures is an established technology. As the inserted nitrogen remains in solid solution, an expanded austenite phase is formed, accounting for these surface improvements. However, experiments on long-term behavior and exact wear processes within the expanded austenite layer are still missing. Here, the modified layers were produced using plasma immersion ion implantation with nitrogen gas and had a thickness of up to 4 μm, depending on the processing temperature. Thicker layers or those with higher surface nitrogen contents presented better wear resistance, according to detailed microscopic investigation on abrasion, plastic deformation, cracking and redeposition of material inside the wear tracks. At the same time, cyclic fatigue testing employing a nanoindenter equipped with a diamond ball was carried out at different absolute loads and relative unloadings. As the stress distribution between the modified layer and the substrate changes with increasing load, additional simulations were performed for obtaining these complex stress distributions. While high nitrogen concentration and/or thicker layers improve the wear resistance and hardness, these modifications simultaneously reduce the surface fatigue resistance.

  10. Plasma immersion ion implantation modification of surface properties of polymer material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husein, I.F.; Zhou, Y.; Qin, S.

    1997-12-01

    The use of plasma immersion ion implantation (PIII) as a novel method for the treatment of polymer surfaces is investigated. The effect of PIII treatment on the coefficient of friction, contact angle modification, and surface energy of silicone and EPDM (ethylene-propylene-diene monomer) rubber are investigated as a function of pulse voltage, treatment time, and gas species. Low energy (0--8 keV) and high dose ({approximately}10{sup 17}--10{sup 18} ions/cm{sup 2}) implantation of N{sub 2}, Ar, and CF{sub 4} is performed using an inductively coupled plasma source (ICP) at low pressure (0.2 mTorr). PIII treatment reduces the coefficient of friction ({micro}) of siliconemore » rubber from {mu} = 0.464 to the range {mu} = 0.176--0.274, and {mu} of EPDM rubber decreases from 0.9 to the range {mu} = 0.27--0.416 depending on processing conditions. The contact angle of water and diiodomethylene decreases after implantation and increases at higher doses for both silicone and EPDM rubber.« less

  11. Radio frequency power load and associated method

    NASA Technical Reports Server (NTRS)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2010-01-01

    A radio frequency power load and associated method. A radio frequency power load apparatus includes a container and a fluid having an ion source therein, the fluid being contained in the container. Two conductors are immersed in the fluid. A radio frequency transmission system includes a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus includes a fluid having an ion source therein, and two conductors immersed in the fluid. A method of dissipating power generated by a radio frequency transmission system includes the steps of: immersing two conductors of a radio frequency power load apparatus in a fluid having an ion source therein; and connecting the apparatus to an amplifier of the transmission system.

  12. Release of nickel and chromium ions from orthodontic wires following the use of teeth whitening mouthwashes.

    PubMed

    Mirhashemi, AmirHossein; Jahangiri, Sahar; Kharrazifard, MohammadJavad

    2018-02-05

    Corrosion resistance is an important requirement for orthodontic appliances. Nickel and chromium may be released from orthodontic wires and can cause allergic reactions and cytotoxicity when patients use various mouthwashes to whiten their teeth. Our study aimed to assess the release of nickel and chromium ions from nickel titanium (NiTi) and stainless steel (SS) orthodontic wires following the use of four common mouthwashes available on the market. This in vitro, experimental study was conducted on 120 orthodontic appliances for one maxillary quadrant including five brackets, one band and half of the required length of SS, and NiTi wires. The samples were immersed in Oral B, Oral B 3D White Luxe, Listerine, and Listerine Advance White for 1, 6, 24, and 168 h. The samples immersed in distilled water served as the control group. Atomic absorption spectroscopy served to quantify the amount of released ions. Nickel ions were released from both wires at all time-points; the highest amount was in Listerine and the lowest in Oral B mouthwashes. The remaining two solutions were in-between this range. The process of release of chromium from the SS wire was the same as that of nickel. However, the release trend in NiTi wires was not uniform. Listerine caused the highest release of ions. Listerine Advance White, Oral B 3D White Luxe, and distilled water were the same in terms of ion release. Oral B showed the lowest amount of ion release.

  13. In Vitro Investigation of the Effect of Oral Bacteria in the Surface Oxidation of Dental Implants.

    PubMed

    Sridhar, Sathyanarayanan; Wilson, Thomas G; Palmer, Kelli L; Valderrama, Pilar; Mathew, Mathew T; Prasad, Shalini; Jacobs, Michael; Gindri, Izabelle M; Rodrigues, Danieli C

    2015-10-01

    Bacteria are major contributors to the rising number of dental implant failures. Inflammation secondary to bacterial colonization and bacterial biofilm is a major etiological factor associated with early and late implant failure (peri-implantitis). Even though there is a strong association between bacteria and bacterial biofilm and failure of dental implants, their effect on the surface of implants is yet not clear. To develop and establish an in vitro testing methodology to investigate the effect of early planktonic bacterial colonization on the surface of dental implants for a period of 60 days. Commercial dental implants were immersed in bacterial (Streptococcus mutans in brain-heart infusion broth) and control (broth only) media. Immersion testing was performed for a period of 60 days. During testing, optical density and pH of immersion media were monitored. The implant surface was surveyed with different microscopy techniques post-immersion. Metal ion release in solution was detected with an electrochemical impedance spectroscopy sensor platform called metal ion electrochemical biosensor (MIEB). Bacteria grew in the implant-containing medium and provided a sustained acidic environment. Implants immersed in bacterial culture displayed various corrosion features, including surface discoloration, deformation of rough and smooth interfaces, pitting attack, and severe surface rusting. The surface features were confirmed by microscopic techniques, and metal particle generation was detected by the MIEB. Implant surface oxidation occurred in bacteria-containing medium even at early stages of immersion (2 days). The incremental corrosion resulted in dissolution of metal ions and debris into the testing solution. Dissolution of metal ions and particles in the oral environment can trigger or contribute to the development of peri-implantitis at later stages. © 2015 Wiley Periodicals, Inc.

  14. Method for preparing Pb-. beta. ''-alumina ceramic

    DOEpatents

    Hellstrom, E.E.

    1984-08-30

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-..beta..''-alumina ceramic from Na-..beta..''-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-..beta..''-alumina ceramic that is substantially crack-free.

  15. Method for preparing Pb-.beta."-alumina ceramic

    DOEpatents

    Hellstrom, Eric E.

    1986-01-01

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-.beta."-alumina ceramic from Na-.beta."-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-.beta."-alumina ceramic that is substantially crack-free.

  16. Forming Rb(+) snowballs in the center of He nanodroplets.

    PubMed

    Theisen, Moritz; Lackner, Florian; Ernst, Wolfgang E

    2010-12-07

    Helium nanodroplets doped with rubidium atoms are ionized by applying a resonant two-step ionization scheme. Subsequent immersion of rubidium ions is observed in time-of-flight mass spectra. While alkali-metal atoms usually desorb from the surface of a helium nanodroplet upon electronic excitation, rubidium in its excited 5(2)P(1/2) state provides an exception from this rule (Auböck et al., Phys. Rev. Lett., 2008, 101, 35301). In our new experiment, Rb atoms are selectively excited either to the 5(2)P(1/2) or to the 5(2)P(3/2) state. From there they are ionized by a laser pulse. Time-of-flight mass spectra of the ionization products reveal that the intermediate population of the 5(2)P(1/2) state does not only make the ionization process Rb-monomer selective, but also gives rise to a very high yield of Rb(+)-He(N) complexes. Ions with masses of up to several thousand amu have been monitored, which can be explained by an immersion of the single Rb ion into the He nanodroplet, where most likely a snowball is formed in the center of the He nanodroplet. As the most stable position for an ion is in the center of a He nanodroplet, our results agree well with theory.

  17. The effect of platform switching on the levels of metal ion release from different implant–abutment couples

    PubMed Central

    Alrabeah, Ghada O; Knowles, Jonathan C; Petridis, Haralampos

    2016-01-01

    The improved peri-implant bone response demonstrated by platform switching may be the result of reduced amounts of metal ions released to the surrounding tissues. The aim of this study was to compare the levels of metal ions released from platform-matched and platform-switched implant–abutment couples as a result of accelerated corrosion. Thirty-six titanium alloy (Ti-6Al-4V) and cobalt–chrome alloy abutments were coupled with titanium cylinders forming either platform-switched or platform-matched groups (n=6). In addition, 18 unconnected samples served as controls. The specimens were subjected to accelerated corrosion by static immersion in 1% lactic acid for 1 week. The amount of metal ions ion of each test tube was measured using inductively coupled plasma mass spectrometry. Scanning electron microscope (SEM) images and energy dispersive spectroscopy X-ray analyses were performed pre- and post-immersion to assess corrosion at the interface. The platform-matched groups demonstrated higher ion release for vanadium, aluminium, cobalt, chrome, and molybdenum compared with the platform-switched groups (P<0.05). Titanium was the highest element to be released regardless of abutment size or connection (P<0.05). SEM images showed pitting corrosion prominent on the outer borders of the implant and abutment platform surfaces. In conclusion, implant–abutment couples underwent an active corrosion process resulting in metal ions release into the surrounding environment. The highest amount of metal ions released was recorded for the platform-matched groups, suggesting that platform-switching concept has a positive effect in reducing the levels of metal ion release from the implant–abutment couples. PMID:27357323

  18. Prolonged whole-body cold water immersion: fluid and ion shifts.

    PubMed

    Deuster, P A; Smith, D J; Smoak, B L; Montgomery, L C; Singh, A; Doubt, T J

    1989-01-01

    To characterize fluid and ion shifts during prolonged whole-body immersion, 16 divers wearing dry suits completed four whole-body immersions in 5 degrees C water during each of two 5-day air saturation dives at 6.1 msw. One immersion was conducted at 1000 (AM) and one at 2200 (PM) so that diurnal variations could be evaluated. Fifty-four hours separated the immersions, which lasted up to 6 h; 9 days separated each air saturation dive. Blood was collected before and after immersion; urine was collected for 12 h before, during, and after immersion for a total of 24 h. Plasma volume decreased significantly and to the same extent (approximately 17%) during both AM and PM immersions. Urine flow increased by 236.1 +/- 38.7 and 296.3 +/- 52.0%, urinary excretion of Na increased by 290.4 +/- 89.0 and 329.5 +/- 77.0%, K by 245.0 +/- 73.4 and 215.5 +/- 44.6%, Ca by 211.0 +/- 31.4 and 241.1 +/- 50.4%, Mg by 201.4 +/- 45.9 and 165.3 +/- 287%, and Zn by 427.8 +/- 93.7 and 301.9 +/- 75.4% during AM and PM immersions, respectively, compared with preimmersion. Urine flow and K excretion were significantly higher during the AM than PM. In summary, when subjects are immersed in cold water for prolonged periods, combined with a slow rate of body cooling afforded by thermal protection and enforced intermittent exercise, there is diuresis, decreased plasma volume, and increased excretions of Na, K, Ca, Mg, and Zn.

  19. Study of the effects of E × B fields as mechanism to carbon-nitrogen plasma immersion ion implantation on stainless steel samples

    NASA Astrophysics Data System (ADS)

    Pillaca, E. J. D. M.; Ueda, M.; Oliveira, R. M.; Pichon, L.

    2014-08-01

    Effects of E × B fields as mechanism to carbon-nitrogen plasma immersion ion implantation (PIII) have been investigated. This magnetic configuration when used in PIII allows obtaining high nitrogen plasma density close to the ion implantation region. Consequently, high ions dose on the target is possible to be achieved compared with standard PIII. In this scenario, nitrogen and carbon ions were implanted simultaneously on stainless steel, as measured by GDOES and detected by X-ray diffraction. Carbon-tape disposed on the sample-holder was sputtered by intense bombardment of nitrogen ions, being the source of carbon atoms in this experiment. The implantation of both N and C caused changes on sample morphology and improvement of the tribological properties of the stainless steel.

  20. Plasma immersion ion implantation on 15-5PH stainless steel: influence on fatigue strength and wear resistance

    NASA Astrophysics Data System (ADS)

    Bonora, R.; Cioffi, M. O. H.; Voorwald, H. J. C.

    2017-05-01

    Surface improvement in steels is of great interest for applications in industry. The aim of this investigation is to study the effect of nitrogen ion implantation on the axial fatigue strength and wear resistance of 15-5 PH stainless steel. It is well know that electroplated coatings, which are used to improve abrasive wear and corrosion properties, affects negatively the fatigue strength. It is also important to consider requirements to reduce the use of coated materials with electroplated chromium and cadmium, that produce waste, which is harmful to health and environment. The HVOF (High velocity oxygen fuel) process provides hardness, wear strength and higher fatigue resistance in comparison to electroplated chromium. Plasma immersion ion implantation has been used to enhance the hardness, wear, fatigue and corrosion properties of metals and alloys. In the present research the fatigue life increased twice for 15-5 PH three hours PIII treated in comparison to base material. From the abrasive wear tests a lower pin mass reduction was observed, associated to the superficial treatments. The improvement of fatigue and mechanical performance is attributed to a combination of nitrides phase structure and compressive residual stresses during the PIII treatment.

  1. Assessment of Ions released from Three Types of Orthodontic Brackets immersed in Different Mouthwashes: An in vitro Study.

    PubMed

    Nahidh, Mohammed; Garma, Noor Mh; Jasim, Esraa S

    2018-01-01

    Herbs are used widely in medicine. The purpose of the present study was to assess the ion release from gold-plated orthodontic bracket compared with other stainless steel brackets, and based on the findings of the study, the orthodontists can choose the most biocompatible brackets and mouthwashes useful in the clinical practice. A total of 150 orthodontic brackets from Orthotechnology™ Company, USA (50 stainless steel one-piece brackets, 50 stainless steel two-piece brackets, and 50 gold brackets) were immersed in four mouthwashes in addition to distilled water. Ten of each type of brackets in every media were immersed under 37°C for 45 days. Ions released in these mouthwashes were measured, and comparisons among different bracket types and among various mouthwashes were done by one-way analysis of variance (ANOVA) and then with Games-Howell tests. Increased amounts of ions released in herbal mouth-washes were recorded in gold and two-piece brackets in comparison with one-piece stainless steel brackets. Herbal mouthwashes must be used with caution as they showed an increased amount of ions released in comparison with chlorhexidine. One-piece stainless steel bracket system is the most compatible bracket type, as they released the least amount of ions. One-piece stainless steel brackets are better than two-piece brackets in terms of ions released.

  2. Evaluation of passive oxide layer formation-biocompatibility relationship in NiTi shape memory alloys: geometry and body location dependency.

    PubMed

    Toker, S M; Canadinc, D; Maier, H J; Birer, O

    2014-03-01

    A systematic set of ex-situ experiments were carried out on Nickel-Titanium (NiTi) shape memory alloy (SMA) in order to identify the dependence of its biocompatibility on sample geometry and body location. NiTi samples with three different geometries were immersed into three different fluids simulating different body parts. The changes observed in alloy surface and chemical content of fluids upon immersion experiments designed for four different time periods were analyzed in terms of ion release, oxide layer formation, and chemical composition of the surface layer. The results indicate that both sample geometry and immersion fluid significantly affect the alloy biocompatibility, as evidenced by the passive oxide layer formation on the alloy surface and ion release from the samples. Upon a 30 day immersion period, all three types of NiTi samples exhibited lower ion release than the critical value for clinic applications. However; a significant amount of ion release was detected in the case of gastric fluid, warranting a thorough investigation prior to utility of NiTi in gastrointestinal treatments involving long-time contact with tissue. Furthermore, certain geometries appear to be safer than the others for each fluid, providing a new set of guidelines to follow while designing implants making use of NiTi SMAs to be employed in treatments targeting specific body parts. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Behavior of pure gallium in water and various saline solutions.

    PubMed

    Horasawa, N; Nakajima, H; Takahashi, S; Okabe, T

    1997-12-01

    This study investigated the chemical stability of pure gallium in water and saline solutions in order to obtain fundamental knowledge about the corrosion mechanism of gallium-based alloys. A pure gallium plate (99.999%) was suspended in 50 mL of deionized water, 0.01%, 0.1% or 1% NaCl solution at 24 +/- 2 degrees C for 1, 7, or 28 days. The amounts of gallium released into the solutions were determined by atomic absorption spectrophotometry. The surfaces of the specimens were examined after immersion by x-ray diffractometry (XRD) and x-ray photoelectron spectroscopy (XPS). In the solutions containing 0.1% or more NaCl, the release of gallium ions into the solution was lowered when compared to deionized water after 28-day immersion. Gallium oxide monohydroxide was found by XRD on the specimens immersed in deionized water after 28-day immersion. XPS indicated the formation of gallium oxide/hydroxide on the specimens immersed in water or 0.01% NaCl solution. The chemical stability of pure solid gallium was strongly affected by the presence of Cl- ions in the aqueous solution.

  4. Ion behaviour in pulsed plasma regime by means of Time-resolved energy mass spectroscopy (TREMS) applied to an industrial radiofrequency Plasma Immersion Ion Implanter PULSION registered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrere, M.; Kaeppelin, V.; Torregrosa, F.

    2006-11-13

    In order to face the requirements for P+/N junctions requested for < 45 nm ITRS nodes, new doping techniques are studied. Among them Plasma Immersion Ion Implantation (PIII) has been largely studied. IBS has designed and developed its own PIII machine named PULSION registered . This machine is using a pulsed plasma. As other modem technological applications of low pressure plasma, PULSION registered needs a precise control over plasma parameters in order to optimise process characteristics. In order to improve pulsed plasma discharge devoted to PIII, a nitrogen pulsed plasma has been studied in the inductively coupled plasma (ICP) ofmore » PULSION registered and an argon pulsed plasma has been studied in the helicon discharge of the laboratory reactor of LPIIM (PHYSIS). Measurements of the Ion Energy Distribution Function (IEDF) with EQP300 (Hidden) have been performed in both pulsed plasma. This study has been done for different energies which allow to reconstruct the IEDF resolved in time (TREMS). By comparing these results, we found that the beginning of the plasma pulse, named ignition, exhaust at least three phases, or more. All these results allowed us to explain plasma dynamics during the pulse while observing transitions between capacitive and inductive coupling. This study leads in a better understanding of changes in discharge parameters as plasma potential, electron temperature, ion density.« less

  5. Energy Scaling of Cold Atom-Atom-Ion Three-Body Recombination

    NASA Astrophysics Data System (ADS)

    Krükow, Artjom; Mohammadi, Amir; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H.

    2016-05-01

    We study three-body recombination of Ba++Rb +Rb in the mK regime where a single 138Ba+ ion in a Paul trap is immersed into a cloud of ultracold 87Rb atoms. We measure the energy dependence of the three-body rate coefficient k3 and compare the results to the theoretical prediction, k3∝Ecol-3 /4, where Ecol is the collision energy. We find agreement if we assume that the nonthermal ion energy distribution is determined by at least two different micromotion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed in an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s -wave regime.

  6. Process for radiation grafting hydrogels onto organic polymeric substrates

    DOEpatents

    Ratner, Buddy D.; Hoffman, Allan S.

    1976-01-01

    An improved process for radiation grafting of hydrogels onto organic polymeric substrates is provided comprising the steps of incorporating an effective amount of cupric or ferric ions in an aqueous graft solution consisting of N-vinyl-2 - pyrrolidone or mixture of N-vinyl-2 - pyrrolidone and other monomers, e.g., 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, propylene glycol acrylate, acrylamide, methacrylic acid and methacrylamide, immersing an organic polymeric substrate in the aqueous graft solution and thereafter subjecting the contacted substrate with ionizing radiation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, L. L., E-mail: llm@isps.tsc.ru; Meisner, S. N.; National Research Tomsk State University, 36, Lenina Avenue, Tomsk, 634050

    The corrosion resistance behavior and cytotoxicity of binary NiTi-base alloy specimens subjected to surface modification by silicon ion beams and the proliferative ability of mesenchymal stem cells (MSC) of rat marrow on an ion-implanted surface of the alloy have been studied. The silicon ion beam processing of specimen surfaces is shown to bring about a nearly two-fold improvement in the corrosion resistance of the material to attack by acqueous solutions of NaCl and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ∼3400 and ∼6000 h, respectively. It is foundmore » that MSC proliferation strongly depends on the surface structure, roughness and chemical condition of NiTi implants.« less

  8. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    NASA Astrophysics Data System (ADS)

    Sangwijit, K.; Yu, L. D.; Sarapirom, S.; Pitakrattananukool, S.; Anuntalabhochai, S.

    2015-12-01

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 1012 to 1 × 1017 ions/cm2 treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  9. Determination of Ni Release in NiTi SMA with Surface Modification by Nitrogen Plasma Immersion Ion Implantation

    NASA Astrophysics Data System (ADS)

    de Camargo, Eliene Nogueira; Oliveira Lobo, Anderson; Silva, Maria Margareth Da; Ueda, Mario; Garcia, Edivaldo Egea; Pichon, Luc; Reuther, Helfried; Otubo, Jorge

    2011-07-01

    NiTi SMA is a promising material in the biomedical area due to its mechanical properties and biocompatibility. However, the nickel in the alloy may cause allergic and toxic reactions and thus limiting its applications. It was evaluated the influence of surface modification in NiTi SMA by nitrogen plasma immersion ion implantation (varying temperatures, and exposure time as follows: <250 °C/2 h, 290 °C/2 h, and 560 °C/1 h) in the amount of nickel released using immersion test in simulated body fluid. The depth of the nitrogen implanted layer increased as the implantation temperature increased resulting in the decrease of nickel release. The sample implanted in high implantation temperature presented 35% of nickel release reduction compared to reference sample.

  10. An apparatus for immersing trapped ions into an ultracold gas of neutral atoms

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan; Härter, Arne; Frisch, Albert; Hoinka, Sascha; Denschlag, Johannes Hecker

    2012-05-01

    We describe a hybrid vacuum system in which a single ion or a well-defined small number of trapped ions (in our case Ba+ or Rb+) can be immersed into a cloud of ultracold neutral atoms (in our case Rb). This apparatus allows for the study of collisions and interactions between atoms and ions in the ultracold regime. Our setup is a combination of a Bose-Einstein condensation apparatus and a linear Paul trap. The main design feature of the apparatus is to first separate the production locations for the ion and the ultracold atoms and then to bring the two species together. This scheme has advantages in terms of stability and available access to the region where the atom-ion collision experiments are carried out. The ion and the atoms are brought together using a moving one-dimensional optical lattice transport which vertically lifts the atomic sample over a distance of 30 cm from its production chamber into the center of the Paul trap in another chamber. We present techniques to detect and control the relative position between the ion and the atom cloud.

  11. Direct coupling of pulsed radio frequency and pulsed high power in novel pulsed power system for plasma immersion ion implantation.

    PubMed

    Gong, Chunzhi; Tian, Xiubo; Yang, Shiqin; Fu, Ricky K Y; Chu, Paul K

    2008-04-01

    A novel power supply system that directly couples pulsed high voltage (HV) pulses and pulsed 13.56 MHz radio frequency (rf) has been developed for plasma processes. In this system, the sample holder is connected to both the rf generator and HV modulator. The coupling circuit in the hybrid system is composed of individual matching units, low pass filters, and voltage clamping units. This ensures the safe operation of the rf system even when the HV is on. The PSPICE software is utilized to optimize the design of circuits. The system can be operated in two modes. The pulsed rf discharge may serve as either the seed plasma source for glow discharge or high-density plasma source for plasma immersion ion implantation (PIII). The pulsed high-voltage glow discharge is induced when a rf pulse with a short duration or a larger time interval between the rf and HV pulses is used. Conventional PIII can also be achieved. Experiments conducted on the new system confirm steady and safe operation.

  12. Effect of Alkaline Peroxides on the Surface of Cobalt Chrome Alloy: An In Vitro Study.

    PubMed

    Vasconcelos, Glenda Lara Lopes; Curylofo, Patricia Almeida; Raile, Priscilla Neves; Macedo, Ana Paula; Paranhos, Helena Freitas Oliveira; Pagnano, Valeria Oliveira

    2018-03-24

    Removable denture hygiene care is very important for the longevity of the rehabilitation treatment; however, it is necessary to analyze the effects that denture cleansers can cause on the surfaces of prostheses. Thus, this study evaluated the effect of alkaline peroxide-effervescent tablets on the surface of cobalt-chromium alloys (Co-Cr) used in removable partial dentures. Circular metallic specimens (12 × 3 mm) were fabricated and were immersed (n = 16) in: control, Polident 3 Minute (P3M), Steradent (S), Efferdent (E), Polident for Partials (PFP), and Corega Tabs (CT). The surface roughness (μm) (n = 10) was measured before and after periods of cleanser immersion corresponding to 0.5, 1, 2, 3, 4, and 5 years. Ion release was analyzed (n = 5) for Co, Cr, and molybdenum (Mo). Scanning electron microscopy (SEM) analysis and an Energy-dispersive X-ray spectroscopy (EDS) were conducted in one specimen. The surface roughness data were statistically analyzed (α = 0.05) with the Kruskal-Wallis test to compare the solutions, and the Friedman test compared the immersion durations. Ion release analysis was performed using 2-way ANOVA and Tukey's test. There was no significant surface roughness difference when comparing the solutions (p > 0.05) and the immersion durations (p = 0.137). Regarding ion release (μg/L), CT, E, and control produced a greater release of Co ions than S (p < 0.05). CT produced a greater release of Cr ions than control, S, and P3M (p < 0.05). Finally, E caused the greatest release of Mo ions (p < 0.05). SEM confirmed that the solutions did not damage the surfaces and EDS confirmed that there were no signs of oxidation. The various solutions tested did not have any deleterious effects on the Co-Cr alloy surface. Steradent, however, presented the smallest ionic release. © 2018 by the American College of Prosthodontists.

  13. Nickel Ion Release from Three Types of Nickel-titanium-based Orthodontic Archwires in the As-received State and After Oral Simulation

    PubMed Central

    Ramazanzadeh, Barat Ali; Ahrari, Farzaneh; Sabzevari, Berahman; Habibi, Samaneh

    2014-01-01

    Background and aims. This study aimed to investigate release of nickel ion from three types of nickel-titanium-based wires in the as-received state and after immersion in a simulated oral environment. Materials and methods. Forty specimens from each of the single-strand NiTi (Rematitan "Lite"), multi-strand NiTi (SPEED Supercable) and Copper NiTi (Damon Copper NiTi) were selected. Twenty specimens from each type were used in the as-received state and the others were kept in deflected state at 37ºC for 2 months followed by autoclave sterilization. The as-received and recycled wire specimens were immersed in glass bottles containing 1.8 mL of artificial saliva for 28 days and the amount of nickel ion released into the electrolyte was determined using atomic absorption spectrophotometry. Results. The single-strand NiTi released the highest quantity of nickel ion in the as-received state and the multi-strand NiTi showed the highest ion release after oral simulation. The quantity of nickelion released from Damon Copper NiTi was the lowest in both conditions. Oral simulation followed by sterilization did not have a significant influence on nickel ion release from multi-strand NiTi and Damon Copper NiTi wires, but single-strand NiTi released statistically lower quantities of nickel ion after oral simulation. Conclusion. The multi-strand nature of Supercable did not enhance the potential of corrosion after immersion in the simulated oral environment. In vitro use of nickel-titanium-based archwires followed by sterilization did not significantly increase the amount of nickel ion released from these wires. PMID:25093049

  14. Scattering of Non-Relativistic Charged Particles by Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Apostol, M.

    2017-11-01

    The cross-section is computed for non-relativistic charged particles (like electrons and ions) scattered by electromagnetic radiation confined to a finite region (like the focal region of optical laser beams). The cross-section exhibits maxima at scattering angles given by the energy and momentum conservation in multi-photon absorption or emission processes. For convenience, a potential scattering is included and a comparison is made with the well-known Kroll-Watson scattering formula. The scattering process addressed in this paper is distinct from the process dealt with in previous studies, where the scattering is immersed in the radiation field.

  15. Production of permeable cellulose triacetate membranes

    DOEpatents

    Johnson, B.M.

    1986-12-23

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  16. Production of permeable cellulose triacetate membranes

    DOEpatents

    Johnson, Bruce M.

    1986-01-01

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  17. Oxygen depth profiling by resonant RBS in NiTi after plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Mändl, S.; Lindner, J. K. N.

    2006-08-01

    NiTi exhibits super-elastic as well as shape-memory properties, which results in a large potential application field in biomedical technology. Using oxygen ion implantation at elevated temperatures, it is possible to improve the biocompatibility. Resonant Rutherford backscattering spectroscopy (RRBS) is used to investigate the oxygen depth profile obtained after oxygen plasma immersion ion implantation (PIII) at 25 kV and 400-600 °C. At all temperatures, a layered structure consisting of TiO2/Ni3Ti/NiTi was found with sharp interfaces while no discernible content of oxygen inside Ni3Ti or nickel in TiO2 was found. These data are compatible with a titanium diffusion from the bulk towards the implanted oxygen.

  18. Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass

    NASA Astrophysics Data System (ADS)

    Caccavale, F.; De Marchi, G.; Gonella, F.; Mazzoldi, P.; Meneghini, C.; Quaranta, A.; Arnold, G. W.; Battaglin, G.; Mattei, G.

    1995-03-01

    Ion-exchanged glass samples were obtained by immersing soda-lime slides in molten salt baths of molar concentration in the range 1-20% AgNO 3 in NaNO 3, at temperatures varying from 320 to 350°C, and processing times of the order of a few minutes. Irradiations of exchanged samples were subsequently performed by using H +m, He +, N + ions at different energies in order to obtain comparable projected ranges. The fluence was varied between 5 × 10 15 and 2 × 10 17 ions/cm 2. Most of the samples were treated at current densities lower than 2 μA/cm 2, in order to avoid heating effects. Some samples were irradiated with 4 keV electrons, corresponding to a range of 250 nm. The formation of nanoclusters of radii in the range 1-10 nm has been observed after irradiation, depending on the treatment conditions. The precipitation process is governed by the electronic energy deposition of incident particles. The most desirable results are obtained for helium implants. The process was characterized by the use of Secondary Ion Mass Spectrometry (SIMS) and nuclear techniques (Rutherford Backscattering (RBS), Nuclear Reactions (NRA)), in order to determine concentration-depth profiles and by optical absorption and Transmission Electron Microscopy (TEM) measurements for the silver nanoclusters detection and size evaluation.

  19. Methods for solid electrolyte interphase formation and anode pre-lithiation of lithium ion capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raman, Santhanam; Xi, Xiaomei; Ye, Xiang-Rong

    A method of pre-doping an anode of an energy storage device can include immersing the anode and a dopant source in an electrolyte, and coupling a substantially constant current between the anode and the dopant source. A method of pre-doping an anode of an energy storage device can include immersing the anode and a dopant source in an electrolyte, and coupling a substantially constant voltage across the anode and the dopant source. An energy storage device can include an anode having a lithium ion pre-doping level of about 60% to about 90%.

  20. Corrosion of dental aluminium bronze in neutral saline and saline lactic acid.

    PubMed

    Tibballs, J E; Erimescu, Raluca

    2006-09-01

    To compare the corrosion behaviours of two aluminium bronze, dental casting alloys during a standard immersion test and for immersion in neutral saline. Cast specimens of aluminium bronzes with 1.4 wt% Fe (G) and 4 wt% Fe (N) were subject to progressively longer periods (up to in total 7 days) immersed in 0.1 M saline, 0.1 M lactic acid solutions and examined by scanning electron microscopy with EDX analysis. Immersion in 0.1M neutral saline was for 7 days. In the acidic solution, exposed interdendritic volumes in alloy N corroded completely away in 7 days with dissolution of Ni-enriched precipitate species as well as the copper-rich matrix. Alloy G begins to corrode more slowly but by a similar mechanism. The number density of an Fe-enriched species is insufficient to maintain a continuous galvanic potential to the copper matrix, and dissolution becomes imperceptible. In neutral saline solution, galvanic action alone caused pit-etching, without the dissolution of either precipitate species. The upper limit for the total dissolution of metallic ions in the standard immersion test can be set at 200 microg cm(-2). Aluminium bronze dental alloys can be expected to release both copper and nickel ions into an acidic oral environment.

  1. Studies on influence of aluminium ions on the bioactivity of B2O3-SiO2-P2O5-Na2O-CaO glass system by means of spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Mohini, G. Jagan; Krishnamacharyulu, N.; Sahaya Baskaran, G.; Rao, P. Venkateswara; Veeraiah, N.

    2013-12-01

    Bioactive multi component glasses of the composition of 27.4 B2O3-6.4 SiO2-2.5 P2O5-25.5 Na2O-(38.2 - x) CaO: x Al2O3 (x between 0 and 3.2) were synthesized, by melt quenching technique and their bioactivity was investigated as a function of Al2O3 concentration. Initially, optical absorption and infrared spectra were recorded and analyzed in order to have some pre-understanding over structural aspects of the glasses. For understanding the bioactivity, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (∼30 days) and the weight loss measurements were carried out. The spectroscopic studies were repeated on the post immersed samples. From the comparison of the analysis of the spectroscopic data of both pre-immersed and post-immersed samples together with the information on variation of pH value of residual solution as a function of immersion time, it is concluded that the participation of aluminium ions in tetrahedral positions is hindrance for the formation of HA layer and for the bioactivity of the samples.

  2. Effect of Trapped Ions on Shielding and Floating Potential of a Dust Grain in a Plasma

    NASA Astrophysics Data System (ADS)

    Lampe, Martin; Ganguli, Gurudas; Joyce, Glenn; Gavrishchaka, Valeriy

    2001-10-01

    The problem of electrostatic shielding around a small spherical collector immersed in plasma, and the related problem of electron and ion flow to the collector, date to the origins of plasma physics. Beginning with Mott-Smith and Langmuir (1926), calculations have typically neglected collisions, on the grounds that the mean free path is long compared to shielding length scales, i.e. the Debye length. However, investigators beginning with Bernstein and Rabinowitz (1959) have known that negative-energy trapped ions, created by occasional collisions, might be important. We present an analytic calculation of the density of trapped and untrapped ions, self-consistent with the potential. Under typical conditions for dust grains immersed in a discharge plasma, trapped ions dominate the shielding cloud in steady state, even in the limit of very long mean free path. As a result the shielded potential is different from the results of orbital motion limited theory. Collisions also greatly increase the ion current to the collector, thereby decreasing the floating potential and the grain charge by a factor as large as two to three.

  3. Effect of calcium chloride solution immersion on surface hardness of restorative glass ionomer cements.

    PubMed

    Shiozawa, Maho; Takahashi, Hidekazu; Iwasaki, Naohiko; Uo, Motohiro

    2013-01-01

    The objective of this study was to evaluate the effect of the concentration of calcium chloride (CaCl2) solution on the surface hardness of restorative glass ionomer cements (GICs). Two high-viscosity GICs, Fuji IX GP and GlasIonomer FX-II, were immersed in several concentrations of CaCl2 solution for 1 day and 1 week. The immersed specimen surfaces were evaluated using microhardness testing, grazing incidence X-ray diffraction, and energy-dispersive X-ray spectroscopy. Immersion in a higher concentration of CaCl2 solution produced a greater increase in the surface hardness. No crystalline substance was observed on the immersed surface. Calcium ions were selectively absorbed in the matrix of the GIC surface after immersion. They reacted with the non-reacted carboxylic acid groups remaining in the cement matrix. These reactions were considered to cause an increase in the surface hardness of the GICs.

  4. Plasma immersion ion implantation (and deposition) inside metallic tubes of different dimensions and configurations

    NASA Astrophysics Data System (ADS)

    Ueda, M.; Silva, C.; Santos, N. M.; Souza, G. B.

    2017-10-01

    There is a strong need for developing methods to coat or implant ions inside metallic tubes for many practical contemporary applications, both for industry and science. Therefore, stainless steel tubes with practical diameters of 4, 11 and 16 cm, but short lengths of 20 cm, were internally treated by nitrogen plasma immersion ion implantation (PIII). Different configurations as tube with lid in one of the ends or both sides open were tested for better PIII performance, in the case of smallest diameter tube. Among these PIII tests in tubes, using the 4 cm diameter one with a lid, it was possible to achieve tube temperatures of more than 700 °C in 15 min and maintain it during the whole treatment time (typically 2 h). Samples made of different materials were placed at the interior of the tube, as the monitors for posterior analysis, and the tube was solely pulsed by high voltage pulser producing high voltage glow discharge and hollow cathode discharge both driven by a moderate power source. In this experiment, samples of SS 304, pure Ti, Ti6Al4V and Si were used for the tests of the above methods. Results on the analysis of the surface of these nitrogen PIII treated materials, as well as on their processing methods, are presented and discussed in the paper.

  5. Fourth-generation plasma immersion ion implantation and deposition facility for hybrid surface modification layer fabrication.

    PubMed

    Wang, Langping; Huang, Lei; Xie, Zhiwen; Wang, Xiaofeng; Tang, Baoyin

    2008-02-01

    The fourth-generation plasma immersion ion implantation and deposition (PIIID) facility for hybrid and batch treatment was built in our laboratory recently. Comparing with our previous PIIID facilities, several novel designs are utilized. Two multicathode pulsed cathodic arc plasma sources are fixed on the chamber wall symmetrically, which can increase the steady working time from 6 h (the single cathode source in our previous facilities) to about 18 h. Meanwhile, the inner diameter of the pulsed cathodic arc plasma source is increased from the previous 80 to 209 mm, thus, large area metal plasma can be obtained by the source. Instead of the simple sample holder in our previous facility, a complex revolution-rotation sample holder composed of 24 shafts, which can rotate around its axis and adjust its position through revolving around the center axis of the vacuum chamber, is fixed in the center of the vacuum chamber. In addition, one magnetron sputtering source is set on the chamber wall instead of the top cover in the previous facility. Because of the above characteristic, the PIIID hybrid process involving ion implantation, vacuum arc, and magnetron sputtering deposition can be acquired without breaking vacuum. In addition, the PIIID batch treatment of cylinderlike components can be finished by installing these components on the rotating shafts on the sample holder.

  6. Study of the interaction of inorganic and organic compounds of cell culture medium with a Ti surface.

    PubMed

    Burgos-Asperilla, L; García-Alonso, M C; Escudero, M L; Alonso, C

    2010-02-01

    The interaction between Ti and each component of Dulbecco's modified Eagle's medium was studied in depth using different techniques, such as the measurement of the corrosion potential, electrochemical impedance spectroscopy and polarization curves. The characterization of metal surfaces was carried out by scanning electron microscopy and X-ray photoelectron spectroscopy (XPS). The adsorption process of each component was studied using the quartz crystal balance (QCM). The QCM and XPS results reveal that the adsorption kinetics for phosphate and calcium ions is slow. However, the bovine serum albumin (BSA) totally covers the Ti surface rapidly. Because the passive film (titanium oxide) has acidic hydroxyl groups, the calcium ions would have a bridging effect on the electrostatic adsorption of phosphate ions as well as that of BSA. The polarization curves reveal that the adsorbed glucose permits the ionic diffusion of the oxygen to the electrode, while the BSA and fetal bovine serum (FBS) adsorbed after 7 days of immersion act as a diffusive barrier. The impedance measurement and data fitting to the electrical equivalent circuit model show that the resistance of the proteins/TiO(2) interface, for Ti immersed in FBS, is higher than those obtained for BSA, due to the proteins present in the solution as well as the fact that the adsorbed proteins on the surface are greater.

  7. Theory and simulation of electron beam dynamics in the AWE superswarf magnetically immersed diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, B.V.; Welch, D.R.; Olson, C.L.

    1999-07-01

    Results from numerical simulation and analytic theory of magnetically immersed diode behavior on the United Kingdom's Atomic Weapons Establishment (AWE) Superswarf accelerator are presented. The immersed diode consists of a cylindrical needle point cathode immersed in a strong {approximately}10--20 T solenoidal magnetic field. The anode-cathode (A-K) accelerating gap is held at vacuum and is {approximately}5--10 cm in length, with the anode/target located at the mid-plane of the solenoid. Typical accelerator parameters are 5--6 MeV and 40 kA. Ions emitted from the anode target stream toward the cathode and interact strongly with the electron beam. Collective oscillations between the beam electronsmore » and counter-streaming ions are driven unstable and results in a corkscrew rotation of the beam, yielding a time-integrated spot size substantially larger than that expected from single particle motion. This magnetized ion-hose instability is three dimensional. On the other hand, beam transverse temperature variations, although slightly enhanced in 3D, are primarily due to changes in the effective potential at the cathode (a combination of both the electrostatic and vector potential) and are manifest in 2D. Simulation studies examining spot and dose variation with varying cathode diameter and A-K gap distance are presented and confirm the above mentioned trends. Conclusions are that the diode current is determined by standard di-polar space-charge limited emissions, the minimum beam spot-size is limited by the ion-hose instability saturation amplitude, and the beam transverse temperature at the target is a function of the initial conditions on the cathode. Comparison to existing data will also be presented.« less

  8. Uptake of divalent ions (Mn+2 and Ca+2) by heat-set whey protein gels.

    PubMed

    Oztop, Mecit H; McCarthy, Kathryn L; McCarthy, Michael J; Rosenberg, Moshe

    2012-02-01

    Divalent salts are used commonly for gelation of polymer molecules. Calcium, Ca(+2), is one of the most common divalent ions that is used in whey protein gels. Manganese, Mn(+2), is also divalent, but paramagnetic, enhancing relaxation decay rates in magnetic resonance imaging (MRI) and can be used as a probe to understand the behavior of Ca(+2) in whey protein gels. The objective of this study was to investigate the diffusion of Ca(+2) and Mn(+2) ions in heat-set whey protein gels by using MRI and nuclear magnetic resonance (NMR) relaxometry. Whey protein gels were immersed in solutions containing MnCl(2) and CaCl(2) at neutral pH. Images obtained with gels immersed in MnCl(2) solution revealed a relaxation sink region in the gel's surface and the thickness of the region increased with time. These "no signal" regions in the MR images were attributed to uptake of Mn(+2) by the gel. Results obtained with CaCl(2) solution indicated that since Ca(+2) did not have the paramagnetic effect, the regions where Ca(+2) diffused into the gel exhibited a slight decrease in signal intensity. The relaxation spectrums exhibited 3 populations of protons, for gels immersed in MnCl(2) solution, and 2 populations for gels in CaCl(2) solution. No significant change in T(2) distributions was observed for the gels immersed in CaCl(2) solution. The results demonstrated that MRI and NMR relaxometry can be used to understand the diffusion of ions into the whey protein gel, which is useful for designing gels of different physical properties for controlled release applications. Design of food systems for delivery of bioactive compounds requires knowledge of diffusion rates and structure. Utilizing magnetic resonance imaging the diffusion rates of ions can be measured. Relaxation spectra could yield information concerning molecular interactions. © 2012 Institute of Food Technologists®

  9. Impact of gastric acidic challenge on surface topography and optical properties of monolithic zirconia.

    PubMed

    Sulaiman, Taiseer A; Abdulmajeed, Aous A; Shahramian, Khalil; Hupa, Leena; Donovan, Terrence E; Vallittu, Pekka; Närhi, Timo O

    2015-12-01

    To evaluate the surface topography and optical properties of monolithic zirconia after immersion in simulated gastric acid. Four partially stabilized (PSZ) and one fully stabilized (FSZ) zirconia materials were selected for the study: Prettau (PRT, Zirkonzahn), Zenostar (ZEN, Ivoclar), Bruxzir (BRX, Glidewell), Katana (KAT, Noritake) and FSZ Prettau Anterior (PRTA, Zirkonzahn). IPS e.max (Ivoclar) was used as a control. The specimens (10×10×1.2mm, n=5 per material) were cut, sintered, polished and cleaned before immersed in 5ml of simulated gastric acid solution (Hydrochloric acid (HCl) 0.06M, 0.113% solution in deionized distal water, pH 1.2) for 96h in a 37°C incubator. Specimens were weighed and examined for morphological changes under scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy (EDX). Surface roughness was evaluated by a confocal microscope. Surface gloss and translucency parameter (TP) values were determined by a reflection spectrophotometer before and after acid immersion. The data was analyzed by one-way ANOVA followed by Tukey's HSD post hoc test (p<0.05). PRTA displayed the most weight loss (1.40%) among the zirconia specimens. IPS e.max showed about three times more weight loss (3.05%) than zirconia specimens as an average. SEM examination indicated areas of degradation, bead-like shapes and smoothening of the polishing scratches after acid immersion. EDX displayed ion interactions and possible ion leaching from all specimens. Sa and Sq values for PRTA, ZEN and IPS e.max were significantly lower (p<0.05) after acid immersion. TP values increased significantly for PRT, ZEN and IPS e.max (p<0.05), while the surface gloss of ZEN, PRTA and IPS e.max increased (p<0.05). Monolithic zirconia materials show some surface alterations in an acidic environment with minimum effect on their optical properties. Whether a smoother surface is in fact a sign of true corrosion resistance or is purely the result of an evenly progressive corrosive process is yet to be confirmed by further research. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Investigation of microstructure and properties of ultrathin graded ZrNx self-assembled diffusion barrier in deep nano-vias prepared by plasma ion immersion implantation

    NASA Astrophysics Data System (ADS)

    Zou, Jianxiong; Liu, Bo; Lin, Liwei; Lu, Yuanfu; Dong, Yuming; Jiao, Guohua; Ma, Fei; Li, Qiran

    2018-01-01

    Ultrathin graded ZrNx self-assembled diffusion barriers with controllable stoichiometry was prepared in Cu/p-SiOC:H interfaces by plasma immersion ion implantation (PIII) with dynamic regulation of implantation fluence. The fundamental relationship between the implantation fluence of N+ and the stoichiometry and thereby the electrical properties of the ZrNx barrier was established. The optimized fluence of a graded ZrN thin film with gradually decreased Zr valence was obtained with the best electrical performance as well. The Cu/p-SiOC:H integration is thermally stable up to 500 °C due to the synergistic effect of Cu3Ge and ZrNx layers. Accordingly, the PIII process was verified in a 100-nm-thick Cu dual-damascene interconnect, in which the ZrNx diffusion barrier of 1 nm thick was successfully self-assembled on the sidewall without barrier layer on the via bottom. In this case, the via resistance was reduced by approximately 50% in comparison with Ta/TaN barrier. Considering the results in this study, ultrathin ZrNx conformal diffusion barrier can be adopted in the sub-14 nm technology node.

  11. The surface alloying effect of silicon in a binary NiTi-base alloy on the corrosion resistance and biocompatibility of the material

    NASA Astrophysics Data System (ADS)

    Psakhie, S. G.; Lotkov, A. I.; Meisner, L. L.; Meisner, S. N.; Matveeva, V. A.

    2013-02-01

    The corrosion resistance behavior and cytotoxicity of binary NiTi-base alloy specimens subjected to surface modification by silicon ion beams and the proliferative ability of mesenchymal stem cells of rat marrow on an ion-implanted surface of the alloy have been studied. The silicon ion beam processing of specimen surfaces is shown to bring about a nearly two-fold improvement in the corrosion resistance of the material to attack by aqueous solutions of NaCl (artificial body fluid) and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ˜3400 and ˜6000 h, respectively (for the artificial plasma solution, a nearly 20-fold decrease in the Ni concentration is observed.)

  12. Effects of Composites Containing Bioactive Glasses on Demineralized Dentin.

    PubMed

    Tezvergil-Mutluay, A; Seseogullari-Dirihan, R; Feitosa, V P; Cama, G; Brauer, D S; Sauro, S

    2017-08-01

    The aim of this study was to evaluate the degradation of completely demineralized dentin specimens in contact with a filler-free or 2 ion-releasing resins containing micrometer-sized particles of Bioglass 45S5 (BAG) or fluoride-containing phosphate-rich bioactive glass (BAG-F). Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were also used to evaluate the remineralization induced by the experimental ion-releasing resin-based materials. Dentin beams were totally demineralized in H 3 PO 4 (10%) and placed in direct contact with a filler-free (RESIN) or 2 experimental ion-releasing resins (BAG or BAG-F) and immersed in artificial saliva (AS) up to 30 d. Further specimens were also processed and submitted to FTIR and SEM analysis to evaluate the remineralization induced by such ion-releasing resins before and after AS immersion. BAG and BAG-F alkalinized the incubation media. A significant decrease of the dry mass was observed between the specimens of all groups stored for 3 and 30 d in AS. However, the fluoride-containing phosphate-rich bioactive glass incorporated into a resin-based material (BAG-F) showed greater ability in reducing the solubilization of C-terminal cross-linked telopeptide (ICTP) and C-terminal telopeptide (CTX) after prolonged AS storage. Moreover, after 30 d of AS storage, BAG-F showed the greatest remineralizing effect on the stiffness of the completely demineralized dentin matrices. In conclusion, fluoride-containing phosphate-rich bioactive glass incorporated as micrometer-sized filler in dental composites may offer greater beneficial effects than Bioglass 45S5 in reducing the enzyme-mediated degradation and remineralization of demineralized dentin.

  13. Conversion electron Mössbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    NASA Astrophysics Data System (ADS)

    Terwagne, G.; Collins, G. A.; Hutchings, R.

    1994-12-01

    Conversion electron Mössbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI3) at 350 °C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ɛ-Fe2N through ɛ-Fe3N to γ'-Fe4N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone.

  14. The Use of Ion Vapor Deposited Aluminum (IVD) for the Space Shuttle Solid Rocket Booster (SRB)

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.

    2003-01-01

    This viewgraph representation provides an overview of the use of ion vapor deposited aluminum (IVD) for use in the Space Shuttle Solid Rocket Booster (SRB). Topics considered include: schematics of ion vapor deposition system, production of ion vapor deposition system, IVD vs. cadmium coated drogue ratchets, corrosion exposure facilities and tests, seawater immersion facilities and tests and continued research and development issues.

  15. Effect of Trapped Ions on Shielding of a Charged Spherical Object in a Plasma

    NASA Astrophysics Data System (ADS)

    Lampe, Martin; Ganguli, Gurudas; Joyce, Glenn; Gavrishchaka, Valeriy

    2001-04-01

    The problem of electrostatic shielding around a small spherical collector immersed in plasma, and the related problem of electron and ion flow to the collector, date to the origins of plasma physics. Beginning with Langmuir[1], all calculations have neglected collisions, on the grounds that the mean free path is long compared to shielding length scales, i.e. the Debye length. However, investigators beginning with Bernstein and Rabinowitz[2] have known that negative-energy trapped ions, created by occasional collisions, might be important. We present an analytic calculation of the density of trapped and untrapped ions, self-consistent with a calculation of the potential. We show that under typical conditions for dust grains immersed in a discharge plasma, trapped ions dominate the shielding cloud in steady state, even in the limit of very long mean free path. As a result the shielded potential is quite different from the Debye form or the results of orbital motion limited theory. Collisions also modify the ion current to the grain, but to a lesser extent. [1]H. Mott-Smith and I. Langmuir, Phys. Rev. 28, 27 (1926). [2]I. Bernstein and I. Rabinowitz, Phys. Fluids 2,112(1959).

  16. Effect of liquid immersion of PEDOT: PSS-coated polyester fabric on surface resistance and wettability

    NASA Astrophysics Data System (ADS)

    Getnet Tadesse, Melkie; Loghin, Carmen; Chen, Yan; Wang, Lichuan; Catalin, Dumitras; Nierstrasz, Vincent

    2017-06-01

    Coating of textile fabrics with poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS) is one of the methods used for obtaining functional or smart applications. In this work, we prepared PEDOT:PSS polymer with certain additives such as polyethylene glycol, methanol (MeOH), and ethylene glycol on polyester fabric substrates by a simple immersion process. Surface resistance was measured and analyzed with analysis of variance to determine the coating parameters at 95% confidence level. Fourier transform infrared (FTIR) analysis and scanning electron microscopy (SEM) study of the samples were performed. Contact angle and washing fastness measurements were conducted, to observe the wettability and washing fastness of the samples, respectively. Surface resistance values were decreased by a factor of 100, due to conductive enhancers. As the immersion time and temperature condition varies, surface resistance showed no difference, statistically. FTIR analysis supports the idea that the mechanism responsible for the conductivity enhancement is the partial replacement of PSS from PEDOT chain by forming a hydrogen bond with hydroxyl ion (OH) of the conductive enhancers. A SEM images showed that PEDOT:PSS is well distributed to the surface of the fabrics. Contact angle measurements showed morphology change in the samples. The conductivity was reasonably stable after 10 washing cycles. Altogether, an effective simple immersion of coated polyester fabric is presented to achieve functional textiles that offer a broad range of possible applications.

  17. Influence of Chloride Ions as Contaminants on the Corrosion Behavior of Alloy 718 in Pool Water of Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Hugues, Jonathan; Andrieu, Eric; Blanc, Christine; Cloué, Jean-Marc

    The electrochemical behavior of alloy 718 in a chloride-containing boric acid solution was studied to determine the influence of chloride ions as contaminants of pool water of nuclear power plants on the corrosion behavior of the alloy. Experiments were performed at 20°C and 60°C with chloride concentrations from 1.5 to 15 000 ppm, using stationary measurements i.e. OCP versus time measurements and plotting of current-potential curves. After the electrochemical tests, the samples were observed using optical microscopy. Immersion tests in chloride-containing boric acid solutions were also carried out: samples were immersed for a time as long as 17 weeks at open circuit potential and their residual mechanical properties were measured. Results showed that, whatever the chloride concentration, there was no corrosion for samples immersed at open circuit potential. However, when the samples were polarized at high potentials, intergranular corrosion might be observed in occluded zones.

  18. In vitro evaluation of diamond-like carbon coatings with a Si/SiC x interlayer on surgical NiTi alloy

    NASA Astrophysics Data System (ADS)

    Liu, C. L.; Chu, Paul K.; Yang, D. Z.

    2007-04-01

    Diamond-like carbon (DLC) coatings were produced with a Si/SiCx interlayer by a hybrid plasma immersion ion implantation and deposition process to improve the adhesion between the carbon layer and surgical NiTi alloy substrate. The structure, mechanical properties, corrosion resistance and biocompatibility of the coatings were evaluated in vitro by Raman spectroscopy, pin-on-disk tests, potentiodynamic polarization tests and simulated fluid immersion tests. The DLC coatings with a Si/SiCx interlayer of a suitable thickness have better adhesion, lower friction coefficients and enhanced corrosion resistance. In the simulated body fluid tests, the coatings exhibit effective corrosion protection and good biocompatibility as indicated by PC12 cell cultures. DLC films fabricated on a Si/SiCx interlayer have high potential as protective coatings for biomedical NiTi materials.

  19. Environmental sensing with optical fiber sensors processed with focused ion beam and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime

    2015-03-01

    We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.

  20. Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Brumer, Paul; Buchachenko, Alexei A.

    2016-09-01

    We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb+ -Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb+ -Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb+ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T-0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb+ -Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.

  1. Surface treatment of magnetic recording heads

    DOEpatents

    Komvopoulos, Kyriakos; Brown, Ian G.; Wei, Bo; Anders, Simone; Anders, Andre; Bhatia, C. Singh

    1998-01-01

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances.

  2. Surface treatment of magnetic recording heads

    DOEpatents

    Komvopoulos, Kyriakos; Brown, Ian G.; Wei, Bo; Anders, Simone; Anders, Andre; Bhatia, Singh C.

    1995-01-01

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances.

  3. Surface treatment of magnetic recording heads

    DOEpatents

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.

    1998-11-17

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances. 22 figs.

  4. Surface treatment of magnetic recording heads

    DOEpatents

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, S.C.

    1995-12-19

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances. 15 figs.

  5. Plasma immersion ion implantation of polyurethane shape memory polymer: Surface properties and protein immobilization

    NASA Astrophysics Data System (ADS)

    Cheng, Xinying; Kondyurin, Alexey; Bao, Shisan; Bilek, Marcela M. M.; Ye, Lin

    2017-09-01

    Polyurethane-type shape memory polymers (SMPU) are promising biomedical implant materials due to their ability to recover to a predetermined shape from a temporary shape induced by thermal activation close to human body temperature and their advantageous mechanical properties including large recovery strains and low recovery stresses. Plasma Immersion Ion Implantation (PIII) is a surface modification process using energetic ions that generates radicals in polymer surfaces leading to carbonisation and oxidation and the ability to covalently immobilise proteins without the need for wet chemistry. Here we show that PIII treatment of SMPU significantly enhances its bioactivity making SMPU suitable for applications in permanent implantable biomedical devices. Scanning Electron Microscopy (SEM), contact angle measurements, surface energy measurements, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterise the PIII modified surface, including its after treatment aging kinetics and its capability to covalently immobilise protein directly from solution. The results show a substantial improvement in wettability and dramatic changes of surface chemical composition dependent on treatment duration, due to the generation of radicals and subsequent oxidation. The SMPU surface, PIII treated for 200s, achieved a saturated level of covalently immobilized protein indicating that a full monolayer coverage was achieved. We conclude that PIII is a promising and efficient surface modification method to enhance the biocompatibility of SMPU for use in medical applications that demand bioactivity for tissue integration and stability in vivo.

  6. Plasma immersion ion implantation for reducing metal ion release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, C.; Garcia, J. A.; Maendl, S.

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment.more » Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.« less

  7. Immersion lithography defectivity analysis at DUV inspection wavelength

    NASA Astrophysics Data System (ADS)

    Golan, E.; Meshulach, D.; Raccah, N.; Yeo, J. Ho.; Dassa, O.; Brandl, S.; Schwarz, C.; Pierson, B.; Montgomery, W.

    2007-03-01

    Significant effort has been directed in recent years towards the realization of immersion lithography at 193nm wavelength. Immersion lithography is likely a key enabling technology for the production of critical layers for 45nm and 32nm design rule (DR) devices. In spite of the significant progress in immersion lithography technology, there remain several key technology issues, with a critical issue of immersion lithography process induced defects. The benefits of the optical resolution and depth of focus, made possible by immersion lithography, are well understood. Yet, these benefits cannot come at the expense of increased defect counts and decreased production yield. Understanding the impact of the immersion lithography process parameters on wafer defects formation and defect counts, together with the ability to monitor, control and minimize the defect counts down to acceptable levels is imperative for successful introduction of immersion lithography for production of advanced DR's. In this report, we present experimental results of immersion lithography defectivity analysis focused on topcoat layer thickness parameters and resist bake temperatures. Wafers were exposed on the 1150i-α-immersion scanner and 1200B Scanner (ASML), defect inspection was performed using a DUV inspection tool (UVision TM, Applied Materials). Higher sensitivity was demonstrated at DUV through detection of small defects not detected at the visible wavelength, indicating on the potential high sensitivity benefits of DUV inspection for this layer. The analysis indicates that certain types of defects are associated with different immersion process parameters. This type of analysis at DUV wavelengths would enable the optimization of immersion lithography processes, thus enabling the qualification of immersion processes for volume production.

  8. Long-term dentin remineralization by poly(amido amine) and rechargeable calcium phosphate nanocomposite after fluid challenges.

    PubMed

    Liang, Kunneng; Xiao, Shimeng; Wu, Junling; Li, Jiyao; Weir, Michael D; Cheng, Lei; Reynolds, Mark A; Zhou, Xuedong; Xu, Hockin H K

    2018-04-01

    Previous studies investigated short-term dentin remineralization; studies on long-term dentin remineralization after fluid challenges mimicking fluids in oral environment are lacking. The objective of this study was to develop a long-term remineralization method to via poly(amido amine) (PAMAM) and rechargeable composite containing nanoparticles of amorphous calcium phosphate (NACP) after fluid challenges for the first time. NACP composite was immersed at pH 4 to exhaust its calcium (Ca) and phosphate (P) ions, and then recharged with Ca and P ions, to test the remineralization of the exhausted and recharged NACP composite. Dentin was acid-etched with 37% phosphoric acid. Four groups were prepared: (1) dentin control, (2) dentin with PAMAM, (3) dentin with the recharged NACP composite, and (4) dentin with PAMAM plus recharged NACP composite. PAMAM-coated dentin was immersed in phosphate-buffered saline with shaking for 72 days, because there is fluid flow in the mouth which could potentially detach the PAMAM from dentin. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 35 days. After 72days of immersion plus shaking, the PAMAM still successfully fulfilled its mineralization nucleation. The recharged NACP composite still provided acid-neutralization and ion re-release, which did not decrease with increasing the number of recharge cycles. The immersed-PAMAM plus NACP achieved complete dentin remineralization and restored the hardness to that of healthy dentin. In conclusion, superior long-term remineralization of the PAMAM plus NACP method was demonstrated for the first time. The immersed-PAMAM plus recharged NACP completely remineralized the pre-demineralized dentin, even after prolonged fluid-challenge similar to that in oral environment. The novel PAMAM plus NACP composite method is promising to provide long-term tooth protection and caries inhibition. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted.

  10. Swift heavy ion irradiation of interstellar dust analogues. Small carbonaceous species released by cosmic rays

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Chabot, M.; Pino, T.; Béroff, K.; Godard, M.; Severin, D.; Bender, M.; Trautmann, C.

    2017-03-01

    Context. Interstellar dust grain particles are immersed in vacuum ultraviolet (VUV) and cosmic ray radiation environments influencing their physicochemical composition. Owing to the energetic ionizing interactions, carbonaceous dust particles release fragments that have direct impact on the gas phase chemistry. Aims: The exposure of carbonaceous dust analogues to cosmic rays is simulated in the laboratory by irradiating films of hydrogenated amorphous carbon interstellar analogues with energetic ions. New species formed and released into the gas phase are explored. Methods: Thin carbonaceous interstellar dust analogues were irradiated with gold (950 MeV), xenon (630 MeV), and carbon (43 MeV) ions at the GSI UNILAC accelerator. The evolution of the dust analogues is monitored in situ as a function of fluence at 40, 100, and 300 K. Effects on the solid phase are studied by means of infrared spectroscopy complemented by simultaneously recording mass spectrometry of species released into the gas phase. Results: Specific species produced and released under the ion beam are analyzed. Cross sections derived from ion-solid interaction processes are implemented in an astrophysical context.

  11. Incorporation of metal and color alteration of enamel in the presence of orthodontic appliances.

    PubMed

    Maia, Lúcio Henrique E Gurgel; Filho, Hibernon Lopes de Lima; Araújo, Marcus Vinícius Almeida; Ruellas, Antônio Carlos de Oliveira; Araújo, Mônica Tirre de Souza

    2012-09-01

    To test the null hypothesis that it is not possible to incorporate metal ions arising from orthodontic appliance corrosion into tooth enamel with resulting tooth color change. This in vitro study used atomic absorption spectrophotometry to evaluate the presence of nickel, chromium, and iron ions in tooth enamel in three groups: a group submitted to cyclic demineralization and remineralization processes with solutions in which orthodontic appliances were previously immersed and corroded, releasing metallic ions; a control group; and another group, submitted to cycling only, without the presence of orthodontic appliances. The influence of the incorporation of these metals on a possible alteration in color was measured with a portable digital spectrophotometer using the CIE LAB system. At the end of the experiment, a significantly higher concentration of chromium and nickel (P < .05) was found in the group in which corrosion was present, and in this group, there was significantly greater color alteration (P ≤ .001). There was chromium and nickel incorporation into enamel and tooth color change when corrosion of orthodontic appliances was associated with cycling process. The null hypothesis is rejected.

  12. Development and experimental study of large size composite plasma immersion ion implantation device

    NASA Astrophysics Data System (ADS)

    Falun, SONG; Fei, LI; Mingdong, ZHU; Langping, WANG; Beizhen, ZHANG; Haitao, GONG; Yanqing, GAN; Xiao, JIN

    2018-01-01

    Plasma immersion ion implantation (PIII) overcomes the direct exposure limit of traditional beam-line ion implantation, and is suitable for the treatment of complex work-piece with large size. PIII technology is often used for surface modification of metal, plastics and ceramics. Based on the requirement of surface modification of large size insulating material, a composite full-directional PIII device based on RF plasma source and metal plasma source is developed in this paper. This device can not only realize gas ion implantation, but also can realize metal ion implantation, and can also realize gas ion mixing with metal ions injection. This device has two metal plasma sources and each metal source contains three cathodes. Under the condition of keeping the vacuum unchanged, the cathode can be switched freely. The volume of the vacuum chamber is about 0.94 m3, and maximum vacuum degree is about 5 × 10-4 Pa. The density of RF plasma in homogeneous region is about 109 cm-3, and plasma density in the ion implantation region is about 1010 cm-3. This device can be used for large-size sample material PIII treatment, the maximum size of the sample diameter up to 400 mm. The experimental results show that the plasma discharge in the device is stable and can run for a long time. It is suitable for surface treatment of insulating materials.

  13. Influence of biocompatible metal ions (Ag, Fe, Y) on the surface chemistry, corrosion behavior and cytocompatibility of Mg-1Ca alloy treated with MEVVA.

    PubMed

    Liu, Yang; Bian, Dong; Wu, Yuanhao; Li, Nan; Qiu, Kejin; Zheng, Yufeng; Han, Yong

    2015-09-01

    Mg-1Ca samples were implanted with biocompatible alloy ions Ag, Fe and Y respectively with a dose of 2×10(17)ionscm(-2) by metal vapor vacuum arc technique (MEVVA). The surface morphologies and surface chemistry were investigated by SEM, AES and XPS. Surface changes were observed after all three kinds of elemental ion implantation. The results revealed that the modified layer was composed of two sublayers, including an outer oxidized layer with mixture of oxides and an inner implanted layer, after Ag and Fe ion implantation. Y ion implantation induced an Mg/Ca-deficient outer oxidized layer and the distribution of Y along with depth was more homogeneous. Both electrochemical test and immersion test revealed accelerated corrosion rate of Ag-implanted Mg-1Ca and Fe-implanted Mg-1Ca, whereas Y ion implantation showed a short period of protection since enhanced corrosion resistance was obtained by electrochemical test, but accelerated corrosion rate was found by long period immersion test. Indirect cytotoxicity assay indicated good cytocompatibility of Y-implanted Mg-1Ca. Moreover, the corresponding corrosion mechanisms involving implanting ions into magnesium alloys were proposed, which might provide guidance for further application of plasma ion implantation to biodegradable Mg alloys. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Effect of Exposed Surface Area, Volume and Environmental pH on the Calcium Ion Release of Three Commercially Available Tricalcium Silicate Based Dental Cements.

    PubMed

    Rajasekharan, Sivaprakash; Vercruysse, Chris; Martens, Luc; Verbeeck, Ronald

    2018-01-13

    Tricalcium silicate cements (TSC) are used in dental traumatology and endodontics for their bioactivity which is mostly attributed to formation of calcium hydroxide during TSC hydration and its subsequent release of calcium and hydroxide ions. The aim of this study was to determine the effect of volume (Vol), exposed surface area (ESA) and pH of surrounding medium on calcium ion release. Three commercially available hydraulic alkaline dental cements were mixed and condensed into cylindrical tubes of varying length and diameter ( n = 6/group). For the effect of ESA and Vol, tubes were immersed in 10 mL of deionized water. To analyze the effect of environmental pH, the tubes were randomly immersed in 10 mL of buffer solutions with varying pH (10.4, 7.4 or 4.4). The solutions were collected and renewed at various time intervals. pH and/or calcium ion release was measured using a pH glass electrode and atomic absorption spectrophotometer respectively. The change of pH, short-term calcium ion release and rate at which calcium ion release reaches maximum were dependent on ESA ( p < 0.05) while maximum calcium ion release was dependent on Vol of TSC ( p < 0.05). Maximum calcium ion release was significantly higher in acidic solution followed by neutral and alkaline solution ( p < 0.05).

  15. Effect of Exposed Surface Area, Volume and Environmental pH on the Calcium Ion Release of Three Commercially Available Tricalcium Silicate Based Dental Cements

    PubMed Central

    Rajasekharan, Sivaprakash; Vercruysse, Chris; Martens, Luc; Verbeeck, Ronald

    2018-01-01

    Tricalcium silicate cements (TSC) are used in dental traumatology and endodontics for their bioactivity which is mostly attributed to formation of calcium hydroxide during TSC hydration and its subsequent release of calcium and hydroxide ions. The aim of this study was to determine the effect of volume (Vol), exposed surface area (ESA) and pH of surrounding medium on calcium ion release. Three commercially available hydraulic alkaline dental cements were mixed and condensed into cylindrical tubes of varying length and diameter (n = 6/group). For the effect of ESA and Vol, tubes were immersed in 10 mL of deionized water. To analyze the effect of environmental pH, the tubes were randomly immersed in 10 mL of buffer solutions with varying pH (10.4, 7.4 or 4.4). The solutions were collected and renewed at various time intervals. pH and/or calcium ion release was measured using a pH glass electrode and atomic absorption spectrophotometer respectively. The change of pH, short-term calcium ion release and rate at which calcium ion release reaches maximum were dependent on ESA (p < 0.05) while maximum calcium ion release was dependent on Vol of TSC (p < 0.05). Maximum calcium ion release was significantly higher in acidic solution followed by neutral and alkaline solution (p < 0.05). PMID:29342837

  16. Investigation of the Dissolution-Reformation Cycle of the Passive Oxide Layer on NiTi Orthodontic Archwires

    NASA Astrophysics Data System (ADS)

    Uzer, B.; Birer, O.; Canadinc, D.

    2017-09-01

    Dissolution-reformation cycle of the passive oxide layer on the nickel-titanium (NiTi) orthodontic archwires was investigated, which has recently been recognized as one of the key parameters dictating the biocompatibility of archwires. Specifically, commercially available NiTi orthodontic archwires were immersed in artificial saliva solutions of different pH values (2.3, 3.3, and 4.3) for four different immersion periods: 1, 7, 14, and 30 days. Characterization of the virgin and tested samples revealed that the titanium oxide layer on the NiTi archwire surfaces exhibit a dissolution-reformation cycle within the first 14 days of the immersion period: the largest amount of Ni ion release occurred within the first week of immersion, while it significantly decreased during the reformation period from day 7 to day 14. Furthermore, the oxide layer reformation was catalyzed on the grooves within the peaks and valleys due to relatively larger surface energy of these regions, which eventually decreased the surface roughness significantly within the reformation period. Overall, the current results clearly demonstrate that the analyses of dissolution-reformation cycle of the oxide layer in orthodontic archwires, surface roughness, and ion release behavior constitute utmost importance in order to ensure both the highest degree of biocompatibility and an efficient medical treatment.

  17. Bioactivity of Sodium Free Fluoride Containing Glasses and Glass-Ceramics

    PubMed Central

    Chen, Xiaojing; Chen, Xiaohui; Brauer, Delia S.; Wilson, Rory M.; Hill, Robert G.; Karpukhina, Natalia

    2014-01-01

    The bioactivity of a series of fluoride-containing sodium-free calcium and strontium phosphosilicate glasses has been tested in vitro. Glasses with high fluoride content were partially crystallised to apatite and other fluoride-containing phases. The bioactivity study was carried out in Tris and SBF buffers, and apatite formation was monitored by XRD, FTIR and solid state NMR. Ion release in solutions has been measured using ICP-OES and fluoride-ion selective electrode. The results show that glasses with low amounts of fluoride that were initially amorphous degraded rapidly in Tris buffer and formed apatite as early as 3 h after immersion. The apatite was identified as fluorapatite by 19F MAS-NMR after 6 h of immersion. Glass degradation and apatite formation was significantly slower in SBF solution compared to Tris. On immersion of the partially crystallised glasses, the fraction of apatite increased at 3 h compared to the amount of apatite prior to the treatment. Thus, partial crystallisation of the glasses has not affected bioactivity significantly. Fast dissolution of the amorphous phase was also indicated. There was no difference in kinetics between Tris and SBF studies when the glass was partially crystallised to apatite before immersion. Two different mechanisms of apatite formation for amorphous or partially crystallised glasses are discussed. PMID:28788139

  18. Understanding Immersivity: Image Generation and Transformation Processes in 3D Immersive Environments

    PubMed Central

    Kozhevnikov, Maria; Dhond, Rupali P.

    2012-01-01

    Most research on three-dimensional (3D) visual-spatial processing has been conducted using traditional non-immersive 2D displays. Here we investigated how individuals generate and transform mental images within 3D immersive (3DI) virtual environments, in which the viewers perceive themselves as being surrounded by a 3D world. In Experiment 1, we compared participants’ performance on the Shepard and Metzler (1971) mental rotation (MR) task across the following three types of visual presentation environments; traditional 2D non-immersive (2DNI), 3D non-immersive (3DNI – anaglyphic glasses), and 3DI (head mounted display with position and head orientation tracking). In Experiment 2, we examined how the use of different backgrounds affected MR processes within the 3DI environment. In Experiment 3, we compared electroencephalogram data recorded while participants were mentally rotating visual-spatial images presented in 3DI vs. 2DNI environments. Overall, the findings of the three experiments suggest that visual-spatial processing is different in immersive and non-immersive environments, and that immersive environments may require different image encoding and transformation strategies than the two other non-immersive environments. Specifically, in a non-immersive environment, participants may utilize a scene-based frame of reference and allocentric encoding whereas immersive environments may encourage the use of a viewer-centered frame of reference and egocentric encoding. These findings also suggest that MR performed in laboratory conditions using a traditional 2D computer screen may not reflect spatial processing as it would occur in the real world. PMID:22908003

  19. Corrosion and mechanical performance of AZ91 exposed to simulated inflammatory conditions.

    PubMed

    Brooks, Emily K; Der, Stephanie; Ehrensberger, Mark T

    2016-03-01

    Magnesium (Mg) and its alloys, including Mg-9%Al-1%Zn (AZ91), are biodegradable metals with potential use as temporary orthopedic implants. Invasive orthopedic procedures can provoke an inflammatory response that produces hydrogen peroxide (H2O2) and an acidic environment near the implant. This study assessed the influence of inflammation on both the corrosion and mechanical properties of AZ91. The AZ91 samples in the inflammatory protocol were immersed for three days in a complex biologically relevant electrolyte (AMEM culture media) that contained serum proteins (FBS), 150 mM of H2O2, and was titrated to a pH of 5. The control protocol immersed AZ91 samples in the same biologically relevant electrolyte (AMEM & FBS) but without H2O2 and the acid titration. After 3 days all samples were switched into fresh AMEM & FBS for an additional 3-day immersion. During the initial immersion, inflammatory protocol samples showed increased corrosion rate determined by mass loss testing, increased Mg and Al ion released to solution, and a completely corroded surface morphology as compared to the control protocol. Although corrosion in both protocols slowed once the test electrolyte solution was replaced at 3 days, the samples originally exposed to the simulated inflammatory conditions continued to display enhanced corrosion rates as compared to the control protocol. These lingering effects may indicate the initial inflammatory corrosion processes modified components of the surface oxide and corrosion film or initiated aggressive localized processes that subsequently left the interface more vulnerable to continued enhanced corrosion. The electrochemical properties of the interfaces were also evaluated by EIS, which found that the corrosion characteristics of the AZ91 samples were potentially influenced by the role of intermediate adsorption layer processes. The increased corrosion observed for the inflammatory protocol did not affect the flexural mechanical properties of the AZ91 at any time point assessed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, K.N.

    1996-09-24

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted. 16 figs.

  1. APPARATUS FOR HEATING A PLASMA

    DOEpatents

    Stix, T.H.

    1962-01-01

    The system contemplates the use of ion cyclotron motions for transferring energy to a plasma immersed in a confining magnetic field such as is found in thermonuclear reactors of the stellarator class. Oppositely directed windings are provided for producing ion-accelerating fields having a time and spatial periodicity and these have the advantage of producing ion cyclotron motions without the development of space charges which preclude the efficient energy transfer to the plasma. (AEC)

  2. Enhanced retained dose uniformity in NiTi spinal correction rod treated by three-dimensional mesh-assisted nitrogen plasma immersion ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Q. Y.; Hu, T.; Kwok, Dixon T. K.

    2010-05-15

    Owing to the nonconformal plasma sheath in plasma immersion ion implantation of a rod sample, the retained dose can vary significantly. The authors propose to improve the implant uniformity by introducing a metal mesh. The depth profiles obtained with and without the mesh are compared and the implantation temperature at various locations is evaluated indirectly by differential scanning calorimeter. Our results reveal that by using the metal mesh, the retained dose uniformity along the length is greatly improved and the effects of the implantation temperature on the localized mechanical properties of the implanted NiTi shape memory alloy rod are nearlymore » negligible.« less

  3. Neutral gas sympathetic cooling of an ion in a Paul trap.

    PubMed

    Chen, Kuang; Sullivan, Scott T; Hudson, Eric R

    2014-04-11

    A single ion immersed in a neutral buffer gas is studied. An analytical model is developed that gives a complete description of the dynamics and steady-state properties of the ions. An extension of this model, using techniques employed in the mathematics of economics and finance, is used to explain the recent observation of non-Maxwellian statistics for these systems. Taken together, these results offer an explanation of the long-standing issues associated with sympathetic cooling of an ion by a neutral buffer gas.

  4. Neutral Gas Sympathetic Cooling of an Ion in a Paul Trap

    NASA Astrophysics Data System (ADS)

    Chen, Kuang; Sullivan, Scott T.; Hudson, Eric R.

    2014-04-01

    A single ion immersed in a neutral buffer gas is studied. An analytical model is developed that gives a complete description of the dynamics and steady-state properties of the ions. An extension of this model, using techniques employed in the mathematics of economics and finance, is used to explain the recent observation of non-Maxwellian statistics for these systems. Taken together, these results offer an explanation of the long-standing issues associated with sympathetic cooling of an ion by a neutral buffer gas.

  5. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Poon, Ray W. Y.; Ho, Joan P. Y.; Liu, Xuanyong; Chung, C. Y.; Chu, Paul K.; Yeung, Kelvin W. K.; Lu, William W.; Cheung, Kenneth M. C.

    2005-08-01

    Nickel-titanium shape memory alloys (NiTi) are useful materials in orthopedics and orthodontics due to their unique super-elasticity and shape memory effects. However, the problem associated with the release of harmful Ni ions to human tissues and fluids has been raising safety concern. Hence, it is necessary to produce a surface barrier to impede the out-diffusion of Ni ions from the materials. We have conducted acetylene, nitrogen and oxygen plasma immersion ion implantation (PIII) into NiTi alloys in an attempt to improve the surface properties. All the implanted and annealed samples surfaces exhibit outstanding corrosion and Ni out-diffusion resistance. Besides, the implanted layers are mechanically stronger than the substrate underneath. XPS analyses disclose that the layer formed by C2H2 PIII is composed of mainly TiCx with increasing Ti to C concentration ratios towards the bulk. The nitrogen PIII layer is observed to be TiN, whereas the oxygen PIII layer is composed of oxides of Ti4+, Ti3+ and Ti2+.

  6. The development of self-expanding peripheral stent with ion-modified surface layer

    NASA Astrophysics Data System (ADS)

    Lotkov, Alexander I.; Kashin, Oleg A.; Kudryashov, Andrey N.; Krukovskii, Konstantin V.; Kuznetsov, Vladimir M.; Borisov, Dmitry P.; Kretov, Evgenii I.

    2016-11-01

    In work researches of chemical composition of surface layers of self-expanding stents of nickel-titanium (NiTi) and their functional and mechanical properties after plasma immersion processing by ions of silicon (Si). It is established that in the treatment in the inner and outer surfaces of stents formed doped silicon layer with a thickness of 80 nm. The formation of the doped layer does not impair the functional properties of the stent. At human body temperature, the stent is fully restore its shape after removing the deforming load. The resulting graph of loading of stents during their compression between parallel plates. The research results allow the conclusion that Si-doped stents are promising for treatment of peripheral vascular disease. However, related studies on laboratory animals are required.

  7. Effect of immersion time of restorative glass ionomer cements and immersion duration in calcium chloride solution on surface hardness.

    PubMed

    Shiozawa, Maho; Takahashi, Hidekazu; Iwasaki, Naohiko; Wada, Takahiro; Uo, Motohiro

    2014-12-01

    The objective of this study was to evaluate the effect of immersion time of restorative glass ionomer cements (GICs) and immersion duration in calcium chloride (CaCl2) solution on the surface hardness. Two high-viscosity GICs, Fuji IX GP and GlasIonomer FX-II, were selected. Forty-eight specimens were randomly divided into two groups. Sixty minutes after being mixed, half of them were immersed in a 42.7wt% CaCl2 solution for 10, 30, or 60min (Group 1); the remaining specimens were immersed after an additional 1-week of storage (Group 2). The surface hardness of the specimens was measured and analyzed with two-way ANOVA and the Tukey HSD test (α=0.05). The surface compositions were examined using energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The surface hardness of Group 1 significantly increased as the immersion duration in CaCl2 increased; that of Group 2 significantly increased only after 60-minute CaCl2 immersion. After CaCl2 immersion, the amounts of Ca increased as the immersion duration increased. The surface hardness after CaCl2 immersion significantly correlated with the amount of Ca in Group 1, but not in Group 2. The binding energy of the Ca2p peak was similar to that of calcium polyalkenoate. These findings indicated that the Ca ions from the CaCl2 solution created chemical bonds with the carboxylic acid groups in the cement matrix. Immersion of GICs in CaCl2 solution at the early stage of setting was considered to enhance the formation of the polyacid salt matrix; as a result, the surface hardness increased. Copyright © 2014. Published by Elsevier Ltd.

  8. Formation of carbon nanoclusters by implantation of keV carbon ions in fused silica followed by thermal annealing

    NASA Astrophysics Data System (ADS)

    Olivero, P.; Peng, J. L.; Liu, A.; Reichart, P.; McCallum, J. C.; Sze, J. Y.; Lau, S. P.; Tay, B. K.; Kalish, R.; Dhar, S.; Feldman, Leonard; Jamieson, David N.; Prawer, Steven

    2005-02-01

    In the last decade, the synthesis and characterization of nanometer sized carbon clusters have attracted growing interest within the scientific community. This is due to both scientific interest in the process of diamond nucleation and growth, and to the promising technological applications in nanoelectronics and quantum communications and computing. Our research group has demonstrated that MeV carbon ion implantation in fused silica followed by thermal annealing in the presence of hydrogen leads to the formation of nanocrystalline diamond, with cluster size ranging from 5 to 40 nm. In the present paper, we report the synthesis of carbon nanoclusters by the implantation into fused silica of keV carbon ions using the Plasma Immersion Ion Implantation (PIII) technique, followed by thermal annealing in forming gas (4% 2H in Ar). The present study is aimed at evaluating this implantation technique that has the advantage of allowing high fluence-rates on large substrates. The carbon nanostructures have been characterized with optical absorption and Raman spectroscopies, cross sectional Transmission Electron Microscopy (TEM), and Parallel Electron Energy Loss Spectroscopy (PEELS). Nuclear Reaction Analysis (NRA) has been employed to evaluate the deuterium incorporation during the annealing process, as a key mechanism to stabilize the formation of the clusters.

  9. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys.

    PubMed

    Gu, X N; Zheng, Y F; Chen, L J

    2009-12-01

    The electrochemical behavior of potential orthopedic Mg-Ca, AZ31 and AZ91 alloys was studied in Hank's solution, Dulbecco's Modified Eagle's Medium (DMEM) and serum-containing medium (DMEM adding 10% fetal bovine serum (DMEM+FBS)) over a 7 day immersion period. The biocorrosion of the above three alloys for various immersion time intervals was investigated by linear polarization and electrochemical impedance spectroscopy (EIS). After 7 day immersion, potentiodynamic polarization tests were carried out and the surface morphologies of experimental samples were examined by scanning electron microscopy (SEM) observation complemented by energy-disperse spectrometer (EDS) analysis. It was shown that the corrosion of magnesium alloys was influenced by the composition of the solution. The results indicated that chloride ion could reduce the corrosion resistance and the hydrocarbonate ions could induce rapid surface passivation. The adsorbed amino acid on the experimental magnesium alloys' surface increased their polarization resistance and reduced current densities. The influence of the serum protein on corrosion was found to be associated with the magnesium alloy compositions. A Mg-Ca alloy exhibited an increased corrosion rate in the presence of serum protein. An AZ31 alloy showed an increased corrosion rate in DMEM+FBS in the initial 3 day immersion and the corrosion rate decreased thereafter. An AZ91 alloy, with high Al content, showed a reduced corrosion rate with the addition of FBS into DMEM.

  10. Effect of chloride ion on corrosion behavior of SUS316L-grade stainless steel in nitric acid solutions containing seawater components under γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Ambai, H.; Takeuchi, M.; Iijima, S.; Uchida, N.

    2017-09-01

    Concerning the Fukushima Daiichi nuclear power plant accident, we investigated the effect of chloride ion on the corrosion behavior of SUS316L stainless steel, which is a typical material for the equipment used in reprocessing, in HNO3 solution containing seawater components, including under γ-ray irradiation condition. Electrochemical and immersion tests were carried out using a mixture of HNO3 and artificial seawater (ASW). In the HNO3 solution containing high amounts of ASW, the cathodic current densities increased and uniform corrosion progressed. This might be caused by strong oxidants, such as Cl2 and NOCl, generated in the reaction between HNO3 and Cl- ions. The corrosion rate decreased with the immersion time at low concentrations of HNO3, while it increased at high concentrations. Under γ-ray irradiation condition, the corrosion rate decreased due to the suppression of the cathodic reactions by the reaction between the above oxidants and HNO2 generated by radiolysis.

  11. Down to 2 nm Ultra Shallow Junctions : Fabrication by IBS Plasma Immersion Ion Implantation Prototype PULSION registered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torregrosa, Frank; Etienne, Hasnaa; Mathieu, Gilles

    Classical beam line implantation is limited in low energies and cannot achieve P+/N junctions requirements for <45nm node. Compared to conventional beam line ion implantation, limited to a minimum of about 200 eV, the efficiency of Plasma Immersion Ion Implantation (PIII) is no more to prove for the realization of Ultra Shallow Junctions (USJ) in semiconductor applications: this technique allows to get ultimate shallow profiles (as implanted) thanks to no lower limitation of energy and offers high dose rate. In the field of the European consortium NANOCMOS, Ultra Shallow Junctions implanted on a semi-industrial PIII prototype (PULSION registered ) designedmore » by the French company IBS, have been studied. Ultra shallow junctions implanted with BF3 at acceleration voltages down to 20V were realized. Contamination level, homogeneity and depth profile are studied. The SIMS profiles obtained show the capability to make ultra shallow profiles (as implanted) down to 2nm.« less

  12. Ion implantation modified stainless steel as a substrate for hydroxyapatite deposition. Part II. Biomimetic layer growth and characterization.

    PubMed

    Pramatarova, L; Pecheva, E; Krastev, V

    2007-03-01

    The interest in stainless steel as a material widely used in medicine and dentistry has stimulated extensive studies on improving its bone-bonding properties. AISI 316 stainless steel is modified by a sequential ion implantation of Ca and P ions (the basic ions of hydroxyapatite), and by Ca and P implantation and subsequent thermal treatment in air (600( composite function)C, 1 h). This paper investigates the ability of the as-modified surfaces to induce hydroxyapatite deposition by using a biomimetic approach, i.e. immersion in a supersaturated aqueous solution resembling the human blood plasma (the so-called simulated body fluid). We describe our experimental procedure and results, and discuss the physico-chemical properties of the deposed hydroxyapatite on the modified stainless steel surfaces. It is shown that the implantation of a selected combination of ions followed by the applied methodology of the sample soaking in the simulated body fluid yield the growth of hydroxyapatite layers with composition and structure resembling those of the bone apatite. The grown layers are found suitable for studying the process of mineral formation in nature (biomineralization).

  13. Pitting Behavior of L415 Pipeline Steel in Simulated Leaching Liquid Environment

    NASA Astrophysics Data System (ADS)

    Wan, H. X.; Yang, X. J.; Liu, Z. Y.; Song, D. D.; Du, C. W.; Li, X. G.

    2017-02-01

    The corrosion behavior and laws of the west-east gas pressure pipeline of L415 steel were studied in simulated leaching liquid. The failure of the L415 steel during the pressure testing process was investigated using electrochemical polarization, electrochemical impedance spectroscopy, and immersion test. The corrosion rate of the L415 steel increased with ion concentration in the leaching liquid. This rate reached about 0.8 mm a-1 and belonged to the severe corrosion grade. Pitting corrosion was observed in various simulated solutions with different aggressive species concentrations. The original ion concentration in the leaching liquid (1×) is the key factor influencing pitting initiation and development. Pitting showed easy nucleation, and its growth rate was relatively slow, in the basic simulating solution of the leach liquid (i.e., the ion content is compactable to the real condition in the rust on the inner steel pipe surface). Pitting was also highly sensitive and easily grew in the solution with doubled ion concentration in the basic simulating solution (2×). A uniform corrosion, instead of pitting, mainly occurred when the ion concentration was up to 10× of the basic solution.

  14. Effects of environment on the release of Ni, Cr, Fe, and Co from new and recast Ni-Cr alloy.

    PubMed

    Oyar, Perihan; Can, Gülşen; Atakol, Orhan

    2014-07-01

    The addition of previously cast alloy to new alloy for economic reasons may increase the release of elements. The purpose of this study was to analyze the effects of the immersion period, immersion media, and addition of previously cast alloy to new alloy on the release of elements. Disk-shaped specimens were prepared from a Ni-Cr alloy (Ni: 61 wt%, Cr: 26 wt%, Mo: 11 wt%, Si: 1.5 wt%, Fe, Ce, Al, and Co <1 wt%) (Remanium CS; Dentaurum) with new alloy (group N) and 50% new/50% recast alloy (group R). After the immersion of the specimens in both NaCl (pH 4) and artificial saliva (pH 6.7) for 3, 7, 14, 30, and 60 days, the release of ions was determined by using atomic absorption spectrometry. Data were analyzed with a 3-way ANOVA (α=.001). The release of Ni was significantly affected by the immersion period, of Ni and Cr by the alloy and media (P<.01), and of Fe by the alloy (P<.01). Ion release from the recast alloy in artificial saliva was 109.71 for Ni, 6.49 for Cr, 223.22 for Fe, and 29.90 μg/L for Co. The release of Co in NaCl was below the detection limit in both groups. The release of Ni in NaCl and artificial saliva increased with the length of the immersion period in both groups. The release of Cr and Fe was higher in artificial saliva than in NaCl in group R, regardless of the immersion period. The release of Co in NaCl was below the detection limit in both groups. Copyright © 2014 The Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Direct Impact Corona Ionization of Bacteria for Rapid, Reproducible Identification via Spectral Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Alusta, Pierre; Buzatu, Dan; Tarasenko, Olga; Wilkes, Jon; Darsey, Jerry

    2011-06-01

    A novel atmospheric pressure ionization process, Direct Impact Corona Ionization (DICI), is described here. In this process, a corona impinges onto the flat surface of a stainless steel pin carrying a thin film of dried bacterial suspension, the analyte. Two electrodes—a corona electrode and the sample pin—are immersed in hot inert He gas flux, flowing past them towards a 0.4 mm orifice leading to a mass spectrometer analyzer. An electric potential of 1.5-3.0 kV is placed between the two. At distances less than 1 cm, an intermittent arc is formed. At approximately 4 mm, the arc becomes a continuous corona discharge (plasma). The plasma is hot enough to: A) locally melt the impact zone on the steel pin, and B) ablate the dry thin bacterial film deposited on the metal pin. Biomolecular ions as heavy as 790 m/z are generated. Mass spectral fingerprints of bacteria are obtained with a high degree of reproducibility by selecting the highest intensity of an "indicator ion", 560.5 m/z or another relatively heavy ion whose appearance signals efficient vaporization of low volatility components.

  16. Photofunctional hybrids of lanthanide functionalized bio-MOF-1 for fluorescence tuning and sensing.

    PubMed

    Shen, Xiang; Yan, Bing

    2015-08-01

    A series of luminescent Ln(3+)@bio-MOF-1 (Ln=Eu, Tb, bio-MOF-1=Zn8(ad)4(BPDC)6O⋅2Me2NH2 (ad=adeninate, BPDC=biphenyldicarboxylate)) are synthesized via postsynthetic cation exchange by encapsulating lanthanide ions into an anionic metal-organic framework (MOF), and their photophysical properties are studied. After loading 2-thenoyltrifluroacetone (TTA) as sensitized ligand by a gas diffusion ("ship-in-bottle") method, it is found that the luminescent intensity of Eu(3+) is enhanced. Especially, when loading two different lanthanide cations into bio-MOF-1, the luminescent color can be tuned to close white (light pink) light output. Additionally, bio-MOF-1 and Eu(3+)@bio-MOF-1 are selected as representative samples for sensing metal ions. When bio-MOF-1 is immersed in the aqueous solutions of different metal ions, it shows highly sensitive sensing for Fe(3+) as well as Eu(3+)@bio-MOF-1 immersed in the DMF solutions of different metal ion. The results are benefit for the further application of functionalized bio-MOFs in practical fields. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. DIN 1.7035 Steel Modification with High Intensity Nitrogen Ion Implantation

    NASA Astrophysics Data System (ADS)

    Ryabchikov, A. I.; Sivin, D. O.; Anan'in, P. S.; Ivanova, A. I.; Uglov, V. V.; Korneva, O. S.

    2018-06-01

    The paper presents research results on the formation of deep ion-modified layers of the grade DIN 1.7035 alloy steel due to a high intensity, repetitively-pulsed nitrogen ion beams with the ion current density of up to 0.5 A/cm2. The formation of a low-energy, high intensity nitrogen ion beam is based on a plasma immersion ion extraction followed by the ballistic focusing in the equipotential drift region. The nitrogen ion implantation in steel specimens is performed at a 1.2 keV energy and 450, 500, 580 and 650°C temperatures during 60 minutes. The morphology, elementary composition and mechanical properties are investigated in deep layers of steel specimens alloyed with nitrogen ions.

  18. Effect of tungsten implantation on the switching parameters in V2O5 films

    NASA Astrophysics Data System (ADS)

    Burdyukh, S. V.; Berezina, O. Ya.; Pergament, A. L.

    2017-11-01

    The paper examines the effect of doping with tungsten on switching in hydrated vanadium pentoxide films. The switching effect is associated with the metal-insulator transition in a vanadium dioxide channel that forms in the initial film due to the process of electrical forming (EF). Doping is carried out by the plasma immersion ion implantation method. It is shown that implanting small tungsten doses improves the switching parameters after EF. When implanting large doses, switching is observed without EF, and if EF is applied, the switching effect, on the contrary, disappears.

  19. Direct Coexistence Methods to Determine the Solubility of Salts in Water from Numerical Simulations. Test Case NaCl.

    PubMed

    Manzanilla-Granados, Héctor M; Saint-Martín, Humberto; Fuentes-Azcatl, Raúl; Alejandre, José

    2015-07-02

    The solubility of NaCl, an equilibrium between a saturated solution of ions and a solid with a crystalline structure, was obtained from molecular dynamics simulations using the SPC/E and TIP4P-Ew water models. Four initial setups on supersaturated systems were tested on sodium chloride (NaCl) solutions to determine the equilibrium conditions and computational performance: (1) an ionic solution confined between two crystal plates of periodic NaCl, (2) a solution with all the ions initially distributed randomly, (3) a nanocrystal immersed in pure water, and (4) a nanocrystal immersed in an ionic solution. In some cases, the equilibration of the system can take several microseconds. The results from this work showed that the solubility of NaCl was the same, within simulation error, for the four setups, and in agreement with previously reported values from simulations with the setup (1). The system of a nanocrystal immersed in supersaturated solution was found to equilibrate faster than others. In agreement with laser-Doppler droplet measurements, at equilibrium with the solution the crystals in all the setups had a slight positive charge.

  20. Whole body immersion and hydromineral homeostasis: effect of water temperature.

    PubMed

    Jimenez, Chantal; Regnard, Jacques; Robinet, Claude; Mourot, Laurent; Gomez-Merino, Danielle; Chennaoui, Mounir; Jammes, Yves; Dumoulin, Gilles; Desruelle, Anne-Virginie; Melin, Bruno

    2010-01-01

    This experiment was designed to assess the effects of prolonged whole body immersion (WBI) in thermoneutral and cold conditions on plasma volume and hydromineral homeostasis.10 navy "combat swimmers" performed three static 6-h immersions at 34 degrees C (T34), 18 degrees C (T18) and 10 degrees C (T10). Rectal temperature, plasma volume (PV) changes, plasma proteins, plasma and urine ions, plasma osmolality, renin, aldosterone and antidiuretic hormone (ADH) were measured. Results show that compared to pre-immersion levels, PV decreased throughout WBI sessions, the changes being markedly accentuated in cold conditions. At the end of WBI, maximal PV variations were -6.9% at T34, -14.3% at T18, and -16.3% at T10. Plasma osmolality did not change during and after T34 immersion, while hyperosmolality was present at the end of T18 immersion and began after only 1 h of T10 immersion. In the three temperature conditions, significant losses of water (1.6-1.7 l) and salt (6-8 g) occurred and were associated with similar increases in osmolar and free water clearances. Furthermore, T18 and T10 immersions increased the glomerular filtration rate. There was little or no change in plasma renin and ADH, while the plasma level of aldosterone decreased equally in the three temperature conditions. In conclusion, our data indicate that cold water hastened PV changes induced by immersion, and increased the glomerular filtration rate, causing larger accumulated water losses. The iso-osmotic hypovolemia may impede the resumption of baseline fluid balance. Results are very similar to those repeatedly described by various authors during head-out water immersion.

  1. Efficiency, dispersion and straylight performance tests of immersed gratings for high resolution spectroscopy in the near infrared

    NASA Astrophysics Data System (ADS)

    Fernandez-Saldivar, J.; Culfaz, F.; Angli, N.; Bhatti, I.; Lobb, D.; Baister, G.; Touzet, B.; Desserouer, F.; Guldimann, B.

    2017-11-01

    New immersed grating technology is needed particularly for use in imaging spectrometers that will be used in sensing the atmosphere O2A spectral band (750nm - 775 nm) at spectral resolution in the order of 0.1 nm whilst ensuring a high efficiency and maintaining low stray light. In this work, the efficiency, dispersion and stray light performance of an immersed grating are tested and compared to analytical models. The grating consists of an ion-beam etched grating in a fused-silica substrate of 120 mm x 120mm immersed on to a prism of the same material. It is designed to obtain dispersions > 0.30°/nm-1 in air and >70% efficiency. The optical performance of the immersed grating is modelled and methods to measure its wavefront, efficiency, dispersion and scattered radiance are described. The optical setup allows the measurement of an 80mm beam diameter to derive the bidirectional scatter distribution function (BSDF) from the immersed grating from a minimum angle of 0.1° from the diffracted beam with angular resolution of 0.05°. Different configurations of the setup allow the efficiency and dispersion measurements using a tuneable laser in the 750nm-775nm range. The results from the tests are discussed with the suitability of the immersed gratings in mind for future space based instruments for atmospheric monitoring.

  2. Short-lived Rn-222 daughters in cryogenic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelczar, Krzysztof; Frodyma, Nikodem; Wójcik, Marcin

    In this paper a detection method of α emitters from {sup 222}Rn decay chain, present in cryogenic liquids, using bare Si-PIN diodes immersed in the liquids is presented. Properties of ionized {sup 222}Rn daughters deduced from conducted measurements are outlined. Life-time of positive ions was found to be of the order of 10 s, and nonzero content of electronegative ions was observed.

  3. Hardening of Metallic Materials Using Plasma Immersion Ion Implantation (PIII)

    NASA Astrophysics Data System (ADS)

    Xu, Yufan; Clark, Mike; Flanagan, Ken; Milhone, Jason; Nonn, Paul; Forest, Cary

    2016-10-01

    A new approach of Plasma Immersion Ion Implantation (PIII) has been developed with the Plasma Couette Experiment Upgrade (PCX-U). The new approach efficiently reduces the duty cycle under the same average power for PIII. The experiment uses a Nitrogen plasma at a relatively high density of 1010 1011 cm-3 with ion temperatures of < 2 eV and electron temperature of 5 10 eV. The pulser for this PIII experiment has a maximum negative bias greater than 20kV, with 60Hz frequency and a 8 μs on-time in one working cycle. The samples (Alloy Steel 9310) are analyzed by a Vicker Hardness Tester to study the hardness and X-ray Photoelectron Spectroscopy (XPS) to study implantation density and depth. Different magnetic fields are also applied on samples to reduce the energy loss and secondary emission. Higher efficiency of implantation is expected from this experiment and the results will be presented. Hilldale Undergraduate/Faculty Research Fellowship of University of Wisconsin-Madison; Professor Cary Forest's Kellett Mid-Career Faculty Award.

  4. The optical properties of α-Fe2O3 nanostructures synthesized with different immersion time

    NASA Astrophysics Data System (ADS)

    Ahmad, W. R. W.; Mamat, M. H.; Zoolfakar, A. S.; Khusaimi, Z.; Yusof, M. M.; Ismail, A. S.; Saidi, S. A.; Rusop, M.

    2018-05-01

    In this study, nanostructured hematite (α-Fe2O3) thin films have been prepared successfully by sonicated immersion method on fluorine-doped tin oxide (FTO) coated glass substrate. The effect of the immersion time on the structural and optical properties of α-Fe2O3 nanostructure were investigated for a variation of immersion time ranging from 1 to 4 hour. From the characterization results, the surface morphology of the sample prepared in 4 hours immersion process has exhibited highest porosity, and the highest absorbance properties were found in the same sample. These results suggest that the different time duration during immersion process play important roles in optical properties of α-Fe2O3 nanostructures.

  5. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.

    PubMed

    Boccardi, Elena; Melli, Virginia; Catignoli, Gabriele; Altomare, Lina; Jahromi, Maryam Tavafoghi; Cerruti, Marta; Lefebvre, Louis-Philippe; De Nardo, Luigi

    2016-02-02

    Large bone defects are challenging to heal, and often require an osteoconductive and stable support to help the repair of damaged tissue. Bioglass-based scaffolds are particularly promising for this purpose due to their ability to stimulate bone regeneration. However, processing technologies adopted so far do not allow for the synthesis of scaffolds with suitable mechanical properties. Also, conventional sintering processes result in glass de-vitrification, which generates concerns about bioactivity. In this work, we studied the bioactivity and the mechanical properties of Bioglass(®) based scaffolds, produced via a powder technology inspired process. The scaffolds showed compressive strengths in the range of 5-40 MPa, i.e. in the upper range of values reported so far for these materials, had tunable porosity, in the range between 55 and 77%, and pore sizes that are optimal for bone tissue regeneration (100-500 μm). We immersed the scaffolds in simulated body fluid (SBF) for 28 d and analyzed the evolution of the scaffold mechanical properties and microstructure. Even if, after sintering, partial de-vitrification occurred, immersion in SBF caused ion release and the formation of a Ca-P coating within 2 d, which reached a thickness of 10-15 μm after 28 d. This coating contained both hydroxyapatite and an amorphous background, indicating microstructural amorphization of the base material. Scaffolds retained a good compressive strength and structural integrity also after 28 d of immersion (6 MPa compressive strength). The decrease in mechanical properties was mainly related to the increase in porosity, caused by its dissolution, rather than to the amorphization process and the formation of a Ca-P coating. These results suggest that Bioglass(®) based scaffolds produced via powder metallurgy-inspired technique are excellent candidates for bone regeneration applications.

  6. Resist development status for immersion lithography

    NASA Astrophysics Data System (ADS)

    Tsuji, Hiromitsu; Yoshida, Masaaki; Ishizuka, Keita; Hirano, Tomoyuki; Endo, Kotaro; Sato, Mitsuru

    2005-05-01

    Immersion lithography has already demonstrated superior performance for next generation semiconductor manufacturing, while some challenges with contact immersion fluids and resist still remain. There are many interactions to be considered with regards to the solid and liquid interface. Resist elusion in particular requires very careful attention since the impact on the lens and fluid supply system in exposure tool could pose a significant risk at the manufacturing stage. TOK developed a screening procedure to detect resist elution of ion species down to ppb levels during non and post exposure steps. It was found that the PAG cation elution is affected by molecular weight and structure while the PAG anion elution was dependent on the molecular structure and mobility. In this paper, lithographic performance is also discussed with the low elution type resist.

  7. Homojunction silicon solar cells doping by ion implantation

    NASA Astrophysics Data System (ADS)

    Milési, Frédéric; Coig, Marianne; Lerat, Jean-François; Desrues, Thibaut; Le Perchec, Jérôme; Lanterne, Adeline; Lachal, Laurent; Mazen, Frédéric

    2017-10-01

    Production costs and energy efficiency are the main priorities for the photovoltaic (PV) industry (COP21 conclusions). To lower costs and increase efficiency, we are proposing to reduce the number of processing steps involved in the manufacture of N-type Passivated Rear Totally Diffused (PERT) silicon solar cells. Replacing the conventional thermal diffusion doping steps by ion implantation followed by thermal annealing allows reducing the number of steps from 7 to 3 while maintaining similar efficiency. This alternative approach was investigated in the present work. Beamline and plasma immersion ion implantation (BLII and PIII) methods were used to insert n-(phosphorus) and p-type (boron) dopants into the Si substrate. With higher throughput and lower costs, PIII is a better candidate for the photovoltaic industry, compared to BL. However, the optimization of the plasma conditions is demanding and more complex than the beamline approach. Subsequent annealing was performed on selected samples to activate the dopants on both sides of the solar cell. Two annealing methods were investigated: soak and spike thermal annealing. Best performing solar cells, showing a PV efficiency of about 20%, was obtained using spike annealing with adapted ion implantation conditions.

  8. Enhanced cytocompatibility and reduced genotoxicity of polydimethylsiloxane modified by plasma immersion ion implantation.

    PubMed

    Tong, Liping; Zhou, Wenhua; Zhao, Yuetao; Yu, Xuefeng; Wang, Huaiyu; Chu, Paul K

    2016-12-01

    Polydimethylsiloxane(PDMS) is a common industrial polymer with advantages such as ease of fabrication, tunable hardness, and other desirable properties, but the basic (-OSi(CH 3 ) 2 -) n structure in PDMS is inherently hydrophobic thereby hampering application to biomedical engineering. In this study, plasma immersion ion implantation (PIII) is conducted on PDMS to improve the biological properties. PIII forms wrinkled "herringbone" patterns and abundant O-containing functional groups on PDMS to alter the surface hydrophilicity. The biocompatibility of the modified PDMS is assessed with Chinese hamster ovarian cells and compared to that of the untreated PDMS. Our results reveal that the PDMS samples after undergoing PIII have better cytocompatibility and lower genotoxicity. PIII which is a non-line-of-sight technique extends the application of PDMS to the biomedical field. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Oxygen plasma immersion ion implantation treatment to enhance data retention of tungsten nanocrystal nonvolatile memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jer-Chyi, E-mail: jcwang@mail.cgu.edu.tw; Chang, Wei-Cheng; Lai, Chao-Sung, E-mail: cslai@mail.cgu.edu.tw

    Data retention characteristics of tungsten nanocrystal (W-NC) memory devices using an oxygen plasma immersion ion implantation (PIII) treatment are investigated. With an increase of oxygen PIII bias voltage and treatment time, the capacitance–voltage hysteresis memory window is increased but the data retention characteristics become degraded. High-resolution transmission electron microscopy images show that this poor data retention is a result of plasma damage on the tunneling oxide layer, which can be prevented by lowering the bias voltage to 7 kV. In addition, by using the elevated temperature retention measurement technique, the effective charge trapping level of the WO{sub 3} film surrounding themore » W-NCs can be extracted. This measurement reveals that a higher oxygen PIII bias voltage and treatment time induces more shallow traps within the WO{sub 3} film, degrading the retention behavior of the W-NC memory.« less

  10. Studying localized corrosion using liquid cell transmission electron microscopy

    DOE PAGES

    Chee, See Wee; Pratt, Sarah H.; Hattar, Khalid; ...

    2014-11-07

    Using liquid cell transmission electron microscopy (LCTEM), localized corrosion of Cu and Al thin films immersed in aqueous NaCl solutions was studied. We demonstrate that potentiostatic control can be used to initiate pitting and that local compositional changes, due to focused ion beam implantation of Au + ions, can modify the corrosion susceptibility of Al films. Likewise, a discussion on strategies to control the onset of pitting is also presented.

  11. Surface insulating properties of titanium implanted alumina ceramics by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Zhu, Mingdong; Song, Falun; Li, Fei; Jin, Xiao; Wang, Xiaofeng; Wang, Langping

    2017-09-01

    The insulating property of the alumina ceramic in vacuum under high voltage is mainly limited by its surface properties. Plasma immersion ion implantation (PIII) is an effective method to modify the surface chemical and physical properties of the alumina ceramic. In order to improve the surface flashover voltage of the alumina ceramic in vacuum, titanium ions with an energy of about 20 keV were implanted into the surface of the alumina ceramic using the PIII method. The surface properties of the as-implanted samples, such as the chemical states of the titanium, morphology and surface resistivity, were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and electrometer, respectively. The surface flashover voltages of the as-implanted alumina samples were measured by a vacuum surface flashover experimental system. The XPS spectra revealed that a compound of Ti, TiO2 and Al2O3 was formed in the inner surface of the alumina sample. The electrometer results showed that the surface resistivity of the implanted alumina decreased with increased implantation time. In addition, after the titanium ion implantation, the maximum hold-off voltage of alumina was increased to 38.4 kV, which was 21.5% higher than that of the unimplanted alumina ceramic.

  12. Influence of the casting processing route on the corrosion behavior of dental alloys.

    PubMed

    Galo, Rodrigo; Rocha, Luis Augusto; Faria, Adriana Claudia; Silveira, Renata Rodrigues; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello

    2014-12-01

    Casting in the presence of oxygen may result in an improvement of the corrosion performance of most alloys. However, the effect of corrosion on the casting without oxygen for dental materials remains unknown. The aim of this study was to investigate the influence of the casting technique and atmosphere (argon or oxygen) on the corrosion behavior response of six different dental casting alloys. The corrosion behavior was evaluated by electrochemical measurements performed in artificial saliva for the different alloys cast in two different conditions: arc melting in argon and oxygen-gas flame centrifugal casting. A slight decrease in open-circuit potential for most alloys was observed during immersion, meaning that the corrosion tendency of the materials increases due to the contact with the solution. Exceptions were the Co-based alloys prepared by plasma, and the Co-Cr-Mo and Ni-Cr-4Ti alloys processed by oxidized flame, in which an increase in potential was observed. The amount of metallic ions released into the artificial saliva solution during immersion was similar for all specimens. Considering the pitting potential, a parameter of high importance when considering the fluctuating conditions of the oral environment, Co-based alloys show the best performance in comparison with the Ni-based alloys, independent of the processing route. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Solid immersion lenses for enhancing the optical resolution of thermal and electroluminescence mapping of GaN-on-SiC transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomeroy, J. W., E-mail: James.Pomeroy@Bristol.ac.uk; Kuball, M.

    2015-10-14

    Solid immersion lenses (SILs) are shown to greatly enhance optical spatial resolution when measuring AlGaN/GaN High Electron Mobility Transistors (HEMTs), taking advantage of the high refractive index of the SiC substrates commonly used for these devices. Solid immersion lenses can be applied to techniques such as electroluminescence emission microscopy and Raman thermography, aiding the development device physics models. Focused ion beam milling is used to fabricate solid immersion lenses in SiC substrates with a numerical aperture of 1.3. A lateral spatial resolution of 300 nm is demonstrated at an emission wavelength of 700 nm, and an axial spatial resolution of 1.7 ± 0.3 μm atmore » a laser wavelength of 532 nm is demonstrated; this is an improvement of 2.5× and 5×, respectively, when compared with a conventional 0.5 numerical aperture objective lens without a SIL. These results highlight the benefit of applying the solid immersion lenses technique to the optical characterization of GaN HEMTs. Further improvements may be gained through aberration compensation and increasing the SIL numerical aperture.« less

  14. Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid.

    PubMed

    Gu, Y W; Khor, K A; Pan, D; Cheang, P

    2004-07-01

    Hydroxyapatite (HA)/yttria stabilized zirconia/Ti-6Al-4V bio-composite coatings deposited onto Ti-6Al-4V substrate through a plasma spray technique were immersed in simulated body fluid (SBF) to investigate their behavior in vitro. Surface morphologies and structural changes in the coatings were analyzed by scanning electron microscopy, thin-film X-ray diffractometer, and X-ray photoelectron spectroscopy. The tensile bond strength of the coatings after immersion was also conducted through the ASTM C-633 standard for thermal sprayed coatings. Results showed that carbonate-containing hydroxyapatite (CHA) layer formed on the surface of composite coatings after 4 weeks immersion in SBF solution, indicating the composite coating possessed excellent bioactivity. The mechanical properties were found to decrease with immersion duration of maximum 56 days. However, minimal variation in mechanical properties was found subsequent to achieving supersaturation of the calcium ions, which was attained with the precipitation of the calcium phosphate layers. The mechanical properties of the composite coating were found to be significantly higher than those of pure HA coatings even after immersion in the SBF solution, indicating the enhanced mechanical properties of the composite coatings.

  15. A Cell-Adhesive Plasma Polymerized Allylamine Coating Reduces the In Vivo Inflammatory Response Induced by Ti6Al4V Modified with Plasma Immersion Ion Implantation of Copper

    PubMed Central

    Walschus, Uwe; Hoene, Andreas; Patrzyk, Maciej; Lucke, Silke; Finke, Birgit; Polak, Martin; Lukowski, Gerold; Bader, Rainer; Zietz, Carmen; Podbielski, Andreas; Nebe, J. Barbara; Schlosser, Michael

    2017-01-01

    Copper (Cu) could be suitable to create anti-infective implants based on Titanium (Ti), for example by incorporating Cu into the implant surface using plasma immersion ion implantation (Cu-PIII). The cytotoxicity of Cu might be circumvented by an additional cell-adhesive plasma polymerized allylamine film (PPAAm). Thus, this study aimed to examine in vivo local inflammatory reactions for Ti6Al4V implants treated with Cu-PIII (Ti-Cu), alone or with an additional PPAAm film (Ti-Cu-PPAAm), compared to untreated implants (Ti). Successful Cu-PIII and PPAAm treatment was confirmed with X-ray Photoelectron Spectroscopy. Storage of Ti-Cu and Ti-Cu-PPAAm samples in double-distilled water for five days revealed a reduction of Cu release by PPAAm. Subsequently, Ti, Ti-Cu and Ti-Cu-PPAAm samples were simultaneously implanted into the neck musculature of 24 rats. After 7, 14 and 56 days, peri-implant tissue was retrieved from 8 rats/day for morphometric immunohistochemistry of different inflammatory cells. On day 56, Ti-Cu induced significantly stronger reactions compared to Ti (tissue macrophages, antigen-presenting cells, T lymphocytes) and to Ti-Cu-PPAAm (tissue macrophages, T lymphocytes, mast cells). The response for Ti-Cu-PPAAm was comparable with Ti. In conclusion, PPAAm reduced the inflammatory reactions caused by Cu-PIII. Combining both plasma processes could be useful to create antibacterial and tissue compatible Ti-based implants. PMID:28726761

  16. Deposition of dopant impurities and pulsed energy drive-in

    DOEpatents

    Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.

    2008-01-01

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

  17. Deposition of dopant impurities and pulsed energy drive-in

    DOEpatents

    Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.

    1999-01-01

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

  18. Deposition of dopant impurities and pulsed energy drive-in

    DOEpatents

    Wickboldt, P.; Carey, P.G.; Smith, P.M.; Ellingboe, A.R.

    1999-06-29

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique is disclosed. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques. 2 figs.

  19. Creation of deep blue light emitting nitrogen-vacancy center in nanosized diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himics, L., E-mail: himics.laszlo@wigner.mta.hu; Tóth, S.; Veres, M.

    2014-03-03

    This paper reports on the formation of complex defect centers related to the N3 center in nanosized diamond by employing plasma immersion and focused ion beam implantation methods. He{sup +} ion implantation into nanosized diamond “layer” was performed with the aim of creating carbon atom vacancies in the diamond structure, followed by the introduction of molecular N{sub 2}{sup +} ion and heat treatment in vacuum at 750 °C to initiate vacancy diffusion. To decrease the sp{sup 2} carbon content of nanosized diamond formed during the implantation processes, a further heat treatment at 450 °C in flowing air atmosphere was used. The modificationmore » of the bonding properties after each step of defect creation was monitored by Raman scattering measurements. The fluorescence measurements of implanted and annealed nanosized diamond showed the appearance of an intensive and narrow emission band with fine structures at 2.98 eV, 2.83 eV, and 2.71 eV photon energies.« less

  20. In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys

    PubMed Central

    Huan, Z. G.; Leeflang, M. A.; Fratila-Apachitei, L. E.; Duszczyk, J.

    2010-01-01

    Zinc and zirconium were selected as the alloying elements in biodegradable magnesium alloys, considering their strengthening effect and good biocompatibility. The degradation rate, hydrogen evolution, ion release, surface layer and in vitro cytotoxicity of two Mg–Zn–Zr alloys, i.e. ZK30 and ZK60, and a WE-type alloy (Mg–Y–RE–Zr) were investigated by means of long-term static immersion testing in Hank’s solution, non-static immersion testing in Hank’s solution and cell-material interaction analysis. It was found that, among these three magnesium alloys, ZK30 had the lowest degradation rate and the least hydrogen evolution. A magnesium calcium phosphate layer was formed on the surface of ZK30 sample during non-static immersion and its degradation caused minute changes in the ion concentrations and pH value of Hank’s solution. In addition, the ZK30 alloy showed insignificant cytotoxicity against bone marrow stromal cells as compared with biocompatible hydroxyapatite (HA) and the WE-type alloy. After prolonged incubation for 7 days, a stimulatory effect on cell proliferation was observed. The results of the present study suggested that ZK30 could be a promising material for biodegradable orthopedic implants and worth further investigation to evaluate its in vitro and in vivo degradation behavior. PMID:20532960

  1. Differential capacitance probe for process control involving aqueous dielectric fluids

    DOEpatents

    Svoboda, John M.; Morrison, John L.

    2002-10-08

    A differential capacitance probe device for process control involving aqueous dielectric fluids is disclosed. The device contains a pair of matched capacitor probes configured in parallel, one immersed in a sealed container of reference fluid, and the other immersed in the process fluid. The sealed container holding the reference fluid is also immersed in the process fluid, hence both probes are operated at the same temperature. Signal conditioning measures the difference in capacitance between the reference probe and the process probe. The resulting signal is a control error signal that can be used to control the process.

  2. Corrosion resistance and blood compatibility of lanthanum ion implanted pure iron by MEVVA

    NASA Astrophysics Data System (ADS)

    Zhu, Shengfa; Huang, Nan; Shu, Hui; Wu, Yanping; Xu, Li

    2009-10-01

    Pure iron is a potential material applying for coronary artery stents based on its biocorrodible and nontoxic properties. However, the degradation characteristics of pure iron in vivo could reduce the mechanical stability of iron stents prematurely. The purpose of this work was to implant the lanthanum ion into pure iron specimens by metal vapor vacuum arc (MEVVA) source at an extracted voltage of 40 kV to improve its corrosion resistance and biocompatibility. The implanted fluence was up to 5 × 10 17 ions/cm 2. The X-ray photoelectron spectroscopy (XPS) was used to characterize the chemical state and depth profiles of La, Fe and O elements. The results showed lanthanum existed in the +3 oxidation state in the surface layer, most of the oxygen combined with lanthanum and form a layer of oxides. The lanthanum ion implantation layer could effectively hold back iron ions into the immersed solution and obviously improved the corrosion resistance of pure iron in simulated body fluids (SBF) solution by the electrochemical measurements and static immersion tests. The systematic evaluation of blood compatibility, including in vitro platelets adhesion, prothrombin time (PT), thrombin time (TT), indicated that the number of platelets adhesion, activation, aggregation and pseudopodium on the surface of the La-implanted samples were remarkably decreased compared with pure iron and 316L stainless steel, the PT and TT were almost the same as the original plasma. It was obviously showed that lanthanum ion implantation could effectively improve the corrosion resistance and blood compatibility of pure iron.

  3. A Shift in Perspective: Decentering through Mindful Attention to Imagined Stressful Events

    PubMed Central

    Lebois, Lauren A. M.; Papies, Esther K.; Gopinath, Kaundinya; Cabanban, Romeo; Quigley, Karen S.; Krishnamurthy, Venkatagiri; Barrett, Lisa Feldman; Barsalou, Lawrence W.

    2015-01-01

    Ruminative thoughts about a stressful event can seem subjectively real, as if the imagined event were happening in the moment. One possibility is that this subjective realism results from simulating the self as engaged in the stressful event (immersion). If so, then the process of decentering—disengaging the self from the event—should reduce the subjective realism associated with immersion, and therefore perceived stressfulness. To assess this account of decentering, we taught non-meditators a strategy for disengaging from imagined events, simply viewing these events as transient mental states (mindful attention). In a subsequent neuroimaging session, participants imagined stressful and non-stressful events, while either immersing themselves or adopting mindful attention. In conjunction analyses, mindful attention down-regulated the processing of stressful events relative to baseline, whereas immersion up-regulated their processing. In direct contrasts between mindful attention and immersion, mindful attention showed greater activity in brain areas associated with perspective shifting and effortful attention, whereas immersion showed greater activity in areas associated with self-processing and visceral states. These results suggest that mindful attention produces decentering by disengaging embodied senses of self from imagined situations so that affect does not develop. PMID:26111487

  4. Elevated nitrate alters the metabolic activity of embryonic zebrafish.

    PubMed

    Conlin, Sarah M; Tudor, M Scarlett; Shim, Juyoung; Gosse, Julie A; Neilson, Andrew; Hamlin, Heather J

    2018-04-01

    Nitrate accumulation in aquatic reservoirs from agricultural pollution has often been overlooked as a water quality hazard, yet a growing body of literature suggests negative effects on human and wildlife health following nitrate exposure. This research seeks to understand differences in oxygen consumption rates between different routes of laboratory nitrate exposure, whether via immersion or injection, in zebrafish (Danio rerio) embryos. Embryos were exposed within 1 h post fertilization (hpf) to 0, 10, and 100 mg/L NO 3 -N with sodium nitrate, or to counter ion control (CIC) treatments using sodium chloride. Embryos in the immersion treatments received an injection of 4 nL of appropriate treatment solution into the perivitelline space. At 24 hpf, Oxygen Consumption Rates (OCR) were measured and recorded in vivo using the Agilent Technologies XF e 96 Extracellular Flux Analyzer and Spheroid Microplate. Immersion exposures did not induce significant changes in OCR, yet nitrate induced significant changes when injected through the embryo chorion. Injection of 10 and 100 mg/L NO 3 -N down-regulated OCR compared to the control treatment group. Injection of the 100 mg/L CIC also significantly down-regulated OCR compared to the control treatment group. Interestingly, the 100 mg/L NO 3 -N treatment further down-regulated OCR compared to the 100 mg/L CIC treatment, suggesting the potential for additive effects between the counter ion and the ion of interest. These data support that elevated nitrate exposure can alter normal metabolic activity by changing OCR in 24 hpf embryos. These results highlight the need for regularly examining the counter ion of laboratory nitrate compounds while conducting research with developing zebrafish, and justify examining different routes of laboratory nitrate exposure, as the chorion may act as an effective barrier to nitrate penetration in zebrafish, which may lead to conservative estimates of significant effects in other species for which nitrate more readily penetrates the chorion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Thin film DNA-complex-based dye lasers fabricated by immersion and conventional processes

    NASA Astrophysics Data System (ADS)

    Kawabe, Yutaka; Suzuki, Yuki

    2017-08-01

    DNA based thin film dye laser is one of promising optical devices for future technology. Laser oscillation and amplified spontaneous emission (ASE) were demonstrated by hemicyanine-doped DNA complex films prepared with `immersion method' as well as those made by a conventional way. In the immersion process, DNA-surfactant complex films were stained by immersion into an acetone solution including the dyes. In this study, three types of hemicyanines were incorporated with both methods, and laser oscillation was achieved with optically induced population grating formed in all of the complex films. The laser threshold values for six cases ranged in 0.07 - 0.18 mJ/cm2 , which was close to the best values made in DNA complex matrices. Continual pumping showed that laser oscillation persisted for 4 - 10 minutes. Immersion process gave superior laser capability especially for output efficiency over the conventional counterparts.

  6. Influence of Near-Surface Severe Plastic Deformation of Mild Steel on the Inhibition Performance of Sodium Molybdate and 1H-Benzotriazole in Artificial Sea Water

    NASA Astrophysics Data System (ADS)

    Sabet Bokati, Kazem; Dehghanian, Changiz; Babaei, Mahdi

    2018-02-01

    The effects of near-surface severe plastic deformation (NS-SPD) on the inhibition performance of sodium molybdate (SM) and 1H-benzotriazole (BTA) for mild steel were investigated using weight loss, polarization and electrochemical impedance spectroscopy measurements. The crystal grain size of NS-SPD-processed surface was analyzed by x-ray diffractometry and field emission scanning electron microscopy. A deformed layer with thickness of 20 ± 5 µm was produced on mild steel surface after NS-SPD process due to accumulated strains. The NS-SPD process caused more effective adsorption of corrosion inhibitors due to the fabrication of a surface with a high density of preferential adsorption sites. However, the stability of protective layer was predominantly influenced by the effect of NS-SPD process on inhibition efficiency. The fairly good persistence of protective layer formed on the surface by SM-containing solution and also positive effect of NS-SPD process on adsorption of molybdate ions caused higher inhibition performance for sodium molybdate. However, NS-SPD process encouraged deterioration of protective layer formed on steel surface in the presence of BTA inhibitor. It was ascribed to partial coverage of surface, low stability of adsorbed layer and thus more adsorption of aggressive ions on unprotected area which was uncovered during immersion time.

  7. Colour stainability of indirect CAD-CAM processed composites vs. conventionally laboratory processed composites after immersion in staining solutions.

    PubMed

    Arocha, Mariana A; Basilio, Juan; Llopis, Jaume; Di Bella, Enrico; Roig, Miguel; Ardu, Stefano; Mayoral, Juan R

    2014-07-01

    The aim of this study was to determine, by using a spectrophotometer device, the colour stainability of two indirect CAD/CAM processed composites in comparison with two conventionally laboratory-processed composites after being immersed 4 weeks in staining solutions such as coffee, black tea and red wine, using distilled water as control group. Two indirect CAD/CAM composites (Lava Ultimate and Paradigm MZ100) and two conventionally laboratory-processed composites (SR Adoro and Premise Indirect) of shade A2 were selected (160 disc samples). Colour stainability was measured after 4 weeks of immersion in three staining solutions (black tea, coffee, red wine) and distilled water. Specimen's colour was measured each week by means of a spectrophotometer (CIE L*a*b* system). Statistical analysis was carried out performing repeated ANOVA measurements and Tukey's HSD test to evaluate differences in ΔE00 measurements between groups; the interactions among composites, staining solutions and time duration were also evaluated. All materials showed significant discoloration (p<0.01) when compared to control group. The highest ΔE00 observed was with red wine, whereas black tea showed the lowest one. Indirect laboratory-processed resin composites showed the highest colour stability compared with CAD/CAM resin blocks. CAD/CAM processed composites immersed in staining solutions showed lower colour stability when compared to conventionally laboratory-processed resin composites. The demand for CAD/CAM restorations has been increasing; however, colour stainability for such material has been insufficiently studied. Moreover, this has not been performed comparing CAD/CAM processed composites versus laboratory-processed indirect composites by immersing in staining solutions for long immersion periods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Radiocarbon measurements of small gaseous samples at CologneAMS

    NASA Astrophysics Data System (ADS)

    Stolz, A.; Dewald, A.; Altenkirch, R.; Herb, S.; Heinze, S.; Schiffer, M.; Feuerstein, C.; Müller-Gatermann, C.; Wotte, A.; Rethemeyer, J.; Dunai, T.

    2017-09-01

    A second SO-110 B (Arnold et al., 2010) ion source was installed at the 6 MV CologneAMS for the measurement of gaseous samples. For the gas supply a dedicated device from Ionplus AG was connected to the ion source. Special effort was devoted to determine optimized operation parameters for the ion source, which give a high carbon current output and a high 14C- yield. The latter is essential in cases when only small samples are available. Additionally a modified immersion lens and modified target pieces were tested and the target position was optimized.

  9. Removal of Mn, Fe, Ni and Cu Ions from Wastewater Using Cow Bone Charcoal

    PubMed Central

    Moreno, Juan Carlos; Gómez, Rigoberto; Giraldo, Liliana

    2010-01-01

    Cow bone charcoal (CBC) was synthesized and used for the removal of metals ions (manganese, iron, nickel and copper) from aqueous solutions. Two different adsorption models were used for analyzing the data. Adsorption capacities were determined: copper ions exhibit the greatest adsorption on cow bone charcoal because of their size and pH conditions. Adsorption capacity varies as a function of pH. Adsorption isotherms from aqueous solution of heavy metals on CBC were determined. Adsorption isotherms are consistent with Langmuir´s adsorption model. Adsorbent quantity and immersion enthalpy were studied.

  10. Simulating Negative Pickup Ions and Ion Cyclotron Wave Generation at Europa (Invited)

    NASA Astrophysics Data System (ADS)

    Desai, R. T.; Cowee, M.; Gary, S. P.; Wei, H.; Coates, A. J.; Kataria, D. O.; Fu, X.

    2015-12-01

    The mass loading of space environments through the ionisation of planetary atmospheres is a fundamental process governing the plasma interactions and long term evolution of celestial bodies across the solar system. Regions containing significant pickup ion populations have been observed to exhibit a rich variety of electromagnetic plasma wave phenomena, the characteristics and properties of which can be used to infer the ion species present, their spatial and temporal distributions, and the global ionisation rates of the neutral material. In this study we present hybrid (kinetic ion, massless fluid electron) simulations of ion pickup and Ion Cyclotron (IC) waves observed in the Jovian magnetosphere and draw comparisons to sub-alfvénic pickup observed by Cassini in the Saturnian system, and also to supra-alfvénic pickup at planetary bodies immersed directly in the solar wind. At Jupiter, Europa has been identified as the secondary mass loader in the magnetosphere, orbiting within a neutral gas torus at ~9.38 Rj. Near Europa, Galileo magnetometer observations displayed bursty IC wave characteristics at the gyrofrequency of a number of species including SO2, K, Cl, O2, and Na, suggesting a complex mass loading environment. A particular deduction from the dataset was the presence of both positively and negatively charged pickup ions, inferred from the left and right hand polarisations of the transverse waves. Using hybrid simulations for both positively and negatively charged Cl pickup ions we are able to self-consistently reproduce the growth of both right and left hand near-circularly polarised waves in agreement with linear theory and, using the observed wave amplitudes, estimate Cl pickup ion densities at Europa.

  11. In situ fabrication of hollow hydroxyapatite microspheres by phosphate solution immersion

    NASA Astrophysics Data System (ADS)

    Wang, Yingchun; Yao, Aihua; Huang, Wenhai; Wang, Deping; zhou, Jun

    2011-07-01

    Hollow hydroxyapatite (HAP) microspheres with pores on their surfaces were prepared by converting Li 2O-CaO-B 2O 3 (LCB) glass microspheres in phosphate solution. The structure, phase composition, surface morphology, and porosity of the hollow HAP microspheres were characterized by SEM, SEM-EDS, XRD, FTIR, ICP-AES, and N 2 adsorption-desorption techniques. The formation and conversion mechanism of the hollow HAP microspheres during immersion process were discussed. The as-prepared microspheres consisted of calcium deficient carbonated hydroxyapatite, which is biomimetic. FTIR spectra indicated that the resulting apatite were B-type CO 3HAP, in which carbonate ions occupied the phosphate sites. After 600 °C heating treatment, hollow microspheres were completely composed of calcium deficient hydroxyapatite crystals including CO32-. The pore size distribution of the as-prepared hollow HAP microspheres were mainly the mesopores in the range of 2-40 nm with the pore volume 0.5614 cm 3/g, and the mean pore size 10.5 nm, respectively. The results confirmed that LCB glass were transformed to hydroxyapatite without changing the external shape and dimension of the original glass object and the resulting microspheres possessed good hollow structures. Once immersed in phosphate solution, Ca-P-OH hydrates were in situ formed on the surface of the glass and precipitated in the position occupied by Ca 2+, while the pores were formed in the position occupied by Li + and B 3+. These hollow HAP microspheres with such structures may be used as promising drug delivery devices.

  12. Is Immersion of Any Value? Whether, and to What Extent, Game Immersion Experience during Serious Gaming Affects Science Learning

    ERIC Educational Resources Information Center

    Cheng, Meng-Tzu; Lin, Yu-Wen; She, Hsiao-Ching; Kuo, Po-Chih

    2017-01-01

    Many studies have shown the positive impact of serious gaming on learning outcomes, but few have explored the relationships between game immersion and science learning. Accordingly, this study was conducted to investigate the effectiveness of learning by playing, as well as the dynamic process of game immersion experiences, and to further identify…

  13. Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste: synergy of chloride and sulphate ions.

    PubMed

    Guerrero, A; Goñi, S; Allegro, V R

    2009-06-15

    The durability of class C fly ash belite cement (FABC-2-W) in simulated radioactive liquid waste (SRLW) rich in a mixed sodium chloride and sulphate solution is presented here. The effect of the temperature and potential synergic effect of chloride and sulfate ions are discussed. This study has been carried out according to the Koch-Steinegger test, at the temperature of 20 degrees C and 40 degrees C during a period of 180 days. The durability has been evaluated by the changes of the flexural strength of mortar, fabricated with this cement, immersed in a simulated radioactive liquid waste rich in sulfate (0.5M), chloride (0.5M) and sodium (1.5M) ions--catalogued like severely aggressive for the traditional Portland cement--and demineralised water, which was used as reference. The reaction mechanism of sulphate, chloride and sodium ions with the mortar was evaluated by scanning electron microscopy (SEM), porosity and pore-size distribution, and X-ray diffraction (XRD). The results showed that the chloride binding and formation of Friedel's salt was inhibited by the presence of sulphate. Sulphate ion reacts preferentially with the calcium aluminate hydrates forming non-expansive ettringite which precipitated inside the pores; the microstructure was refined and the mechanical properties enhanced. This process was faster and more marked at 40 degrees C.

  14. Mussel-Inspired Polydopamine Coating for Enhanced Thermal Stability and Rate Performance of Graphite Anodes in Li-Ion Batteries.

    PubMed

    Park, Seong-Hyo; Kim, Hyeon Jin; Lee, Junmin; Jeong, You Kyeong; Choi, Jang Wook; Lee, Hochun

    2016-06-08

    Despite two decades of commercial history, it remains very difficult to simultaneously achieve both high rate capability and thermal stability in the graphite anodes of Li-ion batteries because the stable solid electrolyte interphase (SEI) layer, which is essential for thermal stability, impedes facile Li(+) ion transport at the interface. Here, we resolve this longstanding challenge using a mussel-inspired polydopamine (PD) coating via a simple immersion process. The nanometer-thick PD coating layer allows the formation of an SEI layer on the coating surface without perturbing the intrinsic properties of the SEI layer of the graphite anodes. PD-coated graphite exhibits far better performances in cycling test at 60 °C and storage test at 90 °C than bare graphite. The PD-coated graphite also displays superior rate capability during both lithiation and delithiation. As evidenced by surface free energy analysis, the enhanced performance of the PD-coated graphite can be ascribed to the Lewis basicity of the PD, which scavenges harmful hydrofluoric acid and forms an intermediate triple-body complex among a Li(+) ion, solvent molecules, and the PD's basic site. The usefulness of the proposed PD coating can be expanded to various electrodes in rechargeable batteries that suffer from poor thermal stability and interfacial kinetics.

  15. Tunicate-Inspired Gallic Acid/Metal Ion Complex for Instant and Efficient Treatment of Dentin Hypersensitivity.

    PubMed

    Prajatelistia, Ekavianty; Ju, Sung-Won; Sanandiya, Naresh D; Jun, Sang Ho; Ahn, Jin-Soo; Hwang, Dong Soo

    2016-04-20

    Dentin hypersensitivity is sharp and unpleasant pains caused by exposed dentinal tubules when enamel outside of the tooth wears away. The occlusion of dentinal tubules via in situ remineralization of hydroxyapatite is the best method to alleviate the symptoms caused by dentin hypersensitivity. Commercially available dental desensitizers are generally effective only on a specific area and are relatively toxic, and their performance usually depends on the skill of the clinician. Here, a facile and efficient dentin hypersensitivity treatment with remarkable aesthetic improvement inspired by the tunicate-self-healing process is reported. As pyrogallol groups in tunicate proteins conjugate with metal ions to heal the torn body armor of a tunicate, the ingenious mechanism by introducing gallic acid (GA) as a cheap, abundant, and edible alternative to the pyrogallol groups of the tunicate combined with a varied daily intake of metal ion sources is mimicked. In particular, the GA/Fe(3+) complex exhibits the most promising results, to the instant ≈52% blockage in tubules within 4 min and ≈87% after 7 d of immersion in artificial saliva. Overall, the GA/metal ion complex-mediated coating is facile, instant, and effective, and is suggested as an aesthetic solution for treating dentin hypersensitivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Polymer Treatment by Plasma Immersion Ion Implantation of Nitrogen for Formation of Diamond-Like Carbon Film

    NASA Astrophysics Data System (ADS)

    Tan, Ing Hwie; Ueda, Mario; Kostov, Konstantin; Nascente, Pedro Augusto P.; Demarquette, Nicole Raymonde

    2004-09-01

    Nitrogen ions were implanted by plasma immersion in Kapton, Mylar and polypropylene, with the objective of forming a diamond-like carbon layer on these polymers. The Raman spectrum of the implanted polypropylene showed typical Diamond-Like Carbon (DLC) graphite (G) and disorder (D) peaks, with an sp3/sp2 hybridization ratio of approximately 0.4 to 0.6. The XPS analysis of the three implanted polymers also showed peaks of C-C and N-C bonds in the sp3 configuration, with hybridization ratios in the same range as the Raman result. The implanted polymers were exposed to oxygen plasma to test the resistance of the polymers to oxygen degradation. Mass loss rate results, however, showed that the DLC layer formed is not sufficiently robust for this application. Nevertheless, the layer formed can be suitable for other applications such as in gas barriers in beverage containers. Further study of implantation conditions may improve the quality of the DLC layer.

  17. Surface modification of biomaterials using plasma immersion ion implantation and deposition

    PubMed Central

    Lu, Tao; Qiao, Yuqin; Liu, Xuanyong

    2012-01-01

    Although remarkable progress has been made on biomaterial research, the ideal biomaterial that satisfies all the technical requirements and biological functions is not available up to now. Surface modification seems to be a more economic and efficient way to adjust existing conventional biomaterials to meet the current and ever-evolving clinical needs. From an industrial perspective, plasma immersion ion implantation and deposition (PIII&D) is an attractive method for biomaterials owing to its capability of treating objects with irregular shapes, as well as the control of coating composition. It is well acknowledged that the physico-chemical characteristics of biomaterials are the decisive factors greatly affecting the biological responses of biomaterials including bioactivity, haemocompatibility and antibacterial activity. Here, we mainly review the recent advances in surface modification of biomaterials via PIII&D technology, especially titanium alloys and polymers used for orthopaedic, dental and cardiovascular implants. Moreover, the variations of biological performances depending on the physico-chemical properties of modified biomaterials will be discussed. PMID:23741609

  18. Alignment of the measurement scale mark during immersion hydrometer calibration using an image processing system.

    PubMed

    Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-10-24

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration.

  19. Alignment of the Measurement Scale Mark during Immersion Hydrometer Calibration Using an Image Processing System

    PubMed Central

    Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-01-01

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration. PMID:24284770

  20. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants.

    PubMed

    Höhn, Sarah; Braem, Annabel; Neirinck, Bram; Virtanen, Sannakaisa

    2017-04-01

    Although Ti alloys are generally regarded to be highly corrosion resistant, inflammatory conditions following surgery can instigate breakdown of the TiO 2 passivation layer leading to an increased metal ion release. Furthermore proteins present in the surrounding tissue will readily adsorb on a titanium surface after implantation. In this paper alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin (BSA) on Ti6Al4V was investigated in order to increase the corrosion resistance and control the protein adsorption capability of the implant surface. The Ti6Al4V surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests under physiological conditions and simulated inflammatory conditions either in Dulbecco's Modified Eagle Medium (DMEM) or DMEM supplemented with fetal calf serum (FCS). The analysis showed an increased adsorption of amino acids and proteins from the different immersion solutions. The BSA coating was shown to prevent selective dissolution of the vanadium (V) rich β-phase, thus effectively limiting metal ion release to the environment. Electrochemical impedance spectroscopy measurements confirmed an increase of the corrosion resistance for BSA coated surfaces as a function of immersion time due to the time-dependent adsorption of the different amino acids (from DMEM) and proteins (from FCS) as observed by ToF-SIMS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Proton transfer and the diffusion of H+ and OH- ions along water wires.

    PubMed

    Lee, Song Hi; Rasaiah, Jayendran C

    2013-09-28

    Hydrogen and hydroxide ion transport in narrow carbon nanotubes (CNTs) of diameter 8.1 Å and lengths up to 582 Å are investigated by molecular dynamics simulations using a dissociating water model. The diffusion coefficients of the free ions in an open chain are significantly larger than in periodically replicated wires that necessarily contain D or L end defects, and both are higher than they are in bulk water. The free hydroxide ion diffuses faster than the free hydronium ion in short CNTs, unlike diffusion in liquid water, and both coefficients increase and converge to nearly the same value with increasing tube length. The diffusion coefficients of the two ions increase further when the tubes are immersed in a water reservoir and they move easily out of the tube, suggesting an additional pathway for proton transport via OH(-) ions in biological channels.

  2. Degradation of partially immersed glass: A new perspective

    NASA Astrophysics Data System (ADS)

    Chinnam, R. K.; Fossati, P. C. M.; Lee, W. E.

    2018-05-01

    The International Simple Glass (ISG) is a six-component borosilicate glass which was developed as a reference for international collaborative studies on high level nuclear waste encapsulation. Its corrosion behaviour is typically examined when it is immersed in a leaching solution, or when it is exposed to water vapour. In this study, an alternative situation is considered in which the glass is only partially immersed for 7 weeks at a temperature of 90 °C. In this case, half of the glass sample is directly in the solution itself, and the other half is in contact with a water film formed by condensation of water vapour that evaporated from the solution. This results in a different degradation behaviour compared to standard tests in which the material is fully immersed. In particular, whilst in standard tests the system reaches a steady state with a very low alteration rate thanks to the formation of a protective gel layer, in partially-immersed tests this steady state could not be reached because of the continuous alteration from the condensate water film. The constant input of ions from the emerged part of the sample caused a supersaturation of the solution, which resulted in early precipitation of secondary crystalline phases. This setup mimics storage conditions once small amounts of water have entered a glass waste form containing canister. It offers a more realistic outlook of corrosion mechanisms happening in such situations than standard fully-immersed corrosion tests.

  3. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo.

    PubMed

    Zhao, Bingjing; Wang, Hong; Qiao, Ning; Wang, Chao; Hu, Min

    2017-01-01

    The purpose of this study is to determine the corrosion resistance of Ti-6Al-4V alloy fabricated with electron beam melting and selective laser melting for implantation in vivo. Ti-6Al-4V alloy specimens were fabricated with electron beam melting (EBM) and selective laser melting (SLM). A wrought form of Ti-6Al-4V alloy was used as a control. Surface morphology observation, component analysis, corrosion resistance experimental results, electrochemical impedance spectroscopy, crevice corrosion resistance experimental results, immersion test and metal ions precipitation analysis were processed, respectively. The thermal stability of EBM specimen was the worst, based on the result of open circuit potential (OCP) result. The result of electrochemical impedance spectroscopy indicated that the corrosion resistance of the SLM specimen was the best under the low electric potential. The result of potentiodynamic polarization suggested that the corrosion resistance of the SLM specimen was the best under the low electric potential (<1.5V) and EBM specimen was the best under the high electric potential (>1.5V).The crevice corrosion resistance of the EBM specimen was the best. The corrosion resistance of SLM specimen was the best, based on the result of immersion test. The content of Ti, Al and V ions of EBM, SLM and wrought specimens was very low. In general, the scaffolds that were fabricated with EBM and SLM had good corrosion resistance, and were suitable for implantation in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Compact, maintainable 80-KeV neutral beam module

    DOEpatents

    Fink, Joel H.; Molvik, Arthur W.

    1980-01-01

    A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.

  5. Effect of bioceramic functional groups on drug binding and release kinetics

    NASA Astrophysics Data System (ADS)

    Trujillo, Christopher

    Bioceramics have been studied extensively as drug delivery systems (DDS). Those studies have aimed to tailor the drug binding and release kinetics to successfully treat infections and other diseases. This research suggests that the drug binding and release kinetics are predominantly driven by the functional groups available on the surface of a bioceramic. The goal of the present study is to explain the role of silicate and phosphate functional groups in drug binding to and release kinetics from bioceramics. alpha-cristobalite (Cris; SiO2) particles (90-150 microm) were prepared and doped with 0 microg (P-0), 39.1 microg (P-39.1), 78.2 microg (P-78.2), 165.5 microg (P-165.5) or 331 microg (P-331) of P 2O5 per gram Cris, using 85% orthophosphoric (H3PO 4) acid and thermal treatment. The material structure was analyzed using X-ray diffraction (XRD) with Rietveld Refinement and Fourier Transform Infrared (FTIR) spectroscopy with Gaussian fitting. XRD demonstrated an increase from sample P-0 (170.5373 A3) to P-331 (170.6466 A 3) in the unit cell volume as the P2O5 concentration increased in the material confirming phosphate silicate substitution in Cris. Moreover, FTIR showed the characteristic bands of phosphate functional groups of nu4 PO4/O-P-O bending, P-O-P stretching, P-O-P bending, P=O stretching, and P-O-H bending in doped Cris indicating phosphate incorporation in the silicate structure. Furthermore, FTIR showed that the nu4 PO4/O-P-O bending band around 557.6 cm-1 and P=O stretching band around 1343.9 cm-1 increased in area for samples P-39.1 to P-331 from 3.5 to 10.5 and from 10.1 to 22.4, respectively due to phosphate doping. In conjunction with the increase of the nu4 PO4/O-P-O bending band and P=O stretching band, a decrease in area of the O-Si-O bending bands around 488.1 and 629.8 cm-1 was noticed for samples P-39.1 to P-331 from 5 to 2 and from 11.8 to 5.4, respectively. Furthermore, Cris samples (200 mg, n=5 for each sample) were immersed separately in DI water for 2 days and the concentrations of dissolved silicate and phosphate ions released from the surface of Cris were measured using Inductively Coupled Plasma -- Optical Emission Spectrometry (ICP-OES). The phosphate ions released from the material activated the surface and exposed the silicate functional groups as indicated by the FTIR analysis. Pre-immersed Cris particles and control non-immersed samples (200 mg, n=5 for each sample) of particle size 90-150 mum were immersed in 2 mL of vancomycin (Vanc) solution (8 mg/ml) in PBS on an orbital shaker at 37°C for 24 hours. The amount of drug bound to the material was measured by High Performance Liquid Chromatography (HPLC). Control non-immersed Cris samples P-0 and P-39.1 adsorbed a comparable amount of drug. While there was a statistically significant lower amount of drug adsorbed onto P-78.2 than that adsorbed onto P-39.1 (p < 0.001), comparable amounts of drug were adsorbed onto P-78.2, P-165.5, and P-331. Releasing phosphate ions from the material surface resulted in a significant increase in drug adsorption for pre-immersed samples. Higher Vanc adsorption was noticed for all pre-immersed Cris samples compared to their corresponding control non-immersed samples. Moreover, for pre-immersed samples the amount of drug adsorbed significantly increased from P-0 to P-78.2 (P-0 < P-39.1 < P-78.2; p < 0.05). However, at phosphate content higher than 78.2 microg per gram of Cris there was a significant decrease in drug adsorption (P-78.2 > P-165.5 > P-331; p < 0.001). ICP-OES analyses showed that the percent of released phosphate ions during immersion decreased as the phosphate content in doped Cris increased (P-39.1 released 92+/-.08% and P-331 released 71+/-.05%). Therefore, the decrease in drug binding could be attributed to the presence of high phosphate content on the material surface. Comparison between the HPLC and FTIR analyses showed that ceramics that had higher content of O-Si-O bending (at ~498 cm-1 and ~620 cm-1) bands facilitated Vanc adsorption. On the other hand surfaces with a higher content of nu 4 PO4/O-P-O bending (at ~557 cm-1) and P=O stretching (at ~1343.9 cm-1) bands did not enhance Vanc adsorption. Drug loaded pre-immersed and control non-immersed Cris samples (each 200 mg, n=5 for each sample) were immersed in 2 mL of PBS on an orbital shaker at 37°C, and a 0.5 mL aliquot was removed from the solution and replenished at 1, 3, 6, 8, 24, and 48 hour, and every 48 hour intervals to 22 days thereafter. Drug concentration released from Cris samples after each time point was measured using HPLC. The drug release kinetics demonstrated a statistically significant decrease (p < 0.05) in the cumulative and percent of Vanc released from control non-immersed Cris samples P-0 (1.521 +/- .026 mg; 37.66 +/- .89 %) to P-331 (1.276 +/- .016 mg; 33.46 +/- .77 %) of Vanc, respectively. Additionally, release kinetics also demonstrated statistically significant increase (p < 0.05) in the cumulative and percent of Vanc released from pre-immersed samples P-0 (1.505 +/- .014 mg; 33.59 +/- 1.35 %) to P-331 (1.581 +/- .057 mg; 42.27 +/- 1.51 %) of Vanc, respectively. Furthermore, in the first 4 hours, the deceleration of drug release from sample P-0 to P-331 decreased from -66.92 to -34.07 microg of Vanc/mL /hr 2, for control non immersed Cris and from -72.60 to -46.04 microg of Vanc/mL/hr2, for pre-immersed samples. Furthermore, during the first 4 hours of burst release the percentage of drug released from the total amount of drug loaded for non-immersed samples P-0 was 41 % and for P-331was 26 %. After the 4 hours of Vanc release the amount of Vanc available for release for samples P-0 and P-331 was .898 mg and .945 mg, respectively. The same relationship was found for pre-immersed samples during the first 4 hours of burst release the percentage of drug released from the total amount of drug loaded for samples P-0 was 42 % and for P-331 was 30 %. After the 4 hours of Vanc release the amount of Vanc available for release for samples P-0 and P-331 was .873 mg and 1.106 mg, respectively. These results indicated the effect of phosphate content on decreasing the drug release rate. The drug release kinetics study showed that the release of phosphate ions from the surface of Cris prior to drug loading exposed active silicate functional groups that enhanced drug binding by physisorption which in turn facilitated rapid release kinetics. On the other hand, a slower drug release rate was observed as the phosphate functional groups increased on the material surface due to chemisorption. Results from the present study indicate that it is possible to enhance the burst release stage of a bioceramic drug carrier by increasing the silicate functional groups. The sustained release profile can be engineered by controlling the phosphate content of the bioceramic drug carrier.

  6. Porous Ti-6Al-4V alloy fabricated by spark plasma sintering for biomimetic surface modification.

    PubMed

    Kon, Masayuki; Hirakata, Luciana M; Asaoka, Kenzo

    2004-01-15

    Porous compacts with both biological and biomechanical compatibilities and high strength were developed. Spherical powders of Ti-6Al-4V alloy, which were either as received or surface modified with the use of calcium ions by hydrothermal treatment (HTT), were fabricated by a spark plasma sintering process. The porous compacts of pure Ti were used as reference materials. Porosity was approximately 30%, and compressive strengths were 113 and 125 MPa for the as-received Ti alloy powders and those modified by the HTT process, respectively. The bending strength and elastic modulus of as-received Ti alloy powders were 128-178 MPa and 16-18 GPa, respectively. Each of the compacts was immersed in simulated body fluid (SBF). The amount of adsorption/precipitation of calcium phosphate through the compacts was measured by weight change and was observed by SEM. The compacts were covered with calcium phosphate after 2 weeks of immersion in SBF. The compacts of Ti alloy had plenty of precipitated apatite crystals, and modification by HTT accumulated more precipitation. Because calcium phosphate is a mineral component of bone, apatite, which is precipitated on the surface of the compacts, could adsorb proteins and/or drugs such as antibiotics. It is expected that a large amount of proteins and/or drugs could be impregnated when the porous compacts developed are used. Copyright 2003 Wiley Periodicals, Inc.

  7. Ultra-Shallow Junctions Fabrication by Plasma Immersion Implantation on PULSION registered Followed by Laser Thermal Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torregrosa, Frank; Etienne, Hasnaa; Sempere, Guillaume

    In order to achieve the requirements for P+/N junctions for <45 nm ITRS nodes, ultra low energy and high dose implantations are needed. Classical beamline implantation is now limited in low energies, compared to Plasma Immersion Ion Implantation (PIII) which efficiency is no more to prove for the realization of Ultra-Shallow Junctions (USJ) in semiconductor applications : this technique allows to get ultimate shallow profiles (as implanted) due to no lower limitation of energy and high dose rate. Electrical activation is also a big issue since it has to afford high electrical activation rate with very low diffusion. Laser annealingmore » is one of the candidates for the 45 nm node. This paper presents electrical and physico-chemical characterizations of junctions realized with BF3 PIII followed by laser thermal processing with aim to obtain ultra-shallow junctions. Different implantation conditions (acceleration voltage/dose) and laser conditions (laser types, fluence/number of shots) are used for this study. Pre-amorphization is also used to confine the junction depth, and is shown to have a positive effect on junction depth but leads in higher junction leakage due to the remaining of EOR defects. The characterization is done using Optical characterization tool (SEMILAB) for sheet resistance and junction leakage measurements. SIMS is used for Boron profile and junction depth.« less

  8. Ring-averaged ion velocity distribution function probe for laboratory magnetized plasma experiment

    NASA Astrophysics Data System (ADS)

    Kawamori, Eiichirou; Chen, Jinting; Lin, Chiahsuan; Lee, Zongmau

    2017-10-01

    Ring-averaged velocity distribution function of ions at a fixed guiding center position is a fundamental quantity in the gyrokinetic plasma physics. We have developed a diagnostic tool for the ring averaged velocity distribution function of ions for laboratory plasma experiments, which is named as the ring-averaged ion distribution function probe (RIDFP). The RIDFP is a set of ion collectors for different velocities. It is designed to be immersed in magnetized plasmas and achieves momentum selection of incoming ions by the selection of the ion Larmor radii. To nullify the influence of the sheath potential surrounding the RIDFP on the orbits of the incoming ions, the electrostatic potential of the RIDFP body is automatically adjusted to coincide with the space potential of the target plasma with the use of an emissive probe and a voltage follower. The developed RIDFP successfully measured the equilibrium ring-averaged velocity distribution function of a laboratory magnetized plasma, which was in accordance with the Maxwellian distribution having an ion temperature of 0.2 eV.

  9. Ring-averaged ion velocity distribution function probe for laboratory magnetized plasma experiment.

    PubMed

    Kawamori, Eiichirou; Chen, Jinting; Lin, Chiahsuan; Lee, Zongmau

    2017-10-01

    Ring-averaged velocity distribution function of ions at a fixed guiding center position is a fundamental quantity in the gyrokinetic plasma physics. We have developed a diagnostic tool for the ring averaged velocity distribution function of ions for laboratory plasma experiments, which is named as the ring-averaged ion distribution function probe (RIDFP). The RIDFP is a set of ion collectors for different velocities. It is designed to be immersed in magnetized plasmas and achieves momentum selection of incoming ions by the selection of the ion Larmor radii. To nullify the influence of the sheath potential surrounding the RIDFP on the orbits of the incoming ions, the electrostatic potential of the RIDFP body is automatically adjusted to coincide with the space potential of the target plasma with the use of an emissive probe and a voltage follower. The developed RIDFP successfully measured the equilibrium ring-averaged velocity distribution function of a laboratory magnetized plasma, which was in accordance with the Maxwellian distribution having an ion temperature of 0.2 eV.

  10. Preparation of a bonelike apatite-polymer fiber composite using a simple biomimetic process.

    PubMed

    Yokoyama, Yoshiro; Oyane, Ayako; Ito, Atsuo

    2008-08-01

    A bonelike apatite-polymer fiber composite may be useful as an implant material to replace bone, the enthesis of a tendon, and the joint part of a ligament. We treated an ethylene-vinyl alcohol copolymer (EVOH) plate and knitted EVOH fibers with an oxygen plasma to produce oxygen-containing functional groups on their surfaces. The plasma-treated samples were alternately dipped in alcoholic calcium and phosphate ion solutions three times to deposit apatite precursors onto their surfaces. The surface-modified samples formed a dense and uniform bonelike surface apatite layer after immersion for 24 h in a simulated body fluid with ion concentrations approximately equal to those of human blood plasma. The adhesive strength between the apatite layer and the sample's surface increased with increasing power density of the oxygen plasma. The apatite-EVOH fiber composite obtained by our process has similarities to natural bone in that apatite crystals are deposited on organic polymer fibers. The resulting composite would possess osteoconductivity due to the apatite phase. With proper polymer selection and optimized synthesis techniques, a composite could be made that would have bonelike mechanical properties. Hence, the present surface modification and coating process would be a promising route to obtain new implant materials with bonelike mechanical properties and osteoconductivity. (c) 2007 Wiley Periodicals, Inc.

  11. Floating potential in electronegative plasmas for non-zero ion temperatures

    NASA Astrophysics Data System (ADS)

    Regodón, Guillermo Fernando; Fernández Palop, José Ignacio; Tejero-del-Caz, Antonio; Díaz-Cabrera, Juan Manuel; Carmona-Cabezas, Rafael; Ballesteros, Jerónimo

    2018-02-01

    The floating potential of a Langmuir probe immersed in an electronegative plasma is studied theoretically under the assumption of radial positive ion fluid movement for non-zero positive ion temperature: both cylindrical and spherical geometries are studied. The model is solvable exactly. The special characteristics of the electronegative pre-sheath are found and the influence of the stratified electronegative pre-sheath is shown to be very small in practical applications. It is suggested that the use of the floating potential in the measurement of negative ions population density is convenient, in view of the numerical results obtained. The differences between the two radial geometries, which become very important for small probe radii of the order of magnitude of the Debye length, are studied.

  12. Immersion as an embodied cognition shift: aesthetic experience and spatial situated cognition.

    PubMed

    Trentini, Bruno

    2015-09-01

    The main hypothesis of situated cognition is related to the origin of mental processes: the environment is thought to be the source of all cognitive processes. However, immersion enables a dual perception of space by enabling to perceive both the routine environment and a new way to see the world. We want to provide a further insight into the transition from on-line cognition to off-line cognition: we want to show that aesthetic experience towards immersive art comes from the awareness that one's cognition depends on the environment. Although this specific cognition is not independent from the general environment, it abstracts the individuals from their idiosyncratic environment. Therefore, immersive art may induce cognitive processes that are borderline cases of situated cognition. Aesthetic experience regarding spatial cognition will be described using an approach of embodied aesthetics, that is to say an approach which connects phenomenology of perception and cognitive sciences. No experiments are contemplated as of now. The experience of immersive art makes individuals become aware that their perceptual processes can adapt to the environment. Thus, the self-experience, which is typical of aesthetic experience, may be the cornerstone of off-line cognition.

  13. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    PubMed Central

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-01-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently. PMID:26955791

  14. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-03-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.

  15. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties.

    PubMed

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W

    2016-03-09

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.

  16. Plasma Immersion Ion Implantation for Interdigitated Back Passivated Contact (IBPC) Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo

    2016-11-21

    We present progress to develop low-cost interdigitated back contact solar cells with pc-Si/SiO2/c-Si passivated contacts formed by plasma immersion ion implantation (PIII). PIII is a lower-cost implantation technique than traditional beam-line implantation due to its simpler design, lower operating costs, and ability to run high doses (1E14-1E18 cm-2) at low ion energies (20 eV-10 keV). These benefits make PIII ideal for high throughput production of patterned passivated contacts, where high-dose, low-energy implantations are made into thin (20-200 nm) a-Si layers instead of into the wafer itself. For this work symmetric passivated contact test structures grown on n-Cz wafers with PH3more » PIII doping gave implied open circuit voltage (iVoc) values of 730 mV with Jo values of 2 fA/cm2. Samples doped with B2H6 gave iVoc values of 690 mV and Jo values of 24 fA/cm2, outperforming BF3 doping, which gave iVoc values in the 660-680 mV range. Samples were further characterized by photoluminescence and SIMS depth profiles. Initial IBPC cell results are presented.« less

  17. Nanoscale Surface Characterization of Aqueous Copper Corrosion: Effects of Immersion Interval and Orthophosphate Concentration

    EPA Science Inventory

    Morphology changes for copper surfaces exposed to different water parameters were investigated at the nanoscale with atomic force microscopy (AFM), as influenced by changes in pH and the levels of orthophosphate ions. Synthetic water samples were designed to mimic physiological c...

  18. "But I'm a Language Teacher!" Dual Immersion Teacher Identities in a Complex Policy Context

    ERIC Educational Resources Information Center

    Chesnut, Colleen

    2015-01-01

    This qualitative study examined dual immersion teachers' identities as they engaged in policy implementation within their school, collaborating in professional learning communities (PLC) with one-way immersion teachers. Data derived from participant observation, interviews, and interpersonal process recall were analyzed through a theoretical lens…

  19. An investigation on defect-generation conditions in immersion lithography

    NASA Astrophysics Data System (ADS)

    Tomita, Tadatoshi; Shimoaoki, Takeshi; Enomoto, Masashi; Kyoda, Hideharu; Kitano, Junichi; Suganaga, Toshifumi

    2006-03-01

    As a powerful candidate for a lithography technique that can accommodate the scaling-down of semiconductors, 193-nm immersion lithography-which realizes a high numerical aperture (NA) and uses deionized water as the medium between the lens and wafer in the exposure system-has been developing at a rapid pace and has reached the stage of practical application. In regards to defects that are a cause for concern in the case of 193-nm immersion lithography, however, many components are still unclear and many problems remain to be solved. It has been pointed out, for example, that in the case of 193-nm immersion lithography, immersion of the resist film in deionized water during exposure causes infiltration of moisture into the resist film, internal components of the resist dissolve into the deionized water, and residual water generated during exposure affects post-processing. Moreover, to prevent this influence of directly immersing the resist in de-ionized water, application of a protective film is regarded as effective. However, even if such a film is applied, it is still highly likely that the above-mentioned defects will still occur. Accordingly, to reduce these defects, it is essential to identify the typical defects occurring in 193-nm immersion lithography and to understand the condition for generation of defects by using some kinds of protective films and resist materials. Furthermore, from now onwards, with further scaling down of semiconductors, it is important to maintain a clear understanding of the relation between defect-generation conditions and critical dimensions (CD). Aiming to extract typical defects occurring in 193-nm immersion lithography, the authors carried out a comparative study with dry exposure lithography, thereby confirming several typical defects associated with immersion lithography. We then investigated the conditions for generation of defects in the case of some kinds of protective films. In addition to that, by investigating the defect-generation conditions and comparing the classification data between wet and dry exposure, we were able to determine the origin of each particular defect involved in immersion lithography. Furthermore, the comparison of CD for wet and dry processing could indicate the future defectivity levels to be expected with shrinking immersion process critical dimensions.

  20. Effect of Mucin and Bicarbonate Ion on Corrosion Behavior of AZ31 Magnesium Alloy for Airway Stents.

    PubMed

    Jang, Yongseok; Owuor, Daniel; Waterman, Jenora T; White, Leon; Collins, Boyce; Sankar, Jagannathan; Gilbert, Thomas W; Yun, Yeoheung

    2014-08-15

    The biodegradable ability of magnesium alloys is an attractive feature for tracheal stents since they can be absorbed by the body through gradual degradation after healing of the airway structure, which can reduce the risk of inflammation caused by long-term implantation and prevent the repetitive surgery for removal of existing stent. In this study, the effects of bicarbonate ion (HCO₃ - ) and mucin in Gamble's solution on the corrosion behavior of AZ31 magnesium alloy were investigated, using immersion and electrochemical tests to systematically identify the biodegradation kinetics of magnesium alloy under in vitro environment, mimicking the epithelial mucus surfaces in a trachea for development of biodegradable airway stents. Analysis of corrosion products after immersion test was performed using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) was used to identify the effects of bicarbonate ions and mucin on the corrosion behavior of AZ31 magnesium alloys with the temporal change of corrosion resistance. The results show that the increase of the bicarbonate ions in Gamble's solution accelerates the dissolution of AZ31 magnesium alloy, while the addition of mucin retards the corrosion. The experimental data in this work is intended to be used as foundational knowledge to predict the corrosion behavior of AZ31 magnesium alloy in the airway environment while providing degradation information for future in vivo studies.

  1. Effect of Mucin and Bicarbonate Ion on Corrosion Behavior of AZ31 Magnesium Alloy for Airway Stents

    PubMed Central

    Jang, Yongseok; Owuor, Daniel; Waterman, Jenora T.; White, Leon; Collins, Boyce; Sankar, Jagannathan; Gilbert, Thomas W.; Yun, Yeoheung

    2014-01-01

    The biodegradable ability of magnesium alloys is an attractive feature for tracheal stents since they can be absorbed by the body through gradual degradation after healing of the airway structure, which can reduce the risk of inflammation caused by long-term implantation and prevent the repetitive surgery for removal of existing stent. In this study, the effects of bicarbonate ion (HCO3−) and mucin in Gamble’s solution on the corrosion behavior of AZ31 magnesium alloy were investigated, using immersion and electrochemical tests to systematically identify the biodegradation kinetics of magnesium alloy under in vitro environment, mimicking the epithelial mucus surfaces in a trachea for development of biodegradable airway stents. Analysis of corrosion products after immersion test was performed using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) was used to identify the effects of bicarbonate ions and mucin on the corrosion behavior of AZ31 magnesium alloys with the temporal change of corrosion resistance. The results show that the increase of the bicarbonate ions in Gamble’s solution accelerates the dissolution of AZ31 magnesium alloy, while the addition of mucin retards the corrosion. The experimental data in this work is intended to be used as foundational knowledge to predict the corrosion behavior of AZ31 magnesium alloy in the airway environment while providing degradation information for future in vivo studies. PMID:28788166

  2. Dehydration of an ethanol/water azeotrope through alginate-DNA membranes cross-linked with metal ions by pervaporation.

    PubMed

    Uragami, Tadashi; Banno, Masashi; Miyata, Takashi

    2015-12-10

    To obtain high dehydration membranes for an ethanol/water azeotrope, dried blend membranes prepared from mixtures of sodium alginate (Alg-Na) and sodium deoxyribonucleate (DNA-Na) were cross-linked by immersing in a methanol solution of CaCl2 or MaCl2. In the dehydration of an ethanol/water azeotropic mixture by pervaporation, the effects of immersion time in methanol solution of CaCl2 or MaCl2 on the permeation rate and water/ethanol selectivity through Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes were investigated. Alg-DNA/Mg(2+) cross-linked membrane immersed for 12h in methanol solution of MaCl2 exhibited the highest water/ethanol selectivity. This results from depressed swelling of the membranes by formation of a cross-linked structure. However, excess immersion in solution containing cross-linker led to an increase in the hydrophobicity of cross-linked membrane. Therefore, the water/ethanol selectivity of Alg-DNA/Mg(2+) cross-linked membranes with an excess immersion in cross-linking solution was lowered. The relationship between the structure of Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotropic mixture is discussed in detail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Surface roughness of denture bases after immersion in fishcake vinegar solution

    NASA Astrophysics Data System (ADS)

    Kodir, K.; Tanti, I.; Odang, R. W.

    2017-08-01

    Fishcake is a common food in Palembang city and is usually eaten with fishcake vinegar sauce. Fishcake vinegar solution contains acetic acid and chloride and fluoride ions, all of which cause surface roughness on the denture base material. The objective of this study was to analyze the effect of fishcake vinegar solution on the surface roughness of heat-cured acrylic resin, thermoplastic nylon, and cobalt-chromium alloy denture bases. This laboratory-based experimental study was performed on heat-cured acrylic resins, thermoplastic nylon specimen plates formed in 15 × 10 × 1 mm shapes, and cobalt-chromium alloy specimens in cylinder forms with a 7.7 mm diameter and 17.5-mm height. Each group consisted of 10 pieces. Each specimen was immersed in a fishcake vinegar solution at 37 °C for 4 days. The surface roughness was measured using a profilometer before and after immersion. Statistical analyses showed significant (p < 0.05) changes in heat-cured acrylic resin, thermoplastic nylon, and the cobalt chromium alloy plates after immersion in a fishcake vinegar solution for 4 days. Fishcake vinegar solution affects the surface roughness of heat-cured acrylic resin, thermoplastic nylon, and cobalt-chromium alloy plates after a 4-day immersion period. The greatest surface roughness change occurred in the thermoplastic nylon plate, while the lowest change occurred in the cobalt-chromium alloy.

  4. 3D measurements and simulations of ion and neutral velocity distribution functions in a magnetized plasma boundary

    NASA Astrophysics Data System (ADS)

    Thompson, Derek S.; Keniley, Shane; Curreli, Davide; Henriquez, Miguel F.; Caron, David D.; Jemiolo, Andrew J.; McLaughlin, Jacob W.; Dufor, Mikal T.; Neal, Luke A.; Scime, Earl E.; Siddiqui, M. Umair

    2017-10-01

    We present progress toward the first paired 3D laser induced fluorescence measurements of ion and neutral velocity distribution functions (I/NVDFs) in a magnetized plasma boundary. These measurements are performed in the presheath region of an absorbing boundary immersed in a background magnetic field that is obliquely incident to the boundary surface (ψ =74°). Parallel and perpendicular flow measurements demonstrate that cross-field ion flows occur and that ions within several gyro-radii of the surface are accelerated in the E-> × B-> direction. We present electrostatic probe measurements of electron temperature, plasma density, and electric potential in the same region. Ion, neutral and electron measurements are compared to Boltzmann simulations, allowing direct comparison between measured and theoretical distribution functions in the boundary region. NSF PHYS 1360278.

  5. Corrosion inhibition by inorganic cationic inhibitors on the high strength alumunium alloy, 2024-T3

    NASA Astrophysics Data System (ADS)

    Chilukuri, Anusha

    The toxicity and carcinogenic nature of chromates has led to the investigation of environmentally friendly compounds that offer good corrosion resistance to AA 2024-T3. Among the candidate inhibitors are rare earth metal cationic (REM) and zinc compounds, which have received much of attention over the past two decades. A comparative study on the corrosion inhibition caused by rare earth metal cations, Ce3+, Pr3+, La3+ and Zn2+ cations on the alloy was done. Cathodic polarization showed that these inhibitor ions suppress the oxygen reduction reaction (ORR) to varying extents with Zn2+ providing the best inhibition. Pr3+ exhibited windows of concentration (100-300 ppm) in which the corrosion rate is minimum; similar to the Ce3+ cation. Scanning Electron Microscopy (SEM) studies showed that the mechanism of inhibition of the Pr3+ ion is also similar to that of the Ce3+ ion. Potentiodynamic polarization experiments after 30 min immersion time showed greatest suppression of oxygen reduction reaction in neutral chloride solutions (pH 7), which reached a maximum at a Zn2+ ion concentration of 5 mM. Anodic polarization experiments after 30 min immersion time, showed no anodic inhibition by the inhibitor in any concentration (0.1 mM - 10 mM) and at any pH. However, anodic polarization of samples immersed after longer immersion times (upto 4 days) in mildly acidic Zn2+ (pH 4) solutions showed significant reduction in anodic kinetics indicating that zinc also acts as a “slow anodic inhibitor”. In contrast to the polarization experiments, coupons exposed to inhibited acidic solutions at pH 4 showed complete suppression of dissolution of Al2CuMg particles compared to zinc-free solutions in the SEM studies. Samples exposed in pH 4 Zn2+-bearing solution exhibited highest polarization resistance which was also observed to increase with time. In deaerated solutions, the inhibition by Zn2+ at pH 4 is not observed as strongly. The ability to make the interfacial electrolyte alkaline is retarded in the absence of oxygen. As a result precipitation of Zn oxides and hydroxides was suppressed. Impedance in decarbonated chloride solutions showed that the absence of CO 2 reduces inhibition by Zn2+ at pH 4. The carbonate protective layer formed in aerated solutions is essential for providing better protection of the substrate at pH 4. Inhibitor cations were exchanged into insoluble ion-exchanging sodium bentonites and incorporated as pigments in organic coatings applied to AA 2024-T3 substrates. XRD of the pigments ensured ion exchange and UV-visible spectroscopy was used to characterize inhibitor ion release from the bentonites. Salt spray exposure tests on scribed panels were preformed and results were compared to those from SrCrO4 pigmented coatings. Zn-exchanged bentonite pigmented coatings showed better performance compared to the other exchanged bentonites when incorporated into epoxy coatings with total impedance magnitude in the same order as SrCrO4. PVB (Polyvinyl Butyral) coatings containing Zn bentonite, however, did not show superior behaviour in the impedance response due to less or no water uptake. Salt spray exposures for a period of 336 h, showed that Zn bentonite incorporated into PVB suppressed blistering compared to the neat PVB and other pigmented bentonites.

  6. Evaluation of the Texas Technology Immersion Pilot: First-Year Results

    ERIC Educational Resources Information Center

    Shapley, Kelly; Sheehan, Daniel; Sturges, Keith; Caranikas-Walker, Fanny; Huntsberger, Briana; Maloney, Catherine

    2006-01-01

    The Technology Immersion Pilot (TIP) sets forth a vision for technology immersion in Texas public schools. The Texas Education Agency (TEA) directed nearly $14 million in federal Title II, Part D monies toward funding a wireless learning environment for high-need middle schools through a competitive grant process. A concurrent research project…

  7. Determination of diffusing species from marker experiments in the system Ni Ti O

    NASA Astrophysics Data System (ADS)

    Schirmer, S.; Lindner, J. K. N.; Mändl, S.

    2007-04-01

    Surface modification of NiTi for improved biocompatibility is a pressing issue. Using oxygen plasma immersion ion implantation (PIII), it is possible to form closed TiO2 layers on NiTi3 on NiTi. Using 60Ni marker ions implanted at 180 keV, it is shown conclusively that mobile Ni are the diffusing species, with the onset of diffusion occurring between 300 and 400 °C. Additionally, Ni is selectively removed from the oxide by preferential sputtering from the surface.

  8. Componential Differences and Varying Developmental Patterns Exhibited in Immersion Programmes

    ERIC Educational Resources Information Center

    Asano, Sachiko

    2015-01-01

    In bilingual literature, few studies have examined the processes of concept formation (CF); even fewer studies have discussed their developmental changes. This study explores language-cognition links and CF fractionation processes by comparing total and partial immersion programmes (TIPs and PIPs). Descriptive statistics (DS), correlational…

  9. Sectioning studies of biomimetic collagen-hydroxyapatite coatings on Ti-6Al-4V substrates using focused ion beam

    NASA Astrophysics Data System (ADS)

    Hu, Changmin; Yu, Le; Wei, Mei

    2018-06-01

    A biomimetic bone-like collagen-hydroxyapatite (Col-HA) composite coating was formed on a surface-treated Ti-6Al-4V alloy substrate via simultaneous collagen self-assembly and hydroxyapatite nucleation. The coating process has been carried out by immersing sand-blasted, acid-etched and UV irradiated Ti-6Al-4V alloy in type I collagen-containing modified simulated body fluid (m-SBF). The surface morphology and phase composition of the coating were characterized using various techniques. More importantly, dual-beam FIB/SEMs with either gallium ion source (GFIB) or xenon plasma ion source (PFIB) were used to investigate the cross-sectional features of the biomimetic Col-HA composite coating in great details. As a result, the cross-sectional images and thin transmission electron microscopy (TEM) specimens were successfully obtained from the composite coating with no obvious damages or milling ion implantations. Both the cross-sectional SEM and TEM results have confirmed that the Col-HA coating demonstrates a similar microstructure to that of pure HA coating with homogeneously distributed elements across the whole cross section. Both coatings consist of a uniform, crack-free gradient structure with a dense layer adjacent to the interface between the Ti-6Al-4V substrate and the coating facilitating a strong bonding, while a porous structure at the coating surface aiding cell attachment.

  10. Electrostatic coupling of ion pumps.

    PubMed

    Nieto-Frausto, J; Lüger, P; Apell, H J

    1992-01-01

    In this paper the electrostatic interactions between membrane-embedded ion-pumps and their consequences for the kinetics of pump-mediated transport processes have been examined. We show that the time course of an intrinsically monomolecular transport reaction can become distinctly nonexponential, if the reaction is associated with charge translocation and takes place in an aggregate of pump molecules. First we consider the electrostatic coupling of a single dimer of ion-pumps embedded in the membrane. Then we apply the treatment to the kinetic analysis of light-driven proton transport by bacteriorhodopsin which forms two-dimensional hexagonal lattices. Finally, for the case of nonordered molecules, we also consider a model in which the pumps are randomly distributed over the nodes of a lattice. Here the average distance is equal to that deduced experimentally and the elemental size of the lattice is the effective diameter of one single pump. This latter model is applied to an aggregate of membrane-embedded Na, K- and Ca-pumps. In all these cases the electrostatic potential considered is the exact solution calculated from the method of electrical images for a plane membrane of finite thickness immersed in an infinite aqueous solution environment. The distributions of charges (ions or charged binding sites) are considered homogeneous or discrete in the membrane and/or in the external solution. In the case of discrete distributions we compare the results from a mean field approximation and a stochastic simulation.

  11. Complementary study of the internal porous silicon layers formed under high-dose implantation of helium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomov, A. A., E-mail: lomov@ftian.ru; Myakon’kikh, A. V.; Chesnokov, Yu. M.

    The surface layers of Si(001) substrates subjected to plasma-immersion implantation of helium ions with an energy of 2–5 keV and a dose of 5 × 10{sup 17} cm{sup –2} have been investigated using high-resolution X-ray reflectivity, Rutherford backscattering, and transmission electron microscopy. The electron density depth profile in the surface layer formed by helium ions is obtained, and its elemental and phase compositions are determined. This layer is found to have a complex structure and consist of an upper amorphous sublayer and a layer with a porosity of 30–35% beneath. It is shown that the porous layer has the sharpestmore » boundaries at a lower energy of implantable ions.« less

  12. Structural modifications and corrosion behavior of martensitic stainless steel nitrided by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Figueroa, C. A.; Alvarez, F.; Zhang, Z.; Collins, G. A.; Short, K. T.

    2005-07-01

    In this work we report a study of the structural modifications and corrosion behavior of martensitic stainless steels (MSS) nitrided by plasma immersion ion implantation (PI3). The samples were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, photoemission electron spectroscopy, and potentiodynamic electrochemical measurements. Depending on the PI3 treatment temperature, three different material property trends are observed. At lower implantation temperatures (e.g., 360 °C), the material corrosion resistance is improved and a compact phase of ɛ-(Fe,Cr)3N, without changes in the crystal morphology, is obtained. At intermediate temperatures (e.g., 430 °C), CrN precipitates form principally at grain boundaries, leading to a degradation in the corrosion resistance compared to the original MSS material. At higher temperatures (e.g., 500 °C), the relatively great mobility of the nitrogen and chromium in the matrix induced random precipitates of CrN, transforming the original martensitic phase into α-Fe (ferrite), and causing a further degradation in the corrosion resistance.

  13. Thermomechanical analysis and durability of commercial micro-porous polymer Li-ion battery separators

    NASA Astrophysics Data System (ADS)

    Love, Corey T.

    2011-03-01

    Static and dynamic thermomechanical analysis was performed with a dynamic mechanical analyzer (DMA) to identify thermal and mechanical transitions for commercially available polymer separators under mechanical loading. Clear transitions in deformation mode were observed at elevated temperatures. These transitions identified the onset of separator "shutdown" which occurred at temperatures below the polymer melting point. Mechanical loading direction was critical to the overall integrity of the separator. Anisotropic separators (Celgard 2320, 2400 and 2500) were mechanically limited when pulled in tensile in the transverse direction. The anisotropy of these separators is a result of the dry technique used to manufacture the micro-porous membranes. Separators prepared using the wet technique (Entek Gold LP) behaved more uniformly, or biaxially, where all mechanical properties were nearly identical within the separator plane. The information provided by the DMA can also be useful for predicting the long-term durability of polymer separators in lithium-ion batteries exposed to electrolyte (solvent and salt), thermal fluctuations and electrochemical cycling. Small losses in mechanical integrity were observed for separators exposed to the various immersion environments over the 4-week immersion time.

  14. Susceptibility to corrosion and in vitro biocompatibility of a laser-welded composite orthodontic arch wire.

    PubMed

    Zhang, Chao; Sun, Xinhua; Zhao, Shuang; Yu, Wenwen; Sun, Daqian

    2014-01-01

    Composite arch-wire (CoAW) is an arch wire formed by solder connection of nickel titanium shape memory alloy and stainless steel wire. The purpose of the present study was to investigate the biocompatibility of CoAW as an important foundation for its clinical application. The electrochemical corrosion and ion release behavior of CoAW upon immersion in solutions simulating oral cavity conditions were measured to evaluate the corrosion behavior of CoAW. Murine L-929 cells were co-cultured with CoAW extract to evaluate the cytotoxicity of the corrosion products in vitro. Polarization tests indicated that CoAW is resistant to corrosion in the tested artificial saliva (AS)-based solutions (chloric solution, simple AS, fluorinated AS, and protein-containing AS), and the amount of toxic copper ions released after immersion was lower than average daily dietary intake levels. The cytotoxicity experiments demonstrated the in vitro biocompatibility of CoAW. Based on the combined advantages of its base materials CoAW, with its resistance to biocorrosion and in vitro cytocompatibility, is a promising alternative material for use in orthodontic fixation applications.

  15. Ion beam promoted lithium absorption in glassy polymeric carbon

    NASA Astrophysics Data System (ADS)

    Ila, D.; Zimmerman, R. L.; Jenkins, G. M.; Maleki, H.; Poker, D. B.

    1995-12-01

    Glassy Polymeric Carbon (GPC) samples prepared from a precursor possess accessible pore volume that depends on the heat treatment temperature. We have shown that lithium percolates without diffusion into the accessible pores of GPC samples immersed in a molten lithium salt bath at 700°C. Ion bombardment with 10 MeV Au atoms increases the total pore volume available for lithium occupation even for samples normally impermeable to lithium. The lithium concentration depth profile is measured using Li7(p,2α) nuclear reaction analysis. We will report on lithium percolation into GPC prepared at temperatures between 500°C and 1000°C and activated by a 10 MeV gold ion bombardment.

  16. Evaluation of the Texas Technology Immersion Pilot: Findings from the Second Year

    ERIC Educational Resources Information Center

    Shapley, Kelly; Sheehan, Daniel; Maloney, Catherine; Caranikas-Walker, Fanny; Huntsberger, Briana; Sturges, Keith

    2007-01-01

    The Technology Immersion Pilot (TIP) sets forth a vision for technology immersion in Texas public schools. The Texas Education Agency (TEA) originally directed more than $14.5 million in federal Title II, Part D monies toward funding a wireless learning environment for high-need middle schools through a competitive grant process. A concurrent…

  17. Adoption of the Creative Process According to the Immersive Method

    ERIC Educational Resources Information Center

    Vuk, Sonja; Tacol, Tonka; Vogrinc, Janez

    2015-01-01

    The immersive method is a new concept of visual education that is better suited to the needs of students in contemporary post-industrial society. The features of the immersive method are: (1) it emerges from interaction with visual culture; (2) it encourages understanding of contemporary art (as an integral part of visual culture); and (3) it…

  18. Impacct of scalding duration and scalding water temperature on broiler processing wastewater loadings

    USDA-ARS?s Scientific Manuscript database

    The effects of scalding water temperature and immersion time on impact to poultry processing wastewater (PPW) loading were evaluated following the slaughter of commercially raised broilers. Based on previous research, the hypothesis was that immersion time would have a significant impact on PPW load...

  19. Inactivation of salmonella in shell eggs by hot water immersion and its effect on quality

    USDA-ARS?s Scientific Manuscript database

    Thermal inactivation kinetics of heat resistant strains of Salmonella Enteritidis in shell eggs processed by hot water immersion were determined, and the effects of the processing on egg quality were evaluated. Shell eggs were inoculated with a composite of heat resistant Salmonella Enteritidis (SE)...

  20. Analytical and Electrochemical Study of Passive Films in Stainless Steels Subjected to Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Jahangiribabavi, Negin

    The objective of this research is to study the corrosion behavior of the stainless steel centrifugal contactor used in the spent nuclear fuel treatment process called UREX+ process. AISI type 304L stainless steel was suggested as the material of construction for this contactor. Corrosion of 304L stainless steel in three acidic aqueous solutions of 5.0M HNO3, 5.0M HNO 3 + 0.1M HF, and 5.0M HNO3 + 0.1M HF + 0.1M Zr4+ was studied. Immersion, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) corrosion tests were conducted at test temperatures of 25, 40, and 80°C and three different rotational speeds (0, 1000, 2000 rpm) in order to mimic the operating conditions of the centrifugal contactor. The results showed that the 5.0M HNO3 + 0.1M HF solution was the most corrosive environment as the fluoride ions dissolved the passive film present on the surface of the stainless steel. The addition of 0.1M Zr 4+ ions to this acidic mixture reduced the corrosion caused by HF to levels similar to those found in HNO3 solutions and allowed the stainless steel to preserve its passive film. Further addition of zirconium ion did not result in better corrosion resistance of the stainless steel. Besides, higher corrosion rates were obtained as the solutions temperatures increased while the hydrodynamic conditions had less significant effect on corrosion rates.

  1. A new resin embedded with chelating motifs of biogenic methionine for the removal of Hg(II) at ppb levels.

    PubMed

    Ali, Shaikh A; Mazumder, Mohammad A J

    2018-05-15

    Cyclopolymerization of N,N-diallylmethionine hydrochloride, derived from the biogenic amino acid methionine, (90 mol%) and cross-linker tetraallylpiperazinium dichloride (10 mol%) in presence of an azo-initiator afforded pH-responsive cross-linked polyzwitterion (CPZ). The structural morphology of the resin (i.e. CPZ) was examined by the BET and FESEM-EDX analyses. The methionine embedded resin demonstrated remarkable efficacies for the removal of Hg(II) ions at ppb levels. A 50 mg-dose of the resin immersed in aqueous medium (18 mL) could reduce the concentration of Hg(II) from 200 and 400 ppb to 1.8 and 4.4 ppb, respectively, within 15 min. The resin has also proven to be remarkably effective in the removal of several toxic and priority metal pollutants from industrial wastewater. The Hg(II) adsorption followed pseudo second-order process with E a of 48.1 kJ mol -1 . The initial rapid adsorption of metal ions and subsequent slower adsorption was attributed to film and intraparticle diffusion, respectively. The SEM-EDX analyses revealed the attachment of Hg(II) ions onto the resin. The favorability of the endothermic adsorption was ensured by the negative ΔGº values. The efficient adsorption/desorption process confirmed the recyclability of the resin. The current resin demonstrated superior metal removal capacities as compared to several other adsorbents in recent works. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Distortion of calculated whole-body hematocrit during lower-body immersion in water.

    PubMed

    Knight, D R; Santoro, T; Bondi, K R

    1986-11-01

    We found a difference between the venous hematocrits of immersed and nonimmersed arms during immersion of the lower body in cold water but not during a comparable exposure to warm water. Fourteen healthy men were exposed to three different experimental conditions: arm immersion, body immersion, and control. The men always sat upright while both upper extremities hung vertically at their sides. During arm immersion, one forearm was completely immersed for 30 min in either cold water (28 degrees C, n = 7) or warm water (38 degrees C, n = 7). This cold-warm water protocol was repeated on separate days for exposure to the remaining conditions of body immersion (immersion of 1 forearm and all tissues below the xiphoid process) and control (no immersion). Blood samples were simultaneously drawn from cannulated veins in both antecubital fossae. Hematocrit difference (Hct diff) was measured by subtracting the nonimmersed forearm's hematocrit (Hct dry) from the immersed forearm's hematocrit (Hct wet). Hct diff was approximately zero when the men were exposed to the control condition and body immersion in warm water. In the remaining conditions, Hct wet dropped below Hct dry (P less than 0.01, 3-way analysis of variance). The decrements of Hct diff showed there were differences between venous hematocrits in immersed and nonimmersed regions of the body, indicating that changes of the whole-body hematocrit cannot be calculated from a large-vessel hematocrit soon after immersing the lower body in cold water.

  3. Bio-functionalisation of polyether ether ketone using plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Wakelin, Edgar; Yeo, Giselle; Kondyurin, Alexey; Davies, Michael; McKenzie, David; Weiss, Anthony; Bilek, Marcela

    2015-12-01

    Plasma immersion ion implantation (PIII) is used here to improve the surface bioactivity of polyether ether ketone (PEEK) by modifying the chemical and mechanical properties and by introducing radicals. Modifications to the chemical and mechanical properties are characterised as a function of ion fluence (proportional to treatment time) to determine the suitability of the treated surfaces for biological applications. Radical generation increases with treatment time, where treatments greater than 400 seconds result in a high concentration of long-lived radicals. Radical reactions are responsible for oxidation of the surface, resulting in a permanent increase in the polar surface energy. The nano-scale reduced modulus was found to increase with treatment time at the surface from 4.4 to 5.2 GPa. The macromolecular Young's modulus was also found to increase, but by an amount corresponding to the volume fraction of the ion implanted region. The treated surface layer exhibited cracking under cyclical loads, associated with an increased modulus due to dehydrogenation and crosslinking, however it did not show any sign of delamination, indicating that the modified layer is well integrated with the substrate - a critical factor for bioactive surface coatings to be used in-vivo. Protein immobilisation on the PIII treated surfaces was found to saturate after 240 seconds of treatment, indicating that there is room to tune surface mechanical properties for specific applications without affecting the protein coverage. Our findings indicate that the modification of the chemical and mechanical properties by PIII treatments as well as the introduction of radicals render PEEK well suited for use in orthopaedic implantable devices.

  4. Low-cost plasma immersion ion implantation doping for Interdigitated back passivated contact (IBPC) solar cells

    DOE PAGES

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; ...

    2016-06-01

    Here, we present progress to develop low-cost interdigitated back contact solar cells with pc-Si/SiO 2/c-Si passivated contacts formed by plasma immersion ion implantation (PIII). PIII is a lower-cost implantation technique than traditional beam line implantation due to its simpler design, lower operating costs, and ability to run high doses (1E14-1E18 cm -2) at low ion energies (20 eV-10 keV). These benefits make PIII ideal for high throughput production of patterned passivated contacts, where high-dose, low-energy implantations are made into thin (20-200 nm) a-Si layers instead of into the wafer itself. For this work symmetric passivated contact test structures (~100 nmmore » thick) grown on n-Cz wafers with pH3 PIII doping gave implied open circuit voltage (iV oc) values of 730 mV with J o values of 2 fA/cm 2. Samples doped with B 2H 6 gave iV oc values of 690 mV and J o values of 24 fA/cm 2, outperforming BF 3 doping, which gave iV oc values in the 660-680 mV range. Samples were further characterized by SIMS, photoluminescence, TEM, EELS, and post-metallization TLM to reveal micro- and macro-scopic structural, chemical and electrical information.« less

  5. Heat penetration attributes of milkfish (Chanos chanos) thermal processed in flexible pouches: a comparative study between steam application and water immersion.

    PubMed

    Adepoju, Mary A; Omitoyin, Bamidele O; Mohan, Chitradurga O; Zynudheen, Aliyam A

    2017-05-01

    The difference in the heating penetration characteristics of product processed in retort by steam-air application and water immersion was studied. Fresh milkfish ( Chanos chanos ) packed in dry pack and in oil medium, both in flexible pouches, was thermal processed to minimum F 0 value of 7.77 at 121.1°C. Heat penetration values were recorded for each minute of processing with the aid Ellab (TM 9608, Denmark) temperature recorder. Retort come up time to achieve 121.1°C was observed to be less in steam-air which invariably led to a lower Ball's process time (B) and the total process time (T) observed in steam-air as compared to water immersion. Obtained data were plotted on a semi-logarithmic paper with temperature deficit on x -axis against time on the y -axis.

  6. Rambutan Seed (Nephelium Lappaceum L.) Optimization as Raw Material of High Nutrition Value Processed Food

    NASA Astrophysics Data System (ADS)

    Wahini, M.; Miranti, M. G.; Lukitasari, F.; Novela, L.

    2018-02-01

    Rambutan (Nephelium Lappaceum L.) is a plant that identical with Southeast Asian countries, in some areas of Indonesia no exception, but rambutan seed is considered as a waste. Therefore, it needs to be optimized into raw materials of food and processed with high nutritional value and has economic value. The purpose of this research were: 1) to find the best rambutan seed immersion formula; 2) to know the nutritional value of the best immersed rambutan seed; 3) to produce raw material and various processed of rambutan seed product. The research method was quasi experiment with 6 treatments and 2 factorial design, materials for immersion was NaCl and Ca(OH)2. The results showed that: 1) the best rambutan seed immersion formula was using Ca(OH)2; 2) the best rambutan seed contains 1,6 ash, 31,2 protein, 26,9 fat; 3) the best rambutan seed produce flour and processed of seasoned nuts. This research indicates that rambutan seed is very potential to be an alternative high-value raw materials.

  7. Effect of Ca(OH)2, NaCl, and Na2SO4 on the corrosion and electrochemical behavior of rebar

    NASA Astrophysics Data System (ADS)

    Jin, Zuquan; Zhao, Xia; Zhao, Tiejun; Hou, Baorong; Liu, Ying

    2017-05-01

    The corrosion of rebar in reinforced concrete in marine environments causes significant damage to structures built in ocean environments. Studies on the process and mechanism of corrosion of rebar in the presence of multiple ions may help to control damage and predict the service life of reinforced concrete structures in such environments. The effect of interactions between sulfate and chloride ions and calcium hydroxide on the electrochemical behavior of rebar are also important for evaluation of structure durability. In this work, electrochemical impedance spectroscopy (EIS) plots of rebar in Ca(OH)2 solution and cement grout, including NaCl and Na2SO4 as aggressive salts, were measured for diff erent immersion times. The results show that corrosion of rebar was controlled by the rate of charge transfer as the rebar was exposed to chloride solution. In the presence of high concentrations of sulfate ions in the electrolyte, generation and dissolution of the passive film proceeded simultaneously and corrosion was mainly controlled by the diff usion rate. When Na2SO4 and NaCl were added to Ca(OH)2 solution, the instantaneous corrosion rate decreased by a factor of 10 to 20 as a result of the higher pH of the corroding solution.

  8. Erosion protection conferred by whole human saliva, dialysed saliva, and artificial saliva

    NASA Astrophysics Data System (ADS)

    Baumann, T.; Kozik, J.; Lussi, A.; Carvalho, T. S.

    2016-10-01

    During dental erosion, tooth minerals are dissolved, leading to a softening of the surface and consequently to irreversible surface loss. Components from human saliva form a pellicle on the tooth surface, providing some protection against erosion. To assess the effect of different components and compositions of saliva on the protective potential of the pellicle against enamel erosion, we prepared four different kinds of saliva: human whole stimulated saliva (HS), artificial saliva containing only ions (AS), human saliva dialysed against artificial saliva, containing salivary proteins and ions (HS/AS), and human saliva dialysed against deionised water, containing only salivary proteins but no ions (HS/DW). Enamel specimens underwent four cycles of immersion in either HS, AS, HS/AS, HS/DW, or a humid chamber (Ctrl), followed by erosion with citric acid. During the cycling process, the surface hardness and the calcium released from the surface of the specimens were measured. The different kinds of saliva provided different levels of protection, HS/DW exhibiting significantly better protection than all the other groups (p < 0.0001). Different components of saliva, therefore, have different effects on the protective properties of the pellicle and the right proportions of these components in saliva are critical for the ability to form a protective pellicle.

  9. Core-Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes.

    PubMed

    Lu, Xiaoyan; Shen, Chen; Zhang, Zeyang; Barrios, Elizabeth; Zhai, Lei

    2018-01-31

    Core-shell nanofibers containing poly(acrylic acid) (PAA) and manganese oxide nanoparticles as the core and polypyrrole (PPy) as the shell were fabricated through electrospinning the solution of PAA and manganese ions (PAA/Mn 2+ ). The obtained nanofibers were stabilized by Fe 3+ through the interaction between Fe 3+ ions and carboxylate groups. Subsequent oxidation of Mn 2+ by KMnO 4 produced uniform manganese dioxide (MnO 2 ) nanoparticles in the fibers. A PPy shell was created on the fibers by immersing the fibers in a pyrrole solution where the Fe 3+ ions in the fiber polymerized the pyrrole on the fiber surfaces. In the MnO 2 @PAA/PPy core-shell composite fibers, MnO 2 nanoparticles function as high-capacity materials, while the PPy shell prevents the loss of MnO 2 during the charge/discharge process. Such a unique structure makes the composite fibers efficient electrode materials for supercapacitors. The gravimetric specific capacity of the MnO 2 @PAA/PPy core-shell composite fibers was 564 F/g based on cyclic voltammetry curves at 10 mV/s and 580 F/g based on galvanostatic charge/discharge studies at 5 A/g. The MnO 2 @PAA/PPy core-shell composite fibers also present stable cycling performance with 100% capacitance retention after 5000 cycles.

  10. Using heart rate to prescribe physical exercise during head-out water immersion.

    PubMed

    Kruel, Luiz F M; Peyré-Tartaruga, Leonardo A; Coertjens, Marcelo; Dias, Adriana B C; Da Silva, Rafael C; Rangel, Antônio C B

    2014-01-01

    The purpose of this study was to compare and correlate the effect of age group, sex, depth of water immersion, and the heart rate (HR) assessed out of the water on the HR behavior in individuals subjected to head-out water immersion. A total of 395 healthy individuals of both sexes, aged between 07 and 75 years, underwent vertical head-out water immersion. Heart rate was assessed out of the water in the supine and orthostatic (OHR) positions and at immersion depths corresponding to the ankle, knee, hip, umbilicus, xiphoid process, acromion, neck, and also the neck with the arms out of the water. The formula (ΔHR = OHR - HR immersion depth) was used to calculate the reduction in HR at each immersion depth. No age-based or sex-based differences in HR were found. The greater the depth of the water, the greater was the decrease in HR (p < 0.05); however, no differences were found between the HR values obtained below the depth corresponding to the umbilicus. Similarly, there was a significant relationship between OHR and ΔHR measured at levels below the depth corresponding to the umbilicus (e.g., xiphoid process level: r = 0.62; p < 0.05). Therefore, this study suggests to appropriately prescribe the intensity of water-based exercise intensity performed during vertical immersion: OHR should be measured before the individual entering the aquatic environment; ΔHR should be measured according to the depth at which exercise is to be performed, and we suggest an adaptation to Karvonen's HRmax prediction formula (predicted HRmax: 220 - age - ΔHR) to prescribe and control the intensity of the exercise performed during vertical immersion.

  11. A novel copper/polydimethiylsiloxane nanocomposite for copper-containing intrauterine contraceptive devices.

    PubMed

    Xu, X X; Ding, M H; Zhang, J X; Zheng, W; Li, L; Zheng, Y F

    2013-11-01

    In this article, a novel composite of copper (Cu) nanoparticles and polydimethiylsiloxane (PDMS) has been prepared and investigated for the potential application in Cu-containing intrauterine device. The Cu/PDMS composite with various mass fraction of Cu nanoparticles was fabricated via the hot vulcanizing process. The chemical structures and surface morphologies of the Cu/PDMS composites were characterized confirming the physical interaction between Cu nanoparticles and PDMS. The surface morphology observation using scanning electron microscope and atomic force microscope showed the agglomeration of Cu nanoparticles in PDMS matrix and the distribution of the agglomerations was more uniform with increased amount of Cu nanoparticles. The cupric ion release behaviors of the Cu/PDMS composites with different amounts of Cu nanoparticles were investigated in simulated uterine fluid at 37°C for 150 days. The corrosion morphologies of the Cu/PDMS composites were also characterized. Both the burst release rate of the cupric ion in the first few days and the steady release rate after 30-day immersion were improved. The cytotoxicity test has been done for the Cu/PDMS composites. Copyright © 2013 Wiley Periodicals, Inc.

  12. Optical and vibrational properties of PbSe nanoparticles synthesized in clinoptilolite

    NASA Astrophysics Data System (ADS)

    Flores-Valenzuela, J.; Cortez-Valadez, M.; Ramírez-Bon, R.; Arizpe-Chavez, H.; Román-Zamorano, J. F.; Flores-Acosta, M.

    2015-08-01

    In this work, the optical and vibrational properties of composites based on PbSe semiconductor immersed in a zeolite matrix are reported. The natural zeolite, (clinoptilolite) was used as the host material of PbSe nanoparticles. The method for obtaining these particles is also reported here, which is based on ion exchange processes inside the natural zeolite in alkaline aqueous solution that contains the precursor ions Pb2+ and Se2-. The process of synthesis was conducted temperature, volume, concentration and reaction time of the precursors. The samples were studied by powder X-ray diffraction, TEM (transmission electron microscopy), diffuse reflectance and Raman spectroscopy. The experimental results demonstrate that with this method, the particles with nanometric PbSe sizes were synthesized in the zeolite matrix. Vibrational Raman bands at low wave numbers were detected in these particles by the presence of a shoulder located at 135 cm-1 and a band at around 149 cm-1. The vibrational calculations for small clusters of PbSe at LSDA (Local Spin Density Approximation) level combined with the basis set LANDL2DZ (Los Alamos National Laboratory 2 double ζ), were considered through DFT (Density Functionl Theory). The "breathing" Raman modes located at 119-152 cm-1 were detected for this level of theory.

  13. Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires.

    PubMed

    Kobayashi, Shinya; Ohgoe, Yasuharu; Ozeki, Kazuhide; Hirakuri, Kenji; Aoki, Hideki

    2007-12-01

    Nickel-titanium (NiTi) has been used for implants in orthodontics due to the unique properties such as shape memory effect and superelasticity. However, NiTi alloys are eroded in the oral cavity because they are immersed by saliva with enzymolysis. Their reactions lead corrosion and nickel release into the body. The higher concentrations of Ni release may generate harmful reactions. Ni release causes allergenic, toxic and carcinogenic reactions. It is well known that diamond-like carbon (DLC) films have excellent properties, such as extreme hardness, low friction coefficients, high wear resistance. In addition, DLC film has many other superior properties as a protective coating for biomedical applications such as biocompatibility and chemical inertness. Therefore, DLC film has received enormous attention as a biocompatible coating. In this study, DLC film coated NiTi orthodontic archwires to protect Ni release into the oral cavity. Each wire was immersed in physiological saline at the temperature 37 degrees C for 6 months. The release concentration of Ni ions was detected using microwave induced plasma mass spectrometry (MIP-MS) with the resolution of ppb level. The toxic effect of Ni release was studied the cell growth using squamous carcinoma cells. These cells were seeded in 24 well culture plates and materials were immersed in each well directly. The concentration of Ni ions in the solutions had been reduced one-sixth by DLC films when compared with non-coated wire. This study indicated that DLC films have the protective effect of the diffusion and the non-cytotoxicity in corrosive environment.

  14. Characterization and cytotoxicity of ions released from stainless steel and nickel-titanium orthodontic alloys.

    PubMed

    Eliades, Theodore; Pratsinis, Harris; Kletsas, Dimitris; Eliades, George; Makou, Margarita

    2004-01-01

    The purpose of this study was to qualitatively and quantitatively characterize the substances released from orthodontic brackets and nickel-titanium wires and to comparatively assess the cytotoxicity of the ions released from these orthodontic alloys. Two full sets of stainless steel brackets of 20 brackets each (weight 2.1 g) and 2 groups of 0.018 x 0.025 Ni-Ti archwires of 10 wires each (weight 2.0 g) were immersed in 0.9% saline solution for a month. The immersion media were analyzed with inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and the ionic content was statistically analyzed with 1-way analysis of variance (ANOVA). Human periodontal ligament fibroblasts and gingival fibroblasts were exposed to various concentrations of the 2 immersion media; nickel chloride was used as a positive control for comparison purposes. The cytotoxic or cytostatic activity of the media was investigated with the MTT and the DNA synthesis assays. The results of the cytotoxicity assay were analyzed with 2-way ANOVA and the Tukey test with solution and concentration variants as discriminating variables (alpha=0.05). The results indicated no ionic release for the nickel-titanium alloy aging solution, whereas measurable nickel and traces of chromium were found in the stainless steel bracket-aging medium. Concentrations of the nickel chloride solution greater then 2 mM were found to reduce by more than 50% the viability and DNA synthesis of fibroblasts; however, neither orthodontic materials-derived media had any effect on the survival and DNA synthesis of either cells.

  15. Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects

    NASA Astrophysics Data System (ADS)

    Han, I.-H.; Lee, I.-S.; Song, J.-H.; Lee, M.-H.; Park, J.-C.; Lee, G.-H.; Sun, X.-D.; Chung, S.-M.

    2007-09-01

    A thin calcium phosphate film was synthesized on both commercially pure Ti and Si wafers by electron beam evaporation of hydroxyapatite as an evaporant with simultaneous Ar ion beam bombardments. Silver was introduced into an ion-beam-assisted deposition of a calcium phosphate thin film for antimicrobial effect. The amount of incorporated silver ions was controlled by immersing calcium-phosphate-coated samples in different AgNO3 concentrations, and Rutherford backscattering spectrometry (RBS) was employed to measure the amounts of substituted silver. The higher concentration of silver in the calcium phosphate film was more effective in reducing the bacteria of Escherichia coli ATCC 8739 and Streptococcus mutans OMZ 65 on contact with respect to controls.

  16. Ionic Impurity in a Bose-Einstein Condensate at Submicrokelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Kleinbach, K. S.; Engel, F.; Dieterle, T.; Löw, R.; Pfau, T.; Meinert, F.

    2018-05-01

    Rydberg atoms immersed in a Bose-Einstein condensate interact with the quantum gas via electron-atom and ion-atom interaction. To suppress the typically dominant electron-neutral interaction, Rydberg states with a principal quantum number up to n =190 are excited from a dense and tightly trapped micron-sized condensate. This allows us to explore a regime where the Rydberg orbit exceeds the size of the atomic sample by far. In this case, a detailed line shape analysis of the Rydberg excitation spectrum provides clear evidence for ion-atom interaction at temperatures well below a microkelvin. Our results may open up ways to enter the quantum regime of ion-atom scattering for the exploration of charged quantum impurities and associated polaron physics.

  17. Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects.

    PubMed

    Han, I-H; Lee, I-S; Song, J-H; Lee, M-H; Park, J-C; Lee, G-H; Sun, X-D; Chung, S-M

    2007-09-01

    A thin calcium phosphate film was synthesized on both commercially pure Ti and Si wafers by electron beam evaporation of hydroxyapatite as an evaporant with simultaneous Ar ion beam bombardments. Silver was introduced into an ion-beam-assisted deposition of a calcium phosphate thin film for antimicrobial effect. The amount of incorporated silver ions was controlled by immersing calcium-phosphate-coated samples in different AgNO(3) concentrations, and Rutherford backscattering spectrometry (RBS) was employed to measure the amounts of substituted silver. The higher concentration of silver in the calcium phosphate film was more effective in reducing the bacteria of Escherichia coli ATCC 8739 and Streptococcus mutans OMZ 65 on contact with respect to controls.

  18. The effects of saxitoxin and tetrodotoxin on nerve conduction in the presence of lithium ions and of magnesium ions

    PubMed Central

    Evans, M. H.

    1969-01-01

    1. It has been shown that nerve fibres from rat cauda equina will conduct action potentials after immersion in saline in which lithium chloride is substituted for sodium chloride. 2. Both saxitoxin and tetrodotoxin inhibit lithium-generated action potentials. The concentration of toxin needed to inhibit the lithium-generated action potentials is similar to that needed to inhibit sodium-generated action potentials. 3. If magnesium chloride is added to the saline to give a concentration of 10-15 mM there is usually a slight fall in amplitude of the compound action potential. Saxitoxin and tetrodotoxin now inhibit the action potential to a greater degree than in the absence of magnesium ions. PMID:5789802

  19. Plasma density perturbation caused by probes at low gas pressure

    NASA Astrophysics Data System (ADS)

    Sternberg, Natalia; Godyak, Valery

    2017-09-01

    An analysis of plasma parameter perturbations caused by a spherical probe immersed into a spherical plasma is presented for arbitrary collisionality and arbitrary ratios of probe to plasma dimensions. The plasma was modeled by the fluid plasma equations with ion inertia and nonlinear ion friction force that dominate plasma transport at low gas pressures. Significant depletion of the plasma density around the probe surface has been found. The area of plasma depletion coincides with the sensing area of different kinds of magnetic and microwave probes and will therefore lead to errors in data inferred from measurements with such probes.

  20. Search for the chiral magnetic effect in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Zhao, Jie

    2018-05-01

    Relativistic heavy-ion collisions provide an ideal environment to study the emergent phenomena in quantum chromodynamics (QCD). The chiral magnetic effect (CME) is one of the most interesting, arising from the topological charge fluctuations of QCD vacua, immersed in a strong magnetic field. Since the first measurement nearly a decade ago of the possibly CME-induced charge correlation, extensive studies have been devoted to background contributions to those measurements. Many new ideas and techniques have been developed to reduce or eliminate the backgrounds. This paper reviews these developments and the overall progress in the search for the CME.

  1. Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes.

    PubMed

    Marini, M; De Niederhausern, S; Iseppi, R; Bondi, M; Sabia, C; Toselli, M; Pilati, F

    2007-04-01

    Silver-doped organic-inorganic hybrid coatings were prepared starting from tetraethoxysilane- and triethoxysilane-terminated poly(ethylene glycol)-block-polyethylene by the sol-gel process. They were applied as a thin layer (0.6-1.1 microm) to polyethylene (PE) and poly(vinyl chloride) (PVC) films and the antibacterial activity of the coated films was tested against Gram-negative (Escherichia coli ATCC 25922) and Gram-positive (Staphylococcus aureus ATCC 6538) bacteria. The effect of several factors (such as organic-inorganic ratio, type of catalyst, time of post-curing, silver ion concentration, etc.) was investigated. Measurements at different contact times showed a rapid decrease of the viable count for both tested strains. The highest antibacterial activity [more than 6 log reduction within 6 h starting from 106 colony-forming units (cfu) mL-1] was obtained for samples with an organic-inorganic weight ratio of 80:20 and 5 wt % silver salt with respect to the coating. For the coatings prepared by an acid-catalyzed process, a high level of permanence of the antibacterial activity of the coated films was demonstrated by repeatedly washing the samples in warm water or by immersion in physiological saline solution at 37 degrees C for 3 days. The release of silver ions per square meter of coating is very similar to that previously observed for polyamides filled with metallic silver nanoparticles; however, when compared on the basis of Ag content, the concentration of silver ions released from the coating is much higher than that released from 1 mm thick specimens of polyamide (PA) filled with silver nanoparticles. Transparency and good adhesion of the coating to PE and PVC plastic substrates without any previous surface treatment are further interesting features.

  2. Dynamic Processes of Speech Development by Seven Adult Learners of Japanese in a Domestic Immersion Context

    ERIC Educational Resources Information Center

    Fukuda, Makiko

    2014-01-01

    The present study revealed the dynamic process of speech development in a domestic immersion program by seven adult beginning learners of Japanese. The speech data were analyzed with fluency, accuracy, and complexity measurements at group, interindividual, and intraindividual levels. The results revealed the complex nature of language development…

  3. PREPARATION OF FLOWER-LIKE Co3O4/Fe3O4 MAGNETIC MICROSPHERES FOR PHOTODEGRADATION OF RhB UNDER UV LIGHT

    NASA Astrophysics Data System (ADS)

    Zhang, Baoliang; Zhang, Hepeng; Zhou, Lunwei; Ali, Nisar; Geng, Wangchang; Zhang, Qiuyu

    2013-07-01

    Flower-like Co3O4/Fe3O4 magnetic microspheres were prepared by coprecipitation of Fe2+ and Fe3+ in presence of flower-like Co3O4 microspheres as template. The preparation process included three steps: preparation of flower-like Co3O4 microspheres by hydrothermal method; immersion of Fe2+ and Fe3+ ions; coprecipitation in the presence of OH-. Rhodamine B (RhB) was chosen as model pollutants to investigate the photodegradation capacities of Co3O4/Fe3O4 magnetic microspheres. The results showed that the microspheres exhibited excellent degradation property and can be recycled to use again. After four times use the degradation efficiency was still above 90%.

  4. Method for producing fluorinated diamond-like carbon films

    DOEpatents

    Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming

    2003-06-03

    Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon <100>substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

  5. On the Usefulness of Narratives: An Interdisciplinary Review and Theoretical Model.

    PubMed

    Shaffer, Victoria A; Focella, Elizabeth S; Hathaway, Andrew; Scherer, Laura D; Zikmund-Fisher, Brian J

    2018-04-19

    How can we use stories from other people to promote better health experiences, improve judgments about health, and increase the quality of medical decisions without introducing bias, systematically persuading the listeners to change their attitudes, or altering behaviors in nonoptimal ways? More practically, should narratives be used in health education, promotion, or behavior change interventions? In this article, we address these questions by conducting a narrative review of a diverse body of literature on narratives from several disciplines to gain a better understanding about what narratives do, including their role in communication, engagement, recall, persuasion, and health behavior change. We also review broad theories about information processing and persuasion from psychology and more specific models about narrative messaging found in the health communication and marketing literatures to provide insight into the processes by which narratives have their effect on health behavior. To address major gaps in our theoretical understanding about how narratives work and what effects they will have on health behavior, we propose the Narrative Immersion Model, whose goal is to identify the parameters that predict the specific impact of a particular narrative (e.g. persuade, inform, comfort, etc.) based on the type of narrative message (e.g. process, experience, or outcome narrative). Further, the Narrative Immersion Model describes the magnitude of the effect as increasing through successive layers of engagement with the narrative: interest, identification, and immersion. Finally, the Narrative Immersion Model identifies characteristics of the narrative intervention that encourage greater immersion within a given narrative. We believe there are important communication gaps in areas areas of behavioral medicine that could be addressed with narratives; however, more work is needed in order to employ narrative messaging systematically. The Narrative Immersion Model advances our theoretical understanding about narrative processing and its subsequent effects on knowledge, attitudes, and behavior.

  6. A study of single and binary ion plasma expansion into laboratory-generated plasma wakes

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth Herbert, Jr.

    1988-01-01

    Plasma expansion into the wake of a large rectangular plate immersed in a collisionless, supersonic plasma was investigated in laboratory experiments. The experimental conditions address both single ion and binary ion plasma flows for the case of a body whose size is large in comparison with the Debye length, when the potential difference between the body and the plasma is relatively small. A new plasma source was developed to generate equi-velocity, binary ion plasma flows, which allows access to new parameter space that have previously been unavailable for laboratory studies. Specifically, the new parameters are the ionic mass ratio and the ionic component density ratio. In a series of experiments, a krypton-neon plasma is employed where the ambient density ratio of neon to krypton is varied more than an order of magnitude. The expansion in both the single ion and binary ion plasma cases is limited to early times, i.e., a few ion plasma periods, by the combination of plasma density, plasma drift speed, and vacuum chamber size, which prevented detailed comparison with self-similar theory.

  7. A Case Study: The Impact of an Immersion Experience on the Vocation of Lay Teacher-Leaders in American Jesuit High Schools

    ERIC Educational Resources Information Center

    Schreiber, Martin J.

    2012-01-01

    The purpose of this case study explores the impact of an immersion experience to a least developed country on the vocation of lay teacher leaders in American Jesuit High Schools. Nine lay teacher leaders engaged in a four stage process of immersion from November 2009 to August 2010. The study employed the conceptual framework of Edward…

  8. Method of forming a foamed thermoplastic polymer

    DOEpatents

    Duchane, D.V.; Cash, D.L.

    1984-11-21

    A solid thermoplastic polymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infustant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  9. Molecular dynamics studies of interpenetrating polymer networks for actuator devices

    NASA Astrophysics Data System (ADS)

    Brandell, Daniel; Kasemägi, Heiki; Citérin, Johann; Vidal, Frédéric; Chevrot, Claude; Aabloo, Alvo

    2008-03-01

    Molecular Dynamics (MD) techniques have been used to study the structure and dynamics of a model system of an interpenetrating polymer (IPN) network for actuator devices. The systems simulated were generated using a Monte Carlo-approach, and consisted of poly(ethylene oxide) (PEO) and poly(butadiene) (PB) in a 80-20 percent weight ratio immersed into propylene carbonate (PC) solutions of LiClO 4. The total polymer content was 32%, in order to model experimental conditions. The dependence of LiClO 4 concentration in PC has been studied by studying five different concentrations: 0.25, 0.5, 0.75, 1.0 and 1.25 M. After equilibration, local structural properties and dynamical features such as phase separation, coordination, cluster stability and ion conductivity were studied. In an effort to study the conduction processes more carefully, external electric fields of 1×10 6 V/m and 5×10 6 V/m has been applied to the simulation boxes. A clear relationship between the degree of local phase separation and ion mobility is established. It is also shown that although the ion pairing increases with concentration, there are still significantly more potential charge carriers in the higher concentrated systems, while concentrations around 0.5-0.75 M of LiClO 4 in PC seem to be favorable in terms of ion mobility. Furthermore, the anions exhibit higher conductivity than the cations, and there are tendencies to solvent drag from the PC molecules.

  10. Influence of culture media on the physical and chemical properties of Ag-TiCN coatings

    NASA Astrophysics Data System (ADS)

    Carvalho, I.; Escobar Galindo, R.; Henriques, M.; Palacio, C.; Carvalho, S.

    2014-08-01

    The aim of this study was to verify the possible physical and chemical changes that may occur on the surface of Ag-TiCN coatings after exposure to the culture media used in microbiological and cytotoxic assays, respectively tryptic soy broth (TSB) and Dulbecco's modified eagle's medium (DMEM). After sample immersion for 24 h in the media, analyses were performed by glow discharge optical emission spectroscopy discharge radiation (GDOES), Rutherford backscattering spectroscopy (RBS) and x-ray photoelectron spectroscopy (XPS). The results of GDOES profile, RBS and XPS spectra, of samples immersed in TSB, demonstrated the formation of a thin layer of carbon, oxygen and nitrogen that could be due to the presence of proteins in TSB. After 24 h of immersion in DMEM, the results showed the formation of a thin layer of calcium phosphates on the surface, since the coatings displayed a highly oxidized surface in which calcium and phosphorus were detected. All these results suggested that the formation of a layer on the coating surface prevented the release of silver ions in concentrations that allow antibacterial activity.

  11. The Substitution of Ion Vapor Deposited (IVD) Aluminum for Cadmium

    DTIC Science & Technology

    1990-05-25

    Coating Spray 1 0.0030 15 nin a 250TF Epoxy Powder Coating Spray 1 0.0030 15 nln @ 250OF Zinc Phosphate Tank Immersion 1 0.0002 Not Required Whitford: P...1candidate protection systems. MCAIR includ ed barrier-type coatings in the corrosion inhibitors ý;iich wMY be controlled by a~r-to-ic regulations that are

  12. Effects of water plasma immersion ion implantation on surface electrochemical behavior of NiTi shape memory alloys in simulated body fluids

    NASA Astrophysics Data System (ADS)

    Liu, X. M.; Wu, S. L.; Chu, Paul K.; Chung, C. Y.; Chu, C. L.; Yeung, K. W. K.; Lu, W. W.; Cheung, K. M. C.; Luk, K. D. K.

    2007-01-01

    Water plasma immersion ion implantation (PIII) was conducted on orthopedic NiTi shape memory alloy to enhance the surface electrochemical characteristics. The surface composition of the NiTi alloy before and after H 2O-PIII was determined by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was utilized to determine the roughness and morphology of the NiTi samples. Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were carried out to investigate the surface electrochemical behavior of the control and H 2O-PIII NiTi samples in simulated body fluids (SBF) at 37 °C as well as the mechanism. The H 2O-PIII NiTi sample showed a higher breakdown potential ( Eb) than the control sample. Based on the AFM results, two different physical models with related equivalent electrical circuits were obtained to fit the EIS data and explain the surface electrochemical behavior of NiTi in SBF. The simulation results demonstrate that the higher resistance of the oxide layer produced by H 2O-PIII is primarily responsible for the improvement in the surface corrosion resistance.

  13. Effects of phosphorus doping by plasma immersion ion implantation on the structural and optical characteristics of Zn{sub 0.85}Mg{sub 0.15}O thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, S.; Nagar, S.; Chakrabarti, S., E-mail: subho@ee.iitb.ac.in

    2014-08-11

    ZnMgO thin films deposited on 〈100〉 Si substrates by RF sputtering were annealed at 800, 900, and 1000 °C after phosphorus plasma immersion ion implantation. X-ray diffraction spectra confirmed the presence of 〈101{sup ¯}0〉 and 〈101{sup ¯}3〉 peaks for all the samples. However, in case of the annealed samples, the 〈0002〉 peak was also observed. Scanning electron microscopy images revealed the variation in surface morphology caused by phosphorus implantation. Implanted and non-implanted samples were compared to examine the effects of phosphorus implantation on the optical properties of ZnMgO. Optical characteristics were investigated by low-temperature (15 K) photoluminescence experiments. Inelastic exciton–exciton scattering andmore » localized, and delocalized excitonic peaks appeared at 3.377, 3.42, and 3.45 eV, respectively, revealing the excitonic effect resulting from phosphorus implantation. This result is important because inelastic exciton–exciton scattering leads to nonlinear emission, which can improve the performance of many optoelectronic devices.« less

  14. Reduction of the "burst release" of copper ions from copper-based intrauterine devices by organic inhibitors.

    PubMed

    Alvarez, Florencia; Schilardi, Patricia L; de Mele, Monica Fernández Lorenzo

    2012-01-01

    The copper intrauterine device is a contraceptive method that is based on the release of copper ions from a copper wire. Immediately after insertion, the dissolution of copper in the uterine fluid is markedly higher ("burst release") than that necessary for contraception action, leading to a variety of harmful effects. Pretreatments with organic compounds [thiourea (TU) and purine (PU), 10(-4)-10(-2) M concentration range, 1- and 3-h immersion times] were tested. The dissolution of copper with and without pretreatments in TU and PU solutions was analyzed by conventional electrochemical techniques and surface analysis. Pretreatments in PU solutions reduced the initial corrosion rate of copper in simulated uterine solutions, with inhibitory efficiencies that depend on the PU concentration and on the immersion time assayed. Inhibitory efficiency values higher than 98% for pretreatments with ≥10(-3) M PU were found. Conversely, after TU pretreatments, a high copper release was measured. It was concluded that 10(-3) M PU pretreatment is a promising strategy able to reduce the "burst release" of copper and to ensure contraceptive action. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. In vitro metal ion release and biocompatibility of amorphous Mg67Zn28Ca5 alloy with/without gelatin coating.

    PubMed

    Chan, W Y; Chian, K S; Tan, M J

    2013-12-01

    Amorphous zinc-rich Mg-Zn-Ca alloys have exhibited good tissue compatibility and low hydrogen evolution in vivo. However, suboptimal cell-surface interaction on magnesium alloy surface observed in vitro could lead to reduced integration with host tissue for regenerative purpose. This study aims to improve cell-surface interaction of amorphous Mg67Zn28Ca5 alloy by coating a gelatin layer by electrospinning. Coated/uncoated alloys were immersed and extracted for 3 days under different CO2. The immersion results showed that pH and metal ion release in the alloy extracts were affected by gelatin coating and CO2, suggesting their roles in alloy biocorrosion and a mechanism has been proposed for the alloy-CO2 system with/without coating. Cytotoxicity results are evident that gelatin-coated alloy with 2-day crosslinking not only exhibited no indirect cytotoxicity, but also supported attachment of L929 and MG63 cell lines around/on the alloy with high viability. Therefore, amorphous Mg67Zn28Ca5 alloy coated with gelatin by electrospinning technique provides a useful method to improve alloy biocompatibility. © 2013 Elsevier B.V. All rights reserved.

  16. COLDEX-86: Fluid and Electrolyte Changes during Prolonged Cold Water Immersion

    DTIC Science & Technology

    1990-12-01

    4 Urine and blood collections .................. ..................... 5 Sample processing and biochemical analyses...and decaffeinated tea and coffee. Ingestion of fluids was encouraged. After completing the immersion, 16 oz of warm apple or cranberry juice was...day. Sample processing and biochemical analyses. Blood samples (25 ml) were drawn from an antecubital vein with minimum stasis. Each sample was divided

  17. Ambient in-situ immersion freezing measurements - findings from the ZAMBIS 2014 field campaign for three ice nucleation techniques

    NASA Astrophysics Data System (ADS)

    Kohn, Monika; Atkinson, James D.; Lohmann, Ulrike; Kanji, Zamin A.

    2015-04-01

    To estimate the influence of clouds on the Earth's radiation budget, it is crucial to understand cloud formation processes in the atmosphere. A key process, which significantly affects cloud microphysical properties and the initiation of precipitation thus contributing to the hydrological cycle, is the prevailing type of ice nucleation mechanism. In mixed-phase clouds immersion freezing is the dominant ice crystal forming mechanism, whereby ice nucleating particles (INP) first act as cloud condensation nuclei (CCN) and are activated to cloud droplets followed by freezing upon supercooling. There are a number of experimental methods and techniques to investigate the ice nucleating ability in the immersion mode, however most techniques are offline for field sampling or only suitable for laboratory measurements. In-situ atmospheric studies are needed to understand the ice formation processes of 'real world' particles. Laboratory experiments simulate conditions of atmospheric processes like ageing or coating but are still idealized. Our method is able to measure ambient in-situ immersion freezing on single immersed aerosol particles. The instrumental setup consists of the recently developed portable immersion mode cooling chamber (PIMCA) as a vertical extension to the portable ice nucleation chamber (PINC, [1]), where the frozen fraction of activated aerosol particles are detected by the ice optical depolarization detector (IODE, [2]). Two additional immersion freezing techniques based on a droplet freezing array [3,4] are used to sample ambient aerosol particles either in a suspension (fraction larger ~0.6 μm) or on PM10-filters to compare different ice nucleation techniques. Here, we present ambient in-situ measurements at an urban forest site in Zurich, Switzerland held during the Zurich ambient immersion freezing study (ZAMBIS) in spring 2014. We investigated the ice nucleating ability of natural atmospheric aerosol with the PIMCA/PINC immersion freezing setup as well as a droplet freezing method on aerosol particles either collected in a suspension or on PM10-filters to obtain atmospheric IN concentrations based on the measured ambient aerosol. Investigation of physical properties (number and size distribution) and chemical composition as well as the meteorological conditions provide supplementary information that help to understand the nature of particles and air masses that contribute to immersion freezing. Acknowledgements We thank Hannes Wydler and Hansjörg Frei from ETH Zurich for their technical support. Furthermore, the authors want thank Franz Conen from the University of Basel for sharing equipment and training in the drop freezing experiment. References [1] Chou et al. (2011), Atmos. Chem. Phys., 11, 4725-4738. [2] Nicolet et al. (2010), Atmos. Chem. Phys., 10, 313-325. [3] Conen et al. (2012), Atmos. Meas. Tech., 5, 321-327. [4] Stopelli et al. (2014), Atmos. Meas. Tech., 7, 129-134.

  18. Process for the electrodeposition of low stress nickel-manganese alloys

    DOEpatents

    Kelly, James John; Goods, Steven Howard; Yang, Nancy Yuan-Chi; Cadden, Charles Henry

    2005-06-07

    A process for electrodepositing a low stress nickel-manganese multilayer alloy on an electrically conductive substrate is provided. The process includes the steps of immersing the substrate in an electrodeposition solution containing a nickel salt and a manganese salt and repeatedly passing an electric current through an immersed surface of the substrate. The electric current is alternately pulsed for predetermined durations between a first electrical current that is effective to electrodeposit nickel and a second electrical current that is effective to electrodeposit nickel and manganese. A multilayered alloy having adjacent layers of nickel and a nickel-manganese alloy on the immersed surface of the substrate is thereby produced. The resulting multilayered alloy exhibits low internal stress, high strength and ductility, and high strength retention upon exposure to heat.

  19. Nucleation and growth kinetics of electrodeposited sulfate-doped polypyrrole: determination of the diffusion coefficient of SO(4)(2-) in the polymeric membrane.

    PubMed

    Licona-Sánchez, T de J; Alvarez-Romero, G A; Mendoza-Huizar, L H; Galán-Vidal, C A; Palomar-Pardavé, M; Romero-Romo, M; Herrera-Hernández, H; Uruchurtu, J; Juárez-García, J M

    2010-08-05

    A kinetic study for the electrosynthesis of polypyrrole (Ppy) doped with SO(4)(2-) ions is presented. Ppy films were electrochemically polymerized onto a graphite-epoxy resin electrode. Experimental current density transients (j-t) were obtained for three different potentiometric behaviors: anionic, cationic, and a combination. Theoretical models were used to fit the experimental j-t data to determine the nucleation and growth processes controlling the polymer synthesis. It was encountered that, in all cases, pyrrole electropolimerization involves two concomitant processes, namely, a Ppy diffusion limited multiple 3D nucleation and growth and pyrrole electro-oxidation on the growing surface of the Ppy nuclei. SEM analysis of the electrodes surfaces reveals that Ppy deposition occurred over most of the electrode surface by multiple nucleation of hemispheres, as the theoretical model used for the analysis of the current transients required. Hemispherical particles formed the polymeric film displaying different sizes. The order for the particle size was as follows: anionic > anionic-cationic > cationic. These results are congruent with those obtained by theoretical analysis of the corresponding current transients. Analysis of the impedance measurements recorded on the anionic Ppy film, immersed in an aqueous solution with different sulfate ion concentrations evidenced that SO(4)(2-) ions diffuse through the Ppy film provoking a decrease of its electrical resistance and an increase of its dielectric constant. From the Warburg impedance coefficient, the sulfate coefficient of diffusion in the Ppy film was 1.38 x 10(-9) cm(2) s(-1).

  20. Radio Frequency Power Load and Associated Method

    NASA Technical Reports Server (NTRS)

    Srinivasan, V. Karthik (Inventor); Freestone, Todd M. (Inventor); Sims, William Herbert, III (Inventor)

    2014-01-01

    A radio frequency power load and associated method. A radio frequency power load apparatus may include a container with an ionized fluid therein. The apparatus may include one conductor immersed in a fluid and another conductor electrically connected to the container. A radio frequency transmission system may include a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus may include a fluid having an ion source therein, one conductor immersed in a fluid, and another conductor electrically connected to the container. A method of dissipating power generated by a radio frequency transmission system may include constructing a waveguide with ionized fluid in a container and connecting the waveguide to an amplifier of the transmission system.

  1. An in vitro study of silver and fluoride ions on remineralization of demineralized enamel and dentine.

    PubMed

    Zhi, Q H; Lo, E C M; Kwok, A C Y

    2013-03-01

    The purpose of this study was to compare the effect of silver fluoride, silver nitrate and potassium fluoride on remineralization of demineralized enamel and dentine in vitro. Forty premolars were cut into cuboidal blocks. Acid-resistant varnish was painted onto each block to cover all surfaces, except two windows, one in enamel and one in dentine. The tooth blocks were placed in demineralizing solution for 96 hours. They were then randomly divided into four groups of 10 blocks each and immersed in solutions of AgF, AgNO(3), KF or water for 3 minutes. Afterwards, they were immersed in a remineralizing solution for 108 hours. Micro CT scanning was conducted before and after remineralization. The increase in linear attentuation coefficient (LAC) for the enamel lesions after remineralization was 1.08/cm, 0.95/cm, 0.86/cm and 0.60/cm in the AgF, AgNO(3), KF and control groups, respectively (ANOVA, p < 0.001; AgF, AgNO(3), KF > control; AgF > KF). The increase in LAC for the dentine lesions was 1.01/cm, 0.92/cm, 0.88/cm and 0.53/cm, respectively (ANOVA, p < 0.001; AgF, AgNO(3), KF > control). Topical application of silver or fluoride ions can increase the mineral density of demineralized enamel and dentine lesions during remineralization. The synergistic effect of silver and fluoride ions is relatively small. © 2013 Australian Dental Association.

  2. In vitro investigations on CoO doped CaF2sbnd CaOsbnd B2O3sbnd P2O5-MO bioactive glasses by means of spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Sobhanachalam, P.; Ravi Kumar, V.; Raghavaiah, B. V.; Ravi Kumar, Valluri; Sahaya Baskaran, G.; Gandhi, Y.; Syam Prasad, P.; Veeraiah, N.

    2017-11-01

    In this investigation we have synthesized CaF2sbnd CaOsbnd B2O3sbnd P2O5: CoO glasses mixed with different therapeutically active ions viz., Ba2+, Sr2+, Mg2+ and Zn2+ (that play a vital role in the normal functioning of human body) and performed in vitro bioactivity studies by immersing them in simulated body fluid (SBF) for a period of about a month and the obtained results were analyzed using spectroscopic studies. Due to immersion in SBF solution, a thin layer of hydroxy apatite (HAp) is developed on the surface of the samples. The results of XRD, SEM and also IR spectra have confirmed that the layer deposited on the surface of the samples is crystalline HAp mixed with cobalt ions. The quantitative analysis of the results in vitro bioactive studies with the help of optical absorption and IR spectral studies have indicated that BaO is an efficient modifier in accelerating the HAp growth. The cobalt ions are found to be in tetrahedral positions and participated in the glass network with BO4 and PO4 structural units in larger quantities in CoZn and CoMg glasses and such occupancy is found to be the reason for the relatively low bioactive efficiency of these glasses when compared with that of CoBa glass.

  3. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  4. 3D ion flow measurements and simulations near a boundary at oblique incidence to a magnetic field

    NASA Astrophysics Data System (ADS)

    Thompson, Derek S.; Keniley, Shane; Khaziev, Rinat; Curreli, Davide; Good, Timothy N.; Henriquez, Miguel; McIlvain, Julianne; Siddiqui, M. Umair; Scime, Earl E.

    2016-10-01

    Boundaries at oblique incidence to magnetic fields are abundant in magnetic confinement plasmas. The ion dynamics near these boundaries has implications for applications such as tokamak divertor wall loading and Hall thruster channel erosion. We present 3D, non-perturbative measurements of ion velocity distribution functions (IVDFs), providing ion temperatures and flows upstream of a grounded stainless steel limiter plate immersed in an argon plasma, oriented obliquely to the background axial magnetic field (ψ = 74°). The spatial resolution of the measurements is sufficient to probe the kinetic details of magnetic presheath structures, which span several ion Larmor radii ( 1 cm). Furthermore, we report probe measurements of electron density and temperature, and of local electric potential. To complement these measurements, results from particle-in-cell and Boltzmann models of the same region are presented. These models allow for point-to-point comparison of simulated and measured electrostatic structures and IVDFs at high spatial resolution. NSF Award PHYS-1360278.

  5. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar.

    PubMed

    Lee, Yunsu; Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin; Lim, Seungmin

    2018-04-05

    This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)₂ saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.

  6. The effect of aqueous media on the mechanical properties of fluorapatite-mullite glass-ceramics.

    PubMed

    Mollazadeh, S; Ajalli, Siamak; Kashi, Tahereh S Jafarzadeh; Yekta, Bijan Eftekhai; Javadpour, Jafar; Jafari, S; Youssefi, Abbas; Fazel, Akbar

    2015-11-01

    To verify the effects of alternating thermal changes in aqueous media and chemical composition on mechanical properties of apatite-mullite glass-ceramics and to investigate concentration of ions eluted from glass-ceramics in aqueous media. The glass compositions were from SiO2Al2O3P2O5CaOTiO2BaOZrO2CaF2 system. Glass-ceramics were prepared by heat-treating at 1100°C for 3h samples alternately immersed in water at 5 and 60°C. The 3-point bending strength (n=10) were determined using 3×4×25mm/bar and a universal testing machine, at a cross-head speed of 0.1mm/min. Vickers micro hardness were evaluated by applying a total of 15-20 indentations under a 100g load for 30s. Concentrations of ions eluted from glass-ceramics immersed in 60±5°C double distilled water were determined by ion chromatography. The toxicity of glass-ceramics was assessed by seeding the osteosarcoma cells (MG63) on powder for different days and their cell proliferation assessment was investigated by MTT assay. The data were analyzed using one way analysis of variance and the means were compared by Tukey's test (5% significance level). The highest flexural strength and hardness values after thermal changes belonged to TiO2 and ZrO2 containing glass-ceramics which contained lower amount of released ions. BaO containing glass-ceramic and sample with extra amount of silica showed the highest amount of reduction in their mechanical strength values. These additives enhanced the concentration of eluted ions in aqueous media. MTT results showed that glass-ceramics were almost equivalent concerning their in-vitro biological behavior. Thermal changes and chemical compositions had significant effects on flexural strength and Vickers micro-hardness values. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Mercury's magnetosphere after MESSENGER's first flyby.

    PubMed

    Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Gloeckler, George; Gold, Robert E; Ho, George C; Killen, Rosemary M; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Nittler, Larry R; Raines, Jim M; Schriver, David; Solomon, Sean C; Starr, Richard D; Trávnícek, Pavel; Zurbuchen, Thomas H

    2008-07-04

    Observations by MESSENGER show that Mercury's magnetosphere is immersed in a comet-like cloud of planetary ions. The most abundant, Na+, is broadly distributed but exhibits flux maxima in the magnetosheath, where the local plasma flow speed is high, and near the spacecraft's closest approach, where atmospheric density should peak. The magnetic field showed reconnection signatures in the form of flux transfer events, azimuthal rotations consistent with Kelvin-Helmholtz waves along the magnetopause, and extensive ultralow-frequency wave activity. Two outbound current sheet boundaries were observed, across which the magnetic field decreased in a manner suggestive of a double magnetopause. The separation of these current layers, comparable to the gyro-radius of a Na+ pickup ion entering the magnetosphere after being accelerated in the magnetosheath, may indicate a planetary ion boundary layer.

  8. Method of forming a foamed thermoplastic polymer

    DOEpatents

    Duchane, David V.; Cash, David L.

    1986-01-01

    A method of forming a foamed thermoplastic polymer. A solid thermoplastic lymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infusant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  9. Cognitive abilities underlying second-language vocabulary acquisition in an early second-language immersion education context: a longitudinal study.

    PubMed

    Nicolay, Anne-Catherine; Poncelet, Martine

    2013-08-01

    First-language (L1) and second-language (L2) lexical development has been found to be strongly associated with phonological processing abilities such as phonological short-term memory (STM), phonological awareness, and speech perception. Lexical development also seems to be linked to attentional and executive skills such as auditory attention, flexibility, and response inhibition. The aim of this four-wave longitudinal study was to determine to what extent L2 vocabulary acquired through the particular school context of early L2 immersion education is linked to the same cognitive abilities. A total of 61 French-speaking 5-year-old kindergartners who had just been enrolled in English immersion classes were administered a battery of tasks assessing these three phonological processing abilities and three attentional/executive skills. Their English vocabulary knowledge was measured 1, 2, and 3 school years later. Multiple regression analyses showed that, among the assessed phonological processing abilities, phonological STM and speech perception, but not phonological awareness, appeared to underlie L2 vocabulary acquisition in this context of an early L2 immersion school program, at least during the first steps of acquisition. Similarly, among the assessed attentional/executive skills, auditory attention and flexibility, but not response inhibition, appeared to be involved during the first steps of L2 vocabulary acquisition in such an immersion school context. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. SURFACE TREATMENT OF MOLYBDENUM METAL

    DOEpatents

    Coffer, C.O.

    1961-12-01

    A process of descaling molybdenum articles comprises first immersing them in an aqueous sodium hydroxide-potassium permanganate solution of between 60 and 85 deg C, rinsing, and then immersing them in an aqueous solution containing a mixture of sulfuric, hydrochloric, and chromic acids.

  11. A Problem Based Learning Project Analyzing Rubrics Used to Evaluate Elementary STEM Immersion Programs

    NASA Astrophysics Data System (ADS)

    Pearson, Roxanne N.

    In 2010, the President's Council of Advisors on Science and Technology recommended that eight hundred new STEM focused elementary and middle schools be established. Unfortunately, districts may be slow to implement STEM at the elementary level because they do not understand how to do so effectively (Zimny, 2017). School administrators need a framework for decision-making and supervisory feedback related to the process of managing these programs (Zimny, 2017). To support administrators in implementing elementary STEM immersion programs, this project explored three questions: What criteria are common among existing STEM immersion program rubrics? What criteria should be included in a comprehensive rubric for managing elementary STEM immersion programs at the district level? What do district documents show about how elementary STEM immersion programs develop, implement, and evaluate those programs? The team developed a comprehensive STEM program review instrument including criteria for effective elementary STEM curriculum and the professional development and administrative support necessary to implement such curriculum. These criteria were organized into three stages, including the planning and development of elementary STEM immersion programs, the implementation of these programs, and the evaluation of these programs after they had been implemented for a significant period of time. The team synthesized best practice indicators relevant to elementary STEM programs from existing K-12 guides, then validated those indicators against current best practice research and feedback from STEM education experts. District documents from seven elementary STEM immersion programs in Missouri and Colorado were examined using the team's rubric. Scores were higher in the areas of program planning, content alignment, and ongoing refinement of curriculum, and lower in the areas of professional development for professional skills and STEM-specific pedagogy, two-way communication with stakeholders, and data collection for program refinement. Scores were lowest for those schools with inadequate documentation of their program management processes. The team recommended districts institute a more rigorous documentation process for managing innovative programs such as STEM immersion. Communication plans should include procedures for two-way communication with all stakeholders. Data collection and refinement efforts should increase, as should professional development opportunities related to professional skills and STEM-specific pedagogy; this should include administrators.

  12. Plasma Immersion Ion Implantation with Solid Targets for Space and Aerospace Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, R. M.; Goncalves, J. A. N.; Ueda, M.

    2009-01-05

    This paper describes successful results obtained by a new type of plasma source, named as Vaporization of Solid Targets (VAST), for treatment of materials for space and aerospace applications, by means of plasma immersion ion implantation and deposition (PIII and D). Here, the solid element is vaporized in a high pressure glow discharge, being further ionized and implanted/deposited in a low pressure cycle, with the aid of an extra electrode. First experiments in VAST were run using lithium as the solid target. Samples of silicon and aluminum alloy (2024) were immersed into highly ionized lithium plasma, whose density was measuredmore » by a double Langmuir probe. Measurements performed with scanning electron microscopy (SEM) showed clear modification of the cross-sectioned treated silicon samples. X-ray photoelectron spectroscopy (XPS) analysis revealed that lithium was implanted/deposited into/onto the surface of the silicon. Implantation depth profiles may vary according to the condition of operation of VAST. One direct application of this treatment concerns the protection against radiation damage for silicon solar cells. For the case of the aluminum alloy, X-ray diffraction analysis indicated the appearance of prominent new peaks. Surface modification of A12024 by lithium implantation/deposition can lower the coefficient of friction and improve the resistance to fatigue of this alloy. Recently, cadmium was vaporized and ionized in VAST. The main benefit of this element is associated with the improvement of corrosion resistance of metallic substrates. Besides lithium and cadmium, VAST allows to performing PIII and D with other species, leading to the modification of the near-surface of materials for distinct purposes, including applications in the space and aerospace areas.« less

  13. Effect of inflammatory conditions and H2O2 on bare and coated Ti-6Al-4V surfaces: Corrosion behavior, metal ion release and Ca-P formation under long-term immersion in DMEM

    NASA Astrophysics Data System (ADS)

    Höhn, Sarah; Virtanen, Sannakaisa

    2015-12-01

    The surface oxide film and calcium-phosphate (Ca-P) formation on Ti-6Al-4V during long-term immersion in biological environments play a decisive role for the biocompatibility of the implant. Hence, the aim of the study was to evaluate the corrosion resistance, metal ion release and Ca-P formation in DMEM under physiological conditions at pH values of 7.4 and in comparison under simulated inflammatory conditions with pH 5 and in presence of H2O2. Furthermore, the influence of the immersion conditions was investigated on different surface treatments: on bare Ti-6Al-4V, after anodization, and for TiO2 nanoparticle (NP) and hydroxyapatite (HA)-incorporated TiO2-NP coatings. In the absence of H2O2, the impedance response indicated a stable thin oxide film and Ca-P formation after 28 days or 56 days depending on the coating, while under inflammatory conditions the Ca-P formation on the surface is time-delayed and dissolution of the anodized oxide layer as well as selective etching of the β-phase and phase boundaries in case of the bare alloy occur. Electrochemical impedance spectroscopy (EIS), however, indicates a good general corrosion behavior in all cases. The quantities of Ti, Al and V released from the bare and coated Ti-6Al-4V alloy markedly increased with decreasing pH (pH ≤ 5). Although the rapid increase of metal release was observed for all samples at pH 5, the quantities were significantly higher for the bare and anodized alloy than after coating with TiO2-NP or HA.

  14. Copper-Doped Bioactive Glass as Filler for PMMA-Based Bone Cements: Morphological, Mechanical, Reactivity, and Preliminary Antibacterial Characterization.

    PubMed

    Miola, Marta; Cochis, Andrea; Kumar, Ajay; Arciola, Carla Renata; Rimondini, Lia; Verné, Enrica

    2018-06-06

    To promote osteointegration and simultaneously limit bacterial contamination without using antibiotics, we designed innovative composite cements containing copper (Cu)-doped bioactive glass powders. Cu-doped glass powders were produced by a melt and quenching process, followed by an ion-exchange process in a Cu salt aqueous solution. Cu-doped glass was incorporated into commercial polymethyl methacrylate (PMMA)-based cements with different viscosities. The realized composites were characterized in terms of morphology, composition, leaching ability, bioactivity, mechanical, and antibacterial properties. Glass powders appeared well distributed and exposed on the PMMA surface. Composite cements showed good bioactivity, evidencing hydroxyapatite precipitation on the sample surfaces after seven days of immersion in simulated body fluid. The leaching test demonstrated that composite cements released a significant amount of copper, with a noticeable antibacterial effect toward Staphylococcus epidermidis strain. Thus, the proposed materials represent an innovative and multifunctional tool for orthopedic prostheses fixation, temporary prostheses, and spinal surgery.

  15. Stabilizing lithium metal using ionic liquids for long-lived batteries

    PubMed Central

    Basile, A.; Bhatt, A. I.; O'Mullane, A. P.

    2016-01-01

    Suppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid–electrolyte interphase that allows safe charge–discharge cycling of commercially applicable Li|electrolyte|LiFePO4 batteries for 1,000 cycles with Coulombic efficiencies >99.5%. The tailored solid–electrolyte interphase is prepared using a variety of electrolytes based on the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide room temperature ionic liquid containing lithium salts. The formation is both time- and lithium salt-dependant, showing dynamic morphology changes, which when optimized prevent dendrite formation and consumption of electrolyte during cycling. This work illustrates that a simple, effective and industrially applicable lithium metal pretreatment process results in a commercially viable cycle life for a lithium metal battery. PMID:27292652

  16. Ultracold collisions between Rb atoms and a Sr+ ion

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2015-05-01

    In last decade, a novel field emerged, in which ultracold atoms and ions in overlapping traps are brought into interaction. In contrast to the short ranged atom-atom interaction which scales as r-6, atom-ion potential persists for hundreds of μm's due to its lower power-law scaling - r-4. Inelastic collisions between the consistuents lead to spin and charge transfer and also to molecule formation. Elastic collisions control the energy transfer between the ion and the atoms. The study of collisions at the μK range has thus far been impeded by the effect of the ion's micromotion which limited collision energy to mK scale. Unraveling this limit will allow to investigate few partial wave and even S-wave collisions. Our system is capable of trapping Sr+ ions and Rb and Sr atoms and cooling them to their quantum ground state. Atoms and ions are trapped and cooled in separate chambers. Then, the atoms are transported using an optical conveyer belt to overlap the ions. In contrast to other experiments in this field where the atoms are used to sympathetic cool the ion, our system is also capable of ground state cooling the ion before immersing it into the atom cloud. By this method, we would be able to explore heating and cooling dynamics in the ultracold regime.

  17. Ion implantation and diamond-like coatings of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Malaczynski, G. W.; Hamdi, A. H.; Elmoursi, A. A.; Qiu, X.

    1997-04-01

    In an attempt to increase the wear resistance of some key automotive components, General Motors Research and Development Center initiated a study to determine the potential of surface modification as a means of improving the tribological properties of automotive parts, and to investigate the feasibility of mass producing such parts. This paper describes the plasma immersion ion implantation system that was designed for the study of various options for surface treatment, and it discusses bench testing procedures used for evaluating the surface-treated samples. In particular, both tribological and microstructural analyses are discussed for nitrogen implants and diamond-like hydrocarbon coatings of some aluminum alloys.

  18. The Neutralization of Ion-Rocket Beams

    NASA Technical Reports Server (NTRS)

    Kaufman, Harold R.

    1961-01-01

    The experimental ion-beam behavior obtained without neutralizers is compared with both simple collision theory and plasma-wave theory. This comparison indicates that plasma waves play an important part in beam behavior, although the present state of plasma-wave theory does not permit more than a qualitative comparison. The theories of immersed-emitter and electron-trap neutralizer operation are discussed; and, to the extent permitted by experimental data, the theory is compared with experimental results. Experimental data are lacking completely at the present time for operation in space. The results that might be expected in space and the means of simulating such operation in Earth-bound facilities, however, are discussed.

  19. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment.

    PubMed

    Xin, Yunchang; Huo, Kaifu; Tao, Hu; Tang, Guoyi; Chu, Paul K

    2008-11-01

    Various electrochemical approaches, including potentiodynamic polarization, open circuit potential evolution and electrochemical impedance spectroscopy (EIS), are employed to investigate the degradation behavior of biomedical magnesium alloy under the influence of aggressive ions, such as chloride, phosphate, carbonate and sulfate, in a physiological environment. The synergetic effects and mutual influence of these ions on the degradation behavior of Mg are revealed. Our results demonstrate that chloride ions can induce porous pitting corrosion. In the presence of phosphates, the corrosion rate decreases and the formation of pitting corrosion is significantly delayed due to precipitation of magnesium phosphate. Hydrogen carbonate ions are observed to stimulate the corrosion of magnesium alloy during the early immersion stage but they can also induce rapid passivation on the surface. This surface passivation behavior mainly results from the fast precipitation of magnesium carbonate in the corrosion product layer that can subsequently inhibit pitting corrosion completely. Sulfate ions are also found to stimulate magnesium dissolution. These results improve our understanding on the degradation mechanism of surgical magnesium in the physiological environment.

  20. The design of an electron gun switchable between immersed and Brillouin flowa)

    NASA Astrophysics Data System (ADS)

    Becker, R.; Kester, O.

    2012-02-01

    An electron gun, which can be switched from immersed flow to Brillouin flow during operation, may have advantages for charge breeders as well as for electron beam ion sources and traps (EBISTs). For EBISTs this allows to change the current density according to the repetition frequency and charge state, for charge breeders and EBISTs a lower current density in immersed flow provides higher acceptance for injected ions, while the higher current density in Brillouin flow results in shorter breeding times and a lower emittance for the extracted beam. Therefore, we have designed such a gun for an EBIS with 5 T central magnetic field and without the use of iron and moving the gun. The gun was placed in the axial fringing field of the 5 T solenoid in such a position that a gate valve can be placed between the gun and the cryostat to allow for simple maintenance. The field at the cathode surface turned out to be only 0.05 T, which is not enough to focus 50 A/cm2 at a few kV. However, if a small normal conducting solenoid is placed over the vacuum tube in position of the gun, a field of 0.1 T may be obtained. With this the use of LaB6 as cathode material results in a magnetic compression of 44 and therewith in a focused current density in the trap region of more than 2000 A/cm2. By reversing the current in the gun solenoid the cathode field can easily compensated to zero. By proper design of the electrodes and the compression region, the gun will be able to deliver a beam in Brillouin flow. While this is interesting by itself - remember the "super-compression" reported on CRYEBIS-I - any magnetic field between zero and the value for immersed flow will result in an electron beam with a wide range of adjustable high current densities. The design tools used have been INTMAG(C) for the calculation of magnetic fields, EGN2(C) for the simulation of the gun and ANALYSE(C) for detailed analysis of the results (for more information see www.egun-igun.com).

  1. The design of an electron gun switchable between immersed and Brillouin flow.

    PubMed

    Becker, R; Kester, O

    2012-02-01

    An electron gun, which can be switched from immersed flow to Brillouin flow during operation, may have advantages for charge breeders as well as for electron beam ion sources and traps (EBISTs). For EBISTs this allows to change the current density according to the repetition frequency and charge state, for charge breeders and EBISTs a lower current density in immersed flow provides higher acceptance for injected ions, while the higher current density in Brillouin flow results in shorter breeding times and a lower emittance for the extracted beam. Therefore, we have designed such a gun for an EBIS with 5 T central magnetic field and without the use of iron and moving the gun. The gun was placed in the axial fringing field of the 5 T solenoid in such a position that a gate valve can be placed between the gun and the cryostat to allow for simple maintenance. The field at the cathode surface turned out to be only 0.05 T, which is not enough to focus 50 A∕cm(2) at a few kV. However, if a small normal conducting solenoid is placed over the vacuum tube in position of the gun, a field of 0.1 T may be obtained. With this the use of LaB(6) as cathode material results in a magnetic compression of 44 and therewith in a focused current density in the trap region of more than 2000 A∕cm(2). By reversing the current in the gun solenoid the cathode field can easily compensated to zero. By proper design of the electrodes and the compression region, the gun will be able to deliver a beam in Brillouin flow. While this is interesting by itself--remember the "super-compression" reported on CRYEBIS-I--any magnetic field between zero and the value for immersed flow will result in an electron beam with a wide range of adjustable high current densities. The design tools used have been INTMAG(C) for the calculation of magnetic fields, EGN2(C) for the simulation of the gun and ANALYSE(C) for detailed analysis of the results (for more information see www.egun-igun.com).

  2. Long-term reproducibility of relative sensitivity factors obtained with CAMECA Wf

    NASA Astrophysics Data System (ADS)

    Gui, D.; Xing, Z. X.; Huang, Y. H.; Mo, Z. Q.; Hua, Y. N.; Zhao, S. P.; Cha, L. Z.

    2008-12-01

    As the wafer size continues to increase and the feature size of the integrated circuits (IC) continues to shrink, process control of IC manufacturing becomes ever more important to reduce the cost of failures caused by the drift of processes or equipments. Characterization tools with high precision and reproducibility are required to capture any abnormality of the process. Although Secondary ion mass spectrometry (SIMS) has been widely used in dopant profile control, it was reported that magnetic sector SIMS, compared to quadrupole SIMS, has lower short-term repeatability and long-term reproducibility due to the high extraction field applied between sample and extraction lens. In this paper, we demonstrate that CAMECA Wf can deliver high long-term reproducibility because of its high-level automation and improved design of immersion lens. The relative standard deviation (R.S.D.) of the relative sensitivity factors (RSF) of three typical elements, i.e., boron (B), phosphorous (P) and nitrogen (N), over 3 years are 3.7%, 5.5% and 4.1%, respectively. The high reproducibility results have a practical implication that deviation can be estimated without testing the standards.

  3. Formaldehyde gas sensor based on TiO2 thin membrane integrated with nano silicon structure

    NASA Astrophysics Data System (ADS)

    Zheng, Xuan; Ming, An-jie; Ye, Li; Chen, Feng-hua; Sun, Xi-long; Liu, Wei-bing; Li, Chao-bo; Ou, Wen; Wang, Wei-bing; Chen, Da-peng

    2016-07-01

    An innovative formaldehyde gas sensor based on thin membrane type metal oxide of TiO2 layer was designed and fabricated. This sensor under ultraviolet (UV) light emitting diode (LED) illumination exhibits a higher response to formaldehyde than that without UV illumination at low temperature. The sensitivities of the sensor under steady working condition were calculated for different gas concentrations. The sensitivity to formaldehyde of 7.14 mg/m3 is about 15.91 under UV illumination with response time of 580 s and recovery time of 500 s. The device was fabricated through micro-electro-mechanical system (MEMS) processing technology. First, plasma immersion ion implantation (PIII) was adopted to form black polysilicon, then a nanoscale TiO2 membrane with thickness of 53 nm was deposited by DC reactive magnetron sputtering to obtain the sensing layer. By such fabrication approaches, the nanoscale polysilicon presents continuous rough surface with thickness of 50 nm, which could improve the porosity of the sensing membrane. The fabrication process can be mass-produced for the MEMS process compatibility.

  4. In-vitro study of copper doped SiO2-CaO-P2O5 system for bioactivity and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas; Kaur, Harpreet; Arora, Daljit Singh

    2015-08-01

    Samples of the xCuO-(45-x)CaO-10P2O5-45SiO2 system (x varies from 0 to 4 mole%) have been synthesized for application as biomaterials to slow or inhibit the growth of living organisms (fungi and other pathogenic microorganisms) by the combination of sol-gel and co-precipitation processes. Prepared samples have been characterized by X-Ray Diffraction, Fourier Transform Infra-Red and Field Emission Scanning Electron Microscopy techniques before and after immersion in simulated body fluid. Antimicrobial activity of samples has been investigated against Staphylococcus aureus. Releasing of Cu2+and other ions in the simulated body fluid has been determined by Atomic Absorption Spectroscopy to ensure the use of prepared material as biomaterial with good antibacterial properties.

  5. Effect of different sterilization modes on the surface morphology, ion release, and bone reaction of retrieved micro-implants.

    PubMed

    El-Wassefy, Noha; El-Fallal, Abeer; Taha, Mahasen

    2015-01-01

    To compare as-received and sterilized micro-implants in order to assess the prospects of reusing them. Forty micro-implants from a single manufacturing lot were used in the study. Thirty were retrieved from patients after successful service in their mouth and with no signs of failure. The retrieved micro-implants were divided into three groups, according to method of sterilization: autoclave, gamma radiation, or ultraviolet radiation. All groups were subjected to scanning electron microscope analysis for surface morphology assessment. The specimens were immersed in a standard simulated body-fluid solution kept at 37°C in an incubator; the solution was then withdrawn at 24 hours and 30 days to evaluate aluminum and vanadium ion release by atomic absorption spectrophotometer in parts per billion. The micro-implants were then surgically implanted into the tibia of rabbits for a 1-month healing period, and the bone-implant blocks were processed for routine histologic examination. This study revealed that sterilized micro-implants had altered surface topography, different ion release values, and different histologic cell reactions than the as-received micro-implants. Within the limitations of this study, it can be concluded that retrieved self-drilling micro-implants have tip sharpness variations that require correction before insertion by bone drilling. The autoclave-sterilized micro-implants showed better histologic results than micro-implants sterilized by gamma or ultraviolet rays.

  6. Can nature make us more caring? Effects of immersion in nature on intrinsic aspirations and generosity.

    PubMed

    Weinstein, Netta; Przybylski, Andrew K; Ryan, Richard M

    2009-10-01

    Four studies examined the effects of nature on valuing intrinsic and extrinsic aspirations. Intrinsic aspirations reflected prosocial and other-focused value orientations, and extrinsic aspirations predicted self-focused value orientations. Participants immersed in natural environments reported higher valuing of intrinsic aspirations and lower valuing of extrinsic aspirations, whereas those immersed in non-natural environments reported increased valuing of extrinsic aspirations and no change of intrinsic aspirations. Three studies explored experiences of nature relatedness and autonomy as underlying mechanisms of these effects, showing that nature immersion elicited these processes whereas non-nature immersion thwarted them and that they in turn predicted higher intrinsic and lower extrinsic aspirations. Studies 3 and 4 also extended the paradigm by testing these effects on generous decision making indicative of valuing intrinsic versus extrinsic aspirations.

  7. In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy.

    PubMed

    Zheng, Y F; Gu, X N; Xi, Y L; Chai, D L

    2010-05-01

    Mg/Ca (1 wt.%, 5 wt.%, 10 wt.% Ca) composites were prepared from pure magnesium and calcium powders using the powder metallurgy method, aiming to enlarge the addition of Ca content without the formation of Mg(2)Ca. The microstructures, mechanical properties and cytotoxicities of Mg/Ca composite samples were investigated. The corrosion of Mg/Ca composites in Dulbecco's modified Eagle's medium (DMEM) for various immersion intervals was studied by electrochemical impedance spectroscopy measurements and environmental scanning electron microscope, with the concentrations of released Mg and Ca ions in DMEM for various immersion time intervals being measured. It was shown that the main constitutional phases were Mg and Ca, which were uniformly distributed in the Mg matrix. The ultimate tensile strength (UTS) and elongation of experimental composites decreased with increasing Ca content, and the UTS of Mg/1Ca composite was comparable with that of as-extruded Mg-1Ca alloy. The corrosion potential increased with increasing Ca content, whereas the current density and the impedance decreased. It was found that the protective surface film formed quickly at the initial immersion stage. With increasing immersion time, the surface film became compact, and the corrosion rate of Mg/Ca composites slowed down. The surface film consisted mainly of CaCO(3), MgCO(3)x3H(2)O, HA and Mg(OH)(2) after 72 h immersion in DMEM. Mg/1Ca and Mg/5Ca composite extracts had no significant toxicity (p>0.05) to L-929 cells, whereas Mg/10Ca composite extract induced approximately 40% reduced cell viability. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Influence of stress corrosion on the mechanical properties of laser-welded titanium.

    PubMed

    de Assis Ferreira, Nancy; Senna, Plinio Mendes; do Lago, Dalva Cristina Baptista; de Senna, Lilian Ferreira; Sampaio-Filho, Helio Rodrigues

    2016-03-01

    Whether laser-welded (LW) titanium can resist the stress corrosion produced by the combination of fluoride ions and stress in the oral environment is unknown. The purpose of this in vitro study was to investigate the influence of stress corrosion on the mechanical properties of LW titanium. Twenty-seven titanium bars (25×2 mm) with a circular cross-section were cut in half and laser-welded, while another 27 nonwelded (NW) bars were used as the control. Thirty bars were submitted to a flexural load of 480 N at 1 Hz and immersed in artificial saliva at pH 6 (S1) or in 1000 ppm fluoride-containing saliva at pH 6.0 (S2) or 2.0 (S3) at room temperature for up to 4000 cycles. After the stress corrosion simulation, the tensile strength and Vickers microhardness were determined (n=5). Twelve LW and NW bars were submitted to the corrosion immersion test media for 51 days (n=2) to determine polarization curves (n=2) in an artificial saliva media. The corroded surface was examined with scanning electron microscopy (SEM). The combination of fluoride and low pH significantly decreased the tensile strength of LW (P<.05). Stress corrosion did not affect the hardness of LW or NW (P>.05). NW bars immersed in S3 exhibited progressive surface dissolution, while LW bars spontaneously fractured at the welded area after 25 days of immersion in the same medium. SEM images demonstrated pitting corrosion without the presence of cracks in both groups immersed in S3. Stress corrosion caused by acidic fluoride-containing saliva and flexural load cycling decreased the tensile strength and hardness of LW titanium bars. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Effect of Inhibitor Agents Addition on Corrosion Resistance Performance of Titania Sol-Gel Coatings Applied on 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shanaghi, Ali; Chu, Paul K.; Moradi, Hadi

    Hybrid organic-inorganic coatings are deposited on 304 stainless steel substrates by the sol-gel technique to improve the corrosion resistance. A titania-based nanostructured hybrid sol-gel coating is impregnated with three different microencapsulated healing agents (inhibitors) including cerium, Benzotriazole (BTA), and 8-Hydroxyquinoline (8H). Field-emission scanning electron microscopy (FE-SEM) and electrochemical impedance spectroscopy (EIS) are performed to investigate the barrier performance properties. The optimum conditions to achieve corrosion protective coatings for 304 stainless steel were determined. The Nyquist plots demonstrate that the activation time of the coating containing 8H as an organic healing agent shows improved behavior when compared to other coatings including cerium and BTA. Cerium as an inorganic healing agent is second and BTA is third and minimum. An increase in the impedance parameters such as resistance and capacitance as a function of immersion time is achieved in a 3.5wt.% NaCl solution by using healing agents such as BTA. Actually, over the course of immersion, the barrier performance behavior of the coatings changes and reduction of the impedance observed from the coatings containing Ce and 8H discloses deterioration of the protection system after immersion for 96h of immersion in the 3.5% NaCl solution. However, after 96h of immersion time, the concentration of chloride ions is high and causes increase in defects, micro cracks, hole on the surface of hybrid titania nanostructured coating containing Ce and 8H by destruction of coating, and also hybrid titania nanostructured coating containing BTA; BTA is released from coating to improve the resistance of passive film, which is created on the surface.

  10. International Immersion in Counselor Education: A Consensual Qualitative Research Investigation

    ERIC Educational Resources Information Center

    Barden, Sejal M.; Cashwell, Craig S.

    2014-01-01

    This study used consensual qualitative research methodology to examine the phenomenon of international immersion on counselor education students' (N = 10) development and growth. Seven domains emerged from the data (cultural knowledge, empathy, personal and professional impact, process/reflection, relationships, personal characteristics, and…

  11. 21 CFR 114.80 - Processes and controls.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... food ingredients in acidified aqueous solutions. (ii) Immersion of the blanched food in acid solutions. Although immersion of food in an acid solution is a satisfactory method for acidification, care must be taken to ensure that the acid concentration is properly maintained. (iii) Direct batch acidification...

  12. 21 CFR 114.80 - Processes and controls.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... food ingredients in acidified aqueous solutions. (ii) Immersion of the blanched food in acid solutions. Although immersion of food in an acid solution is a satisfactory method for acidification, care must be taken to ensure that the acid concentration is properly maintained. (iii) Direct batch acidification...

  13. 21 CFR 114.80 - Processes and controls.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... food ingredients in acidified aqueous solutions. (ii) Immersion of the blanched food in acid solutions. Although immersion of food in an acid solution is a satisfactory method for acidification, care must be taken to ensure that the acid concentration is properly maintained. (iii) Direct batch acidification...

  14. 21 CFR 114.80 - Processes and controls.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... food ingredients in acidified aqueous solutions. (ii) Immersion of the blanched food in acid solutions. Although immersion of food in an acid solution is a satisfactory method for acidification, care must be taken to ensure that the acid concentration is properly maintained. (iii) Direct batch acidification...

  15. Screening of lipid composition for scalable fabrication of solvent free lipid microarrays

    NASA Astrophysics Data System (ADS)

    Ghazanfari, Lida; Lenhert, Steven

    2016-12-01

    Liquid microdroplet arrays on surfaces are a promising approach to the miniaturization of laboratory processes such as high throughput screening. The fluid nature of these droplets poses unique challenges and opportunities in their fabrication and application, particularly for the scalable integration of multiple materials over large areas and immersion into cell culture solution. Here we use pin spotting and nanointaglio printing to screen a library of lipids and their mixtures for their compatibility with these fabrication processes, as well as stability upon immersion into aqueous solution. More than 200 combinations of natural and synthetic oils composed of fatty acids, triglycerides, and hydrocarbons were tested for their pin-spotting and nanointaglio print quality and their ability to contain the fluorescent compound TRITC upon immersion in water. A combination of castor oil and hexanoic acid at the ratio of 1:1 (w/w) was found optimal for producing reproducible patterns that are stable upon immersion into water. This method is capable of large scale nano-materials integration.

  16. Hazardous fluid leak detector

    DOEpatents

    Gray, Harold E.; McLaurin, Felder M.; Ortiz, Monico; Huth, William A.

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  17. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments.

    PubMed

    Mutlu, Ilven; Oktay, Enver

    2013-04-01

    Highly porous 17-4 PH stainless steel foam for biomedical applications was produced by space holder technique. Metal release and weight loss from 17-4 PH stainless steel foams was investigated in simulated body fluid and artificial saliva environments by static immersion tests. Inductively coupled plasma-mass spectrometer was employed to measure the concentrations of various metal ions released from the 17-4 PH stainless steel foams into simulated body fluids and artificial saliva. Effect of immersion time and pH value on metal release and weight loss in simulated body fluid and artificial saliva were determined. Pore morphology, pore size and mechanical properties of the 17-4 PH stainless steel foams were close to human cancellous bone. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    PubMed

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. © 2013.

  19. Microtextured metals for stray-light suppression in the Clementine startracker

    NASA Technical Reports Server (NTRS)

    Johnson, E. A.

    1993-01-01

    Anodized blacks for suppressing stray light in optical systems can now be replaced by microscopically textured metal surfaces. An application of these black surfaces to the Clementine star-tracker navigational system, which will be launched in early 1994 to examine the Moon, en route to intercept an asteroid, is detailed. Rugged black surfaces with Lambertian BRDF less than 10(exp -2) srad(sup -1) are critical for suppressing stray light in the star-tracker optical train. Previously available materials spall under launch vibrations to contaminate mirrors and lenses. Microtextured aluminum is nearly as dark, but much less fragile. It is made by differential ion beam sputtering, which generates light-trapping pores and cones slightly smaller than the wavelength to be absorbed. This leaves a sturdy but light-absorbing surface that can survive challenging conditions without generating debris or contaminants. Both seeded ion beams and plasma immersion (from ECR plasmas) extraction can produce these microscopic textures without fragile interfaces. Process parameters control feature size, spacing, and optical effects (THR, BRDF). Both broad and narrow absorption bands can be engineered with tuning for specific wavelengths and applications. Examples are presented characterized by FTIR in reflection librators (0.95 normal emissivity), heat rejection, and enhanced nucleate boiling.

  20. Remarkable effect of halogenation of aromatic compounds on efficiency of nanowire formation through polymerization/crosslinking by high-energy single particle irradiation

    NASA Astrophysics Data System (ADS)

    Horio, Akifumi; Sakurai, Tsuneaki; Kayama, Kazuto; Lakshmi, G. B. V. S.; Kumar Avasthi, Devesh; Sugimoto, Masaki; Yamaki, Tetsuya; Chiba, Atsuya; Saito, Yuichi; Seki, Shu

    2018-01-01

    Irradiation of high-energy ion particles on organic films induced solid-state polymerization and crosslinking reactions of the materials along the ion trajectories, resulting in the formation of insoluble uniform nanowires with a precise diameter. The nanowires were isolated by the development process i.e. the irradiated film was immersed in organic solvents, and their morphology was visualized by atomic force microscopy. The target organic materials are 4-vinyltriphenylamine, poly(4-vinyltriphenylamine), and polystyrene derivatives with/without the partial substitutions by halogen atoms. It was found that 4-vinyltriphenylamines, in spite of their small molecular sizes, afforded nanowires more clearly than poly(4-vinyltriphenylamine)s. Moreover, the efficiency of demonstrated polymerization/crosslinking reactions obviously depends on the substituted halogen atom species. The averaged diameters of nanowires from bromo- or iodo- substituted 4-vinyltriphenylamine (9.3 and 9.4 nm, respectively) were larger than that obtained from simple 4-vinyltriphenylamine (6.8 nm). The remarkable effect of halogenation of aromatic compounds on the efficiency of the radiation-induced reactions was also observed for polystyrene derivatives. This contrast was considered to originate from the sum of the efficiency of elementary reactions including dissociative electron attachment.

  1. Cognitive factors associated with immersion in virtual environments

    NASA Technical Reports Server (NTRS)

    Psotka, Joseph; Davison, Sharon

    1993-01-01

    Immersion into the dataspace provided by a computer, and the feeling of really being there or 'presence', are commonly acknowledged as the uniquely important features of virtual reality environments. How immersed one feels appears to be determined by a complex set of physical components and affordances of the environment, and as yet poorly understood psychological processes. Pimentel and Teixeira say that the experience of being immersed in a computer-generated world involves the same mental shift of 'suspending your disbelief for a period of time' as 'when you get wrapped up in a good novel or become absorbed in playing a computer game'. That sounds as if it could be right, but it would be good to get some evidence for these important conclusions. It might be even better to try to connect these statements with theoretical positions that try to do justice to complex cognitive processes. The basic precondition for understanding Virtual Reality (VR) is understanding the spatial representation systems that localize our bodies or egocenters in space. The effort to understand these cognitive processes is being driven with new energy by the pragmatic demands of successful virtual reality environments, but the literature is largely sparse and anecdotal.

  2. Water depth effects on impact loading, kinematic and physiological variables during water treadmill running.

    PubMed

    Macdermid, Paul W; Wharton, Josh; Schill, Carina; Fink, Philip W

    2017-07-01

    The purpose of this study was to compare impact loading, kinematic and physiological responses to three different immersion depths (mid-shin, mid-thigh, and xiphoid process) while running at the same speed on a water based treadmill. Participants (N=8) ran on a water treadmill at three depths for 3min. Tri-axial accelerometers were used to identify running dynamics plus measures associated with impact loading rates, while heart rate data were logged to indicate physiological demand. Participants had greater peak impact accelerations (p<0.01), greater impact loading rates (p<0.0001), greater stride frequency (p<0.05), shorter stride length (p<0.01), and greater rate of acceleration development at toe-off (p<0.0001) for the mid-shin and mid-thigh compared to running immersed to the xiphoid process. Physiological effort determined by heart rate was also significantly less (p<0.0001) when running immersed to the xiphoid process. Water immersed treadmill running above the waistline alters kinematics of gait, reduces variables associated with impact, while decreasing physiological demand compared to depths below the waistline. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Top coat or no top coat for immersion lithography?

    NASA Astrophysics Data System (ADS)

    Stepanenko, N.; Kim, Hyun-Woo; Kishimura, S.; Van Den Heuvel, D.; Vandenbroeck, N.; Kocsis, M.; Foubert, P.; Maenhoudt, M.; Ercken, M.; Van Roey, F.; Gronheid, R.; Pollentier, I.; Vangoidsenhoven, D.; Delvaux, C.; Baerts, C.; O'Brien, S.; Fyen, W.; Wells, G.

    2006-03-01

    Since the moment immersion lithography appeared in the roadmaps of IC manufacturers, the question whether to use top coats has become one of the important topics for discussions. The top coats used in immersion lithography have proved to serve as good protectors from leaching of the resist components (PAGs, bases) into the water. However their application complicates the process and may lead to two side effects. First, top coats can affect the process window and resist profile depending on the material's refractive index, thickness, acidity, chemical interaction with the resist and the soaking time. Second, the top coat application may increase the total amount of defects on the wafer. Having an immersion resist which could work without the top coat would be a preferable solution. Still, it is quite challenging to make such a resist as direct water/resist interaction may also result in process window changes, CD variations, generation of additional defects. We have performed a systematic evaluation of a large number of immersion resist and top coat combinations, using the ASML XT:1250Di scanner at IMEC. The samples for the experiments were provided by all the leading resist and top coat suppliers. Particular attention was paid to how the resist and top coat materials from different vendors interacted with each other. Among the factors which could influence the total amount of defects or CD variations on the wafer were: the material's dynamic contact angle and its interaction with the scanner stage speed, top coat thickness and intermixing layer formation, water uptake and leaching. We have examined the importance of all mentioned factors, using such analytical techniques as Resist Development Analyser (RDA), Quartz Crystal Microbalance (QCM), Mass Spectroscopy (MS) and scatterometry. We have also evaluated the influence of the pre- and pos- exposure rinse processes on the defectivity. In this paper we will present the data on imaging and defectivity performance of the resists with and without the use of top coats. So far we can conclude that top coat/resist approach used in immersion lithography needs some more improvements (i.e. process, materials properties) in order to be implemented in high volume manufacturing.

  4. Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 2: optimisation of coating properties.

    PubMed

    Tsui, Y C; Doyle, C; Clyne, T W

    1998-11-01

    Heat treatment and the introduction of a Ti bond coat have been applied to hydroxyapatite (HA) coatings sprayed using different plasma powers and gas mixtures. Attempts were made in this way to achieve optimal coating properties for orthopaedic implants. In particular, the effects on the degree of crystallinity, the adhesion, the OH ion content and the purity were evaluated. Heat treatment at 700 C for 1 h in air proved to be effective in increasing the crystallinity, regaining the OH- ion and removing other non-HA compounds, although it caused a significant decrease in the degree of adhesion (interfacial fracture toughness) for those specimens sprayed at high powers. This heat treatment was found to induce significant transformation of amorphous HA to the crystalline form, while not detrimentally changing the properties of the underlying Ti-6Al-4V substrates. Precoating with a 100 microm Ti layer increased the adhesion of the HA coatings on Ti-6Al-4V substrates, primarily by providing a rougher surface and promoting better mechanical interlocking. Changes in coating properties during immersion in biological fluids were also studied and were found to depend critically on the chemical composition of the fluids. Small precipitates formed on the coating surfaces when immersed in Ringers solution. These might account for the apparent drop in the degree of crystallinity when measured using X-ray diffraction. A significant drop in the interfacial adhesion was found for those coatings sprayed at high powers. This could be offset by prior precoating with a titanium bond coat and suitable heat treatment. In summary, the following processing sequence is suggested in order to achieve optimum coating properties: precoating the substrate with a layer of Ti (approximately 100 microm), spraying HA at a sufficiently high-power level (depending on particle size and gas mixture) and heat treatment at 700 degrees C for 1 h in air.

  5. Generation of magneto-immersed electron beams

    NASA Astrophysics Data System (ADS)

    Pikin, A.; Raparia, D.

    2018-05-01

    There are many applications of electron beams in accelerator facilities: for electron coolers, electron lenses, and electron beam ion sources (EBIS) to mention a few. Most of these applications require magnetic compression of the electron beam to reduce the beam radius with the goal of either matching the circulating ion beam (electron lenses and electron coolers) or increasing the ionization capability for the production of highly charged ions (EBIS). The magnetic compression of the electron beam comes at a cost of increasing share of the transverse component of energy and therefore increased angles of the electron trajectories to the longitudinal axis. Considering the effect of the magnetic mirror, it is highly desirable to produce a laminar electron beam in the electron gun. The analysis of electron guns with different configurations is given in this paper with emphasis on generating laminar electron beams.

  6. Composition of chitosan-hydroxyapatite-collagen composite scaffold evaluation after simulated body fluid immersion as reconstruction material

    NASA Astrophysics Data System (ADS)

    Verisqa, F.; Triaminingsih, S.; Corputty, J. E. M.

    2017-08-01

    Hydroxyapatite (HA) formation is one of the most important aspects of bone regeneration. Because domestically made chitosan-hydroxyapatite-collagen composite scaffolding from crab shell and bovine bone and tendon has potential as a maxillofacial reconstruction material, the material’s HA-forming ability requires evaluation. The aim of this research is to investigate chitosan-hydroxyapatite-collagen composite scaffold’s potential as a maxillofacial reconstruction material by observing the scaffold’s compositional changes. Scaffold specimens were immersed in 37°C simulated body fluid (SBF) for periods of 2, 4, 6, and 8 days. Scaffold composition was then evaluated by using energy dispersive spectroscopy (EDS). The calcium (Ca) and phosphorus (P) percentages of the scaffold were found to increase following SBF immersion. The high Ca/P ratio (3.82) on the scaffold indicated HA formation. Ion exchange played a significant role in the increased percentages of Ca and P, which led to new HA layer formation. The scaffold’s HA acted as a nucleation site of Ca and P from the SBF, with collagen and chitosan as the scaffold’s matrix. Chitosan-hydroxyapatite-collagen composite scaffold shows potential as a maxillofacial reconstruction material, since its composition favors HA formation.

  7. Corrosion of RoHS-Compliant Surface Finishes in Corrosive Mixed Flowing Gas Environments

    NASA Astrophysics Data System (ADS)

    Hannigan, K.; Reid, M.; Collins, M. N.; Dalton, E.; Xu, C.; Wright, B.; Demirkan, K.; Opila, R. L.; Reents, W. D.; Franey, J. P.; Fleming, D. A.; Punch, J.

    2012-03-01

    Recently, the corrosion resistance of printed wiring board (PWB) finishes has generated considerable interest due to field failures observed in various parts of the world. This study investigates the corrosion issues associated with the different lead-free PWB surface finishes. Corrosion products on various PWB surface finishes generated in mixed flowing gas (MFG) environments were studied, and analysis techniques such as scanning electron microscopy, energy-dispersive x-ray, x-ray diffraction, focused ion beam, and scanning Auger microscopy were used to quantify the corrosion layer thickness and determine the composition of corrosion products. The corrosion on organic solderability preservative samples shows similar corrosion products to bare copper and is mainly due to direct attack of copper traces by corrosive gases. The corrosion on electroless nickel immersion gold occurs primarily through the porosity in the film and is accelerated by the galvanic potential between gold and copper; similar results were observed on immersion silver. Immersion tin shows excellent corrosion resistance due to its inherent corrosion resistance in the MFG environment as well as the opposite galvanic potential between tin and copper compared with gold or silver and copper.

  8. Reductive spectrophotometry of divalent tin sensitization on soda lime glass

    NASA Astrophysics Data System (ADS)

    Bejugam, Vinith; Wei, Xingfei; Roper, D. Keith

    2016-07-01

    Rapid and facile evaluation of tin (II) sensitization could lead to improved understanding of metal deposition in electroless (EL) plating. This report used a balanced redox reaction between 3,3‧,5,5‧-tetramethylbenzidine dihydrochloride (TMB-HCL) and N-bromosuccinimide (NBS) to evaluate effects of sensitization conditions (i.e., sensitization time, analyte concentration, aqueous immersion, and acid content) on the accumulated mass of surface-associated divalent tin ion. The accumulated mass of tin (II) increased as the sensitization time increased up to 30 s in proportion to aqueous tin (II) chloride concentrations between 2.6 and 26 mM at a trifluoroacetic acid (TFA) content of 68 mM. The average mass peaked at 7.3 nanomoles (nmol) per cm2 after a 5 s aqueous immersion post-sensitization, and then decreased with increasing aqueous immersion post-sensitization. The total average tin (II) + tin (IV) accumulated on soda lime glass measured by inductively coupled plasma optical emission spectrometry (ICP-OES) was 17% higher at 30 s sensitization, suggesting a fraction of the tin (II) present may have oxidized to tin (IV). These results indicated that in situ spectrophotometric evaluation of tin (II) could support development of EL plating for electronics, catalysis, and solar cells.

  9. Proliferation and differentiation of osteoblastic cells on titanium modified by ammonia plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Li, Bin; Sun, Junying; Li, Hongwei; Wang, Bing; Zhang, Shailin

    2012-03-01

    We report here a new method of titanium surface modification through ammonia (NH3) plasma immersion ion implantation (PIII) technique and its effect on the cellular behaviors of MC3T3-E1 osteoblastic cells. The NH3 PIII-treated titanium substrates (NH3-Ti) were characterized by X-ray photoelectron (XPS), which showed that NH3-Ti had a nitrogen-rich surface. However, there was no significant difference between the surface morphology of NH3-Ti and unmodified Ti. When MC3T3-E1 cells were cultured on NH3-Ti substrates, it was found that cell proliferation was accelerated at 4 and 7 days of culture. Meanwhile, cell differentiation was evaluated using type I collagen (COL I), osteocalcin (OC) and bone sialoprotein (BSP) as differentiation markers. It was found that expression of COL I and OC genes was up-regulated on NH3-Ti substrates. However, no significant difference was found in BSP gene expression between NH3-Ti and unmodified Ti substrates. Therefore, findings from this study indicate that surface modification of titanium through NH3 PIII favors osteoblastic proliferation and differentiation and as a result, it may be used to improve the biocompatibility of Ti implants in vivo.

  10. Substantivity of Ag-Ca-Si mesoporous nanoparticles on dentin and its ability to inhibit Enterococcus faecalis.

    PubMed

    Fan, Wei; Wu, Yujie; Ma, Tengjiao; Li, Yanyun; Fan, Bing

    2016-01-01

    The main purpose of this study was to investigate the substantivity of Ag-Ca-Si mesoporous nanoparticles (Ag-MCSNs) on dentin and its residual antibacterial effects against Enterococcus faecalis. Ag-MCSNs were fabricated and characterized, ion release profile and pH were tested, and the ability to inhibit planktonic E. faecalis as well as the cytotoxicity was evaluated. Dentin slices were medicated with Ca(OH)2 paste, 2 % chlorhexidine gel and Ag-MCSNs paste for 7 days and then irrigated. Dentin slices were then immersed in E. faecalis suspension for 6 days and then transferred to fresh brain heart infusion solution. The optical density value within 10 h after immersing and transferring were measured and compared among groups. Results indicated that Ag-MCSNs showed high pH, sustained Ag(+)-Ca(2+)-SiO3 (2-) ion release, and high substantivity on dentin. The Ag-MCSNs exhibited strong antibacterial effects against planktonic E. faecalis and much better residual inhibition effects against E. faecalis growth on dentin than Ca(OH)2 paste (P < 0.05). The Ag-MCSNs showed excellent antibacterial ability against E. faecalis and high substantivity on dentin, which might be developed to a new effective intra-canal medicament for human teeth.

  11. French immersion experience and reading skill development in at-risk readers.

    PubMed

    Kruk, Richard S; Reynolds, Kristin A A

    2012-06-01

    We tracked the developmental influences of exposure to French on developing English phonological awareness, decoding and reading comprehension of English-speaking at-risk readers from Grade 1 to Grade 3. Teacher-nominated at-risk readers were matched with not-at-risk readers in French immersion and English language programs. Exposure to spoken French phonetic and syllabic forms and to written French orthographic and morphological forms by children attending French immersion programs was expected to promote phonological, decoding and reading comprehension achievement. Growth in all outcomes was found, with children in immersion experiencing higher final status in phonological awareness and more rapid growth and higher final status in decoding, using multilevel modeling. At-risk readers in French immersion experienced faster growth and higher final status in reading comprehension. Benefits to reading of exposure to an additional language are discussed in relation to cross-language transfer, phonological grain size and enhanced executive control processes.

  12. Bilayer lift-off process for aluminum metallization

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas E.; Korolev, Konstantin A.; Crow, Nathaniel A.

    2015-01-01

    Recently published reports in the literature for bilayer lift-off processes have described recipes for the patterning of metals that have recommended metal-ion-free developers, which do etch aluminum. We report the first measurement of the dissolution rate of a commercial lift-off resist (LOR) in a sodium-based buffered commercial developer that does not etch aluminum. We describe a reliable lift-off recipe that is safe for multiple process steps in patterning thin (<100 nm) and thick aluminum devices with micron-feature sizes. Our patterning recipe consists of an acid cleaning of the substrate, the bilayer (positive photoresist/LOR) deposition and development, the sputtering of the aluminum film along with a palladium capping layer and finally, the lift-off of the metal film by immersion in the LOR solvent. The insertion into the recipe of postexposure and sequential develop-bake-develop process steps are necessary for an acceptable undercut. Our recipe also eliminates any need for accompanying sonication during lift-off that could lead to delamination of the metal pattern from the substrate. Fine patterns were achieved for both 100-nm-thick granular aluminum/palladium bilayer bolometers and 500-nm-thick aluminum gratings with 6-μm lines and 4-μm spaces.

  13. Field-driven ion migration against dead-stop collisional braking

    NASA Astrophysics Data System (ADS)

    Grzesik, J. A.

    1988-02-01

    The steady-state migration of ions, driven by a uniform electric field against full-stop collisions, is investigated in some detail. The required phase-space distribution is obtained very easily from Boltzmann's equation together with explicit recognition of energy conservation and population balance for the stagnant ion pool. We go on to decompose this aggregate solution into ion tiers classified by the number of background impacts previously endured. Such a decomposition permits us to detect the presence of Poisson statistics (as to collision number) lurking within the composite, thermalized Maxwellian, and likewise also a multiple-scattering hierarchy having the maiden, first-flight distribution for its natural kernel. Scattering-sequence accounting, in particular, allows a quantitative (even though unwieldy) distinction to be made between ions of varying residence times. A model of this sort is motivated by the technique of ion implantation through sample immersion within a plasma at higher electric potential. Numerical consequences of the solution obtained here reveal that both ion density and average kinetic energy relax to their terminal values within just a few mean free-path lengths. Such modest scaling of plasma-sheath extent evidently carries a beneficial implication for the technological ease with which surface properties (such as metal corrosion resistance and hardness) remain open to improvement via ion bombardment.

  14. Characterization of the internal ion environment of biofilms based on charge density and shape of ion.

    PubMed

    Kurniawan, Andi; Tsuchiya, Yuki; Eda, Shima; Morisaki, Hisao

    2015-12-01

    Biofilm polymers contain both electrically positively and negatively charged sites. These charged sites enable the biofilm to trap and retain ions leading to an important role of biofilm such as nutrient recycling and pollutant purification. Much work has focused on the ion-exchange capacity of biofilms, and they are known to adsorb ions through an exchange mechanism between the ions in solution and the ions adsorbed to the charged sites on the biofilm polymer. However, recent studies suggest that the adsorption/desorption behavior of ions in a biofilm cannot be explained solely by this ion exchange mechanism. To examine the possibility that a substantial amount of ions are held in the interstitial region of the biofilm polymer by an electrostatic interaction, intact biofilms formed in a natural environment were immersed in distilled water and ion desorption was investigated. All of the detected ion species were released from the biofilms over a short period of time, and very few ions were subsequently released over more time, indicating that the interstitial region of biofilm polymers is another ion reserve. The extent of ion retention in the interstitial region of biofilms for each ion can be determined largely by charge density, |Z|/r, where |Z| is the ion valence as absolute value and r is the ion radius. The higher |Z|/r value an ion has, the stronger it is retained in the interstitial region of biofilms. Ion shape is also a key determinant of ion retention. Spherical and non-spherical ions have different correlations between the condensation ratio and |Z|/r. The generality of these findings were assured by various biofilm samples. Thus, the internal regions of biofilms exchange ions dynamically with the outside environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Highly immersive virtual reality laparoscopy simulation: development and future aspects.

    PubMed

    Huber, Tobias; Wunderling, Tom; Paschold, Markus; Lang, Hauke; Kneist, Werner; Hansen, Christian

    2018-02-01

    Virtual reality (VR) applications with head-mounted displays (HMDs) have had an impact on information and multimedia technologies. The current work aimed to describe the process of developing a highly immersive VR simulation for laparoscopic surgery. We combined a VR laparoscopy simulator (LapSim) and a VR-HMD to create a user-friendly VR simulation scenario. Continuous clinical feedback was an essential aspect of the development process. We created an artificial VR (AVR) scenario by integrating the simulator video output with VR game components of figures and equipment in an operating room. We also created a highly immersive VR surrounding (IVR) by integrating the simulator video output with a [Formula: see text] video of a standard laparoscopy scenario in the department's operating room. Clinical feedback led to optimization of the visualization, synchronization, and resolution of the virtual operating rooms (in both the IVR and the AVR). Preliminary testing results revealed that individuals experienced a high degree of exhilaration and presence, with rare events of motion sickness. The technical performance showed no significant difference compared to that achieved with the standard LapSim. Our results provided a proof of concept for the technical feasibility of an custom highly immersive VR-HMD setup. Future technical research is needed to improve the visualization, immersion, and capability of interacting within the virtual scenario.

  16. Langmuir-Probe Measurements in Flowing-Afterglow Plasmas

    NASA Technical Reports Server (NTRS)

    Johnsen, R.; Shunko, E. V.; Gougousi, T.; Golde, M. F.

    1994-01-01

    The validity of the orbital-motion theory for cylindrical Langmuir probes immersed in flowing- afterglow plasmas is investigated experimentally. It is found that the probe currents scale linearly with probe area only for electron-collecting but not for ion-collecting probes. In general, no agreement is found between the ion and electron densities derived from the probe currents. Measurements in recombining plasmas support the conclusion that only the electron densities derived from probe measurements can be trusted to be of acceptable accuracy. This paper also includes a brief derivation of the orbital-motion theory, a discussion of perturbations of the plasma by the probe current, and the interpretation of plasma velocities obtained from probe measurements.

  17. Electromagnetic micropores: fabrication and operation.

    PubMed

    Basore, Joseph R; Lavrik, Nickolay V; Baker, Lane A

    2010-12-21

    We describe the fabrication and characterization of electromagnetic micropores. These devices consist of a micropore encompassed by a microelectromagnetic trap. Fabrication of the device involves multiple photolithographic steps, combined with deep reactive ion etching and subsequent insulation steps. When immersed in an electrolyte solution, application of a constant potential across the micropore results in an ionic current. Energizing the electromagnetic trap surrounding the micropore produces regions of high magnetic field gradients in the vicinity of the micropore that can direct motion of a ferrofluid onto or off of the micropore. This results in dynamic gating of the ion current through the micropore structure. In this report, we detail fabrication and characterize the electrical and ionic properties of the prepared electromagnetic micropores.

  18. Comparison of metal ion release from different bracket archwire combinations: an in vitro study.

    PubMed

    Karnam, Srinivas Kumar; Reddy, A Naveen; Manjith, C M

    2012-05-01

    The metal ion released from the orthodontic appliance may cause allergic reactions particularly nickel and chromium ions. Hence, this study was undertaken to determine the amount of nickel, chromium, copper, cobalt and iron ions released from simulated orthodontic appliance made of new archwires and brackets. Sixty sets of new archwire, band material, brackets and ligature wires were prepared simulating fixed orthodontic appliance. These sets were divided into four groups of fifteen samples each. Group 1: Stainless steel rectangular archwires. Group 2: Rectangular NiTi archwires. Group 3: Rectangular copper NiTi archwires. Group 4: Rectangular elgiloy archwires. These appliances were immersed in 50 ml of artificial saliva solution and stored in polypropylene bottles in the incubator to simulate oral conditions. After 90 days the solution were tested for nickel, chromium, copper, cobalt and iron ions using atomic absorption spectrophotometer. Results showed that high levels of nickel ions were released from all four groups, compared to all other ions, followed by release of iron ion levels. There is no significant difference in the levels of all metal ions released in the different groups. The study confirms that the use of newer brackets and newer archwires confirms the negligible release of metal ions from the orthodontic appliance. The measurable amount of metals, released from orthodontic appliances in artificial saliva, was significantly below the average dietary intake and did not reach toxic concentrations.

  19. Fast ion transport at a gas-metal interface

    DOE PAGES

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-11-06

    Fast ion transport and the resulting fusion yield reduction are computed at a gas-metal interface. The extent of fusion yield reduction is observed to depend sensitively on the charge state of the surrounding pusher material and the width of the atomically mixed region. These sensitivities suggest that idealized boundary conditions often implemented at the gas-pusher interface for the purpose of estimating fast ion loss will likely overestimate fusion reactivity reduction in several important limits. Additionally, the impact of a spatially complex material interface is investigated by considering a collection of droplets of the pusher material immersed in a DT plasma.more » It is found that for small Knudsen numbers, the extent of fusion yield reduction scales with the surface area of the material interface. As the Knudsen number is increased, but, the simple surface area scaling is broken, suggesting that hydrodynamic mix has a nontrivial impact on the extent of fast ion losses.« less

  20. A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions.

    PubMed

    Mäckel, V; Meissl, W; Ikeda, T; Clever, M; Meissl, E; Kobayashi, T; Kojima, T M; Imamoto, N; Ogiwara, K; Yamazaki, Y

    2014-01-01

    We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He(2+). In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 1-2 μm, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45°, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a μm(3) resolution, while monitoring the target in real time during and after irradiation.

  1. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  2. Electrostatic ion-cyclotron waves in a nonuniform magnetic field

    NASA Technical Reports Server (NTRS)

    Cartier, S. L.; Dangelo, N.; Merlino, R. L.

    1985-01-01

    The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f is approximately greater than fci, where fci is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism.

  3. Negative-hydrogen-ion production from a nanoporous 12CaO • 7Al2O3 electride surface

    NASA Astrophysics Data System (ADS)

    Sasao, Mamiko; Moussaoui, Roba; Kogut, Dmitry; Ellis, James; Cartry, Gilles; Wada, Motoi; Tsumori, Katsuyoshi; Hosono, Hideo

    2018-06-01

    A high production rate of negative hydrogen ions (H‑) was observed from a nanoporous 12CaO • 7Al2O3 (C12A7) electride surface immersed in hydrogen/deuterium low-pressure plasmas. The target was negatively biased at 20–130 V, and the target surface was bombarded by H3 + ions from the plasma. The production rate was compared with that from a clean molybdenum surface. Using the pseudo-exponential work-function dependence of the H‑ production rate, the total H‑ yield from the C12A7 electride surface bombarded at 80 V was evaluated to be 25% of that from a cesiated molybdenum surface with the lowest work-function. The measured H‑ energy spectrum indicates that the major production mechanism is desorption by sputtering. This material has potential to be used as a production surface of cesium-free negative ion sources for accelerators, heating beams in nuclear fusion, and surface modification for industrial applications.

  4. Effects of nanoparticle heating on the structure of a concentrated aqueous salt solution.

    PubMed

    Sindt, Julien O; Alexander, Andrew J; Camp, Philip J

    2017-12-07

    The effects of a rapidly heated nanoparticle on the structure of a concentrated aqueous salt solution are studied using molecular dynamics simulations. A diamond-like nanoparticle of radius 20 Å is immersed in a sodium-chloride solution at 20% above the experimental saturation concentration and equilibrated at T = 293 K and P = 1 atm. The nanoparticle is then rapidly heated to several thousand degrees Kelvin, and the system is held under isobaric-isoenthalpic conditions. It is observed that after 2-3 ns, the salt ions are depleted far more than water molecules from a proximal zone 15-25 Å from the nanoparticle surface. This leads to a transient reduction in molality in the proximal zone and an increase in ion clustering in the distal zone. At longer times, ions begin to diffuse back into the proximal zone. It is speculated that the formation of proximal and distal zones, and the increase in ion clustering, plays a role in the mechanism of nonphotochemical laser-induced nucleation.

  5. Effects of nanoparticle heating on the structure of a concentrated aqueous salt solution

    NASA Astrophysics Data System (ADS)

    Sindt, Julien O.; Alexander, Andrew J.; Camp, Philip J.

    2017-12-01

    The effects of a rapidly heated nanoparticle on the structure of a concentrated aqueous salt solution are studied using molecular dynamics simulations. A diamond-like nanoparticle of radius 20 Å is immersed in a sodium-chloride solution at 20% above the experimental saturation concentration and equilibrated at T = 293 K and P = 1 atm. The nanoparticle is then rapidly heated to several thousand degrees Kelvin, and the system is held under isobaric-isoenthalpic conditions. It is observed that after 2-3 ns, the salt ions are depleted far more than water molecules from a proximal zone 15-25 Å from the nanoparticle surface. This leads to a transient reduction in molality in the proximal zone and an increase in ion clustering in the distal zone. At longer times, ions begin to diffuse back into the proximal zone. It is speculated that the formation of proximal and distal zones, and the increase in ion clustering, plays a role in the mechanism of nonphotochemical laser-induced nucleation.

  6. Release of metal ions from fixed orthodontic appliance: an in vitro study in continuous flow system.

    PubMed

    Mikulewicz, Marcin; Chojnacka, Katarzyna; Wołowiec, Paulina

    2014-01-01

    To evaluate the release of metal ions from fixed orthodontic appliances. A new system for in vitro testing of dental materials was constructed and consisted of a thermostatic glass reactor that enabled immersion of the studied material. Experimental conditions reflected the human oral cavity, with a temperature of 37°C and a saliva flow rate of 0.5mL/min. The simulated fixed orthodontic appliance made of stainless steel was evaluated. Sampling was performed at several time points during the 28-day study, and the metal ion concentration was determined by inductively coupled plasma optical emission spectrometry. The total mass of released metal ions from the appliance during 4 weeks of the experiment was as follows nickel 18.7 μg, chromium 5.47 μg, copper 31.3 μg. The estimated doses of nickel, chromium, and copper determined by extrapolation of experimental data released during the treatment period were far below the toxic dose to humans. This shows that orthodontic treatment might not be a significant source of exposure to these metal ions.

  7. Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Henan; Zheng, Yang; Li, Yan; Jiang, Chengbao

    2017-05-01

    Pure Fe was surface-modified by Zn ion implantation to improve the biodegradable behavior and cytocompatibility. Surface topography, chemical composition, corrosion resistance and cytocompatibility were investigated. Atomic force microscopy, auger electron spectroscopy and X-ray photoelectron spectroscopy results showed that Zn was implanted into the surface of pure Fe in the depth of 40-60 nm and Fe2O3/ZnO oxides were formed on the outmost surface. Electrochemical measurements and immersion tests revealed an improved degradable behavior for the Zn-implanted Fe samples. An approximately 12% reduction in the corrosion potential (Ecorr) and a 10-fold increase in the corrosion current density (icorr) were obtained after Zn ion implantation with a moderate incident ion dose, which was attributed to the enhanced pitting corrosion. The surface free energy of pure Fe was decreased by Zn ion implantation. The results of direct cell culture indicated that the short-term (4 h) cytocompatibility of MC3T3-E1 cells was promoted by the implanted Zn on the surface.

  8. 3D silicon shapes through bulk nano structuration by focused ion beam implantation and wet etching

    NASA Astrophysics Data System (ADS)

    Salhi, Billel; Troadec, David; Boukherroub, Rabah

    2017-05-01

    The work presented in this paper concerns the synthesis of silicon (Si) 2D and 3D nanostructures using the delayed effect, caused by implanted Ga ions, on the dissolution of Si in aqueous solutions of tetramethylammonium hydroxide (TMAH). The crystalline silicon substrates (100) are first cleaned and then hydrogenated by immersion in an aqueous solution of hydrofluoric acid. The ion implantation is then carried out by a focused ion beam by varying the dose and the exposure time. Chemical etching in aqueous solutions of TMAH at 80 °C leads to the selective dissolution of the Si planes not exposed to the ions. The preliminary results obtained in the laboratory made it possible to optimize the experimental conditions for the synthesis of 2D and 3D nanoobjects of controlled shape and size. Analysis by transmission electron microscopy and energy dispersive x-ray showed the amorphous nature of the nanostructures obtained and the presence of 5%-20% Ga in these nanoobjects. The first experiments of recrystallization by rapid thermal annealing allowed to reconstitute the crystal structure of these nanoobjects.

  9. 3D silicon shapes through bulk nano structuration by focused ion beam implantation and wet etching.

    PubMed

    Salhi, Billel; Troadec, David; Boukherroub, Rabah

    2017-05-19

    The work presented in this paper concerns the synthesis of silicon (Si) 2D and 3D nanostructures using the delayed effect, caused by implanted Ga ions, on the dissolution of Si in aqueous solutions of tetramethylammonium hydroxide (TMAH). The crystalline silicon substrates (100) are first cleaned and then hydrogenated by immersion in an aqueous solution of hydrofluoric acid. The ion implantation is then carried out by a focused ion beam by varying the dose and the exposure time. Chemical etching in aqueous solutions of TMAH at 80 °C leads to the selective dissolution of the Si planes not exposed to the ions. The preliminary results obtained in the laboratory made it possible to optimize the experimental conditions for the synthesis of 2D and 3D nanoobjects of controlled shape and size. Analysis by transmission electron microscopy and energy dispersive x-ray showed the amorphous nature of the nanostructures obtained and the presence of 5%-20% Ga in these nanoobjects. The first experiments of recrystallization by rapid thermal annealing allowed to reconstitute the crystal structure of these nanoobjects.

  10. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar

    PubMed Central

    Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin

    2018-01-01

    This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER. PMID:29621188

  11. Effect of cow and soy milk on enamel hardness of immersed teeth

    NASA Astrophysics Data System (ADS)

    Widanti, H. A.; Herda, E.; Damiyanti, M.

    2017-08-01

    Cow milk and soy milk have different mineral contents and this can affect the tooth remineralization process. The aim of this study was to determine the effect of cow and soy milk on immersed teeth after demineralization. Twenty-one specimens, of human maxillary premolars, were measured for enamel hardness before immersion and demineralization in orange juice. The teeth were divided into three groups (n = 7) with each group immersed in either distilled water, cow milk, or soy milk. There was a significant increase in enamel hardness in all groups (p < 0.05). Cow milk provided the highest increase in enamel hardness, of all the three groups, but was not able to restore the initial enamel hardness.

  12. Collaborating to implement interprofessional educational competencies through an international immersion experience.

    PubMed

    Bentley, Regina; Engelhardt, Joan A; Watzak, Bree

    2014-01-01

    Interprofessional collaborative practice is the key to safe, high-quality, accessible, patient-centered care. Achieving this requires the development of interprofessional competencies by health professions students as part of the learning process so that they enter the workforce ready to practice effective team-based care. The authors describe how the immersion process of an international short-term medical mission experience can intensify interprofessional learning by addressing selected Interprofessional Education Collaborative (IPEC), 2011, Core Interprofessional Education Competencies.

  13. Analysis of isothermal and cooling rate dependent immersion freezing by a unifying stochastic ice nucleation model

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Knopf, D. A.

    2015-05-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature (T) and relative humidity (RH) at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling rate dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nuclei (IN) all have the same IN surface area (ISA), however the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses physically observable parameters including the total number of droplets (Ntot) and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time dependent isothermal frozen fractions exhibiting non-exponential behavior with time can be readily explained by this model considering varying ISA. An apparent cooling rate dependence ofJhet is explained by assuming identical ISA in each droplet. When accounting for ISA variability, the cooling rate dependence of ice nucleation kinetics vanishes as expected from classical nucleation theory. The model simulations allow for a quantitative experimental uncertainty analysis for parameters Ntot, T, RH, and the ISA variability. In an idealized cloud parcel model applying variability in ISAs for each droplet, the model predicts enhanced immersion freezing temperatures and greater ice crystal production compared to a case when ISAs are uniform in each droplet. The implications of our results for experimental analysis and interpretation of the immersion freezing process are discussed.

  14. Image Information Obtained Using a Charge-Coupled Device (CCD) Camera During an Immersion Liquid Evaporation Process for Measuring the Refractive Index of Solid Particles.

    PubMed

    Niskanen, Ilpo; Sutinen, Veijo; Thungström, Göran; Räty, Jukka

    2018-06-01

    The refractive index is a fundamental physical property of a medium, which can be used for the identification and purity issues of all media. Here we describe a refractive index measurement technique to determine simultaneously the refractive index of different solid particles by monitoring the transmittance of light from a suspension using a charge-coupled device (CCD) camera. An important feature of the measurement is the liquid evaporation process for the refractive index matching of the solid particle and the immersion liquid; this was realized by using a pair of volatile and non-volatile immersion liquids. In this study, refractive indices of calcium fluoride (CaF 2 ) and barium fluoride (BaF 2 ) were determined using the proposed method.

  15. Improvement of corrosion resistance and antibacterial effect of NiTi orthopedic materials by chitosan and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Rasha A.; Fadl-allah, Sahar A.; El-Bagoury, Nader; El-Rab, Sanaa M. F. Gad

    2014-02-01

    Biocomposite consists of gold nanoparticles (AuNPs) and a natural polymer as Chitosan (CS) was electrodeposited over NiTi alloy to improve biocompatibility, biostability, surface corrosion resistance and antibacterial effect for orthopedic implantation. The forming process and surface morphology of this biocomposite coats over NiTi alloy were studied. The results showed that the nm-scale gold particles were embedded in the composite forming compact, thick and smooth coat. Elemental analysis revealed significant less Ni ion release from the coated NiTi alloy compared with the uncoated one by 20 fold. Furthermore, the electrochemical corrosion measurements indicated that AuNPs/CS composite coat was effective for improving corrosion resistance in different immersion times and at all pH values, which suggests that the coated NiTi alloys have potential for orthopedic applications. Additionally, the efficiencies of the biocomposite coats for inhibiting bacterial growth indicate high antibacterial effect.

  16. In-vitro study of copper doped SiO{sub 2}-CaO-P{sub 2}O{sub 5} system for bioactivity and antimicrobial properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Kulwinder; Singh, K. J., E-mail: kanwarjitsingh@yahoo.com; Anand, Vikas

    Samples of the xCuO-(45-x)CaO-10P{sub 2}O{sub 5}-45SiO{sub 2} system (x varies from 0 to 4 mole%) have been synthesized for application as biomaterials to slow or inhibit the growth of living organisms (fungi and other pathogenic microorganisms) by the combination of sol-gel and co-precipitation processes. Prepared samples have been characterized by X-Ray Diffraction, Fourier Transform Infra-Red and Field Emission Scanning Electron Microscopy techniques before and after immersion in simulated body fluid. Antimicrobial activity of samples has been investigated against Staphylococcus aureus. Releasing of Cu{sup 2+}and other ions in the simulated body fluid has been determined by Atomic Absorption Spectroscopy to ensuremore » the use of prepared material as biomaterial with good antibacterial properties.« less

  17. Time-resolved determination of the potential of zero charge at polycrystalline Au/ionic liquid interfaces

    NASA Astrophysics Data System (ADS)

    Vargas-Barbosa, Nella M.; Roling, Bernhard

    2018-05-01

    The potential of zero charge (PZC) is a fundamental property that describes the electrode/electrolyte interface. The determination of the PZC at electrode/ionic liquid interfaces has been challenging due to the lack of models that fully describe these complex interfaces as well as the non-standardized approaches used to characterize them. In this work, we present a method that combines electrode immersion transient and impedance measurements for the determination of the PZC. This combined approach allows the distinction of the potential of zero free charge (pzfc), related to fast double layer charging on a millisecond timescale, from a potential of zero charge on a timescale of tens of seconds related to slower ion transport processes at the interface. Our method highlights the complementarity of these electrochemical techniques and the importance of selecting the correct timescale to execute experiments and interpret the results.

  18. In situ bioinspired synthesis of silver chloride nanocrystals on silk fibroin fibers

    NASA Astrophysics Data System (ADS)

    Su, Huilan; Han, Jie; Dong, Qun; Xu, Jia; Chen, Ying; Gu, Yu; Song, Weiqiang; Zhang, Di

    2011-02-01

    Silver chloride (AgCl) nanocrystals were formed and grown on silk fibroin fibers (SFFs) by a room-temperature process. Practically, the degummed SFFs were immersed into silver nitrate solution and sodium chloride solution in turn. The amino acids on the SFF surface were negatively charged in alkaline impregnant, providing locations to immobilize silver ions and form silver chloride seeds. AgCl nanocrystals can further grow into cubic AgCl nanocrystals with an edge of about 100 nm. The morphologies of the AgCl nanocrystals were mostly influenced by the concentration of sodium chloride solution and the special configurations of the SFFs. The target AgCl/SFF nanocomposites constructed by AgCl nanocrystals and substrate SFFs could be used as photocatalysts in water splitting and antibacterial agents. This work provides an important example in the introduction of natural biofibers to the synthesis of functional hybrid nanocomposites by a green and mild technique.

  19. Creating gradient wetting surfaces via electroless displacement of zinc-coated carbon steel by nickel ions

    NASA Astrophysics Data System (ADS)

    Xu, Chang; Liu, Huicong; Liang, Weitao; Zhu, Liqun; Li, Weiping; Chen, Haining

    2018-03-01

    Gradient wetting surfaces are getting increasing attention due to their wide application in multiple fields such as droplet movement and biosorption. However, the fabrication processes of full gradient wetting surfaces are still complex and costly. In present work, a facile and low-cost chemical immersion method was used to create a full gradient wetting surface. By controlling the displacement time in Ni2+ solution, the prepared surfaces perform hydrophilic to superhydrophilic. After being modified by stearic acid, the gradient hydrophilic surfaces convert into hydrophobic. The surface morphology, composition, and wetting behaviors of the as-prepared surfaces were systematically studied and discussed. The gradient wetting property could be attributed to the change in microroughness and surface energy. In addition, these surfaces also exhibited excellent self-cleaning and wax prevention properties. Furthermore, high stability and corrosion resistance were also found for these surfaces, which further highlight their promising practical applications in many fields.

  20. Anomalous transport of charged dust grains in a magnetized collisional plasma: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bezbaruah, Pratikshya; Das, Nilakshi

    2018-05-01

    Anomalous diffusion of charged dust grains immersed in a plasma in the presence of strong ion-neutral collision, flowing ions, and a magnetic field has been observed. Molecular Dynamics simulation confirms the deviation from normal diffusion in an ensemble of dust grains probed in laboratory plasma chambers. Collisional effects are significant in governing the nature of diffusion. In order to have a clear idea on the transport of particles in a real experimental situation, the contribution of streaming ions and the magnetic field along with collision is considered through the relevant interaction potential. The nonlinear evolution of Mean Square Displacement is an indication of the modification in particle trajectories due to several effects as mentioned above. It is found that strong collision and ion flow significantly affect the interparticle interaction potential in the presence of the magnetic field and lead to the appearance of the asymmetric type of Debye Hückel (D H) potential. Due to the combined effect of the magnetic field, ion flow, and collision, dusty plasma exhibits a completely novel behavior. The coupling parameter Γ enhances the asymmetric D H type potential arising due to ion flow, and this may drive the system to a disordered state.

  1. Removal of lead and cadmium from aqueous solutions by using 4-amino-3-hydroxynaphthalene sulfonic acid-doped polypyrrole films.

    PubMed

    Sall, Mohamed Lamine; Diaw, Abdou Karim Diagne; Gningue-Sall, Diariatou; Chevillot-Biraud, Alexandre; Oturan, Nihal; Oturan, Mehmet Ali; Fourdrin, Chloé; Huguenot, David; Aaron, Jean-Jacques

    2018-03-01

    Water pollution by heavy metals is a great health concern worldwide. Lead and cadmium are among the most toxic heavy metals because they are dangerous for the human and aquatic lives. In this work, the removal of lead and cadmium from aqueous solutions has been studied using electrosynthesized 4-amino-3-hydroxynaphthalene-1-sulfonic acid-doped polypyrrole (AHNSA-PPy) films as a new adsorbent. Two distinct methods, including the immersion method, based on the Pb 2+ and Cd 2+ spontaneous removal by impregnation of the polymer in the solution, and the electro-elimination method, consisting of removal of Pb 2+ and Cd 2+ ions from the solution by applying a small electrical current (5 mA) to the polymer film, were developed: the evolution of Pb 2+ and Cd 2+ concentrations with time was monitored by inductively coupled plasma optical emission spectrometry (ICP-OES). The effect of pH on the adsorption and electro-elimination of Pb 2+ and Cd 2+ using the AHNSA-PPy film was investigated and optimized, showing that the ionic adsorption and electro-elimination processes were highly pH-dependent. The kinetics of Pb 2+ and Cd 2+ adsorption and electro-elimination were found to follow second-order curves. The maximum adsorption capacity values of the AHNSA-PPy film were 64.0 and 50.4 mg/g, respectively, for Pb 2+ and Cd 2+ . The removal efficiency values were, respectively, for Pb 2+ and Cd 2+ , 80 and 63% by the immersion method, and 93 and 85% by the electro-elimination method. Application of both methods to Senegal natural waters, fortified with Pb 2+ and Cd 2+ , led to removal efficiency values of, respectively for Pb 2+ and Cd 2+ , 76-77 and 58-59% by the immersion method, and of 82-90 and 80-83%, by the electro-elimination method.

  2. In vitro degradation of ZM21 magnesium alloy in simulated body fluids.

    PubMed

    Witecka, Agnieszka; Bogucka, Aleksandra; Yamamoto, Akiko; Máthis, Kristián; Krajňák, Tomáš; Jaroszewicz, Jakub; Święszkowski, Wojciech

    2016-08-01

    In vitro degradation behavior of squeeze cast (CAST) and equal channel angular pressed (ECAP) ZM21 magnesium alloy (2.0wt% Zn-0.98wt% Mn) was studied using immersion tests up to 4w in three different biological environments. Hanks' Balanced Salt Solution (Hanks), Earle's Balanced Salt Solution (Earle) and Eagle minimum essential medium supplemented with 10% (v/v) fetal bovine serum (E-MEM+10% FBS) were used to investigate the effect of carbonate buffer system, organic compounds and material processing on the degradation behavior of the ZM21 alloy samples. Corrosion rate of the samples was evaluated by their Mg(2+) ion release, weight loss and volume loss. In the first 24h, the corrosion rate sequence of the CAST samples was as following: Hanks>E-MEM+10% FBS>Earle. However, in longer immersion periods, the corrosion rate sequence was Earle>E-MEM+10% FBS≥Hanks. Strong buffering effect provided by carbonate buffer system helped to maintain the pH avoiding drastic increase of the corrosion rate of ZM21 in the initial stage of immersion. Organic compounds also contributed to maintain the pH of the fluid. Moreover, they adsorbed on the sample surface and formed an additional barrier on the insoluble salt layer, which was effective to retard the corrosion of CAST samples. In case of ECAP, however, this effect was overcome by the occurrence of strong localized corrosion due to the lower pH of the medium. Corrosion of ECAP samples was much greater than that of CAST, especially in Hanks, due to higher sensitivity of ECAP to localized corrosion and the presence of Cl(-). The present work demonstrates the importance of using an appropriate solution for a reliable estimation of the degradation rate of Mg-base degradable implants in biological environments, and concludes that the most appropriate solution for this purpose is E-MEM+10% FBS, which has the closest chemical composition to human blood plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Influence of SaOS-2 cells on corrosion behavior of cast Mg-2.0Zn0.98Mn magnesium alloy.

    PubMed

    Witecka, Agnieszka; Yamamoto, Akiko; Święszkowski, Wojciech

    2017-02-01

    In this research, the effect of the presence of living cells (SaOS-2) on in vitro degradation of Mg-2.0Zn-0.98Mn (ZM21) magnesium alloy was examined by two methods simple immersion/cell culture tests and electrochemical measurements (electrochemical impedance spectroscopy and potentiodynamic polarization) under cell culture conditions. In immersion/cell culture tests, when SaOS-2 cells were cultured on ZM21 samples, pH of cell culture medium decreased, therefore weight loss and Mg 2+ ion release from the samples increased. Electrochemical measurements revealed the presence of living cells increased corrosion rate (I corr ) and decreased polarization resistance (R p ) after 48h of incubation. This acceleration of ZM21 corrosion can mainly be attributed to the decrease of medium pH due to cellular metabolic activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Arc Inception Mechanism on a Solar Array Immersed in a Low-Density Plasma

    NASA Technical Reports Server (NTRS)

    Vayner, B.; Galofaro, J.; Ferguson, D.

    2001-01-01

    In this report, results are presented of an experimental and theoretical study of arc phenomena and snapover for two samples of solar arrays immersed in argon plasma. The effects of arcing and snapover are investigated. I-V curves are measured, and arc and snapover inception voltages and arc rates are determined within the wide range of plasma parameters. A considerable increase in arc rate due to absorption of molecules from atmospheric air has been confirmed. It is shown that increasing gas pressure causes increasing ion current collection and, consequently, arc rate even though the effect of conditioning also takes place. Arc sites have been determined by employing a video-camera. It is confirmed that keeping sample under high vacuum for a long time results in shifting arc threshold voltage well below -300 V. The results obtained seem to be important for the understanding of arc inception mechanism.

  5. Contact Freezing of Water by Salts.

    PubMed

    Niehaus, Joseph; Cantrell, Will

    2015-09-03

    Water is unlikely to crystallize homogeneously at temperatures greater than -34 °C. Freezing at higher temperatures is heterogeneous-catalyzed by the presence of a second substance. If that substance is at an air-water interface, then the mode is called contact freezing, and it typically will trigger nucleation at a higher temperature than if the substance were wholly immersed within the liquid. We find that the impact of salt particles initiates freezing in experiments using water droplets at supercoolings of 9 to 16 °C. These results show that contact freezing nuclei need not be effective as immersion mode nuclei. We discuss our results in the context of proposed mechanisms of contact freezing. Finally, we use the time scales for diffusion of heat and of ions and the propagation of a sound wave through the droplet to estimate that contact freezing occurs within 10 ns of impact.

  6. Photo-electron emission directly in superfluid helium

    NASA Astrophysics Data System (ADS)

    Zavyalov, V. V.; Pyurbeeva, E. B.; Khaldeev, S. I.

    2018-03-01

    Despite the fact that electron transport in condensed helium has been studied for over half a century [1], observations of new intriguing effects still appear [2]. Alas, the traditional methods of injecting electrons into condensed helium (radioactive-sources, electrical discharge or field emission) lead to generation of helium ions, recombination of which is accompanied by emergence of a large number of excitations. As a result, interpretation of such experiments is not simple and sometimes may be questionable. In this respect, photoelectron emitters, which operate with energies substantially smaller than the ionization energy of helium, are preferable. However, immersion of the photocathode into condensed helium suppresses electron emission. Nevertheless, we managed to achieve electron currents (>20 fA) with the In photocathode immersed directly in liquid superfluid helium. The UV light (λ=254 nm) was guided to the photocathode through a two-meter long Al-covered quartz optical fiber.

  7. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.

    PubMed

    Fan, Bailin; Chen, Xiangping; Zhou, Tao; Zhang, Jinxia; Xu, Bao

    2016-05-01

    In this work, an eco-friendly and hydrometallurgical process for the recovery of cobalt and lithium from spent lithium-ion batteries has been proposed, which includes pretreatment, citric acid leaching, selective chemical precipitation and circulatory leaching. After pretreatment (manual dismantling, N-methyl pyrrolidone immersion and calcination), Cu and Al foils are recycled directly and the cathode active materials are separated from the cathode efficiently. Then, the obtained cathode active materials (waste LiCoO2) was firstly leached with 1.25 mol l(-1) citric acid and 1 vol.% H2O2 solution. Then cobalt was precipitated using oxalic acid (H2C2O4) under a molar ratio of 1:1.05 (H2C2O4: Co(2+)). After filtration, the filtrate (containing Li(+)) and H2O2 was employed as a leaching agent and the optimum conditions are studied in detail. The leaching efficiencies can reach as high as 98% for Li and 90.2% for Co, respectively, using filter liquor as leaching reagent under conditions of leaching temperature of 90°C, 0.9 vol.% H2O2 and a solid-to-liquid ratio of 60 ml g(-1) for 35 min. After three bouts of circulatory leaching, more than 90% Li and 80% Co can be leached under the same leaching conditions. In this way, Li and Co can be recovered efficiently and waste liquor re-utilization is achievable with this hydrometallurgical process, which may promise both economic and environmental benefits. © The Author(s) 2016.

  8. Talking It through: Two French Immersion Learners' Response to Reformulation

    ERIC Educational Resources Information Center

    Swain, Merrill; Lapkin, Sharon

    2002-01-01

    This article documents the importance of collaborative dialogue as part of the process of second language learning. The stimulus for the dialogue we discuss in this article was a reformulation of a story written collaboratively in French by Nina and Dara, two adolescent French immersion students. A sociocultural theoretical perspective informs the…

  9. Learning as Othering: Narratives of Learning, Construction of Difference and the Discourse of Immersion in Study Abroad

    ERIC Educational Resources Information Center

    Doerr, Neriko Musha

    2017-01-01

    This article shows ethnographically the process of learning "as othering" in study abroad: acknowledgement of "learning" through immersion--without clear structure or markers of learning--constructs cultural difference of the host society. It is because acknowledgement of learning something is necessarily the acknowledgement of…

  10. A new activation process for a Zr-based alloy as a negative electrode for Ni/MH electric vehicle batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J.S.; Lee, H.; Lee, S.M.

    1999-12-01

    The effects of a combination hot-immersion and slow-charging method on the activation of a Zr-based alloy were investigated. A Zr{sub 0.7}Ti{sub 0.3}Cr{sub 0.3}Mn{sub 0.3}V{sub 0.4}Ni{sub 1.0} alloy electrode was treated with two steps: alloy electrodes were immersed at 80 C for 12 h in a KOH solution and then charged at a low current density for one cycle. It was found that the alloy electrode activation was greatly improved after this hot-immersion and slow-charging treatment, and furthermore the treated electrodes were fully activated at the first normal cycle. The effects of this treatment are discussed on the basis of resultsmore » obtained by scanning electron microscopy, Auger electron spectroscopy, and inductively coupled plasma spectroscopy. The hot-immersion and slow-charging method was successfully applied to the formation process of 80 Ah Ni/MH cells using this Zr-based alloy.« less

  11. Natural seaweed waste as sorbent for heavy metal removal from solution.

    PubMed

    Ahmady-Asbchin, Salman; Andres, Yves; Gerente, Claire; Le Cloirec, Pierre

    2009-06-01

    Biosorption is a suitable heavy metal remediation technique for the treatment of aqueous effluents of large volume and low pollutant concentration. However, today industrial applications need the selection of efficient low-cost biosorbents. The aim of this work is to investigate brown alga such as Fucus serratus (FS) as a low-cost biosorbent, for the fixation of metallic ions, namely Cu(2+), Zn(2+), Pb(2+), Ni(2+), Cd(2+) and Ce(3+), in a batch reactor. Biosorption kinetics and isotherms have been performed at pH 5.5. For all of the studied metallic ions, the equilibrium time is about 450 min and a tendency based on the initial sorption rate has been established: Ce(3+) > Zn(2+) > Ni(2+) > Cu(2+) > Cd(2+) > Pb(2+). The adsorption equilibrium data are well described by the Langmuir equation. The sequence of the maximum adsorption capacity is Pb(2+) approximately equal Cu(2+) > Ce(3+) approximately equal Ni(2+) > Cd(2+) > Zn(2+) and values are ranged between 1.78 and 0.71 mmol g(-1). These results indicate that the FS biomass is a suitable biosorbent for the removal of heavy metals from wastewater and can be tested in a dynamic process. The selected pilot process involves a hybrid membrane process: a continuous stirred tank reactor is coupled with a microfiltration immersed membrane, in order to confine the FS particles. A mass balance model is used to describe the adsorption process and the breakthrough curves are correctly modelled. Based on these results, it is demonstrated that FS is an interesting biomaterial for the treatment of water contaminated heavy metals.

  12. Ion beam promoted lithium absorption in glassy polymeric carbon

    NASA Astrophysics Data System (ADS)

    Zimmerman, R. L.; Ila, D.; Jenkins, G. M.; Maleki, H.; Poker, D. B.

    1995-12-01

    Glassy Polymeric Carbon (GPC) samples prepared from a precursor possess accessible pore volume that depends on the heat treatment temperature [G.M. Jenkins and K. Kawamura, Polymeric Carbons - Carbon Fiber, Glass and Char (Cambridge University Press, Cambridge, 1976) p. 140]. We have shown that lithium percolates without diffusion into the accessible pores of GPC samples immersed in a molten lithium salt bath at 700°C [D. Ila, G.M. Jenkins, L.R. Holland, A.L. Evelyn and H. Jena, Vacuum 45 (1994) 451]. Ion bombardment with 10 MeV Au atoms increases the total pore volume available for lithium occupation even for samples normally impermeable to lithium. The lithium concentration depth profile is measured using Li 7(p,2α) nuclear reaction analysis. We will report on lithium percolation into GPC prepared at temperatures between 500°C and 1000°C and activated by a 10 MeV gold ion bombardment.

  13. Effect of nearest-neighbor ions on excited ionic states, emission spectra, and line profiles in hot and dense plasmas

    NASA Technical Reports Server (NTRS)

    Salzmann, D.; Stein, J.; Goldberg, I. B.; Pratt, R. H.

    1991-01-01

    The effect of the cylindrical symmetry imposed by the nearest-neighbor ions on the ionic levels and the emission spectra of a Li-like Kr ion immersed in hot and dense plasmas is investigated using the Stein et al. (1989) two-centered model extended to include computations of the line profiles, shifts, and widths, as well as the energy-level mixing and the forbidden transition probabilities. It is shown that the cylindrical symmetry mixes states with different orbital quantum numbers l, particularly for highly excited states, and, thereby, gives rise to forbidden transitions in the emission spectrum. Results are obtained for the variation of the ionic level shifts and mixing coefficients with the distance to the nearest neighbor. Also obtained are representative computed spectra that show the density effects on the spectral line profiles, shifts, and widths, and the forbidden components in the spectrum.

  14. Copper ion as a new leakage tracer.

    PubMed

    Modaresi, J; Baharizade, M; Shareghi, A; Ahmadi, M; Daneshkazemi, A

    2013-12-01

    Most failures of root canal treatments are caused by bacteria. Studies showed that the most common cause of endodontic failures were the incomplete obturation of the root canal and the lack of adequate apical seal. Some in-vitro methods are used to estimate sealing quality, generally by measuring microleakage that allows the tracer agent to penetrate the filled canal. Conventional methods of evaluating the seal of endodontically treated teeth are complicated and have some drawbacks. We used copper ion diffusion method to assess the leakage and the results were compared to dye penetration method. The crowns of 21 extracted teeth were cut off at the CEJ level. After preparing the canals, the teeth were placed in tubes containing saline. They were divided randomly into 15 experimental cases; 3 positive and 3 negative controls. Positive controls were filled by single cone without sealer while the experimental and the negative control groups were filled by lateral technique. The coronal portion of gutta was removed and 9mm was left. The external surface of each tooth was coated with nail polish. Two millimeters of apical portion was immersed into 9ml of distilled water and 0.3ml of CuSO4 solution was injected into the coronal portion. After 2 days, copper sulfate was measured by an atomic absorption spectrophotometer. The teeth were then immersed in 2% methylene blue for 24 hours, sectioned and the extent of dye penetration was measured by a stereomicroscope. The maximum and minimum recorded copper ion concentrations for the experimental group were 18.37 and 2.87ppm respectively. The maximum and minimum recorded dye penetrations for the experimental group were 8.5 and 3.5mm respectively. The statistical analysis, adopting paired samples test, showed poor correlation between average recorded results of two methods. Based on our results, there was no significant correlation between the dye penetration and the copper ion diffusion methods.

  15. Pore-Size-Tuned Graphene Oxide Frameworks as Ion-Selective and Protective Layers on Hydrocarbon Membranes for Vanadium Redox-Flow Batteries.

    PubMed

    Kim, Soohyun; Choi, Junghoon; Choi, Chanyong; Heo, Jiyun; Kim, Dae Woo; Lee, Jang Yong; Hong, Young Taik; Jung, Hee-Tae; Kim, Hee-Tak

    2018-05-07

    The laminated structure of graphene oxide (GO) membranes provides exceptional ion-separation properties due to the regular interlayer spacing ( d) between laminate layers. However, a larger effective pore size of the laminate immersed in water (∼11.1 Å) than the hydrated diameter of vanadium ions (>6.0 Å) prevents its use in vanadium redox-flow batteries (VRFB). In this work, we report an ion-selective graphene oxide framework (GOF) with a d tuned by cross-linking the GO nanosheets. Its effective pore size (∼5.9 Å) excludes vanadium ions by size but allows proton conduction. The GOF membrane is employed as a protective layer to address the poor chemical stability of sulfonated poly(arylene ether sulfone) (SPAES) membranes against VO 2 + in VRFB. By effectively blocking vanadium ions, the GOF/SPAES membrane exhibits vanadium-ion permeability 4.2 times lower and a durability 5 times longer than that of the pristine SPAES membrane. Moreover, the VRFB with the GOF/SPAES membrane achieves an energy efficiency of 89% at 80 mA cm -2 and a capacity retention of 88% even after 400 cycles, far exceeding results for Nafion 115 and demonstrating its practical applicability for VRFB.

  16. Liquid crystal based optical platform for the detection of Pb2+ ions using NiFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zehra, Saman; Gul, Iftikhar Hussain; Hussain, Zakir

    2018-06-01

    A simple, sensitive, selective and real time detection protocol was developed for Pb2+ ions in water using liquid crystals (LCs). In this method, NiFe2O4 nanoparticles were synthesized using chemical co-precipitation method. Crystallite size, morphological, functional groups and magnetization studies were confirmed using X-ray diffraction, Scanning Electron Microscopy, and Fourier transform infrared spectroscopy techniques, respectively. The nanoparticles were mono dispersed with average particle size of 20 ± 2 nm. The surfactant stabilized magnetic nanoparticles were incubated in liquid crystal based sensor system for the detection of Pb+2 ions. The bright to dark transition of LC was observed through optical microscope. When this system was further immersed with a solution containing Pb2+ ions, it caused homeotropic to planar orientation of LC. This interaction is attributed to the presence of abundant hydroxyl groups in such as M-OH, Fe-OH on the surface of spinel ferrites nanoparticles. These groups interact with metal ions at aqueous interface, causing disruption in LCs orientation giving bright texture. This sensor showed higher selectivity towards Pb2+ ions. The detection limit was estimated to be 100 ppb. The cheap and effective protocol reported here should make promising development of LC based sensor for lead ion detection.

  17. Modular Polymer Biosensors by Solvent Immersion Imprint Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Jayven S.; Xantheas, Sotiris S.; Grate, Jay W.

    2016-01-01

    We recently demonstrated Solvent Immersion Imprint Lithography (SIIL), a rapid benchtop microsystem prototyping technique, including polymer functionalization, imprinting and bonding. Here, we focus on the realization of planar polymer sensors using SIIL through simple solvent immersion without imprinting. We describe SIIL’s impregnation characteristics, including an inherent mechanism that not only achieves practical doping concentrations, but their unexpected 4-fold enhancement compared to the immersion solution. Subsequently, we developed and characterized optical sensors for detecting molecular O2. To this end, a high dynamic range is reported, including its control through the immersion duration, a manifestation of SIIL’s modularity. Overall, SIIL exhibits themore » potential of improving the operating characteristics of polymer sensors, while significantly accelerating their prototyping, as it requires a few seconds of processing and no need for substrates or dedicated instrumentation. These are critical for O2 sensing as probed by way of example here, as well as any polymer permeable reactant.« less

  18. State of the art in silicon immersed gratings for space

    NASA Astrophysics Data System (ADS)

    van Amerongen, Aaldert; Krol, Hélène; Grèzes-Besset, Catherine; Coppens, Tonny; Bhatti, Ianjit; Lobb, Dan; Hardenbol, Bram; Hoogeveen, Ruud

    2017-11-01

    We present the status of our immersed diffraction grating technology, as developed at SRON and of their multilayer optical coatings as developed at CILAS. Immersion means that diffraction takes place inside the medium, in our case silicon. The high refractive index of the silicon medium boosts the resolution and the dispersion. Ultimate control over the groove geometry yields high efficiency and polarization control. Together, these aspects lead to a huge reduction in spectrometer volume. This has opened new avenues for the design of spectrometers operating in the short-wave-infrared wavelength band. Immersed grating technology for space application was initially developed by SRON and TNO for the short-wave-infrared channel of TROPOMI, built under the responsibility of SSTL. This space spectrometer will be launched on ESA's Sentinel 5 Precursor mission in 2015 to monitor pollution and climate gases in the Earth atmosphere. The TROPOMI immersed grating flight model has technology readiness level 8. In this program CILAS has qualified and implemented two optical coatings: first, an anti-reflection coating on the entrance and exit facet of the immersed grating prism, which reaches a very low value of reflectivity for a wide angular range of incidence of the transmitted light; second, a metal-dielectric absorbing coating for the passive facet of the prism to eliminate stray light inside the silicon prism. Dual Ion Beam Sputtering technology with in-situ visible and infrared optical monitoring guarantees the production of coatings which are nearly insensitive to temperature and atmospheric conditions. Spectral measurements taken at extreme temperature and humidity conditions show the reliability of these multi-dielectric and metal-dielectric functions for space environment. As part of our continuous improvement program we are presently developing new grating technology for future missions, hereby expanding the spectral range, the blaze angles and grating size, while optimizing performance parameters like stray light and wavefront error. The program aims to reach a technology readiness level of 5 for the newly developed technologies by the end of 2012. An outlook will be presented.

  19. KinImmerse: Macromolecular VR for NMR ensembles

    PubMed Central

    Block, Jeremy N; Zielinski, David J; Chen, Vincent B; Davis, Ian W; Vinson, E Claire; Brady, Rachael; Richardson, Jane S; Richardson, David C

    2009-01-01

    Background In molecular applications, virtual reality (VR) and immersive virtual environments have generally been used and valued for the visual and interactive experience – to enhance intuition and communicate excitement – rather than as part of the actual research process. In contrast, this work develops a software infrastructure for research use and illustrates such use on a specific case. Methods The Syzygy open-source toolkit for VR software was used to write the KinImmerse program, which translates the molecular capabilities of the kinemage graphics format into software for display and manipulation in the DiVE (Duke immersive Virtual Environment) or other VR system. KinImmerse is supported by the flexible display construction and editing features in the KiNG kinemage viewer and it implements new forms of user interaction in the DiVE. Results In addition to molecular visualizations and navigation, KinImmerse provides a set of research tools for manipulation, identification, co-centering of multiple models, free-form 3D annotation, and output of results. The molecular research test case analyzes the local neighborhood around an individual atom within an ensemble of nuclear magnetic resonance (NMR) models, enabling immersive visual comparison of the local conformation with the local NMR experimental data, including target curves for residual dipolar couplings (RDCs). Conclusion The promise of KinImmerse for production-level molecular research in the DiVE is shown by the locally co-centered RDC visualization developed there, which gave new insights now being pursued in wider data analysis. PMID:19222844

  20. Micro-bridge defects: characterization and root cause analysis

    NASA Astrophysics Data System (ADS)

    Santoro, Gaetano; Van den Heuvel, Dieter; Braggin, Jennifer; Rosslee, Craig; Leray, Philippe J.; Cheng, Shaunee; Jehoul, Christiane; Schreutelkamp, Robert; Hillel, Noam

    2010-03-01

    Defect review of advanced lithography processes is becoming more and more challenging as feature sizes decrease. Previous studies using a defect review SEM on immersion lithography generated wafers have resulted in a defect classification scheme which, among others, includes a category for micro-bridges. Micro-bridges are small connections between two adjacent lines in photo-resist and are considered device killing defects. Micro-bridge rates also tend to increase as feature sizes decrease, making them even more important for the next technology nodes. Especially because micro-bridge defects can originate from different root causes, the need to further refine and split up the classification of this type of defect into sub groups may become a necessity. This paper focuses on finding the correlation of the different types of micro-bridge defects to a particular root cause based on a full characterization and root cause analysis of this class of defects, by using advanced SEM review capabilities like high quality imaging in very low FOV, Multi Perspective SEM Imaging (MPSI), tilted column and rotated stage (Tilt&Rotation) imaging and Focused Ion Beam (FIB) cross sectioning. Immersion lithography material has been mainly used to generate the set of data presented in this work even though, in the last part of the results, some EUV lithography data will be presented as part of the continuing effort to extend the micro-bridge defect characterization to the EUV technology on 40 nm technology node and beyond.

  1. Sub-15 femtosecond laser-induced nanostructures emerging on Si(100) surfaces immersed in water: analysis of structural phases

    NASA Astrophysics Data System (ADS)

    Straub, M.; Schüle, M.; Afshar, M.; Feili, D.; Seidel, H.; König, K.

    2014-04-01

    Nanoscale periodic rifts and subwavelength ripples as well as randomly nanoporous surface structures were generated on Si(100) surfaces immersed in water by tightly focused high-repetition rate sub-15 femtosecond sub-nanojoule pulsed Ti:sapphire laser light. Subsequent to laser processing, silicon oxide nanoparticles, which originated from a reaction of ablated silicon with water and aggregated on the exposed areas, were etched off by hydrofluoric acid. The structural phases of the three types of silicon nanostructures were investigated by transmission electron microscopy diffraction images recorded on focused ion beam sections. On nanorift patterns, which were produced at radiant exposure extremely close to the ablation threshold, only the ideal Si-I phase at its original bulk orientation was observed. Electron diffraction micrographs of periodic ripples, which were generated at slightly higher radiant exposure, revealed a compression of Si-I in the vertical direction by 6 %, which is attributed to recoil pressure acting during ablation. However, transitions to the high-pressure phase Si-II, which implies compression in the same direction at pressures in excess of 10 GPa, to the metastable phases Si-III or Si-IV that arise from Si-II on pressure relief or to other high-pressure phases (Si-V-Si-XII) were not observed. The nanoporous surfaces featured Si-I material with grains of resolidified silicon occurring at lattice orientations different from the bulk. Characteristic orientational relationships as well as small-angle grain boundaries reflected the rapid crystal growth on the substrate.

  2. Epitaxial-Growth-Induced Junction Welding of Silver Nanowire Network Electrodes.

    PubMed

    Kang, Hyungseok; Song, Sol-Ji; Sul, Young Eun; An, Byeong-Seon; Yin, Zhenxing; Choi, Yongsuk; Pu, Lyongsun; Yang, Cheol-Woong; Kim, Youn Sang; Cho, Sung Min; Kim, Jung-Gu; Cho, Jeong Ho

    2018-05-22

    In this study, we developed a roll-to-roll Ag electroplating process for metallic nanowire electrodes using a galvanostatic mode. Electroplating is a low-cost and facile method for deposition of metal onto a target surface with precise control of both the composition and the thickness. Metallic nanowire networks [silver nanowires (AgNWs) and copper nanowires (CuNWs)] coated onto a polyethylene terephthalate (PET) film were immersed directly in an electroplating bath containing AgNO 3 . Solvated silver ions (Ag + ions) were deposited onto the nanowire surface through application of a constant current via an external circuit between the nanowire networks (cathode) and a Ag plate (anode). The amount of electroplated Ag was systematically controlled by changing both the applied current density and the electroplating time, which enabled precise control of the sheet resistance and optical transmittance of the metallic nanowire networks. The optimized Ag-electroplated AgNW (Ag-AgNW) films exhibited a sheet resistance of ∼19 Ω/sq at an optical transmittance of 90% (550 nm). A transmission electron microscopy study confirmed that Ag grew epitaxially on the AgNW surface, but a polycrystalline Ag structure was formed on the CuNW surface. The Ag-electroplated metallic nanowire electrodes were successfully applied to various electronic devices such as organic light-emitting diodes, triboelectric nanogenerators, and a resistive touch panel. The proposed roll-to-roll Ag electroplating process provides a simple, low-cost, and scalable method for the fabrication of enhanced transparent conductive electrode materials for next-generation electronic devices.

  3. We Need to Communicate! Helping Hearing Parents of Deaf Children Learn American Sign Language

    ERIC Educational Resources Information Center

    Weaver, Kimberly A.; Starner, Thad

    2011-01-01

    Language immersion from birth is crucial to a child's language development. However, language immersion can be particularly challenging for hearing parents of deaf children to provide as they may have to overcome many difficulties while learning American Sign Language (ASL). We are in the process of creating a mobile application to help hearing…

  4. Learning to Read in English and French: Emergent Readers in French Immersion

    ERIC Educational Resources Information Center

    Chung, Sheila Cira; Koh, Poh Wee; Deacon, S. Hélène; Chen, Xi

    2017-01-01

    This longitudinal study investigated the predictors of word reading in English and French for 69 children in early total French immersion from first through third grade. The influence of phonological awareness, orthographic processing, and vocabulary in English and French on the achievement and growth of word reading in the 2 languages were…

  5. Investigating Mediations in Student Activities in an English Immersion Context in Mainland China

    ERIC Educational Resources Information Center

    Liang, Xiaohua

    2009-01-01

    This study aims to investigate the role of mediation in the learning process from a sociocultural perspective, activity theory in particular. This study was carried out in a primary English immersion school within the CCUEI Programs in Mainland China. Data were collected mainly through observations and interviews, which were then supplemented by…

  6. Understanding How Emergent Bilinguals Bridge Belonging and Languages in Dual Language Immersion Settings

    ERIC Educational Resources Information Center

    Di Stefano, Marialuisa

    2017-01-01

    This dissertation covers the purpose, findings, and implication of a 10-week ethnographic research study in a dual language immersion (DLI) third-grade classroom in the northeastern U.S. The purpose was to promote a better understanding of the processes and products of identity development in a DLI setting. Sense of belonging and language…

  7. Teaching Strategies to Develop Inquiry and Literacy Skills: "Languaging" in Foreign Language Immersion Education

    ERIC Educational Resources Information Center

    Husbye, Nicholas; Dorner, Lisa M.

    2017-01-01

    One-way, or foreign language, immersion schools face unique challenges as they seek to support the literacy development of their students. This manuscript draws on sociocultural theories of literacy development and the concept of languaging, the process of using language to make meaning. Working with two classrooms over one semester, we asked:…

  8. Optical, mechanical and surface properties of amorphous carbonaceous thin films obtained by plasma enhanced chemical vapor deposition and plasma immersion ion implantation and deposition

    NASA Astrophysics Data System (ADS)

    Turri, Rafael G.; Santos, Ricardo M.; Rangel, Elidiane C.; da Cruz, Nilson C.; Bortoleto, José R. R.; Dias da Silva, José H.; Antonio, César Augusto; Durrant, Steven F.

    2013-09-01

    Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD.

  9. A study on lithium/air secondary batteries-Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shimonishi, Yuta; Zhang, Tao; Imanishi, Nobuyuki; Im, Dongmin; Lee, Dong Joon; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu; Sammes, Nigel

    The stability of the high lithium ion conducting glass ceramics, Li 1+ x+ yTi 2- xAl xSi yP 3- yO 12 (LTAP) in alkaline aqueous solutions with and without LiCl has been examined. A significant conductivity decrease of the LTAP plate immersed in 0.057 M LiOH aqueous solution at 50 °C for 3 weeks was observed. However, no conductivity change of the LTAP plate immersed in LiCl saturated LiOH aqueous solutions at 50 °C for 3 weeks was observed. The pH value of the LiCl-LiOH-H 2O solution with saturated LiCl was in a range of 7-9. The molarity of LiOH and LiCl in the LiOH and LiCl saturated aqueous solution were estimated to be 5.12 and 11.57 M, respectively, by analysis of Li + and OH -. The high concentration of LiOH and the low pH value of 8.14 in this solution suggested that the dissociation of LiOH into Li + and OH - is too low in the solution with a high concentration of Li +. These results suggest that the water stable LTAP could be used as a protect layer of the lithium metal anode in the lithium/air cell with LiCl saturated aqueous solution as the electrolyte, because the content of OH - ions in the LiCl saturated aqueous solution does not increase via the cell reaction of Li + 1/2O 2 + H 2O → 2LiOH, and LTAP is stable under a deep discharge state.

  10. Hydrogen assisted cracking and CO2 corrosion behaviors of low-alloy steel with high strength used for armor layer of flexible pipe

    NASA Astrophysics Data System (ADS)

    Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.

    2018-05-01

    In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.

  11. Characterizations of mortar-degraded spinney waste composite nominated as solidifying agent for radwastes due to immersion processes

    NASA Astrophysics Data System (ADS)

    Saleh, H. M.; Eskander, S. B.

    2012-11-01

    Immobilization process of radioactive wastes is a compromise between economic and reliability factors. It involves the use of inert and cheap matrices to fix the wastes in homogenous monolithic solid forms. The characteristics of the resulting waste form were studied in various disposal options before coming to the final conclusion concerning the solidification process. A proposed mortar composite is formed from a mixture of Portland cement and sand in the weight ratio of 0.33 which by slurry of degraded spinney waste fibers at the ratio of 0.7 relative to the Portland cement. The composite was prepared at the laboratory ambient conditions (25 ± 5 °C). The temperature changes accompanying the hydration process were followed up to 96 h. At the end of 28 days, curing period, the performance of the obtained composite was evaluated under immersion circumstances imitating a flooding scenario that could happen at a disposal site. Compressive strength, porosity and mass changes were investigated under complete static immersion conditions in three different leachants, namely acetic acid, groundwater and seawater for 48 weeks. X-ray and scanning electron microscopy were used to follow and evaluate the changes that may occur for the proposed composite under flooding conditions. Based on the experimental data reached, it could be concluded that the prepared mortar composite can be nominated as a matrix for solidification/stabilization of some radwaste categories, even under the aggressive attacks of various immersion media.

  12. Self-aligned blocking integration demonstration for critical sub-30nm pitch Mx level patterning with EUV self-aligned double patterning

    NASA Astrophysics Data System (ADS)

    Raley, Angélique; Lee, Joe; Smith, Jeffrey T.; Sun, Xinghua; Farrell, Richard A.; Shearer, Jeffrey; Xu, Yongan; Ko, Akiteru; Metz, Andrew W.; Biolsi, Peter; Devilliers, Anton; Arnold, John; Felix, Nelson

    2018-04-01

    We report a sub-30nm pitch self-aligned double patterning (SADP) integration scheme with EUV lithography coupled with self-aligned block technology (SAB) targeting the back end of line (BEOL) metal line patterning applications for logic nodes beyond 5nm. The integration demonstration is a validation of the scalability of a previously reported flow, which used 193nm immersion SADP targeting a 40nm pitch with the same material sets (Si3N4 mandrel, SiO2 spacer, Spin on carbon, spin on glass). The multi-color integration approach is successfully demonstrated and provides a valuable method to address overlay concerns and more generally edge placement error (EPE) as a whole for advanced process nodes. Unbiased LER/LWR analysis comparison between EUV SADP and 193nm immersion SADP shows that both integrations follow the same trend throughout the process steps. While EUV SADP shows increased LER after mandrel pull, metal hardmask open and dielectric etch compared to 193nm immersion SADP, the final process performance is matched in terms of LWR (1.08nm 3 sigma unbiased) and is only 6% higher than 193nm immersion SADP for average unbiased LER. Using EUV SADP enables almost doubling the line density while keeping most of the remaining processes and films unchanged, and provides a compelling alternative to other multipatterning integrations, which present their own sets of challenges.

  13. CD and defect improvement challenges for immersion processes

    NASA Astrophysics Data System (ADS)

    Ehara, Keisuke; Ema, Tatsuhiko; Yamasaki, Toshinari; Nakagawa, Seiji; Ishitani, Seiji; Morita, Akihiko; Kim, Jeonghun; Kanaoka, Masashi; Yasuda, Shuichi; Asai, Masaya

    2009-03-01

    The intention of this study is to develop an immersion lithography process using advanced track solutions to achieve world class critical dimension (CD) and defectivity performance in a state of the art manufacturing facility. This study looks at three important topics for immersion lithography: defectivity, CD control, and wafer backside contamination. The topic of defectivity is addressed through optimization of coat, develop, and rinse processes as well as implementation of soak steps and bevel cleaning as part of a comprehensive defect solution. Develop and rinse processing techniques are especially important in the effort to achieve a zero defect solution. Improved CD control is achieved using a biased hot plate (BHP) equipped with an electrostatic chuck. This electrostatic chuck BHP (eBHP) is not only able to operate at a very uniform temperature, but it also allows the user to bias the post exposure bake (PEB) temperature profile to compensate for systematic within-wafer (WiW) CD non-uniformities. Optimized CD results, pre and post etch, are presented for production wafers. Wafer backside particles can cause focus spots on an individual wafer or migrate to the exposure tool's wafer stage and cause problems for a multitude of wafers. A basic evaluation of the cleaning efficiency of a backside scrubber unit located on the track was performed as a precursor to a future study examining the impact of wafer backside condition on scanner focus errors as well as defectivity in an immersion scanner.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Ms. Ketki; Kim, Yong-Ha; Yiacoumi, Sotira

    The mixing process of fresh water and seawater releases a significant amount of energy and is a potential source of renewable energy. The so called ‘blue energy’ or salinity-gradient energy can be harvested by a device consisting of carbon electrodes immersed in an electrolyte solution, based on the principle of capacitive double layer expansion (CDLE). In this study, we have investigated the feasibility of energy production based on the CDLE principle. Experiments and computer simulations were used to study the process. Mesoporous carbon materials, synthesized at the Oak Ridge National Laboratory, were used as electrode materials in the experiments. Neutronmore » imaging of the blue energy cycle was conducted with cylindrical mesoporous carbon electrodes and 0.5 M lithium chloride as the electrolyte solution. For experiments conducted at 0.6 V and 0.9 V applied potential, a voltage increase of 0.061 V and 0.054 V was observed, respectively. From sequences of neutron images obtained for each step of the blue energy cycle, information on the direction and magnitude of lithium ion transport was obtained. A computer code was developed to simulate the process. Experimental data and computer simulations allowed us to predict energy production.« less

  15. Surface characterization of anodized zirconium for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sanchez, A. Gomez; Schreiner, W.; Duffó, G.; Ceré, S.

    2011-05-01

    Mechanical properties and corrosion resistance of zirconium make this material suitable for biomedical implants. Its good in vivo performance is mainly due to the presence of a protective oxide layer that minimizes corrosion rate, diminishes the amount of metallic ions released to the biological media and facilitates the osseointegration process. Since the implant surface is the region in contact with living tissues, the characteristics of the surface film are of great interest. Surface modification is a route to enhance both biocompatibility and corrosion resistance of permanent implant materials. Anodizing is presented as an interesting process to modify metal surfaces with good reproducibility and independence of the geometry. In this work the surface of zirconium before and after anodizing in 1 mol/L phosphoric acid solution at a fixed potential between 3 and 30 V, was characterized by means of several surface techniques. It was found that during anodization the surface oxide grows with an inhomogeneous coverage on zirconium surface, modifying the topography. The incorporation of P from the electrolyte to the surface oxide during the anodizing process changes the surface chemistry. After 30 days of immersion in Simulated Body Fluid (SBF) solution, Ca-P rich compounds were present on anodized zirconium.

  16. Analysis and Simulation of a Blue Energy Cycle

    DOE PAGES

    Sharma, Ms. Ketki; Kim, Yong-Ha; Yiacoumi, Sotira; ...

    2016-01-30

    The mixing process of fresh water and seawater releases a significant amount of energy and is a potential source of renewable energy. The so called ‘blue energy’ or salinity-gradient energy can be harvested by a device consisting of carbon electrodes immersed in an electrolyte solution, based on the principle of capacitive double layer expansion (CDLE). In this study, we have investigated the feasibility of energy production based on the CDLE principle. Experiments and computer simulations were used to study the process. Mesoporous carbon materials, synthesized at the Oak Ridge National Laboratory, were used as electrode materials in the experiments. Neutronmore » imaging of the blue energy cycle was conducted with cylindrical mesoporous carbon electrodes and 0.5 M lithium chloride as the electrolyte solution. For experiments conducted at 0.6 V and 0.9 V applied potential, a voltage increase of 0.061 V and 0.054 V was observed, respectively. From sequences of neutron images obtained for each step of the blue energy cycle, information on the direction and magnitude of lithium ion transport was obtained. A computer code was developed to simulate the process. Experimental data and computer simulations allowed us to predict energy production.« less

  17. Free-volume characterization of nanostructurized substances by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shpotyuk, O.; Ingram, A.; Shpotyuk, Ya.

    2018-02-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy are examined to parameterize free-volume structural evolution processes in some nanostructurized substances obeying conversion from positronium (Ps) decaying to positron trapping. Unlike conventional x3-term fitting analysis based on admixed positron trapping and Ps decaying, the effect of nanostructurization is considered as occurring due to conversion from preferential Ps decaying in initial host matrix to positron trapping in modified (nanostructurized) host-guest matrix. The developed approach referred to as x3-x2-CDA (coupling decomposition algorithm) allows estimation defect-free bulk and defect-specific positron lifetimes of free-volume elements responsible for nanostructurization. The applicability of this approach is proved for some nanostructurized materials allowing free-volume changes through Ps-to-positron trapping conversion, such as (i) metallic Ag nanoparticles embedded in polymer matrix, (ii) structure-modification processes caused by swift heavy ions irradiation in polystyrene, and (iii) host-guest chemistry problems like water immersion in alumomagnesium spinel ceramics. This approach is considered to be used as test-indicator, separating processes of host-matrix nanostructurization due to embedded nanoparticles from uncorrelated changes in positron-trapping and Ps-decaying channels.

  18. [The effects of narcissism and self-esteem on immersion in social network games and massively multiplayer online role-playing games].

    PubMed

    Jin, Kato; Igarashi, Tasuku

    2016-04-01

    Recent research has shown growing interest in the process by which narcissism triggers immersion in social network games (SNG). Highly narcissistic individuals are motivated not only by the achievement of goals and monopoly of materials (i:e., self-enhancement), but also by comparison and competition with others (i.e., social comparison) We predicted that the common rules and environments of SNG and massively multiplayer online role-playing games (MMORPG), such as systems of exchanging items and ranking players, facilitate immersion of highly narcissistic individuals during the game. Structural equation modeling of data from 378 SNG players and 150 MMORPG players recruited online showed that self-esteem inhibited game immersion, whereas narcissism increased game immersion via motivation for goal attainment. SNG players were more likely to be immersed in the game via motivation for goal attainment than MMORPG players. These findings suggest that, compared with MMORPG, the environments of SNG provide strong incentives not for those high in self-esteem who seek acceptance of others, but for those high in narcissism who are motivated by self-enhancement via competition with others.

  19. On the Immersion Liquid Evaporation Method Based on the Dynamic Sweep of Magnitude of the Refractive Index of a Binary Liquid Mixture: A Case Study on Determining Mineral Particle Light Dispersion.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik

    2017-07-01

    This is a feasibility study of a modified immersion liquid technique for determining the refractive index of micro-sized particles. The practical challenge of the traditional liquid immersion method is to find or produce a suitable host liquid whose refractive index equals that of a solid particle. Usually, the immersion liquid method uses a set of immersion liquids with different refractive indices or continuously mixes two liquids with different refractive indices, e.g., using a pumping system. Here, the phenomenon of liquid evaporation has been utilized in defining the time-dependent refractive index variation of the host liquid. From the spectral transmittance data measured during the evaporation process, the refractive index of a solid particle in the host liquid can be determined as a function of the wavelength. The method was tested using calcium fluoride (CaF 2 ) particles with an immersion liquid mixed from diethyl ether and diffusion pump fluid. The dispersion data obtained were consistent with the literature values thus indicating the proper functioning of the proposed procedure.

  20. Immersion Gratings for Infrared High-resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion gratings, including the development of a long-NIR (2-5um) high-resolution (R=80,000) spectrograph with Ge-immersion grating, VINROUGE, which is a prototype for the TMT MIR instrument.

  1. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.; Knopf, Daniel A.

    2016-02-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, Ntot, and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous-flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time-dependent isothermal frozen fractions exhibiting non-exponential behavior can be readily explained by this model considering varying ISA. An apparent cooling-rate dependence of Jhet is explained by assuming identical ISA in each droplet. When accounting for ISA variability, the cooling-rate dependence of ice nucleation kinetics vanishes as expected from classical nucleation theory. The model simulations allow for a quantitative experimental uncertainty analysis for parameters Ntot, T, RH, and the ISA variability. The implications of our results for experimental analysis and interpretation of the immersion freezing process are discussed.

  2. Bioactivity studies on TiO₂-bearing Na₂O-CaO-SiO₂-B₂O₃ glasses.

    PubMed

    Jagan Mohini, G; Sahaya Baskaran, G; Ravi Kumar, V; Piasecki, M; Veeraiah, N

    2015-12-01

    Soda lime silica borate glasses mixed with different concentrations of TiO2 are synthesized by the melt-quenching technique. As a part of study on bioactivity of these glasses, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (~21 days) during which weight loss along with pH measurements is carried out at specific intervals of time. The XRD and SEM analyses of post-immersed samples confirm the formation of crystalline hydroxyapatite layer (HA) on the surface of the samples. To assess the role of TiO2 on the formation of HA layer and degradability of the samples the spectroscopic studies viz. optical absorption and IR spectral studies on post- and pre-immersed samples have been carried out. The analysis of the results of degradability together with spectroscopic studies as a function of TiO2 concentration indicated that about 6.0 mol% of TiO2 is the optimal concentration for achieving better bioactivity of these glasses. The presence of the maximal concentration octahedral titanium ions in this glass that facilitates the formation of HA layer is found to be the reason for such a higher bioactivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poon, R.W.Y.; Liu, X.Y.; Chung, C.Y.

    2005-05-01

    Nickel-titanium shape memory alloys (NiTi) are potentially useful in orthopedic implants on account of their super-elastic and shape memory properties. However, the materials are prone to surface corrosion and the most common problem is out-diffusion of harmful Ni ions from the substrate into body tissues and fluids. In order to improve the corrosion resistance and related surface properties, we used the technique of plasma immersion ion implantation and deposition to deposit an amorphous hydrogenated carbon coating onto NiTi and implant carbon into NiTi. Both the deposited amorphous carbon film and carbon plasma implanted samples exhibit much improved corrosion resistances andmore » surface mechanical properties and possible mechanisms are suggested.« less

  4. Tendency of a rotating electron plasma to approach the Brillouin limit

    DOE PAGES

    Gueroult, Renaud; Fruchtman, Amnon; Fisch, Nathaniel J.

    2013-07-24

    In this study, a neutral plasma is considered to be immersed in an axial magnetic field together with a radial electric field. If the electrons are magnetized, but the ions are not magnetized, then the electrons will rotate but the ions will not rotate, leading to current generation. The currents, in turn, weaken the axial magnetic field, leading to an increase in the rotation frequency of the slow Brillouin mode. This produces a positive feedback effect, further weakening the magnetic field. The operating point thus tends to drift towards the Brillouin limit, possibly finding stability only in proximity to themore » limit itself. An example of this effect might be the cylindrical Hall thruster configuration.« less

  5. A Study on Factors Affecting the Degradation of Magnesium and a Magnesium-Yttrium Alloy for Biomedical Applications

    PubMed Central

    Johnson, Ian; Liu, Huinan

    2013-01-01

    Controlling degradation of magnesium or its alloys in physiological saline solutions is essential for their potential applications in clinically viable implants. Rapid degradation of magnesium-based materials reduces the mechanical properties of implants prematurely and severely increases alkalinity of the local environment. Therefore, the objective of this study is to investigate the effects of three interactive factors on magnesium degradation, specifically, the addition of yttrium to form a magnesium-yttrium alloy versus pure magnesium, the metallic versus oxide surfaces, and the presence versus absence of physiological salt ions in the immersion solution. In the immersion solution of phosphate buffered saline (PBS), the magnesium-yttrium alloy with metallic surface degraded the slowest, followed by pure magnesium with metallic or oxide surfaces, and the magnesium-yttrium alloy with oxide surface degraded the fastest. However, in deionized (DI) water, the degradation rate showed a different trend. Specifically, pure magnesium with metallic or oxide surfaces degraded the slowest, followed by the magnesium-yttrium alloy with oxide surface, and the magnesium-yttrium alloy with metallic surface degraded the fastest. Interestingly, only magnesium-yttrium alloy with metallic surface degraded slower in PBS than in DI water, while all the other samples degraded faster in PBS than in DI water. Clearly, the results showed that the alloy composition, presence or absence of surface oxide layer, and presence or absence of physiological salt ions in the immersion solution all influenced the degradation rate and mode. Moreover, these three factors showed statistically significant interactions. This study revealed the complex interrelationships among these factors and their respective contributions to degradation for the first time. The results of this study not only improved our understanding of magnesium degradation in physiological environment, but also presented the key factors to consider in order to satisfy the degradation requirements for next-generation biodegradable implants and devices. PMID:23799028

  6. Resonant-cavity antenna for plasma heating

    DOEpatents

    Perkins, Jr., Francis W.; Chiu, Shiu-Chu; Parks, Paul; Rawls, John M.

    1987-01-01

    Disclosed is a resonant coil cavity wave launcher for energizing a plasma immersed in a magnetic field. Energization includes launching fast Alfven waves to excite ion cyclotron frequency resonances in the plasma. The cavity includes inductive and capacitive reactive members spaced no further than one-quarter wavelength from a first wall confinement chamber of the plasma. The cavity wave launcher is energized by connection to a waveguide or transmission line carrying forward power from a remote radio frequency energy source.

  7. The entrapment of corrosion products from CoCr implant alloys in the deposits of calcium phosphate: a comparison of serum, synovial fluid, albumin, EDTA, and water.

    PubMed

    Lewis, A C; Kilburn, M R; Heard, P J; Scott, T B; Hallam, K R; Allen, G C; Learmonth, I D

    2006-08-01

    Physical wear of orthopedic implants is inevitable. CoCr alloy samples, typically used in joint reconstruction, corrode rapidly after removal of the protective oxide layer. The behavior of CoCr pellets immersed in human serum, foetal bovine serum (FBS), synovial fluid, albumin in phosphate-buffered saline (PBS), EDTA in PBS, and water were studied using X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). The difference in the corrosive nature of human serum, water, albumin in PBS and synovial fluid after 5 days of immersion was highlighted by the oxide layer, which was respectively 15, 3.5, 1.5, and 1.5 nm thick. The thickness of an additional calcium phosphate deposit from human serum and synovial fluid was 40 and 2 nm, respectively. Co and Cr ions migrated from the bulk metal surface and were trapped in this deposit by the phosphate anion. This may account for the composition of wear debris from CoCr orthopedic implants, which is known to consist predominantly of hydroxy-phosphate compounds. Known components of synovial fluid including proteoglycans, pyrophosphates, phospholipids, lubricin, and superficial zone protein (SZP), have been identified as possible causes for the lack of significant calcium phosphate deposition in this environment. Circulation of these compounds around the whole implant may inhibit calcium phosphate deposition.

  8. Evaluation of cytotoxicity and corrosion resistance of orthodontic mini-implants.

    PubMed

    Alves, Celha Borges Costa; Segurado, Márcio Nunes; Dorta, Miriam Cristina Leandro; Dias, Fátima Ribeiro; Lenza, Maurício Guilherme; Lenza, Marcos Augusto

    2016-01-01

    To evaluate and compare in vitro cytotoxicity and corrosion resistance of mini-implants from three different commercial brands used for orthodontic anchorage. Six mini-implants (Conexão(tm), Neodent(tm) and SIN(tm)) were separately immersed in artificial saliva (pH 6.76) for 30 and 60 days. The cytotoxicity of the corrosion extracts was assessed in L929 cell cultures using the violet crystal and MTT assays, as well as cell morphology under light microscopy. Metal surface characteristics before and after immersion in artificial saliva were assessed by means of scanning electron microscopy (SEM). The samples underwent atomic absorption spectrophotometry to determine the concentrations of aluminum and vanadium ions, constituent elements of the alloy that present potential toxicity. For statistical analysis, one-way ANOVA/Bonferroni tests were used for comparisons among groups with p < 0.05 considered significant. Statistical analysis was carried out with Graph Pad PRISM software Version 4.0. No changes in cell viability or morphology were observed. Mini-implants SEM images revealed smooth surfaces with no obvious traces of corrosion. The extracts assessed by means of atomic absorption spectrophotometry presented concentrations of aluminum and vanadium ions below 1.0 µg/mL and 0.5 µg/mL, respectively. Orthodontic mini-implants manufactured by Conexão(tm), Neodent(tm) and SIN(tm) present high corrosion resistance and are not cytotoxic.

  9. Evaluation of cytotoxicity and corrosion resistance of orthodontic mini-implants

    PubMed Central

    Alves, Celha Borges Costa; Segurado, Márcio Nunes; Dorta, Miriam Cristina Leandro; Dias, Fátima Ribeiro; Lenza, Maurício Guilherme; Lenza, Marcos Augusto

    2016-01-01

    ABSTRACT Objective: To evaluate and compare in vitro cytotoxicity and corrosion resistance of mini-implants from three different commercial brands used for orthodontic anchorage. Methods: Six mini-implants (Conexão(tm), Neodent(tm) and SIN(tm)) were separately immersed in artificial saliva (pH 6.76) for 30 and 60 days. The cytotoxicity of the corrosion extracts was assessed in L929 cell cultures using the violet crystal and MTT assays, as well as cell morphology under light microscopy. Metal surface characteristics before and after immersion in artificial saliva were assessed by means of scanning electron microscopy (SEM). The samples underwent atomic absorption spectrophotometry to determine the concentrations of aluminum and vanadium ions, constituent elements of the alloy that present potential toxicity. For statistical analysis, one-way ANOVA/Bonferroni tests were used for comparisons among groups with p < 0.05 considered significant. Statistical analysis was carried out with Graph Pad PRISM software Version 4.0. Results: No changes in cell viability or morphology were observed. Mini-implants SEM images revealed smooth surfaces with no obvious traces of corrosion. The extracts assessed by means of atomic absorption spectrophotometry presented concentrations of aluminum and vanadium ions below 1.0 µg/mL and 0.5 µg/mL, respectively. Conclusion: Orthodontic mini-implants manufactured by Conexão(tm), Neodent(tm) and SIN(tm) present high corrosion resistance and are not cytotoxic. PMID:27901227

  10. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G

    2013-09-01

    Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Immersion and contact freezing experiments in the Mainz wind tunnel laboratory

    NASA Astrophysics Data System (ADS)

    Eppers, Oliver; Mayer, Amelie; Diehl, Karoline; Mitra, Subir; Borrmann, Stephan; Szakáll, Miklós

    2016-04-01

    Immersion and contact freezing are of outmost important ice nucleation processes in mixed phase clouds. Experimental studies are carried out in the Mainz vertical wind tunnel laboratory in order to characterize these nucleation processes for different ice nucleating particles (INP), such as for mineral dust or biological particles. Immersion freezing is investigated in our laboratory with two different experimental techniques, both attaining contact-free levitation of liquid droplets and cooling of the surrounding air down to about -25 °C. In an acoustic levitator placed in the cold room of our laboratory, drops with diameters of 2 mm are investigated. In the vertical air stream of the wind tunnel droplets with diameter of 700 micron are freely floated at their terminal velocities, simulating the flow conditions of the free atmosphere. Furthermore, the wind tunnel offers a unique platform for contact freezing experiments. Supercooled water droplets are floated in the vertical air stream at their terminal velocities and INP are injected into the tunnel air stream upstream of them. As soon as INP collides with the supercooled droplet the contact freezing is initiated. The first results of immersion and contact freezing experiments with cellulose particles both in the acoustic levitator and in the wind tunnel will be presented. Cellulose is considered as typical INP of biological origin and a macrotracer for plant debris. Nucleating properties of cellulose will be provided, mainly focusing on the temperature, INP concentration, and specific surface area dependences of the freezing processes. Direct comparison between the different experimental techniques (acoustic levitator and wind tunnel), as well as between nucleation modes (immersion and contact freezing) will be presented. The work is carried out within the framework of the German research unit INUIT.

  12. A Dynamic Mesh-Based Approach to Model Melting and Shape of an ESR Electrode

    NASA Astrophysics Data System (ADS)

    Karimi-Sibaki, E.; Kharicha, A.; Bohacek, J.; Wu, M.; Ludwig, A.

    2015-10-01

    This paper presents a numerical method to investigate the shape of tip and melt rate of an electrode during electroslag remelting process. The interactions between flow, temperature, and electromagnetic fields are taken into account. A dynamic mesh-based approach is employed to model the dynamic formation of the shape of electrode tip. The effect of slag properties such as thermal and electrical conductivities on the melt rate and electrode immersion depth is discussed. The thermal conductivity of slag has a dominant influence on the heat transfer in the system, hence on melt rate of electrode. The melt rate decreases with increasing thermal conductivity of slag. The electrical conductivity of slag governs the electric current path that in turn influences flow and temperature fields. The melting of electrode is a quite unstable process due to the complex interaction between the melt rate, immersion depth, and shape of electrode tip. Therefore, a numerical adaptation of electrode position in the slag has been implemented in order to achieve steady state melting. In fact, the melt rate, immersion depth, and shape of electrode tip are interdependent parameters of process. The generated power in the system is found to be dependent on both immersion depth and shape of electrode tip. In other words, the same amount of power was generated for the systems where the shapes of tip and immersion depth were different. Furthermore, it was observed that the shape of electrode tip is very similar for the systems running with the same ratio of power generation to melt rate. Comparison between simulations and experimental results was made to verify the numerical model.

  13. Enhancing the immersive reality of virtual simulators for easily accessible laparoscopic surgical training

    NASA Astrophysics Data System (ADS)

    McKenna, Kyra; McMenemy, Karen; Ferguson, R. S.; Dick, Alistair; Potts, Stephen

    2008-02-01

    Computer simulators are a popular method of training surgeons in the techniques of laparoscopy. However, for the trainee to feel totally immersed in the process, the graphical display should be as lifelike as possible and two-handed force feedback interaction is required. This paper reports on how a compelling immersive experience can be delivered at low cost using commonly available hardware components. Three specific themes are brought together. Firstly, programmable shaders executing in standard PC graphics adapter's deliver the appearance of anatomical realism, including effects of: translucent tissue surfaces, semi-transparent membranes, multilayer image texturing and real-time shadowing. Secondly, relatively inexpensive 'off the shelf' force feedback devices contribute to a holistic immersive experience. The final element described is the custom software that brings these together with hierarchically organized and optimized polygonal models for abdominal anatomy.

  14. Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene

    PubMed Central

    Kondyurin, Alexey V.; Naseri, Pourandokht; Tilley, Jennifer M. R.; Nosworthy, Neil J.; Bilek, Marcela M. M.; McKenzie, David R.

    2012-01-01

    The surface of polyethylene was modified by plasma immersion ion implantation. Structure changes including carbonization and oxidation were observed. High surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with storage time after treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish peroxidase was covalently attached onto the modified surface by the reaction with free radicals. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The native conformation of attached protein is retained due to hydrophilic interactions in the interface region. The enzymatic activity of covalently attached protein remained high. The long-term activity of the modified layer to attach protein is explained by stabilisation of unpaired electrons in sp2 carbon structures. A high concentration of free radicals can give multiple covalent bonds to the protein molecule and destroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers. PMID:24278665

  15. Palladium-pyridyl catalytic films: a highly active and recyclable catalyst for hydrogenation of styrene under mild conditions.

    PubMed

    Gao, Shuiying; Li, Weijin; Cao, Rong

    2015-03-01

    Palladium-pyridyl catalytic films, (PdCl2/bpy)n, were created by alternating immersions of a substrate in PdCl2 and bpy (bpy=4, 4'-bipyridyl) solutions. The as-prepared (PdCl2/bpy)10 catalyst demonstrated a remarkable catalytic activity toward hydrogenation of styrene under mild conditions and the turnover frequency (TOF) is as high as 6944h(-1). Pd(II) ions of (PdCl2/bpy)n films are in situ reduced to Pd nanoparticles (NPs) during the hydrogenation of styrene process, which results in the catalytic activity of the films. The results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) further demonstrate that Pd(II) ions of (PdCl2/bpy)n films were gradually converted to Pd(0) states. The catalytic activity is related to bilayer numbers and the activity increases with the number of bilayers below 10 bilayers. The solid substrates coated with (PdCl2/bpy)n multilayer catalysts were easily removed from the reaction mixture without separation filtration. Moreover, (PdCl2/bpy)n catalysts were reused for 10 consecutive reactions without loss of activity. The present (PdCl2/bpy)n heterogeneous catalysts have the advantages of easy separation and good recyclability. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Inactivation of Salmonella in Shell Eggs by Hot Water Immersion and Its Effect on Quality.

    PubMed

    Geveke, David J; Gurtler, Joshua B; Jones, Deana R; Bigley, Andrew B W

    2016-03-01

    Thermal inactivation kinetics of heat resistant strains of Salmonella Enteritidis in shell eggs processed by hot water immersion were determined and the effects of the processing on egg quality were evaluated. Shell eggs were inoculated with a composite of heat resistant Salmonella Enteritidis (SE) strains PT8 C405, 2 (FSIS #OB030832), and 6 (FSIS #OB040159). Eggs were immersed in a circulating hot water bath for various times and temperatures. Come-up time of the coldest location within the egg was 21 min. SE was reduced by 4.5 log at both hot water immersion treatments of 56.7 C for 60 min and 55.6 °C for 100 min. Decimal reduction times (D-values) at 54.4, 55.6, and 56.7 °C were 51.8, 14.6, and 9.33 min, respectively. The z-value was 3.07 °C. Following treatments that resulted in a 4.5 log reduction (56.7 °C/60 min and 55.6 °C/100 min), the surviving population of SE remained static during 4 wk of refrigerated storage. After processing under conditions resulting in 4.5 log reductions, the Haugh unit and albumen height significantly increased (P < 0.01) and yolk index significantly decreased (P < 0.05). The shell dynamic stiffness significantly increased (P < 0.05), while static compression shell strength showed no significant difference (P < 0.05). Vitelline membrane strength significantly increased (P < 0.05); although, no significant difference (P < 0.05) was observed in vitelline membrane elasticity. In summary, the hot water immersion process inactivated heat resistant SE in shell eggs by 4.5 log, but also significantly affected several egg quality characteristics. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  17. Domain Immersion Technique And Free Surface Computations Applied To Extrusion And Mixing Processes

    NASA Astrophysics Data System (ADS)

    Valette, Rudy; Vergnes, Bruno; Basset, Olivier; Coupez, Thierry

    2007-04-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment. We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each subdomain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique backgound computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  18. Effect of thermal implying during ageing process of nanorods growth on the properties of zinc oxide nanorod arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com; Mamat, M. H., E-mail: mhmamat@salam.uitm.edu.my; Rusop, M., E-mail: rusop@salam.uitm.my

    Undoped and Sn-doped Zinc oxide (ZnO) nanostructures have been fabricated using a simple sol-gel immersion method at 95°C of growth temperature. Thermal sourced by hot plate stirrer was supplied to the solution during ageing process of nanorods growth. The results showed significant decrement in the quality of layer produced after the immersion process where the conductivity and porosity of the samples reduced significantly due to the thermal appliance. The structural properties of the samples have been characterized using field emission scanning electron microscopy (FESEM) electrical properties has been characterized using current voltage (I-V) measurement.

  19. Molecular Insights into the Complex Relationship between Capacitance and Pore Morphology in Nanoporous Carbon-based Supercapacitors.

    PubMed

    Pak, Alexander J; Hwang, Gyeong S

    2016-12-21

    Electrochemical double layer capacitors, or supercapacitors, are high-power energy storage devices that consist of large surface area electrodes (filled with electrolyte) to accommodate ion packing in accordance with classical electric double layer (EDL) theory. Nanoporous carbons (NPCs) have recently emerged as a class of electrode materials with the potential to dramatically improve the capacitance of these devices by leveraging ion confinement. However, the molecular mechanisms underlying such enhancements are a clear departure from EDL theory and remain an open question. In this paper, we present the concept of ion reorganization kinetics during charge/discharge cycles, especially within highly confining subnanometer pores, which necessarily dictates the capacitance. Our molecular dynamics voltammetric simulations of ionic liquid immersed in NPC electrodes (of varying pore size distributions) demonstrate that the most efficient ion migration, and thereby largest capacitance, is facilitated by nonuniformity of shape (e.g., from cylindrical to slitlike) along nanopore channels. On the basis of this understanding, we propose that a new structural descriptor, coined as the pore shape factor, can provide a new avenue for materials optimization. These findings also present a framework to understand and evaluate ion migration kinetics within charged nanoporous materials.

  20. Ion channel electrophysiology via integrated planar patch-clamp chip with on-demand drug exchange.

    PubMed

    Chen, Chang-Yu; Tu, Ting-Yuan; Jong, De-Shien; Wo, Andrew M

    2011-06-01

    Planar patch clamp has revolutionized characterization of ion channel behavior in drug discovery primarily via advancement in high throughput. Lab use of planar technology, however, addresses different requirements and suffers from inflexibility to enable wide range of interrogation via a single cell. This work presents integration of planar patch clamp with microfluidics, achieving multiple solution exchanges for tailor-specific measurement and allowing rapid replacement of the cell-contacting aperture. Studies via endogenously expressed ion channels in HEK 293T cells were commenced to characterize the device. Results reveal the microfluidic concentration generator produces distinct solution/drug combination/concentrations on-demand. Volume-regulated chloride channel and voltage-gated potassium channels in HEK 293T cells immersed in generated solutions under various osmolarities or drug concentrations show unique channel signature under specific condition. Excitation and blockage of ion channels in a single cell was demonstrated via serial solution exchange. Robustness of the reversible bonding and ease of glass substrate replacement were proven via repeated usage of the integrated device. The present approach reveals the capability and flexibility of integrated microfluidic planar patch-clamp system for ion channel assays. Copyright © 2011 Wiley Periodicals, Inc.

  1. Game Immersion Experience: Its Hierarchical Structure and Impact on Game-Based Science Learning

    ERIC Educational Resources Information Center

    Cheng, M.-T.; She, H.-C.; Annetta, L. A.

    2015-01-01

    Many studies have shown the positive impact of serious educational games (SEGs) on learning outcomes. However, there still exists insufficient research that delves into the impact of immersive experience in the process of gaming on SEG-based science learning. The dual purpose of this study was to further explore this impact. One purpose was to…

  2. Immersion and dry scanner extensions for sub-10nm production nodes

    NASA Astrophysics Data System (ADS)

    Weichselbaum, Stefan; Bornebroek, Frank; de Kort, Toine; Droste, Richard; de Graaf, Roelof F.; van Ballegoij, Rob; Botter, Herman; McLaren, Matthew G.; de Boeij, Wim P.

    2015-03-01

    Progressing towards the 10nm and 7nm imaging node, pattern-placement and layer-to-layer overlay requirements keep on scaling down and drives system improvements in immersion (ArFi) and dry (ArF/KrF) scanners. A series of module enhancements in the NXT platform have been introduced; among others, the scanner is equipped with exposure stages with better dynamics and thermal control. Grid accuracy improvements with respect to calibration, setup, stability, and layout dependency tighten MMO performance and enable mix and match scanner operation. The same platform improvements also benefit focus control. Improvements in detectability and reproducibility of low contrast alignment marks enhance the alignment solution window for 10nm logic processes and beyond. The system's architecture allows dynamic use of high-order scanner optimization based on advanced actuators of projection lens and scanning stages. This enables a holistic optimization approach for the scanner, the mask, and the patterning process. Productivity scanner design modifications esp. stage speeds and optimization in metrology schemes provide lower layer costs for customers using immersion lithography as well as conventional dry technology. Imaging, overlay, focus, and productivity data is presented, that demonstrates 10nm and 7nm node litho-capability for both (immersion & dry) platforms.

  3. Synthesis of novel ICIE16/BSG and ICIE16/BSG-NITRI bioglasses and description of ionic release kinetics upon immersion in SBF fluid: Effect of nitridation

    PubMed Central

    Orgaz, Felipe; Amat, Daniel; Szycht, Olga; Dzika, Aleksandra; Barba, Flora; Becerra, José; Santos-Ruiz, Leonor

    2015-01-01

    A novel bioactive glass scaffold ICIE16/BSG has been prepared from a mixture of two different melt-derived glasses: a silicate bioglass (ICIE16) and a borosilicate bioglass (BSG). Combined processing techniques (gel casting and foam replication) were used to form three-dimensional, interconnected porous monolith scaffolds (Orgaz et al., 2016) [1]. They were then nitrided with a hot ammonia flow as described in (Aleixandre et al., 1973) [3] and (Nieto, 1984) [4] to synthesize the ICIE16/BSG-NITRI bioglass (Orgaz et al., 2016) [1]. Herein we present a flow chart summarizing the forming process, plus images of the resulting scaffold after sintering and drying. Bioactivity was characterized in vitro by immersion in simulated body fluid (SBF) for up to seven days. Data of ionic release kinetics upon SBF immersion are presented. PMID:26858981

  4. Synthesis of novel ICIE16/BSG and ICIE16/BSG-NITRI bioglasses and description of ionic release kinetics upon immersion in SBF fluid: Effect of nitridation.

    PubMed

    Orgaz, Felipe; Amat, Daniel; Szycht, Olga; Dzika, Aleksandra; Barba, Flora; Becerra, José; Santos-Ruiz, Leonor

    2016-03-01

    A novel bioactive glass scaffold ICIE16/BSG has been prepared from a mixture of two different melt-derived glasses: a silicate bioglass (ICIE16) and a borosilicate bioglass (BSG). Combined processing techniques (gel casting and foam replication) were used to form three-dimensional, interconnected porous monolith scaffolds (Orgaz et al., 2016) [1]. They were then nitrided with a hot ammonia flow as described in (Aleixandre et al., 1973) [3] and (Nieto, 1984) [4] to synthesize the ICIE16/BSG-NITRI bioglass (Orgaz et al., 2016) [1]. Herein we present a flow chart summarizing the forming process, plus images of the resulting scaffold after sintering and drying. Bioactivity was characterized in vitro by immersion in simulated body fluid (SBF) for up to seven days. Data of ionic release kinetics upon SBF immersion are presented.

  5. Experimental evaluation of cyclic fatigue resistance of four different nickel-titanium instruments after immersion in sodium hypochlorite and/or sterilization

    PubMed Central

    BULEM, Üreyen Kaya; KECECI, Ayse Diljin; GULDAS, Hilmi Egemen

    2013-01-01

    NiTi instruments have a high risk of separation due to torsional or flexural fatigue (cyclic fatigue). Chemomechanical preparation, cleaning procedures, chemical disinfection and sterilization cause the corrosion of endodontic instruments that may weaken the fracture resistance of the instruments. Objective To assess the effects of NaOCl immersion and autoclave sterilization on the cyclic fatigue resistance of ProFile, FlexMaster, Mtwo and TwistedFiles NiTi instruments (tip size 25, 0.06 taper, n=160). Material and Methods The instruments (n=10 for each subgroup) were dynamically immersed in NaOCl; immersed in NaOCl and sterilized in one autoclave cycle; 5 cycles immersed in NaOCl and sterilized in autoclave and not immersed in NaOCl and not sterilized (control group). Dynamic cyclic fatigue resistance was tested. The number of cycles to failure (NCF) were statistically analyzed (P<0.05). Results Kruskall-Wallis test indicated significant differences among the tested instruments in terms of NCF (P=0.000). The mean NCF of Mtwo (556.75) was higher than that of the Twisted File, Flexmaster and ProFile, 483.1, 376.12, 365.25, respectively. NaOCl immersion and autoclave sterilization have no effect on the NCF values of the tested instruments (P>.05). Conclusions Cyclic fatigue resistance of the tested NiTi instruments cannot be adversely affected by NaOCl immersion and autoclave sterilization. Production process (TwistedFiles) or design (Twisted Files, FlexMaster, Mtwo and ProFile) of the instruments can influence their cyclic fatigue resistance. PMID:24473715

  6. Sulfide Stress Cracking and Electrochemical Corrosion of Precipitation Hardening Steel After Plasma Oxy-Nitriding

    NASA Astrophysics Data System (ADS)

    Granda-Gutiérrez, E. E.; Díaz-Guillén, J. C.; Díaz-Guillén, J. A.; González, M. A.; García-Vázquez, F.; Muñóz, R.

    2014-11-01

    In this paper, we present the results of a duplex plasma nitriding followed by an oxidizing stage process (which is also referred as oxy-nitriding) on the corrosion behavior of a 17-4PH precipitation hardening stainless steel. The formation of both, expanded martensite (b.c.t. α'N-phase) and chromium oxide (type Cr2O3) in the subsurface of oxy-nitrided samples at specific controlled conditions, leads in a noticeable increasing in the time-to-rupture during the sulfide stress cracking test, in comparison with an untreated reference sample. Oxy-nitriding improves the corrosion performance of the alloy when it is immersed in solutions saturated by sour gas, which extends the application potential of this type of steel in the oil and gas extraction and processing industry. The presence of the oxy-nitrided layer inhibits the corrosion process that occurs in the near-surface region, where hydrogen is liberated after the formation of iron sulfides, which finally produces a fragile fracture by micro-crack propagation; the obtained results suggest that oxy-nitriding slows this process, thus delaying the rupture of the specimen. Moreover, oxy-nitriding produces a hard, sour gas-resistant surface, but do not significantly affect the original chloride ion solution resistance of the material.

  7. Effect of chloride ions on the corrosion behavior of low-alloy steel containing copper and antimony in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Park, Sun-Ah; Kim, Seon-Hong; Yoo, Yun-Ha; Kim, Jung-Gu

    2015-05-01

    The influence of the addition of HCl on the corrosion behavior of low-alloy steel containing copper and antimony was investigated using electrochemical (potentiodynamic and potentiostatic polarization tests, and electrochemical impedance spectroscopy) and weight loss tests in a 1.6M H2SO4 solution with different concentrations of hydrochloric acid (0.00, 0.08, 0.15 and 0.20 M HCl) at 60 °C. The result showed that the corrosion rate decreased with increasing HCl by the formation of protective layers. SEM, EDS and XPS examinations of the corroded surfaces after the immersion test indicated that the corrosion production layer formed in the solution containing HCl was highly comprised of metallic Cu, Cu chloride and metallic (Fe, Cu, Sb) compounds. The corrosion resistance was improved by the Cu-enriched layer, in which chloride ions are an accelerator for cupric ion reduction during copper deposition. Furthermore, cuprous and antimonious chloride species are complex salts for cuprous ions adsorbed on the surface during copper deposition.

  8. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics.

    PubMed

    Lu, W; Xiong, B; Zhang, X Z; Sun, L T; Feng, Y C; Ma, B H; Guo, S Q; Cao, R; Ruan, L; Zhao, H W

    2014-02-01

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0-1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  9. Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function

    PubMed Central

    Wang, Guifang; Li, Jinhua; Zhang, Wenjie; Xu, Lianyi; Pan, Hongya; Wen, Jin; Wu, Qianju; She, Wenjun; Jiao, Ting; Liu, Xuanyong; Jiang, Xinquan

    2014-01-01

    As one of the important ions associated with bone osseointegration, magnesium was incorporated into a micro/nanostructured titanium surface using a magnesium plasma immersion ion-implantation method. Hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 30 minutes (Mg30) and hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 60 minutes (Mg60) were used as test groups. The surface morphology, chemical properties, and amount of magnesium ions released were evaluated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy, and inductively coupled plasma-optical emission spectrometry. Rat bone marrow mesenchymal stem cells (rBMMSCs) were used to evaluate cell responses, including proliferation, spreading, and osteogenic differentiation on the surface of the material or in their medium extraction. Greater increases in the spreading and proliferation ability of rBMMSCs were observed on the surfaces of magnesium-implanted micro/nanostructures compared with the control plates. Furthermore, the osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) genes were upregulated on both surfaces and in their medium extractions. The enhanced cell responses were correlated with increasing concentrations of magnesium ions, indicating that the osteoblastic differentiation of rBMMSCs was stimulated through the magnesium ion function. The magnesium ion-implanted micro/nanostructured titanium surfaces could enhance the proliferation, spreading, and osteogenic differentiation activity of rBMMSCs, suggesting they have potential application in improving bone-titanium integration. PMID:24940056

  10. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling.

    PubMed

    Duncan, Kyle D; Volmer, Dietrich A; Gill, Chris G; Krogh, Erik T

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H](-)) ions with limited selective fragmentation. However, carboxylates cationized with Ba(2+) have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba](+) precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH](+) and [BaOH](+)). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.

  11. Evaluating the Effects of Immersive Embodied Interaction on Cognition in Virtual Reality

    NASA Astrophysics Data System (ADS)

    Parmar, Dhaval

    Virtual reality is on its advent of becoming mainstream household technology, as technologies such as head-mounted displays, trackers, and interaction devices are becoming affordable and easily available. Virtual reality (VR) has immense potential in enhancing the fields of education and training, and its power can be used to spark interest and enthusiasm among learners. It is, therefore, imperative to evaluate the risks and benefits that immersive virtual reality poses to the field of education. Research suggests that learning is an embodied process. Learning depends on grounded aspects of the body including action, perception, and interactions with the environment. This research aims to study if immersive embodiment through the means of virtual reality facilitates embodied cognition. A pedagogical VR solution which takes advantage of embodied cognition can lead to enhanced learning benefits. Towards achieving this goal, this research presents a linear continuum for immersive embodied interaction within virtual reality. This research evaluates the effects of three levels of immersive embodied interactions on cognitive thinking, presence, usability, and satisfaction among users in the fields of science, technology, engineering, and mathematics (STEM) education. Results from the presented experiments show that immersive virtual reality is greatly effective in knowledge acquisition and retention, and highly enhances user satisfaction, interest and enthusiasm. Users experience high levels of presence and are profoundly engaged in the learning activities within the immersive virtual environments. The studies presented in this research evaluate pedagogical VR software to train and motivate students in STEM education, and provide an empirical analysis comparing desktop VR (DVR), immersive VR (IVR), and immersive embodied VR (IEVR) conditions for learning. This research also proposes a fully immersive embodied interaction metaphor (IEIVR) for learning of computational concepts as a future direction, and presents the challenges faced in implementing the IEIVR metaphor due to extended periods of immersion. Results from the conducted studies help in formulating guidelines for virtual reality and education researchers working in STEM education and training, and for educators and curriculum developers seeking to improve student engagement in the STEM fields.

  12. Development of silicon grisms and immersion gratings for high-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ge, Jian; McDavitt, Daniel L.; Bernecker, John L.; Miller, Shane; Ciarlo, Dino R.; Kuzmenko, Paul J.

    2002-01-01

    We report new results on silicon grism and immersion grating development using photolithography and anisotropic chemical etching techniques, which include process recipe finding, prototype grism fabrication, lab performance evaluation and initial scientific observations. The very high refractive index of silicon (n=3.4) enables much higher dispersion power for silicon-based gratings than conventional gratings, e.g. a silicon immersion grating can offer a factor of 3.4 times the dispersion of a conventional immersion grating. Good transmission in the infrared (IR) allows silicon-based gratings to operate in the broad IR wavelength regions (~1- 10 micrometers and far-IR), which make them attractive for both ground and space-based spectroscopic observations. Coarser gratings can be fabricated with these new techniques rather than conventional techniques, allowing observations at very high dispersion orders for larger simultaneous wavelength coverage. We have found new etching techniques for fabricating high quality silicon grisms with low wavefront distortion, low scattered light and high efficiency. Particularly, a new etching process using tetramethyl ammonium hydroxide (TMAH) is significantly simplifying the fabrication process on large, thick silicon substrates, while providing comparable grating quality to our traditional potassium hydroxide (KOH) process. This technique is being used for fabricating inch size silicon grisms for several IR instruments and is planned to be used for fabricating ~ 4 inch size silicon immersion gratings later. We have obtained complete K band spectra of a total of 6 T Tauri and Ae/Be stars and their close companions at a spectral resolution of R ~ 5000 using a silicon echelle grism with a 5 mm pupil diameter at the Lick 3m telescope. These results represent the first scientific observations conducted by the high-resolution silicon grisms, and demonstrate the extremely high dispersing power of silicon- based gratings. The future of silicon-based grating applications in ground and space-based IR instruments is promising. Silicon immersion gratings will make very high-resolution spectroscopy (R>100,000) feasible with compact instruments for implementation on large telescopes. Silicon grisms will offer an efficient way to implement low-cost medium to high resolution IR spectroscopy (R~ 1000-50000) through the conversion of existing cameras into spectrometers by locating a grism in the instrument's pupil location.

  13. Effect of pectin methyl esterase and Ca²⁺ ions treatment on antioxidant capacity, shelf-life and quality of minimally processed pomegranate (Punica granatum L.) arils.

    PubMed

    Kumar, Sunil; Kumar, Ramesh; Nambi, V E

    2016-03-01

    Pomegranate fruits are difficult to peel and once peeled, extracted arils have very short shelf-life. Therefore, present investigation was carried out to extend the shelf life of minimally processed pomegranate arils using pectin methyl esterase (PME) and CaCl2 treatment during refrigerated storage. The arils of freshly harvested pomegranate fruits (Punica granatum L.) were treated with different concentrations of food-grade PME (50-300 units) and calcium ions (0.5-2.0% CaCl₂) for a period of 5-30 min using response surface methodology. Treated and untreated arils were then packed in low density polyethylene bags (25 μ) and maintained under low temperature (5°C; 90% RH) for evaluating the physical, biochemical and microbial quality of pomegranate arils at four day interval. Physiological loss in weight increased during storage but no food-borne pathogens were found during 28 day of cold storage in treated arils. Color and firmness of both treated and untreated arils decreased during storage but it was better maintained in treated arils. The firmness was found to be 0.630 N in treated samples compared to untreated one (0.511 N) after 20 d of storage. Total antioxidant capacity, ferric reducing antioxidant power, polyphenol oxidase and lipoxygenase activities increased during storage. Treatment with 249.33 units of PME and 1.70% CaCl₂for an immersion time of 24.93 min was found to be most effective treatment for maintaining the quality of minimally processed arils for longer period. Sensory score was also higher in treated pomegranate arils that were quite acceptable even after 20 day of referigerated storage as against 12 day for untreated ones.

  14. Indigenous Manufacturing realization of TWIN Source

    NASA Astrophysics Data System (ADS)

    Pandey, R.; Bandyopadhyay, M.; Parmar, D.; Yadav, R.; Tyagi, H.; Soni, J.; Shishangiya, H.; Sudhir Kumar, D.; Shah, S.; Bansal, G.; Pandya, K.; Parmar, K.; Vuppugalla, M.; Gahlaut, A.; Chakraborty, A.

    2017-04-01

    TWIN source is two RF driver based negative ion source that has been planned to bridge the gap between single driver based ROBIN source (currently operational) and eight river based DNB source (to be operated under IN-TF test facility). TWIN source experiments have been planned at IPR keeping the objective of long term domestic fusion programme to gain operational experiences on vacuum immersed multi driver RF based negative ion source. High vacuum compatible components of twin source are designed at IPR keeping an aim on indigenous built in attempt. These components of TWIN source are mainly stainless steel and OFC-Cu. Being high heat flux receiving components, one of the major functional requirements is continuous heat removal via water as cooling medium. Hence for the purpose stainless steel parts are provided with externally milled cooling lines and that shall be covered with a layer of OFC-cu which would be on the receiving side of high heat flux. Manufacturability of twin source components requires joining of these dissimilar materials via process like electrode position, electron beam welding and vacuum brazing. Any of these manufacturing processes shall give a vacuum tight joint having proper joint strength at operating temperature and pressure. Taking the indigenous development effort vacuum brazing (in non-nuclear environment) has been opted for joining of dissimilar materials of twin source being one of the most reliable joining techniques and commercially feasible across the suppliers of country. Manufacturing design improvisation for the components has been done to suit the vacuum brazing process requirement and to ease some of the machining without comprising over the functional and operational requirements. This paper illustrates the details on the indigenous development effort, design improvisation to suits manufacturability, vacuum brazing basics and its procedures for twin source components.

  15. Focused beams of fast neutral atoms in glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Grigoriev, S. N.; Melnik, Yu. A.; Metel, A. S.; Volosova, M. A.

    2017-06-01

    Glow discharge with electrostatic confinement of electrons in a vacuum chamber allows plasma processing of conductive products in a wide pressure range of p = 0.01 - 5 Pa. To assist processing of a small dielectric product with a concentrated on its surface beam of fast neutral atoms, which do not cause charge effects, ions from the discharge plasma are accelerated towards the product and transformed into fast atoms. The beam is produced using a negatively biased cylindrical or a spherical grid immersed in the plasma. Ions accelerated by the grid turn into fast neutral atoms at p > 0.1 Pa due to charge exchange collisions with gas atoms in the space charge sheaths adjoining the grid. The atoms form a diverging neutral beam and a converging beam propagating from the grid in opposite directions. The beam propagating from the concave surface of a 0.24-m-wide cylindrical grid is focused on a target within a 10-mm-wide stripe, and the beam from the 0.24-m-diameter spherical grid is focused within a 10-mm-diameter circle. At the bias voltage U = 5 kV and p ˜ 0.1 Pa, the energy of fast argon atoms is distributed continuously from zero to eU ˜ 5 keV. The pressure increase to 1 Pa results in the tenfold growth of their equivalent current and a decrease in the mean energy by an order of magnitude, which substantially raises the efficiency of material etching. Sharpening by the beam of ceramic knife-blades proved that the new method for the generation of concentrated fast atom beams can be effectively used for the processing of dielectric materials in vacuum.

  16. Physiology of Fluid and Electrolyte Responses During Inactivity: Water Immersion and Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1984-01-01

    This manuscript emphasizes the physiology of fluid-electrolyte-hormonal responses during the prolonged inactivity of bed rest and water immersion. An understanding of the total mechanism of adaptation (deconditioning) should provide more insight into the conditioning process. Findings that need to be confirmed during bed rest and immersion are: (1) the volume and tissues of origin of fluid shifted to the thorax and head; (2) interstitial fluid pressure changes in muscle and subcutaneous tissue, particularly during immersion; and (3) the composition of the incoming presumably interstitial fluid that contributes to the early hypervolemia. Better resolution of the time course and source of the diuretic fluid is needed. Important data will be forthcoming when hypotheses are tested involving the probable action of the emerging diuretic and natriuretic hormones, between themselves and among vasopressin and aldosterone, on diuresis and blood pressure control.

  17. Clinical Immersion: An Approach for Fostering Cross-disciplinary Communication and Innovation in Nursing and Engineering Students.

    PubMed

    Geist, Melissa J; Sanders, Robby; Harris, Kevin; Arce-Trigatti, Andrea; Hitchcock-Cass, Cary

    2018-05-24

    A faculty team from nursing and chemical engineering developed a course that brought together students from each discipline for cross-disciplinary, team-based clinical immersion and collaboration. Health care processes and devices are rapidly changing, and nurses are uniquely positioned to be bedside innovators to improve patient care delivery. During each clinical immersion, the student teams rotated through various hospital units where they identified problems and worked together in the university's makerspace (iMaker Space) to design and build prototypes to improve health outcomes. Data from the Critical thinking Assessment Test provided evidence of gains in critical-thinking and problem-solving skills, while the problems identified in the clinical setting and prototypes developed demonstrated the impact of bringing nursing and engineering students together to design innovations. When challenged to identify authentic problems during their clinical immersion, the teams of nursing and engineering students proposed creative solutions and developed commercially viable prototypes.

  18. Effects of an Elementary Two Way Bilingual Spanish-English Immersion School Program on Junior High and High School Student Achievement

    ERIC Educational Resources Information Center

    Vega, Luis Diego

    2014-01-01

    This study explores the effects of a Two-Way Bilingual Immersion (TWBI) program on language majority and minority students. The fundamental hypothesis was that the process of receiving instruction in two languages (English and Spanish) throughout elementary school (i.e., attendance at a TWBI school) would help the native Spanish-speaking students…

  19. Decoupling, situated cognition and immersion in art.

    PubMed

    Reboul, Anne

    2015-09-01

    Situated cognition seems incompatible with strong decoupling, where representations are deployed in the absence of their targets and are not oriented toward physical action. Yet, in art consumption, the epitome of a strongly decoupled cognitive process, the artwork is a physical part of the environment and partly controls the perception of its target by the audience, leading to immersion. Hence, art consumption combines strong decoupling with situated cognition.

  20. Diffusive interaction of multiple surface nanobubbles: shrinkage, growth, and coarsening.

    PubMed

    Zhu, Xiaojue; Verzicco, Roberto; Zhang, Xuehua; Lohse, Detlef

    2018-03-14

    Surface nanobubbles are nanoscopic spherical-cap shaped gaseous domains on immersed substrates which are stable, even for days. After the stability of a single surface nanobubble has been theoretically explained, i.e. contact line pinning and gas oversaturation are required to stabilize it against diffusive dissolution [Lohse and Zhang, Phys. Rev. E, 2015, 91, 031003(R)], here we focus on the collective diffusive interaction of multiple nanobubbles. For that purpose we develop a finite difference scheme for the diffusion equation with the appropriate boundary conditions and with the immersed boundary method used to represent the growing or shrinking bubbles. After validation of the scheme against the exact results of Epstein and Plesset for a bulk bubble [J. Chem. Phys., 1950, 18, 1505] and of Lohse and Zhang for a surface bubble, the framework of these simulations is used to describe the coarsening process of competitively growing nanobubbles. The coarsening process for such diffusively interacting nanobubbles slows down with advancing time and increasing bubble distance. The present results for surface nanobubbles are also applicable for immersed surface nanodroplets, for which better controlled experimental results of the coarsening process exist.

  1. Dynamic of Air Invasion in an Immersed Granular Layer

    NASA Astrophysics Data System (ADS)

    Varas, G.; Ramos, G.; Géminard, J. C.; Vidal, V.

    2014-12-01

    Displacement processes (typically, grains displaced by a fluid) are the driving mechanism which control the dynamics of many geological processes (e.g. oil extraction, air sparging, piercement structures). They also play an important role in a wide range of industrial applications, from ground water hydrology and soil mechanics to agricultural engineering. The interaction between one or more moving fluids (e.g. rising gas immersed in a granular medium) and grains control the dynamics of these phenomena. Due to their economic and ecological importance, it is essential to understand the variety and potentiality of these phenomena. When an ascending air passes trough an immersed granular bed its fluidized producing the grains to start to move. When this process is repeated, its created a fluidized zone that evolves over time. Here, we investigate the morphology and dynamics of the region invaded by air as a function of a dimensionless parameter χ which accounts for the relative effects of the gravity and the capillarity. We propose new experimental observations on the air invasion regimes and on the morphology of the fluidized zone, in particular its growth dynamics.

  2. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpert, Peter A.; Knopf, Daniel A.

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimentalmore » data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, N tot, and the heterogeneous ice nucleation rate coefficient, J het( T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous-flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time-dependent isothermal frozen fractions exhibiting non-exponential behavior can be readily explained by this model considering varying ISA. An apparent cooling-rate dependence of J het is explained by assuming identical ISA in each droplet. When accounting for ISA variability, the cooling-rate dependence of ice nucleation kinetics vanishes as expected from classical nucleation theory. Finally, the model simulations allow for a quantitative experimental uncertainty analysis for parameters N tot, T, RH, and the ISA variability. We discuss the implications of our results for experimental analysis and interpretation of the immersion freezing process.« less

  3. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    DOE PAGES

    Alpert, Peter A.; Knopf, Daniel A.

    2016-02-24

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimentalmore » data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, N tot, and the heterogeneous ice nucleation rate coefficient, J het( T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous-flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time-dependent isothermal frozen fractions exhibiting non-exponential behavior can be readily explained by this model considering varying ISA. An apparent cooling-rate dependence of J het is explained by assuming identical ISA in each droplet. When accounting for ISA variability, the cooling-rate dependence of ice nucleation kinetics vanishes as expected from classical nucleation theory. Finally, the model simulations allow for a quantitative experimental uncertainty analysis for parameters N tot, T, RH, and the ISA variability. We discuss the implications of our results for experimental analysis and interpretation of the immersion freezing process.« less

  4. Neuromuscular function during knee extension exercise after cold water immersion.

    PubMed

    Wakabayashi, Hitoshi; Wijayanto, Titis; Tochihara, Yutaka

    2017-06-23

    Human adaptability to cold environment has been focused on in the physiological anthropology and related research area. Concerning the human acclimatization process in the natural climate, it is necessary to conduct a research assessing comprehensive effect of cold environment and physical activities in cold. This study investigated the effect of cold water immersion on the exercise performance and neuromuscular function during maximal and submaximal isometric knee extension. Nine healthy males participated in this study. They performed maximal and submaximal (20, 40, and 60% maximal load) isometric knee extension pre- and post-immersion in 23, 26, and 34 °C water. The muscle activity of the rectus femoris (RF) and vastus lateralis (VL) was measured using surface electromyography (EMG). The percentages of the maximum voluntary contraction (%MVC) and mean power frequency (MPF) of EMG data were analyzed. The post-immersion maximal force was significantly lower in 23 °C than in 26 and 34 °C conditions (P < 0.05). The post-immersion %MVC of RF was significantly higher than pre-immersion during 60% maximal exercise in 23 and 26 °C conditions (P < 0.05). In the VL, the post-immersion %MVC was significantly higher than pre-immersion in 23 and 26 °C conditions during 20% maximal exercise and in 26 °C at 40 and 60% maximal intensities (P < 0.05). The post-immersion %MVC of VL was significantly higher in 26 °C than in 34 °C at 20 and 60% maximal load (P < 0.05). The post-immersion MPF of RF during 20% maximal intensity was significantly lower in 23 °C than in 26 and 34 °C conditions (P < 0.05), and significantly different between three water temperature conditions at 40 and 60% maximal intensities (P < 0.05). The post-immersion MPF of VL during three submaximal trials were significantly lower in 23 and 26 °C than in 34 °C conditions (P < 0.05). The lower shift of EMG frequency would be connected with the decrease in the nerve and muscle fibers conduction velocity. To compensate for the impairment of each muscle fibers function, more muscle fibers might be recruited to maintain the working load. This might result in the greater amplitude of EMG after the cold immersion.

  5. In vitro bioactivity behavior of modified multicomponent borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; ElBatal, F. H.; Ghoneim, N. A.

    2018-02-01

    Some multi-component borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5 were prepared. Multi-characterization techniques were carried out to investigate their bioactivity, corrosion weight loss after immersion in phosphate solution. Controlled thermal heat-treatment by two-step technique was done to convert the prepared glasses to their corresponding glass-ceramic derivatives. X-ray diffraction analysis was performed to identify the crystalline phases formed by thermal treatment. Infrared absorption of glasses and glass-ceramics reveal vibrational bands due to combined main triangular and tetrahedral borate groups in their specific wavenumbers besides some sharing of phosphate group. After immersion in the phosphate solution, two extra characteristic peaks are generated indicating the bioactivity of the studied glasses and glass-ceramics through the formation of calcium phosphate (hydroxyapatite). X-ray diffraction data indicate the formation of crystalline phases which are variable with the introduced dopants. The main crystalline phase identified is calcium borate together with some other phases some of which contain phosphate ions. These data indicate that the presence of CaO and P2O5 initiates phase separation and subsequent crystallization of the parent and doped glasses. Weight loss data indicate that glass-ceramics are obviously durable than the parent glasses. SEM micrographs of glass-ceramics before immersion show multiconstituent crystalline phases due to the basic chemical composition consisting of multicomponent mixed alkali and alkaline earth oxides beside P2O5 and with the main B2O3 constituent. After immersion, the crystalline phases are identified to be more distinct in different shapes because of the multi-composition involved.

  6. ILLUMINATING THE ROLE OF AGGLOMERATES ON CRITICAL PHYSICOCHEMICAL PROPERTIES OF AMORPHOUS CALCIUM PHOSPHATE COMPOSITES

    PubMed Central

    O’Donnell, J.N.R.; Antonucci, J.M.; Skrtic, D.

    2009-01-01

    Water sorption (WS), mechanical strength, and ion release of polymeric composites formulated with 40 % as-made or milled amorphous calcium phosphate (ACP) are compared after 1, 2 and 3 months of aqueous exposure. Ethoxylated bisphenol A dimethacrylate, triethylene glycol dimethacrylate, 2-hydroxyethyl methacrylate and methacryloxyethyl phthalate comprised the resin. The WS (mass %) peaked at 3 months. WS of as-made ACP composites was significantly higher than WS of milled ACP composites and copolymers. Both composite groups experienced decreases in biaxial flexural strength (BFS) with water aging, with milled ACP composites retaining a significantly higher BFS throughout immersion. Ion release was moderately reduced in milled ACP composites, though they remained superior to as-made ACP composites due to significantly lower WS and higher BFS after prolonged aqueous exposure. PMID:19774100

  7. Radiofrequency antenna for suppression of parasitic discharges in a helicon plasma thruster experiment.

    PubMed

    Takahashi, Kazunori

    2012-08-01

    A radiofrequency (rf) antenna for helicon plasma thruster experiments is developed and tested using a permanent magnets helicon plasma source immersed in a vacuum chamber. A magnetic nozzle is provided by permanent magnets arrays and an argon plasma is produced by a 13.56 MHz radiofrequency helicon-wave or inductively-coupled discharge. A parasitic discharge outside the source tube is successfully suppressed by covering the rf antenna with a ceramic ring and a grounded shield; a decrease in the ion saturation current of a Langmuir probe located outside the source tube is observed and the ion saturation current on axis increases simultaneously, compared with the case of a standard uncovered rf antenna. It is also demonstrated that the covered antenna can yield stable operation of the source.

  8. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling.

    PubMed

    Ojanen, Severi; Lundström, Mari; Santasalo-Aarnio, Annukka; Serna-Guerrero, Rodrigo

    2018-06-01

    The use of lithium-ion batteries (LIB) has grown significantly in recent years, making them a promising source of secondary raw materials due to their rich composition of valuable materials such as Co, Ni and Al. However, the high voltage and reactive components of LIBs pose safety hazards during crushing stages in recycling processes, and during storage and transportation. Electrochemical discharge by immersion of spent batteries in salt solutions has been generally accepted as a robust and straightforward discharging step to address these potential hazards. Nonetheless, there is no clear evidence in the literature to support the use of electrochemical discharge in real systems, neither are there clear indications of the real-world limitations of this practice. To that aim, this work presents a series of experiments systematically conducted to study the behavior of LIBs during electrochemical discharge in salt solutions. In the first part of this study, a LIB sample was discharged ex-situ using Pt wires connected to the battery poles and submerged into the electrolyte solution on the opposite end. The evolution of voltage in the battery was measured for solutions of NaCl, NaSO 4 , FeSO 4 , and ZnSO 4 . The results indicate that, among the electrolytes used in the present study, NaCl solution is the most effective for LIBs discharge. The discharge of LIB using sulfate salts is however only possible with the aid of stirring, as deposition of solid precipitated on the electrodes hinder the electrochemical discharge. Furthermore, it was found that the addition of particulates of Fe or Zn as sacrificial metal further enhances the discharging rate, likely due to an increased contact area with the electrolyte solution. While these findings support the idea of using electrochemical discharge as a pre-treatment of LIBs, severe corrosion of the battery poles was observed upon direct immersion of batteries into electrolyte solutions. Prevention of such corrosion requires further research efforts, perhaps focused on a new design-for-recycling approach of LIBs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González-Mozuelos, P.

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact descriptionmore » of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short-ranged association of microions to the microgels. The behavior of these effective charges as a function of the amount of added salt and the macroion charge, size, and concentration reveals the interplay among all these system parameters.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Wei; Liu, Hongtao, E-mail: liuht100@126.com; Sun, Qinghe

    A facile and quick fabrication method was proposed to prepare superhydrophobic surfaces on iron substrate by chemical immersion and subsequent stearic acid modification. The association between wettability and surface morphology was studied through altering the copper ion concentration and immersion time. Surface tension instrument, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and electrochemical workstation were used to characterize the wettability, physical morphology, chemical composition, and corrosion resistance ability of the prepared film. Results showed that both the rough micro/nanostructures and low surface energy material play critical roles in surface wettability. The superhydrophobic film achieved a better anticorrosion property comparedmore » to barrier iron by analysis of open circuit potential, potentiodynamic polarization curves, and Nyquist plots. In addition, the superhydrophobic surface showed excellent performance of acid and alkali resistance, anti-icing, and self-cleaning through a series of environmental tests. This study provides a valid method for quick-preparation of the stable superhydrophobic surfaces, which has a promising application in steel buildings and facilities.« less

  11. Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence.

    PubMed

    Aslan, Kadir; Lakowicz, Joseph R; Geddes, Chris D

    2005-04-07

    A simple and rapid wet-chemical technique for the deposition of silver triangles on conventional glass substrates, which alleviates the need for lithography, has been developed. The technique is based on the seed-mediated cetyltrimethylammonium-bromide-directed growth of silver triangles on glass surfaces, where smaller spherical silver seeds that were attached to the surface were subsequently converted and grown into silver triangles in the presence of a cationic surfactant and silver ions. The size of the silver triangles was controlled by sequential immersion of silver seed-coated glass substrates into a growth solution and by the duration time of immersion. Atomic force microscopy studies revealed that the size of the silver triangles ranged between 100 and 500 nm. Interestingly, these new surfaces are a significant improvement over traditional silver island films for applications in metal-enhanced fluorescence. A routine 16-fold enhancement in emission intensity was typically observed, for protein-immobilized indocyanine green, with a relatively very low loading density of silver triangles on the glass surface.

  12. Molecular dynamics simulation of salt rejection through silicon carbide nanotubes as a nanostructure membrane.

    PubMed

    Khataee, Alireza; Bayat, Golchehreh; Azamat, Jafar

    2017-01-01

    Salt rejection phenomenon was investigated using armchair silicon carbide (SiC) nanotubes under applied electric fields. The systems included the (7,7) and (8,8) SiC nanotubes surrounded by silicon nitride membrane immersed in a 0.4mol/L aqueous solution of sodium chloride. Results of molecular dynamics (MD) simulations for selective separation of Na + and Cl - ions showed that the (7,7) SiC nanotube is suitable for separation of cations and the (8,8) SiC nanotube can be used for separating anions. The water desalination by SiC nanotubes was demonstrated by potential of mean force for Na + and Cl - ions in each SiC nanotube. Furthermore, the ionic current, ion residence time, and the radial distribution functions of species were measured to evaluate the properties of the system. Based on the results of this research, the studied SiC nanotubes can be recommended as a nanostructure model for water desalination. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals.

    PubMed

    Birloaga, Ionela; Coman, Vasile; Kopacek, Bernd; Vegliò, Francesco

    2014-12-01

    This study refers to two chemical leaching systems for the base and precious metals extraction from waste printed circuit boards (WPCBs); sulfuric acid with hydrogen peroxide have been used for the first group of metals, meantime thiourea with the ferric ion in sulfuric acid medium were employed for the second one. The cementation process with zinc, copper and iron metal powders was attempted for solutions purification. The effects of hydrogen peroxide volume in rapport with sulfuric acid concentration and temperature were evaluated for oxidative leaching process. 2M H2SO4 (98% w/v), 5% H2O2, 25 °C, 1/10 S/L ratio and 200 rpm were founded as optimal conditions for Cu extraction. Thiourea acid leaching process, performed on the solid filtrate obtained after three oxidative leaching steps, was carried out with 20 g/L of CS(NH2)2, 6g/L of Fe(3+), 0.5M H2SO4, The cross-leaching method was applied by reusing of thiourea liquid suspension and immersing 5 g/L of this reagent for each other experiment material of leaching. This procedure has lead to the doubling and, respectively, tripling, of gold and silver concentrations into solution. These results reveal a very efficient, promising and environmental friendly method for WPCBs processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A method for quantifying cloud immersion in a tropical mountain forest using time-lapse photography

    USGS Publications Warehouse

    Bassiouni, Maoya; Scholl, Martha A.; Torres-Sanchez, Angel J.; Murphy, Sheila F.

    2017-01-01

    Quantifying the frequency, duration, and elevation range of fog or cloud immersion is essential to estimate cloud water deposition in water budgets and to understand the ecohydrology of cloud forests. The goal of this study was to develop a low-cost and high spatial-coverage method to detect occurrence of cloud immersion within a mountain cloud forest by using time-lapse photography. Trail cameras and temperature/relative humidity sensors were deployed at five sites covering the elevation range from the assumed lifting condensation level to the mountain peaks in the Luquillo Mountains of Puerto Rico. Cloud-sensitive image characteristics (contrast, the coefficient of variation and the entropy of pixel luminance, and image colorfulness) were used with a k-means clustering approach to accurately detect cloud-immersed conditions in a time series of images from March 2014 to May 2016. Images provided hydrologically meaningful cloud-immersion information while temperature-relative humidity data were used to refine the image analysis using dew point information and provided temperature gradients along the elevation transect. Validation of the image processing method with human-judgment based classification generally indicated greater than 90% accuracy. Cloud-immersion frequency averaged 80% at sites above 900 m during nighttime hours and 49% during daytime hours, and was consistent with diurnal patterns of cloud immersion measured in a previous study. Results for the 617 m site demonstrated that cloud immersion in the Luquillo Mountains rarely occurs at the previously-reported cloud base elevation of about 600 m (11% during nighttime hours and 5% during daytime hours). The framework presented in this paper will be used to monitor at a low cost and high spatial resolution the long-term variability of cloud-immersion patterns in the Luquillo Mountains, and can be applied to ecohydrology research at other cloud-forest sites or in coastal ecosystems with advective sea fog.

  15. Temperature structure of the Uranian upper atmosphere

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Dunham, E.

    1979-01-01

    The temperature structure of the upper atmosphere of Uranus at two locations on the planet was determined from observations of the occultation of the star SAO158687 by Uranus on 10 March 1977, carried out at the Kuiper Airborne Observatory. The temperature-pressure relationships obtained from the immersion and emersion data for 7280 A channel show peak-to-peak variations of 45 K for immersion and 35 K for emersion. The mean temperature for both immersion and emersion profiles is about 100 K, which shows that Uranus has a temperature inversion between 0.001 mbar and the 100 mbar level probed by IR measurements. Both profiles show wavelike temperature variations, which may be due to dynamical or photochemical processes.

  16. A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions

    NASA Astrophysics Data System (ADS)

    Shimonishi, Y.; Zhang, T.; Johnson, P.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Sammes, N.

    The stability of a NASICON-type lithium ion conducting solid electrolyte, Li 1+ x+ yTi 2- xAl xP 3- ySi yO 12 (LTAP), in acetic acid and formic acid solutions was examined. XRD patterns of the LTAP powders immersed in 100% acetic acid and formic acid at 50 °C for 4 months showed no change as compared to the pristine LTAP. However, the electrical conductivity of LTAP drastically decreased. On the other hand, no significant electrical conductivity change of LTAP immersed in lithium formate saturated formic acid-water solution was observed, and the electrical conductivity of LTAP immersed in lithium acetate saturated acetic acid-water increased. Cyclic voltammogram tests suggested that acetic acid was stable up to a high potential, but formic acid decomposed under the decomposition potential of water. The acetic acid solution was considered to be a candidate for the active material in the air electrode of lithium-air rechargeable batteries. The cell reaction was considered as 2Li + 2 CH 3COOH + 1/2O 2 = 2CH 3COOLi + H 2O. The energy density of this lithium-air system is calculated to be 1477 Wh kg -1 from the weights of Li and CH 3COOH, and an observed open-circuit voltage of 3.69 V.

  17. A long term study of fluoride release from metal-containing conventional and resin-modified glass-ionomer cements.

    PubMed

    Williams, J A; Billington, R W; Pearson, G J

    2001-01-01

    The objective of this study was to determine long term release of fluoride from a resin-modified glass-ionomer cement (RMGIC) (Fuji II LC (FLC)) compared with that from two conventional acid-base setting cements (HiDense (HD) and KetacSilver (KS)) marketed for similar restorative purposes. Fluoride release from discs of cement immersed in water or artificial saliva was measured for 2.7 years using an ion selective electrode technique. The RMGIC was affected by water if immersed immediately after setting. This is similar to conventional acid-base cements and the experimental method was designed to allow for this. Over the 2.7-year period, the RMGIC and HD released similar amounts of fluoride into both water and artificial saliva. In water, the RMGIC released the most fluoride, while in artificial saliva the highest release was from HD. KS released the least amount of fluoride in both immersing liquids. In artificial saliva, release was reduced to 17-25% of that found in water, with the RMGIC showing the greatest reduction. Both acid-base cured cements showed changes in colour over the 2.7-year span, while the colour of the RMGIC was stable. It was concluded that the RMGIC released equivalent or greater amounts of fluoride than the two acid-base cure glass-ionomers over a period of 2.7 years.

  18. LibIsopach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunhart-Lupo, Nicholas

    2016-12-06

    LibIsopach is a toolkit for high performance distributed immersive visualization, leveraging modern OpenGL. It features a multi-process scenegraph, explicit instance rendering, mesh generation, and three-dimensional user interaction event processing.

  19. Mineral Ion Contents and Cell Transmembrane Electropotentials of Pea and Oat Seedling Tissue 1

    PubMed Central

    Higinbotham, N.; Etherton, Bud; Foster, R. J.

    1967-01-01

    The relationships of concentration gradients to electropotential gradients resulting from passive diffusion processes, after equilibration, are described by the Nernst equation. The primary criterion for the hypothesis that any given ion is actively transported is to establish that it is not diffusing passively. A test was made of how closely the Nernst equation describes the electrochemical equilibrium in seedling tissues. Segments of roots and epicotyl internodes of pea (Pisum sativum var. Alaska) and of roots and coleoptiles of oat (Avena sativa var. Victory) seedlings were immersed and shaken in defined nutrient solutions containing eight major nutrients (K+, Na+, Ca2+, Mg2+, Cl−, NO3−, H2PO4− and SO42−) at 1-fold and 10-fold concentrations. The tissue content of each ion was assayed at 0, 8, 24, and 48 hours. A near-equilibrium condition was approached by roots for most ions; however, the segments of shoot tissue generally continued to show a net accumulation of some ions, mainly K+ and NO3−. Only K+ approached a reasonable fit to the Nernst equation and this was true for the 1-fold concentration but not the 10-fold. The data suggest that for Na+, Mg2+, and Ca2+ the electrochemical gradient is from the external solution to the cell interior; thus passive diffusion should be in an inward direction. Consequently, some mechanism must exist in plant tissue either to exclude these cations or to extrude them (e.g., by an active efflux pump). For each of the anions the electrochemical gradient is from the tissue to the solution; thus an active influx pump for anions seems required. Root segments approach ionic equilibrium with the solution concentration in which the seedlings were grown. Segments of shoot tissue, however, are far removed from such equilibration. Thus in the intact seedling the extracellular (wall space) fluid must be very different from that of the nutrient solution bathing the segments; it would appear that the root is the site of regulation of ion uptake in the intact plant although other correlative mechanisms may be involved. PMID:16656483

  20. Educazione bilingue e multiculturale, istruzione bilingue, immersione totale: quattro nozione da definire (Bilingual and Multicultural Education, Bilingual Instruction, Total Immersion: Four Notions Needing To Be Defined).

    ERIC Educational Resources Information Center

    Balboni, Paolo E.

    1998-01-01

    This article suggests that the terms "bilingual education, multicultural education, bilingual instruction, and total immersion" refer to four distinct processes, each needing to be defined more clearly. To define them, a theoretical framework is proposed based on two sets of variables. The first set integrates the anthropological model of human…

  1. Magneto-vibratory separation of glass and bronze granular mixtures immersed in a paramagnetic liquid.

    PubMed

    López-Alcaraz, P; Catherall, A T; Hill, R J A; Leaper, M C; Swift, Michael R; King, P J

    2007-10-01

    A fluid-immersed granular mixture may spontaneously separate when subjected to vertical vibration, separation occurring when the ratio of particle inertia to fluid drag is sufficiently different between the component species of the mixture. Here, we describe how fluid-driven separation is influenced by magneto-Archimedes buoyancy, the additional buoyancy force experienced by a body immersed in a paramagnetic fluid when a strong inhomogeneous magnetic field is applied. In our experiments glass and bronze mixtures immersed in paramagnetic aqueous solutions of MnCl2 have been subjected to sinusoidal vertical vibration. In the absence of a magnetic field the separation is similar to that observed when the interstitial fluid is water. However, at modest applied magnetic fields, magneto-Archimedes buoyancy may balance the inertia/fluid-drag separation mechanism, or it may dominate the separation process. We identify the vibratory and magnetic conditions for four granular configurations, each having distinctive granular convection. Abrupt transitions between these states occur at well-defined values of the magnetic and vibrational parameters. In order to gain insight into the dynamics of the separation process we use computer simulations based on solutions of the Navier-Stokes' equations. The simulations reproduce the experimental results revealing the important role of convection and gap formation in the stability of the different states.

  2. Comparative study on corrosion resistance and in vitro biocompatibility of bulk nanocrystalline and microcrystalline biomedical 304 stainless steel.

    PubMed

    Nie, F L; Wang, S G; Wang, Y B; Wei, S C; Zheng, Y F

    2011-07-01

    SUS 304 stainless steels have been widely used in orthodontics and implants such as archwires, brackets, and screws. The purpose of present study was to investigate the biocompatibility of both the commercial microcrystalline biomedical 304 stainless steel (microcrystalline 304ss) and novel-fabricated nanocrystalline 304 stainless steel (nanocrystalline 304ss). Bulk nanocrystalline 304ss sheets had been successfully prepared by microcrystalline 304ss plates using severe rolling technique. The electrochemical corrosion and ion release behavior immersion in artificial saliva were measured to evaluate the property of biocorrosion in oral environment. The cell lines of murine and human cell lines from oral and endothelial environment were co-cultured with extracts to evaluate the cytotoxicity and provide referential evidence in vivo. The polarization resistance trials indicated that nanocrystalline 304ss is more corrosion resistant than the microcrystalline 304ss in oral-like environment with higher corrosion potential, and the amount of toxic ions released into solution after immersion is lower than that of the microcrystalline 304ss and the daily dietary intake level. The cytotoxicity results also elucidated that nanocrystalline 304ss is biologically compatible in vitro, even better than that of microcrystalline 304ss. Based on the much higher mechanical and physical performances, nanocrystalline 304ss with enhanced biocorrosion property, well-behaved in vitro cytocompatibility can be a promising alternative in orthodontics and fixation fields in oral cavity. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Gallium-containing phospho-silicate glasses: synthesis and in vitro bioactivity.

    PubMed

    Franchini, Mirco; Lusvardi, Gigliola; Malavasi, Gianluca; Menabue, Ledi

    2012-08-01

    A series of Ga-containing phospho-silicate glasses based on Bioglass 45S5, having molar formula 46.2SiO2·24.3Na2O·26.9CaO·2.6P2O5·xGa2O3 (x=1.0, 1.6, 3.5), were prepared by fusion method. The reference Bioglass 45S5 without gallium was also prepared. The synthesized glasses were immersed in simulated body fluid (SBF) for 30 days in order to observe ion release and hydroxyapatite (HA) formation. All Ga-containing glasses maintain the ability of HA formation as indicated by main X-ray diffractometric peaks and/or electronic scanning microscopy results. HA layer was formed after 1 day of SBF soaking in 45S5 glass containing up to 1.6% Ga2O3 content. Moreover, gallium released by the glasses was found to be partially precipitated on the glass surface as gallium phosphate. Further increase in gallium content reduced the ion release in SBF. The maximum of Ga(3+) concentration measured in solution is ~6 ppm determined for 3.5% Ga2O3 content. This amount is about half of the toxic level (14 ppm) of gallium and the glasses release gallium till 30 days of immersion in SBF. Considering the above results, the studied materials can be proposed as bioactive glasses with additional antimicrobial effect of gallium having no toxic outcome. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Protein-adsorption and Ca-phosphate formation on chitosan-bioactive glass composite coatings

    NASA Astrophysics Data System (ADS)

    Wagener, V.; Boccaccini, A. R.; Virtanen, S.

    2017-09-01

    In the last years, chitosan-bioactive glass (BG) composites have been developed and investigated as bioactive coatings for orthopedic applications. The increase of bioactivity occurs due to the stimulation of calcium-phosphate/hydroxyapatite formation on the surface while the coating is degrading. In the present work, protein adsorption and its influence on calcium-phosphate precipitation was studied for the first time on such composite coatings. The experiments involved coating of 316L stainless steel substrates with chitosan (Ch) and chitosan-bioactive glass (Ch-BG) and immersion of the coated samples in two different bovine serum albumin (BSA) containing solutions, namely DI H2O (with pH adjusted to about 7.2 with diluted NaOH) and simulated body fluid (SBF). In order to investigate the influence of protein adsorption on calcium-phosphate precipitation, samples were also immersed in DI H2O and in SBF without BSA. Samples were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Surface analysis revealed that adsorption of BSA takes place on all studied samples and that protein adsorption is influenced by the presence of Ca2+ and PO43- ions. Bioactivity in the form of hydroxyapatite pre-stage formation is significantly increased on Ch-BG composite coating as compared with bare stainless steel surface. However, calcium-phosphate precipitation in SBF is reduced by the presence of BSA.

  5. Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity

    NASA Astrophysics Data System (ADS)

    Munteanu, Bogdanel Silvestru; Aytac, Zeynep; Pricope, Gina M.; Uyar, Tamer; Vasile, Cornelia

    2014-10-01

    The antibacterial property of silver nanoparticles (Ag-NPs) and the antioxidant activity of Vitamin E have been combined by incorporation of these two active components within polylactic acid (PLA) nanofibers via electrospinning (PLA/Ag-NP/VitaminE nanofibers). The morphological and structural characterizations of PLA/Ag-NP/VitaminE nanofibers were performed by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy and X-ray diffraction. The average fiber diameter was 140 ± 60 nm, and the size of the Ag-NP was 2.7 ± 1.5 nm. PLA/Ag-NP/VitaminE nanofibers inhibited growth of Escherichia coli, Listeria monocytogenes and Salmonella typhymurium up to 100 %. The amount of released Ag ions from the nanofibers immersed in aqueous solution was determined by Inductively Coupled Plasma Mass Spectrometry, and it has been observed that the release of Ag ions was kept approximately constant after 10 days of immersion. The antioxidant activity of PLA/Ag-NP/VitaminE nanofibers was evaluated according to DPPH (2,2-diphenyl-1-picrylhydrazyl) method and determined as 94 %. The results of the tests on fresh apple and apple juice indicated that the PLA/Ag/VitaminE nanofiber membrane actively reduced the polyphenol oxidase activity. The multifunctional electrospun PLA nanofibers incorporating Ag-NP and Vitamin E may be quite applicable in food packaging due to the extremely large surface area of nanofibers along with antibacterial and antioxidant activities. These materials could find application in food industry as a potential preservative packaging for fruits and juices.

  6. Titanium Ions Release from an Innovative Titanium-Magnesium Composite: an in Vitro Study.

    PubMed

    Stanec, Zlatko; Halambek, Jasna; Maldini, Krešimir; Balog, Martin; Križik, Peter; Schauperl, Zdravko; Ćatić, Amir

    2016-03-01

    The innovative titanium-magnesium composite (Ti-Mg) was produced by powder metallurgy (P/M) method and is characterized in terms of corrosion behavior. Two groups of experimental material, 1 mass% (Ti-1Mg) and 2 mass% (Ti-2Mg) of magnesium in titanium matrix, were tested and compared to commercially pure titanium (CP Ti). Immersion test and chemical analysis of four solutions: artificial saliva; artificial saliva pH 4; artificial saliva with fluoride and Hank balanced salt solution were performed after 42 days of immersion, using inductively coupled plasma mass spectrometry (ICP-MS) to detect the amount of released titanium ions (Ti). SEM and EDS analysis were used for surface characterization. The difference between the results from different test solutions was assessed by ANOVA and Newman-Keuls test at p<0.05. The influence of predictor variables was found by multiple regression analysis. The results of the present study revealed a low corrosion rate of titanium from the experimental Ti-Mg group. Up to 46 and 23 times lower dissolution of Ti from Ti-1Mg and Ti-2Mg, respectively was observed compared to the control group. Among the tested solutions, artificial saliva with fluorides exhibited the highest corrosion effect on all specimens tested. SEM micrographs showed preserved dual phase surface structure and EDS analysis suggested a favorable surface bioactivity. In conclusion, Ti-Mg produced by P/M as a material with better corrosion properties when compared to CP Ti is suggested.

  7. Entropy Driven Self-Assembly in Charged Lock-Key Particles.

    PubMed

    Odriozola, Gerardo; Lozada-Cassou, Marcelo

    2016-07-07

    In this work we study the lock-key model successfully used in supramolecular chemistry and particles self-assembly and gain further insight into the infinite diluted limit of the lock and key, depletant mediated, effective attraction. We discuss the depletant forces and entropy approaches to self-assembly and give details on the different contributions to the net force for a charged lock and key pair immersed in a solvent plus a primitive model electrolyte. We show a strong correlation of the force components behavior and the underlying processes of co-ion and solvent release from the cavity. In addition, we put into context the universal behavior observed for the energy-distance curves when changing the lock and key to solvent size ratio. Basically, we now show that this behavior is not always achieved and depends on the particular system geometry. Finally, we present a qualitative good agreement with experiments when changing the electrolyte concentration, valence, and cavity-key size ratio.

  8. Ion release from dental casting alloys as assessed by a continuous flow system: Nutritional and toxicological implications.

    PubMed

    López-Alías, José F; Martinez-Gomis, Jordi; Anglada, Josep M; Peraire, Maria

    2006-09-01

    The aims of this study were to quantify the metallic ions released by various dental alloys subjected to a continuous flow of saliva and to estimate the nutritional and toxicological implications of such a release. Four pieces of three nickel-based, one noble, one high-noble and two copper-aluminum alloys were cast and then immersed in a continuous flow of artificial saliva for 15 days. To simulate three meals a day, casts were subjected to thrice-daily episodes, lasting 30 min each and consisting of pH decreases and salinity increases. After 15 days, the metallic ions in the artificial saliva were analyzed. Data were expressed as averaged release rate: microg/cm2/day of ion released for each alloy. The highest value of 95% Cl of each ion was adapted to a hypothetical worst scenario of a subject with 100 cm2 of exposed metal surface. The results were compared with the tolerable upper daily intake level of each ion. The copper-aluminum alloys released copper, aluminum, nickel, manganese and iron. The nickel-based alloys essentially released nickel and chromium, while the beryllium-containing alloy released beryllium and significantly more nickel. The noble and high-noble alloys were very resistant to corrosion. The amount of ions released remained far below the upper tolerable intake level, with the exception of nickel, released by beryllium-containing nickel-based alloy, whose levels approach 50% of this threshold. The daily amount of ions released seems to be far below the tolerable upper intake levels for each ion.

  9. Optimize of shrink process with X-Y CD bias on hole pattern

    NASA Astrophysics Data System (ADS)

    Koike, Kyohei; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Oyama, Kenichi; Yaegashi, Hidetami

    2017-03-01

    Gridded design rules[1] is major process in configuring logic circuit used 193-immersion lithography. In the scaling of grid patterning, we can make 10nm order line and space pattern by using multiple patterning techniques such as self-aligned multiple patterning (SAMP) and litho-etch- litho-etch (LELE)[2][3][4] . On the other hand, Line cut process has some error parameters such as pattern defect, placement error, roughness and X-Y CD bias with the decreasing scale. We tried to cure hole pattern roughness to use additional process such as Line smoothing[5] . Each smoothing process showed different effect. As the result, CDx shrink amount is smaller than CDy without one additional process. In this paper, we will report the pattern controllability comparison of EUV and 193-immersion. And we will discuss optimum method about CD bias on hole pattern.

  10. Numerical Investigation of Influence of Electrode Immersion Depth on Heat Transfer and Fluid Flow in Electroslag Remelting Process

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Cai, Hui; Pan, Liping; He, Zhu; Liu, Shuang; Li, Baokuan

    2016-12-01

    The influence of the electrode immersion depth on the electromagnetic, flow and temperature fields, as well as the solidification progress in an electroslag remelting furnace have been studied by a transient three-dimensional coupled mathematical model. Maxwell's equations were solved by the electrical potential approach. The Lorentz force and Joule heating were added into the momentum and energy conservation equations as a source term, respectively, and were updated at each time step. The volume of fluid method was invoked to track the motion of the metal droplet and slag-metal interface. The solidification was modeled by an enthalpy-porosity formulation. An experiment was carried out to validate the model. The total amount of Joule heating decreases from 2.13 × 105 W to 1.86 × 105 W when the electrode immersion depth increases from 0.01 m to 0.03 m. The variation law of the slag temperature is different from that of the Joule heating. The volume average temperature rises from 1856 K to 1880 K when the immersion depth increases from 0.01 m to 0.02 m, and then drops to 1869 K if the immersion depth continuously increases to 0.03 m. As a result, the deepest metal pool, which is around 0.03 m, is formed when the immersion depth is 0.02 m.

  11. Direct Immersion Annealing of Thin Block Copolymer Films.

    PubMed

    Modi, Arvind; Bhaway, Sarang M; Vogt, Bryan D; Douglas, Jack F; Al-Enizi, Abdullah; Elzatahry, Ahmed; Sharma, Ashutosh; Karim, Alamgir

    2015-10-07

    We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene-poly(methyl methacrylate) (PS-PMMA) system: rapid short-range order, optimal long-range order, and a film instability regime. Kinetic studies in the "optimal long-range order" processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering.

  12. Direct Immersion Annealing of Thin Block Copolymer Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modi, Arvind; Bhaway, Sarang M.; Vogt, Bryan D.

    2015-09-09

    We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene–poly(methyl methacrylate) (PS–PMMA) system: rapid short-range order, optimal long-range order, and a film instability regime. Kinetic studies in themore » “optimal long-range order” processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering.« less

  13. Color stability of CAD/CAM Zirconia ceramics following exposure to acidic and staining drinks

    PubMed Central

    Colombo, Marco; Cavallo, Marco; Miegge, Matteo; Dagna, Alberto; Beltrami, Riccardo; Chiesa, Marco

    2017-01-01

    Background The aim of this in vitro study was to evaluate the color stability of CAD/CAM Zirconia ceramics following exposure to acidic drink (Coca Cola) and after exposure to staining solution (coffee). Material and Methods All the samples were immersed in different staining solutions over a 28-day test period. A colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. Shapiro Wilk test and Kruskal-Wallis ANOVA were applied to assess significant differences among restorative materials. Paired t-test was applied to test which CIE L*a*b* parameters significantly changed after immersion in staining solutions. Results One week immersion in acidic drink did not cause a perceivable discoloration for all restorative materials (ΔE < 3.3). Subsequent immersion in coffee affected color stability of all Zirconia samples, even if Kruskal-Wallis ANOVA found significant differences among the various restorative materials. Conclusions The ∆Es of CAD/CAM Zirconia ceramics after immersion in coffee varied among the products, but color integrity is not affected by contact with acidic drinks. Key words:CAD/CAM restorative materials, CIE Lab, Zirconia ceramics. PMID:29302281

  14. Immersion versus interactivity and analytic field.

    PubMed

    Civitarese, Giuseppe

    2008-04-01

    Losing oneself in a story, a film or a picture is nothing but another step in the suspension of disbelief that permits one to become immersed in the 'novel' of reality. It is not by chance that the text-world metaphor informs classical aesthetics that, more than anything else, emphasizes emotional involvement. On the contrary, as in much of modern art, self-reflexivity and metafictional attention to the rhetoric of the real, to the framework, to the conventions and to the processes of meaning production, all involve a disenchanted, detached and sceptic vision--in short, an aesthetics of the text as game. By analogy, any analytic style or model that aims to produce a transformative experience must satisfactorily resolve the conflict between immersion (the analyst's emotional participation and sticking to the dreamlike or fictional climate of the session, dreaming knowing it's a dream) and interactivity (for the most part, interpretation as an anti-immersive device that 'wakes' one from fiction and demystifies consciousness). In analytic field theory the setting can be defined--because of the weight given to performativity of language, to the sensory matrix of the transference and the transparency of the medium--the place where an ideal balance is sought between immersion and interaction.

  15. Color stability of CAD/CAM Zirconia ceramics following exposure to acidic and staining drinks.

    PubMed

    Colombo, Marco; Cavallo, Marco; Miegge, Matteo; Dagna, Alberto; Beltrami, Riccardo; Chiesa, Marco; Poggio, Claudio

    2017-11-01

    The aim of this in vitro study was to evaluate the color stability of CAD/CAM Zirconia ceramics following exposure to acidic drink (Coca Cola) and after exposure to staining solution (coffee). All the samples were immersed in different staining solutions over a 28-day test period. A colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. Shapiro Wilk test and Kruskal-Wallis ANOVA were applied to assess significant differences among restorative materials. Paired t-test was applied to test which CIE L*a*b* parameters significantly changed after immersion in staining solutions. One week immersion in acidic drink did not cause a perceivable discoloration for all restorative materials (ΔE < 3.3). Subsequent immersion in coffee affected color stability of all Zirconia samples, even if Kruskal-Wallis ANOVA found significant differences among the various restorative materials. The ∆Es of CAD/CAM Zirconia ceramics after immersion in coffee varied among the products, but color integrity is not affected by contact with acidic drinks. Key words: CAD/CAM restorative materials, CIE Lab, Zirconia ceramics.

  16. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    NASA Astrophysics Data System (ADS)

    Harris, E.

    Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars Reconnaissance Orbiter and Lunar Base construction scenarios. Innovative solutions utilizing Immersive Visualization provide the key to streamlining the mission planning and optimizing engineering design phases of future aerospace missions.

  17. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson [Castro Valley, CA

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  18. Characterization and application of automated in-vacuum PIXE/EBS system for direct analysis of chloride and sulfate ions attack in cementitious materials

    NASA Astrophysics Data System (ADS)

    Rihawy, M. S.; Alwazzeh, M.; Abbas, K.

    2018-01-01

    Ion beam analysis (IBA) techniques (Particle Induced X-ray Emission, PIXE and Elastic Backscattering Spectrometry, EBS), were applied to investigate chloride and sulfate ions diffusion into laboratory prepared mortar samples. Development and characterization of an automated in-vacuum macro PIXE/EBS system is thoroughly discussed. Depth profile information of both chloride and sulfate ions in laboratory prepared mortar samples, after immersion in sea water for nine months, was rapidly and easily obtained at fairly low cost and with standardless analysis, demonstrating the value of the application of IBA to elemental depth profiling in cementitious materials. Chloride and sulfate depth profiles were obtained for two sets of mortar samples, one prepared with different water/cement (W/C) ratios and the other with different sand/cement (S/C) ratios. Results showed higher diffusion rates of both chloride and sulfate ions when both ratios are increased. Additionally, the W/C ratio has a stronger influence in both sulfate and chloride penetration than the S/C ratio, and chloride ions penetrate faster than sulfates. Advantages and limitations of applying IBA techniques in this investigation are discussed. The comparison between PIXE and other X-ray based analytical techniques, namely X-ray fluorescence (XRF) and energy and wavelength dispersive X-rays (EDX/WDX), as well as other traditional wet chemical methods is reviewed, and industrial applications are discussed.

  19. Energy distributions of an ion in a radio-frequency trap immersed in a buffer gas under the influence of additional external forces

    NASA Astrophysics Data System (ADS)

    Rouse, I.; Willitsch, S.

    2018-04-01

    An ion held in a radio-frequency trap interacting with a uniform buffer gas of neutral atoms develops a steady-state energy distribution characterized by a power-law tail at high energies instead of the exponential decay characteristic of thermal equilibrium. We have previously shown that the Tsallis statistics frequently used as an empirical model for this distribution is a good approximation when the ion is heated due to a combination of micromotion interruption and exchange of kinetic energy with the buffer gas [Rouse and Willitsch, Phys. Rev. Lett. 118, 143401 (2017), 10.1103/PhysRevLett.118.143401]. Here, we extend our treatment to include the heating due to additional motion of the ion caused by external forces, including the "excess micromotion" induced by uniform electric fields and rf phase offsets. We show that this also leads to a Tsallis distribution with a potentially different power-law exponent from that observed in the absence of this additional forced motion, with the difference increasing as the ratio of the mass of the neutral atoms to that of the ion decreases. Our results indicate that unless the excess micromotion is minimized to a very high degree, then even a system with very light neutrals and a heavy ion does not exhibit a thermal distribution.

  20. An evaluation of two types of nickel-titanium wires in terms of micromorphology and nickel ions' release following oral environment exposure.

    PubMed

    Ghazal, Abdul Razzak A; Hajeer, Mohammad Y; Al-Sabbagh, Rabab; Alghoraibi, Ibrahim; Aldiry, Ahmad

    2015-01-01

    This study aimed to compare superelastic and heat-activated nickel-titanium orthodontic wires' surface morphology and potential release of nickel ions following exposure to oral environment conditions. Twenty-four 20-mm-length distal cuts of superelastic (NiTi Force I®) and 24 20-mm-length distal cuts of heat-activated (Therma-Ti Lite®) nickel-titanium wires (American Orthodontics, Sheboygan, WI, USA) were divided into two equal groups: 12 wire segments left unused and 12 segments passively exposed to oral environment for 1 month. Scanning electron microscopy and atomic force microscopy were used to analyze surface morphology of the wires which were then immersed in artificial saliva for 1 month to determine potential nickel ions' release by means of atomic absorption spectrophotometer. Heat-activated nickel-titanium (NiTi) wires were rougher than superelastic wires, and both types of wires released almost the same amount of Ni ions. After clinical exposure, more surface roughness was recorded for superelastic NiTi wires and heat-activated NiTi wires. However, retrieved superelastic NiTi wires released less Ni ions in artificial saliva after clinical exposure, and the same result was recorded regarding heat-activated wires. Both types of NiTi wires were obviously affected by oral environment conditions; their surface roughness significantly increased while the amount of the released Ni ions significantly declined.

  1. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  2. Thin sol-gel-derived silica coatings on dental pure titanium casting.

    PubMed

    Yoshida, K; Kamada, K; Sato, K; Hatada, R; Baba, K; Atsuta, M

    1999-01-01

    The sol-gel dipping process, in which liquid silicon alkoxide is transformed into a solid silicon-oxygen network, can produce a thin film coating of silica (SiO(2)). The features of this method are high homogeneity and purity of the thin SiO(2) film and a low sinter temperature, which are important in the preparation of coating films that can protect metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface properties of dental pure titanium casting coated with a thin SiO(2) or SiO(2)/F-hybrid film by the sol-gel dipping process. The metal specimens were pretreated by dipping in isopropylalcohol solution containing 10 wt% 3-aminopropyl trimethoxysilane and treated by dipping in the silica precursor solution for 5 min, withdrawal at a speed of 2 mm/min, air-drying for 20 min at room temperature, heating at 120 degrees C for 20 min, and then storing at room temperature. Both SiO(2) and SiO(2)/F films bonded strongly (above 55 MPa) to pure titanium substrate by a tensile test. SiO(2(-)) and SiO(2)/F-coated specimens immersed in 1 wt% of lactic acid solution for two weeks showed significantly less release of titanium ions (30. 5 ppb/cm(2) and 9.5 ppb/cm(2), respectively) from the substrate than noncoated specimens (235.2 ppb/cm(2)). Hydrophobilization of SiO(2(-)) and SiO(2)/F-coated surfaces resulted in significant increases of contact angle of water (81.6 degrees and 105.7 degrees, respectively) compared with noncoated metal specimens (62.1 degrees ). The formation of both thin SiO(2) and SiO(2)/F-hybrid films by the sol-gel dipping process on the surface of dental pure titanium casting may be useful clinically in enhancing the bond strength of dental resin cements to titanium, preventing titanium ions release from the substrate, and reducing the accumulation of dental plaque attaching to intraoral dental restorations. Copyright 1999 John Wiley & Sons, Inc.

  3. Cultural immersion alters emotion perception: Neurophysiological evidence from Chinese immigrants to Canada.

    PubMed

    Liu, Pan; Rigoulot, Simon; Pell, Marc D

    2017-12-01

    To explore how cultural immersion modulates emotion processing, this study examined how Chinese immigrants to Canada process multisensory emotional expressions, which were compared to existing data from two groups, Chinese and North Americans. Stroop and Oddball paradigms were employed to examine different stages of emotion processing. The Stroop task presented face-voice pairs expressing congruent/incongruent emotions and participants actively judged the emotion of one modality while ignoring the other. A significant effect of cultural immersion was observed in the immigrants' behavioral performance, which showed greater interference from to-be-ignored faces, comparable with what was observed in North Americans. However, this effect was absent in their N400 data, which retained the same pattern as the Chinese. In the Oddball task, where immigrants passively viewed facial expressions with/without simultaneous vocal emotions, they exhibited a larger visual MMN for faces accompanied by voices, again mirroring patterns observed in Chinese. Correlation analyses indicated that the immigrants' living duration in Canada was associated with neural patterns (N400 and visual mismatch negativity) more closely resembling North Americans. Our data suggest that in multisensory emotion processing, adopting to a new culture first leads to behavioral accommodation followed by alterations in brain activities, providing new evidence on human's neurocognitive plasticity in communication.

  4. Inactivation of Salmonella Enteritidis on lettuces used by minimally processed vegetable industries.

    PubMed

    Silveira, Josete Bailardi; Hessel, Claudia Titze; Tondo, Eduardo Cesar

    2017-01-30

    Washing and disinfection methods used by minimally processed vegetable industries of Southern Brazil were reproduced in laboratory in order to verify their effectiveness to reduce Salmonella Enteritidis SE86 (SE86) on lettuce. Among the five industries investigated, four carried out washing with potable water followed by disinfection with 200 ppm sodium hypochlorite during different immersion times. The washing procedure alone decreased approximately 1 log CFU/g of SE86 population and immersion times of 1, 2, 5, and 15 minutes in disinfectant solution demonstrated reduction rates ranging from 2.06±0.10 log CFU/g to 3.01±0.21 log CFU/g. Rinsing alone was able to reduce counts from 0.12±0.63 log CFU/g to 1.90±1.07 log CFU/g. The most effective method was washing followed by disinfection with 200 ppm sodium hypochlorite for 15 minutes and final rinse with potable water, reaching 5.83 log CFU/g of reduction. However, no statistical differences were observed on the reduction rates after different immersion times. A time interval of 1 to 2 minutes may be an advantage to the minimally vegetable processed industries in order to optimize the process without putting at risk food safety.

  5. Study on the waste liquid crystal display treatment: focus on the resource recovery.

    PubMed

    Wang, Xinying; Lu, Xuebin; Zhang, Shuting

    2013-01-15

    A process combined pyrolysis and acid immersion was proposed in this study to dispose the hazardous liquid crystal display (LCD) waste for recovering valuable resources. The thermogravimetric (TG) analysis and fixed bed pyrolysis were investigated for the polarizing film that was separated from LCD. The results suggested the liquid product mainly contained acids, esters and aromatics should be upgraded such as hydrotreating process before used as industrial feedstock or fuel source. The gaseous product mainly consisted of H(2), CO, CO(2) and CH(4) can be used as a valuable fuel. The sulfuric acid immersion experiments were studied for recovering indium from the LCD glass after stripping the polarizing film. Central composite design (CCD) under response surface methodology (RSM) was used to optimize the acid immersion process and the results indicated the indium recovery can be fitted based on the actual value to a polynomial quadratic equation and the temperature was more essential factor than time and acid concentration in the studied ranges. The optimum processing condition was obtained with time 42.2 min, temperature 65.6 °C and acid concentration 0.6 mol/L. Under the optimal conditions, the indium recovery was close to 100%. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. PROCESS OF ELECTROPLATING METALS WITH ALUMINUM

    DOEpatents

    Schickner, W.C.

    1960-04-26

    A process of electroplating aluminum on metals from a nonaqueous bath and a novel method of pretreating or conditioning the metal prior to electrodeposition of the aluminum are given. The process of this invention, as applied by way of example to the plating of uranium, comprises the steps of plating the uranium with the barrier inetal, immersing the barrier-coated uranium in fatty acid, and electrolyzing a water-free diethyl ether solution of aluminum chloride and lithium hydride while making the uranium the cathode until an aluminum deposit of the desired thickness has been formed. According to another preferred embodiment the barrier-coated uranium is immersed in an isopropyl alcohol solution of sterato chromic chloride prior to the fatty acid treatment of this invention.

  7. The Components of Effective Teacher Training in the Use of Three-Dimensional Immersive Virtual Worlds for Learning and Instruction Purposes: A Literature Review

    ERIC Educational Resources Information Center

    Nussli, Natalie; Oh, Kevin

    2014-01-01

    The overarching question that guides this review is to identify the key components of effective teacher training in virtual schooling, with a focus on three-dimensional (3D) immersive virtual worlds (IVWs). The process of identifying the essential components of effective teacher training in the use of 3D IVWs will be described step-by-step. First,…

  8. Microbiological and abiotic processes in modelling longer-term marine corrosion of steel.

    PubMed

    Melchers, Robert E

    2014-06-01

    Longer term exposure of mild steel in natural (biotic) waters progresses as a bimodal function of time, both for corrosion mass loss and for pit depth. Recent test results, however, found this also for immersion in clean fresh, almost pure and triply distilled waters. This shows chlorides or microbiological activity is not essential for the electrochemical processes producing bimodal behaviour. It is proposed that the first mode is aerobic corrosion that eventually produces a non-homogeneous corroded surface and rust coverage sufficient to allow formation of anoxic niches. Within these, aggressive autocatalytic reduction then occurs under anoxic abiotic conditions, caused by sulfide species originating from the MnS inclusions typical in steels. This is consistent with Wranglen's model for abiotic anoxic crevice and pitting corrosion without external aggressive ions. In biotic conditions, metabolites from anaerobic bacterial activity within and near the anoxic niches provides additional (sulfide) species to contribute to the severity of corrosion. Limited observational evidence that supports this hypothesis is given but further investigation is required to determine all contributor(s) to the cathodic current for the electrochemical reaction. The results are important for estimating the contribution of microbiological corrosion in infrastructure applications. © 2013.

  9. Fabrication of doped TiO2 nanotube array films with enhanced photo-catalytic activity

    NASA Astrophysics Data System (ADS)

    Peighambardoust, Naeimeh-Sadat; Khameneh-asl, Shahin; Khademi, Adib

    2018-01-01

    In the present work, we investigate the N and Fe-doped TiO2 nanotube array film prepared by treating TiO2 nanotube array film with ammonia solution and anodizing in Fe(NO3)3 solution respectively. This method avoided the use of hazardous ammonia gas, or laborious ion implantation process. N and Fe-doped TiO2 nanotube arrays (TiO2 NTs) were prepared by electrochemical anodization process in 0.5 wt % HF aqueous solution. The anodization was performed at the conditions of 20 V and 20 min, Followed by a wet immersion in NH3.H2O (1M) for N-doping for 2 hr and annealing post-treatment at 450 °C. The morphology and structure of the nanotube films were characterized by field emission scanning electron microscope (FESEM) and EDX. UV-vis. illumination test were done to observe photo-enhanced catalysis. The effect of different annealing temperature on the structure and photo-absorption property of the TiO2-TNTs was investigated. The results showed that N-TNTs nanotubes exhibited higher photocatalytic activity compared whit the Fe-doped and pure TNTs, because doping N promoted the separation of the photogenerated electrons and holes.

  10. Metal ion release from silver soldering and laser welding caused by different types of mouthwash.

    PubMed

    Erdogan, Ayse Tuygun; Nalbantgil, Didem; Ulkur, Feyza; Sahin, Fikrettin

    2015-07-01

    To compare metal ion release from samples welded with silver soldering and laser welding when immersed into mouthwashes with different ingredients. A total of 72 samples were prepared: 36 laser welded and 36 silver soldered. Four samples were chosen from each subgroup to study the morphologic changes on their surfaces via scanning electron microscopy (SEM). Each group was further divided into four groups where the samples were submerged into mouthwash containing sodium fluoride (NaF), mouthwash containing sodium fluoride + alcohol (NaF + alcohol), mouthwash containing chlorhexidine (CHX), or artificial saliva (AS) for 24 hours and removed thereafter. Subsequently, the metal ion release from the samples was measured with inductively coupled plasma mass spectrometry (ICP-MS). The metal ion release among the solutions and the welding methods were compared. The Kruskal-Wallis and analysis of variance (ANOVA) tests were used for the group comparisons, and post hoc Dunn multiple comparison test was utilized for the two group comparisons. The level of metal ion release from samples of silver soldering was higher than from samples of laser welding. Furthermore, greater amounts of nickel, chrome, and iron were released from silver soldering. With regard to the mouthwash solutions, the lowest amounts of metal ions were released in CHX, and the highest amounts of metal ions were released in NaF + alcohol. SEM images were in accord with these findings. The laser welding should be preferred over silver soldering. CHX can be recommended for patients who have welded appliances for orthodontic reasons.

  11. Ion sheath dynamics in a plasma for plasma-based ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatsuzuka, M.; Miki, S.; Azuma, K.

    1999-07-01

    Spatial and temporal growth and collapse of ion sheath around an electrode of a negative high-voltage pulse (voltage: {minus}10 kV, pulse duration: 10 {micro}s) have been studied in a plasma for plasma-based ion implantation. A spherical electrode of 1.9 cm in a diameter is immersed in a nitrogen plasma with the plasma density range of 10{sup 9} to 10{sup 10} cm{sup {minus}3}, the electron temperature of 1.4 eV and the gas pressure of 8x10{sup {minus}4} Torr. The transient sheath dynamics was observed by the measurement of electron saturation current to a Langmuir probe, where a depletion of electron saturation currentmore » indicates the arrival time of sheath edge at the probe position. The expanding speed of sheath edge is higher than the ion acoustic speed until the sheath length reaches the steady-state extent determined by Child-Langmuir law. In the region beyond the steady-state extent, the rarefying disturbance produced by sheath expansion continues to propagate into the plasma at the ion acoustic peed. After the pulse voltage is returned to zero (more exactly, the floating potential), the electron current begins to recover. When the pulse fall time is shorter than the plasma transit time, the electron saturation current overshoots the steady-state saturation current at once, resulting in an excess of plasma density which propagates like a tidal wave into the plasma at the ion acoustic speed.« less

  12. Developing a polymeric sensor to monitor intracellular conditions

    NASA Astrophysics Data System (ADS)

    Mudarri, Timothy C.; Leo, Donald J.; Wood, Brett C.; Shires, Peter K.

    2004-07-01

    Ionic electroactive polymers have been developed as mechanical sensors or actuators, taking advantage of the electromechanical coupling of the materials. This research attempts to take advantage of the chemomechanical and chemoelectrical coupling by characterizing the transient response as the polymer undergoes an ion exchange, thus using the polymer for ionic sensing. Nafion is a biocompatible material, and an implantable polymeric ion sensor which has applications in the biomedical field for bone healing research. An ion sensor and a strain gauge could determine the effects of motion allowed at the fracture site, thus improving rehabilitation procedures for bone fractures. The charge sensitivity of the material and the capacitance of the material were analyzed to determine the transient response. Both measures indicate a change when immersed in ionic salt solutions. It is demonstrated that measuring the capacitance is the best indicator of an ion exchange. Relative to a flat response in deionized water (+/-2%), the capacitance of the polymer exhibits an exponential decay of ~25% of its peak when placed in a salt solution. A linear correlation between the time constant of the decay and the ionic size of the exchanging ion was developed that could reasonably predict a diffusing ion. Tests using an energy dispersive spectrometer (EDS) indicate that 90% of the exchange occurs in the first 20 minutes, shown by both capacitance decay and an atomic level scan. The diffusion rate time constant was found to within 0.3% of the capacitance time constant, confirming the ability of capacitance to measure ion exchange.

  13. Reciprocal interaction between dental alloy biocorrosion and Streptococcus mutans virulent gene expression.

    PubMed

    Zhang, Songmei; Qiu, Jing; Ren, Yanfang; Yu, Weiqiang; Zhang, Fuqiang; Liu, Xiuxin

    2016-04-01

    Corrosion of dental alloys is a major concern in dental restorations. Streptococcus mutans reduces the pH in oral cavity and induces demineralization of the enamel as well as corrosion of restorative dental materials. The rough surfaces of dental alloys induced by corrosion enhance the subsequent accumulation of plaque. In this study, the corrosion process of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys in a nutrient-rich medium containing S. mutans was studied using inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test. Our results showed that the release of Ni and Co ions increased, particularly after incubation for 3 days. The electrochemical corrosion results showed a significant decrease in the corrosion resistance (Rp) value after the alloys were immersed in the media containing S. mutans for 3 days. Correspondingly, XPS revealed a reduction in the relative dominance of Ni, Co, and Cr in the surface oxides after the alloys were immersed in the S. mutans culture. After removal of the biofilm, the pre-corroded alloys were re-incubated in S. mutans medium, and the expressions of genes associated with the adhesion and acidogenesis of S. mutans, including gtfBCD, gbpB, fif and ldh, were evaluated by detecting the mRNA levels using real-time reverse transcription polymerase chain reaction (RT-PCR). We found that the gtfBCD, gbpB, ftf and Idh expression of S. mutans were noticeably increased after incubation with pre-corroded alloys for 24 h. This study demonstrated that S. mutans enhanced the corrosion behavior of the dental alloys, on the other hand, the presence of corroded alloy surfaces up-regulated the virulent gene expression in S. mutans. Compared with smooth surfaces, the rough corroded surfaces of dental alloys accelerated the bacteria-adhesion and corrosion process by changing the virulence gene expression of S. mutans.

  14. Ion-implanted polytetrafluoroethylene enhances Saccharomyces cerevisiae biofilm formation for improved immobilization

    PubMed Central

    Tran, Clara T. H.; Kondyurin, Alexey; Hirsh, Stacey L.; McKenzie, David R.; Bilek, Marcela M. M.

    2012-01-01

    The surface of polytetrafluoroethylene (PTFE) was modified using plasma immersion ion implantation (PIII) with the aim of improving its ability to immobilize yeast. The density of immobilized cells on PIII-treated and -untreated PTFE was compared as a function of incubation time over 24 h. Rehydrated yeast cells attached to the PIII-treated PTFE surface more rapidly, with higher density, and greater attachment strength than on the untreated surface. The immobilized yeast cells were removed mechanically or chemically with sodium hydroxide and the residues left on the surfaces were analysed with Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). The results revealed that the mechanism of cell attachment on both surfaces differs and a model is presented for each. Rapid attachment on the PIII-treated surface occurs through covalent bonds of cell wall proteins and the radicals on the treated surface. In contrast, on the untreated surface, only physisorbed molecules were found in the residue and lipids were more highly concentrated than proteins. The presence of lipids in the residue was found to be a consequence of damage to the plasma membrane during the rehydration process and the increased cell stress was also apparent by the amount of Hsp12 in the protein residue. The immobilized yeast cells on PIII-treated PTFE were found to be as active as yeast cells in suspension. PMID:22696486

  15. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, W., E-mail: luwang@impcas.ac.cn; University of Chinese Academy of Sciences, Beijing 100049; Xiong, B.

    2014-02-15

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0–1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling mediummore » for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.« less

  16. COMPRESSIVE FATIGUE IN TITANIUM DENTAL IMPLANTS SUBMITTED TO FLUORIDE IONS ACTION

    PubMed Central

    Ribeiro, Ana Lúcia Roselino; Noriega, Jorge Roberto; Dametto, Fábio Roberto; Vaz, Luís Geraldo

    2007-01-01

    The aim of this study was to assess the influence of a fluoridated medium on the mechanical properties of an internal hexagon implant-abutment set, by means of compression, mechanical cycling and metallographic characterization by scanning electronic microscopy. Five years of regular use of oral hygiene with a sodium fluoride solution content of 1500 ppm were simulated, immersing the samples in this medium for 184 hours, with the solutions being changed every 12 hours. Data were analyzed at a 95% confidence level with Fisher's exact test. After the action of fluoride ions, a negative influence occurred in the mechanical cycling test performed in a servohydraulic machine (Material Test System-810) set to a frequency of 15 Hz with 100,000 cycles and programmed to 60% of the maximum resistance of static compression test. The sets tended to fracture by compression on the screw, characterized by mixed ruptures with predominance of fragile fracture, as observed by microscopy. An evidence of corrosion by pitting on sample surfaces was found after the fluoride ions action. It may be concluded that prolonged contact with fluoride ions is harmful to the mechanical properties of commercially pure titanium structures. PMID:19089148

  17. Wetting of a partially immersed compliant rod

    NASA Astrophysics Data System (ADS)

    Hui, Chung-Yuen; Jagota, Anand

    2016-11-01

    The force on a solid rod partially immersed in a liquid is commonly used to determine the liquid-vapor surface tension by equating the measured force required to remove the rod from the liquid to the vertical component of the liquid-vapor surface tension. Here, we study how this process is affected when the rod is compliant. For equilibrium, we enforce force and configurational energy balance, including contributions from elastic energy. We show that, in general, the contact angle does not equal that given by Young's equation. If surface stresses are tensile, the strain in the immersed part of the rod is found to be compressive and to depend only on the solid-liquid surface stress. The strain in the dry part of the rod can be either tensile or compressive, depending on a combination of parameters that we identify. We also provide results for compliant plates partially immersed in a liquid under plane strain and plane stress. Our results can be used to extract solid surface stresses from such experiments.

  18. Influence of albumin and inorganic ions on electrochemical corrosion behavior of plasma electrolytic oxidation coated magnesium for surgical implants

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Lin, Xiao; Tan, LiLi; Li, Lugee; Li, WeiRong; Yang, Ke

    2013-10-01

    Magnesium and its alloys are of great interest for biodegradable metallic devices. However, the degradation behavior and mechanisms of magnesium treated with coating in physiological environment in the presence of organic compound such as albumin have not been elucidated. In this study, the plasma electrolytic oxidation coated magnesium immersed in four different simulated body fluids: NaCl, PBS and with the addition of albumin to investigate the influence of protein and inorganic ions on degradation behavior by electrochemical methods. The results of electrochemical tests showed that aggressive corrosion took place in 0.9 wt.% NaCl solution; whereas albumin can act as an inhibitor, its adsorption impeded further dissolution of the coating. The mechanism was attributed to the synergistic effect of protein adsorption and precipitation of insoluble salts.

  19. Influence of a fluoridated medium with different pHs on commercially pure titanium-based implants.

    PubMed

    Sartori, Rafael; Correa, Cassia Bellotto; Marcantonio, Elcio; Vaz, Luis Geraldo

    2009-02-01

    The objective of this study was to assess the influence of a fluoride medium with different pHs on the corrosion resistance of three commercially pure titanium-based dental implant commercial brands, under scanning electron microscopy (SEM) and EDS. Forty-two dental implants, from three commercial brands, were used. Five years of regular use of mouth rinsing, with NaF 1500 ppm content and two different pHs, were simulated by immersing the specimens into that medium for 184 hours. SEM and EDS analyses demonstrated no evidence of corrosion on the specimens' surfaces after being submitted to fluoride ions or incorporation of fluoride ions to the set surface. It was possible to conclude that both the fluoride concentration and the pH of the solutions did not exert any influence upon implant corrosion resistance.

  20. Resolution Improvement and Pattern Generator Development for theMaskless Micro-Ion-Beam Reduction Lithography System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Ximan

    The shrinking of IC devices has followed the Moore's Law for over three decades, which states that the density of transistors on integrated circuits will double about every two years. This great achievement is obtained via continuous advance in lithography technology. With the adoption of complicated resolution enhancement technologies, such as the phase shifting mask (PSM), the optical proximity correction (OPC), optical lithography with wavelength of 193 nm has enabled 45 nm printing by immersion method. However, this achievement comes together with the skyrocketing cost of masks, which makes the production of low volume application-specific IC (ASIC) impractical. In ordermore » to provide an economical lithography approach for low to medium volume advanced IC fabrication, a maskless ion beam lithography method, called Maskless Micro-ion-beam Reduction Lithography (MMRL), has been developed in the Lawrence Berkeley National Laboratory. The development of the prototype MMRL system has been described by Dr. Vinh Van Ngo in his Ph.D. thesis. But the resolution realized on the prototype MMRL system was far from the design expectation. In order to improve the resolution of the MMRL system, the ion optical system has been investigated. By integrating a field-free limiting aperture into the optical column, reducing the electromagnetic interference and cleaning the RF plasma, the resolution has been improved to around 50 nm. Computational analysis indicates that the MMRL system can be operated with an exposure field size of 0.25 mm and a beam half angle of 1.0 mrad on the wafer plane. Ion-ion interactions have been studied with a two-particle physics model. The results are in excellent agreement with those published by the other research groups. The charge-interaction analysis of MMRL shows that the ion-ion interactions must be reduced in order to obtain a throughput higher than 10 wafers per hour on 300-mm wafers. In addition, two different maskless lithography strategies have been studied. The dependence of the throughput with the exposure field size and the speed of the mechanical stage has been investigated. In order to perform maskless lithography, different micro-fabricated pattern generators have been developed for the MMRL system. Ion beamlet switching has been successfully demonstrated on the MMRL system. A positive bias voltage around 10 volts is sufficient to switch off the ion current on the micro-fabricated pattern generators. Some unexpected problems, such as the high-energy secondary electron radiations, have been discovered during the experimental investigation. Thermal and structural analysis indicates that the aperture displacement error induced by thermal expansion can satisfy the 3δ CD requirement for lithography nodes down to 25 nm. The cross-talking effect near the surface and inside the apertures of the pattern generator has been simulated in a 3-D ray-tracing code. New pattern generator design has been proposed to reduce the cross-talking effect. In order to eliminate the surface charging effect caused by the secondary electrons, a new beam-switching scheme in which the switching electrodes are immersed in the plasma has been demonstrated on a mechanically fabricated pattern generator.« less

  1. Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming

    NASA Astrophysics Data System (ADS)

    Taylan, Fatih

    2011-04-01

    In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.

  2. METHOD OF APPLYING NICKEL COATINGS ON URANIUM

    DOEpatents

    Gray, A.G.

    1959-07-14

    A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.

  3. A neutral lithium beam source

    NASA Astrophysics Data System (ADS)

    Zhang, XiaoDong; Wang, ZhengMin; Hu, LiQun

    1994-04-01

    A low energy neutral lithium beam source with energy about 6 keV and a neutral beam equivalent current of 20 μA/cm2 has been developed in ASIPP in order to measure the density gradient and the fluctuations in the edge plasma of the HT-6M tokamak. In the source, lithium ions are extracted from a solid emitter (β-eucryptite), focused in a two-tube immersion lens, and neutralized in a charge-exchange cell with sodium. This source operates in pulsed mode. The pulse length is adjustable from 10 to 100 ms.

  4. Passivation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  5. Monitoring underlying epoxy-coated St-37 corrosion via 8-hydroxyquinoline as a fluorescent indicator

    NASA Astrophysics Data System (ADS)

    Roshan, Shamim; Sarabi Dariani, Ali Asghar; Mokhtari, Javad

    2018-05-01

    In the present study, successful performance of 8-hydroxyquinoline (8-HQ) as a ferric ion sensitive indicator is described. 8-HQ was used in epoxy coating because of its desirable properties. It doesn't exhibit premature fluorescence when mixed with coating precursors. Additionally it shows fluorescence turn-on mechanism upon chelate formation with Fe2+/Fe3+ ions produced during anodic reaction. The effect of different concentrations of 8-HQ (0.05, 0.1, 0.5 and 1 wt.%) incorporated in the epoxy coating on corrosion detection as well as optical and electrochemical behavior of the applied coating were studied. The fluorescence property of 8-HQ/Fe3+ solutions was evaluated by using fluorometer. The UV-Visible spectroscopy was used to investigate the effect of 8-HQ presence in the coating on transparency of the free films of the samples. The corrosion detection was performed by fluorescence microscope and the anti-corrosion performance of coated samples containing different concentrations of 8-HQ was studied using salt spray standard test and electrochemical impedance spectroscopy (EIS). The results of UV-Visible spectroscopy demonstrated that increasing 8-HQ concentration causes a slight decrease in coating transparency. According to the results of electrochemical impedance spectroscopy (EIS) measurements, the polarization resistance of the coated St-37 sample containing 0.1 wt.% 8-HQ was about 109 Ohm cm2 after 6 weeks immersion in corrosive electrolyte, while St-37 plates coated with other 8-HQ concentrations showed decreased resistance levels of about 106 Ohm cm2, during the same immersion period. Based on fluorescence microscopic investigation, as a result of incorporating 8-HQ into the epoxy matrix, fluorescence could be observed in regions where Fe2+/Fe3+ ions were produced through anodic reactions. This method is capable of detecting corrosion in situ at early stages before the metal surface suffers serious damages.

  6. Effects of processing conditions on mammographic image quality.

    PubMed

    Braeuning, M P; Cooper, H W; O'Brien, S; Burns, C B; Washburn, D B; Schell, M J; Pisano, E D

    1999-08-01

    Any given mammographic film will exhibit changes in sensitometric response and image resolution as processing variables are altered. Developer type, immersion time, and temperature have been shown to affect the contrast of the mammographic image and thus lesion visibility. The authors evaluated the effect of altering processing variables, including film type, developer type, and immersion time, on the visibility of masses, fibrils, and speaks in a standard mammographic phantom. Images of a phantom obtained with two screen types (Kodak Min-R and Fuji) and five film types (Kodak Min-R M, Min-R E, Min-R H; Fuji UM-MA HC, and DuPont Microvision-C) were processed with five different developer chemicals (Autex SE, DuPont HSD, Kodak RP, Picker 3-7-90, and White Mountain) at four different immersion times (24, 30, 36, and 46 seconds). Processor chemical activity was monitored with sensitometric strips, and developer temperatures were continuously measured. The film images were reviewed by two board-certified radiologists and two physicists with expertise in mammography quality control and were scored based on the visibility of calcifications, masses, and fibrils. Although the differences in the absolute scores were not large, the Kodak Min-R M and Fuji films exhibited the highest scores, and images developed in White Mountain and Autex chemicals exhibited the highest scores. For any film, several processing chemicals may be used to produce images of similar quality. Extended processing may no longer be necessary.

  7. Self-distancing improves interpersonal perceptions and behavior by decreasing medial prefrontal cortex activity during the provision of criticism.

    PubMed

    Leitner, Jordan B; Ayduk, Ozlem; Mendoza-Denton, Rodolfo; Magerman, Adam; Amey, Rachel; Kross, Ethan; Forbes, Chad E

    2017-04-01

    Previous research suggests that people show increased self-referential processing when they provide criticism to others, and that this self-referential processing can have negative effects on interpersonal perceptions and behavior. The current research hypothesized that adopting a self-distanced perspective (i.e. thinking about a situation from a non-first person point of view), as compared with a typical self-immersed perspective (i.e. thinking about a situation from a first-person point of view), would reduce self-referential processing during the provision of criticism, and in turn improve interpersonal perceptions and behavior. We tested this hypothesis in an interracial context since research suggests that self-referential processing plays a role in damaging interracial relations. White participants prepared for mentorship from a self-immersed or self-distanced perspective. They then conveyed negative and positive evaluations to a Black mentee while electroencephalogram (EEG) was recorded. Source analysis revealed that priming a self-distanced (vs self-immersed) perspective predicted decreased activity in regions linked to self-referential processing (medial prefrontal cortex; MPFC) when providing negative evaluations. This decreased MPFC activity during negative evaluations, in turn, predicted verbal feedback that was perceived to be more positive, warm and helpful. Results suggest that self-distancing can improve interpersonal perceptions and behavior by decreasing self-referential processing during the provision of criticism. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Eye Movement Analysis and Cognitive Assessment. The Use of Comparative Visual Search Tasks in a Non-immersive VR Application.

    PubMed

    Rosa, Pedro J; Gamito, Pedro; Oliveira, Jorge; Morais, Diogo; Pavlovic, Matthew; Smyth, Olivia; Maia, Inês; Gomes, Tiago

    2017-03-23

    An adequate behavioral response depends on attentional and mnesic processes. When these basic cognitive functions are impaired, the use of non-immersive Virtual Reality Applications (VRAs) can be a reliable technique for assessing the level of impairment. However, most non-immersive VRAs use indirect measures to make inferences about visual attention and mnesic processes (e.g., time to task completion, error rate). To examine whether the eye movement analysis through eye tracking (ET) can be a reliable method to probe more effectively where and how attention is deployed and how it is linked with visual working memory during comparative visual search tasks (CVSTs) in non-immersive VRAs. The eye movements of 50 healthy participants were continuously recorded while CVSTs, selected from a set of cognitive tasks in the Systemic Lisbon Battery (SLB). Then a VRA designed to assess of cognitive impairments were randomly presented. The total fixation duration, the number of visits in the areas of interest and in the interstimulus space, along with the total execution time was significantly different as a function of the Mini Mental State Examination (MMSE) scores. The present study demonstrates that CVSTs in SLB, when combined with ET, can be a reliable and unobtrusive method for assessing cognitive abilities in healthy individuals, opening it to potential use in clinical samples.

  9. Australian midwives views and experiences of practice and politics related to water immersion for labour and birth: A web based survey.

    PubMed

    Cooper, Megan; Warland, Jane; McCutcheon, Helen

    2018-06-01

    There is little published research that has examined practitioners' views and experiences of pain relieving measures commonly used during labour and birth, particularly for non-pharmacological measures such as water immersion. Furthermore, there is minimal published research examining the process of policy and guideline development, that is, the translation of published research to usable practice guidance. The aims of phase three of a larger study were to explore midwives knowledge, experiences and support for the option of water immersion for labour and birth in practice and their involvement, if any, in development of policy and guidelines pertaining to the option. Phase three of a three phased mixed methods study included a web based survey of 234 Australian midwives who had facilitated and/or been involved in the development of policies and/or guidelines relating to the practice of water immersion. Midwives who participated in this study were supportive of both water immersion for labour and birth reiterating documented benefits of reduced pain, maternal relaxation and a positive birth experience. The most significant concerns were maternal collapse, the difficulty of estimating blood loss and postpartum haemorrhage whilst barriers included lack of accredited staff, lifting equipment and negative attitudes. Midwives indicated that policy/guideline documents limited their ability to facilitate water immersion and did not always to support women's informed choice. Midwives who participated in this study supported the practice of water immersion reiterating the benefits documented in the literature and minimal risk to the woman and baby. The Human Research Ethics Committee of the University of South Australia approved the research. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  10. Transcultural healthcare immersion: a unique interprofessional experience poised to influence collaborative practice in cultural settings.

    PubMed

    Morton, Jennifer

    2012-01-01

    This paper describes a model for interprofessional and transcultural learning established by the author and supported by the University of New England and Ghana Health Mission, Inc. The model for interprofessional immersion in cultural settings represents a guiding framework predicated on a conceptual "brick and mortar" process for building cultural proficiency among individuals and within teams. It encompasses social, clinical and behavioral components (brick) and personal desire, cultural humility and values (mortar). The ``bounty'' aspect of the model is achieved by way of successful student learning outcomes, positive interprofessional and community-based collaborations, and finally, and to be measured over time, favorable patient and population (programmatic) outcomes. In partnership with the Ghana Health Mission, Inc and local community health workers, students and faculty from a range of health professions took part in a cultural-clinical experience known as Transcultural Immersion in Healthcare. The goal of the experience was to advance cultural proficiency and knowledge through intensive cultural immersion. An urban setting in Ghana, located in West Africa served as the setting for this unique experience. The transcultural immersion in healthcare experience achieved its ``bounty'' as seen in the enhanced cultural proficiency of students and faculty, seamless interprofessional communication and collaboration, and provision of primary care and related services to patients and the Ghanaian community. Future research is in development to test the Model for Interprofessional Immersion in Cultural Settings (MIICS) in a variety of other settings and with a cross section of health disciplines.

  11. DLC coating on a micro-trench by bipolar PBII&D and analysis of plasma behaviour

    NASA Astrophysics Data System (ADS)

    Park, Wonsoon; Tokioka, Hideyuki; Tanaka, Masaaki; Choi, Junho

    2014-08-01

    Bipolar plasma-based ion implantation and deposition (bipolar PBII&D) has been recognized as a promising technique for coating deposition on complex three-dimensional targets. As the target is fully immersed in the plasma throughout the process, the plasma sheath can be formed with quite high conformability around the target. In this study, diamond-like carbon (DLC) coating was deposited on a micro-trench pattern by using bipolar PBII&D, and the structure of the DLC film across the overall surface region of the trench was examined by making use of their corresponding Raman spectra. The two types of negative high voltage pulses were applied to the targets for comparison: -0.5 and -15 kV. The scale of the micro-trench used in the study is much smaller than that of the plasma sheath produced under these negative voltages (about 1 cm and 14 cm for -0.5 kV and -15 kV, respectively). The plasma behaviour (i.e., ion flux, impact angle and energy) in the surrounding of the micro-trench was calculated with the particle-in-cell Monte Carlo collision method (PIC-MCCM). As a result, DLC film was successfully coated on the overall surface of the trench. When the applied negative voltage was -0.5 kV, the structure of DLC film coated on the sidewall of the trench became a more polymer-like carbon (PLC) than those of the top and bottom surfaces. This, as indicated by the simulation results, is because the ions, which strike the sidewall, tend to have less incident energy. Whereas in the case of -15 kV, the DLC film on the sidewall was a more graphite-like carbon (GLC) film, despite its smaller incident ion energy in comparison to those of the top and bottom surfaces. This phenomenon is attributed to the sputtering effect from the bottom surface of the trench, as evidenced by the plasma simulation.

  12. The efficacy of techniques for the disinfection of artificial sub-surface dentinal caries lesions and their effect on demineralization and remineralization in vitro.

    PubMed

    Preston, K P; Higham, S M; Smith, P W

    2007-06-01

    The efficacy of three techniques for the disinfection of artificial sub-surface root caries lesions and their response to subsequent episodes of de- and remineralization was investigated quantitatively in vitro. Sub-surface dentinal lesions (n=20), cut into four experimental blocks and deliberately contaminated with Streptococcus mutans, were subject to either steam autoclaving (121 degrees C, 5min), gamma irradiation (4100Gy), immersion in 0.1% (w/v) thymol-distilled water solution (24h) or reserved as a control. Next, the lesions were incubated aerobically in sterile nutrient broth for 24h at 37 degrees C and resultant cultures plated onto blood agar and neutralisation agar. Ten blocks from each experimental group were then immersed in an acidic buffer solution or exposed to artificial saliva for 5 days. Baseline changes in the mineral content and distribution of the lesions were assessed by transverse microradiography (TMR). Micro-organisms were recovered from each control block and one block treated by gamma irradiation. Steam autoclaving and immersion in a thymol solution significantly decreased (p<0.05) the amount of mineral lost from the body of lesions subject to a further acid challenge. Mineral ion uptake by lesions exposed to artificial saliva was significantly increased (p<0.05) through disinfection by steam autoclaving. Gamma irradiation proved the most acceptable method for the disinfection of sub-surface root dentine lesions having the least adverse effect on demineralization and remineralization.

  13. The effect of chromic sulfate concentration and immersion time on the structures and anticorrosive performance of the Cr(III) conversion coatings on aluminum alloys

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Kun; Bai, Ching-Yuan; Liu, Chung-Ming; Lin, Chao-Sung; Ger, Ming-Der

    2010-06-01

    The main purpose of this study is to develop trivalent chromium, Cr(III), conversion coatings on aluminum alloys. The influence of Cr(III) concentration and immersion time on structures and anticorrosive performance of the coatings has been investigated. Corrosion behaviors of the coatings were evaluated in a 0.5 M H 2SO 4 aqueous solution at room temperature using potentiodynamic polarization. The structure and valence state of the coatings were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The addition of Cr(III) ions to the conversion bath considerably changes structures and compositions of the coatings. The coatings with Cr oxides possess a denser and thinner structure. Moreover, the corrosion resistance of Cr(III) coatings tends to decline with increasing immersion time due to the dissolution of coatings in the dipping period. According to XPS analysis, the Cr(III) conversion coatings are composed of Cr 2O 3, Cr(OH) 3, Al 2O 3, Al(OH) 3, ZrO 2, Zr(OH) 4, AlF 3, and ZrF 4, but no hexavalent chromium component in the coatings. The result indicates that the coatings prepared in the solution with 0.01 M Cr(III) for 5 min have the smoothest and densest structure and the best anticorrosive performance among all of conversion coatings in this work.

  14. Cranial implant design using augmented reality immersive system.

    PubMed

    Ai, Zhuming; Evenhouse, Ray; Leigh, Jason; Charbel, Fady; Rasmussen, Mary

    2007-01-01

    Software tools that utilize haptics for sculpting precise fitting cranial implants are utilized in an augmented reality immersive system to create a virtual working environment for the modelers. The virtual environment is designed to mimic the traditional working environment as closely as possible, providing more functionality for the users. The implant design process uses patient CT data of a defective area. This volumetric data is displayed in an implant modeling tele-immersive augmented reality system where the modeler can build a patient specific implant that precisely fits the defect. To mimic the traditional sculpting workspace, the implant modeling augmented reality system includes stereo vision, viewer centered perspective, sense of touch, and collaboration. To achieve optimized performance, this system includes a dual-processor PC, fast volume rendering with three-dimensional texture mapping, the fast haptic rendering algorithm, and a multi-threading architecture. The system replaces the expensive and time consuming traditional sculpting steps such as physical sculpting, mold making, and defect stereolithography. This augmented reality system is part of a comprehensive tele-immersive system that includes a conference-room-sized system for tele-immersive small group consultation and an inexpensive, easily deployable networked desktop virtual reality system for surgical consultation, evaluation and collaboration. This system has been used to design patient-specific cranial implants with precise fit.

  15. Direct nanopatterning of 100 nm metal oxide periodic structures by Deep-UV immersion lithography.

    PubMed

    Stehlin, Fabrice; Bourgin, Yannick; Spangenberg, Arnaud; Jourlin, Yves; Parriaux, Olivier; Reynaud, Stéphanie; Wieder, Fernand; Soppera, Olivier

    2012-11-15

    Deep-UV lithography using high-efficiency phase mask has been developed to print 100 nm period grating on sol-gel based thin layer. High efficiency phase mask has been designed to produce a high-contrast interferogram (periodic fringes) under water immersion conditions for 244 nm laser. The demonstration has been applied to a new developed immersion-compatible sol-gel layer. A sol-gel photoresist prepared from zirconium alkoxides caped with methacrylic acids was developed to achieve 50 nm resolution in a single step exposure. The nanostructures can be thermally annealed into ZrO(2). Such route considerably simplifies the process for elaborating nanopatterned surfaces of transition metal oxides, and opens new routes for integrating materials of interest for applications in the field of photocatalysis, photovoltaic, optics, photonics or microelectronics.

  16. Molecular modeling of the process of reversible dissolution of the collagen protein under the action of tissue-clearing agents

    NASA Astrophysics Data System (ADS)

    Dvoretsky, K. N.; Berezin, K. V.; Chernavina, M. L.; Likhter, A. M.; Shagautdinova, I. T.; Antonova, E. M.; Rybakov, A. V.; Grechukhina, O. N.; Tuchin, V. V.

    2018-04-01

    The interaction of glycerol immersion agent with collagen mimetic peptide ((GPH)9)3 and a fragment of the microfibril 5((GPH)12)3 was studied by the classical molecular dynamics method using the GROMACS software. The change in geometric parameters of collagen α-chains at various concentrations of an aqueous solution of glycerol is analyzed. It is shown that these changes nonlinearly depend on the concentration and are limited to a certain level, which correlates with the experimental data on optical clearing efficiency of human skin. A hypothesis on the cause of the decreased efficiency of optical skin clearing at high immersion agent concentrations is put forward. The molecular mechanism of immersion optical clearing of biological tissues is discussed.

  17. Titanium Ions Release from an Innovative Titanium-Magnesium Composite: an in Vitro Study

    PubMed Central

    Halambek, Jasna; Maldini, Krešimir; Balog, Martin; Križik, Peter; Schauperl, Zdravko; Ćatić, Amir

    2016-01-01

    Background The innovative titanium-magnesium composite (Ti-Mg) was produced by powder metallurgy (P/M) method and is characterized in terms of corrosion behavior. Material and methods Two groups of experimental material, 1 mass% (Ti-1Mg) and 2 mass% (Ti-2Mg) of magnesium in titanium matrix, were tested and compared to commercially pure titanium (CP Ti). Immersion test and chemical analysis of four solutions: artificial saliva; artificial saliva pH 4; artificial saliva with fluoride and Hank balanced salt solution were performed after 42 days of immersion, using inductively coupled plasma mass spectrometry (ICP-MS) to detect the amount of released titanium ions (Ti). SEM and EDS analysis were used for surface characterization. Results The difference between the results from different test solutions was assessed by ANOVA and Newman-Keuls test at p<0.05. The influence of predictor variables was found by multiple regression analysis. The results of the present study revealed a low corrosion rate of titanium from the experimental Ti-Mg group. Up to 46 and 23 times lower dissolution of Ti from Ti-1Mg and Ti-2Mg, respectively was observed compared to the control group. Among the tested solutions, artificial saliva with fluorides exhibited the highest corrosion effect on all specimens tested. SEM micrographs showed preserved dual phase surface structure and EDS analysis suggested a favorable surface bioactivity. Conclusion In conclusion, Ti-Mg produced by P/M as a material with better corrosion properties when compared to CP Ti is suggested. PMID:27688425

  18. Temperature-dependent phosphorous dopant activation in ZnO thin film deposited using plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Murkute, Punam; Ghadi, Hemant; Saha, Shantanu; Chavan, Vinayak; Chakrabarti, Subhananda

    2018-03-01

    High band gap (3.34 eV) and large exciton binding energy (60 meV) at room temperature facilitates ZnO as a useful candidate for optoelectronics devices. Presence of zinc interstitial and oxygen vacancies results in n-type ZnO film. Phosphorus implantation was carried out using plasma immersion ion implantation technique (2kV, 900W) for constant duration (50 s) on RF sputtered ZnO thin films (Sample A). For dopant activation, sample A was subjected to Rapid Thermal Annealing (RTA) at 700, 800, 900 and 1000°C for 10 s in Oxygen ambient (Sample B, C, D, E). Low temperature (18 K) photoluminescence measurement demonstrated strong donor bound exciton peak for sample A. Dominant donor to acceptor pair peak (DAP) was observed for sample D at around 3.22 eV with linewidth of 131.3 meV. High resolution x-ray diffraction measurement demonstrated (001) and (002) peaks for sample A. (002) peak with high intensity was observed from all annealed samples. Incorporation of phosphorus in ZnO films leads to peak shift towards higher 2θ angle indicate tensile strain in implanted samples. Scanning electron microscopy images reveals improvement in grain size distribution along with reduction of implantation related defects. Raman spectra measured A1(LO) peak at around 576 cm-1 for sample A. Low intensity E2 (high) peak was observed for sample D indicating formation of (PZn+2VZn) complexes. From room temperature Hall measurement, sample D measured 1.17 x 1018 cm -3 carrier concentration with low resistivity of 0.464 Ω.

  19. A comparison of the surface characteristics and ion release of Ti6Al4V and heat-treated Ti6Al4V.

    PubMed

    Lee, T M; Chang, E; Yang, C Y

    2000-06-15

    This work seeks to investigate the nanosurface characteristics and ion release for a Ti6Al4V alloy prepared by various methods (as received and heat treated at 1300 degrees C for 2 h) with three different passivation treatments (34% nitric acid passivation, 400 degrees C heating in air, and aging in 100 degrees C deionized water). The surface and nanosurface composition are not related to the surface passivation treatments and experimental materials as evaluated by energy dispersive spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. After passivation and autoclaving treatments, the specimens were immersed in 8.0 mM ethylenediaminetetraacetic acid (EDTA) in Hank's solution and maintained at 37 degrees C for periods of time up to 16 days. The 400 degrees C treated specimens exhibit a substantial reduction in constituent release, which may be attributed to the thicker thickness and rutile structure of the surface oxides. After soaking in Hank's-EDTA solution, a significant time-related decrease in constituent release rate is observed for all kinds of specimens throughout the 0-16 day experimental period. The thicker oxides may be a factor in the improved dissolution resistance. Upon immersion, nonelemental Ca and P are both detected on the surfaces of all kinds of specimens by XPS analysis, and this could be explained by the existence of two types of hydroxyl groups (acidic and basic OH groups) on the oxide surface of the specimens. Copyright 2000 John Wiley & Sons, Inc.

  20. Formation of apatite layers on modified canasite glass-ceramics in simulated body fluid.

    PubMed

    Miller, C A; Kokubo, T; Reaney, I M; Hatton, P V; James, P F

    2002-03-05

    Canasite glass-ceramics were modified by either increasing the concentration of calcium in the glass, or by the addition of P2O5. Samples of these novel materials were placed in simulated body fluid (SBF), along with a control material (commercial canasite), for periods ranging from 12 h to 28 days. After immersion, surface analysis was performed using thin film X-ray diffraction, Fourier transform infrared reflection spectroscopy, and scanning electron microscopy equipped with energy dispersive X-ray detectors. The concentrations of sodium, potassium, calcium, silicon, and phosphorus in the SBF solution were measured using inductively coupled plasma emission spectroscopy. No apatite was detected on the surface of commercial canasite, even after 28 days of immersion in SBF. A crystalline apatite layer was formed on the surface of a P2O5-containing canasite after 5 days, and after 3 days for calcium-enriched canasite. Ion release data suggested that the mechanism for apatite deposition was different for P2O5 and non-P2O5-containing glass-ceramics. Copyright 2001 John Wiley & Sons, Inc.

  1. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete.

    PubMed

    Simescu, Florica; Idrissi, Hassane

    2008-12-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 . After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  2. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Simescu, Florica; Idrissi, Hassane

    2008-12-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO4)6(OH)2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  3. Synthesis and In vitro Evaluation of Electrodeposited Barium Titanate Coating on Ti6Al4V

    PubMed Central

    Rahmati, Shahram; Basiriani, Mohammad Basir; Rafienia, Mohammad; Yaghini, Jaber; Raeisi, Keyvan

    2016-01-01

    Osseointegration has been the concern of implantology for many years. Researchers have used various ceramic coatings for this purpose; however, piezoelectric ceramics (e.g., barium titanate [BTO]) are a novel field of interest. In this regard, BTO (BaTiO3) coating was fabricated by electrophoretic deposition on Ti6Al4V medical alloy, using sol-gel-synthesized nanometer BTO powder. Structure and morphologies were studied using X-ray diffraction and scanning electron microscopy (SEM), respectively. Bioactivity response of coated samples was evaluated by SEM and inductively coupled plasma (ICP) analysis after immersion in simulated body fluid (SBF). Cell compatibility was also studied via MTT assay and SEM imaging. Results showed homogenous coating with cubic structure and crystallite size of about 41 nm. SEM images indicated apatite formation on the coating after 7 days of SBF immersion, and ICP analysis approved ions concentration decrement in SBF. Cells showed flattened morphology in intimate contact with coating after 7 days of culture. Altogether, coated samples demonstrated appropriate bioactivity and biocompatibility. PMID:27186538

  4. Immobilization of nanobeads on a surface to control the size, shape and distribution of pores in electrochemically generated sol-gel films.

    PubMed

    Ciabocco, Michela; Berrettoni, Mario; Zamponi, Silvia; Cox, James A

    2015-07-01

    Electrochemically assisted deposition of an ormosil film at a potential where hydrogen ion is generated as the catalyst yields insulating films on electrodes. When the base electrode is modified with 20-nm poly(styrene sulfonate), PSS, beads bound to the surface with 3-aminopropyltriethoxysilane (APTES) and using (CH 3 ) 3 SiOCH 3 as the precursor, the resulting film of organically modified silica (ormosil) has cylindrical channels that reflect both the diameter of the PSS and the distribution of the APTES-PSS on the electrode. At an electrode modified by a 20-min immersion in 0.5 mmol dm -3 APTES followed by a 30-s immersion in PSS, a 20-min electrolysis at 1.5 V in acidified (CH 3 ) 3 SiOCH 3 resulted in an ormosil film with 20-nm pores separated by 100 nm. Cyclic voltammetry of Ru(CN) 6 4- at scan rates above 5 mVs -1 yielded currents controlled primarily by linear diffusion. Below 5 mVs -1 , convection rather than the expected factor, radial diffusion, apparently limited the current.

  5. Comparative study of the native oxide on 316L stainless steel by XPS and ToF-SIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tardio, Sabrina, E-mail: s.tardio@surrey.ac.uk; Abel, Marie-Laure; Castle, James E.

    2015-09-15

    The very thin native oxide film on stainless steel, of the order of 2 nm, is known to be readily modified by immersion in aqueous media. In this paper, X-ray photoelectron spectroscopy (XPS) and time of flight secondary ions mass spectrometry are employed to investigate the nature of the air-formed film and modification after water emersion. The film is described in terms of oxide, hydroxide, and water content. The preferential dissolution of iron is shown to occur on immersion. It is shown that a water absorbed layer and a hydroxide layer are present above the oxide-like passive film. The concentrations ofmore » water and hydroxide appear to be higher in the case of exposure to water. A secure method for the peak fitting of Fe2p and Cr2p XPS spectra of such films on their metallic substrates is described. The importance of XPS survey spectra is underlined and the feasibility of C{sub 60}{sup +} SIMS depth profiling of a thin oxide layer is shown.« less

  6. Chloride-induced corrosion mechanism and rate of enamel- and epoxy-coated deformed steel bars embedded in mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Fujian; Chen, Genda; Brow, Richard K.

    The chloride-induced corrosion mechanisms of uncoated, pure enamel (PE)-coated, mixed enamel (ME)-coated, double enamel (DE)-coated, and fusion bonded epoxy (FBE)-coated deformed steel bars embedded in mortar cylinders are investigated in 3.5 wt.% NaCl solution and compared through electrochemical tests and visual inspection. Corrosion initiated after 29 or 61 days of tests in all uncoated and enamel-coated steel bars, and after 244 days of tests in some FBE-coated steel bars. In active stage, DE- and FBE-coated steel bars are subjected to the highest and lowest corrosion rates, respectively. The uncoated and ME-coated steel bars revealed relatively uniform corrosion while the PE-,more » DE-, and FBE-coated steel bars experienced pitting corrosion around damaged coating areas. Due to the combined effect of ion diffusion and capillary suction, wet–dry cyclic immersion caused more severe corrosion than continuous immersion. Both exposure conditions affected the corrosion rate more significantly than the water–cement ratio in mortar design.« less

  7. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    PubMed Central

    Simescu, Florica; Idrissi, Hassane

    2008-01-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO4)6(OH)2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating. PMID:27878037

  8. Electrochemical Migration Behavior of Copper-Clad Laminate and Electroless Nickel/Immersion Gold Printed Circuit Boards under Thin Electrolyte Layers

    PubMed Central

    Yi, Pan; Xiao, Kui; Ding, Kangkang; Dong, Chaofang; Li, Xiaogang

    2017-01-01

    The electrochemical migration (ECM) behavior of copper-clad laminate (PCB-Cu) and electroless nickel/immersion gold printed circuit boards (PCB-ENIG) under thin electrolyte layers of different thicknesses containing 0.1 M Na2SO4 was studied. Results showed that, under the bias voltage of 12 V, the reverse migration of ions occurred. For PCB-Cu, both copper dendrites and sulfate precipitates were found on the surface of FR-4 (board material) between two plates. Moreover, the Cu dendrite was produced between the two plates and migrated toward cathode. Compared to PCB-Cu, PCB-ENIG exhibited a higher tendency of ECM failure and suffered from seriously short circuit failure under high relative humidity (RH) environment. SKP results demonstrated that surface potentials of the anode plates were greater than those of the cathode plates, and those potentials of the two plates exhibited a descending trend as the RH increased. At the end of the paper, an electrochemical migration corrosion failure model of PCB was proposed. PMID:28772497

  9. Fabrication of hydroxyapatite block from gypsum block based on (NH4)2HPO4 treatment.

    PubMed

    Suzuki, Yumiko; Matsuya, Shigeki; Udoh, Koh-ichi; Nakagawa, Masaharu; Tsukiyama, Yoshihiro; Koyano, Kiyoshi; Ishikawa, Kunio

    2005-12-01

    The aim of this study was to evaluate the feasibility of fabricating low-crystalline, porous apatite block using set gypsum as a precursor based on the fact that apatite is thermodynamically more stable than gypsum. When the set gypsum was immersed in 1 mol/L diammonium hydrogen phosphate aqueous solution at 100 degrees C, it transformed to low-crystalline porous apatite retaining its original shape. The transformation reaction caused a release of sulfate ions due to an ion exchange with phosphate ions, thus leading to a decrease in the pH of the solution. Then, due to decreased pH, dicalcium phosphate anhydrous--which has similar thermodynamic stability at lower pH--was also produced as a by-product. Apatite formed in the present method was low-crystalline, porous B-type carbonate apatite that contained approximately 0.5 wt% CO3, even though no carbonate sources--except carbon dioxide from air--were added to the reaction system. We concluded therefore that this is a useful bone filler fabrication method since B-type carbonate apatite is the biological apatite contained in bone.

  10. Bohm-criterion approximation versus optimal matched solution for a cylindrical probe in radial-motion theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Din, Alif

    2016-08-15

    The theory of positive-ion collection by a probe immersed in a low-pressure plasma was reviewed and extended by Allen et al. [Proc. Phys. Soc. 70, 297 (1957)]. The numerical computations for cylindrical and spherical probes in a sheath region were presented by F. F. Chen [J. Nucl. Energy C 7, 41 (1965)]. Here, in this paper, the sheath and presheath solutions for a cylindrical probe are matched through a numerical matching procedure to yield “matched” potential profile or “M solution.” The solution based on the Bohm criterion approach “B solution” is discussed for this particular problem. The comparison of cylindricalmore » probe characteristics obtained from the correct potential profile (M solution) and the approximated Bohm-criterion approach are different. This raises questions about the correctness of cylindrical probe theories relying only on the Bohm-criterion approach. Also the comparison between theoretical and experimental ion current characteristics shows that in an argon plasma the ions motion towards the probe is almost radial.« less

  11. Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors

    NASA Astrophysics Data System (ADS)

    Yehezkel, Shani; Auinat, Mahmud; Sezin, Nina; Starosvetsky, David; Ein-Eli, Yair

    2016-04-01

    Carbon nanotubes (CNT) fabrics were studied and evaluated as anode current collectors, replacing the traditional copper foil current collector in Li-ion batteries. Glavanostatic measurements reveal high values of irreversible capacities (as high as 28%), resulted mainly from the formation of the solid electrolyte interphase (SEI) layer at the CNT fabric surface. Various pre-treatments to the CNT fabric prior to active anode material loading have shown that the lowest irreversible capacity is achieved by immersing and washing the CNT fabric with iso-propanol (IPA), which dramatically modified the fabric surface. Additionally, the use of very thin CNT fabrics (5 μm) results in a substantial irreversible capacity minimization. A combination of IPA rinse action and utilization of the thinnest CNT fabric provides the lowest irreversible capacity of 13%. The paper describes innovative and rather simple techniques towards a complete implementation of CNT fabric as an anode current collector in Li-ion batteries, instead of the relatively heavy and expensive copper foil, enabling an improvement in the gravimetric and volumetric energy densities of such advanced batteries.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeshita, Takayuki; Okamoto, Masami

    The hydroxyapatite (HA) formation on the surface of DNA molecules in simulated body fluid (SBF) was examined. The osteoconductivity is estimated using SBF having ion concentrations approximately equal to those of human blood plasma. After immersion for 4 weeks in SBF at 36.5 °C, the HA crystallites possessing 1-14 micrometer in diameter grew on the surface of DNA molecules. The leaf flake-like and spherical shapes morphologies were observed through scanning electron microscopy analysis. Original peaks of both of DNA and HA were characterized by fourier transform infrared spectroscopy. The Ca/P ratio (1.1-1.5) in HA was estimated by energy dispersive X-raymore » analysis. After biomineralization, the calculated weight ratio of DNA/HA was 18/82 by thermogravimetry/differential thermal analysis. The molecular orbital computer simulation has been used to probe the interaction of DNA with two charge-balancing ions, CaOH{sup +} and CaH{sub 2}PO{sub 4}{sup +}. The adsorption enthalpy of the two ions on DNA having negative value was the evidence for the interface in mineralization of HA in SBF.« less

  13. Polyelectrolyte induced formation of silver nanoparticles in copolymer hydrogel and their application as catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yongqiang; Huang, Guanbo, E-mail: gbhuang2007@hotmail.com; Pan, Zeng

    2015-10-15

    Highlights: • A simple route for the in situ preparation of Ag nanoparticles has been developed. • The Ag loaded hydrogel showed catalytic activity for reduction of 4-nitrophenol. • The catalyst can be recovered by simple separation and showed good recyclability. - Abstract: A simple route for the in situ preparation of catalytically active Ag nanoparticles (NPs) in hydrogel networks has been developed. The electronegativity of the amide and carboxyl groups on the poly(acrylamide-co-acryl acid) chains caused strong binding of the Ag{sup +} ions which made the ions distribute uniformly inside the hydrogels. When the Ag{sup +} loaded hydrogels weremore » immersed in NaBH{sub 4} solution, the Ag{sup +} ions on the polymer networks were reduced to Ag NPs. The resultant hydrogel showed good catalytic activity for the reduction of a common organic pollutant, 4-nitrophenol, with sodium borohydride. A kinetic study of the catalytic reaction was carried out and a possible reason for the decline of the catalytic performance with reuse is proposed.« less

  14. Fabrication of DNA/Hydroxyapatite nanocomposites by simulated body fluid for gene delivery

    NASA Astrophysics Data System (ADS)

    Takeshita, Takayuki; Okamoto, Masami

    2015-05-01

    The hydroxyapatite (HA) formation on the surface of DNA molecules in simulated body fluid (SBF) was examined. The osteoconductivity is estimated using SBF having ion concentrations approximately equal to those of human blood plasma. After immersion for 4 weeks in SBF at 36.5 °C, the HA crystallites possessing 1-14 micrometer in diameter grew on the surface of DNA molecules. The leaf flake-like and spherical shapes morphologies were observed through scanning electron microscopy analysis. Original peaks of both of DNA and HA were characterized by fourier transform infrared spectroscopy. The Ca/P ratio (1.1-1.5) in HA was estimated by energy dispersive X-ray analysis. After biomineralization, the calculated weight ratio of DNA/HA was 18/82 by thermogravimetry/differential thermal analysis. The molecular orbital computer simulation has been used to probe the interaction of DNA with two charge-balancing ions, CaOH+ and C a H2P O4+ . The adsorption enthalpy of the two ions on DNA having negative value was the evidence for the interface in mineralization of HA in SBF.

  15. Black-to-Transmissive Electrochromism with Visible-to-Near-Infrared Switching of a Co(II)-Based Metallo-Supramolecular Polymer for Smart Window and Digital Signage Applications.

    PubMed

    Hsu, Chih-Yu; Zhang, Jian; Sato, Takashi; Moriyama, Satoshi; Higuchi, Masayoshi

    2015-08-26

    Black-to-transmissive electrochromism has been obtained with a Co(II)-based metallo-supramolecular polymer (polyCo). Thin films of polyCo, based on bisterpyridine ligand assembled with Co(II) metal ion, were constructed by spray casting the polymer onto ITO glass. With such simple fabricating means to form good-quality films, polyCo films show stable switching at the central metal ion of the Co(II)/Co(I) redox reaction when immersed in aqueous solution. With an increase in the pH of the aqueous electrolyte solution from neutral, the film exhibits a color response due to the interaction between the d-orbital electron and hydroxide ions affecting the d-d* transition. As a result, a nearly transparent-to-black electrochromic performance can be achieved with a transmittance difference at 550 nm of 74.3% (81.9-7.6%) in pH 13 solution. The light absorption of the film can be tuned over light regions from visible to near-infrared with a large attenuation.

  16. Ion Irradiation of H2-Laden Porous Water-ice Films: Implications for Interstellar Ices

    NASA Astrophysics Data System (ADS)

    Raut, U.; Mitchell, E. H.; Baragiola, R. A.

    2015-10-01

    To understand the effects of cosmic-ray (CR) impacts on interstellar icy grains immersed in H2 gas, we have irradiated porous water-ice films loaded with H2 with 100 keV H+. The ice films were exposed to H2 gas at different pressures following deposition and during irradiation. A net H2 loss is observed during irradiation due to competition between ion-induced sputtering and gas adsorption. The initial H2 loss cross-section, 4(1) × 10-14 cm2, was independent of film thickness, H2, and proton fluxes. In addition to sputtering, irradiation also closes nanopores, trapping H2 in the film with binding that exceeds physical absorption energies. As a result, 2%-7% H2 is retained in the ice following irradiation to high fluences. We find that the trapped H2 concentration increases with decreasing Φ, the ratio of ion to H2 fluxes, suggesting that as high as 8% solid H2 can be trapped in interstellar ice by CR or stellar wind impacts.

  17. pH and calcium ion release evaluation of pure and calcium hydroxide-containing Epiphany for use in retrograde filling

    PubMed Central

    TANOMARU-FILHO, Mário; SAÇAKI, Juliana Nogueira; FALEIROS, Frederico Bordini Chaves; GUERREIRO-TANOMARU, Juliane Maria

    2011-01-01

    Objective Hydroxyl (OH-) and calcium (Ca++) ion release was evaluated in six materials: G1) Sealer 26, G2) White mineral trioxide aggregate (MTA), G3) epiphany, G4) epiphany + 10% calcium hydroxide (CH), G5) epiphany + 20% CH, and G6) zinc oxide and eugenol. Material and Methods Specimens were placed in polyethylene tubes and immersed in distilled water. After 3, 6, 12, 24, and 48 h, 7, 14, and 28 days, the water was assessed for pH with a pH meter and for Ca++ release by atomic absorption spectrophotometry. Results G1, G2, G4, and G5 had the highest pH until 14 days (p<0.05). G1 presented the highest Ca++ release until 6 h, and G4 and G5, from 12 h through 14 days. Ca++ release was greater for G1 and G2 at 28 days. G6 released the least Ca++. Conclusion MTA, Sealer 26, epiphany, and epiphany + CH release OH - and Ca++ ions. Epiphany + CH may be an alternative as retrofilling material. PMID:21437461

  18. Microcapsule-based techniques for improving the safety of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Baginska, Marta

    Lithium-ion batteries are vital energy storage devices due to their high specific energy density, lack of memory effect, and long cycle life. While they are predominantly used in small consumer electronics, new strategies for improving battery safety and lifetime are critical to the successful implementation of high-capacity, fast-charging materials required for advanced Li-ion battery applications. Currently, the presence of a volatile, combustible electrolyte and an oxidizing agent (Lithium oxide cathodes) make the Li-ion cell susceptible to fire and explosions. Thermal overheating, electrical overcharging, or mechanical damage can trigger thermal runaway, and if left unchecked, combustion of battery materials. To improve battery safety, autonomic, thermally-induced shutdown of Li-ion batteries is demonstrated by depositing thermoresponsive polymer microspheres onto battery anodes. When the internal temperature of the cell reaches a critical value, the microspheres melt and conformally coat the anode and/or separator with an ion insulating barrier, halting Li-ion transport and shutting down the cell permanently. Charge and discharge capacity is measured for Li-ion coin cells containing microsphere-coated anodes or separators as a function of capsule coverage. Scanning electron microscopy images of electrode surfaces from cells that have undergone autonomic shutdown provides evidence of melting, wetting, and re-solidification of polyethylene (PE) into the anode and polymer film formation at the anode/separator interface. As an extension of this autonomic shutdown approach, a particle-based separator capable of performing autonomic shutdown, but which reduces the shorting hazard posed by current bi- and tri-polymer commercial separators, is presented. This dual-particle separator is composed of hollow glass microspheres acting as a physical spacer between electrodes, and PE microspheres to impart autonomic shutdown functionality. An oil-immersion technique is developed to simulate an overheating condition while the cell is cycling. Experimental protocols are developed to assess the performance of the separator in terms of its ability to perform autonomic shutdown and examine tested battery materials using scanning electron microscopy. Another approach to improving battery functionality is via the microencapsulation of battery additives. Currently, additives are added directly into a battery electrolyte, and while they typically perform their function given a sufficient loading, these additives often do so at the expense of battery performance. Microencapsulation allows for a high loading of additives to be incorporated into the cell and their release triggered only when and where they are needed. In this work, microencapsulation techniques are developed to successfully encapsulate 3-hexylthiophene, a stabilizing agent for high-voltage cathodes in Li-ion batteries and conductive polymer precursor, as well as the flame retardant Tris(2-choloroethyl phosphate) (TCP). Microcapsules containing 3-hexylthiophene are coated onto model battery electrodes and immersed in electrolyte. The microcapsule shell wall insulates the 3-hexylthiophene until the microcapsules are mechanically crushed and electropolymerization of the released core to form poly(3-ht) occurs under cyclic voltammetry. In addition, TCP was encapsulated using in situ polymerization. TCP-containing microcapsules are stable in electrolyte at room temperature, but are thermally triggered to release their payload at elevated temperatures. Experimental protocols are developed to study the in situ triggering and release of microencapsulated additives.

  19. Fabrication and electrochemical properties of insoluble fullerene-diamine adduct thin-films as buffer layer by alternate immersion process

    NASA Astrophysics Data System (ADS)

    Saito, Jo; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo

    2017-01-01

    Insoluble fullerene-diamine adduct thin-films consisting of C60 and 1,2-diaminoethane were easily fabricated on an electrode by an alternate immersion process. Formation of the C60-diamine adduct films were confirmed using transmission absorption spectroscopy and atomic force microscopy. An inverted-type organic solar cells were fabricated by using the C60-diamine adduct film as the electron transport layer. The resultant photoelectric conversation performance of the solar cells suggested that photocurrent is generated via the photoexcitation of polythiophene. The result suggests that the present insoluble fullerene-diamine adduct films worked as buffer layer for organic thin-film solar cells.

  20. Simultaneous cross-linking and p-doping of a polymeric semiconductor film by immersion into a phosphomolybdic acid solution for use in organic solar cells.

    PubMed

    Aizawa, Naoya; Fuentes-Hernandez, Canek; Kolesov, Vladimir A; Khan, Talha M; Kido, Junji; Kippelen, Bernard

    2016-03-07

    Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) is shown to be simultaneously cross-linked and p-doped when immersed into a phosphomolybdic acid solution, yielding conductive films with low solubility that can withstand the solution processing of subsequent photoactive layers. Such a modified PCDTBT film serves to improve hole collection and limit carrier recombination in organic solar cells.

Top